Science.gov

Sample records for mouse xenografts measured

  1. Utility of a human-mouse xenograft model and in vivo near-infrared fluorescent imaging for studying wound healing.

    PubMed

    Shanmugam, Victoria K; Tassi, Elena; Schmidt, Marcel O; McNish, Sean; Baker, Stephen; Attinger, Christopher; Wang, Hong; Shara, Nawar; Wellstein, Anton

    2015-12-01

    To study the complex cellular interactions involved in wound healing, it is essential to have an animal model that adequately mimics the human wound microenvironment. Currently available murine models are limited because wound contraction introduces bias into wound surface area measurements. The purpose of this study was to demonstrate utility of a human-mouse xenograft model for studying human wound healing. Normal human skin was harvested from elective abdominoplasty surgery, xenografted onto athymic nude (nu/nu) mice, and allowed to engraft for 3 months. The graft was then wounded using a 2-mm punch biopsy. Wounds were harvested on sequential days to allow tissue-based markers of wound healing to be followed sequentially. On the day of wound harvest, mice were injected with XenoLight RediJect cyclooxygenase-2 (COX-2) probe and imaged according to package instructions. Immunohistochemistry confirms that this human-mouse xenograft model is effective for studying human wound healing in vivo. Additionally, in vivo fluorescent imaging for inducible COX-2 demonstrated upregulation from baseline to day 4 (P = 0·03) with return to baseline levels by day 10, paralleling the reepithelialisation of the wound. This human-mouse xenograft model, combined with in vivo fluorescent imaging provides a useful mechanism for studying molecular pathways of human wound healing. PMID:24373153

  2. Optimization of arterial spin labeling MRI for quantitative tumor perfusion in a mouse xenograft model.

    PubMed

    Rajendran, Reshmi; Liang, Jieming; Tang, Mei Yee Annie; Henry, Brian; Chuang, Kai-Hsiang

    2015-08-01

    Perfusion is an important biomarker of tissue function and has been associated with tumor pathophysiology such as angiogenesis and hypoxia. Arterial spin labeling (ASL) MRI allows noninvasive and quantitative imaging of perfusion; however, the application in mouse xenograft tumor models has been challenging due to the low sensitivity and high perfusion heterogeneity. In this study, flow-sensitive alternating inversion recovery (FAIR) ASL was optimized for a mouse xenograft tumor. To assess the sensitivity and reliability for measuring low perfusion, the lumbar muscle was used as a reference region. By optimizing the number of averages and inversion times, muscle perfusion as low as 32.4 ± 4.8 (mean ± standard deviation) ml/100 g/min could be measured in 20 min at 7 T with a quantification error of 14.4 ± 9.1%. Applying the optimized protocol, heterogeneous perfusion ranging from 49.5 to 211.2 ml/100 g/min in a renal carcinoma was observed. To understand the relationship with tumor pathology, global and regional tumor perfusion was compared with histological staining of blood vessels (CD34), hypoxia (CAIX) and apoptosis (TUNEL). No correlation was observed when the global tumor perfusion was compared with these pathological parameters. Regional analysis shows that areas of high perfusion had low microvessel density, which was due to larger vessel area compared with areas of low perfusion. Nonetheless, these were not correlated with hypoxia or apoptosis. The results suggest that tumor perfusion may reflect certain aspect of angiogenesis, but its relationship with other pathologies needs further investigation. PMID:26104980

  3. Validation of a mouse xenograft model system for gene expression analysis of human acute lymphoblastic leukaemia

    PubMed Central

    2010-01-01

    Background Pre-clinical models that effectively recapitulate human disease are critical for expanding our knowledge of cancer biology and drug resistance mechanisms. For haematological malignancies, the non-obese diabetic/severe combined immunodeficient (NOD/SCID) mouse is one of the most successful models to study paediatric acute lymphoblastic leukaemia (ALL). However, for this model to be effective for studying engraftment and therapy responses at the whole genome level, careful molecular characterisation is essential. Results Here, we sought to validate species-specific gene expression profiling in the high engraftment continuous ALL NOD/SCID xenograft. Using the human Affymetrix whole transcript platform we analysed transcriptional profiles from engrafted tissues without prior cell separation of mouse cells and found it to return highly reproducible profiles in xenografts from individual mice. The model was further tested with experimental mixtures of human and mouse cells, demonstrating that the presence of mouse cells does not significantly skew expression profiles when xenografts contain 90% or more human cells. In addition, we present a novel in silico and experimental masking approach to identify probes and transcript clusters susceptible to cross-species hybridisation. Conclusions We demonstrate species-specific transcriptional profiles can be obtained from xenografts when high levels of engraftment are achieved or with the application of transcript cluster masks. Importantly, this masking approach can be applied and adapted to other xenograft models where human tissue infiltration is lower. This model provides a powerful platform for identifying genes and pathways associated with ALL disease progression and response to therapy in vivo. PMID:20406497

  4. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  5. Germ cell differentiation in cryopreserved, immature, Indian spotted mouse deer (Moschiola indica) testes xenografted onto mice.

    PubMed

    Pothana, Lavanya; Makala, Himesh; Devi, Lalitha; Varma, Vivek Phani; Goel, Sandeep

    2015-03-01

    Death of immature animals is one of the reasons for the loss of genetic diversity of rare and endangered species. Because sperm cannot be collected from immature males, cryobanking of testicular tissue combined with testis xenografting is a potential option for conservation. The objective of this study was to evaluate the establishment of spermatogenesis in cryopreserved immature testicular tissues from Indian spotted mouse deer (Moschiola indica) after ectopic xenografting onto immunodeficient nude mice. Results showed that testis tissues that were frozen in cryomedia containing either 10% DMSO with 80% fetal bovine serum (D10S80) or 20% DMSO with 20% fetal bovine serum (D20S20) had significantly more (P < 0.01) terminal deoxynucleotidyl transferase-mediated dUTP nick end labeled positive interstitial cells when compared with fresh testis tissues (46.3 ± 3.4 and 51.9 ± 4.0 vs. 22.8 ± 2.0). Xenografted testicular tissues showed degenerated seminiferous tubules 24 weeks after grafting in testes that had been cryopreserved in D20S20; alternatively, pachytene spermatocytes were the most advanced germ cells in testes that were cryopreserved in D10S80. Proliferating cell nuclear antigen staining confirmed the proliferative status of spermatocytes, and the increases in tubular and lumen diameters indicated testicular maturation in xenografts. However, persistent anti-Müllerian hormone staining in Sertoli cells of xenografts revealed incomplete testicular maturation. This study reports that cryopreserved testis tissue that had been xenografted from endangered animals onto mice resulted in the establishment of spermatogenesis with initiation of meiosis. These findings are encouraging for cryobanking of testicular tissues from immature endangered animals to conserve their germplasm. PMID:25467768

  6. Development and rescue of human familial hypercholesterolaemia in a xenograft mouse model

    PubMed Central

    Bissig-Choisat, Beatrice; Wang, Lili; Legras, Xavier; Saha, Pradip K.; Chen, Leon; Bell, Peter; Pankowicz, Francis P.; Hill, Matthew C.; Barzi, Mercedes; Leyton, Claudia Kettlun; Leung, Hon-Chiu Eastwood; Kruse, Robert L.; Himes, Ryan W.; Goss, John A.; Wilson, James M.; Chan, Lawrence; Lagor, William R.; Bissig, Karl-Dimiter

    2015-01-01

    Diseases of lipid metabolism are a major cause of human morbidity, but no animal model entirely recapitulates human lipoprotein metabolism. Here we develop a xenograft mouse model using hepatocytes from a patient with familial hypercholesterolaemia caused by loss-of-function mutations in the low-density lipoprotein receptor (LDLR). Like familial hypercholesterolaemia patients, our familial hypercholesterolaemia liver chimeric mice develop hypercholesterolaemia and a 'humanized‘ serum profile, including expression of the emerging drug targets cholesteryl ester transfer protein and apolipoprotein (a), for which no genes exist in mice. We go on to replace the missing LDLR in familial hypercholesterolaemia liver chimeric mice using an adeno-associated virus 9-based gene therapy and restore normal lipoprotein profiles after administration of a single dose. Our study marks the first time a human metabolic disease is induced in an experimental animal model by human hepatocyte transplantation and treated by gene therapy. Such xenograft platforms offer the ability to validate human experimental therapies and may foster their rapid translation into the clinic. PMID:26081744

  7. Endogenous retrovirus induces leukemia in a xenograft mouse model for primary myelofibrosis

    PubMed Central

    Triviai, Ioanna; Ziegler, Marion; Bergholz, Ulla; Oler, Andrew J.; Stübig, Thomas; Prassolov, Vladimir; Fehse, Boris; Kozak, Christine A.; Kröger, Nicolaus; Stocking, Carol

    2014-01-01

    The compound immunodeficiencies in nonobese diabetic (NOD) inbred mice homozygous for the Prkdcscid and Il2rgnull alleles (NSG mice) permit engraftment of a wide-range of primary human cells, enabling sophisticated modeling of human disease. In studies designed to define neoplastic stem cells of primary myelofibrosis (PMF), a myeloproliferative neoplasm characterized by profound disruption of the hematopoietic microenvironment, we observed a high frequency of acute myeloid leukemia (AML) in NSG mice. AML was of mouse origin, confined to PMF-xenografted mice, and contained multiple clonal integrations of ecotropic murine leukemia virus (E-MuLV). Significantly, MuLV replication was not only observed in diseased mice, but also in nontreated NSG controls. Furthermore, in addition to the single ecotropic endogenous retrovirus (eERV) located on chromosome 11 (Emv30) in the NOD genome, multiple de novo germ-line eERV integrations were observed in mice from each of four independent NSG mouse colonies. Analysis confirmed that E-MuLV originated from the Emv30 provirus and that recombination events were not necessary for virus replication or AML induction. Pathogenicity is thus likely attributable to PMF-mediated paracrine stimulation of mouse myeloid cells, which serve as targets for retroviral infection and transformation, as evidenced by integration into the Evi1 locus, a hotspot for retroviral-induced myeloid leukemia. This study thus corroborates a role of paracrine stimulation in PMF disease progression, underlines the importance of target cell type and numbers in MuLV-induced disease, and mandates awareness of replicating MuLV in NOD immunodeficient mice, which can significantly influence experimental results and their interpretation. PMID:24912157

  8. New mouse xenograft model modulated by tumor-associated fibroblasts for human multi-drug resistance in cancer

    PubMed Central

    MA, YAN; LIN, ZHIQIANG; FALLON, JOHN K.; ZHAO, QIANG; LIU, DAN; WANG, YONGJUN; LIU, FENG

    2015-01-01

    We developed an MDR tumor model that is modulated by tumor-associated fibroblasts. Studies on proliferation of tumor cell lines including paclitaxel-sensitive and resistant cell lines were performed. The expressions of P-gp and α-smooth muscle actin (α-SMA) antigen were evaluated by immunohistochemistry and western blot analysis. Quantitative P-gp analyses of different cell lines were accomplished by nanoUPLC-MS/MS. Tumor cell colony formation assay and established xenograft model was used to investigate the relationship between P-gp expression, fibroblast levels and tumorigenesis. The mouse xenograft model was developed after co-inoculation with MDR tumor cells and NIH/3T3 fibroblast cells. There was no correlation between tumorigenesis in vivo and the growth rate of cells in vitro. The proliferation among different cell lines had no significant differences, but the P-gp expression and tumor growth in the xenograft model were fairly different. P-gp determination and α-SMA immunofluorescence staining clarified the relationship between P-gp expression, fibroblast levels and tumorigenesis. It was more difficult for tumor cells with higher P-gp levels to recruit fibroblasts in vivo, resulting in lower tumorigenesis due to the lack of structural and chemical support during tumor progression. In the established paclitaxel-resistant mouse xenograft model, no obvious antitumor effect was observed after Taxol treatment, but a significant decrease in tumor size for the group treated with gemcitabine sensitive to the model. The results show that the added fibroblasts do not disturb the applicability of the model in MDR. Therefore, this mouse xenograft MDR model could serve as an effective tool for MDR research. PMID:26352907

  9. Radiolabeled liposome imaging determines an indication for liposomal anticancer agent in ovarian cancer mouse xenograft models.

    PubMed

    Ito, Ken; Hamamichi, Shusei; Asano, Makoto; Hori, Yusaku; Matsui, Junji; Iwata, Masao; Funahashi, Yasuhiro; Umeda, Izumi O; Fujii, Hirofumi

    2016-01-01

    Liposomal anticancer agents can effectively deliver drugs to tumor lesions, but their therapeutic effects are enhanced in only limited number of patients. Appropriate biomarkers to identify responder patients to these liposomal agents will improve their treatment efficacies. We carried out pharmacological and histopathological analyses of mouse xenograft models bearing human ovarian cancers (Caov-3, SK-OV-3, KURAMOCHI, and TOV-112D) to correlate the therapeutic effects of doxorubicin-encapsulated liposome (Doxil(®) ) and histological characteristics linked to the enhanced permeability and retention effect. We next generated (111) In-encapsulated liposomes to examine their capacities to determine indications for Doxil(®) treatment by single-photon emission computed tomography (SPECT)/CT imaging. Antitumor activities of Doxil(®) were drastically enhanced in Caov-3, moderately in SK-OV-3, and minimally in KURAMOCHI and TOV-112D when compared to doxorubicin. Microvessel density and vascular perfusion were high in Caov-3 and SK-OV-3, indicating a close relation with the enhanced antitumor effects. Next, (111) In-encapsulated liposomes were given i.v. to the animals. Their tumor accumulation and area under the curve values over 72 h were high in Caov-3, relatively high in SK-OV-3, and low in two other tumors. Importantly, as both Doxil(®) effects and liposomal accumulation varied in the SK-OV-3 group, we individually obtained SPECT/CT images of SK-OV-3-bearing mouse (n = 11) before Doxil(®) treatment. Clear correlation between liposomal tumor accumulation and effects of Doxil(®) was confirmed (R(2) = 0.73). Taken together, our experiments definitely verified that enhanced therapeutic effects through liposomal formulations of anticancer agents depend on tumor accumulation of liposomes. Tumor accumulation of the radiolabeled liposomes evaluated by SPECT/CT imaging is applicable to appropriately determine indications for liposomal antitumor agents. PMID:26509883

  10. Cetuximab intensifies the ADCC activity of adoptive NK cells in a nude mouse colorectal cancer xenograft model

    PubMed Central

    Chen, Shanshan; Li, Xuechun; Chen, Rongming; Yin, Mingang; Zheng, Qiuhong

    2016-01-01

    Natural killer (NK) cells, discovered ~40 years ago, are believed to be the most effective cytotoxic lymphocytes to counteract cancer; however, adoptive NK cell therapy in vivo has encountered certain limitations, including a lack of specificity. The drug cetuximab can mediate antibody dependent cell mediated cytotoxicity (ADCC) activity through NK cells in vivo, and has been approved for the first-line treatment of epidermal growth factor receptor (EGFR)-positive metastatic colorectal cancer (CRC). However, the ADCC activity of adoptive NK cells, induced by cetuximab in a nude mouse CRC xenograft model, has not been previously reported. The aim of the present study was to explore the ADCC activity of cetuximab combined with adoptive NK cells in CRC xenograft models with various EGFR expressions. The nude mouse xenograft models were established by subcutaneously injecting LOVO or SW620 cells. The mice were then randomly divided into 6 groups: Phosphate-buffered saline, cetuximab, human immunoglobulin G (hIgG), NK cells, hIgG plus NK cells and cetuximab plus NK cells. The ADCC antitumor activity was evaluated in these CRC models. The results indicated that the cetuximab plus NK cells group showed the greatest tumor inhibition effect compared with the NK cells group in LOVO xenograft tumor models with positive EGFR expression. However, the combination of cetuximab and NK cells did not show a stronger tumor inhibitory effect against the SW620 xenograft tumor models compared with the efficiency of NK cells. In conclusion, cetuximab could intensify the ADCC antitumor activity of adoptive NK cells towards CRC with an increased EGFR expression. The combination of cetuximab and NK cells may be a potential immunotherapy for metastatic CRC patients with positive EGFR expression. PMID:27602116

  11. Development and analysis of patient-derived xenograft mouse models in intravascular large B-cell lymphoma.

    PubMed

    Shimada, K; Shimada, S; Sugimoto, K; Nakatochi, M; Suguro, M; Hirakawa, A; Hocking, T D; Takeuchi, I; Tokunaga, T; Takagi, Y; Sakamoto, A; Aoki, T; Naoe, T; Nakamura, S; Hayakawa, F; Seto, M; Tomita, A; Kiyoi, H

    2016-07-01

    Intravascular large B-cell lymphoma (IVLBCL) is a distinct disease entity with the peculiar characteristic that tumor cells proliferate within vessels. Despite recent advances in understanding the disease from clinical aspects, the underlying pathogenesis remains unknown. Here we demonstrate analyses of IVLBCL biology using four xenograft mouse models established from primary IVLBCL samples. In all four models, the main characteristic of IVLBCL tumor cell proliferation within vessels was retained. Time-lapse engraftment analyses revealed that the tumor cells initially engrafted and proliferated in the sinusoids and vessels in the liver and then engrafted and proliferated in multiple organs. Intriguingly, serial passage of tumor cells from the adrenal gland of a transplanted mouse developed from primary patient bone marrow cells into a second mouse showed that the tumor cells mainly distributed into the adrenal gland in the second mouse, implying the existence of clonal selection and/or evolution at engraftment of a specific organ. Gene expression profiling analyses demonstrated that the gene set associated with cell migration was enriched for normal peripheral blood B cells, indicating that inhibition of cell migration might be involved in IVLBCL pathogenesis. In conclusion, the mouse xenograft models described here are essential tools for uncovering IVLBCL biology. PMID:27001523

  12. Chondrocytic differentiation of peripheral neuroectodermal tumor cell line in nude mouse xenograft.

    PubMed

    Goji, J; Sano, K; Nakamura, H; Ito, H

    1992-08-01

    We have established a cell line (KU-SN) from a peripheral neuroectodermal tumor originating in the left scapula of a 4-year-old girl. The original tumor was immunoreactive with antibodies for neurofilament proteins, neuron-specific enolase, vimentin, S100 protein, and beta 2-microglobulin. Dense core granules, 50-150 nm in diameter, were identified by electron microscopy. The cell line was established from tumor cells in metastatic lung fluid. KU-SN cells were immunoreactive with the antibodies for neurofilament proteins, vimentin, neuron-specific enolase, S100 protein, glial fibrillary acidic protein, cytokeratin, and carcinoembryonic antigen. Besides these neuronal features, KU-SN cells express type 2 collagen and insulin-like growth factor 1 receptor. The addition of insulin-like growth factor 1 (100 ng/ml) increased the growth rate of KU-SN cells 2.1-fold over control. Some cells were positive for Alcian blue and alkaline phosphatase staining. Cytogenetic analysis of KU-SN cells disclosed a reciprocal chromosomal translocation [t(11,22)]. Northern blot analysis of KU-SN cells demonstrated amplified expression of the c-myc gene but not the N-myc gene. When tumor cells were transplanted into nude mice, cartilage was formed. The cartilage was immunoreactive with the antibody for HLA-ABC, indicating that it was derived from the tumor cells, not from mouse tissue. Chondrocytic differentiation was not observed in xenografts of Ewing's sarcoma cell lines SK-ES or RD-ES or the peripheral neuroectodermal tumor cell line SK-N-MC. These results indicate that KU-SN cells represent primitive neural crest cells having the potential for chondrocytic differentiation. PMID:1379122

  13. Molecular imaging of fibrin in a breast cancer xenograft mouse model

    PubMed Central

    Uppal, Ritika; Medarova, Zdravka; Farrar, Christian T.; Dai, Guangping; Moore, Anna; Caravan, Peter

    2013-01-01

    Rationale and objectives Fibrin deposition has been indicated within the stroma of a majority of solid tumors. Here we assess the feasibility of using the established fibrin-specific probe EP-2104R for the noninvasive imaging of fibrin in the context of breast cancer. Methods EP-2104R, untargeted Gd-DTPA and a newly synthesized non-fibrin binding control linear peptide (CLP) were compared using steady-state and dynamic contrast enhanced MR imaging in a breast cancer xenograft mouse model at 9.4T. Results EP-2104R transiently enhanced both the tumor core and periphery, but only the enhancement in the tumor periphery persisted even 90 min after EP-2104R administration. However, untargeted Gd-DTPA and CLP are not retained in the tumor periphery. The half-life of EP-2104R in the tumor periphery (103±18 min) is significantly longer (p<0.05) than either Gd-DTPA (29.6±2.4 min) or CLP (42.4±1.5 min), but the rate of clearance is similar for all the three probes from the tumor core. The presence of high concentrations of fibrin in the tumor periphery was corroborated using immuno-histochemistry with a fibrin-specific antibody. Conclusions The persistent enhancement observed in the tumor periphery with EP-2104R is likely a result of its fibrin-specific binding rather than its size and demonstrates the feasibility of EP-2104R for molecular imaging of fibrin in tumor stroma. PMID:22960948

  14. Antitumor efficacy of the anti-interleukin-6 (IL-6) antibody siltuximab in mouse xenograft models of lung cancer

    PubMed Central

    Song, Lanxi; Smith, Matthew A.; Doshi, Parul; Sasser, Kate; Fulp, William; Altiok, Soner; Haura, Eric B.

    2014-01-01

    Introduction Interleukin-6 (IL-6) can activate downstream signaling pathways in lung cancer cells, such as the STAT3 pathway, and is reported to be produced by tumor cells with activating EGFR mutations. We examined IL-6/STAT3 in lung cancer tumor tissues and the effects of siltuximab, a neutralizing antibody to human IL-6, in mouse models of lung cancer. Methods IL-6 and STAT3 activation levels were compared to tumor histology and presence of KRAS mutations in snap-frozen non-small cell lung cancer (NSCLC) tumors. The effects of siltuximab alone or in combination with erlotinib were examined in mouse xenograft models constructed using three cell line xenograft models and one primary explant mouse model. We examined the influence of cancer-associated fibroblasts (CAFs) on tumor growth and siltuximab effects. Results IL-6 levels were higher in tumors of squamous cell versus adenocarcinoma histology and were not associated with presence of KRAS mutations. Tyrosine phosphorylation status of STAT3 did not correlate with tumor IL-6 levels. Serine phosphorylation of STAT3 was correlated with KRAS mutation status. Both tumor and stromal cells contributed to total IL-6 within tumors. Siltuximab had minimal effect as a single agent in xenografts with tumor cells alone; however, in models co-administered with CAFs, siltuximab had more potent effects on tumor inhibition. We observed no effects of combined erlotinib and siltuximab. Conclusions IL-6 is elevated in subsets of human NSCLCs, especially with squamous cell histology. Tumors supported by stromal production of IL-6 appear to be the most vulnerable to tumor growth inhibition by siltuximab. PMID:24922005

  15. First In-Mouse Development and Application of a Surgically Relevant Xenograft Model of Ovarian Carcinoma

    PubMed Central

    Helland, Øystein; Popa, Mihaela; Vintermyr, Olav K.; Molven, Anders; Gjertsen, Bjørn Tore; Bjørge, Line; McCormack, Emmet

    2014-01-01

    Purpose Preclinical models of epithelial ovarian cancer have not been exploited to evaluate the clinical standard combination therapy of surgical debulking with follow-up chemotherapy. As surgery is critical to patient survival, here we establish a combined surgical/chemotherapy xenograft model of epithelial ovarian cancer and demonstrate its translational relevance. Experimental Design SKOV-3luc+ ovary cancer cells were injected topically into the ovaries of immunodeficient mice. Disease development and effect of clinical standard treatment including hysterectomy, bilateral salpingoophorectomy and removal of metastasis with follow up chemotherapy (carboplatin 12 mg/kg + paclitaxel 15 mg/kg) was evaluated by clinical parameters. Tumor burden was quantified by bioluminescence imaging (BLI). Results The xenograft ovarian tumors developed were poorly differentiated and multicystic and the disease disseminated into the peritoneal cavity. When compared to the controls with a mean survival time of 4.9 weeks, mice treated with surgery and chemotherapy, surgery or chemotherapy demonstrated significantly improved mean survival of 16.1 weeks (p = 0.0008), 12.7 weeks (p = 0.0008), or 10.4 weeks (p = 0.008), respectively. Conclusion Combined surgical intervention and adjuvant chemotherapy was demonstrated for the first time in an orthotopic xenograft model of ovarian cancer. Similar to observation in human studies the combined approach resulted in the longest medial survival time, advocating application of this strategy in future preclinical therapeutic development for this disease. PMID:24594904

  16. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types

    PubMed Central

    Iliopoulos, Dimitrios; Hirsch, Heather A.; Struhl, Kevin

    2011-01-01

    Metformin, the first-line drug for treating diabetes, selectively kills the chemotherapy-resistant, sub-population of cancer stem cells in genetically distinct types of breast cancer cell lines. In mouse xenografts, injection of metformin and the chemotherapeutic drug doxorubicin near the tumor is more effective than either drug alone in blocking tumor growth and preventing relapse. Here, we show that metformin is equally effective when given orally together with paclitaxel, carboplatin, and doxorubicin indicating that metformin works together with a variety of standard chemotherapeutic agents. In addition, metformin has comparable effects on tumor regression and preventing relapse when metformin combined with a 4-fold reduced dose of doxorubicin that is not effective as a monotherapy. Lastly, the combination of metformin and doxorubicin prevents relapse in xenografts generated with prostate and lung cancer cell lines. These observations provide further evidence for the cancer stem cell hypothesis for cancer relapse, as well as an experimental rationale for using metformin as part of combinatorial therapy in a variety of clinical settings and for reducing the chemotherapy dose in cancer patients. PMID:21415163

  17. Emblica officinalis Extract Induces Autophagy and Inhibits Human Ovarian Cancer Cell Proliferation, Angiogenesis, Growth of Mouse Xenograft Tumors

    PubMed Central

    De, Alok; De, Archana; Papasian, Chris; Hentges, Shane; Banerjee, Snigdha; Haque, Inamul; Banerjee, Sushanta K.

    2013-01-01

    Patients with ovarian cancer (OC) may be treated with surgery, chemotherapy and/or radiation therapy, although none of these strategies are very effective. Several plant-based natural products/dietary supplements, including extracts from Emblicaofficinalis (Amla), have demonstrated potent anti-neoplastic properties. In this study we determined that Amla extract (AE) has anti-proliferative effects on OC cells under both in vitro and in vivo conditions. We also determined the anti-proliferative effects one of the components of AE, quercetin, on OC cells under in vitro conditions. AE did not induce apoptotic cell death, but did significantly increase the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. Quercetin also increased the expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also significantly reduced the expression of several angiogenic genes, including hypoxia-inducible factor 1α (HIF-1α) in OVCAR3 cells. AE acted synergistically with cisplatin to reduce cell proliferation and increase expression of the autophagic proteins beclin1 and LC3B-II under in vitro conditions. AE also had anti-proliferative effects and induced the expression of the autophagic proteins beclin1 and LC3B-II in mouse xenograft tumors. Additionally, AE reduced endothelial cell antigen – CD31 positive blood vessels and HIF-1α expression in mouse xenograft tumors. Together, these studies indicate that AE inhibits OC cell growth both in vitro and in vivo possibly via inhibition of angiogenesis and activation of autophagy in OC. Thus AE may prove useful as an alternative or adjunct therapeutic approach in helping to fight OC. PMID:24133573

  18. Abrogation of STAT3 signaling cascade by zerumbone inhibits proliferation and induces apoptosis in renal cell carcinoma xenograft mouse model.

    PubMed

    Shanmugam, Muthu K; Rajendran, Peramaiyan; Li, Feng; Kim, Chulwon; Sikka, Sakshi; Siveen, Kodappully Sivaraman; Kumar, Alan Prem; Ahn, Kwang Seok; Sethi, Gautam

    2015-10-01

    Persistent activation of signal transducer and activator of transcription 3 (STAT3) is one of the characteristic features of renal cell carcinoma (RCC) and often linked to its deregulated proliferation, survival, and angiogenesis. In the present report, we investigated whether zerumbone, a sesquiterpene, exerts its anticancer effect through modulation of STAT3 activation pathway. The pharmacological effect of zerumbone on STAT3 activation, associated protein kinases and phosphatase, and apoptosis was investigated using both RCC cell lines and xenograft mouse model. We observed that zerumbone suppressed STAT3 activation in a dose- and time-dependent manner in RCC cells. The suppression was mediated through the inhibition of activation of upstream kinases c-Src, Janus-activated kinase 1, and Janus-activated kinase 2. Pervanadate treatment reversed zerumbone-induced downregulation of STAT3, suggesting the involvement of a tyrosine phosphatase. Indeed, we found that zerumbone induced the expression of tyrosine phosphatase SHP-1 that correlated with its ability to inhibit STAT3 activation. Interestingly, deletion of SHP-1 gene by siRNA abolished the ability of zerumbone to inhibit STAT3 activation. The inhibition of STAT3 activation by zerumbone also caused the suppression of the gene products involved in proliferation, survival, and angiogenesis. Finally, when administered i.p., zerumbone inhibited STAT3 activation in tumor tissues and the growth of human RCC xenograft tumors in athymic nu/nu mice without any side effects. Overall, our results suggest for the first time that zerumbone is a novel blocker of STAT3 signaling cascade and thus has an enormous potential for the treatment of RCC and other solid tumors. PMID:24797723

  19. Therapeutic efficacy evaluation of 111in-VNB-liposome on human colorectal adenocarcinoma HT-29/ luc mouse xenografts

    NASA Astrophysics Data System (ADS)

    Lee, Wan-Chi; Hwang, Jeng-Jong; Tseng, Yun-Long; Wang, Hsin-Ell; Chang, Ya-Fang; Lu, Yi-Ching; Ting, Gann; Whang-Peng, Jaqueline; Wang, Shyh-Jen

    2006-12-01

    The purpose of this study is to evaluate the therapeutic efficacy of the liposome encaged with vinorelbine (VNB) and 111In-oxine on human colorectal adenocarcinoma (HT-29) using HT-29/ luc mouse xenografts. HT-29 cells stably transfected with plasmid vectors containing luciferase gene ( luc) were transplanted subcutaneously into the male NOD/SCID mice. Biodistribution of the drug was performed when tumor size reached 500-600 mm 3. The uptakes of 111In-VNB-liposome in tumor and normal tissues/organs at various time points postinjection were assayed. Multimodalities, including gamma scintigraphy, bioluminescence imaging (BLI) and whole-body autoradiography (WBAR), were applied for evaluating the therapeutic efficacy when tumor size was about 100 mm 3. The tumor/blood ratios of 111In-VNB-liposome were 0.044, 0.058, 2.690, 20.628 and 24.327, respectively, at 1, 4, 24, 48 and 72 h postinjection. Gamma scinitigraphy showed that the tumor/muscle ratios were 2.04, 2.25 and 4.39, respectively, at 0, 5 and 10 mg/kg VNB. BLI showed that significant tumor control was achieved in the group of 10 mg/kg VNB ( 111In-VNB-liposome). WBAR also confirmed this result. In this study, we have demonstrated a non-invasive imaging technique with a luciferase reporter gene and BLI for evaluation of tumor treatment efficacy in vivo. The SCID mice bearing HT-29/ luc xenografts treated with 111In-VNB-liposome were shown with tumor reduction by this technique.

  20. Intravesical administration of exogenous microRNA-145 as a therapy for mouse orthotopic human bladder cancer xenograft.

    PubMed

    Inamoto, Teruo; Taniguchi, Kohei; Takahara, Kiyoshi; Iwatsuki, Ayako; Takai, Tomoaki; Komura, Kazumasa; Yoshikawa, Yuki; Uchimoto, Taizo; Saito, Kenkichi; Tanda, Naoki; Kouno, Junko; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi; Akao, Yukihiro; Azuma, Haruhito

    2015-08-28

    We previously reported that the level of microRNA (miR)-145 is attenuated in human bladder cancer cells. In this current study, we investigated whether intravesical administration of miR-145 could be a potential therapeutic strategy for controlling bladder cancer by using an orthotopic human bladder cancer xenograft model. Following transfection of 253J B-V cells with miR-145, the effects of the ectopic expression of miR-145 were examined by performing MTT, Western blotting analysis, Hoechst33342 staining, and wound healing assay in vitro. Also, a mouse orthotopic human bladder cancer model was established by inoculating 253J B-V cells into the bladder wall of mice. The anti-cancer effects of intravesical injections of miR-145 into these mice were then assessed. Transfection of 253J B-V cells with miR-145 induced apoptosis and suppression of cell migration in vitro. Western blotting showed that the levels of c-Myc, socs7, FSCN1, E-cadherin, β-catenin, and catenin δ-1 were decreased and that the PI3K/Akt and Erk1/2 signaling pathways were increased in compensatory fashion. In vivo, mice treated with miR-145 showed 76% inhibition of tumor growth, with a significant prolongation of animal survival (p = 0.0183 vs. control). Western blotting showed that both apoptosis and cell motility-related genes were significantly decreased as seen in vitro. Furthermore, PI3k/Akt and Erk1/2 signaling pathways, which were activated in a compensatory manner in vitro, were decreased in vivo. Intravesical administration of exogenous miR-145 was thus concluded to be a valid therapy for bladder cancer in this human bladder cancer xenograft model. PMID:26036261

  1. Targeting Tumor Vasculature Endothelial Cells and Tumor Cells for Immunotherapy of Human Melanoma in a Mouse Xenograft Model

    NASA Astrophysics Data System (ADS)

    Hu, Zhiwei; Sun, Ying; Garen, Alan

    1999-07-01

    An immunotherapy treatment for cancer that targets both the tumor vasculature and tumor cells has shown promising results in a severe combined immunodeficient mouse xenograft model of human melanoma. The treatment involves systemic delivery of an immunoconjugate molecule composed of a tumor-targeting domain conjugated to the Fc effector domain of human IgG1. The effector domain induces a cytolytic immune response against the targeted cells by natural killer cells and complement. Two types of targeting domains were used. One targeting domain is a human single-chain Fv molecule that binds to a chondroitin sulfate proteoglycan expressed on the surface of most human melanoma cells. Another targeting domain is factor VII (fVII), a zymogen that binds with high specificity and affinity to the transmembrane receptor tissue factor (TF) to initiate the blood coagulation cascade. TF is expressed by endothelial cells lining the tumor vasculature but not the normal vasculature, and also by many types of tumor cells including melanoma. Because the binding of a fVII immunoconjugate to TF might cause disseminated intravascular coagulation, the active site of fVII was mutated to inhibit coagulation without affecting the affinity for TF. The immunoconjugates were encoded as secreted molecules in a replication-defective adenovirus vector, which was injected into the tail vein of severe combined immunodeficient mice. The results demonstrate that a mutated fVII immunoconjugate, administered separately or together with a single-chain Fv immunoconjugate that binds to the tumor cells, can inhibit the growth or cause regression of an established human tumor xenograft. This procedure could be effective in treating a broad spectrum of human solid tumors that express TF on vascular endothelial cells and tumor cells.

  2. Cetuximab delivery and antitumor effects are enhanced by mild hyperthermia in a xenograft mouse model of pancreatic cancer.

    PubMed

    Miyamoto, Ryoichi; Oda, Tatsuya; Hashimoto, Shinji; Kurokawa, Tomohiro; Inagaki, Yuki; Shimomura, Osamu; Ohara, Yusuke; Yamada, Keiichi; Akashi, Yoshimasa; Enomoto, Tsuyoshi; Kishimoto, Mikio; Yanagihara, Hideto; Kita, Eiji; Ohkohchi, Nobuhiro

    2016-04-01

    Even with current promising antitumor antibodies, their antitumor effects on stroma-rich solid cancers have been insufficient. We used mild hyperthermia with the intent of improving drug delivery by breaking the stromal barrier. Here, we provide preclinical evidence of cetuximab + mild hyperthermia therapy. We used four in vivo pancreatic cancer xenograft mouse models with different stroma amounts (scarce, MIAPaCa-2; moderate, BxPC-3; and abundant, Capan-1 and Ope-xeno). Cetuximab (1 mg/kg) was given systemically, and the mouse leg tumors were concurrently heated using a water bath method for 30 min at three different temperatures, 25°C (control), 37°C (intra-abdominal organ level), or 41°C (mild hyperthermia) (n = 4, each group). The evaluated variables were the antitumor effects, represented by tumor volume, and in vivo cetuximab accumulation, indirectly quantified by the immunohistochemical fluorescence intensity value/cell using antibodies against human IgG Fc. At 25°C, the antitumor effects were sufficient, with a cetuximab accumulation value (florescence intensity/cell) of 1632, in the MIAPaCa-2 model, moderate (1063) in the BxPC-3 model, and negative in the Capan-1 and Ope-xeno models (760, 461). By applying 37°C or 41°C heat, antitumor effects were enhanced shown in decreased tumor volumes. These enhanced effects were accompanied by boosted cetuximab accumulation, which increased by 2.8-fold (2980, 3015) in the BxPC-3 model, 2.5- or 4.8-fold (1881, 3615) in the Capan-1 model, and 3.2- or 4.2-fold (1469, 1922) in the Ope-xeno model, respectively. Cetuximab was effective in treating even stroma-rich and k-ras mutant pancreatic cancer mouse models when the drug delivery was improved by combination with mild hyperthermia. PMID:26782353

  3. Patient-Derived Gastric Carcinoma Xenograft Mouse Models Faithfully Represent Human Tumor Molecular Diversity

    PubMed Central

    Fan, Shuqiong; Zhang, Meizhuo; Fu, Haihua; Liu, Yuanjie; Yin, Xiaolu; Chen, Hao; Xie, Liang; Zhang, Jingchuan; Gavine, Paul R.; Gu, Yi; Ni, Xingzhi; Su, Xinying

    2015-01-01

    Patient-derived cancer xenografts (PDCX) generally represent more reliable models of human disease in which to evaluate a potential drugs preclinical efficacy. However to date, only a few patient-derived gastric cancer xenograft (PDGCX) models have been reported. In this study, we aimed to establish additional PDGCX models and to evaluate whether these models accurately reflected the histological and genetic diversities of the corresponding patient tumors. By engrafting fresh patient gastric cancer (GC) tissues into immune-compromised mice (SCID and/or nude mice), thirty two PDGCX models were established. Histological features were assessed by a qualified pathologist based on H&E staining. Genomic comparison was performed for several biomarkers including ERBB1, ERBB2, ERBB3, FGFR2, MET and PTEN. These biomarkers were profiled to assess gene copy number by fluorescent in situ hybridization (FISH) and/or protein expression by immunohistochemistry (IHC). All 32 PDGCX models retained the histological features of the corresponding human tumors. Furthermore, among the 32 models, 78% (25/32) highly expressed ERBB1 (EGFR), 22% (7/32) were ERBB2 (HER2) positive, 78% (25/32) showed ERBB3 (HER3) high expression, 66% (21/32) lost PTEN expression, 3% (1/32) harbored FGFR2 amplification, 41% (13/32) were positive for MET expression and 16% (5/32) were MET gene amplified. Between the PDGCX models and their parental tumors, a high degree of similarity was observed for FGFR2 and MET gene amplification, and also for ERBB2 status (agreement rate = 94~100%; kappa value = 0.81~1). Protein expression of PTEN and MET also showed moderate agreement (agreement rate = 78%; kappa value = 0.46~0.56), while ERBB1 and ERBB3 expression showed slight agreement (agreement rate = 59~75%; kappa value = 0.18~0.19). ERBB2 positivity, FGFR2 or MET gene amplification was all maintained until passage 12 in mice. The stability of the molecular profiles observed across subsequent passages within the

  4. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model.

    PubMed

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-03-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer. PMID:26840261

  5. Aminomethylphosphonic acid inhibits growth and metastasis of human prostate cancer in an orthotopic xenograft mouse model

    PubMed Central

    Parajuli, Keshab Raj; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2016-01-01

    Aminomethylphosphonic acid (AMPA) has been shown to inhibit prostate cancer cell growth in vitro. The purpose of the present study was to determine if AMPA could inhibit growth and metastasis of prostate cancer in vivo. Human prostate cancer PC-3-LacZ-luciferase cells were implanted into the ventral lateral lobes of the prostate in 39 athymic Nu/Nu nude male mice. Seven days later, mice were randomized into the control group (n = 14, treated intraperitoneally with phosphate buffered saline), low dose group (n = 10, treated intraperitoneally with AMPA at 400 mg/kg body weight/day), and high dose group (n = 15, treated intraperitoneally with AMPA at 800 mg/kg body weight/day). Tumor growth and metastasis were examined every 4-7 days by bioluminescence imaging of live mice. We found that AMPA treatment significantly inhibited growth and metastasis of orthotopic xenograft prostate tumors and prolonged the survival time of the mice. AMPA treatment decreased expression of BIRC2 and activated caspase 3, leading to increased apoptosis in the prostate tumors. AMPA treatment decreased expression of cyclin D1. AMPA treatment also reduced angiogenesis in the prostate tumors. Taken together, these results demonstrate that AMPA can inhibit prostate cancer growth and metastasis, suggesting that AMPA may be developed into a therapeutic agent for the treatment of prostate cancer. PMID:26840261

  6. Novel Effects of Simvastatin on Uterine Fibroids: In vitro and Patient-Derived Xenograft Mouse Model Study

    PubMed Central

    BORAHAY, Mostafa A.; VINCENT, Kathleen; MOTAMEDI, Massoud; SBRANA, Elena; KILIC, Gokhan S.; AL-HENDY, Ayman; BOEHNING, Darren

    2015-01-01

    Objective Uterine leiomyomas represent a common gynecologic problem with no satisfactory long-term medical treatment. The purpose of this study is to examine the effects of simvastatin on uterine leiomyoma, both in vitro and in vivo. Study Design This is a laboratory-based experimental study. For in vitro studies, we used human and rat leiomyoma cells. For in vivo studies, we used immunodeficient mice supplemented with estrogen/progesterone pellets xenografted with human leiomyoma tissue explant. Results For in vitro studies, cells were treated with different concentrations of simvastatin for 48 hours. Simvastatin induced dose-dependent apoptosis in leiomyoma cells as measured by a fluorometric caspase-3 activity assay, and inhibited proliferation as demonstrated by an MTT assay (both were significant at 5 and 10 μM). In addition, simvastatin decreased Akt signaling pathway phosphorylation as examined using Western blot analysis. For in vivo studies, animals were treated for 28 days with simvastatin (20 μg/ gm body weight/ day) vs vehicle control. The treatment inhibited tumor growth as measured weekly using calipers and/ or ultrasound (P<.01). Finally, simvastatin decreased expression of the proliferation marker Ki67 in xenograft tumor tissue as examined by immunohistochemistry (P=.02). Conclusion Simvastatin can be a promising treatment for uterine leiomyoma. Further studies, including pharmacokinetic and drug delivery studies, are required. PMID:25840272

  7. Entrectinib is a potent inhibitor of Trk-driven neuroblastomas in a xenograft mouse model.

    PubMed

    Iyer, Radhika; Wehrmann, Lea; Golden, Rebecca L; Naraparaju, Koumudi; Croucher, Jamie L; MacFarland, Suzanne P; Guan, Peng; Kolla, Venkatadri; Wei, Ge; Cam, Nicholas; Li, Gang; Hornby, Zachary; Brodeur, Garrett M

    2016-03-28

    Neuroblastoma (NB) is one of the most common and deadly childhood solid tumors. These tumors are characterized by clinical heterogeneity, from spontaneous regression to relentless progression, and the Trk family of neurotrophin receptors plays an important role in this heterogeneous behavior. We wanted to determine if entrectinib (RXDX-101, Ignyta, Inc.), an oral Pan-Trk, Alk and Ros1 inhibitor, was effective in our NB model. In vitro effects of entrectinib, either as a single agent or in combination with the chemotherapeutic agents Irinotecan (Irino) and Temozolomide (TMZ), were studied on an SH-SY5Y cell line stably transfected with TrkB. In vivo growth inhibition activity was studied in NB xenografts, again as a single agent or in combination with Irino-TMZ. Entrectinib significantly inhibited the growth of TrkB-expressing NB cells in vitro, and it significantly enhanced the growth inhibition of Irino-TMZ when used in combination. Single agent therapy resulted in significant tumor growth inhibition in animals treated with entrectinib compared to control animals [p < 0.0001 for event-free survival (EFS)]. Addition of entrectinib to Irino-TMZ also significantly improved the EFS of animals compared to vehicle or Irino-TMZ treated animals [p < 0.0001 for combination vs. control, p = 0.0012 for combination vs. Irino-TMZ]. We show that entrectinib inhibits growth of TrkB expressing NB cells in vitro and in vivo, and that it enhances the efficacy of conventional chemotherapy in in vivo models. Our data suggest that entrectinib is a potent Trk inhibitor and should be tested in clinical trials for NBs and other Trk-expressing tumors. PMID:26797418

  8. The impact of bone morphogenetic protein 4 (BMP4) on breast cancer metastasis in a mouse xenograft model.

    PubMed

    Ampuja, M; Alarmo, E L; Owens, P; Havunen, R; Gorska, A E; Moses, H L; Kallioniemi, A

    2016-06-01

    Bone morphogenetic protein 4 (BMP4) is a key regulator of cell proliferation and differentiation. In breast cancer cells, BMP4 has been shown to reduce proliferation in vitro and interestingly, in some cases, also to induce migration and invasion. Here we investigated whether BMP4 influences breast cancer metastasis formation by using a xenograft mouse model. MDA-MB-231 breast cancer cells were injected intracardially into mice and metastasis formation was monitored using bioluminescence imaging. Mice treated with BMP4 developed metastases slightly earlier as compared to control animals but the overall number of metastases was similar in both groups (13 in the BMP4 group vs. 12 in controls). In BMP4-treated mice, bone metastases were more common (10 vs. 7) but adrenal gland metastases were less frequent (1 vs. 5) than in controls. Immunostaining revealed no differences in signaling activation, proliferation rate, blood vessel formation, EMT markers or the number of cancer-associated fibroblasts between the treatment groups. In conclusion, BMP4 caused a trend towards accelerated metastasis formation, especially in bone. More work is needed to uncover the long-term effects of BMP4 and the clinical relevance of these findings. PMID:26970275

  9. Antitumor effect of para-toluenesulfonamide against lung cancer xenograft in a mouse model

    PubMed Central

    Gao, Yang; Gao, Yonghua; Guan, Weijie; Huang, Liyan; Xu, Xiaoming; Zhang, Chenting; Chen, Xiuqing; Wu, Yizhuang; Zeng, Guangqiao

    2013-01-01

    Background Conventional chemotherapy and radiation therapy against non-small cell lung cancer (NSCLC) are relatively insensitive and unsatisfactory. Para-toluenesulfonamide (PTS), a unique antitumor drug for local intratumoral injection, shows an efficacy of severely suppressing solid tumor growth with mild side effects in clinical trials. The aim of this study was to investigate the effect of PTS on lung cancer H460 cells in vivo in nude mice and its underlying mechanisms in vitro. Methods A lung cancer model for in vivo experiment was established in BALB/c nude mice using H460 cells to examine the effect of local injection of PTS on tumor suppression. We also assessed the injury to the normal tissue by subcutaneous injection of PTS. In vitro, PTS was diluted into different doses for study on its antitumor mechanisms. We evaluated the necrotic effect of PTS on H460 cells by PI and Hoechst 33342 staining. Cell viability and membrane permeability were also determined by using CCK-8 and LDH assays respectively. All these tests were conducted in comparison with traditional local injection of anhydrous ethanol. Results PTS was shown to significantly inhibit the growth of H460 tumor xenografts in nude mice by inducing necrosis of the tumor histologically. Its effect on tumor growth was significantly stronger than that of anhydrous ethanol. By contrast, the injured normal tissue by PTS injection was less than that by ethanol. In vitro, PTS still demonstrated excellent necrotizing effect on H460 cells when diluted to a lower concentration. Detailed analysis of PTS on H460 cells indicated that PTS had a better effect on attenuating the cell viability and increasing the cell membrane permeability than ethanol at the same level. Conclusions PTS exhibits excellent inhibition effect on the growth of lung cancer by necrotizing tumor in vivo and in vitro, reducing tumor cell viability and augmenting the membrane permeability in vitro, with only mild injury to normal tissue. The

  10. Human nerve xenografting in nude mouse: Experimental study of graft revascularization

    SciTech Connect

    Duprez, K.; Bour, C.; Merle, M.; Duprez, A. )

    1991-01-01

    In the nude mouse, the congenital absence of T lymphocytes makes it possible to implant human nerve grafts without rejection or iatrogenic modifications (by immunosuppression) of human and murine tissues. Medial antebrachial cutaneous nerves were harvested from human cadavers 1-18 hours after death. These nerve grafts were implanted using different techniques in nude mice. All the grafts were macroscopically and microscopically revascularized 3 days after implantation. The modifications in time of this vascularization could be studied with precision through the use of repeated biopsies. The absence of human blood group antigens on the neovessel endothelium suggested a murine origin for angiogenesis. In situ DNA hybridizations with human and mouse DNA confirmed this origin. The topography of the revascularization (maximal in the perineurium and endoneurium) and the almost complete absence of human cells other than Schwann cells in the grafts at the peak of angiogenesis (26 days after grafting) suggested that Schwann cells had a determining role in graft vascularization. The irradiation of the nerve grafts with a dose of 30 grays before implantation did not modify significantly their histologic appearance compared to the control group, whereas an irradiation of 60 grays led to massive lesions. The neurotization of murine axons led to chimerical structures of normal histologic appearance, with vascularization similar to that observed in nonneurotized nerves. Through chimerism (human Schwann cells, murine vessels and axons) this model makes it possible to dissociate the respective role of the host and of the nerve graft in angiogenesis and suggests the existence of growth factors produced by the human Schwann cells.

  11. Mouse Models in Prostate Cancer Translational Research: From Xenograft to PDX.

    PubMed

    Rea, Domenica; Del Vecchio, Vitale; Palma, Giuseppe; Barbieri, Antonio; Falco, Michela; Luciano, Antonio; De Biase, Davide; Perdonà, Sisto; Facchini, Gaetano; Arra, Claudio

    2016-01-01

    Despite the advancement of clinical and preclinical research on PCa, which resulted in the last five years in a decrement of disease incidence by 3-4%, it remains the most frequent cancer in men and the second for mortality rate. Based on this evidence we present a brief dissertation on numerous preclinical models, comparing their advantages and disadvantages; among this we report the PDX mouse models that show greater fidelity to the disease, in terms of histopathologic features of implanted tumor, gene and miRNA expression, and metastatic pattern, well describing all tumor progression stages; this characteristic encourages the translation of preclinical results. These models become particularly useful in meeting the need of new treatments identification that eradicate PCa bone metastases growing, clarifying pathway of angiogenesis, identifying castration-resistant stem-like cells, and studying the antiandrogen therapies. Also of considerable interest are the studies of 3D cell cultures derived from PDX, which have the ability to maintain PDX cell viability with continued native androgen receptor expression, also showing a differential sensitivity to drugs. 3D PDX PCa may represent a diagnostic platform for the rapid assessment of drugs and push personalized medicine. Today the development of preclinical models in vitro and in vivo is necessary in order to obtain increasingly reliable answers before reaching phase III of the drug discovery. PMID:27294148

  12. Mouse Models in Prostate Cancer Translational Research: From Xenograft to PDX

    PubMed Central

    del Vecchio, Vitale; Palma, Giuseppe; Barbieri, Antonio; Falco, Michela; Luciano, Antonio; De Biase, Davide; Perdonà, Sisto; Facchini, Gaetano; Arra, Claudio

    2016-01-01

    Despite the advancement of clinical and preclinical research on PCa, which resulted in the last five years in a decrement of disease incidence by 3-4%, it remains the most frequent cancer in men and the second for mortality rate. Based on this evidence we present a brief dissertation on numerous preclinical models, comparing their advantages and disadvantages; among this we report the PDX mouse models that show greater fidelity to the disease, in terms of histopathologic features of implanted tumor, gene and miRNA expression, and metastatic pattern, well describing all tumor progression stages; this characteristic encourages the translation of preclinical results. These models become particularly useful in meeting the need of new treatments identification that eradicate PCa bone metastases growing, clarifying pathway of angiogenesis, identifying castration-resistant stem-like cells, and studying the antiandrogen therapies. Also of considerable interest are the studies of 3D cell cultures derived from PDX, which have the ability to maintain PDX cell viability with continued native androgen receptor expression, also showing a differential sensitivity to drugs. 3D PDX PCa may represent a diagnostic platform for the rapid assessment of drugs and push personalized medicine. Today the development of preclinical models in vitro and in vivo is necessary in order to obtain increasingly reliable answers before reaching phase III of the drug discovery. PMID:27294148

  13. Expression and targeting of human fibroblast activation protein in a human skin/severe combined immunodeficient mouse breast cancer xenograft model.

    PubMed

    Tahtis, Kiki; Lee, Fook-Thean; Wheatley, Jennifer M; Garin-Chesa, Pilar; Park, John E; Smyth, Fiona E; Obata, Yuichi; Stockert, Elisabeth; Hall, Cathrine M; Old, Lloyd J; Rettig, Wolfgang J; Scott, Andrew M

    2003-08-01

    Antigens and receptors that are highly expressed on tumor stromal cells, such as fibroblast activation protein (FAP), are attractive targets for antibody-based therapies because the supporting stroma and vessel network is essential for a solid neoplasm to grow beyond a size of 1-2 mm. The in vivo characterization of antibodies targeting human stromal or vessel antigens is hindered by the lack of an appropriate mouse model system because xenografts in standard mouse models express stromal and vessels elements of murine origin. This limitation may be overcome by the development of a human skin/mouse chimeric model, which is established by transplanting human foreskin on to the lateral flank of severe combined immunodeficient mice. The subsequent inoculation of breast carcinoma MCF-7 cells within the dermis of the transplanted human skin resulted in the production of xenografts expressing stromal and vessel elements of human origin. Widespread expression of human FAP-positive reactive stromal fibroblasts within xenografts was seen up to 2 months posttransplantation and postinjection of cells. Human blood vessel antigen expression also persisted at 2 months posttransplantation and postinjection of cells with murine vessels coexisting with the human vascular supply. The model was subsequently used to evaluate the biodistribution properties of an iodine-131-labeled humanized anti-FAP monoclonal antibody (BIBH-7). The results showed high specific targeting of the stromal compartment of the xenograft, indicating that the model provides a useful and novel approach for the in vivo assessment of the immunotherapeutic potential of molecules targeting human stroma and angiogenic systems. PMID:12939462

  14. Microdistribution of specific rat monoclonal antibodies to mouse tissues and human tumor xenografts

    SciTech Connect

    Kennel, S.J.; Falcioni, R.; Wesley, J.W. )

    1991-03-01

    Detailed evaluations of the microdistribution of 125I-labeled monoclonal antibodies (MoAbs) to normal tissue antigens were conducted in BALB/c mice. MoAb 273-34A, which binds to a target molecule on the lumenal surface of lung endothelial cells, localizes quickly and efficiently throughout the lung vasculature. MoAb 133-13A, which binds to an antigen on macrophage-like cells expressed in nearly equal amounts in lung, liver, and spleen, localizes most efficiently to spleen and less well to liver and lung. The microdistribution of MoAb 133-13A in liver and spleen is consistent with the antigen distribution in these organs, but in the lung a more diffuse microdistribution is observed, indicating poor access of MoAb to the antigen-positive alveolar macrophages. These findings are consistent with the hypothesis that tight endothelium (lung) represents a significant barrier to extravasation of MoAb into tissue while fenestrated (spleen) and sinusoidal (liver) endothelium are more easily penetrated. In human tumor bearing nu/nu mice, the microdistribution of MoAb to the beta 4 and alpha 6 subunits of integrin was studied. These MoAbs do not cross-react with murine integrins and thus are tumor-specific in the nu/nu mouse model. Localization of 125I-labeled MoAb 450-11A, which reacts with an intercellular domain of beta 4 integrin, is very weak and diffuse. All MoAbs to extracellular domains localize well to the tumor. Microdistribution of these MoAbs in the 3 different tumors is nonuniform with heavy distribution near the blood vessels, whereas antigen distribution as determined by immunoperoxidase shows a much more uniform pattern throughout the tumors. In experiments with 125I-labeled MoAb 439-9B F(ab')2, the nonuniform pattern of distribution was not changed. Gross and microdistribution of different doses of 125I-labeled MoAb 439-9B were studied.

  15. Circulating Tumor Cells as a Biomarker of Response to Treatment in Patient-Derived Xenograft Mouse Models of Pancreatic Adenocarcinoma

    PubMed Central

    Torphy, Robert J.; Tignanelli, Christopher J.; Kamande, Joyce W.; Moffitt, Richard A.; Herrera Loeza, Silvia G.; Soper, Steven A.; Yeh, Jen Jen

    2014-01-01

    Circulating tumor cells (CTCs) are cells shed from solid tumors into circulation and have been shown to be prognostic in the setting of metastatic disease. These cells are obtained through a routine blood draw and may serve as an easily accessible marker for monitoring treatment effectiveness. Because of the rapid progression of pancreatic ductal adenocarcinoma (PDAC), early insight into treatment effectiveness may allow for necessary and timely changes in treatment regimens. The objective of this study was to evaluate CTC burden as a biomarker of response to treatment with a oral phosphatidylinositol-3-kinase inhibitor, BKM120, in patient-derived xenograft (PDX) mouse models of PDAC. PDX mice were randomized to receive vehicle or BKM120 treatment for 28 days and CTCs were enumerated from whole blood before and after treatment using a microfluidic chip that selected for EpCAM (epithelial cell adhesion molecule) positive cells. This microfluidic device allowed for the release of captured CTCs and enumeration of these cells via their electrical impedance signatures. Median CTC counts significantly decreased in the BKM120 group from pre- to post-treatment (26.61 to 2.21 CTCs/250 µL, p = 0.0207) while no significant change was observed in the vehicle group (23.26 to 11.89 CTCs/250 µL, p = 0.8081). This reduction in CTC burden in the treatment group correlated with tumor growth inhibition indicating CTC burden is a promising biomarker of response to treatment in preclinical models. Mutant enriched sequencing of isolated CTCs confirmed that they harbored KRAS G12V mutations, identical to the matched tumors. In the long-term, PDX mice are a useful preclinical model for furthering our understanding of CTCs. Clinically, mutational analysis of CTCs and serial monitoring of CTC burden may be used as a minimally invasive approach to predict and monitor treatment response to guide therapeutic regimens. PMID:24586805

  16. Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts

    PubMed Central

    Coutinho de Souza, Patricia; Mallory, Samantha; Smith, Nataliya; Saunders, Debra; Li, Xiao-Nan; McNall-Knapp, Rene Y.; Fung, Kar-Ming; Towner, Rheal A.

    2015-01-01

    Pediatric glioblastomas (pGBM), although rare, are one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. Here, we describe the use of conventional and advanced in vivo magnetic resonance imaging (MRI) techniques to assess a novel orthotopic xenograft pGBM mouse (IC-3752GBM patient-derived culture) model, and to monitor the effects of the anti-cancer agent OKN-007 as an inhibitor of pGBM tumor growth. Immunohistochemistry support data is also presented for cell proliferation and tumor growth signaling. OKN-007 was found to significantly decrease tumor volumes (p<0.05) and increase animal survival (p<0.05) in all OKN-007-treated mice compared to untreated animals. In a responsive cohort of treated animals, OKN-007 was able to significantly decrease tumor volumes (p<0.0001), increase survival (p<0.001), and increase diffusion (p<0.01) and perfusion rates (p<0.05). OKN-007 also significantly reduced lipid tumor metabolism in responsive animals [(Lip1.3 and Lip0.9)-to-creatine ratio (p<0.05)], as well as significantly decrease tumor cell proliferation (p<0.05) and microvessel density (p<0.05). Furthermore, in relationship to the PDGFRα pathway, OKN-007 was able to significantly decrease SULF2 (p<0.05) and PDGFR-α (platelet-derived growth factor receptor-α) (p<0.05) immunoexpression, and significantly increase decorin expression (p<0.05) in responsive mice. This study indicates that OKN-007 may be an effective anti-cancer agent for some patients with pGBMs by inhibiting cell proliferation and angiogenesis, possibly via the PDGFRα pathway, and could be considered as an additional therapy for pediatric brain tumor patients. PMID:26248280

  17. Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts.

    PubMed

    Coutinho de Souza, Patricia; Mallory, Samantha; Smith, Nataliya; Saunders, Debra; Li, Xiao-Nan; McNall-Knapp, Rene Y; Fung, Kar-Ming; Towner, Rheal A

    2015-01-01

    Pediatric glioblastomas (pGBM), although rare, are one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. Here, we describe the use of conventional and advanced in vivo magnetic resonance imaging (MRI) techniques to assess a novel orthotopic xenograft pGBM mouse (IC-3752GBM patient-derived culture) model, and to monitor the effects of the anti-cancer agent OKN-007 as an inhibitor of pGBM tumor growth. Immunohistochemistry support data is also presented for cell proliferation and tumor growth signaling. OKN-007 was found to significantly decrease tumor volumes (p<0.05) and increase animal survival (p<0.05) in all OKN-007-treated mice compared to untreated animals. In a responsive cohort of treated animals, OKN-007 was able to significantly decrease tumor volumes (p<0.0001), increase survival (p<0.001), and increase diffusion (p<0.01) and perfusion rates (p<0.05). OKN-007 also significantly reduced lipid tumor metabolism in responsive animals [(Lip1.3 and Lip0.9)-to-creatine ratio (p<0.05)], as well as significantly decrease tumor cell proliferation (p<0.05) and microvessel density (p<0.05). Furthermore, in relationship to the PDGFRα pathway, OKN-007 was able to significantly decrease SULF2 (p<0.05) and PDGFR-α (platelet-derived growth factor receptor-α) (p<0.05) immunoexpression, and significantly increase decorin expression (p<0.05) in responsive mice. This study indicates that OKN-007 may be an effective anti-cancer agent for some patients with pGBMs by inhibiting cell proliferation and angiogenesis, possibly via the PDGFRα pathway, and could be considered as an additional therapy for pediatric brain tumor patients. PMID:26248280

  18. Islet xenograft destruction in the hu-PBL-severe combined immunodeficient (SCID) mouse necessitates anti-CD3 preactivation of human immune cells

    PubMed Central

    Gysemans, C; Waer, M; Laureys, J; Depovere, J; Pipeleers, D; Bouillon, R; Mathieu, C

    2000-01-01

    Introduction of the hu-PBL-SCID mouse model has yielded a potentially useful tool for research in transplantation. The aim of this study was to define the conditions necessary for a reconstituted human immune system to destroy in a consistent manner rat islet xenografts in the alloxan-diabetic hu-PBL-SCID mouse. We examined different time points of hu-PBL reconstitution, different transplantation sites of the islets and several hu-PBL reconstitution protocols. Major differences in graft destruction were observed between the different hu-PBL reconstitution protocols, irrespective of timing of hu-PBL reconstitution or site of transplantation. Although preactivation of hu-PBL did not improve the level of hu-PBL chimerism, histological and immunohistochemical analysis of the grafts revealed a severe human lymphocytic infiltration and β cell destruction only in the grafts of mice receiving preactivated hu-PBL. This β cell injury resulted in impaired glucose tolerance, with in some animals recurrence of hyperglycaemia, and decreased insulin and C-peptide levels after glucose stimulation. Therefore, we conclude that activation of hu-PBL prior to transfer is essential in achieving xenograft infiltration and destruction in hu-PBL-SCID mice. The need for immune manipulation suggests that interactions between hu-PBL and xenografts in this model may be hampered by incompatibilities in cross-species adhesion and/or activation signals. PMID:10971525

  19. A novel rabbit anti-hepatocyte growth factor monoclonal neutralizing antibody inhibits tumor growth in prostate cancer cells and mouse xenografts

    SciTech Connect

    Yu, Yanlan; Chen, Yicheng; Ding, Guoqing; Wang, Mingchao; Wu, Haiyang; Xu, Liwei; Rui, Xuefang; Zhang, Zhigen

    2015-08-14

    The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacy and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.

  20. Efficacy of Tumor-Targeting Salmonella A1-R on a Melanoma Patient-Derived Orthotopic Xenograft (PDOX) Nude-Mouse Model

    PubMed Central

    Yamamoto, Mako; Zhao, Ming; Hiroshima, Yukihiko; Zhang, Yong; Shurell, Elizabeth; Eilber, Fritz C.; Bouvet, Michael; Noda, Makoto; Hoffman, Robert M.

    2016-01-01

    Tumor-targeting Salmonella enterica serovar Typhimurium A1-R (Salmonella A1-R) had strong efficacy on a melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse model. GFP-expressing Salmonella A1-R highly and selectively colonized the PDOX melanoma and significantly suppressed tumor growth (p = 0.021). The combination of Salmonella A1-R and cisplatinum (CDDP), both at low-dose, also significantly suppressed the growth of the melanoma PDOX (P = 0.001). Salmonella A1-R has future clinical potential for combination chemotherapy with CDDP of melanoma, a highly-recalcitrant cancer. PMID:27500926

  1. Targeted tumor theranostics using folate-conjugated and camptothecin-loaded acoustic nanodroplets in a mouse xenograft model.

    PubMed

    Chen, Wei-Tsung; Kang, Shih-Tsung; Lin, Jian-Liang; Wang, Chung-Hsin; Chen, Ran-Chou; Yeh, Chih-Kuang

    2015-01-01

    In this study, we aimed to validate the feasibility of receptor-targeted tumor theranostics with folate-conjugated (FA) and camptothecin-loaded (CPT) acoustic nanodroplets (NDs) (collectively termed FA-CPT-NDs). The ND formulation was based on lipid-stabilized low-boiling perfluorocarbon that can undergo acoustic droplet vaporization (ADV) under ultrasound (US) exposure. Conjugation of folate enhanced the selective delivery to tumors expressing high levels of folate receptor (FR) under mediation by the enhanced permeability and retention effect. In vitro and in vivo studies were performed using FR-positive KB and FR-negative HT-1080 cell lines and mouse xenograft tumor models. Simultaneous therapy and imaging were conducted with a clinical US imaging system at mechanical indices of up to 1.4 at a center frequency of 10 MHz. The results demonstrated that FA-CPT-NDs selectively attached to KB cells, but not HT-1080 cells. The targeted ADV caused instant and delayed damage via mechanical disruption and chemical toxicity to decrease the viability of KB cells by up to 45%, a much higher decrease than that achieved by the NDs without folate conjugation. The in vivo experiments showed that FR-mediated targeting successfully enhanced the EPR of FA-CPT-NDs in KB tumors mainly on the tumor periphery as indicated by immunofluorescence microscopy and US B-mode imaging. Treatments with FA-CPT-NDs at a CPT dose of 50 μg/kg inhibited the growth of KB tumors for up to six weeks, whereas treatment with NDs lacking folate produced a 4.6-fold increase in tumor volume. For HT-1080 tumors, neither the treatments with FA-CPT-NDs nor those with the NDs lacking folate presented tumor growth inhibition. In summary, FR-targeted tumor theranostics has been successfully implemented with FA-CPT-NDs and a clinical US unit. The ligand-directed and EPR-mediated accumulation provides active and passive targeting capabilities, permitting the antitumor effects of FA-CPT-NDs to be exerted

  2. Direct in vivo Measurement of Targeted Binding in a Human Tumor Xenograft

    NASA Astrophysics Data System (ADS)

    Berk, David A.; Yuan, Fan; Leunig, Michael; Jain, Rakesh K.

    1997-03-01

    Binding is crucial to the function of most biologically active molecules, but difficult to quantify directly in living tissue. To this end, fluorescence recovery after photobleaching was used to detect the immobilization of fluorescently labeled ligand caused by binding to receptors in vivo. Measurements of mAb affinity to target antigen within human tumor xenografts revealed a saturable binding isotherm, from which an in vivo carcinoembryonic antigen density of 0.56 nmol/g (5.0 × 105/cell) and an association constant of Ka<= 4 × 107 M-1 were estimated. The present method can be adapted for in vivo studies of cell signaling, targeted drugs, gene therapy, and other processes involving receptor-ligand binding.

  3. Targeted Hsp70 expression combined with CIK-activated immune reconstruction synergistically exerts antitumor efficacy in patient-derived hepatocellular carcinoma xenograft mouse models

    PubMed Central

    Huang, Yao; Fang, Lin; Peng, Zhangxiao; Ji, Weidan; Xu, Yang; Shen, Shuwen; Yan, Yan; Huang, Xuandong; Zheng, Junnian; Su, Changqing

    2015-01-01

    The patient-derived tumor xenograft (PDTX) models can reproduce a similar natural genetic background and similar biological behaviors to tumor cells in patients, which is conducive to the assessment of personalized cancer treatment. In this study, to verify the targeting and effectiveness of the therapeutic strategy using a Survivin promoter-regulated oncolytic adenovirus expressing Hsp70, the PDTX models of hepatocellular carcinoma (HCC) were established in nude mice and the cytokine-induced killer (CIK) cells were intravenously infused into mice to partially reconstruct the mouse immune function. The results demonstrated that, either the immune anti-tumor effect caused by CIK cell infusion or the oncolytic effect generated by oncolytic adenovirus replication was very limited. However, the synergistic tumor inhibitory effect was significantly enhanced after treatments with oncolytic adenovirus expressing Hsp70 combined with CIK cells. Oncolytic adenovirus mediated the specific expression of Hsp70 in cancer tissues allowed the CIK chemotaxis, and induce the infiltration of CD3+ T cells in tumor stroma, thereby exhibiting anti-tumor activity. The anti-tumor effect was more effective for the highly malignant tumor xenografts with highly Survivin expression. This strategy can synergistically activate multiple anti-tumor mechanisms and exert effective anti-tumor activities that have a significant inhibitory effect against the growth of HCC xenografts. PMID:25473902

  4. Growth and Metastases of Human Lung Cancer Are Inhibited in Mouse Xenografts by a Transition State Analogue of 5′-Methylthioadenosine Phosphorylase*

    PubMed Central

    Basu, Indranil; Locker, Joseph; Cassera, Maria B.; Belbin, Thomas J.; Merino, Emilio F.; Dong, Xinyuan; Hemeon, Ivan; Evans, Gary B.; Guha, Chandan; Schramm, Vern L.

    2011-01-01

    The S-adenosylmethionine (AdoMet) salvage enzyme 5′-methylthioadenosine phosphorylase (MTAP) has been implicated as both a cancer target and a tumor suppressor. We tested these hypotheses in mouse xenografts of human lung cancers. AdoMet recycling from 5′-methylthioadenosine (MTA) was blocked by inhibition of MTAP with methylthio-DADMe-Immucillin-A (MTDIA), an orally available, nontoxic, picomolar transition state analogue. Blood, urine, and tumor levels of MTA increased in response to MTDIA treatment. MTDIA treatment inhibited A549 (human non-small cell lung carcinoma) and H358 (human bronchioloalveolar non-small cell lung carcinoma cells) xenograft tumor growth in immunodeficient Rag2−/−γC−/− and NCr-nu mice. Systemic MTA accumulation is implicated as the tumor-suppressive metabolite because MTDIA is effective for in vivo treatment of A549 MTAP−/− and H358 MTAP+/+ tumors. Tumors from treated mice showed increased MTA and decreased polyamines but little alteration in AdoMet, methionine, or adenine levels. Gene expression profiles of A549 tumors from treated and untreated mice revealed only modest alterations with 62 up-regulated and 63 down-regulated mRNAs (≥3-fold). MTDIA antitumor activity in xenografts supports MTAP as a target for lung cancer therapy. PMID:21135097

  5. Peloruside A Inhibits Growth of Human Lung and Breast Tumor Xenografts in an Athymic nu/nu Mouse Model.

    PubMed

    Meyer, Colin J; Krauth, Melissa; Wick, Michael J; Shay, Jerry W; Gellert, Ginelle; De Brabander, Jef K; Northcote, Peter T; Miller, John H

    2015-08-01

    Peloruside A is a microtubule-stabilizing agent isolated from a New Zealand marine sponge. Peloruside prevents growth of a panel of cancer cell lines at low nanomolar concentrations, including cell lines that are resistant to paclitaxel. Three xenograft studies in athymic nu/nu mice were performed to assess the efficacy of peloruside compared with standard anticancer agents such as paclitaxel, docetaxel, and doxorubicin. The first study examined the effect of 5 and 10 mg/kg peloruside (QD×5) on the growth of H460 non-small cell lung cancer xenografts. Peloruside caused tumor growth inhibition (%TGI) of 84% and 95%, respectively, whereas standard treatments with paclitaxel (8 mg/kg, QD×5) and docetaxel (6.3 mg/kg, Q2D×3) were much less effective (%TGI of 50% and 18%, respectively). In a second xenograft study using A549 lung cancer cells and varied schedules of dosing, activity of peloruside was again superior compared with the taxanes with inhibitions ranging from 51% to 74%, compared with 44% and 50% for the two taxanes. A third xenograft study in a P-glycoprotein-overexpressing NCI/ADR-RES breast tumor model showed that peloruside was better tolerated than either doxorubicin or paclitaxel. We conclude that peloruside is highly effective in preventing the growth of lung and P-glycoprotein-overexpressing breast tumors in vivo and that further therapeutic development is warranted. Mol Cancer Ther; 14(8); 1816-23. ©2015 AACR. PMID:26056149

  6. Measuring Viscoelastic Deformation with an Optical Mouse

    ERIC Educational Resources Information Center

    Ng, T. W.

    2004-01-01

    The feasibility of using an optical mouse to track the viscoelastic deformation of low-density polyethylene films that have a fixed attached load is presented. It is seen that using an optical mouse and with rudimentary experiment paraphernalia and arrangement, it is possible to get good measurements of viscoelastic deformation.

  7. A xenograft mouse model coupled with in-depth plasma proteome analysis facilitates identification of novel serum biomarkers for human ovarian cancer.

    PubMed

    Tang, Hsin-Yao; Beer, Lynn A; Chang-Wong, Tony; Hammond, Rachel; Gimotty, Phyllis; Coukos, George; Speicher, David W

    2012-02-01

    Proteomics discovery of novel cancer serum biomarkers is hindered by the great complexity of serum, patient-to-patient variability, and triggering by the tumor of an acute-phase inflammatory reaction. This host response alters many serum protein levels in cancer patients, but these changes have low specificity as they can be triggered by diverse causes. We addressed these hurdles by utilizing a xenograft mouse model coupled with an in-depth 4-D protein profiling method to identify human proteins in the mouse serum. This strategy ensures that identified putative biomarkers are shed by the tumor, and detection of low-abundance proteins shed by the tumor is enhanced because the mouse blood volume is more than a thousand times smaller than that of a human. Using TOV-112D ovarian tumors, more than 200 human proteins were identified in the mouse serum, including novel candidate biomarkers and proteins previously reported to be elevated in either ovarian tumors or the blood of ovarian cancer patients. Subsequent quantitation of selected putative biomarkers in human sera using label-free multiple reaction monitoring (MRM) mass spectrometry (MS) showed that chloride intracellular channel 1, the mature form of cathepsin D, and peroxiredoxin 6 were elevated significantly in sera from ovarian carcinoma patients. PMID:22032327

  8. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  9. Monitoring breast tumor progression by photoacoustic measurements: a xenograft mice model study

    NASA Astrophysics Data System (ADS)

    Priya, Mallika; Satish Rao, Bola Sadashiva; Chandra, Subhash; Datta, Anirbit; Nayak, Subramanya G.; Mahato, Krishna Kishore

    2015-10-01

    The current study reports the photoacoustic spectroscopy-based assessment of breast tumor progression in a nude mice xenograft model. The tumor was induced through subcutaneous injection of MCF-7 cells in female nude mice and was monitored for 20 days until the tumor volume reached 1000 mm3. The tumor tissues were extracted at three different time points (days 10, 15, and 20) after tumor inoculation and subjected to photoacoustic spectral recordings in time domain ex vivo at 281 nm pulsed laser excitations. The spectra were converted into the frequency domain using the fast Fourier transformed tools of MATLAB® algorithms and further utilized to extract seven statistical features (mean, median, area under the curve, variance and standard deviation, skewness and kurtosis) from each time point sample to assess the tumor growth with wavelet principal component analysis based logistic regression analysis performed on the data. The prediction accuracies of the analysis for day 10 versus day 15, day 15 versus day 20, and day 10 versus day 20 were found to be 92.31, 87.5, and 95.2%, respectively. Also, receiver operator characteristics area under the curve analysis for day 10 versus day 15, day 15 versus day 20, and day 10 versus day 20 were found to be 0.95, 0.85, and 0.93, respectively. The ability of photoacoustic measurements in the objective assessment of tumor progression has been clearly demonstrated, indicating its clinical potential.

  10. Monitoring breast tumor progression by photoacoustic measurements: a xenograft mice model study.

    PubMed

    Priya, Mallika; Satish Rao, Bola Sadashiva; Chandra, Subhash; Datta, Anirbit; Nayak, Subramanya G; Mahato, Krishna Kishore

    2015-10-01

    The current study reports the photoacoustic spectroscopy-based assessment of breast tumor progression in a nude mice xenograft model. The tumor was induced through subcutaneous injection of MCF-7 cells in female nude mice and was monitored for 20 days until the tumor volume reached 1000  mm3. The tumor tissues were extracted at three different time points (days 10, 15, and 20) after tumor inoculation and subjected to photoacoustic spectral recordings in time domain ex vivo at 281 nm pulsed laser excitations. The spectra were converted into the frequency domain using the fast Fourier transformed tools of MATLAB® algorithms and further utilized to extract seven statistical features (mean, median, area under the curve, variance and standard deviation, skewness and kurtosis) from each time point sample to assess the tumor growth with wavelet principal component analysis based logistic regression analysis performed on the data. The prediction accuracies of the analysis for day 10 versus day 15, day 15 versus day 20, and day 10 versus day 20 were found to be 92.31, 87.5, and 95.2%, respectively. Also, receiver operator characteristics area under the curve analysis for day 10 versus day 15, day 15 versus day 20, and day 10 versus day 20 were found to be 0.95, 0.85, and 0.93, respectively. The ability of photoacoustic measurements in the objective assessment of tumor progression has been clearly demonstrated, indicating its clinical potential. PMID:26442962

  11. Piperlongumine Suppresses Growth and Sensitizes Pancreatic Tumors to Gemcitabine in a Xenograft Mouse Model by Modulating the NF-kappa B Pathway.

    PubMed

    Wang, Yongwei; Wu, Xiangsong; Zhou, Yinan; Jiang, Hongchi; Pan, Shangha; Sun, Bei

    2016-03-01

    Pancreatic cancer is an aggressive malignancy, which generally respond poorly to chemotherapy. Hence, novel agents that are safe and effective are highly needed. The aim of this study was to investigate whether piperlongumine, a natural product isolated from the fruit of the pepper Piper longum, has any efficacy against human pancreatic cancer when used either alone or in combination with gemcitabine in vitro and in a xenograft mouse model. In vitro, piperlongumine inhibited the proliferation of pancreatic cancer cell lines, potentiated the apoptotic effects of gemcitabine, inhibited the constitutive and inducible activation of NF-κB, and suppressed the NF-κB-regulated expression of c-Myc, cyclin D1, Bcl-2, Bcl-xL, Survivin, XIAP, VEGF, and matrix metalloproteinase-9 (MMP-9). Furthermore, in an in vivo xenograft model, we found piperlongumine alone significantly suppressed tumor growth and enhanced the antitumor properties of gemcitabine. These results were consistent with the downregulation of NF-κB activity and its target genes, decreased proliferation (PCNA and Ki-67), decreased microvessel density (CD31), and increased apoptosis (TUNEL) in tumor remnants. Collectively, our results suggest that piperlongumine alone exhibits significant antitumor effects against human pancreatic cancer and it further enhances the therapeutic effects of gemcitabine, possibly through the modulation of NF-κB- and NF-κB-regulated gene products. PMID:26667450

  12. Loquat (Eriobotrya japonica) leaf extract inhibits the growth of MDA-MB-231 tumors in nude mouse xenografts and invasion of MDA-MB-231 cells

    PubMed Central

    You, Mi-Kyoung; Kim, Min-Sook; Jeong, Kyu-Shik; Kim, Eun; Kim, Yong-Jae

    2016-01-01

    BACKGROUND/OBJECTIVES The present study was conducted to examine the inhibitory effect of loquat leaves on MDA-MB-231 cell proliferation and invasion. MATERIALS/METHODS Female athymic nude mice were given a subcutaneous (s.c.) inoculation of MDA-MB-231 cells and randomly grouped to receive a s.c. injection of either 500 mg/kg ethanol, water extract or vehicle five times a week. Tumor growth, mitotic rate and necrosis were examined. MDA-MB-231 cells were cultured with DMSO or with various concentrations of loquat water or ethanol extract. Proliferation, adhesion, migration, invasion and matrix metalloproteinase (MMP) activity were examined. RESULTS Tumor growth of xenograft nude mouse was significantly reduced by loquat extracts. The results of mitotic examination revealed that loquat extracts reduced tumor cell division. Both ethanol and water extracts significantly inhibited MDA-MB-231 cell proliferation. The protein expression of ErbB3 was significantly down-regulated by loquat leaf extracts. Loquat leaf extracts increased apoptosis of MDA-MB-231 cells following 24 hour incubation and the ethanol extract was more potent in inducing apoptosis than the water extract. Furthermore, loquat extracts inhibited adhesion, migration and invasion of MDA-MB-231 cells. MMP activity was significantly inhibited by loquat extracts. CONCLUSION Our results show that extracts of loquat inhibit the growth of tumor in MDA-MB-231 xenograft nude mice and the invasion of human breast cancer cells, indicating the inhibition of tumor cell proliferation and invasion. PMID:27087896

  13. Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model

    PubMed Central

    Xu, Shan; Tian, Yuan; Hu, Yili; Zhang, Nijia; Hu, Sheng; Song, Dandan; Wu, Zhengshun; Wang, Yulan; Cui, Yanfang; Tang, Huiru

    2016-01-01

    The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs. PMID:27329570

  14. Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model.

    PubMed

    Xu, Shan; Tian, Yuan; Hu, Yili; Zhang, Nijia; Hu, Sheng; Song, Dandan; Wu, Zhengshun; Wang, Yulan; Cui, Yanfang; Tang, Huiru

    2016-01-01

    The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs. PMID:27329570

  15. An Orally Bioavailable, Indole-3-glyoxylamide Based Series of Tubulin Polymerization Inhibitors Showing Tumor Growth Inhibition in a Mouse Xenograft Model of Head and Neck Cancer.

    PubMed

    Colley, Helen E; Muthana, Munitta; Danson, Sarah J; Jackson, Lucinda V; Brett, Matthew L; Harrison, Joanne; Coole, Sean F; Mason, Daniel P; Jennings, Luke R; Wong, Melanie; Tulasi, Vamshi; Norman, Dennis; Lockey, Peter M; Williams, Lynne; Dossetter, Alexander G; Griffen, Edward J; Thompson, Mark J

    2015-12-10

    A number of indole-3-glyoxylamides have previously been reported as tubulin polymerization inhibitors, although none has yet been successfully developed clinically. We report here a new series of related compounds, modified according to a strategy of reducing aromatic ring count and introducing a greater degree of saturation, which retain potent tubulin polymerization activity but with a distinct SAR from previously documented libraries. A subset of active compounds from the reported series is shown to interact with tubulin at the colchicine binding site, disrupt the cellular microtubule network, and exert a cytotoxic effect against multiple cancer cell lines. Two compounds demonstrated significant tumor growth inhibition in a mouse xenograft model of head and neck cancer, a type of the disease which often proves resistant to chemotherapy, supporting further development of the current series as potential new therapeutics. PMID:26580420

  16. Effect of carbon dioxide pneumoperitoneum on human renal cell carcinoma proliferation and metastasis in an orthotropic xenograft nude mouse model

    PubMed Central

    Chen, Yuan-Zhuo; Xu, Yun-Fei

    2014-01-01

    Introduction This study aimed to explore the effect of carbon dioxide (CO2) pneumoperitoneum on tumor proliferation and metastasis in an orthotropic xenograft nude mice model of human renal cell carcinoma (RCC) and evaluate the safety of CO2 pneumoperitoneum laparoscopy for treating RCC. Material and methods RCC 786-0 cells were injected to establish an orthotropic xenograft model. Fifty nude mice were given orthotropic inoculations and randomized to five groups: group A (control); group B (CO2 pneumoperitoneum for 2 h); group C (CO2 pneumoperitoneum for 4 h); group D (CO2 pneumoperitoneum for 4 h and 24 h after waking); group E (CO2 pneumoperitoneum for 4 h and 48 h after waking). The proliferation status was observed in RCC specimens by immunohistochemical staining for Ki67. The protein levels of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) were examined by western blotting. Results All groups showed similar Ki67-positive staining in RCC samples (p > 0.05). The relative expression of HIF-1α and VEGF gradually increased in both group B and group C, as compared with group A, but only the difference between group C and group A reached statistical significance (p < 0.05). The protein levels of HIF-1α and VEGF decreased in both group D and group E, as compared with group B and group C; however, the differences between group D, group E, and group A did not reach statistical significance (p > 0.05). Conclusions In an orthotropic xenograft nude mice model of RCC, CO2 pneumoperitoneum has no effect on expression of the cellular proliferation marker Ki67. However, CO2 pneumoperitoneum rapidly induces transient expression of HIF-1α and VEGF. Thus, CO2 pneumoperitoneum laparoscopy may be a safe method for treating RCC. PMID:25395958

  17. Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-κB regulated gene products in multiple myeloma xenograft mouse model.

    PubMed

    Siveen, Kodappully Sivaraman; Mustafa, Nurulhuda; Li, Feng; Kannaiyan, Radhamani; Ahn, Kwang Seok; Kumar, Alan Prem; Chng, Wee-Joo; Sethi, Gautam

    2014-02-15

    Multiple myeloma (MM) is a B cell malignancy characterized by clonal proliferation of plasma cells in the bone marrow. With the advent of novel targeted agents, the median survival rate has increased to 5 -7 years. However, majority of patients with myeloma suffer relapse or develop chemoresistance to existing therapeutic agents. Thus, there is a need to develop novel alternative therapies for the treatment of MM. Thus in the present study, we investigated whether thymoquinone (TQ), a bioactive constituent of black seed oil, could suppress the proliferation and induce chemosensitization in human myeloma cells and xenograft mouse model. Our results show that TQ inhibited the proliferation of MM cells irrespective of their sensitivity to doxorubicin, melphalan or bortezomib. Interestingly, TQ treatment also resulted in a significant inhibition in the proliferation of CD138+ cells isolated from MM patient samples in a concentration dependent manner. TQ also potentiated the apoptotic effects of bortezomib in various MM cell lines through the activation of caspase-3, resulting in the cleavage of PARP. TQ treatment also inhibited chemotaxis and invasion induced by CXCL12 in MM cells. Furthermore, in a xenograft mouse model, TQ potentiated the antitumor effects of bortezomib (p<0.05, vehicle versus bortezomib + TQ; p<0.05, bortezomib versus bortezomib + TQ), and this correlated with modulation of various markers for survival and angiogenesis, such as Ki-67, vascular endothelial growth factor (VEGF), Bcl-2 and p65 expression. Overall, our results demonstrate that TQ can enhance the anticancer activity of bortezomib in vitro and in vivo and may have a substantial potential in the treatment of MM. PMID:24504138

  18. Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-κB regulated gene products in multiple myeloma xenograft mouse model

    PubMed Central

    Siveen, Kodappully Sivaraman; Mustafa, Nurulhuda; Li, Feng; Kannaiyan, Radhamani; Ahn, Kwang Seok; Kumar, Alan Prem; Chng, Wee-Joo; Sethi1, Gautam

    2014-01-01

    Multiple myeloma (MM) is a B cell malignancy characterized by clonal proliferation of plasma cells in the bone marrow. With the advent of novel targeted agents, the median survival rate has increased to 5−7 years. However, majority of patients with myeloma suffer relapse or develop chemoresistance to existing therapeutic agents. Thus, there is a need to develop novel alternative therapies for the treatment of MM. Thus in the present study, we investigated whether thymoquinone (TQ), a bioactive constituent of black seed oil, could suppress the proliferation and induce chemosensitization in human myeloma cells and xenograft mouse model. Our results show that TQ inhibited the proliferation of MM cells irrespective of their sensitivity to doxorubicin, melphalan or bortezomib. Interestingly, TQ treatment also resulted in a significant inhibition in the proliferation of CD138+ cells isolated from MM patient samples in a concentration dependent manner. TQ also potentiated the apoptotic effects of bortezomib in various MM cell lines through the activation of caspase-3, resulting in the cleavage of PARP. TQ treatment also inhibited chemotaxis and invasion induced by CXCL12 in MM cells. Furthermore, in a xenograft mouse model, TQ potentiated the antitumor effects of bortezomib (p < 0.05, vehicle versus bortezomib + TQ; p < 0.05, bortezomib versus bortezomib + TQ), and this correlated with modulation of various markers for survival and angiogenesis, such as Ki-67, vascular endothelial growth factor (VEGF), Bcl-2 and p65 expression. Overall, our results demonstrate that TQ can enhance the anticancer activity of bortezomib in vitro and in vivo and may have a substantial potential in the treatment of MM. PMID:24504138

  19. Islet Insulin Secretion Measurements in the Mouse.

    PubMed

    Hugill, Alison; Shimomura, Kenju; Cox, Roger D

    2016-01-01

    This article describes detailed protocols for in vitro measurements of insulin function and secretion in isolated mouse islets for the analysis of glucose homeostasis. We specify a method of enzyme digestion and hand picking to isolate and release the greatest number of high quality islets from the pancreas of the mouse. We describe an effective method for generating dynamic measurements of insulin secretion using a perifusion assay including a detailed protocol for constructing a peristaltic pump and tubing assembly. In addition we describe an alternative and simple technique for measuring insulin secretion using static incubation of isolated islets. © 2016 by John Wiley & Sons, Inc. PMID:27584553

  20. Fluorescent peptide biosensor for monitoring CDK4/cyclin D kinase activity in melanoma cell extracts, mouse xenografts and skin biopsies.

    PubMed

    Prével, Camille; Pellerano, Morgan; González-Vera, Juan A; Henri, Pauline; Meunier, Laurent; Vollaire, Julien; Josserand, Véronique; Morris, May C

    2016-11-15

    Melanoma constitutes the most aggressive form of skin cancer, which further metastasizes into a deadly form of cancer. The p16(INK4a)-Cyclin D-CDK4/6-pRb pathway is dysregulated in 90% of melanomas. CDK4/Cyclin D kinase hyperactivation, associated with mutation of CDK4, amplification of Cyclin D or loss of p16(INK4a) leads to increased risk of developing melanoma. This kinase therefore constitutes a key biomarker in melanoma and an emerging pharmacological target, however there are no tools enabling direct detection or quantification of its activity. Here we report on the design and application of a fluorescent peptide biosensor to quantify CDK4 activity in melanoma cell extracts, skin biopsies and melanoma xenografts. This biosensor provides sensitive means of comparing CDK4 activity between different melanoma cell lines and further responds to CDK4 downregulation by siRNA or small-molecule inhibitors. By affording means of monitoring CDK4 hyperactivity consequent to cancer-associated molecular alterations in upstream signaling pathways that converge upon this kinase, this biosensor offers an alternative to immunological identification of melanoma-specific biomarkers, thereby constituting an attractive tool for diagnostic purposes, providing complementary functional information to histological analysis, of particular utility for detection of melanoma onset in precancerous lesions. This is indeed the first fluorescent peptide biosensor which has been successfully implemented to monitor kinase activity in skin samples and melanoma tumour xenografts. Moreover by enabling to monitor response to CDK4 inhibitors, this biosensor constitutes an attractive companion assay to identify compounds of therapeutic relevance for melanoma. PMID:27203461

  1. Discovery of imidazo[1,2-a]-pyridine inhibitors of pan-PI3 kinases that are efficacious in a mouse xenograft model.

    PubMed

    Han, Wooseok; Menezes, Daniel L; Xu, Yongjin; Knapp, Mark S; Elling, Robert; Burger, Matthew T; Ni, Zhi-Jie; Smith, Aaron; Lan, Jiong; Williams, Teresa E; Verhagen, Joelle; Huh, Kay; Merritt, Hanne; Chan, John; Kaufman, Susan; Voliva, Charles F; Pecchi, Sabina

    2016-02-01

    Alterations in PI3K/AKT signaling are known to be implicated with tumorigenesis. The PI3 kinases family of lipid kinases has been an attractive therapeutic target for cancer treatment. Imidazopyridine compound 1, a potent, selective, and orally available pan-PI3K inhibitor, identified by scaffold morphing of a benzothiazole hit, was further optimized in order to achieve efficacy in a PTEN-deleted A2780 ovarian cancer mouse xenograft model. With a hypothesis that a planar conformation between the core and the 6-heteroaryl ring will allow for the accommodation of larger 5'-substituents in a hydrophobic area under P-loop, SAR efforts focused on 5'-alkoxy heteroaryl rings at the 6-position of imidazopyridine and imidazopyridazine cores that have the same dihedral angle of zero degrees. 6'-Alkoxy 5'-aminopyrazines in the imidazopyridine series were identified as the most potent compounds in the A2780 cell line. Compound 14 with 1,1,1-trifluoroisopropoxy group at 6'-position demonstrated excellent potency and selectivity, good oral exposure in rats and in vivo efficacy in A2780 tumor-bearing mouse. Also, we disclose the X-ray co-crystal structure of one enantiomer of compound 14 in PI3Kα, confirming that the trifluoromethyl group fits nicely in the hydrophobic hot spot under P-loop. PMID:26774655

  2. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis

    PubMed Central

    Alimonti, Andrea; Nardella, Caterina; Chen, Zhenbang; Clohessy, John G.; Carracedo, Arkaitz; Trotman, Lloyd C.; Cheng, Ke; Varmeh, Shohreh; Kozma, Sara C.; Thomas, George; Rosivatz, Erika; Woscholski, Rudiger; Cognetti, Francesco; Scher, Howard I.; Pandolfi, Pier Paolo

    2010-01-01

    Irreversible cell growth arrest, a process termed cellular senescence, is emerging as an intrinsic tumor suppressive mechanism. Oncogene-induced senescence is thought to be invariably preceded by hyperproliferation, aberrant replication, and activation of a DNA damage checkpoint response (DDR), rendering therapeutic enhancement of this process unsuitable for cancer treatment. We previously demonstrated in a mouse model of prostate cancer that inactivation of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (Pten) elicits a senescence response that opposes tumorigenesis. Here, we show that Pten-loss–induced cellular senescence (PICS) represents a senescence response that is distinct from oncogene-induced senescence and can be targeted for cancer therapy. Using mouse embryonic fibroblasts, we determined that PICS occurs rapidly after Pten inactivation, in the absence of cellular proliferation and DDR. Further, we found that PICS is associated with enhanced p53 translation. Consistent with these data, we showed that in mice p53-stabilizing drugs potentiated PICS and its tumor suppressive potential. Importantly, we demonstrated that pharmacological inhibition of PTEN drives senescence and inhibits tumorigenesis in vivo in a human xenograft model of prostate cancer. Taken together, our data identify a type of cellular senescence that can be triggered in nonproliferating cells in the absence of DNA damage, which we believe will be useful for developing a “pro-senescence” approach for cancer prevention and therapy. PMID:20197621

  3. Measuring Pressure Volume Loops in the Mouse.

    PubMed

    Townsend, DeWayne

    2016-01-01

    Understanding the causes and progression of heart disease presents a significant challenge to the biomedical community. The genetic flexibility of the mouse provides great potential to explore cardiac function at the molecular level. The mouse's small size does present some challenges in regards to performing detailed cardiac phenotyping. Miniaturization and other advancements in technology have made many methods of cardiac assessment possible in the mouse. Of these, the simultaneous collection of pressure and volume data provides a detailed picture of cardiac function that is not available through any other modality. Here a detailed procedure for the collection of pressure-volume loop data is described. Included is a discussion of the principles underlying the measurements and the potential sources of error. Anesthetic management and surgical approaches are discussed in great detail as they are both critical to obtaining high quality hemodynamic measurements. The principles of hemodynamic protocol development and relevant aspects of data analysis are also addressed. PMID:27166576

  4. Restriction of dietary protein decreases mTORC1 in tumors and somatic tissues of a tumor-bearing mouse xenograft model

    PubMed Central

    Cummings, Nicole E.; Rastelli, Antonella L.; Gao, Feng; Cava, Edda; Bertozzi, Beatrice; Spelta, Francesco; Pili, Roberto

    2015-01-01

    Reduced dietary protein intake and intermittent fasting (IF) are both linked to healthy longevity in rodents, and are effective in inhibiting cancer growth. The molecular mechanisms underlying the beneficial effects of chronic protein restriction (PR) and IF are unclear, but may be mediated in part by a down-regulation of the IGF/mTOR pathway. In this study we compared the effects of PR and IF on tumor growth in a xenograft mouse model of breast cancer. We also investigated the effects of PR and IF on the mechanistic Target Of Rapamycin (mTOR) pathway, inhibition of which extends lifespan in model organisms including mice. The mTOR protein kinase is found in two distinct complexes, of which mTOR complex 1 (mTORC1) is responsive to acute treatment with amino acids in cell culture and in vivo. We found that both PR and IF inhibit tumor growth and mTORC1 phosphorylation in tumor xenografts. In somatic tissues, we found that PR, but not IF, selectively inhibits the activity of the amino acid sensitive mTORC1, while the activity of the second mTOR complex, mTORC2, was relatively unaffected by PR. In contrast, IF resulted in increased S6 phosphorylation in multiple metabolic tissues. Our work represents the first finding that PR may reduce mTORC1 activity in tumors and multiple somatic tissues, and suggest that PR may represent a highly translatable option for the treatment not only of cancer, but also other age-related diseases. PMID:26378060

  5. Restriction of dietary protein decreases mTORC1 in tumors and somatic tissues of a tumor-bearing mouse xenograft model.

    PubMed

    Lamming, Dudley W; Cummings, Nicole E; Rastelli, Antonella L; Gao, Feng; Cava, Edda; Bertozzi, Beatrice; Spelta, Francesco; Pili, Roberto; Fontana, Luigi

    2015-10-13

    Reduced dietary protein intake and intermittent fasting (IF) are both linked to healthy longevity in rodents, and are effective in inhibiting cancer growth. The molecular mechanisms underlying the beneficial effects of chronic protein restriction (PR) and IF are unclear, but may be mediated in part by a down-regulation of the IGF/mTOR pathway. In this study we compared the effects of PR and IF on tumor growth in a xenograft mouse model of breast cancer. We also investigated the effects of PR and IF on the mechanistic Target Of Rapamycin (mTOR) pathway, inhibition of which extends lifespan in model organisms including mice. The mTOR protein kinase is found in two distinct complexes, of which mTOR complex 1 (mTORC1) is responsive to acute treatment with amino acids in cell culture and in vivo. We found that both PR and IF inhibit tumor growth and mTORC1 phosphorylation in tumor xenografts. In somatic tissues, we found that PR, but not IF, selectively inhibits the activity of the amino acid sensitive mTORC1, while the activity of the second mTOR complex, mTORC2, was relatively unaffected by PR. In contrast, IF resulted in increased S6 phosphorylation in multiple metabolic tissues. Our work represents the first finding that PR may reduce mTORC1 activity in tumors and multiple somatic tissues, and suggest that PR may represent a highly translatable option for the treatment not only of cancer, but also other age-related diseases. PMID:26378060

  6. Antitumor activity of [Pt(O,O'-acac)(γ-acac)(DMS)] in mouse xenograft model of breast cancer.

    PubMed

    Muscella, A; Vetrugno, C; Migoni, D; Biagioni, F; Fanizzi, F P; Fornai, F; De Pascali, S A; Marsigliante, S

    2014-01-01

    The higher and selective cytotoxicity of [Pt(O,O'-acac)(γ-acac)(DMS)] toward cancer cell in both immortalized cell lines and in breast cancer cells in primary cultures, stimulated a pre-clinical study so as to evaluate its therapeutic potential in vivo. The efficacy of [Pt(O,O'-acac)(γ-acac)(DMS)] was assessed using a xenograft model of breast cancer developed by injection of MCF-7 cells in the flank of BALB/c nude mice. Treatment of solid tumor-bearing mice with [Pt(O,O'-acac)(γ-acac)(DMS)] induced up to 50% reduction of tumor mass compared with an average 10% inhibition recorded in cisplatin-treated animals. Thus, chemotherapy with [Pt(O,O'-acac)(γ-acac)(DMS)] was much more effective than cisplatin. We also demonstrated enhanced in vivo pharmacokinetics, biodistribution and tolerability of [Pt(O,O'-acac)(γ-acac)(DMS)] when compared with cisplatin administered in Wistar rats. Pharmacokinetics studies with [Pt(O,O'-acac)(γ-acac)(DMS)] revealed prolonged Pt persistence in systemic blood circulation and decreased nefrotoxicity and hepatotoxicity, major target sites of cisplatin toxicity. Overall, [Pt(O,O'-acac)(γ-acac)(DMS)] turned out to be extremely promising in terms of greater in vivo anticancer activity, reduced nephrotoxicity and acute toxicity compared with cisplatin. PMID:24457958

  7. Antitumor activity of [Pt(O,O'-acac)(γ-acac)(DMS)] in mouse xenograft model of breast cancer

    PubMed Central

    Muscella, A; Vetrugno, C; Migoni, D; Biagioni, F; Fanizzi, F P; Fornai, F; De Pascali, S A; Marsigliante, S

    2014-01-01

    The higher and selective cytotoxicity of [Pt(O,O′-acac)(γ-acac)(DMS)] toward cancer cell in both immortalized cell lines and in breast cancer cells in primary cultures, stimulated a pre-clinical study so as to evaluate its therapeutic potential in vivo. The efficacy of [Pt(O,O′-acac)(γ-acac)(DMS)] was assessed using a xenograft model of breast cancer developed by injection of MCF-7 cells in the flank of BALB/c nude mice. Treatment of solid tumor-bearing mice with [Pt(O,O′-acac)(γ-acac)(DMS)] induced up to 50% reduction of tumor mass compared with an average 10% inhibition recorded in cisplatin-treated animals. Thus, chemotherapy with [Pt(O,O′-acac)(γ-acac)(DMS)] was much more effective than cisplatin. We also demonstrated enhanced in vivo pharmacokinetics, biodistribution and tolerability of [Pt(O,O′-acac)(γ-acac)(DMS)] when compared with cisplatin administered in Wistar rats. Pharmacokinetics studies with [Pt(O,O′-acac)(γ-acac)(DMS)] revealed prolonged Pt persistence in systemic blood circulation and decreased nefrotoxicity and hepatotoxicity, major target sites of cisplatin toxicity. Overall, [Pt(O,O′-acac)(γ-acac)(DMS)] turned out to be extremely promising in terms of greater in vivo anticancer activity, reduced nephrotoxicity and acute toxicity compared with cisplatin. PMID:24457958

  8. hMSC-mediated Concurrent Delivery of Endostatin and Carboxylesterase to Mouse Xenografts Suppresses Glioma Initiation and Recurrence

    PubMed Central

    Yin, Jinlong; Kim, Jun-Kyum; Moon, Jai-Hee; Beck, Samuel; Piao, Dachuan; Jin, Xun; Kim, Sung-Hak; Lim, Young Chang; Nam, Do-Hyun; You, Seungkwon; Kim, Hyunggee; Choi, Yun-Jaie

    2011-01-01

    Glioma stem cells (GSCs) are known to be maintained within a “vascular niche” thereby, disruption of this microenvironment using antiangiogenesis agents is a promising therapeutic modality. However, this regimen leads to treatment failure and tumor recurrence in patients with glioblastoma multiforme (GBM). Therefore, more effective therapeutic approaches that can eradicate GSCs and the bulk tumors are needed. Toward this goal, we examined the antitumor effects of an antiangiogenesis approach combined with conventional chemotherapy on suppressing glioma xenograft growth. We established three genetically engineered mesenchymal stem cell (MSC) lines (GE-AF-MSCs) by stably transducing the gene encoding endostatin (an antiangiogenesis factor), the gene encoding secretable form of carboxylesterase 2 (sCE2, a prodrug-activating enzyme), or a mixture of both genes. Among the three GE-AF-MSC cell lines, injection of amniotic fluid (AF)-MSCs-endostatin-sCE2 cells into U87MG-EGFRvIII-driven orthotopic brain tumor and postsurgery tumor recurrence models, and subsequent CPT11 treatment yielded the strongest antitumor responses, including diminished angiogenesis, increased cell death, and a reduced Nestin-positive GSC population. Therefore, our antitumor strategy provides a novel basis for designing stem cell-mediated therapeutic approaches to target and eradicate GSCs and the bulk tumors. PMID:21386822

  9. Low-dose mistletoe lectin-I reduces melanoma growth and spread in a scid mouse xenograft model

    PubMed Central

    Thies, A; Dautel, P; Meyer, A; Pfüller, U; Schumacher, U

    2007-01-01

    This study investigates the effects of mistletoe lectin-I (ML-I) on melanoma growth and spread in vivo. The human melanoma cell line MV3 was xenografted into severe combined immunodeficient mice and vehicle solution or purified ML-I was administered at 30, 150 and 500 ng per kg body weight (20 mice per group) daily. After 19 days, mice were killed, primary tumours (PTs) and lungs were dissected out, and tumour weights, number of lung metastases (LMs), number of tumour-infiltrating dendritic cells (DCs), and apoptosis rates in the melanoma cells and in the DCs were assessed. A 35% reduction of PT weight (P=0.03) and a 55% decrease in number of LMs (P=0.016) were evident for low-dose ML-I (30 ng kg−1) treatment but not for higher doses. Mistletoe lectin-I increased apoptosis rates in the melanoma cells of PTs at all doses, while no induction of apoptosis was noted in the LMs. Low-dose ML-I significantly increased the number of DCs infiltrating the PTs (P<0.0001) and protected DCs against apoptosis, while higher doses induced apoptosis in the DCs (P<0.01). Our results demonstrate that low-dose ML-I reduced melanoma growth and number of metastases in vivo, primarily due to immunomodulatory effects. PMID:18026191

  10. Meta-[{sup 211}At]astatobenzylguanidine (MABG): In vivo evaluation in an athymic mouse human neuroblastoma xenograft model

    SciTech Connect

    Vaidyanathan, G.; Friedman, H.S.; Keir, S.T.

    1996-05-01

    Because of the short range and high linear energy transfer of {sup 211}At {alpha}-particles, the MIBG analogue MABG might be useful for the therapy of micrometastatic neuroblastoma and previous in vitro studies have demonstrated that under single-cell conditions, the cytotoxicity of MABG is > 1000 times higher than [{sup 131}I]MIBG. A paired label protocol was used to compare the tissue distribution of MABG and [{sup 131}I]MIBG in athymic mice bearing subcutaneous SK-N-SH human neuroblastoma xenografts from 1-24 hr after injection. In tumor, significantly higher (p < 0.05) uptake was observed for MABG (3.8 {plus_minus} 0.8%ID/g vs 3.1 {plus_minus} 0.7%ID/g at 8 hr). Pretreatment with desipramine reduced tumor uptake of MABG by 43%, suggesting that accumulation was related to the uptake-1 mechanism. Significantly higher uptake of MABG also was observed in normal tissue targets. For example, at 8 hr, heart uptake of MABG was 6.0 {plus_minus} 0.9 % ID/g compared with 4.5 {plus_minus} 0.8%ID/g for [{sup 131}I]MIBG. Two strategies were investigated to increase the tumor-to-hear uptake ratio. Pretreatment of mice with unlabeled MIBG (4 mg/kg) increased MABG tumor uptake by 1.5-fold while reducing uptake in several normal tissues including heart. The vesicular uptake blocker tetrabenazine (TBZ; 20 mg/kg), reduced MABG hear uptake by 30% of control values with not significant decrease in tumor levels. We conclude that MABG deserves further evaluation as a potential agent for the treatment of neuroblastoma, particularly in combination with strategies to minimize radiation dose to normal target tissues.

  11. Comparison of IgE and IgG antibody-dependent cytotoxicity in vitro and in a SCID mouse xenograft model of ovarian carcinoma.

    PubMed

    Gould, H J; Mackay, G A; Karagiannis, S N; O'Toole, C M; Marsh, P J; Daniel, B E; Coney, L R; Zurawski, V R; Joseph, M; Capron, M; Gilbert, M; Murphy, G F; Korngold, R

    1999-11-01

    Allergic reactions are mediated by IgE antibodies bound to high-affinity receptors on mast cells in peripheral tissues and are characterized by their immediacy and hypersensitivity. These properties could also be advantageous in immunotherapy against cancer growth in peripheral tissues. We have constructed chimeric IgE and IgG1 antibodies with murine V regions and human C regions corresponding to the MOv18 monoclonal antibody against the human ovarian tumor-associated antigen, folate binding protein. The antibodies exhibited the expected binding affinities for antigen and Fc receptors, and effector activities with human basophils and platelets in vitro. The protective activities of MOv18-IgE and MOv18-IgG1 were compared in a SCID mouse xenograft model of ovarian carcinoma. The beneficial effects of MOv18-IgE were greater and of longer duration than those of MOv18-IgG1. Our results suggest that the allergic reaction could be harnessed for the suppression of ovarian tumors. PMID:10556807

  12. Antitumor effect of FGFR inhibitors on a novel cholangiocarcinoma patient derived xenograft mouse model endogenously expressing an FGFR2-CCDC6 fusion protein.

    PubMed

    Wang, Yu; Ding, Xiwei; Wang, Shaoqing; Moser, Catherine D; Shaleh, Hassan M; Mohamed, Essa A; Chaiteerakij, Roongruedee; Allotey, Loretta K; Chen, Gang; Miyabe, Katsuyuki; McNulty, Melissa S; Ndzengue, Albert; Barr Fritcher, Emily G; Knudson, Ryan A; Greipp, Patricia T; Clark, Karl J; Torbenson, Michael S; Kipp, Benjamin R; Zhou, Jie; Barrett, Michael T; Gustafson, Michael P; Alberts, Steven R; Borad, Mitesh J; Roberts, Lewis R

    2016-09-28

    Cholangiocarcinoma is a highly lethal cancer with limited therapeutic options. Recent genomic analysis of cholangiocarcinoma has revealed the presence of fibroblast growth factor receptor 2 (FGFR2) fusion proteins in up to 13% of intrahepatic cholangiocarcinoma (iCCA). FGFR fusions have been identified as a novel oncogenic and druggable target in a number of cancers. In this study, we established a novel cholangiocarcinoma patient derived xenograft (PDX) mouse model bearing an FGFR2-CCDC6 fusion protein from a metastatic lung nodule of an iCCA patient. Using this PDX model, we confirmed the ability of the FGFR inhibitors, ponatinib, dovitinib and BGJ398, to modulate FGFR signaling, inhibit cell proliferation and induce cell apoptosis in cholangiocarcinoma tumors harboring FGFR2 fusions. In addition, BGJ398 appeared to be superior in potency to ponatinib and dovitinib in this model. Our findings provide a strong rationale for the investigation of FGFR inhibitors, particularly BGJ398, as a therapeutic option for cholangiocarcinoma patients harboring FGFR2 fusions. PMID:27216979

  13. Cryo-image Analysis of Tumor Cell Migration, Invasion, and Dispersal in a Mouse Xenograft Model of Human Glioblastoma Multiforme

    PubMed Central

    Qutaish, Mohammed Q.; Sullivant, Kristin E.; Burden-Gulley, Susan M.; Lu, Hong; Roy, Debashish; Wang, Jing; Basilion, James P.; Brady-Kalnay, Susann M.; Wilson, David L.

    2012-01-01

    Purpose The goals of this study were to create cryo-imaging methods to quantify characteristics (size, dispersal, and blood vessel density) of mouse orthotopic models of glioblastoma multiforme (GBM) and to enable studies of tumor biology, targeted imaging agents, and theranostic nanoparticles. Procedures Green fluorescent protein-labeled, human glioma LN-229 cells were implanted into mouse brain. At 20–38 days, cryo-imaging gave whole brain, 4-GB, 3D microscopic images of bright field anatomy, including vasculature, and fluorescent tumor. Image analysis/visualization methods were developed. Results Vessel visualization and segmentation methods successfully enabled analyses. The main tumor mass volume, the number of dispersed clusters, the number of cells/cluster, and the percent dispersed volume all increase with age of the tumor. Histograms of dispersal distance give a mean and median of 63 and 56 μm, respectively, averaged over all brains. Dispersal distance tends to increase with age of the tumors. Dispersal tends to occur along blood vessels. Blood vessel density did not appear to increase in and around the tumor with this cell line. Conclusion Cryo-imaging and software allow, for the first time, 3D, whole brain, microscopic characterization of a tumor from a particular cell line. LN-229 exhibits considerable dispersal along blood vessels, a characteristic of human tumors that limits treatment success. PMID:22125093

  14. Garcinol sensitizes human head and neck carcinoma to cisplatin in a xenograft mouse model despite downregulation of proliferative biomarkers.

    PubMed

    Li, Feng; Shanmugam, Muthu K; Siveen, Kodappully Sivaraman; Wang, Fan; Ong, Tina H; Loo, Ser Yue; Swamy, Mahadeva M M; Mandal, Somnath; Kumar, Alan Prem; Goh, Boon Cher; Kundu, Tapas; Ahn, Kwang Seok; Wang, Ling Zhi; Hui, Kam Man; Sethi, Gautam

    2015-03-10

    Platinum compounds such as cisplatin and carboplatin are frequently used as the first-line chemotherapy for the treatment of the head and neck squamous cell carcinoma (HNSCC). In the present study, we investigated whether garcinol, a polyisoprenylated benzophenone can chemosensitize HNSCC to cisplatin. We found that garcinol inhibited the viability of a panel of diverse HNSCC cell lines, enhanced the apoptotic effect of cisplatin, suppressed constitutive as well as cisplatin-induced NF-κB activation, and downregulated the expression of various oncogenic gene products (cyclin D1, Bcl-2, survivin and VEGF). In vivo study showed that administration of garcinol alone (0.5 mg/kg body weight, i.p. five times/week) significantly suppressed the growth of the tumor, and this effect was further increased by cisplatin. Both the markers of proliferation index (Ki-67) and microvessel density (CD31) were downregulated in tumor tissues by the combination of cisplatin and garcinol. The pharmacokinetic results of garcinol indicated that good systemic exposure was achievable after i.p. administration of garcinol at 0.5 mg/kg and 2 mg/kg with mean peak concentration (Cmax) of 1825.4 and 6635.7 nM in the mouse serum, respectively. Overall, our results suggest that garcinol can indeed potentiate the effects of cisplatin by negative regulation of various inflammatory and proliferative biomarkers. PMID:25762616

  15. Target therapy of multiple myeloma by PTX-NPs and ABCG2 antibody in a mouse xenograft model

    PubMed Central

    Xue, Jun; Zhan, Xi; Shi, Fangfang; Li, Miao; Wu, Songyan; Luo, Shouhua; Zhang, Tianzhu; Zhang, Yu; Ming, Ji; Gu, Ning

    2015-01-01

    Multiple myeloma (MM) remains to be an incurable disease. The purpose of this study was to evaluate the effect of ABCG2 monoclonal antibody (McAb) combined with paclitaxel (PTX) conjugated with Fe3O4 nanoparticles (NPs) on MM progressed from cancer stem cells (CSCs)in non-obese-diabetic/severe-combined-immunodeficiency (NOD/SCID) mouse model. Mice were injected with MM CSCs as marked by CD138−CD34− phenotypes through tail veins. The developed MM mice were examined by micro-computer tomography scanning, ultrasonography and enzyme-linked immunosorbent analysis. These mice were then intravenously treated with different combinations of NPs, PTX, McAb, PTX-NPs and melphalan/prednisone once a week for four weeks. The injected mice developed characteristic MM-associated syndromes, including lytic bone lesions, renal damages and proteinuria. All the treated mice showed decrease in bone lesions, renal damages and anemia but increase in apoptosis compared with the mice treated with NPs only. In particular, the treatment with ABCG2 McAb plus PTX-NPs induced the strongest therapeutic response and had an efficacy even better than that of melphalan/prednisone, a conventional regimen for MM patients. These data suggest that PTX-NPs with ABCG2 McAb can be developed into potential treatment regimens for patients with relapsed/refractory MM. PMID:26314844

  16. Garcinol sensitizes human head and neck carcinoma to cisplatin in a xenograft mouse model despite downregulation of proliferative biomarkers

    PubMed Central

    Li, Feng; Shanmugam, Muthu K.; Siveen, Kodappully Sivaraman; Wang, Fan; Ong, Tina H.; Loo, Ser Yue; Swamy, Mahadeva M.M.; Mandal, Somnath; Kumar, Alan Prem; Goh, Boon Cher; Kundu, Tapas; Ahn, Kwang Seok; Wang, Ling Zhi; Hui, Kam Man; Sethi, Gautam

    2015-01-01

    Platinum compounds such as cisplatin and carboplatin are frequently used as the first-line chemotherapy for the treatment of the head and neck squamous cell carcinoma (HNSCC). In the present study, we investigated whether garcinol, a polyisoprenylated benzophenone can chemosensitize HNSCC to cisplatin. We found that garcinol inhibited the viability of a panel of diverse HNSCC cell lines, enhanced the apoptotic effect of cisplatin, suppressed constitutive as well as cisplatin-induced NF-κB activation, and downregulated the expression of various oncogenic gene products (cyclin D1, Bcl-2, survivin and VEGF). In vivo study showed that administration of garcinol alone (0.5 mg/kg body weight, i.p. five times/week) significantly suppressed the growth of the tumor, and this effect was further increased by cisplatin. Both the markers of proliferation index (Ki-67) and microvessel density (CD31) were downregulated in tumor tissues by the combination of cisplatin and garcinol. The pharmacokinetic results of garcinol indicated that good systemic exposure was achievable after i.p. administration of garcinol at 0.5 mg/kg and 2 mg/kg with mean peak concentration (Cmax) of 1825.4 and 6635.7 nM in the mouse serum, respectively. Overall, our results suggest that garcinol can indeed potentiate the effects of cisplatin by negative regulation of various inflammatory and proliferative biomarkers. PMID:25762616

  17. Anti-tumor activity of fenretinide complexed with human serum albumin in lung cancer xenograft mouse model

    PubMed Central

    Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Tesei, Anna; Pignatta, Sara; Falconi, Mirella

    2014-01-01

    Sufficient knowledge regarding cellular and molecular basis of lung cancer progression and metastasis would help in the development of novel and effective strategies for the treatment of lung cancer. 4HPR is a synthetic retinoid with potential anti-tumor activity but is still limited because of its poor bioavailability. The use of albumin as a complexing agent for a hydrophobic drug is expected to improve the water solubility and consequently their bioavailability.This study investigated the antitumor activity of a novel complex between albumin and 4-HPR in a mouse model of human lung cancer and focuses on role and mechanism of Cav-1 mainly involved in regulating cancer and Acsvl3 mainly connected with tumor growth. Their expressions were assayed by immunohistochemistry and qRT-PCR, to demonstrate the reduction of the tumor growth following the drug treatment. Our results showed a high antitumor activity of 4HPR-HSA by reduction of the volume of tumor mass and the presence of a high level of apoptotic cell by TUNEL assay. The downregulation of Cav-1 and Acsvl3 suggested a reduction of tumor growth. In conclusion, we demonstrated the great potential of 4HPR-HSA in the treatment of lung cancer. More data about the mechanism of drug delivery the 4HPR-HSA are necessary. PMID:25015569

  18. Sunitinib malate (SU-11248) reduces tumour burden and lung metastasis in an intratibial human xenograft osteosarcoma mouse model

    PubMed Central

    Kumar, Ram Mohan Ram; Arlt, Matthias JE; Kuzmanov, Aleksandar; Born, Walter; Fuchs, Bruno

    2015-01-01

    Osteosarcoma is a rare type of cancer that commonly occurs as a primary bone tumour in children and adolescents and is associated with a poor clinical outcome. Despite complex treatment protocols, including chemotherapy combined with surgical resection, the prognosis for patients with osteosarcoma and metastases remains poor and more effective therapies are required. In this study, we evaluated the therapeutic efficacy of sunitinib malate, a wide-spectrum tyrosine kinase inhibitor, in a preclinical mouse model of osteosarcoma. Sunitinib significantly inhibited proliferation, provoked apoptosis and induced G2/M cell cycle arrest in the human osteosarcoma cell lines SaOS-2 and 143B in vitro. Importantly, sunitinib treatment significantly reduced tumour burden, microvessel density and suppressed pulmonary metastasis in a 143B cell-derived intratibial osteosarcoma model in SCID mice. Sunitinib significantly decreased primary tumor tissue proliferation and reduced tumor vasculature. Our study indicates that sunitinib has potential for effective treatment of metastasizing osteosarcoma and provides the framework for future clinical trials with sunitinib alone or in combination with conventional and other novel therapeutics aiming at increased treatment efficacy and improved patient outcome. PMID:26328246

  19. Compatibility of a novel thrombospondin-1 analog with fertility and pregnancy in a xenograft mouse model of endometriosis.

    PubMed

    Nakamura, Diane S; Edwards, Andrew K; Ahn, Soo Hyun; Thomas, Richard; Tayade, Chandrakant

    2015-01-01

    Endometriosis is a gynecological disease defined by the growth of endometrium outside of the uterus. Although endometriosis contributes to 50% of female infertility cases, medical treatments are incompatible with pregnancy. Angiogenesis, the growth of blood vessels from existing vasculature, plays a crucial role in endometriotic lesion growth and survival. Previously, we demonstrated the effectiveness of thrombospondin-1 analog, ABT-898 (Abbott Laboratories) to inhibit endometriotic lesion vascularization in mice. We have now evaluated the trans-generational implications of ABT-898 treatment before and during mouse pregnancy. We hypothesized that ABT-898 would target lesion vasculature without affecting pregnancy, offspring development, or ovarian and uterine vascularity in mice. Endometriosis was induced using human endometrium in β-estradiol-primed BALB/c-Rag-2-/-Il2rγ-/- mice receiving intraperitoneal injections of ABT-898 (25 mg/kg) or 5% dextrose control for 21 days. Ultrasound assessment of lesion vascularization revealed a reduction in blood flow supplying treated lesions. Excised ABT-898 treated lesions stained for CD31+ endothelial cells exhibited a decrease in microvessel density. Following confirmation of estrous cycling, mice were bred and treated with ABT-898 on gestation days 7, 9, 11, 13, 15, 17, and 19. ABT-898 did not affect estrous cycling or pregnancy parameters including litter size across generations and offspring weight gain. Quantification of angiogenic cytokine plasma levels revealed no significant differences between treatment groups. Vimentin staining of the uterus and ovary revealed no observable effects of ABT-898. Similarly, no obvious histological anomalies were observed in the kidney, liver, ovary, or uterus following ABT-898 treatment. These results suggest that ABT-898 effectively inhibit endometriotic lesion vascularization without affecting trans-generational pregnancy outcomes in mice. PMID:25811892

  20. Antitumor activity of (R,R')-4-methoxy-1-naphthylfenoterol in a rat C6 glioma xenograft model in the mouse.

    PubMed

    Bernier, Michel; Paul, Rajib K; Dossou, Katina S S; Wnorowski, Artur; Ramamoorthy, Anuradha; Paris, Arnaud; Moaddel, Ruin; Cloix, Jean-François; Wainer, Irving W

    2013-12-01

    (R,R')-4-methoxy-1-naphthylfenoterol (MNF) inhibits cancer cell proliferation in vitro through cell-type specific modulation of β2-adrenergic receptor and/or cannabinoid receptor function. Here, we report an investigation into antitumor activity of MNF in rat C6 glioma cells. The potent antiproliferative action of MNF in these cells (IC50 of ∼1 nmol/L) was refractory to pharmacological inhibition of β2-adrenergic receptor while a synthetic inverse agonist of cannabinoid receptor 1 significantly blocked MNF activity. The antitumor activity of MNF was then assessed in a C6 glioblastoma xenograft model in mice. Three days after subcutaneous implantation of C6 cells into the lower flank of nude mice, these animals were subjected to i.p. injections of saline or MNF (2 mg/kg) for 19 days and tumor volumes were measured over the course of the experiment. Gene expression analysis, quantitative RT-PCR and immunoblot assays were performed on the tumors after treatment. Significant reduction in mean tumor volumes was observed in mice receiving MNF when compared with the saline-treated group. We identified clusters in expression of genes involved in cellular proliferation, as well as molecular markers for glioblastoma that were significantly downregulated in tumors of MNF-treated mice as compared to saline-injected controls. The efficacy of MNF against C6 glioma cell proliferation in vivo and in vitro was accompanied by marked reduction in the expression of cell cycle regulator proteins. This study is the first demonstration of MNF-dependent chemoprevention of a glioblastoma xenograft model and may offer a potential mechanism for its anticancer action in vivo. PMID:25505565

  1. Combination of Calcitriol and Dietary Soy Exhibits Enhanced Anticancer Activity and Increased Hypercalcemic Toxicity in a Mouse Xenograft Model of Prostate Cancer

    PubMed Central

    Wang, Jennifer Y.; Swami, Srilatha; Krishnan, Aruna V.; Feldman, David

    2012-01-01

    Background The potential role of vitamin D and soy in prostate cancer (PCa) prevention/treatment has gained much attention in recent years. In this study, we evaluated the anticancer activity of calcitriol, the active form of vitamin D, dietary soy, and their combinations in a mouse model of PCa. Methods Athymic male nude mice bearing PC-3 human PCa xenografts received diets containing 10 kcal% or 20 kcal% soy, calcitriol injections, or a combination of dietary soy and calcitriol. Changes in tumor growth, serum levels of 1,25(OH)2D and calcium, and regulation of tumor gene expression were examined. Results The combination treatments resulted in substantially greater inhibition of tumor growth than either agent alone. Soy diets alone caused a modest elevation in serum 1,25(OH)2D, whereas the calcitriol-soy combinations led to substantially elevated serum 1,25(OH)2D, hypercalcemia, and in some cases lethal toxicity. The combinations enhanced calcitriol activity in regulating target gene expression, including greater up-regulation of anti-proliferative (p21, IGFBP-3) and pro-apoptotic (Bax) genes, increased inhibition of anti-apoptotic (Bcl-2) and cell cycle promoting (cyclin D1) genes, and suppression of prostaglandin (PG) synthesis and signaling (COX-2, 15-PGDH, PG receptors). Increases in serum calcium were accompanied by elevated expression of intestinal calcium absorption genes (TRPV6, calbindin-9k). Conclusions Soy increases the bioavailability of endogenous and administered calcitriol, thereby enhancing its anticancer effects and risk of hypercalcemia. Since both agents are easily available as dietary supplements, the increased potential for hypercalcemic toxicity becomes an important factor when considering the combined use of vitamin D and soy in PCa therapy. PMID:22457201

  2. Comparison of 18F-FES, 18F-FDG, and 18F-FMISO PET Imaging Probes for Early Prediction and Monitoring of Response to Endocrine Therapy in a Mouse Xenograft Model of ER-Positive Breast Cancer

    PubMed Central

    Yang, ZhongYi; Zhang, JianPing; Zhang, YongPing; Luo, JianMin; Zhang, YingJian

    2016-01-01

    Background There is an increasing need to characterize biological processes for early prediction and monitoring of response to endocrine therapy in breast cancer using multiple positron emission tomography (PET) imaging probes. However, use of more than two PET tracers in a single clinical trial is quite challenging. In this study we carried out a longitudinal investigation of 18F-FES, 18F-FDG, and 18F-FMISO PET imaging probes for early prediction and monitoring of response to endocrine therapy in a mouse xenograft model of estrogen receptor (ER)-positive breast cancer. Method ER+ human breast cancer ZR-75-1 models were established in female mice that were then randomly assigned to a treatment (fulvestrant, 5.0 mg/week for 21 days) or vehicle group. Micro-PET/CT imaging with 18F-FES, 18F-FDG, and 18F-FMISO was performed on days 0, 3, 14, and 21 after treatment. The uptake value (percentage injected dose per gram, %ID/g) for each probe in tumor (T) tissue and contralateral muscle (M) was measured for quantitative analysis and T/M calculation. Tumor volume was measured to record tumor growth at each time point. Tumor tissues were sampled for immunohistochemical staining of ER expression. Correlations for tumor volume and ERα levels with uptake data for the probe were tested. Results Uptake data for 18F-FES in ZR-75-1 tumor tissues corresponded well with tumor response to endocrine therapy, but not for 18F-FDG and 18F-FMISO, according to longitudinal micro-PET/CT imaging and quantitative correlation analysis. There was a significant positive correlation between 18F-FES uptake and ER levels (%ID/gmax r2 = 0.76, P< 0.05; T/M r2 = 0.82, P<0.05). Notably, 18F-FES uptake on day 3 was significantly correlated with the day 21/baseline tumor volume ratio (%ID/gmax r2 = 0.74, P < 0.05; T/M r2 = 0.78, P < 0.05). Conclusions Comparison of 18F-FES, 18F-FDG, and 18F-FMISO probes revealed that 18F-FES PET/CT molecular imaging can provide a precise early prediction of tumor

  3. Evaluating dynamic contrast-enhanced and photoacoustic CT to assess intra-tumor heterogeneity in xenograft mouse models

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Liu, Bo; Cao, Minsong; Reinecke, Dan; Dzemidzic, Mario; Liang, Yun; Kruger, Robert

    2006-03-01

    Purpose: To evaluate photoacoustic CT spectroscopy (PCT-S) and dynamic contrast-enhanced CT (DCE-CT) ability to measure parameters - oxygen saturation and vascular physiology - associated with the intra-tumor oxygenation status. Material and Methods: Breast (VEGF165 enhance MCF-7) and ovarian (SKOV3x) cancer cells were implanted into the fat pads and flanks of immune deficient mice and allowed to grow to a diameter of 8-15 mm. CT was used to determine physiological parameters by acquiring a sequence of scans over a 10 minute period after an i.v. injection of a radio-opaque contrast agent (Isovue). These time-dependent contrast-enhanced curves were fit to a two-compartmental model determining tumor perfusion, fractional plasma volume, permeability-surface area produce, and fractional interstitial volume on a voxel-by-voxel basis. After which, the tumors were imaged using photoacoustic CT (Optosonics, Inc., Indianapolis, IN 46202). The near infrared spectra (700-910 nm) within the vasculature was fit to linear combination of measured oxy- and deoxy-hemoglobin blood samples to obtain oxygen saturation levels (SaO II). Results: The PCT-S scanner was first calibrated using different samples of oxygenated blood, from which a statistical error ranging from 2.5-6.5% was measured and a plot of the hemoglobin dissociation curve was consistent with empirical formula. In vivo determination of tumor vasculature SaO II levels were measurably tracked, and spatially correlated to the periphery of the tumor. Tumor depend variations in SaO II - 0.32 (ovarian) and 0.60 (breast) - and in vascular physiology - perfusion, 1.03 and 0.063 mL/min/mL, and fractional plasma volume, 0.20 and 0.07 - were observed. Conclusion: Combined, PCT-S and CED-CT has the potential to measure intra-tumor levels of tumor oxygen saturation and vascular physiology, key parameters associated with hypoxia.

  4. Improved Treatment of MT-3 Breast Cancer and Brain Metastases in a Mouse Xenograft by LRP-Targeted Oxaliplatin Liposomes.

    PubMed

    Orthmann, Andrea; Peiker, Lisa; Fichtner, Iduna; Hoffmann, Annika; Hilger, Ralf Axel; Zeisig, Reiner

    2016-01-01

    The anti-cancer drug oxaliplatin (OxP) has rarely been used to treat breast carcinoma, as it cannot cross the BBB to treat the frequently subsequent brain metastases. Here, we encapsulated OxP in liposomes prepared to reduce side effects and to simultaneously treat primary tumor and brain metastasis. The angiopep LRP-receptor ligand was bound to the vesicular surface for targeting. Targeted and non-targeted OxP liposomes were tested in vitro (binding, uptake, and transcytosis) and in vivo. Liposomes contained 0.65 mg OxP/mL, their mean diameter was 165 nm, and they released 50% of OxP within 8 days at 4 degrees C and within 22 h at 36 degrees C. MDCK cells were used for uptake and transcytosis quantification. Compared to non-targeted liposomes, targeted liposomes showed 12-fold greater uptake, and 2.25-fold higher transcytosis. In vivo efficacy was tested using human MT-3 breast cancer cells transplanted subcutaneously and intracerebrally into female nude mice, and tumor growth inhibition was measured. OxP was injected (6 mg OxP/kg) four times. The best results were obtained with targeted liposomes (T/C: 21% for subcutaneous and 50% for intracerebral). OxP liposomes with a fluid membrane all inhibited MT-3 tumors significantly better than free OxP, with no significant difference between targeted and non-targeted liposomes. The therapeutic effect was accompanied with strong leukopenia and mild thrombocytopenia with all formulations. The newly developed OxP liposomes significantly improved the treatment of subcutaneously and intracerebrally growing breast cancer, but the targeted angiopep-equipped liposomes showed no superior effect in vivo. PMID:27301172

  5. Anti-CCR4 monoclonal antibody enhances antitumor immunity by modulating tumor-infiltrating Tregs in an ovarian cancer xenograft humanized mouse model

    PubMed Central

    Chang, De-Kuan; Peterson, Eric; Sun, Jiusong; Goudie, Calum; Drapkin, Ronny I.; Liu, Joyce F.; Matulonis, Ursula; Zhu, Quan; Marasco, Wayne A.

    2016-01-01

    ABSTRACT Recent studies have demonstrated that regulatory T cells (Tregs) are recruited to tumor sites where they can suppress antitumor immunity. The chemokine receptor CCR4 is expressed at high levels on functional CD4+CD25+FoxP3+ Tregs and production of the CCR4 ligand CCL22 by tumor cells and tumor-associated macrophages is associated with Treg recruitment to the tumor site. Here, we tested IgG1 and IgG4 isotypes of human anti-CCR4 mAb2-3 for their in vitro activity and in vivo capacity in a NSG mouse model bearing CCL22-secreting ovarian cancer (OvCA) xenograft to modulate Tregs and restore antitumor activity. Both mAb2-3 isotypes blocked in vitro chemoattraction of Tregs to CCL22-secreting OvCA cells. However, they differed in their in vivo mode of action with IgG1 causing Treg depletion and IgG4 blocking migration to the tumors. Primary T cells that were primed with OvCA-pulsed dendritic cells (DCs) demonstrated INFγ secretion that could be enhanced through Treg depletion by mAb2-3. Humanized mice reconstructed with allogeneic tumor-primed T cells (TP-T) were used to evaluate the restoration of OvCA immunity by depletion or blockade of Tregs with mAb2-3. We observed that IgG1 was more potent than IgG4 in inhibiting tumor growth. Mechanism studies demonstrated that mAb2-3 treatment lead to inhibition of IL-2 binding to its receptor. Further studies showed that mAb2-3 induced CD25 shedding (sCD25) from Tregs which lead to a decrease in IL-2-dependent survival. Together, the results demonstrate that mAb2-3 is an agonist antibody that can restore anti-OvCA immunity through modulation of Treg activity. PMID:27141347

  6. Correlation between radiosensitivity, percentage hypoxic cells and pO2 measurements in one rodent and two human tumor xenografts.

    PubMed

    Thomas, C D; Chavaudra, N; Martin, L; Guichard, M

    1994-07-01

    Computerized pO2 histography has been used to measure the intratumor pO2 in patients for the past few years, and there is now evidence that these tumors contain hypoxic cells. One of the major questions that remains to be answered is the relevance of such data to radiosensitivity. The present study looks for a correlation between intratumor pO2, the percentage of hypoxic cells in the tumor and the radiosensitization induced by carbogen and/or the oxygen carrier, perflubron emulsion. Two human tumor xenografts (HRT18, Na11+) and one rodent tumor (EMT6) were used. The radiosensitivity (clonogenic assay) and the oxygen tension (computerized pO2 histography) were measured. All experiments were performed under similar conditions. Carbogen increased tumor radiosensitivity; sensitization was greatest when 4 ml/kg perflubron emulsion was used in conjunction with carbogen. The pO2 distribution was shifted to higher pO2 values in the tumors whatever the treatment; the shift was greater for perflubron emulsion plus carbogen. The low pO2 values (< 0.4 kPa) were lost for the HRT18 cells. A correlation (EMT6, HRT18) or a link (Na11+) between the radiosensitization and the oxygen tension measurements was found for values below 1.07 or 1.33 kPa. A trend between the percentage of hypoxic cells and pO2 measurements was found taking into account pO2 measurements comprised between 0.27 and 0.67 kPa. PMID:8016297

  7. Alkylator-Induced and Patient-Derived Xenograft Mouse Models of Therapy-Related Myeloid Neoplasms Model Clinical Disease and Suggest the Presence of Multiple Cell Subpopulations with Leukemia Stem Cell Activity

    PubMed Central

    Johnson, Carl; Gratzinger, Dita; Majeti, Ravindra

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous group of aggressive bone marrow cancers arising from transformed hematopoietic stem and progenitor cells (HSPC). Therapy-related AML and MDS (t-AML/MDS) comprise a subset of AML cases occurring after exposure to alkylating chemotherapy and/or radiation and are associated with a very poor prognosis. Less is known about the pathogenesis and disease-initiating/leukemia stem cell (LSC) subpopulations of t-AML/MDS compared to their de novo counterparts. Here, we report the development of mouse models of t-AML/MDS. First, we modeled alkylator-induced t-AML/MDS by exposing wild type adult mice to N-ethyl-N-nitrosurea (ENU), resulting in several models of AML and MDS that have clinical and pathologic characteristics consistent with human t-AML/MDS including cytopenia, myelodysplasia, and shortened overall survival. These models were limited by their inability to transplant clinically aggressive disease. Second, we established three patient-derived xenograft models of human t-AML. These models led to rapidly fatal disease in recipient immunodeficient xenografted mice. LSC activity was identified in multiple HSPC subpopulations suggesting there is no canonical LSC immunophenotype in human t-AML. Overall, we report several new t-AML/MDS mouse models that could potentially be used to further define disease pathogenesis and test novel therapeutics. PMID:27428079

  8. Alkylator-Induced and Patient-Derived Xenograft Mouse Models of Therapy-Related Myeloid Neoplasms Model Clinical Disease and Suggest the Presence of Multiple Cell Subpopulations with Leukemia Stem Cell Activity.

    PubMed

    Jonas, Brian A; Johnson, Carl; Gratzinger, Dita; Majeti, Ravindra

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous group of aggressive bone marrow cancers arising from transformed hematopoietic stem and progenitor cells (HSPC). Therapy-related AML and MDS (t-AML/MDS) comprise a subset of AML cases occurring after exposure to alkylating chemotherapy and/or radiation and are associated with a very poor prognosis. Less is known about the pathogenesis and disease-initiating/leukemia stem cell (LSC) subpopulations of t-AML/MDS compared to their de novo counterparts. Here, we report the development of mouse models of t-AML/MDS. First, we modeled alkylator-induced t-AML/MDS by exposing wild type adult mice to N-ethyl-N-nitrosurea (ENU), resulting in several models of AML and MDS that have clinical and pathologic characteristics consistent with human t-AML/MDS including cytopenia, myelodysplasia, and shortened overall survival. These models were limited by their inability to transplant clinically aggressive disease. Second, we established three patient-derived xenograft models of human t-AML. These models led to rapidly fatal disease in recipient immunodeficient xenografted mice. LSC activity was identified in multiple HSPC subpopulations suggesting there is no canonical LSC immunophenotype in human t-AML. Overall, we report several new t-AML/MDS mouse models that could potentially be used to further define disease pathogenesis and test novel therapeutics. PMID:27428079

  9. Differentiation of Varicella-Zoster Virus ORF47 Protein Kinase and IE62 Protein Binding Domains and Their Contributions to Replication in Human Skin Xenografts in the SCID-hu Mouse

    PubMed Central

    Besser, Jaya; Sommer, Marvin H.; Zerboni, Leigh; Bagowski, Christoph P.; Ito, Hideki; Moffat, Jennifer; Ku, Chia-Chi; Arvin, Ann M.

    2003-01-01

    To investigate the role of the ORF47 protein kinase of varicella-zoster virus (VZV), we constructed VZV recombinants with targeted mutations in conserved motifs of ORF47 and a truncated ORF47 and characterized these mutants for replication, phosphorylation, and protein-protein interactions in vitro and for infectivity in human skin xenografts in the SCID-hu mouse model in vivo. Previous experiments showed that ROka47S, a null mutant that makes no ORF47 protein, did not replicate in skin in vivo (J. F. Moffat, L. Zerboni, M. H. Sommer, T. C. Heineman, J. I. Cohen, H. Kaneshima, and A. M. Arvin, Proc. Natl. Acad. Sci. USA 95:11969-11974, 1998). The construction of VZV recombinants with targeted ORF47 mutations made it possible to assess the effects on VZV infection of human skin xenografts of selectively abolishing ORF47 protein kinase activity. ORF47 mutations that resulted in a C-terminal truncation or disrupted the DYS kinase motif eliminated ORF47 kinase activity and were associated with extensive nuclear retention of ORF47 and IE62 proteins in vitro. Disrupting ORF47 kinase function also resulted in a marked decrease in VZV replication and cutaneous lesion formation in skin xenografts in vivo. However, infectivity in vivo was not blocked completely as long as the capacity of ORF47 protein to bind IE62 protein was preserved, a function that we identified and mapped to the N-terminal domain of ORF47 protein. These experiments indicate that ORF47 kinase activity is of critical importance for VZV infection and cell-cell spread in human skin in vivo but suggest that it is the formation of complexes between ORF47 and IE62 proteins, both VZV tegument components, that constitutes the essential contribution of ORF47 protein to VZV replication in vivo. PMID:12719588

  10. Antitumor Activity of TAK-285, an Investigational, Non-Pgp Substrate HER2/EGFR Kinase Inhibitor, in Cultured Tumor Cells, Mouse and Rat Xenograft Tumors, and in an HER2-Positive Brain Metastasis Model.

    PubMed

    Nakayama, Akiko; Takagi, Shinji; Yusa, Tadashi; Yaguchi, Masahiro; Hayashi, Akira; Tamura, Toshiya; Kawakita, Youichi; Ishikawa, Tomoyasu; Ohta, Yoshikazu

    2013-01-01

    Breast cancer therapy has improved following the development of drugs with specific molecular targets, exemplified by inhibitors of human epidermal growth factor receptor-2 (HER2) or epidermal growth factor receptor (EGFR) such as trastuzumab and lapatinib. However, these drugs have little effect on brain metastasis due to the combined effects of poor penetration of the blood-brain barrier and their removal from the central nervous system (CNS) by the p-glycoprotein (Pgp) drug efflux pump. We investigated the effects of TAK-285, a novel, investigational, dual EGFR/HER2 inhibitor that has been shown to penetrate the CNS and has comparable inhibitory efficacy to lapatinib which is a known Pgp substrate. Tested against a panel of 96 kinases, TAK-285 showed specificity for inhibition of HER family kinases. Unlike lapatinib, TAK-285 is not a substrate for Pgp efflux. In mouse and rat xenograft tumor models, TAK-285 showed antitumor activity against cancers that expressed HER2 or EGFR. TAK-285 was as effective as lapatinib in antitumor activity in a mouse subcutaneous BT-474 breast cancer xenograft model. TAK-285 was examined in a model of breast cancer brain metastasis using direct intracranial injection of BT-474-derived luciferase-expressing cells and showed greater inhibition of brain tumor growth compared to animals treated with lapatinib. Our studies suggest that investigational drugs such as TAK-285 that have strong antitumor activity and are not Pgp substrates may be useful in the development of agents with the potential to treat brain metastases. PMID:23983820

  11. Targeting Cdc42 with the small molecule drug AZA197 suppresses primary colon cancer growth and prolongs survival in a preclinical mouse xenograft model by downregulation of PAK1 activity

    PubMed Central

    2013-01-01

    Background Rho GTPases play important roles in cytoskeleton organization, cell cycle progression and are key regulators of tumor progression. Strategies to modulate increased Rho GTPase activities during cancer progression could have therapeutic potential. Methods We report here the characterization of a Cdc42-selective small-molecule inhibitor AZA197 for the treatment of colon cancer that was developed based on structural information known from previously developed compounds affecting Rho GTPase activation. We investigated the effects of AZA197 treatment on RhoA, Rac1 and Cdc42 activities and associated molecular mechanisms in colon cancer cells in vitro. Therapeutic effects of AZA197 were examined in vivo using a xenograft mouse model of SW620 human colon cancer cells. After treatment, tumors were excised and processed for Ki-67 staining, TUNEL assays and Western blotting to evaluate proliferative and apoptotic effects induced by AZA197. Results In SW620 and HT-29 human colon cancer cells, AZA197 demonstrated selectivity for Cdc42 without inhibition of Rac1 or RhoA GTPases from the same family. AZA197 suppressed colon cancer cell proliferation, cell migration and invasion and increased apoptosis associated with down-regulation of the PAK1 and ERK signaling pathways in vitro. Furthermore, systemic AZA197 treatment reduced tumor growth in vivo and significantly increased mouse survival in SW620 tumor xenografts. Ki-67 staining and tissue TUNEL assays showed that both inhibition of cell proliferation and induction of apoptosis associated with reduced PAK/ERK activation contributed to the AZA197-induced therapeutic effects in vivo. Conclusions These data indicate the therapeutic potential of the small-molecule inhibitor AZA197 based on targeting Cdc42 GTPase activity to modulate colorectal cancer growth. PMID:24279335

  12. Artesunate suppresses tumor growth and induces apoptosis through the modulation of multiple oncogenic cascades in a chronic myeloid leukemia xenograft mouse model.

    PubMed

    Kim, Chulwon; Lee, Jong Hyun; Kim, Sung-Hoon; Sethi, Gautam; Ahn, Kwang Seok

    2015-02-28

    Artesunate (ART), a semi-synthetic derivative of artemisinin, is one of the most commonly used anti-malarial drugs. Also, ART possesses anticancer potential albeit through incompletely understood molecular mechanism(s). Here, the effect of ART on various protein kinases, associated gene products, cellular response, and apoptosis was investigated. The in vivo effect of ART on the growth of human CML xenograft tumors in athymic nu/nu mice was also examined. In our preliminary experiments, we first observed that phosphorylation of p38, ERK, CREB, Chk-2, STAT5, and RSK proteins were suppressed upon ART exposure. Interestingly, ART induced the expression of SOCS-1 protein and depletion of SOCS-1 using siRNA abrogated the STAT5 inhibitory effect of the drug. Also various dephosphorylations caused by ART led to the suppression of various survival gene products and induced apoptosis through caspase-3 activation. Moreover, ART also substantially potentiated the apoptosis induced by chemotherapeutic agents. Finally, when administered intraperitoneally, ART inhibited p38, ERK, STAT5, and CREB activation in tumor tissues and the growth of human CML xenograft tumors in mice without exhibiting any significant adverse effects. Overall, our results suggest that ART exerts its anti-proliferative and pro-apoptotic effects through suppression of multiple signaling cascades in CML both in vitro and in vivo. PMID:25738364

  13. A HLA-A2-restricted CTL epitope induces anti-tumor effects against human lung cancer in mouse xenograft model.

    PubMed

    Sher, Yuh-Pyng; Lin, Su-I; Chen, I-Hua; Liu, Hsin-Yu; Lin, Chen-Yuan; Chiang, I-Ping; Roffler, Steve; Chen, Hsin-Wei; Liu, Shih-Jen

    2016-01-01

    Cancer immunotherapy is attractive for antigen-specific T cell-mediated anti-tumor therapy, especially in induction of cytotoxic T lymphocytes. In this report, we evaluated human CTL epitope-induced anti-tumor effects in human lung cancer xenograft models. The tumor associated antigen L6 (TAL6) is highly expressed in human lung cancer cell lines and tumor specimens as compared to normal lung tissues. TAL6 derived peptides strongly inhibited tumor growth, cancer metastasis and prolonged survival time in HLA-A2 transgenic mice immunized with a formulation of T-helper (Th) peptide, synthetic CpG ODN, and adjuvant Montanide ISA-51 (ISA-51). Adoptive transfer of peptide-induced CTL cells from HLA-A2 transgenic mice into human tumor xenograft SCID mice significantly inhibited tumor growth. Furthermore, combination of CTL-peptide immunotherapy and gemcitabine additively improved the therapeutic effects. This pre-clinical evaluation model provides a useful platform to develop efficient immunotherapeutic drugs to treat lung cancer and demonstrates a promising strategy with benefit of antitumor immune responses worthy of further development in clinical trials. PMID:26621839

  14. Metformin impairs Rho GTPase signaling to induce apoptosis in neuroblastoma cells and inhibits growth of tumors in the xenograft mouse model of neuroblastoma

    PubMed Central

    Kumar, Ambrish; Al-Sammarraie, Nadia; DiPette, Donald J.; Singh, Ugra S.

    2014-01-01

    Metformin has been shown to inhibit tumor growth in xenograft rodent models of adult cancers, and various human clinical trials are in progress. However, the precise molecular mechanisms of metformin action are largely unknown. In the present study we examined the anti-tumor activity of metformin against neuroblastoma, and determined the underlying signaling mechanisms. Using human neuroblastoma xenograft mice, we demonstrated that oral administration of metformin (100 and 250 mg/kg body weight) significantly inhibited the growth of tumors. The interference of metformin in spheroid formation further confirmed the anti-tumor activity of metformin. In tumors, the activation of Rac1 (GTP-Rac1) and Cdc42 (GTP-Cdc42) was increased while RhoA activation (GTP-RhoA) was decreased by metformin. It also induced phosphorylation of JNK and inhibited the phosphorylation of ERK1/2 without affecting p38 MAP Kinase. Infection of cells by adenoviruses expressing dominant negative Rac1 (Rac1-N17), Cdc42 (Cdc42-N17) or constitutively active RhoA (RhoA-V14), or incubation of cells with pharmacological inhibitors of Rac1 (NSC23766) or Cdc42 (ML141) significantly protected neuroblastoma cells from metformin-induced apoptosis. Additionally, inhibition of JNK activity along with Rac1 or Cdc42 attenuated cytotoxic effects of metformin. These studies demonstrated that metformin impairs Rho GTPases signaling to induce apoptosis via JNK pathway. PMID:25365944

  15. Artesunate suppresses tumor growth and induces apoptosis through the modulation of multiple oncogenic cascades in a chronic myeloid leukemia xenograft mouse model

    PubMed Central

    Kim, Chulwon; Lee, Jong Hyun; Kim, Sung-Hoon; Sethi, Gautam; Ahn, Kwang Seok

    2015-01-01

    Artesunate (ART), a semi-synthetic derivative of artemisinin, is one of the most commonly used anti-malarial drugs. Also, ART possesses anticancer potential albeit through incompletely understood molecular mechanism(s). Here, the effect of ART on various protein kinases, associated gene products, cellular response, and apoptosis was investigated. The in vivo effect of ART on the growth of human CML xenograft tumors in athymic nu/nu mice was also examined. In our preliminary experiments, we first observed that phosphorylation of p38, ERK, CREB, Chk-2, STAT5, and RSK proteins were suppressed upon ART exposure. Interestingly, ART induced the expression of SOCS-1 protein and depletion of SOCS-1 using siRNA abrogated the STAT5 inhibitory effect of the drug. Also various dephosphorylations caused by ART led to the suppression of various survival gene products and induced apoptosis through caspase-3 activation. Moreover, ART also substantially potentiated the apoptosis induced by chemotherapeutic agents. Finally, when administered intraperitoneally, ART inhibited p38, ERK, STAT5, and CREB activation in tumor tissues and the growth of human CML xenograft tumors in mice without exhibiting any significant adverse effects. Overall, our results suggest that ART exerts its anti-proliferative and pro-apoptotic effects through suppression of multiple signaling cascades in CML both in vitro and in vivo. PMID:25738364

  16. Genetically designing a more potent anti-pancreatic cancer agent by simultaneously cotargeting human IL-13 and EGF receptors in a mouse xenograft model

    PubMed Central

    Vallera, Daniel A; Stish, Brad J.; Shu, Yanqun; Chen, Hua; Saluja, Ashok; Buchsbaum, Donald J.; Vickers, Selwyn M.

    2009-01-01

    Objective Investigators are currently interested in the EGFR and IL-13R as potential targets in the development of new biologicals for pancreatic cancer. Attempts to develop successful agents have met with difficulty. Our novel approach was to simultaneously target these receptors with EGF and IL-13 cloned on the same bispecific single chain molecule with truncated diphtheria toxin (DT390) to determine if co-targeting with DTEGF13 had any advantages. Design Proliferation experiments were performed to measure the potency and selectivity of bispecific DTEGF13 and its monospecific counterparts against pancreatic cancer cell lines Panc-1 and MiaPaCa-2 in vitro. DTEGF13 was then administered intratumorally to nude mice with MiaPaCa-2 flank tumors to measure efficacy and toxicity (weight loss). Results In vitro, bispecific DTEGF13 was 2,800-fold more toxic than monospecific DTEGF or DTIL13 against Panc-1. A similar enhancement was observed in vitro when MiaPaCa-2 pancreatic cancer cells or H2981-T3 lung adenocarcinoma cells were studied. DTEGF13 activity was blockable with recombinant EGF13. DTEGF13 was potent (IC50 = 0.00017 nM) against MiaPaCa-2, receptor specific, and significantly inhibited MiaPaCa-2 tumor in nude mice (p<0.008). Conclusions In vitro studies show that the presence of both ligands on the same bispecific molecule is responsible for the superior activity of DTEGF13. Intratumoral administration showed that DTEGF13 was highly effective in checking aggressive tumor progression in mice. Lack of weight loss in these mice indicated that the drug was tolerated and a therapeutic index exists in an “on target” model in which DTEGF13 is cross-reactive with native mouse receptors. PMID:18222985

  17. Farnesol inhibits tumor growth and enhances the anticancer effects of bortezomib in multiple myeloma xenograft mouse model through the modulation of STAT3 signaling pathway.

    PubMed

    Lee, Jong Hyun; Kim, Chulwon; Kim, Sung-Hoon; Sethi, Gautam; Ahn, Kwang Seok

    2015-05-01

    Aberrant activation of signal transducer and activator of transcription 3 (STAT3) is frequently observed in multiple myeloma (MM) cancer and can upregulate the expression of several genes involved in proliferation, survival, metastasis, and angiogenesis. The effect of farnesol (FOH) on STAT3 activation, associated protein kinases, its regulated gene products, cellular proliferation, and apoptosis was examined. The in vivo effect of FOH on the growth of human MM xenograft tumors alone and in combination with bortezomib (Bor) in athymic nu/nu female mice was also investigated. We found that FOH suppressed both constitutive and inducible STAT3 activation at Tyr705 in MM cells. The suppression of STAT3 was mediated through the inhibition of activation of upstream JAK1, JAK2, and c-Src kinases. Also, treatment with the protein tyrosine phosphatase (PTP) inhibitor, pervanadate treatment reversed the FOH-induced down-regulation of STAT3, possibly indicating the involvement of a PTP. Indeed, we found that FOH treatment induces the increased expression of SHP-2 protein and knockdown of the SHP-2 gene by small interfering RNA suppressed the ability of FOH to inhibit STAT3 activation. FOH inhibited proliferation and significantly potentiated the apoptotic effects of bortezomib (Bor) in U266 cells. When administered intraperitoneally, FOH enhanced Bor-induced growth suppression of human MM xenograft tumors in athymic nu/nu female mice. Our results suggest that FOH is a novel blocker of STAT3 signaling pathway and exerts both anti-proliferative and apoptotic activities in MM in vitro and in vivo. PMID:25697480

  18. Anti-CD45 Pretargeted Radioimmunotherapy using Bismuth-213: High Rates of Complete Remission and Long-Term Survival in a Mouse Myeloid Leukemia Xenograft Model

    SciTech Connect

    Pagel, John M; Kenoyer, Aimee L; Back, Tom; Hamlin, Donald K; Wilbur, D Scott; Fisher, Darrell R; Park, Steven I; Frayo, Shani; Axtman, Amanda; Orgun, Nural; Orozoco, Johnnie; Shenoi, Jaideep; Lin, Yukang; Gopal, Ajay K; Green, Damian J; Appelbaum, Frederick R; Press, Oliver W

    2011-07-21

    Pretargeted radioimmunotherapy (PRIT) using an anti-CD45 antibody (Ab)-streptavidin (SA) conjugate and DOTA-biotin labeled with β-emitting radionuclides has been explored as a strategy to decrease relapse and toxicity. α-emitting radionuclides exhibit high cytotoxicity coupled with a short path-length, potentially increasing the therapeutic index and making them an attractive alternative to β-emitting radionuclides for patients with Acute Myeloid Leukemia (AML). Accordingly, we have used 213Bi in mice with human leukemia xenografts. Results demonstrated excellent localization of 213Bi-DOTA-biotin to tumors with minimal uptake into normal organs. After 10 minutes, 4.5 ± 1.1% of the injected dose of 213Bi was delivered per gram of tumor. α imaging demonstrated uniform radionuclide distribution within tumor tissue 45 minutes after 213Bi-DOTA-biotin injection. Radiation absorbed doses were similar to those observed using a β-emitting radionuclide (90Y) in the same model. We conducted therapy experiments in a xenograft model using a single-dose of 213Bi-DOTA-biotin given 24 hours after anti-CD45 Ab-SA conjugate. Among mice treated with anti-CD45 Ab-SA conjugate followed by 800 μCi of 213Bi- or 90Y-DOTA-biotin, 80% and 20%, respectively, survived leukemia-free for >100 days with minimal toxicity. These data suggest that anti-CD45 PRIT using an α-emitting radionuclide may be highly effective and minimally toxic for treatment of AML.

  19. Lentivirus-Mediated RNAi Silencing of VEGF Inhibits Angiogenesis and Growth of Renal Cell Carcinoma in a Nude Mouse Xenograft Model.

    PubMed

    Lin, Jiahua; Pang, Hailin; Guo, Xiaojian; Ding, Yunfei; Geng, Jiaxu; Zhang, Jingmeng; Min, Jie

    2015-12-01

    To construct and screen short hairpin RNA (shRNA) targeting vascular endothelial growth factor (VEGF), and investigate potential values of VEGF-shRNA on angiogenesis and growth in renal cell carcinoma (RCC) in a xenograft tumor model. VEGF-shRNA fragment was designed to connect plasmid vector, and RCC cells were transfected with shRNA. Real-time fluorescent quantitative polymerase chain reaction (RTFQ-PCR) was used to detect interference efficiency of VEGF gene. The xenograft tumor model was established in nude mice, and mice were randomly divided into blank control (BC) group, negative control (NC) group, and experimental group. RNA interference (RNAi) effect was detected by immunohistochemistry, and tumor volume changes were observed. Tumor-bearing nude mice model was established and mice were randomly divided into BC group, NC group, and treatment group. The tumor volume changes and tumor inhibition rate were recorded, and angiogenesis status was observed. The apoptosis of tumor cells and genetic toxicity of VEGF-shRNA were detected. VEGF-shRNA can inhibit VEGF mRNA expression with an inhibition ratio of 72.3%. Compared with NC group and BC group, experimental group presents smaller tumor volume, weight, and poor growth (all p < 0.05). Positive VEGF rate in experimental group is significantly lower than that in NC group and BC group (all p < 0.05). Significantly lower tumor volume, less microvessel density (MVD) value, and higher apoptotic index (AI) are found in treatment group compared with BC group and NC group (all p < 0.05). There was no significant difference in AI between treatment group and BC group regarding adjacent normal tissues (p > 0.05). VEGF plays an important role in the occurrence and development of RCC, chemical synthesis of VEGF small interfering RNA (siRNA) can specifically inhibit VEGF expression, angiogenesis and growth in RCC, and can promote cell apoptosis without genetic toxicity to normal tissues. PMID:26465082

  20. A Preformed Scleral Search Coil for Measuring Mouse Eye Movements

    PubMed Central

    Kaneko, Chris R. S.; Rosenfeld, Sam; Fontaine, Ethan; Markov, Alex; Phillips, James O.; Yarno, John

    2010-01-01

    Mice are excellent subjects for use of genetic-manipulation techniques to study the basis of pathological and normal physiology and behavior; however behavioral analyses of associated phenotypes is often limited. To improve the accuracy and specificity of repeated measurements of vestibular function, we developed a miniaturized, contact-lens scleral search coil to measure mouse eye movements. We describe the physical attributes and document its functionality by measuring vestibulo-ocular responses in normal mice. This coil should greatly improve the sensitivity and documentation of vestibular dysfunction in mouse models of pathology and dysfunction while allowing screening of significant numbers of subjects. PMID:20817027

  1. α-Mangostin: A Dietary Antioxidant Derived from the Pericarp of Garcinia mangostana L. Inhibits Pancreatic Tumor Growth in Xenograft Mouse Model

    PubMed Central

    Mustafa, Ala; Fischer, Joseph W.; Singh, Ashok; Zhong, Weixiong; Shekhani, Mohammed Ozair; Meske, Louise; Havighurst, Thomas; Kim, KyungMann; Verma, Ajit Kumar

    2014-01-01

    Abstract Aims: Pancreatic cancer (PC) is the most aggressive malignant disease, ranking as the fourth most leading cause of cancer-related death among men and women in the United States. In this study, we provide evidence of chemotherapeutic effects of α-mangostin, a dietary antioxidant isolated from the pericarp of Garcinia mangostana L. against human PC. Results: The chemotherapeutic effect of α-mangostin was determined using four human PC cells (PL-45, PANC1, BxPC3, and ASPC1). α-Mangostin resulted in a significant inhibition of PC cells viability without having any effects on normal human pancreatic duct epithelial cells. α-Mangostin showed a dose-dependent increase of apoptosis in PC cells. Also, α-mangostin inhibited the expression levels of pNF-κB/p65Ser552, pStat3Ser727, and pStat3Tyr705. α-Mangostin inhibited DNA binding activity of nuclear factor kappa B (NF-κB) and signal transducer and activator 3 (Stat3). α-Mangostin inhibited the expression levels of matrix metallopeptidase 9 (MMP9), cyclin D1, and gp130; however, increased expression of tissue inhibitor of metalloproteinase 1 (TIMP1) was observed in PC cells. In addition, i.p. administration of α-mangostin (6 mg/kg body weight, 5 days a week) resulted in a significant inhibition of both primary (PL-45) and secondary (ASPC1) human PC cell-derived orthotopic and ectopic xenograft tumors in athymic nude mice. No sign of toxicity was observed in any of the mice administered with α-mangostin. α-Mangostin treatment inhibited the biomarkers of cell proliferation (Ki-67 and proliferating cell nuclear antigen [PCNA]) in the xenograft tumor tissues. Innovation: We present, for the first time, that dietary antioxidant α-mangostin inhibits the growth of PC cells in vitro and in vivo. Conclusion: These results suggest the potential therapeutic efficacy of α-mangostin against human PC. Antioxid. Redox Signal. 21, 682–699. PMID:24295217

  2. Improvement of biodistribution and therapeutic index via increase of polyethylene glycol on drug-carrying liposomes in an HT-29/luc xenografted mouse model.

    PubMed

    Chow, Tong-Hsien; Lin, Yi-Yu; Hwang, Jeng-Jong; Wang, Hsin-Ell; Tseng, Yun-Long; Wang, Shyh-Jen; Liu, Ren-Shyan; Lin, Wuu-Jyh; Yang, Chung-Shi; Ting, Gann

    2009-06-01

    Liposomes modified with a high concentration of polyethylene glycol (PEG) could significantly prolong the retention time of the carried drug in the circulation, thus improving the drug accumulation in the tumor. In this study, 6 mol% rather than 0.9 mol% PEGylated liposomes (100 nm in diameter) encapsulated with indium-111 were used in a human colorectal carcinoma HT-29/luc tumor-bearing mouse model for comparing the PEGylation effect. Pharmacokinetics, biodistribution, passive-targeted assay, bioluminescence imaging (BLI) and tumor growth measurements were used for the spatial and temporal distribution, tumor localization and therapeutic evaluation of the drug. Pharmacokinetic studies indicated that the terminal half-life (T((1/2))lambdaz) and C(max) of 6 mol% PEG (111)In liposomes were similar to those of 0.9 mol% PEG (111)In liposomes. In the blood, the total body clearance (Cl) of 6 mol% PEG (111)In liposomes was about 1.7-fold lower and the area under the curve (AUC) was 1.7-fold higher than those of 0.9 mol% PEG (111)In liposomes. These results showed that the long-term circulation and localization of 6 mol% PEGylated liposomes was more appropriate for use in the tumor-bearing animal model. In addition, the biodistribution of 6 mol% PEG (111)In liposomes showed significantly lower uptake in the liver, spleen, kidneys, small intestine and bone marrow than those of 0.9 mol% PEG (111)In liposomes. The clearance rate of both drugs from the blood decreased with time, with the maximum at 24 h post intravenous (i.v.) injection. Prominent tumor uptake and the highest tumor/muscle ratios were found at 48 h post injection. Both AUC and relative ratio of the AUCs (RR-AUC) also showed that 6 mol% PEGylated liposomes significantly reduced the uptake of drugs in the reticuloendothelial system (RES), yet enhanced the uptake in the tumor. Gamma scintigraphy at 48 h post injection also demonstrated more distinct tumor uptake with 6 mol% PEG (111)In liposomes as compared to

  3. Kinematic modeling and its implication in longitudinal chemotherapy study of tumor physiology: ovarian xenograft mouse model and contrast-enhanced dynamic CT (Honorable Mention Poster Award)

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Liang, Yun; Hutchins, Gary D.

    2004-04-01

    The purpose of this study is to demonstrate that dynamic CT provides the necessary sensitivity to quantify tumor physiology and differences in chemotherapeutic response. A compartmental mouse model utilizing measured contrast-enhanced dynamic CT scans is used to simulate systematic and statistical errors associated with tumor physiology: perfusion, permeability (PS), fractional plasma volume (fp), and fractional interstitial volume. The solute utilized is a small molecular weight radio-opaque contrast agent (isovue). For such an intravascular-interstitial medium, the kinematics simplifies to a two compartmental diffusive dominated set of coupled differential equations. Each combination of physiological parameters is repeatedly simulated fifteen times from which statistical errors calculated. The fractional change relative to the true value (systematic error) and standard deviation (statistical error) are plotted as a function of PS, fp, scanner temporal resolution and noise, and contrast media injection rates. By extrapolating from experimental data found in literature, a relative change in PS and fp of approximately 40% is required. Thus, the longitudinal response of two chemotherapeutic drugs under investigation - proteasome and IMPDH inhibitors - are hypothesized to induce different physiological responses. The first set of simulations varies PS from 0.05 to 0.40 mL/min/mL and fp from 0.01 to 0.07 mL/mL while holding all other physiological parameters constant. Errors in PS remain below 3% while statistical errors for fp increase significantly as the volume decreases toward 1-2%: errors remain less than 6% for fp>0.03 while increasing to above 15% for fp<0.02. The second set of simulations are performed quantifying the relationship between scanner temporal resolution and contrast media injection rate for various tumor permeabilities. For the majority of cases, the errors remain below 5%. As PS approaches perfusion, a total error less than 6% can be maintained

  4. Photo activation of HPPH encapsulated in "Pocket" liposomes triggers multiple drug release and tumor cell killing in mouse breast cancer xenografts.

    PubMed

    Sine, Jessica; Urban, Cordula; Thayer, Derek; Charron, Heather; Valim, Niksa; Tata, Darrell B; Schiff, Rachel; Blumenthal, Robert; Joshi, Amit; Puri, Anu

    2015-01-01

    We recently reported laser-triggered release of photosensitive compounds from liposomes containing dipalmitoylphosphatidylcholine (DPPC) and 1,2 bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC(8,9)PC). We hypothesized that the permeation of photoactivated compounds occurs through domains of enhanced fluidity in the liposome membrane and have thus called them "Pocket" liposomes. In this study we have encapsulated the red light activatable anticancer photodynamic therapy drug 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) (Ex/Em410/670 nm) together with calcein (Ex/Em490/517 nm) as a marker for drug release in Pocket liposomes. A mole ratio of 7.6:1 lipid:HPPH was found to be optimal, with >80% of HPPH being included in the liposomes. Exposure of liposomes with a cw-diode 660 nm laser (90 mW, 0-5 minutes) resulted in calcein release only when HPPH was included in the liposomes. Further analysis of the quenching ratios of liposome-entrapped calcein in the laser treated samples indicated that the laser-triggered release occurred via the graded mechanism. In vitro studies with MDA-MB-231-LM2 breast cancer cell line showed significant cell killing upon treatment of cell-liposome suspensions with the laser. To assess in vivo efficacy, we implanted MDA-MB-231-LM2 cells containing the luciferase gene along the mammary fat pads on the ribcage of mice. For biodistribution experiments, trace amounts of a near infrared lipid probe DiR (Ex/Em745/840 nm) were included in the liposomes. Liposomes were injected intravenously and laser treatments (90 mW, 0.9 cm diameter, for an exposure duration ranging from 5-8 minutes) were done 4 hours postinjection (only one tumor per mouse was treated, keeping the second flank tumor as control). Calcein release occurred as indicated by an increase in calcein fluorescence from laser treated tumors only. The animals were observed for up to 15 days postinjection and tumor volume and luciferase expression was measured. A

  5. Inhibition of p300 lysine acetyltransferase activity by luteolin reduces tumor growth in head and neck squamous cell carcinoma (HNSCC) xenograft mouse model.

    PubMed

    Selvi, Ruthrotha B; Swaminathan, Amrutha; Chatterjee, Snehajyoti; Shanmugam, Muthu K; Li, Feng; Ramakrishnan, Gowsica B; Siveen, Kodappully Sivaraman; Chinnathambi, Arunachalam; Zayed, M Emam; Alharbi, Sulaiman Ali; Basha, Jeelan; Bhat, Akshay; Vasudevan, Madavan; Dharmarajan, Arunasalam; Sethi, Gautam; Kundu, Tapas K

    2015-12-22

    Chromatin acetylation is attributed with distinct functional relevance with respect to gene expression in normal and diseased conditions thereby leading to a topical interest in the concept of epigenetic modulators and therapy. We report here the identification and characterization of the acetylation inhibitory potential of an important dietary flavonoid, luteolin. Luteolin was found to inhibit p300 acetyltransferase with competitive binding to the acetyl CoA binding site. Luteolin treatment in a xenografted tumor model of head and neck squamous cell carcinoma (HNSCC), led to a dramatic reduction in tumor growth within 4 weeks corresponding to a decrease in histone acetylation. Cells treated with luteolin exhibit cell cycle arrest and decreased cell migration. Luteolin treatment led to an alteration in gene expression and miRNA profile including up-regulation of p53 induced miR-195/215, let7C; potentially translating into a tumor suppressor function. It also led to down-regulation of oncomiRNAs such as miR-135a, thereby reflecting global changes in the microRNA network. Furthermore, a direct correlation between the inhibition of histone acetylation and gene expression was established using chromatin immunoprecipitation on promoters of differentially expressed genes. A network of dysregulated genes and miRNAs was mapped along with the gene ontology categories, and the effects of luteolin were observed to be potentially at multiple levels: at the level of gene expression, miRNA expression and miRNA processing. PMID:26517526

  6. Inhibition of p300 lysine acetyltransferase activity by luteolin reduces tumor growth in head and neck squamous cell carcinoma (HNSCC) xenograft mouse model

    PubMed Central

    Selvi, Ruthrotha B.; Swaminathan, Amrutha; Chatterjee, Snehajyoti; Shanmugam, Muthu K.; Li, Feng; Ramakrishnan, Gowsica B.; Siveen, Kodappully Sivaraman; Chinnathambi, Arunachalam; Zayed, M. Emam; Alharbi, Sulaiman Ali; Basha, Jeelan; Bhat, Akshay; Vasudevan, Madavan; Dharmarajan, Arunasalam; Sethi, Gautam; Kundu, Tapas K.

    2015-01-01

    Chromatin acetylation is attributed with distinct functional relevance with respect to gene expression in normal and diseased conditions thereby leading to a topical interest in the concept of epigenetic modulators and therapy. We report here the identification and characterization of the acetylation inhibitory potential of an important dietary flavonoid, luteolin. Luteolin was found to inhibit p300 acetyltransferase with competitive binding to the acetyl CoA binding site. Luteolin treatment in a xenografted tumor model of head and neck squamous cell carcinoma (HNSCC), led to a dramatic reduction in tumor growth within 4 weeks corresponding to a decrease in histone acetylation. Cells treated with luteolin exhibit cell cycle arrest and decreased cell migration. Luteolin treatment led to an alteration in gene expression and miRNA profile including up-regulation of p53 induced miR-195/215, let7C; potentially translating into a tumor suppressor function. It also led to down-regulation of oncomiRNAs such as miR-135a, thereby reflecting global changes in the microRNA network. Furthermore, a direct correlation between the inhibition of histone acetylation and gene expression was established using chromatin immunoprecipitation on promoters of differentially expressed genes. A network of dysregulated genes and miRNAs was mapped along with the gene ontology categories, and the effects of luteolin were observed to be potentially at multiple levels: at the level of gene expression, miRNA expression and miRNA processing. PMID:26517526

  7. Tumor dosimetry for I-131 trastuzumab therapy in a Her2+ NCI N87 xenograft mouse model using the Siemens SYMBIA E gamma camera with a pinhole collimator

    NASA Astrophysics Data System (ADS)

    Lee, Young Sub; Kim, Jin Su; Deuk Cho, Kyung; Kang, Joo Hyun; Moo Lim, Sang

    2015-07-01

    We performed imaging and therapy using I-131 trastuzumab and a pinhole collimator attached to a conventional gamma camera for human use in a mouse model. The conventional clinical gamma camera with a 2-mm radius-sized pinhole collimator was used for monitoring the animal model after administration of I-131 trastuzumab The highest and lowest radiation-received organs were osteogenic cells (0.349 mSv/MBq) and skin (0.137 mSv/MBq), respectively. The mean coefficients of variation (%CV) of the effective dose equivalent and effective dose were 0.091 and 0.093 mSv/MBq respectively. We showed the feasibility of the pinholeattached conventional gamma camera for human use for the assessment of dosimetry. Mouse dosimetry and prediction of human dosimetry could be used to provide data for the safety and efficacy of newly developed therapeutic schemes.

  8. Effects of tamoxifen and somatostatin analogue on growth of human medullary, follicular, and papillary thyroid carcinoma cell lines: tissue culture and nude mouse xenograft studies.

    PubMed

    Weber, C J; Marvin, M; Krekun, S; Koschitzky, T; Karp, F; Benson, M; Feind, C R

    1990-12-01

    The knowledge that (1) the normal thyroid contains somatostatin, (2) polypeptide growth factors influence thyroid cell function, and (3) thyroid cells contain steroid hormone receptors prompted us to add somatostatin analogue No. 201-995 (SMS) (5 ng/ml) and/or tamoxifen citrate (TAM) (5 mumol/L) to 7-day monolayer cultures (50,000 cells/well) of three separate human thyroid carcinoma cell lines: DR081 (medullary), WR082 (follicular), and NPA'87 (papillary). Results, tabulated as cell numbers/well (X10(5) on day 7, revealed that TAM inhibited growth of medullary and follicular cells and that TAM plus SMS inhibited growth of papillary cells. In vivo studies of subcutaneous tumor cell xenografts in nude mice have documented that TAM (5 mg subcutaneous pellet) significantly inhibits the growth of medullary implants. Flow cytometric DNA studies of medullary cell cultures demonstrated a reduced G2 + M phase with TAM treatment. For papillary cell implants, TAM plus SMS (5 micrograms subcutaneously, twice daily) did not suppress tumor growth. All three cell lines were negative for estrogen receptor; addition of estradiol (5 ng/ml) to medullary cell cultures neither stimulated replication nor reversed the inhibitory effects of TAM in vitro. We conclude that (1) TAM slowed the growth of a cell line of human medullary carcinoma, both in vitro and in vivo; (2) this effect was not reversed by estradiol; (3) TAM plus SMS inhibited replication of a papillary carcinoma cell line in vitro, but not in vivo; and (4) TAM alone and TAM plus SMS inhibited replication of cultures of a human follicular thyroid carcinoma cell line. TAM and SMS may be useful in treatment of some human thyroid carcinomas. PMID:1978945

  9. Adenovirus-Mediated Expression of the p14 Fusion-Associated Small Transmembrane Protein Promotes Cancer Cell Fusion and Apoptosis In Vitro but Does Not Provide Therapeutic Efficacy in a Xenograft Mouse Model of Cancer.

    PubMed

    Wong, Carmen M; Poulin, Kathy L; Tong, Grace; Christou, Carin; Kennedy, Michael A; Falls, Theresa; Bell, John C; Parks, Robin J

    2016-01-01

    Adenoviruses (Ads) are used in numerous preclinical and clinical studies for delivery of anti-cancer therapeutic genes. Unfortunately, Ad has a poor ability to distribute throughout a tumor mass after intratumoral injection, and infects cells primarily within the immediate area of the injection tract. Thus, Ad-encoded transgene expression is typically limited to only a small percentage of cells within the tumor. One method to increase the proportion of the tumor impacted by Ad is through expression of fusogenic proteins. Infection of a single cell with an Ad vector encoding a fusogenic protein should lead to syncytium formation with adjacent cells, effectively spreading the effect of Ad and Ad-encoded therapeutic transgenes to a greater percentage of the tumor mass. Moreover, syncytium formation can be cytotoxic, suggesting that such proteins may be effective sole therapeutics. We show that an early region 1 (E1)-deleted Ad expressing reptilian reovirus p14 fusion-associated small transmembrane (FAST) protein caused extensive cell fusion in the replication-permissive 293 cell line and at high multiplicity of infection in non-permissive human lung adenocarcinoma A549 cells in vitro. FAST protein expression in the A549 cancer cell line led to a loss of cellular metabolic activity and membrane integrity, which correlated with induction of apoptosis. However, in an A549 xenograft CD-1 nude mouse cancer model, Ad-mediated FAST gene delivery did not induce detectable cell fusion, reduce tumor burden nor enhance mouse survival compared to controls. Taken together, our results show that, although AdFAST can enhance cancer cell killing in vitro, it is not effective as a sole therapeutic in the A549 tumor model in vivo. PMID:26986751

  10. Adenovirus-Mediated Expression of the p14 Fusion-Associated Small Transmembrane Protein Promotes Cancer Cell Fusion and Apoptosis In Vitro but Does Not Provide Therapeutic Efficacy in a Xenograft Mouse Model of Cancer

    PubMed Central

    Wong, Carmen M.; Poulin, Kathy L.; Tong, Grace; Christou, Carin; Kennedy, Michael A.; Falls, Theresa; Bell, John C.; Parks, Robin J.

    2016-01-01

    Adenoviruses (Ads) are used in numerous preclinical and clinical studies for delivery of anti-cancer therapeutic genes. Unfortunately, Ad has a poor ability to distribute throughout a tumor mass after intratumoral injection, and infects cells primarily within the immediate area of the injection tract. Thus, Ad-encoded transgene expression is typically limited to only a small percentage of cells within the tumor. One method to increase the proportion of the tumor impacted by Ad is through expression of fusogenic proteins. Infection of a single cell with an Ad vector encoding a fusogenic protein should lead to syncytium formation with adjacent cells, effectively spreading the effect of Ad and Ad-encoded therapeutic transgenes to a greater percentage of the tumor mass. Moreover, syncytium formation can be cytotoxic, suggesting that such proteins may be effective sole therapeutics. We show that an early region 1 (E1)-deleted Ad expressing reptilian reovirus p14 fusion-associated small transmembrane (FAST) protein caused extensive cell fusion in the replication-permissive 293 cell line and at high multiplicity of infection in non-permissive human lung adenocarcinoma A549 cells in vitro. FAST protein expression in the A549 cancer cell line led to a loss of cellular metabolic activity and membrane integrity, which correlated with induction of apoptosis. However, in an A549 xenograft CD-1 nude mouse cancer model, Ad-mediated FAST gene delivery did not induce detectable cell fusion, reduce tumor burden nor enhance mouse survival compared to controls. Taken together, our results show that, although AdFAST can enhance cancer cell killing in vitro, it is not effective as a sole therapeutic in the A549 tumor model in vivo. PMID:26986751

  11. Improving In Vivo High-Resolution CT Imaging of the Tumour Vasculature in Xenograft Mouse Models through Reduction of Motion and Bone-Streak Artefacts

    PubMed Central

    Kersemans, Veerle; Kannan, Pavitra; Beech, John S.; Bates, Russell; Irving, Benjamin; Gilchrist, Stuart; Allen, Philip D.; Thompson, James; Kinchesh, Paul; Casteleyn, Christophe; Schnabel, Julia; Partridge, Mike; Muschel, Ruth J.; Smart, Sean C.

    2015-01-01

    Introduction Preclinical in vivo CT is commonly used to visualise vessels at a macroscopic scale. However, it is prone to many artefacts which can degrade the quality of CT images significantly. Although some artefacts can be partially corrected for during image processing, they are best avoided during acquisition. Here, a novel imaging cradle and tumour holder was designed to maximise CT resolution. This approach was used to improve preclinical in vivo imaging of the tumour vasculature. Procedures A custom built cradle containing a tumour holder was developed and fix-mounted to the CT system gantry to avoid artefacts arising from scanner vibrations and out-of-field sample positioning. The tumour holder separated the tumour from bones along the axis of rotation of the CT scanner to avoid bone-streaking. It also kept the tumour stationary and insensitive to respiratory motion. System performance was evaluated in terms of tumour immobilisation and reduction of motion and bone artefacts. Pre- and post-contrast CT followed by sequential DCE-MRI of the tumour vasculature in xenograft transplanted mice was performed to confirm vessel patency and demonstrate the multimodal capacity of the new cradle. Vessel characteristics such as diameter, and branching were quantified. Results Image artefacts originating from bones and out-of-field sample positioning were avoided whilst those resulting from motions were reduced significantly, thereby maximising the resolution that can be achieved with CT imaging in vivo. Tumour vessels ≥ 77 μm could be resolved and blood flow to the tumour remained functional. The diameter of each tumour vessel was determined and plotted as histograms and vessel branching maps were created. Multimodal imaging using this cradle assembly was preserved and demonstrated. Conclusions The presented imaging workflow minimised image artefacts arising from scanner induced vibrations, respiratory motion and radiopaque structures and enabled in vivo CT imaging

  12. Plumbagin, a medicinal plant (Plumbago zeylanica) - derived 1,4-naphthoquinone, inhibits growth and metastasis of human prostate cancer PC-3M-luciferase cells in an orthotopic xenograft mouse model

    PubMed Central

    Hafeez, Bilal Bin; Zhong, Weixiong; Fischer, Joseph W.; Mustafa, Ala; Shi, Xudong Daniel; Meske, Louise; Hong, Hao; Cai, Weibo; Havighurst, Thomas; Kim, KyungMann; Verma, Ajit. K

    2012-01-01

    We present here first time that Plumbagin (PL), a medicinal plant-derived 1,4-naphthoquinone, inhibits the growth and metastasis of prostate cancer (PCa) in an orthotopic xenograft mouse model. In this study, human PCa PC-3M-luciferase cells (2X106) were injected into the prostate of athymic nude mice. Three days post cell implantation, mice were treated with PL (2 mg/kg body wt. i.p five days in a week) for 8 weeks. Growth and metastasis of PC-3M-luciferase cells was examined weekly by bioluminescence imaging of live mice. PL-treatment significantly (p=0.0008) inhibited the growth of orthotopic xenograft tumors. PCa metastasis into the liver, lungs and lymph nodes was determined by bioluminescence imaging and histopathology. Results demonstrated a significant inhibition of metastasis into liver (p=0.037), but inhibition of metastasis into the lungs (p=0.60) and liver (p=0.27) was not observed to be significant. These results were further confirmed by histopathology of these organs. Results of histopathology demonstrated a significant inhibition of metastasis into lymph nodes (p=0.034) and lungs (p=0.028), and a trend to significance in liver (p=0.075). None of the mice in the PL-treatment group showed PCa metastasis into the liver, but these mice had small metastasis foci into the lymph nodes and lungs. However, control mice had large metastatic foci into the lymph nodes, lungs, and liver. PL-caused inhibition of the growth and metastasis of PC-3M cells accompanies inhibition of the expression of: 1) PKCε, pStat3Tyr705, and pStat3Ser727, 2) Stat3 downstream target genes (survivin and BclxL), 3) proliferative markers Ki-67 and PCNA, 4) metastatic marker MMP9, MMP2, and uPA, and 5) angiogenesis markers CD31 and VEGF. Taken together, these results suggest that PL inhibits tumor growth and metastasis of human PCa PC3-M-luciferase cells, which could be used as a therapeutic agent for the prevention and treatment of human PCa. PL: Plumbagin, PCa: Prostate cancer. PMID

  13. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model

    PubMed Central

    QIN, GANG; CHEN, YONGQIANG; LI, HAIDONG; XU, SUYANG; LI, YUMEI; SUN, JIAN; RAO, WU; CHEN, CHAOWEI; DU, MINDONG; HE, KAIYI; YE, YONG

    2016-01-01

    Endothelial progenitor cells (EPCs) are important in tumor angiogenesis. Stromal cell-derived factor-1α (SDF-1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) are key in stem cell homing. Melittin, a component of bee venom, exerts antitumor activity, however, the underlying mechanisms remain to be elucidated. The present study aimed to assess the effects of melittin on EPCs and angiogenesis in a mouse model of osteosarcoma. UMR-106 cells and EPCs were treated with various concentrations of melittin and cell viability was determined using the MTT assay. EPC adherence, migration and tube forming ability were assessed. Furthermore, SDF-1α, AKT and extracellular signal-regulated kinase (ERK)1/2 expression levels were detected by western blotting. Nude mice were inoculated with UMR-106 cells to establish an osteosarcoma mouse model. The tumors were injected with melittin, and its effects were assessed by immunohistochemistry and immunofluorescence. Melittin decreased the viability of UMR-106 cells and EPCs. In addition, it decreased EPC adhesion, migration and tube formation when compared with control and SDF-1α-treated cells. Melittin decreased the expression of phosphorylated (p)-AKT, p-ERK1/2, SDF-1α and CXCR4 in UMR-106 cells and EPCs when compared with the control. The proportions of cluster of differentiation (CD)34/CD133 double-positive cells were 16.4±10.4% in the control, and 7.0±4.4, 2.9±1.2 and 1.3±0.3% in tumors treated with 160, 320 and 640 µg/kg melittin per day, respectively (P<0.05). At 11 days, melittin reduced the tumor size when compared with that of the control (control, 4.8±1.3 cm3; melittin, 3.2±0.6, 2.6±0.5, and 2.0±0.2 cm3 for 160, 320 and 640 µg/kg, respectively; all P<0.05). Melittin decreased the microvessel density, and SDF-1α and CXCR4 protein expression levels in the tumors. Melittin may decrease the effect of osteosarcoma on EPC-mediated angiogenesis, possibly via inhibition of the SDF-1α/CXCR4 signaling pathway

  14. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model.

    PubMed

    Qin, Gang; Chen, Yongqiang; Li, Haidong; Xu, Suyang; Li, Yumei; Sun, Jian; Rao, Wu; Chen, Chaowei; Du, Mindong; He, Kaiyi; Ye, Yong

    2016-07-01

    Endothelial progenitor cells (EPCs) are important in tumor angiogenesis. Stromal cell-derived factor-1α (SDF-1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) are key in stem cell homing. Melittin, a component of bee venom, exerts antitumor activity, however, the underlying mechanisms remain to be elucidated. The present study aimed to assess the effects of melittin on EPCs and angiogenesis in a mouse model of osteosarcoma. UMR‑106 cells and EPCs were treated with various concentrations of melittin and cell viability was determined using the MTT assay. EPC adherence, migration and tube forming ability were assessed. Furthermore, SDF‑1α, AKT and extracellular signal‑regulated kinase (ERK)1/2 expression levels were detected by western blotting. Nude mice were inoculated with UMR‑106 cells to establish an osteosarcoma mouse model. The tumors were injected with melittin, and its effects were assessed by immunohistochemistry and immunofluorescence. Melittin decreased the viability of UMR‑106 cells and EPCs. In addition, it decreased EPC adhesion, migration and tube formation when compared with control and SDF‑1α‑treated cells. Melittin decreased the expression of phosphorylated (p)‑AKT, p‑ERK1/2, SDF‑1α and CXCR4 in UMR‑106 cells and EPCs when compared with the control. The proportions of cluster of differentiation (CD)34/CD133 double‑positive cells were 16.4±10.4% in the control, and 7.0±4.4, 2.9±1.2 and 1.3±0.3% in tumors treated with 160, 320 and 640 µg/kg melittin per day, respectively (P<0.05). At 11 days, melittin reduced the tumor size when compared with that of the control (control, 4.8±1.3 cm3; melittin, 3.2±0.6, 2.6±0.5, and 2.0±0.2 cm3 for 160, 320 and 640 µg/kg, respectively; all P<0.05). Melittin decreased the microvessel density, and SDF‑1α and CXCR4 protein expression levels in the tumors. Melittin may decrease the effect of osteosarcoma on EPC‑mediated angiogenesis, possibly via inhibition

  15. Measurement of the pressure-volume curve in mouse lungs.

    PubMed

    Limjunyawong, Nathachit; Fallica, Jonathan; Horton, Maureen R; Mitzner, Wayne

    2015-01-01

    In recent decades the mouse has become the primary animal model of a variety of lung diseases. In models of emphysema or fibrosis, the essential phenotypic changes are best assessed by measurement of the changes in lung elasticity. To best understand specific mechanisms underlying such pathologies in mice, it is essential to make functional measurements that can reflect the developing pathology. Although there are many ways to measure elasticity, the classical method is that of the total lung pressure-volume (PV) curve done over the whole range of lung volumes. This measurement has been made on adult lungs from nearly all mammalian species dating back almost 100 years, and such PV curves also played a major role in the discovery and understanding of the function of pulmonary surfactant in fetal lung development. Unfortunately, such total PV curves have not been widely reported in the mouse, despite the fact that they can provide useful information on the macroscopic effects of structural changes in the lung. Although partial PV curves measuring just the changes in lung volume are sometimes reported, without a measure of absolute volume, the nonlinear nature of the total PV curve makes these partial ones very difficult to interpret. In the present study, we describe a standardized way to measure the total PV curve. We have then tested the ability of these curves to detect changes in mouse lung structure in two common lung pathologies, emphysema and fibrosis. Results showed significant changes in several variables consistent with expected structural changes with these pathologies. This measurement of the lung PV curve in mice thus provides a straightforward means to monitor the progression of the pathophysiologic changes over time and the potential effect of therapeutic procedures. PMID:25651276

  16. Measurement of the Pressure-volume Curve in Mouse Lungs

    PubMed Central

    Limjunyawong, Nathachit; Fallica, Jonathan; Horton, Maureen R.; Mitzner, Wayne

    2015-01-01

    In recent decades the mouse has become the primary animal model of a variety of lung diseases. In models of emphysema or fibrosis, the essential phenotypic changes are best assessed by measurement of the changes in lung elasticity. To best understand specific mechanisms underlying such pathologies in mice, it is essential to make functional measurements that can reflect the developing pathology. Although there are many ways to measure elasticity, the classical method is that of the total lung pressure-volume (PV) curve done over the whole range of lung volumes. This measurement has been made on adult lungs from nearly all mammalian species dating back almost 100 years, and such PV curves also played a major role in the discovery and understanding of the function of pulmonary surfactant in fetal lung development. Unfortunately, such total PV curves have not been widely reported in the mouse, despite the fact that they can provide useful information on the macroscopic effects of structural changes in the lung. Although partial PV curves measuring just the changes in lung volume are sometimes reported, without a measure of absolute volume, the nonlinear nature of the total PV curve makes these partial ones very difficult to interpret. In the present study, we describe a standardized way to measure the total PV curve. We have then tested the ability of these curves to detect changes in mouse lung structure in two common lung pathologies, emphysema and fibrosis. Results showed significant changes in several variables consistent with expected structural changes with these pathologies. This measurement of the lung PV curve in mice thus provides a straightforward means to monitor the progression of the pathophysiologic changes over time and the potential effect of therapeutic procedures. PMID:25651276

  17. 2′-(2-bromohexadecanoyl)-paclitaxel conjugate nanoparticles for the treatment of non-small cell lung cancer in an orthotopic xenograft mouse model

    PubMed Central

    Peng, Lei; Schorzman, Allison N; Ma, Ping; Madden, Andrew J; Zamboni, William C; Benhabbour, Soumya Rahima; Mumper, Russell J

    2014-01-01

    A nanoparticle (NP) formulation with 2′-(2-bromohexadecanoyl)-paclitaxel (Br-16-PX) conjugate was developed in these studies for the treatment of non-small cell lung cancer (NSCLC). The lipophilic paclitaxel conjugate Br-C16-PX was synthesized and incorporated into lipid NPs where the 16-carbon chain enhanced drug entrapment in the drug delivery system and improved in vivo pharmacokinetics. The electron-withdrawing bromine group was used to facilitate the conversion of Br-C16-PX to paclitaxel at the tumor site. The developed system was evaluated in luciferase-expressing A549 cells in vitro and in an orthotopic NSCLC mouse model. The results demonstrated that the Br-C16-PX NPs had a higher maximum tolerated dose (75 mg/kg) than Taxol® (19 mg/kg) and provided significantly longer median survival (88 days versus 70 days, P<0.05) in the orthotopic NSCLC model. An improved pharmacokinetic profile was observed for the Br-C16-PX NPs at 75 mg/kg compared to Taxol at 19 mg/kg. The area under the concentration versus time curve (AUC)0–96 h of Br-C16-PX from the NPs was 91.7-fold and 49.6-fold greater than Taxol in plasma and tumor-bearing lungs, respectively, which provided sustained drug exposure and higher antitumor efficacy in the NP-treated group. PMID:25114529

  18. ESR measurement of radical clearance in lung of whole mouse

    SciTech Connect

    Takeshita, K.; Utsumi, H.; Hamada, A. )

    1991-06-14

    Clearance of the nitroxide radicals, hydroxy-TEMPO and carboxy-PROxYL, in whole-mouse lung was directly measured by in vivo ESR. After injecting a nitroxide radical, distribution of the nitroxide radical all over the lung was confirmed by ESR imaging. The ESR signal of hydroxy-TEMPO was reduced in the lung and the clearance obeyed first-order kinetics, whereas the signal of carboxy-PROxYL remained constant. Comparison of the clearance rates of live and dead mice indicated the presence of 2 different clearance systems in the lung: loss of its paramagnetism in the lung, and transfer from alveolar to the blood circulation system.

  19. In vivo sampling of Verteporfin uptake in pancreas cancer xenograft models: comparison of surface, oral, and interstitial measurements

    NASA Astrophysics Data System (ADS)

    Isabelle, Martin; O'Hara, Julia A.; Samkoe, Kimberley S.; Hoopes, P. Jack; Mosse, Sandy; Pereira, Stephen; Hasan, Tayyaba; Pogue, Brian W.

    2010-02-01

    Photodynamic therapy (PDT) mediated with Verteporfin is being investigated as a pancreatic cancer treatment in the cases for non-surgical candidates. Tissue response to PDT is based on a number of parameters including photosensitizer (PS) dose, light dose and time interval between light application and PS injection. In this study, PS uptake and distribution in animal leg muscle, oral cavity tissues, pancreas and tumor was measured in vivo using light-induced fluorescence spectroscopy (LIFS) via an Aurora Optics Inc. PDT fluorescence dosimeter. An orthotopic pancreatic cancer model (AsPC-1) was implanted in SCID mice and treated with the PS. Probe measurements were made using a surface probe and an interstitial needle probe before and up to one hour after intravenous tail vein injection of the PS. The study demonstrated that it is possible to correlate in-vivo LIFS measurements of the PS uptake in the pancreas with measurements taken from the oral cavity indicating that light dosimetry of PDT of the pancreas can be ascertained from the LIFS measurements in the oral cavity. These results emphasize the importance of light dosimetry in improving the therapeutic outcome of PDT through light dose adaptation to the relative in situ tissue PS concentration.

  20. High precision zinc isotopic measurements applied to mouse organs.

    PubMed

    Moynier, Frédéric; Le Borgne, Marie

    2015-01-01

    We present a procedure to measure with high precision zinc isotope ratios in mouse organs. Zinc is composed of 5 stable isotopes ((64)Zn, (66)Zn, (67)Zn, (68)Zn and (70)Zn) which are naturally fractionated between mouse organs. We first show how to dissolve the different organs in order to free the Zn atoms; this step is realized by a mixture of HNO3 and H2O2. We then purify the zinc atoms from all the other elements, in particular from isobaric interferences (e.g., Ni), by anion-exchange chromatography in a dilute HBr/HNO3 medium. These first two steps are performed in a clean laboratory using high purity chemicals. Finally, the isotope ratios are measured by using a multi-collector inductively-coupled-plasma mass-spectrometer, in low resolution. The samples are injected using a spray chamber and the isotopic fractionation induced by the mass-spectrometer is corrected by comparing the ratio of the samples to the ratio of a standard (standard bracketing technique). This full typical procedure produces an isotope ratio with a 50 ppm (2 s.d.) reproducibility. PMID:26065372

  1. Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration.

    PubMed

    Hong, Jing-Fang; Song, Ying-Fang; Liu, Zheng; Zheng, Zhao-Cong; Chen, Hong-Jie; Wang, Shou-Sen

    2016-06-01

    The aim of the present study was to investigate the in vitro and in vivo anticancer and apoptotic effects of taraxerol acetate in U87 human glioblastoma cells. The effects on cell cycle phase distribution, cell cycle-associated proteins, autophagy, DNA fragmentation and cell migration were assessed. Cell viability was determined using the MTT assay, and phase contrast and fluorescence microscopy was utilized to determine the viability and apoptotic morphological features of the U87 cells. Flow cytometry using propidium iodide and Annexin V-fluorescein isothiocyanate demonstrated the effect of taraxerol acetate on the cell cycle phase distribution and apoptosis induction. Western blot analysis was performed to investigate the effect of the taraxerol acetate on cell cycle‑associated proteins and autophagy‑linked LC3B‑II proteins. The results demonstrated that taraxerol acetate induced dose‑ and time‑dependent cytotoxic effects in the U87 cells. Apoptotic induction following taraxerol acetate treatment was observed and the percentage of apoptotic cells increased from 7.3% in the control cells, to 16.1, 44.1 and 76.7% in the 10, 50 and 150 µM taraxerol acetate‑treated cells, respectively. Furthermore, taraxerol acetate treatment led to sub‑G1 cell cycle arrest with a corresponding decrease in the number of S‑phase cells. DNA fragments were observed as a result of the gel electrophoresis experiment following taraxerol acetate treatment. To investigate the inhibitory effects of taraxerol acetate on the migration of U87 cell, a wound healing assay was conducted. The number of cells that migrated to the scratched area decreased significantly following treatment with taraxerol acetate. In addition, taraxerol acetate inhibited tumor growth in a mouse xenograft model. Administration of 0.25 and 0.75 µg/g taraxerol acetate reduced the tumor weight from 1.2 g in the phosphate‑buffered saline (PBS)‑treated group (control) to 0.81 and 0.42

  2. Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration

    PubMed Central

    HONG, JING-FANG; SONG, YING-FANG; LIU, ZHENG; ZHENG, ZHAO-CONG; CHEN, HONG-JIE; WANG, SHOU-SEN

    2016-01-01

    The aim of the present study was to investigate the in vitro and in vivo anticancer and apoptotic effects of taraxerol acetate in U87 human glioblastoma cells. The effects on cell cycle phase distribution, cell cycle-associated proteins, autophagy, DNA fragmentation and cell migration were assessed. Cell viability was determined using the MTT assay, and phase contrast and fluorescence microscopy was utilized to determine the viability and apoptotic morphological features of the U87 cells. Flow cytometry using propidium iodide and Annexin V-fluorescein isothiocyanate demonstrated the effect of taraxerol acetate on the cell cycle phase distribution and apoptosis induction. Western blot analysis was performed to investigate the effect of the taraxerol acetate on cell cycle-associated proteins and autophagy-linked LC3B-II proteins. The results demonstrated that taraxerol acetate induced dose- and time-dependent cytotoxic effects in the U87 cells. Apoptotic induction following taraxerol acetate treatment was observed and the percentage of apoptotic cells increased from 7.3% in the control cells, to 16.1, 44.1 and 76.7% in the 10, 50 and 150 µM taraxerol acetate-treated cells, respectively. Furthermore, taraxerol acetate treatment led to sub-G1 cell cycle arrest with a corresponding decrease in the number of S-phase cells. DNA fragments were observed as a result of the gel electrophoresis experiment following taraxerol acetate treatment. To investigate the inhibitory effects of taraxerol acetate on the migration of U87 cell, a wound healing assay was conducted. The number of cells that migrated to the scratched area decreased significantly following treatment with taraxerol acetate. In addition, taraxerol acetate inhibited tumor growth in a mouse xenograft model. Administration of 0.25 and 0.75 µg/g taraxerol acetate reduced the tumor weight from 1.2 g in the phosphate-buffered saline (PBS)-treated group (control) to 0.81 and 0.42 g, respectively. Similarly, 0.25 and 0

  3. In vivo Measurement of the Mouse Pulmonary Endothelial Surface Layer

    PubMed Central

    Yang, Yimu; Yang, Gaoqing; Schmidt, Eric P.

    2013-01-01

    The endothelial glycocalyx is a layer of proteoglycans and associated glycosaminoglycans lining the vascular lumen. In vivo, the glycocalyx is highly hydrated, forming a substantial endothelial surface layer (ESL) that contributes to the maintenance of endothelial function. As the endothelial glycocalyx is often aberrant in vitro and is lost during standard tissue fixation techniques, study of the ESL requires use of intravital microscopy. To best approximate the complex physiology of the alveolar microvasculature, pulmonary intravital imaging is ideally performed on a freely-moving lung. These preparations, however, typically suffer from extensive motion artifact. We demonstrate how closed-chest intravital microscopy of a freely-moving mouse lung can be used to measure glycocalyx integrity via ESL exclusion of fluorescently-labeled high molecular weight dextrans from the endothelial surface. This non-recovery surgical technique, which requires simultaneous brightfield and fluorescent imaging of the mouse lung, allows for longitudinal observation of the subpleural microvasculature without evidence of inducing confounding lung injury. PMID:23462690

  4. A Sensitive IHC Method for Monitoring Autophagy-Specific Markers in Human Tumor Xenografts

    PubMed Central

    He, Helen; Yang, Yu; Xiang, Zhongmin; Yu, Lunyin; Chouitar, Jouhara; Yu, Jie; D'Amore, Natalie Roy; Li, Ping; Li, Zhi; Bowman, Douglas; Theisen, Matthew; Brownell, James E.; Tirrell, Stephen

    2016-01-01

    Objective. Use of tyramide signal amplification (TSA) to detect autophagy biomarkers in formalin fixed and paraffin embedded (FFPE) xenograft tissue. Materials and Methods. Autophagy marker regulation was studied in xenograft tissues using Amp HQ IHC and standard IHC methods. Results. The data demonstrate the feasibility of using high sensitivity TSA IHC assays to measure low abundant autophagy markers in FFPE xenograft tissue. PMID:27247826

  5. Development and characterization of a human orthotopic neuroblastoma xenograft

    PubMed Central

    Stewart, Elizabeth; Shelat, Anang; Bradley, Cori; Chen, Xiang; Federico, Sara; Thiagarajan, Suresh; Shirinifard, Abbas; Bahrami, Armita; Pappo, Alberto; Qu, Chunxu; Finkelstein, David; Sablauer, Andras; Dyer, Michael A.

    2016-01-01

    Neuroblastoma is a pediatric cancer of the developing sympathoadrenal lineage. The tumors are known to develop from the adrenal gland or paraspinal ganglia and have molecular and cellular features of sympathetic neurons such as dense core vesicles and catecholamine production. Here we present the detailed molecular, cellular, genetic and epigenetic characterization of an orthotopic xenograft derived from a high-risk stage 4 neuroblastoma patient. Overall, the xenografted tumor retained the high risk features of the primary tumor and showed aggressive growth and metastasis in the mouse. Also, the genome was preserved with no additional copy number variations, structural variations or aneuploidy. There were 13 missense mutations identified in the xenograft that were not present in the patient’s primary tumor and there were no new nonsense mutations. None of the missense mutations acquired in the xenograft were in known cancer genes. We also demonstrate the feasibility of using the orthotopic neuroblastoma xenograft to test standard of care chemotherapy and molecular targeted therapeutics. Finally, we optimized a new approach to produce primary cultures of the neuroblastoma xenografts for high-throughput drug screening which can be used to test new combinations of therapeutic agents for neuroblastoma. PMID:25863122

  6. Molecular profiling of patient-derived breast cancer xenografts

    PubMed Central

    2012-01-01

    Introduction Identification of new therapeutic agents for breast cancer (BC) requires preclinical models that reproduce the molecular characteristics of their respective clinical tumors. In this work, we analyzed the genomic and gene expression profiles of human BC xenografts and the corresponding patient tumors. Methods Eighteen BC xenografts were obtained by grafting tumor fragments from patients into Swiss nude mice. Molecular characterization of patient tumors and xenografts was performed by DNA copy number analysis and gene expression analysis using Affymetrix Microarrays. Results Comparison analysis showed that 14/18 pairs of tumors shared more than 56% of copy number alterations (CNA). Unsupervised hierarchical clustering analysis showed that 16/18 pairs segregated together, confirming the similarity between tumor pairs. Analysis of recurrent CNA changes between patient tumors and xenografts showed losses in 176 chromosomal regions and gains in 202 chromosomal regions. Gene expression profile analysis showed that less than 5% of genes had recurrent variations between patient tumors and their respective xenografts; these genes largely corresponded to human stromal compartment genes. Finally, analysis of different passages of the same tumor showed that sequential mouse-to-mouse tumor grafts did not affect genomic rearrangements or gene expression profiles, suggesting genetic stability of these models over time. Conclusions This panel of human BC xenografts maintains the overall genomic and gene expression profile of the corresponding patient tumors and remains stable throughout sequential in vivo generations. The observed genomic profile and gene expression differences appear to be due to the loss of human stromal genes. These xenografts, therefore, represent a validated model for preclinical investigation of new therapeutic agents. PMID:22247967

  7. Localization of human tumour xenografts after i.v. administration of radiolabeled monoclonal antibodies.

    PubMed

    Moshakis, V; McIlhinney, R A; Raghavan, D; Neville, A M

    1981-07-01

    A mouse monoclonal antibody (LICR-LON/HT13) has been developed to a cell-surface antigen carried on a human germ-cell tumour xenograft (HX39). After radioiodination, the antibody localized in vivo preferentially in xenografted tumours as opposed to normal mouse tissue, whereas tumor uptake did not occur with normal mouse IgG or nonspecific monoclonal IgG. This selective localization could be abolished by simultaneous injection of an excess of the unlabelled LICR-LON/HT13. The kinetics of and factors influencing localization have been examined. Tumour weight was important in that the smaller the tumour the better the localization. LICR-LON/HT13 was found to localize also in other xenografted germ-cell tumours, but not in non-germ-cell tumour xenografts. Thus monoclonal antibodies are capable of selective in vivo localization of human tumours in an animal model, and their clinical value should now be assessed. PMID:6789857

  8. Automated measurement of mouse apolipoprotein B: convenient screening tool for mouse models of atherosclerosis.

    PubMed

    Levine, D M; Williams, K J

    1997-04-01

    Although mice are commonly used for studies of atherosclerosis, investigators have had no convenient way to quantify apolipoprotein (apo) B, the major protein of atherogenic lipoproteins, in this model. We now report an automated immunoturbidimetric assay for mouse apo B with an NCCLS imprecision study CV < 5%. Added hemoglobin up to 50 g/L did not interfere with the assay, nor did one freeze-thaw cycle of serum samples. Assay linearity extends to apo B concentrations of 325 mg/L. We have used the assay to determine serum apo B concentrations under several atherogenic conditions, including the apo E "knock-out" genotype and treatment with a high-cholesterol diet. Our assay can be used to survey inbred mouse strains for variants in apo B concentrations or regulation. Moreover, the mouse can now be used as a convenient small-animal model to screen compounds that may lower apo B concentrations. PMID:9105271

  9. Monitoring Early Response to Anti-Angiogenic Therapy: Diffusion-Weighted Magnetic Resonance Imaging and Volume Measurements in Colon Carcinoma Xenografts

    PubMed Central

    Schneider, Moritz Jörg; Cyran, Clemens Christian; Nikolaou, Konstantin; Hirner, Heidrun; Reiser, Maximilian F.; Dietrich, Olaf

    2014-01-01

    Objectives To evaluate the use of diffusion-weighted MRI (DW-MRI) and volume measurements for early monitoring of antiangiogenic therapy in an experimental tumor model. Materials and Methods 23 athymic nude rats, bearing human colon carcinoma xenografts (HT-29) were examined before and after 6 days of treatment with regorafenib (n = 12) or placebo (n = 11) in a clinical 3-Tesla MRI. For DW-MRI, a single-shot EPI sequence with 9 b-values (10–800 s/mm2) was used. The apparent diffusion coefficient (ADC) was calculated voxelwise and its median value over a region of interest, covering the entire tumor, was defined as the tumor ADC. Tumor volume was determined using T2-weighted images. ADC and volume changes between first and second measurement were evaluated as classifiers by a receiver-operator-characteristic (ROC) analysis individually and combined using Fisher's linear discriminant analysis (FLDA). Results All ADCs and volumes are stated as median±standard deviation. Tumor ADC increased significantly in the therapy group (0.76±0.09×10−3 mm2/s to 0.90±0.12×10−3 mm2/s; p<0.001), with significantly higher changes of tumor ADC than in the control group (0.10±0.11×10−3 mm2/s vs. 0.03±0.09×10−3 mm2/s; p = 0.027). Tumor volume increased significantly in both groups (therapy: 347.8±449.1 to 405.3±823.6 mm3; p = 0.034; control: 219.7±79.5 to 443.7±141.5 mm3; p<0.001), however, the therapy group showed significantly reduced tumor growth (33.30±47.30% vs. 96.43±31.66%; p<0.001). Area under the curve and accuracy of the ADC-based ROC analysis were 0.773 and 78.3%; and for the volume change 0.886 and 82.6%. The FLDA approach yielded an AUC of 0.985 and an accuracy of 95.7%. Conclusions Regorafenib therapy significantly increased tumor ADC after 6 days of treatment and also significantly reduced tumor growth. However, ROC analyses using each parameter individually revealed a lack of accuracy in discriminating between therapy and control

  10. Radiosensitizing effect of misonidazole in acute and fractionated irradiation of a human osteosarcoma xenograft. [/sup 60/Co

    SciTech Connect

    Rofstad, E.K.; Brustad, T.

    1980-09-01

    The radiosensitizing effect of misonidazole (Ro-07-0582) in acute and fractionated irradiation of a human osteosarcoma grown in the athymic mutant nude mouse was studied. Tumor regrowth delay was used as a measure of response. The enhancement ratio of misonidazole was found to be 1.45 for an actue dose of 12.50 Gy and 1.25 for four fractions of 3.75 Gy, delivered over four consecutive days. It is concluded that the present osteosarcoma xenograft reoxygenated inadequately during the three day period which elapsed from the first to the fourth fraction of 3.75 Gy.

  11. Anti-alphav integrin monoclonal antibody intetumumab enhances the efficacy of radiation therapy and reduces metastasis of human cancer xenografts in nude rats.

    PubMed

    Ning, Shoucheng; Tian, Junqiang; Marshall, Deborah J; Knox, Susan J

    2010-10-01

    We previously reported that intetumumab (CNTO 95), a fully human anti-αv integrin monoclonal antibody, is a radiosensitizer in mice with xenograft tumors. Because intetumumab does not cross-react with mouse integrins, but has cross-reactivity with rat integrins, we next studied the potential combined use of radiation therapy and intetumumab in human cancer xenograft models in nude rats to assess effects on both tumor cells and the tumor microenvironment. Nude rats bearing human head and neck cancer and non-small cell lung cancer (NSCLC) xenografts were treated with intetumumab and fractionated local tumor radiotherapy. Effects on tumor growth and metastasis, blood perfusion, oxygenation, and gastrointestinal toxicity were studied. Intetumumab alone had a moderate effect on tumor growth. When combined with fractionated radiation therapy, intetumumab significantly inhibited tumor growth and produced a tumor response rate that was significantly better than with radiation therapy alone. Treatment with intetumumab also significantly reduced lung metastasis in the A549 NSCLC xenograft model. The oxygenation and blood perfusion in xenograft tumors measured by microbubble-enhanced ultrasound imaging were substantially increased after treatment with intetumumab. The combined use of intetumumab and radiation therapy reduced the microvessel density and increased apoptosis in tumor cells and the tumor microenvironment. Toxicity studies showed that treatment with intetumumab did not cause the histopathologic changes in the lungs and did not sensitize the sensitive gastrointestinal epithelium to the effect of radiation therapy. Intetumumab can potentiate the efficacy of fractionated radiation therapy in human cancer xenograft tumors in nude rats without increased toxicity. PMID:20841470

  12. Measuring Complexity of Mouse Brain Morphological Changes Using GeoEntropy

    NASA Astrophysics Data System (ADS)

    El-fiqi, Heba Z.; Pham, Tuan D.; Hattori, Haroldo T.; Crane, Denis I.

    2010-01-01

    Given the current emphasis on research into human neurodegenerative diseases, an effective computing approach for the analysis of complex brain morphological changes would represent a significant technological innovation. The availability of mouse models of such disorders provides an experimental system to test novel approaches to brain image analysis. Here we utilize a mouse model of a neurodegenerative disorder to model changes to cerebellar morphology during the postnatal period, and have applied the GeoEntropy algorithm to measure the complexity of morphological changes.

  13. King cobra (Ophiophagus hannah) venom L-amino acid oxidase induces apoptosis in PC-3 cells and suppresses PC-3 solid tumor growth in a tumor xenograft mouse model.

    PubMed

    Lee, Mui Li; Fung, Shin Yee; Chung, Ivy; Pailoor, Jayalakshmi; Cheah, Swee Hung; Tan, Nget Hong

    2014-01-01

    King cobra (Ophiophagus hannah) venom L-amino acid oxidase (OH-LAAO), a heat stable enzyme, has been shown to exhibit very potent anti-proliferative activity against human breast and lung tumorigenic cells but not in their non-tumorigenic counterparts. We further examine its in vitro and in vivo anti-tumor activity in a human prostate adenocarcinoma (PC-3) model. OH-LAAO demonstrated potent cytotoxicity against PC-3 cells with IC50 of 0.05 µg/mL after 72 h incubation in vitro. It induced apoptosis as evidenced with an increase in caspase-3/7 cleavages and an increase in annexin V-stained cells. To examine its in vivo anti-tumor activity, we treated PC-3 tumor xenograft implanted subcutaneously in immunodeficient NU/NU (nude) mice with 1 µg/g OH-LAAO given intraperitoneally (i.p.). After 8 weeks of treatment, OH-LAAO treated PC-3 tumors were markedly inhibited, when compared to the control group (P <0.05). TUNEL staining analysis on the tumor sections showed a significantly increase of apoptotic cells in the LAAO-treated animals. Histological examinations of the vital organs in these two groups showed no significant differences with normal tissues, indicating no obvious tissue damage. The treatment also did not cause any significant changes on the body weight of the mice during the duration of the study. These observations suggest that OH-LAAO cytotoxic effects may be specific to tumor xenografts and less to normal organs. Given its potent anti-tumor activities shown in vitro as well as in vivo, the king cobra venom LAAO can potentially be developed to treat prostate cancer and other solid tumors. PMID:24782648

  14. Reliable Establishment of Human Sarcoma Xenografts in the Nude Rat

    PubMed Central

    Tinkey, Peggy T.; Milas, Mira

    1999-01-01

    Purpose. The ability to establish consistent human tumor xenografts in experimental animals is a crucial part of preclinical investigations.The goal of this study was to develop a method of establishing a human tumor xenograft in the leg of a nude rat for evaluation of new surgical and molecular methods of treatments of human extremity sarcoma. Methods and results. Initial attempts to produce sarcoma nodules by subcutaneous injection of a human leiomyosarcoma tumor cell suspension (SKLMS-1) resulted in tumor nodule formation in only four of 10 sites (40%).The xenograft method was modified to include younger nude rats of a different source and substrain (HSD:rnu/rnu, 5–9 weeks old), treated with 500 cGy whole-body irradiation, and the transplantation of tumor cells or small tumor fragments which had been embedded in Matrigel.These changes improved the tumor take rate per site to 52/52 (100%).Tumor nodules demonstrated rapid and progressive growth and histological features consistent with the original human sarcoma. Discussion. Successful human leiomyosarcoma establishment in these nude rats permits the investigation of sarcoma biology and treatment with surgical procedures for which a mouse model would be inadequate. In this study we identified modifications in technique which enhanced the xenografting of a leiomyosarcoma cell line in nude rats; these techniques may increase tumor take rates for other tumor types as well. PMID:18521275

  15. Quercetin Aglycone Is Bioavailable in Murine Pancreas and Pancreatic Xenografts

    PubMed Central

    Zhang, Lifeng; Angst, Eliane; Park, Jenny L.; Moro, Aune; Dawson, David W.; Reber, Howard A.; Eibl, Guido; Hines, O. Joe; Go, Vay-Liang W.; Lu, Qing-Yi

    2010-01-01

    Quercetin is a potential chemopreventive and chemotherapeutic agent for pancreatic and other cancers. This study was to examine the distribution of quercetin in plasma, lung, liver, pancreas and pancreatic cancer xenografts in a murine in vivo model and the uptake of quercetin in pancreatic cancer MiaPaCa-2 cells in cellular in vitro model. Mice were randomly allocated to control diet, 0.2 and 1% quercetin diet groups utilizing the AIN93G-based diet (n=12 per group) for 6 weeks. In addition, 6 mice from each group were injected weekly with chemotherapeutic drug gemcitabine (120 mg/kg mouse, i.p.). MiaPaCa cells were collected from culture medium after cells were exposed to 30 µM of quercetin for 0.5, 1, 2, 4, 8, and 24 hrs. Levels of quercetin and 3-O’-methyl-quercetin in mice tissues and MiaPaCa-2 cells were measured by high-pressure liquid chromatography following enzymatic hydrolysis and then extraction. Our study showed that quercetin is accumulated in pancreatic cancer cells, and is absorbed in the circulating system, tumors and tissues of pancreas, liver and lung in vivo. A higher proportion of total quercetin found in tumors and pancreas are aglycones. Gemcitabine co-treatment with quercetin reduced absorption of quercetin in mice circulatory system and liver. Results from the study provide important information on the interpretation of chemo-therapeutic efficacy of quercetin. PMID:20499918

  16. Small-sample inference for incomplete longitudinal data with truncation and censoring in tumor xenograft models.

    PubMed

    Tan, Ming; Fang, Hong-Bin; Tian, Guo-Liang; Houghton, Peter J

    2002-09-01

    In cancer drug development, demonstrating activity in xenograft models, where mice are grafted with human cancer cells, is an important step in bringing a promising compound to humans. A key outcome variable is the tumor volume measured in a given period of time for groups of mice given different doses of a single or combination anticancer regimen. However, a mouse may die before the end of a study or may be sacrificed when its tumor volume quadruples, and its tumor may be suppressed for some time and then grow back. Thus, incomplete repeated measurements arise. The incompleteness or missingness is also caused by drastic tumor shrinkage (<0.01 cm3) or random truncation. Because of the small sample sizes in these models, asymptotic inferences are usually not appropriate. We propose two parametric test procedures based on the EM algorithm and the Bayesian method to compare treatment effects among different groups while accounting for informative censoring. A real xenograft study on a new antitumor agent, temozolomide, combined with irinotecan is analyzed using the proposed methods. PMID:12229996

  17. Casticin Induced Apoptosis in A375.S2 Human Melanoma Cells through the Inhibition of NF-[Formula: see text]B and Mitochondria-Dependent Pathways In Vitro and Inhibited Human Melanoma Xenografts in a Mouse Model In Vivo.

    PubMed

    Shiue, Yin-Wen; Lu, Chi-Cheng; Hsiao, Yu-Ping; Liao, Ching-Lung; Lin, Jing-Pin; Lai, Kuang-Chi; Yu, Chien-Chih; Huang, Yi-Ping; Ho, Heng-Chien; Chung, Jing-Gung

    2016-01-01

    Casticin, a polymethoxyflavone occurring in natural plants, has been shown to have anticancer activities. In the present study, we aims to investigate the anti-skin cancer activity of casticin on melanoma cells in vitro and the antitumor effect of casticin on human melanoma xenografts in nu/nu mice in vivo. A flow cytometric assay was performed to detect expression of viable cells, cell cycles, reactive oxygen species production, levels of [Formula: see text] and caspase activity. A Western blotting assay and confocal laser microscope examination were performed to detect expression of protein levels. In the in vitro studies, we found that casticin induced morphological cell changes and DNA condensation and damage, decreased the total viable cells, and induced G2/M phase arrest. Casticin promoted reactive oxygen species (ROS) production, decreased the level of [Formula: see text], and promoted caspase-3 activities in A375.S2 cells. The induced G2/M phase arrest indicated by the Western blotting assay showed that casticin promoted the expression of p53, p21 and CHK-1 proteins and inhibited the protein levels of Cdc25c, CDK-1, Cyclin A and B. The casticin-induced apoptosis indicated that casticin promoted pro-apoptotic proteins but inhibited anti-apoptotic proteins. These findings also were confirmed by the fact that casticin promoted the release of AIF and Endo G from mitochondria to cytosol. An electrophoretic mobility shift assay (EMSA) assay showed that casticin inhibited the NF-[Formula: see text]B binding DNA and that these effects were time-dependent. In the in vivo studies, results from immuno-deficient nu/nu mice bearing the A375.S2 tumor xenograft indicated that casticin significantly suppressed tumor growth based on tumor size and weight decreases. Early G2/M arrest and mitochondria-dependent signaling contributed to the apoptotic A375.S2 cell demise induced by casticin. In in vivo experiments, A375.S2 also efficaciously suppressed tumor volume in a

  18. NOSH-aspirin (NBS-1120), a novel nitric oxide- and hydrogen sulfide-releasing hybrid is a potent inhibitor of colon cancer cell growth in vitro and in a xenograft mouse model

    SciTech Connect

    Chattopadhyay, Mitali; Kodela, Ravinder; Olson, Kenneth R.; Kashfi, Khosrow

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer NOSH-aspirin is the first dual acting NO and H{sub 2}S releasing hybrid. Black-Right-Pointing-Pointer Its IC{sub 50} for cell growth inhibition is in the low nano-molar range. Black-Right-Pointing-Pointer Structure-activity studies show that the sum of the parts does not equal the whole. Black-Right-Pointing-Pointer NOSH-aspirin reduced tumor growth by 85% in mice bearing a colon cancer xenograft. -- Abstract: Nonsteroidal anti-inflammatory drugs (NSAIDs) are prototypical anti-cancer agents. However, their long-term use is associated with adverse gastrointestinal effects. Recognition that endogenous gaseous mediators, nitric oxide (NO) and hydrogen sulfide (H{sub 2}S) can increase mucosal defense mechanisms has led to the development of NO- and H{sub 2}S-releasing NSAIDs with increased safety profiles. Here we report on a new hybrid, NOSH-aspirin, which is an NO- and H{sub 2}S-releasing agent. NOSH-aspirin inhibited HT-29 colon cancer growth with IC{sub 50}s of 45.5 {+-} 2.5, 19.7 {+-} 3.3, and 7.7 {+-} 2.2 nM at 24, 48, and 72 h, respectively. This is the first NSAID based agent with such high degree of potency. NOSH-aspirin inhibited cell proliferation, induced apoptosis, and caused G{sub 0}/G{sub 1} cell cycle block. Reconstitution and structure-activity studies representing a fairly close approximation to the intact molecule showed that NOSH-aspirin was 9000-fold more potent than the sum of its parts towards growth inhibition. NOSH-aspirin inhibited ovine COX-1 more than ovine COX-2. NOSH-ASA treatment of mice bearing a human colon cancer xenograft caused a reduction in volume of 85%. Taken together, these results demonstrate that NOSH-aspirin has strong anti-cancer potential and merits further evaluation.

  19. Fructus ligustri lucidi extracts induce human glioma cell death through regulation of Akt/mTOR pathway in vitro and reduce glioma tumor growth in U87MG xenograft mouse model.

    PubMed

    Jeong, Ji Cheon; Kim, Jin Won; Kwon, Chae Hwa; Kim, Thae Hyun; Kim, Yong Keun

    2011-03-01

    The present study was undertaken to examine the effect of Fructus ligustri lucidi (FLL) extracts on glioma cell growth and to determine the underlying mechanism by which FLL extracts exert anticancer properties in human U87MG glioma cells. The FLL extracts resulted in cell death in a dose- and time-dependent manner. Western blot analysis showed that treatment with FLL extracts caused down-regulation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway. Overexpression of Akt prevented the cell death induced by the FLL extracts. The FLL extracts caused a decrease in the expression of mammalian target of rapamycin (mTOR) and the FLL extract-induced cell death was increased by the mTOR inhibitor rapamycin. The FLL extracts decreased the expression of survivin. Oral administration of FLL extracts in subcutaneous U87MG xenograft models reduced the glioma tumor volume. These findings indicate that the FLL extracts resulted in glioma cell death through regulation of the Akt/mTOR/survivin pathway in vitro and inhibited glioma tumor growth in vivo. These data suggest that the FLL extracts may serve as a potential therapeutic agent for malignant human gliomas. PMID:20737659

  20. Efficacy of tumor-targeting Salmonella typhimurium A1-R in combination with anti-angiogenesis therapy on a pancreatic cancer patient-derived orthotopic xenograft (PDOX) and cell line mouse models

    PubMed Central

    Hiroshima, Yukihiko; Zhang, Yong; Murakami, Takashi; Maawy, Ali; Miwa, Shinji; Yamamoto, Mako; Yano, Shuya; Sato, Sho; Momiyama, Masashi; Mori, Ryutaro; Matsuyama, Ryusei; Chishima, Takashi; Tanaka, Kuniya; Ichikawa, Yasushi; Bouvet, Michael; Endo, Itaru; Zhao, Ming; Hoffman, Robert M.

    2014-01-01

    The aim of the present study was to examine the efficacy of tumor-targeting Salmonella typhimurium A1-R treatment following anti-vascular endothelial growth factor (VEGF) therapy on VEGF-positive human pancreatic cancer. A pancreatic cancer patient-derived orthotopic xenograft (PDOX) that was VEGF-positive and an orthotopic VEGF-positive human pancreatic cancer cell line (MiaPaCa-2-GFP) as well as a VEGF-negative cell line (Panc-1) were tested. Nude mice with these tumors were treated with gemcitabine (GEM), bevacizumab (BEV), and S. typhimurium A1-R. BEV/GEM followed by S. typhimurium A1-R significantly reduced tumor weight compared to BEV/GEM treatment alone in the PDOX and MiaPaCa-2 models. Neither treatment was as effective in the VEGF-negative model as in the VEGF-positive models. These results demonstrate that S. typhimurium A1-R following anti-angiogenic therapy is effective on pancreatic cancer including the PDOX model, suggesting its clinical potential. PMID:25402324

  1. NOD/SCID IL2Rγ-null mouse xenograft model of human p53-mutated chronic lymphocytic leukemia and ATM-mutated mantle cell lymphoma using permanent cell lines.

    PubMed

    Verner, Jan; Trbusek, Martin; Chovancova, Jana; Jaskova, Zuzana; Moulis, Mojmir; Folber, Frantisek; Halouzka, Roman; Mayer, Jiri; Pospisilova, Sarka; Doubek, Michael

    2015-01-01

    Xenograft models represent a promising tool to study the pathogenesis of hematological malignancies. To establish a reliable and appropriate in vivo model of aggressive human B-cell leukemia and lymphoma we xenotransplanted four p53-mutated cell lines and one ATM-mutated cell line into immunodeficient NOD/SCID IL2Rγ-null mice. The cell lines MEC-1, SU-DHL-4, JEKO-1, REC-1, and GRANTA-519 were transplanted intraperitoneally or subcutaneously and the engraftment was investigated using immunohistochemistry and flow cytometry. We found significant differences in engraftment efficiency. MEC-1, JEKO-1 and GRANTA-519 cell lines engrafted most efficiently, while SU-DHL-4 cells did not engraft at all. MEC-1 and GRANTA-519 massively infiltrated organs and the whole intraperitoneal cavity showing very aggressive growth. In addition, GRANTA-519 cells massively migrated to the bone marrow regardless of the transplantation route. The MEC-1 and GRANTA-519 cells can be especially recommended for in vivo study of p53-mutated chronic lymphocytic leukemia and ATM-mutated mantle cell lymphoma, respectively. PMID:25827173

  2. In situ fiber-optic oxygen consumption measurements from a working mouse heart.

    PubMed

    Zhao, Y; Richman, A; Storey, C; Radford, N B; Pantano, P

    1999-09-01

    Luminescence-based imaging-fiber oxygen sensors (IFOSs) were utilized for the in situ measurement of oxygen consumption from intact perfused mouse hearts. IFOSs were fabricated using a technically expedient, photoinitiated polymerization reaction whereby an oxygen-sensitive polymer matrix was immobilized in a precise location on an imaging fiber's distal face. The oxygen-sensing layer used in this work comprised a transition metal complex, Ru(Ph2phen)3(2+), entrapped in a gaspermeable photopolymerizable siloxane membrane (PS802). The transduction mechanism was based upon the oxygen collisional quenching of the ruthenium complex luminescence; detection was performed utilizing an epi-fluorescence microscope/charge coupled device imaging system. IFOS measurements from working mouse hearts were validated through concurrent, blind, ex situ blood gas analyzer (BGA) measurements. The BGA and IFOS methodologies were utilized successfully to measure oxygen concentrations in aortic and pulmonary artery perfusates from the working mouse heart before and after isoproterenol administration. Coupled with coronary-flow measurements, these data were used to calculate myocardial oxygen consumption. Regression analysis of measurements of myocardial oxygen consumption showed that there was a strong correlation between the values generated by the BGA sampling and those obtained via in situ IFOS methods. To our knowledge, this research represents the first report of in situ fiber-optic sensor monitoring of oxygen content from the intact, beating mouse heart. PMID:10489534

  3. A low-cost telemetry system suitable for measuring mouse biopotentials.

    PubMed

    Lin, David C; Bucher, Brandon P; Davis, Howard P; Sprunger, Leslie K

    2008-03-01

    The ability to generate specific genetic mutations in mice is a powerful tool to study normal and pathophysiological function. In order to determine the effects of a mutation, measurement of physiological variables, such as biopotentials, is often necessary. However, such measurements can be particularly challenging to obtain from an awake, unrestrained mouse. The goal of this study was to design and implement a telemetry system suitable for recording biopotentials from a mouse. A battery-powered system was fabricated from commercially available electronic components mounted on a small circuit board. The frequency response of the system was measured over a range of frequencies and found suitable for recording biopotentials in mice and larger animals. We affixed the circuit board externally to a mouse and connected surface electrodes to measure electrocardiograms (ECG). The size and weight of the board did not disturb normal behavior over 30-60 min. Recorded ECGs had easily identifiable components relevant to physiological parameters and had a similar frequency spectrum compared to recordings obtained from a commercially available measurement system. In conclusion, the telemetry system was low-cost due to the availability of the components, straightforward to implement, and provided biopotential recordings suitable for measuring physiological parameters in an awake mouse. PMID:17403611

  4. Use of PC mouse components for continuous measuring of human heartbeat.

    PubMed

    Beiderman, Yevgeny; Talyosef, Roy; Yeori, Daniel; Garcia, Javier; Mico, Vicente; Zalevsky, Zeev

    2012-06-01

    A new technology for remote measuring of vibration sources was recently developed for industrial, medical, and security-related applications [Int. Appl. Patent No: PCT/IL2008/001008]. It requires relatively expensive equipment, such as high-speed complementary metal oxide semiconductor (CMOS) sensors and customized optics. In this paper, we demonstrate how the usage of a simple personal computer (PC) mouse as an optical system composed of a low-power laser and a CMOS circuitry on the same integrated circuit package, can be used to monitor heartbeat from the wrist. The method is based on modifying the mouse optical system in such a way that it will recognize temporal change in skin's vibration profile, generated due to the heart pulses, as mouse movement. The tests that were carried out show a very good correlation between the heartbeat rate measured from human skin and the reference values taken manually. PMID:22695566

  5. LY2801653 is an orally bioavailable multi-kinase inhibitor with potent activity against MET, MST1R, and other oncoproteins, and displays anti-tumor activities in mouse xenograft models.

    PubMed

    Yan, S Betty; Peek, Victoria L; Ajamie, Rose; Buchanan, Sean G; Graff, Jeremy R; Heidler, Steven A; Hui, Yu-Hua; Huss, Karen L; Konicek, Bruce W; Manro, Jason R; Shih, Chuan; Stewart, Julie A; Stewart, Trent R; Stout, Stephanie L; Uhlik, Mark T; Um, Suzane L; Wang, Yong; Wu, Wenjuan; Yan, Lei; Yang, Wei J; Zhong, Boyu; Walgren, Richard A

    2013-08-01

    The HGF/MET signaling pathway regulates a wide variety of normal cellular functions that can be subverted to support neoplasia, including cell proliferation, survival, apoptosis, scattering and motility, invasion, and angiogenesis. MET over-expression (with or without gene amplification), aberrant autocrine or paracrine ligand production, and missense MET mutations are mechanisms that lead to activation of the MET pathway in tumors and are associated with poor prognostic outcome. We report here preclinical development of a potent, orally bioavailable, small-molecule inhibitor LY2801653 targeting MET kinase. LY2801653 is a type-II ATP competitive, slow-off inhibitor of MET tyrosine kinase with a dissociation constant (Ki) of 2 nM, a pharmacodynamic residence time (Koff) of 0.00132 min(-1) and t1/2 of 525 min. LY2801653 demonstrated in vitro effects on MET pathway-dependent cell scattering and cell proliferation; in vivo anti-tumor effects in MET amplified (MKN45), MET autocrine (U-87MG, and KP4) and MET over-expressed (H441) xenograft models; and in vivo vessel normalization effects. LY2801653 also maintained potency against 13 MET variants, each bearing a single-point mutation. In subsequent nonclinical characterization, LY2801653 was found to have potent activity against several other receptor tyrosine oncokinases including MST1R, FLT3, AXL, MERTK, TEK, ROS1, DDR1/2 and against the serine/threonine kinases MKNK1/2. The potential value of MET and other inhibited targets within a number of malignancies (such as colon, bile ducts, and lung) is discussed. LY2801653 is currently in phase 1 clinical testing in patients with advanced cancer (trial I3O-MC-JSBA, NCT01285037). PMID:23275061

  6. Metastatic Recurrence in a Pancreatic Cancer Patient Derived Orthotopic Xenograft (PDOX) Nude Mouse Model Is Inhibited by Neoadjuvant Chemotherapy in Combination with Fluorescence-Guided Surgery with an Anti-CA 19-9-Conjugated Fluorophore

    PubMed Central

    Zhang, Yong; Murakami, Takashi; Momiyama, Masashi; Mori, Ryutaro; Matsuyama, Ryusei; Katz, Matthew H. G.; Fleming, Jason B.; Chishima, Takashi; Tanaka, Kuniya; Ichikawa, Yasushi; Endo, Itaru; Hoffman, Robert M.; Bouvet, Michael

    2014-01-01

    The aim of this study is to determine the efficacy of neoadjuvant chemotherapy (NAC) with gemcitabine (GEM) in combination with fluorescence-guided surgery (FGS) on a pancreatic cancer patient derived orthotopic xenograft (PDOX) model. A PDOX model was established from a CA19-9-positive, CEA-negative tumor from a patient who had undergone a pancreaticoduodenectomy for pancreatic adenocarcinoma. Mice were randomized to 4 groups: bright light surgery (BLS) only; BLS+NAC; FGS only; and FGS+NAC. An anti-CA19-9 or anti-CEA antibody conjugated to DyLight 650 was administered intravenously via the tail vein of mice with the pancreatic cancer PDOX 24 hours before surgery. The PDOX was brightly labeled with fluorophore-conjugated anti-CA19-9, but not with a fluorophore-conjugated anti-CEA antibody. FGS was performed using the fluorophore-conjugated anti-CA19-9 antibody. FGS had no benefit over BLS to prevent metastatic recurrence. NAC in combination with BLS did not convey an advantage over BLS to prevent metastatic recurrence. However, FGS+NAC significantly reduced the metastatic recurrence frequency to one of 8 mice, compared to FGS only after which metastasis recurred in 6 out of 8 mice, and BLS+NAC with metastatic recurrence in 7 out of 8 mice (p = 0.041). Thus NAC in combination with FGS can reduce or even eliminate metastatic recurrence of pancreatic cancer sensitive to NAC. The present study further emphasizes the power of the PDOX model which enables metastasis to occur and thereby identify the efficacy of NAC in combination with FGS on metastatic recurrence. PMID:25463150

  7. Establishment and Characterization of a Human Neuroendocrine Tumor Xenograft.

    PubMed

    Yang, Zhaoying; Zhang, Le; Serra, Stefano; Law, Calvin; Wei, Alice; Stockley, Tracy L; Ezzat, Shereen; Asa, Sylvia L

    2016-06-01

    Neuroendocrine tumors (NETs) are increasing in incidence yet the cause of these tumors remains unknown. Familial associations have shed light on the genetic basis of some of these tumors, but sporadic tumors seem to have primarily epigenetic dysregulation. The rarity of cell lines and animal models has been a barrier to studies of treatment modalities. We set out to develop a xenograft model of gastrointestinal NETs. Primary human NETs were collected at the time of surgery under sterile conditions and xenografted into the flanks of immunodeficient mice. Tumor growth was measured and when tumors reached 1500 mm(3), they were excised and half was re-xenografted through multiple generations. The other half was bisected; a part was frozen and a part was fixed for morphologic and immunohistochemical characterization as well as molecular validation of fidelity of a successful xenograft. Of 106 human NETs, seven were successfully engrafted of which only one tumor was successfully propagated for eight passages. Two years later, the tumor retains its neuroendocrine features and similarity to the original primary human tumor. It has retained expression of keratin as well as chromogranin A reactivity. The establishment of a NET xenograft provides a model for further study of the biological behavior of these tumors and can be used to examine the in vivo effects of various medical and targeted radiotherapeutic agents on tumor growth. PMID:27067082

  8. Reference point indentation is not indicative of whole mouse bone measures of stress intensity fracture toughness

    PubMed Central

    Carriero, Alessandra; Bruse, Jan L.; Oldknow, Karla J.; Millán, José Luis; Farquharson, Colin; Shefelbine, Sandra J.

    2014-01-01

    Bone fragility is a concern for aged and diseased bone. Measuring bone toughness and understanding fracture properties of the bone are critical for predicting fracture risk associated with age and disease and for preclinical testing of therapies. A reference point indentation technique (BioDent) has recently been developed to determine bone's resistance to fracture in a minimally invasive way by measuring the indentation distance increase (IDI) between the first and last indentations over cyclic indentations in the same position. In this study, we investigate the relationship between fracture toughness KC and reference point indentation parameters (i.e. IDI, total indentation distance (TID) and creep indentation distance (CID)) in bones from 38 mice from six types (C57Bl/6, Balb, oim/oim, oim/+, Phospho1−/− and Phospho1 wild type counterpart). These mice bone are models of healthy and diseased bone spanning a range of fracture toughness from very brittle (oim/oim) to ductile (Phospho1−/−). Left femora were dissected, notched and tested in 3-point bending until complete failure. Contralateral femora were dissected and indented in 10 sites of their anterior and posterior shaft surface over 10 indentation cycles. IDI, TID and CID were measured. Results from this study suggest that reference point indentation parameters are not indicative of stress intensity fracture toughness in mouse bone. In particular, the IDI values at the anterior mid-diaphysis across mouse types overlapped, making it difficult to discern differences between mouse types, despite having extreme differences in stress intensity based toughness measures. When more locations of indentation were considered, the normalised IDIs could distinguish between mouse types. Future studies should investigate the relationship of the reference point indentation parameters for mouse bone in other material properties of the bone tissue in order to determine their use for measuring bone quality. PMID:25280470

  9. Dynamic oxygenation measurements using a phosphorescent coating within a mammary window chamber mouse model

    PubMed Central

    Schafer, Rachel; Gmitro, Arthur F.

    2015-01-01

    Phosphorescent lifetime imaging was employed to measure the spatial and temporal distribution of oxygen partial pressure in tissue under the coverslip of a mammary window chamber breast cancer mouse model. A thin platinum-porphyrin coating, whose phosphorescent lifetime varies monotonically with oxygen partial pressure, was applied to the coverslip surface. Dynamic temporal responses to induced modulations in oxygenation levels were measured using this approach. PMID:25780753

  10. Hyponeophagia: a measure of anxiety in the mouse.

    PubMed

    Deacon, Rob M J

    2011-01-01

    Before the present day, when fast-acting and potent rodenticides such as alpha-chloralose were not yet in use, the work of pest controllers was often hampered by a phenomenon known as "bait shyness". Mice and rats cannot vomit, due to the tightness of the cardiac sphincter of the stomach, so to overcome the problem of potential food toxicity they have evolved a strategy of first ingesting only very small amounts of novel substances. The amounts ingested then gradually increase until the animal has determined whether the substance is safe and nutritious. So the old rat-catchers would first put a palatable substance such as oatmeal, which was to be the vehicle for the toxin, in the infested area. Only when large amounts were being readily consumed would they then add the poison, in amounts calculated not to affect the taste of the vehicle. The poisoned bait, which the animals were now readily eating in large amounts, would then swiftly perform its function. Bait shyness is now used in the behavioural laboratory as a way of measuring anxiety. A highly palatable but novel substance, such as sweet corn, nuts or sweetened condensed milk, is offered to the mice (or rats) in a novel situation, such as a new cage. The latency to consume a defined amount of the new food is then measured. PMID:21633328

  11. Non-contact measurement of linear external dimensions of the mouse eye

    PubMed Central

    Wisard, Jeffrey; Chrenek, Micah A.; Wright, Charles; Dalal, Nupur; Pardue, Machelle T.; Boatright, Jeffrey H.; Nickerson, John M.

    2010-01-01

    Biometric analyses of quantitative traits in eyes of mice can reveal abnormalities related to refractive or ocular development. Due to the small size of the mouse eye, highly accurate and precise measurements are needed to detect meaningful differences. We sought a non-contact measuring technique to obtain highly accurate and precise linear dimensions of the mouse eye. Laser micrometry was validated with gauge block standards. Simple procedures to measure eye dimensions on three axes were devised. Mouse eyes from C57BL/6J and rd10 on a C57BL/6J background were dissected and extraocular muscle and fat removed. External eye dimensions of axial length (anterior-posterior (A-P) axis) and equatorial diameter (superior-inferior (S-I) and nasal-temporal (N-T) axes) were obtained with a laser micrometer. Several approaches to prevent or ameliorate evaporation due to room air were employed. The resolution of the laser micrometer was less than 0.77 microns, and it provided accurate and precise non-contact measurements of eye dimensions on three axes. External dimensions of the eye strongly correlated with eye weight. The N-T and S-I dimensions of the eye correlated with each other most closely from among the 28 pair-wise combinations of the several parameters that were collected. The equatorial axis measurements correlated well from the right and left eye of each mouse. The A-P measurements did not correlate or correlated poorly in each pair of eyes. The instrument is well suited for the measurement of enucleated eyes and other structures from most commonly used species in experimental vision research and ophthalmology. PMID:20067806

  12. CAPACITANCE MEASUREMENTS OF REGULATED EXOCYTOSIS IN MOUSE TASTE CELLS

    PubMed Central

    Vandenbeuch, Aurelie; Zorec, Robert; Kinnamon, Sue C.

    2010-01-01

    Exocytosis, consisting of the merger of vesicle and plasma membrane, is a common mechanism used by different types of nucleated cells to release their vesicular contents. Taste cells possess vesicles containing various neurotransmitters to communicate with adjacent taste cells and afferent nerve fibers. However, whether these vesicles engage in exocytosis upon a stimulus is not known. Since vesicle membrane merger with the plasma membrane is reflected in plasma membrane area fluctuations, we measured membrane capacitance (Cm), a parameter linearly related to membrane surface area. To investigate whether taste cells undergo regulated exocytosis, we used the compensated tight-seal whole-cell recording technique to monitor depolarization-induced changes in Cm in the different types of taste cells. To identify taste cell types, mice expressing green fluorescent protein (GFP) from the TRPM5 promoter or from the GAD67 promoter were used to discriminate Type II and Type III taste cells, respectively. Moreover, the cell types were also identified by monitoring their voltage-current properties. The results demonstrate that only Type III taste cells show significant depolarization-induced increases in Cm, which were correlated to the voltage-activated calcium currents. The results suggest that Type III, but neither Type II nor Type I cells exhibit depolarization-induced regulated exocytosis to release transmitter and activate gustatory afferent nerve fibers. PMID:21048127

  13. Integrated Bottom-Up and Top-Down Proteomics of Patient-Derived Breast Tumor Xenografts*

    PubMed Central

    Ntai, Ioanna; LeDuc, Richard D.; Fellers, Ryan T.; Erdmann-Gilmore, Petra; Davies, Sherri R.; Rumsey, Jeanne; Early, Bryan P.; Thomas, Paul M.; Li, Shunqiang; Compton, Philip D.; Ellis, Matthew J. C.; Ruggles, Kelly V.; Fenyö, David; Boja, Emily S.; Rodriguez, Henry; Townsend, R. Reid; Kelleher, Neil L.

    2016-01-01

    Bottom-up proteomics relies on the use of proteases and is the method of choice for identifying thousands of protein groups in complex samples. Top-down proteomics has been shown to be robust for direct analysis of small proteins and offers a solution to the “peptide-to-protein” inference problem inherent with bottom-up approaches. Here, we describe the first large-scale integration of genomic, bottom-up and top-down proteomic data for the comparative analysis of patient-derived mouse xenograft models of basal and luminal B human breast cancer, WHIM2 and WHIM16, respectively. Using these well-characterized xenograft models established by the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium, we compared and contrasted the performance of bottom-up and top-down proteomics to detect cancer-specific aberrations at the peptide and proteoform levels and to measure differential expression of proteins and proteoforms. Bottom-up proteomic analysis of the tumor xenografts detected almost 10 times as many coding nucleotide polymorphisms and peptides resulting from novel splice junctions than top-down. For proteins in the range of 0–30 kDa, where quantitation was performed using both approaches, bottom-up proteomics quantified 3,519 protein groups from 49,185 peptides, while top-down proteomics quantified 982 proteoforms mapping to 358 proteins. Examples of both concordant and discordant quantitation were found in a ∼60:40 ratio, providing a unique opportunity for top-down to fill in missing information. The two techniques showed complementary performance, with bottom-up yielding eight times more identifications of 0–30 kDa proteins in xenograft proteomes, but failing to detect differences in certain posttranslational modifications (PTMs), such as phosphorylation pattern changes of alpha-endosulfine. This work illustrates the potency of a combined bottom-up and top-down proteomics approach to deepen our knowledge of cancer biology, especially

  14. Measuring the multi-frequency electrical impedance of the mouse gastrocnemius muscle using a tetrapolar technique

    NASA Astrophysics Data System (ADS)

    Li, J.; Fogerson, P. M.; Rutkove, S. B.

    2010-04-01

    Electrical impedance methods can be used to evaluate and monitor neuromuscular disease states. Recently, we have applied tetrapolar surface electrical impedance methods to the gastrocnemius muscle of the rat for this purpose and substantial changes in the impedance parameters after sciatic nerve crush can be identified. In order to be able to study additional animal models of nerve and muscle disease, however, it would highly desirable to be able to perform such impedance measurements in the mouse. Yet the small size of the mouse presents a substantial technical challenge. In this study, we evaluate a basic approach for performing such measurements. A series of thin, stainless steel strip electrodes affixed to the gastrocnemius and interfaced via a separate connector to the Imp SFB7® (Impedimed, Inc), provided an effective means for obtaining impedance data in the 20-500 kHz range. After two weeks, test-retest reproducibility was good, with intra-class correlation coefficients as high 0.84 and variability as low as 12.86 ± 6.18% in the 15 mice studied. Using this approach, it may now be possible to study impedance changes in a variety of mouse models of neuromuscular disease, including amyotrophic lateral sclerosis, spinal muscular atrophy, muscular dystrophy and Charcot-Marie-Tooth disease.

  15. Establishing Prostate Cancer Patient Derived Xenografts: Lessons Learned From Older Studies

    PubMed Central

    Russell, Pamela J; Russell, Peter; Rudduck, Christina; Tse, Brian W-C; Williams, Elizabeth D; Raghavan, Derek

    2015-01-01

    Background Understanding the progression of prostate cancer to androgen-independence/castrate resistance and development of preclinical testing models are important for developing new prostate cancer therapies. This report describes studies performed 30 years ago, which demonstrate utility and shortfalls of xenografting to preclinical modeling. Methods We subcutaneously implanted male nude mice with small prostate cancer fragments from transurethral resection of the prostate (TURP) from 29 patients. Successful xenografts were passaged into new host mice. They were characterized using histology, immunohistochemistry for marker expression, flow cytometry for ploidy status, and in some cases by electron microscopy and response to testosterone. Two xenografts were karyotyped by G-banding. Results Tissues from 3/29 donors (10%) gave rise to xenografts that were successfully serially passaged in vivo. Two, (UCRU-PR-1, which subsequently was replaced by a mouse fibrosarcoma, and UCRU-PR-2, which combined epithelial and neuroendocrine features) have been described. UCRU-PR-4 line was a poorly differentiated prostatic adenocarcinoma derived from a patient who had undergone estrogen therapy and bilateral castration after his cancer relapsed. Histologically, this comprised diffusely infiltrating small acinar cell carcinoma with more solid aggregates of poorly differentiated adenocarcinoma. The xenografted line showed histology consistent with a poorly differentiated adenocarcinoma and stained positively for prostatic acid phosphatase (PAcP), epithelial membrane antigen (EMA) and the cytokeratin cocktail, CAM5.2, with weak staining for prostate specific antigen (PSA). The line failed to grow in female nude mice. Castration of three male nude mice after xenograft establishment resulted in cessation of growth in one, growth regression in another and transient growth in another, suggesting that some cells had retained androgen sensitivity. The karyotype (from passage 1) was 43

  16. Measuring Energy Metabolism in the Mouse – Theoretical, Practical, and Analytical Considerations

    PubMed Central

    Speakman, John R.

    2012-01-01

    The mouse is one of the most important model organisms for understanding human genetic function and disease. This includes characterization of the factors that influence energy expenditure and dysregulation of energy balance leading to obesity and its sequelae. Measuring energy metabolism in the mouse presents a challenge because the animals are small, and in this respect it presents similar challenges to measuring energy demands in many other species of small mammal. This paper considers some theoretical, practical, and analytical considerations to be considered when measuring energy expenditure in mice. Theoretically total daily energy expenditure is comprised of several different components: basal or resting expenditure, physical activity, thermoregulation, and the thermic effect of food. Energy expenditure in mice is normally measured using open flow indirect calorimetry apparatus. Two types of system are available – one of which involves a single small Spartan chamber linked to a single analyzer, which is ideal for measuring the individual components of energy demand. The other type of system involves a large chamber which mimics the home cage environment and is generally configured with several chambers/analyzer. These latter systems are ideal for measuring total daily energy expenditure but at present do not allow accurate decomposition of the total expenditure into its components. The greatest analytical challenge for mouse expenditure data is how to account for body size differences between individuals. This has been a matter of some discussion for at least 120 years. The statistically most appropriate approach is to use analysis of covariance with individual aspects of body composition as independent predictors. PMID:23504620

  17. Measuring energy metabolism in the mouse - theoretical, practical, and analytical considerations.

    PubMed

    Speakman, John R

    2013-01-01

    The mouse is one of the most important model organisms for understanding human genetic function and disease. This includes characterization of the factors that influence energy expenditure and dysregulation of energy balance leading to obesity and its sequelae. Measuring energy metabolism in the mouse presents a challenge because the animals are small, and in this respect it presents similar challenges to measuring energy demands in many other species of small mammal. This paper considers some theoretical, practical, and analytical considerations to be considered when measuring energy expenditure in mice. Theoretically total daily energy expenditure is comprised of several different components: basal or resting expenditure, physical activity, thermoregulation, and the thermic effect of food. Energy expenditure in mice is normally measured using open flow indirect calorimetry apparatus. Two types of system are available - one of which involves a single small Spartan chamber linked to a single analyzer, which is ideal for measuring the individual components of energy demand. The other type of system involves a large chamber which mimics the home cage environment and is generally configured with several chambers/analyzer. These latter systems are ideal for measuring total daily energy expenditure but at present do not allow accurate decomposition of the total expenditure into its components. The greatest analytical challenge for mouse expenditure data is how to account for body size differences between individuals. This has been a matter of some discussion for at least 120 years. The statistically most appropriate approach is to use analysis of covariance with individual aspects of body composition as independent predictors. PMID:23504620

  18. Use of optical pharmacokinetics systems (OPS) for non-invasive measurement of Phthalocyanine 4 (Pc 4) concentrations in mice bearing MDA-MB-231 xenografts

    NASA Astrophysics Data System (ADS)

    Bai, Lihua; Joseph, Erin; Olenick, Nancy L.; Mulvihill, John M.; Feyes, Denise K.; Eiseman, Julie L.

    2007-06-01

    Objective: Pc 4, a phthalocyanine photosensitizer in Phase I photodynamic therapy (PDT) trials, requires laser activation near 672 nm. For effective PDT, photosensitizer must be present in the target tissues. OPS uses elastic scattering spectroscopy to measure Pc 4 optical absorption non-invasively, and that absorbance can be converted to concentration using Pc 4 standard curves in 1% Intralipid®. In this study, we used OPS to evaluate Pc 4 optical absorption with time in subcutaneous tumor (with or without laser activation) and in contralateral skin. Tumor response was also evaluated after Pc 4-PDT. Conclusions: Both Pc 4 and hemoglobin optical absorption could be monitored by OPS. The decrease of Pc 4 absorption after PDT and the appearance of d-hbg indicated that alterations occurred in the tumor following Pc 4-PDT. The increase in d-hbg suggests that oxygen was not replaced completely, possibly due to circulation damage in tumor.

  19. Refractive index measurement of the mouse crystalline lens using optical coherence tomography

    PubMed Central

    Chakraborty, Ranjay; Lacy, Kip D.; Tan, Christopher C.; Park, Han na; Pardue, Machelle T.

    2014-01-01

    In recent years, there has been a growing interest for using mouse models in refractive development and myopia research. The crystalline lens is a critical optical component of the mouse eye that occupies greater than 50% of the ocular space, and significant increases in thickness with age. However, changes in refractive index of the mouse crystalline lens are less known. In this study, we examined the changes in thickness and refractive index of the mouse crystalline lens for two different strains, wild-type (WT) and a nyx mutant (nob) over the course of normal visual development or after form deprivation. Refractive index and lens thickness measurements were made on ex vivo lens using spectral domain optical coherence tomography (SD-OCT). Comparison of refractive index measurements on 5 standard ball lenses using the SD-OCT and their known refractive indices (manufacturer provided) indicated good precision (intra-class correlation coefficient, 0.998 and Bland-Altman coefficient of repeatability, 0.116) of the SD-OCT to calculate mouse lens refractive index ex vivo. During normal visual development, lens thickness increased significantly with age for three different cohorts of mice, aged 4 (average thickness from both eyes; WT: 1.78 ± 0.03, nob: 1.79 ± 0.08 mm), 10 (WT: 2.02 ± 0.05, nob: 2.01 ± 0.04 mm) and 16 weeks (WT: 2.12 ± 0.06, nob: 2.09 ± 0.06 mm, p<0.001). Lens thickness was not significantly different between the two strains at any age (p=0.557). For mice with normal vision, refractive index for isolated crystalline lenses in nob mice was significantly greater than WT mice (mean for all ages; WT: 1.42 ± 0.01, nob: 1.44 ± 0.001, p<0.001). After 4 weeks of form deprivation to the right eye using a skull-mounted goggling apparatus, a thinning of the crystalline lens was observed in both right and left eyes of goggled animals compared to their naïve controls (average from both the right and the left eye) for both strains (p=0.052). In form deprived

  20. Longitudinal rotating frame relaxation time measurements in infarcted mouse myocardium in vivo.

    PubMed

    Musthafa, Haja-Sherief N; Dragneva, Galina; Lottonen, Line; Merentie, Mari; Petrov, Lyubomir; Heikura, Tommi; Ylä-Herttuala, Elias; Ylä-Herttuala, Seppo; Gröhn, Olli; Liimatainen, Timo

    2013-05-01

    Longitudinal relaxation time in the rotating frame (T1ρ) was measured using continuous wave irradiation in normal and infarcted mouse myocardium in vivo. Significant increase in T1ρ was found after 7 days of infarction when compared with reference myocardium or in myocardium before infarction. Cine MRI and histology were performed to verify the severity of infarction. The time course of T1ρ in the infarct fits better with granulation and scar tissue formation than necrosis and edema. The results of the study show that T1ρ could potentially be a noninvasive quantitative marker for tissue remodeling after ischemic damage. PMID:22736543

  1. Androgen Regulated Genes in Human Prostate Xenografts in Mice: Relation to BPH and Prostate Cancer

    PubMed Central

    Love, Harold D.; Booton, S. Erin; Boone, Braden E.; Breyer, Joan P.; Koyama, Tatsuki; Revelo, Monica P.; Shappell, Scott B.; Smith, Jeffrey R.; Hayward, Simon W.

    2009-01-01

    Benign prostatic hyperplasia (BPH) and prostate carcinoma (CaP) are linked to aging and the presence of androgens, suggesting that androgen regulated genes play a major role in these common diseases. Androgen regulation of prostate growth and development depends on the presence of intact epithelial-stromal interactions. Further, the prostatic stroma is implicated in BPH. This suggests that epithelial cell lines are inadequate to identify androgen regulated genes that could contribute to BPH and CaP and which could serve as potential clinical biomarkers. In this study, we used a human prostate xenograft model to define a profile of genes regulated in vivo by androgens, with an emphasis on identifying candidate biomarkers. Benign transition zone (TZ) human prostate tissue from radical prostatectomies was grafted to the sub-renal capsule site of intact or castrated male immunodeficient mice, followed by the removal or addition of androgens, respectively. Microarray analysis of RNA from these tissues was used to identify genes that were; 1) highly expressed in prostate, 2) had significant expression changes in response to androgens, and, 3) encode extracellular proteins. A total of 95 genes meeting these criteria were selected for analysis and validation of expression in patient prostate tissues using quantitative real-time PCR. Expression levels of these genes were measured in pooled RNAs from human prostate tissues with varying severity of BPH pathologic changes and CaP of varying Gleason score. A number of androgen regulated genes were identified. Additionally, a subset of these genes were over-expressed in RNA from clinical BPH tissues, and the levels of many were found to correlate with disease status. Our results demonstrate the feasibility, and some of the problems, of using a mouse xenograft model to characterize the androgen regulated expression profiles of intact human prostate tissues. PMID:20027305

  2. A single-islet microplate assay to measure mouse and human islet insulin secretion.

    PubMed

    Truchan, Nathan A; Brar, Harpreet K; Gallagher, Shannon J; Neuman, Joshua C; Kimple, Michelle E

    2015-01-01

    One complication to comparing β-cell function among islet preparations, whether from genetically identical or diverse animals or human organ donors, is the number of islets required per assay. Islet numbers can be limiting, meaning that fewer conditions can be tested; other islet measurements must be excluded; or islets must be pooled from multiple animals/donors for each experiment. Furthermore, pooling islets negates the possibility of performing single-islet comparisons. Our aim was to validate a 96-well plate-based single islet insulin secretion assay that would be as robust as previously published methods to quantify glucose-stimulated insulin secretion from mouse and human islets. First, we tested our new assay using mouse islets, showing robust stimulation of insulin secretion 24 or 48 h after islet isolation. Next, we utilized the assay to quantify mouse islet function on an individual islet basis, measurements that would not be possible with the standard pooled islet assay methods. Next, we validated our new assay using human islets obtained from the Integrated Islet Distribution Program (IIDP). Human islets are known to have widely varying insulin secretion capacity, and using our new assay we reveal biologically relevant factors that are significantly correlated with human islet function, whether displayed as maximal insulin secretion response or fold-stimulation of insulin secretion. Overall, our results suggest this new microplate assay will be a useful tool for many laboratories, expert or not in islet techniques, to be able to precisely quantify islet insulin secretion from their models of interest. PMID:26452321

  3. Non-contact strain measurement in the mouse forearm loading model using digital image correlation (DIC).

    PubMed

    Begonia, Mark T; Dallas, Mark; Vizcarra, Bruno; Liu, Ying; Johnson, Mark L; Thiagarajan, Ganesh

    2015-12-01

    This study investigates the use of a non-contact method known as digital image correlation (DIC) to measure strains in the mouse forearm during axial compressive loading. A two camera system was adapted to analyze the medial and lateral forearm displacements simultaneously, and the derived DIC strain measurements were compared to strain gage readings from both the ulna and radius. Factors such as region-of-interest (ROI) location, lens magnification, noise, and out-of-plane motion were examined to determine their influence on the DIC strain measurements. We confirmed that our DIC system can differentiate ROI locations since it detected higher average strains in the ulna compared to the radius and detected compressive strains on medial bone surfaces vs. tensile strains on lateral bone surfaces. Interestingly, the DIC method also captured heterogeneity in surface strain fields which are not detectable by strain gage based methods. A separate analysis of the noise intrinsic to the DIC system also revealed that the noise constituted less than 4.5% of all DIC strain measurements. Furthermore, finite element (FE) simulations of the forearm showed that out-of-plane motion was not a significant factor that influenced DIC measurements. Finally, we observed that average DIC strain measurements can be up to 1.5-2 times greater than average strain gage readings on the medial bone surfaces. These findings suggest that strain experienced in the mouse forearm model by loading is better captured through DIC as opposed to strain gages, which as a result of being glued to the bone surface artificially stiffen the bone and lead to an underestimation of the strain response. PMID:26388521

  4. Generation of human acute lymphoblastic leukemia xenografts for use in oncology drug discovery.

    PubMed

    Holmfeldt, Linda; Mullighan, Charles G

    2015-01-01

    The establishment of reproducible mouse models of acute lymphoblastic leukemia (ALL) is necessary to provide in vivo therapeutic test systems that recapitulate human ALL, and for amplification of limited amounts of primary tumor material. A popular assay is the primary xenograft model that utilizes immunocompromised mice. The protocol includes injection of primary patient tumor specimens into mice with subsequent serial passaging of the tumors by retransplants of cells harvested from the mouse bone marrow and spleen. The tumors generated are then used for genomic profiling, ex vivo compound testing, mechanistic studies and retransplantation. Detailed in this unit are procedures for the establishment and maintenance of primary ALL xenograft panels for use in basic research and translational studies. PMID:25737157

  5. Generation of human acute lymphoblastic leukemia xenografts for use in oncology drug discovery

    PubMed Central

    Holmfeldt, Linda

    2015-01-01

    The establishment of reproducible mouse models of acute lymphoblastic leukemia (ALL) is necessary to provide in vivo therapeutic models that recapitulate human ALL, and for amplification of limiting amounts of primary tumor material. A frequently used model is the primary xenograft model that utilizes immunocompromised mice and involves injection of primary patient tumor specimens into mice, and subsequent serial passaging of the tumors by retransplants of cells harvested from the mouse bone marrow and spleen. The tumors generated can then be used for genomic profiling, ex vivo compound testing, mechanistic studies and retransplantation. This unit describes detailed procedures for the establishment and maintenance of primary ALL xenograft panels for potential use in basic research or translational studies. PMID:25737157

  6. Biological Analysis of Human CML Stem Cells; Xenograft Model of Chronic Phase Human Chronic Myeloid Leukemia.

    PubMed

    Abraham, Sheela A

    2016-01-01

    Xenograft mouse models have been instrumental in expanding our knowledge of hematopoiesis and can provide a functional description of stem cells that possess engrafting potential. Here we describe methodology outlining one way of analyzing human malignant cells that are able to engraft immune compromised mice. Using models such as these will allow researchers to gain valuable insight into the primitive leukemic subtypes that evade current therapy regimes and are critical to understand, in order to eradicate malignancy. PMID:27581148

  7. Compartmental bone morphometry in the mouse femur: reproducibility and resolution dependence of microtomographic measurements.

    PubMed

    Kohler, T; Beyeler, M; Webster, D; Müller, R

    2005-11-01

    Microcomputed tomography (microCT) is widely used for nondestructive bone phenotyping in small animals, especially in the mouse. Here, we investigated the reproducibility and resolution dependence of microCT analysis of microstructural parameters in three different compartments in the mouse femur. Reproducibility was assessed with respect to precision error (PE%CV) and intraclass correlation coefficient (ICC). We examined 14 left femurs isolated postmortem from two strains of mice (seven per group). Measurements and analyses were repeated five times on different days. In a second step, analysis was repeated again five times for a single measurement. Resolution dependence was assessed by high-resolution measurements (10 microm) in one strain and subsequent image degrading. Reproducibility was better in full bone compartment and in cortical bone compartment in the diaphysis (PE%CV = 0.06-2.16%) than in trabecular compartment in the distal metaphysis (PE(%CV) = 0.59-5.24%). Nevertheless, ICC (0.92-1.00) showed a very high reliability of the assessed parameters in all regions, indicating very small variances within repeated measurements compared to the population variances. Morphometric indices computed from lower- and higher-resolution images displayed in general only weak dependence and were highly correlated with each other (R2 = 0.91-0.99). The results show that parameters in the full and cortical compartments were very reproducible, whereas precision in the trabecular compartment was somewhat lower. Nevertheless, all compartmental analysis methods were very robust, as shown by the high ICC values, demonstrating high suitability for application in inbred strains, where highest precision is needed due to small population variances. PMID:16283571

  8. Deformation measurements and material property estimation of mouse carotid artery using a microstructure-based constitutive model.

    PubMed

    Ning, Jinfeng; Xu, Shaowen; Wang, Ying; Lessner, Susan M; Sutton, Michael A; Anderson, Kevin; Bischoff, Jeffrey E

    2010-12-01

    A series of pressurization and tensile loading experiments on mouse carotid arteries is performed with deformation measurements acquired during each experiment using three-dimensional digital image correlation. Using a combination of finite element analysis and a microstructure-based constitutive model to describe the response of biological tissue, the measured surface strains during pressurization, and the average axial strains during tensile loading, an inverse procedure is used to identify the optimal constitutive parameters for the mouse carotid artery. The results demonstrate that surface strain measurements can be combined with computational methods to identify material properties in a vascular tissue. Additional computational studies using the optimal material parameters for the mouse carotid artery are discussed with emphasis on the significance of the qualitative trends observed. PMID:21142324

  9. Dynamic OCE measurement of the biomechanical properties of gelatin phantom and mouse cornea in vivo

    NASA Astrophysics Data System (ADS)

    Li, Jiasong; Wang, Shang; Manapuram, Ravi Kiran; Menodiado, Floredes M.; Singh, Manmohan; Aglyamov, Salavat; Emelianov, Stanislav; Twa, Michael; Larin, Kirill V.

    2013-03-01

    Here we demonstrate our use of phase stabilized swept-source optical coherence elastography (PhS-SSOCE) to assess elastic wave propagation in gelatin phantoms. From these measurements, Young's moduli of the samples were determined. Low-amplitude (<10μm) mechanical waves were introduced using a focused air pulse on gelatin of different concentrations. Elastic wave amplitude and velocity were measured at multiple points on the phantom surface using a phase-resolved method. The results demonstrate that this method is capable of resolving very small changes in wave amplitude (~ 10 nm) as well as differences in wave velocity due to material stiffness. We further demonstrate use of this method for measurements with a contact lens, a silicone eye model and with the eye of an 18-month-old mouse in vivo. This non-destructive, non-invasive measurement system produces minimal tissue excitation and has high measurement sensitivity. These traits make this make this method useful for in vivo study of the biomechanical properties of ocular and other tissues.

  10. Chemosensitivity of human head and neck cancer xenografts in the clonogenic assay and in nude mice.

    PubMed Central

    Boerrigter, G. H.; Heinerman, E. C.; Braakhuis, B. J.; Snow, G. B.

    1986-01-01

    The potential use of human head and neck (H & N) tumours, growing in athymic nude mice, for preclinical assessment of cytostatic drug sensitivity in a soft agar cloning system was examined. Of 20 H & N tumour xenografts, obtained from 6 different xenograft lines, 17 demonstrated sufficient colony growth to evaluate in vitro drug sensitivity. Moreover, all xenografts provided enough cells to test 8 cytostatic drugs at 3 concentrations each. A dose-dependent inhibition of colony growth was obtained with all drugs tested, except methotrexate. Tumours were considered sensitive when the drug concentration required to inhibit colony formation by 50%, was less than 1/10 of the peak plasma concentration in patients. All H & N tumour lines were resistant to cisplatin, doxorubicin, hydroxyurea, mafosfamide (an in vitro active analogue of cyclophosphamide) and methotrexate. Bleomycin was active in 1/6 and 5-fluorouracil in 6/6 of the H & N tumour lines tested. In 32 cases the in vitro data of the H & N tumour lines and a chemosensitive rat rhabdomyosarcoma were compared directly with in vivo results obtained in nude mice. The clonogenic assay correctly predicted sensitivity in 4/6 (66.7%) and resistance in 21/26 (80.8%) of the cases. A lack of correlation was noted for methotrexate, 5-fluorouracil and cyclophosphamide. In vitro culture of human H & N xenografts may provide a means for a rapid and large scale screening to identify new drugs active against H & N malignancies. In addition the clonogenic assay may help to select drugs for subsequent testing in the nude mouse xenograft model. The lack of correlation for some drugs in the present study indicates that there are some limitations in the use of xenograft tumour material for in vitro testing of new drugs. PMID:3730256

  11. Measurement of the phospholipase activity of endothelial lipase in mouse plasma.

    PubMed

    Basu, Debapriya; Lei, Xia; Josekutty, Joby; Hussain, M Mahmood; Jin, Weijun

    2013-01-01

    Endothelial lipase (EL) is a major negative regulator of plasma HDL levels in mice, rabbits, and most probably, humans. Although this regulatory function is critically dependent on EL's hydrolysis of HDL phospholipids, as yet there is no phospholipase assay specific for EL in plasma. We developed such an assay for the mouse enzyme using a commercially available phospholipid-like fluorescent substrate in combination with an EL neutralizing antibody. The specificity of the assay was established using EL knockout mice and its utility demonstrated by detection of an increase in plasma EL phospholipase activity following exposure of wild-type mice to lipopolysaccharide. The assay revealed that murine pre-heparin plasma does not contain measurable EL activity, indicating that the hydrolysis of HDL phospholipids by EL in vivo likely occurs on the cell surface. PMID:23103358

  12. Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles.

    PubMed

    Arnold, W David; Sheth, Kajri A; Wier, Christopher G; Kissel, John T; Burghes, Arthur H; Kolb, Stephen J

    2015-01-01

    Compound muscle action potential (CMAP) and motor unit number estimation (MUNE) are electrophysiological techniques that can be used to monitor the functional status of a motor unit pool in vivo. These measures can provide insight into the normal development and degeneration of the neuromuscular system. These measures have clear translational potential because they are routinely applied in diagnostic and clinical human studies. We present electrophysiological techniques similar to those employed in humans to allow recordings of mouse sciatic nerve function. The CMAP response represents the electrophysiological output from a muscle or group of muscles following supramaximal stimulation of a peripheral nerve. MUNE is an electrophysiological technique that is based on modifications of the CMAP response. MUNE is a calculated value that represents the estimated number of motor neurons or axons (motor control input) supplying the muscle or group of muscles being tested. We present methods for recording CMAP responses from the proximal leg muscles using surface recording electrodes following the stimulation of the sciatic nerve in mice. An incremental MUNE technique is described using submaximal stimuli to determine the average single motor unit potential (SMUP) size. MUNE is calculated by dividing the CMAP amplitude (peak-to-peak) by the SMUP amplitude (peak-to-peak). These electrophysiological techniques allow repeated measures in both neonatal and adult mice in such a manner that facilitates rapid analysis and data collection while reducing the number of animals required for experimental testing. Furthermore, these measures are similar to those recorded in human studies allowing more direct comparisons. PMID:26436455

  13. Using Isolated Mitochondria from Minimal Quantities of Mouse Skeletal Muscle for High throughput Microplate Respiratory Measurements

    PubMed Central

    Boutagy, Nabil E.; Rogers, George W.; Pyne, Emily S.; Ali, Mostafa M.; Hulver, Matthew W.; Frisard, Madlyn I.

    2015-01-01

    Skeletal muscle mitochondria play a specific role in many disease pathologies. As such, the measurement of oxygen consumption as an indicator of mitochondrial function in this tissue has become more prevalent. Although many technologies and assays exist that measure mitochondrial respiratory pathways in a variety of cells, tissue and species, there is currently a void in the literature in regards to the compilation of these assays using isolated mitochondria from mouse skeletal muscle for use in microplate based technologies. Importantly, the use of microplate based respirometric assays is growing among mitochondrial biologists as it allows for high throughput measurements using minimal quantities of isolated mitochondria. Therefore, a collection of microplate based respirometric assays were developed that are able to assess mechanistic changes/adaptations in oxygen consumption in a commonly used animal model. The methods presented herein provide step-by-step instructions to perform these assays with an optimal amount of mitochondrial protein and reagents, and high precision as evidenced by the minimal variance across the dynamic range of each assay. PMID:26555567

  14. Preclinical platform of retinoblastoma xenografts recapitulating human disease and molecular markers of dissemination.

    PubMed

    Pascual-Pasto, Guillem; Olaciregui, Nagore G; Vila-Ubach, Monica; Paco, Sonia; Monterrubio, Carles; Rodriguez, Eva; Winter, Ursula; Batalla-Vilacis, Mireia; Catala, Jaume; Salvador, Hector; Parareda, Andreu; Schaiquevich, Paula; Suñol, Mariona; Mora, Jaume; Lavarino, Cinzia; de Torres, Carmen; Chantada, Guillermo L; Carcaboso, Angel M

    2016-09-28

    Translational research in retinoblastoma - a pediatric tumor that originates during the development of the retina - would be improved by the creation of new patient-derived models. Using tumor samples from enucleated eyes we established a new battery of preclinical models that grow in vitro in serum-free medium and in vivo in immunodeficient mice. To examine whether the new xenografts recapitulate human disease and disseminate from the retina to the central nervous system, we evaluated their histology and the presence of molecular markers of dissemination that are used in the clinical setting to detect extraocular metastases. We evaluated GD2 synthase and CRX as such markers and generated a Taqman real-time quantitative PCR method to measure CRX mRNA for rapid, sensitive and specific quantification of local and metastatic tumor burden. This approach was able to detect 1 human retinoblastoma cell in 100.000 mouse brain cells. Our research adds novel preclinical tools for the discovery of new retinoblastoma treatments for clinical translation. PMID:27319373

  15. Growth characteristics and metastatic properties of human breast cancer xenografts in immunodeficient mice.

    PubMed Central

    Visonneau, S.; Cesano, A.; Torosian, M. H.; Miller, E. J.; Santoli, D.

    1998-01-01

    We evaluated the growth and metastatic potential of two human breast cancer cell lines and 16 patient-derived biopsy specimens, representing the most common histological types of breast carcinomas, upon subcutaneous implantation into severe combined immunodeficient (SCID) mice. The method of engraftment we used, based on implantation of intact tissue specimens and complete immunosuppression of the host, provided an easier system to grow human breast carcinoma specimens in mouse models and resulted in a 50% success rate of tumor take. No correlation was found between growth in SCID mice and pathological diagnosis, grading, or estrogen/progesterone receptor expression by the tumor biopsy specimen. Serial passage of the tumor fragments in SCID mice resulted in increased metastasis rates and more rapid emergence of a palpable tumor mass. A tumor from a patient with infiltrating ductal carcinoma, which grew aggressively and metastasized in 100% of the female SCID mice, was also successfully engrafted in 100% of nonobese diabetic (NOD)/SCID female mice, but systemic spread was minimal. Fragments of the same tumor grew in only 33% of male SCID mice with very limited metastases. A strong correlation (r = 0.997) was observed between tumor burden and the presence of soluble (serum) interleukin-2 receptor, a marker associated with a subset of human breast tumors. All together, these data indicate the usefulness of SCID/human breast tumor xenografts for measuring tumor progression and evaluating novel therapeutic approaches to breast cancer. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:9588898

  16. Genetic independence of mouse measures of some aspects of novelty seeking.

    PubMed

    Kliethermes, Christopher L; Crabbe, John C

    2006-03-28

    High novelty seeking is a complex personality attribute correlated with risk for substance abuse. There are many putative mouse models of some aspects of novelty seeking, but little is known of genetic similarities among these models. To assess the genetic coherence of "novelty seeking," we compared the performance of 14 inbred strains of mice in five tests: activity in a novel environment, novel environment preference, head dipping on a hole-board, object preference, and a two-trial version of the spontaneous alternation task. Differences among strains were observed for all tasks, but performance in any given task was generally not predictive of performance in any other. To evaluate similarities among these tasks further, we selectively bred lines of mice for high or low head dipping on the hole-board. Similar to results from the inbred strain experiments, head dipping was not correlated with performance in the other measures but was genetically correlated with differences in locomotor activity. Using two approaches to estimating common genetic influences across tasks, we have found little evidence that these partial models of novelty seeking reflect the influence of common genes or measure a single, unified construct called novelty seeking. Based on the substantial influence of genetic factors, ease of implementation, and relative independence from general locomotion, head dipping on a hole-board is a good task to use in the domain of novelty seeking, but multiple tasks, including others not tested here, would be needed to capture the full genetic range of the behavioral domain. PMID:16551746

  17. A direct method for measuring mouse capillary cortical blood volume using multiphoton laser scanning microscopy.

    PubMed

    Vérant, Pascale; Serduc, Raphaël; Van Der Sanden, Boudewijn; Rémy, Chantal; Vial, Jean-Claude

    2007-05-01

    Knowledge of the blood volume per unit volume of brain tissue is important for understanding brain function in health and disease. We describe a direct method using two-photon laser scanning microscopy to obtain in vivo the local capillary blood volume in the cortex of anesthetized mouse. We infused fluorescent dyes in the circulating blood and imaged the blood vessels, including the capillaries, to a depth of 600 microm below the dura at the brain surface. Capillary cortical blood volume (CCBV) was calculated without any form recognition and segmentation, by normalizing the total fluorescence measured at each depth and integrating the collected intensities all over the stack. Theoretical justifications are presented and numerical simulations were performed to validate this method which was weakly sensitive to background noise. Then, CCBV had been estimated on seven healthy mice between 2%+/-0.3% and 2.4%+/-0.4%. We showed that this measure of CCBV is reproductible and that this method is highly sensitive to the explored zones in the cortex (vessel density and size). This method, which dispenses with form recognition, is rapid and would allow to study in vivo temporal and highly resolute spatial variations of CCBV under different conditions or stimulations. PMID:17063147

  18. Anti-tumour activity of oncolytic Western Reserve vaccinia viruses in canine tumour cell lines, xenografts, and fresh tumour biopsies.

    PubMed

    Autio, K; Knuuttila, A; Kipar, A; Ahonen, M; Parviainen, S; Diaconu, I; Kanerva, A; Hakonen, T; Vähä-Koskela, M; Hemminki, A

    2014-10-10

    Cancer is one of the most common reasons for death in dogs. One promising approach is oncolytic virotherapy. We assessed the oncolytic effect of genetically modified vaccinia viruses in canine cancer cells, in freshly excised tumour biopsies, and in mice harbouring canine tumour xenografts. Tumour transduction efficacy was assessed using virus expressing luciferase or fluorescent marker genes and oncolysis was quantified by a colorimetric cell viability assay. Oncolytic efficacy in vivo was evaluated in a nude mouse xenograft model. Vaccinia virus was shown to infect most tested canine cancer cell lines and primary surgical tumour tissues. Virus infection significantly reduced tumour growth in the xenograft model. Oncolytic vaccinia virus has antitumour effects against canine cancer cells and experimental tumours and is able to replicate in freshly excised patient tumour tissue. Our results suggest that oncolytic vaccinia virus may offer an effective treatment option for otherwise incurable canine tumours. PMID:25302859

  19. Dynamic measurement of the calcium buffering properties of the sarcoplasmic reticulum in mouse skeletal muscle

    PubMed Central

    Manno, Carlo; Sztretye, Monika; Figueroa, Lourdes; Allen, Paul D; Ríos, Eduardo

    2013-01-01

    The buffering power, B, of the sarcoplasmic reticulum (SR), ratio of the changes in total and free [Ca2+], was determined in fast-twitch mouse muscle cells subjected to depleting membrane depolarization. Changes in total SR [Ca2+] were measured integrating Ca2+ release flux, determined with a cytosolic [Ca2+] monitor. Free [Ca2+]SR was measured using the cameleon D4cpv-Casq1. In 34 wild-type (WT) cells average B during the depolarization (ON phase) was 157 (SEM 26), implying that of 157 ions released, 156 were bound inside the SR. B was significantly greater when BAPTA, which increases release flux, was present in the cytosol. B was greater early in the pulse – when flux was greatest – than at its end, and greater in the ON than in the OFF. In 29 Casq1-null cells, B was 40 (3.6). The difference suggests that 75% of the releasable calcium is normally bound to calsequestrin. In the nulls the difference in B between ON and OFF was less than in the WT but still significant. This difference and the associated decay in B during the ON were not artifacts of a slow SR monitor, as they were also found in the WT when [Ca2+]SR was tracked with the fast dye fluo-5N. The calcium buffering power, binding capacity and non-linear binding properties of the SR measured here could be accounted for by calsequestrin at the concentration present in mammalian muscle, provided that its properties were substantially different from those found in solution. Its affinity should be higher, or KD lower than the conventionally accepted 1 mm; its cooperativity (n in a Hill fit) should be higher and the stoichiometry of binding should be at the higher end of the values derived in solution. The reduction in B during release might reflect changes in calsequestrin conformation upon calcium loss. PMID:23148320

  20. Xenografting of testicular tissue pieces: twelve years of an in vivo spermatogenesis system

    PubMed Central

    Arregui, Lucía; Dobrinski, Ina

    2014-01-01

    Spermatogenesis is a dynamic and complex process that involves endocrine and testicular factors. During xenotransplantation of testicular tissue fragments into immunodecifient mice a functional communication between host brain and donor testis is established. This interaction allows for the progression of spermatogenesis and recovery of fertilization-competent spermatozoa from a broad range of mammalian species. In the last years, significant progress has been achieved in testis tissue xenografting that improves our knowledge about factors determining the success of grafting. The goal of this review is to provide up to date information about the role of factors such as donor age, donor species, testis tissue preservation or type of recipient mouse on the efficiency of this technique. Applications are described and compared with other techniques with similar purposes. Recent work demonstrates that testicular tissue xenografting is used as a model to study gonadotoxicity of drugs and to obtain sperm from valuable young males. PMID:25150043

  1. In vivo radiolocalization of antiosteogenic sarcoma monoclonal antibodies in osteogenic sarcoma xenografts

    SciTech Connect

    Nakamura, T.; Sakahara, H.; Hosoi, S.; Yamamuro, T.; Higashi, S.; Mikawa, H.; Endo, K.; Toyama, S.

    1984-05-01

    Monoclonal antibodies Ost6 and Ost7 (mouse Immunoglobulin G1) to human osteogenic sarcoma were isolated from ascitic fluid and labeled with radioiodine. After injection into athymic nu/nu mice with s.c. xenografts of human osteogenic sarcoma, the uptake of radioactivity in tumors, visceral organs, and blood was determined. Five days after injection, Ost6 and Ost7 showed preferential accumulation in tumors (tumor:blood ratio, 4.3). Furthermore, with testicular and bladder tumors, both unreactive with Ost7, there was no localization of radiolabeled Ost7 in xenograft growths. When Ost7 was labeled with /sup 131/I, its accumulation into human osteogenic sarcoma could be clearly visualized by whole-body gamma-scintigraphy without computer-assisted data processing.

  2. Tumor Repression of VCaP Xenografts by a Pyrrole-Imidazole Polyamide

    PubMed Central

    Hargrove, Amanda E.; Martinez, Thomas F.; Hare, Alissa A.; Kurmis, Alexis A.; Phillips, John W.; Sud, Sudha; Pienta, Kenneth J; Dervan, Peter B.

    2015-01-01

    Pyrrole-imidazole (Py-Im) polyamides are high affinity DNA-binding small molecules that can inhibit protein-DNA interactions. In VCaP cells, a human prostate cancer cell line overexpressing both AR and the TMPRSS2-ERG gene fusion, an androgen response element (ARE)-targeted Py-Im polyamide significantly downregulates AR driven gene expression. Polyamide exposure to VCaP cells reduced proliferation without causing DNA damage. Py-Im polyamide treatment also reduced tumor growth in a VCaP mouse xenograft model. In addition to the effects on AR regulated transcription, RNA-seq analysis revealed inhibition of topoisomerase-DNA binding as a potential mechanism that contributes to the antitumor effects of polyamides in cell culture and in xenografts. These studies support the therapeutic potential of Py-Im polyamides to target multiple aspects of transcriptional regulation in prostate cancers without genotoxic stress. PMID:26571387

  3. Element concentrations in the intestinal mucosa of the mouse as measured by X-ray microanalysis.

    PubMed

    von Zglinicki, T; Roomans, G M

    1989-06-01

    Subcellular ion distribution in villus, crypt, Paneth and smooth muscle cells of the mouse small intestine under resting conditions was investigated by X-ray microanalysis of ultrathin cryosections. In addition, the mass distribution was estimated by measuring the optical transmission of the compartments in transmission electron micrographs. Each cell type is characterized by a special composition in terms of the major monovalent ions Na, K, and Cl. In particular, among crypt epithelial cells, those cells containing small secretion granula (termed crypt A cells) also display cytoplasmic ion concentrations significantly different from crypt epithelial cells lacking secretion granula (crypt B cells). Monovalent ion concentrations in the cytoplasm of Paneth cells, muscle cells, and crypt epithelial cells lacking secretion granula are higher than expected from osmotic considerations. Hence, significant binding of ions to cytoplasmic polyelectrolytes is assumed in these cells. There are gradients of dry mass and K concentration from the luminal to the basal side of the cell, both in crypt and in villus cells. The terminal web in these cells is rich in Na and Cl. The elemental composition of the large, dark secretion granula in Paneth cells is similar to that of the small dark granula in crypt cells. However, the two morphologically different types of granula within the Paneth cells have a significantly different elemental composition, which might reflect maturation of secretion granula. PMID:2814397

  4. Orthotopic xenografts of human melanoma and colonic and ovarian carcinoma in sheep to evaluate radioimmunotherapy.

    PubMed Central

    Turner, J. H.; Rose, A. H.; Glancy, R. J.; Penhale, W. J.

    1998-01-01

    Extrapolation to humans from experimental radioimmunotherapy in nude mouse xenograft models is confounded by large relative tumour size and small volume of distribution in mice allowing tumour uptake of radiolabelled antibodies unattainable in patients. Our large animal model of human tumours in cyclosporin-immunosuppressed sheep demonstrated tumour uptake of targeted radiolabelled monoclonal antibodies comparable with uptakes reported in clinical trials. Sheep immunosuppression with daily intravenous cyclosporin augmented by oral ketoconazole maintained trough blood levels of cyclosporin within the range 1000-1500 ng ml(-1). Human tumour cells were transplanted orthotopically by inoculation of 10(7) cells: SKMEL melanoma subcutaneously; LS174T and HT29 colon carcinoma into bowel, peritoneum and liver; and JAM ovarian carcinoma into ovary and peritoneum. Tumour xenografts grew at all sites within 3 weeks of inoculation, preserving characteristic morphology without evidence of necrosis or host rejection. Lymphatic metastasis was demonstrated in regional nodes draining xenografts of melanoma and ovarian carcinoma. Colonic LS1 74T xenografts produced mucin and carcinoembryonic antigen (CEA). The anti-CEA IgG1 monoclonal antibody A5B7 was radiolabelled with iodine-131 and administered intravenously to sheep. Peak uptake at 5 days in orthotopic human tumour transplants in gut was 0.027% DI g(-1) (percentage of injected dose per gram) and 0.034% DI g(-1) in hepatic metastases with tumour to blood ratios of 2-2.5. Non-specific tumour uptake in melanoma was 0.003% DI g(-1). Uptake of radiolabelled monoclonal antibody in human tumours in our large animal model is comparable with that observed in patients and may be more realistic than nude mice xenografts for prediction of clinical efficacy of radioimmunotherapy. Images Figure 1 Figure 2 Figure 3 PMID:9716032

  5. Transferrin Receptor Targeted Lipopolyplexes for Delivery of Antisense Oligonucleotide G3139 in a Murine K562 Xenograft Model

    PubMed Central

    Zhang, Xulang; Koh, Chee Guan; Yu, Bo; Liu, Shujun; Piao, Longzhu; Marcucci, Guido; Lee, Robert J.; Lee, L. James

    2013-01-01

    Purpose Transferrin (Tf) conjugated lipopolyplexes (LPs) carrying G3139, an antisense oligonucleotide for Bcl-2, were synthesized and evaluated in Tf receptor positive K562 erythroleukemia cells and then in a murine K562 xenograft model. Materials and Methods Particle size and Zeta potentials of transferrin conjugated lipopolyplexs containing G3139 (Tf-LP-G3139) were measured by Dynamic Light Scattering and ZetaPALS. In vitro and in vivo sample’s Bcl-2 downregulation was analyzed using Western blot and tumor tissue samples also exhibited by immunohistochemistry method. For athymic mice bearing with K562 xenograft tumors, tumor growth inhibition and survival rate were investigated. Nanoparticle distribution in 3-D cell cluster was observed by Laser scan confocal microscopy. IL-12 production in the plasma was measured by ELISA kit. Results In vitro, Tf-LP-G3139 was more effective in inducing down regulation of Bcl-2 in K562 cells than non-targeted LP-G3139, free G3139 and mismatched control ODN-G4126 in the same formulation. In vivo Tf-LP-G3139 was less effective than free G3139 in Bcl-2 down regulation. 3-D cell cluster model diffusion results indeed indicated limited penetration of the LPs into the cell cluster. Finally, the therapeutic efficacies of Tf-LP-G3139 and free G3139 were determined in the K562 xenograft model. Tf-LP-G3139 showed slower plasma clearance, higher AUC, and greater accumulation in the tumor compared to free G3139. In addition, Tf-LP-G3139 was found to be more effective in tumor growth inhibition and prolonging mouse survival than free G3139. This was associated with increased spleen weight and IL-12 production in the plasma. Conclusion The role of the immune system in the therapeutic response obtained with the Tf-LPs is necessary and in vitro 3-D cell cluster model can be a potential tool to evaluate the nanoparticle distribution. PMID:19291371

  6. Radiation-induced cell cycle delay measured in two mouse tumors in vivo using bromodeoxyuridine

    SciTech Connect

    Wilson, G.D.; Martindale, C.A.; Soranson, J.A.; Bourhis, J.; Carl, U.M.; McNally, N.J. )

    1994-02-01

    The magnitude of the delay of cells in the phases of the cell cycle after irradiation may be related to the radioresponsiveness of tumor cell populations. In this study we have quantified division delay in two mouse tumors in vivo after single and fractionated doses of X rays and single doses of neutrons. The incorporation of bromodeoxyuridine and flow cytometry provided a sensitive and quantitative method to detect cell cycle perturbations after radiation treatment. The more rapidly growing SAF tumor showed less G[sub 2]-phase delay per gray than a more slowly proliferating tumor, the Rh (0.9 vs 1.8 h). In addition, the SAF tumor failed to show any G[sub 1]/S-phase delay while the Rh tumor experienced a longer G[sub 1]-phase delay while the Rh tumor experienced a longer G[sub 1]-phase delay than that measured for G[sub 2] phase (3.1 vs 1.8 h). There was a trend in both tumors for lower doses to be more effective in producing cell cycle delays. Neutrons caused longer G[sub 2]-phase delays on a unit dose basis, 2.5 and 5.4 h for the SAF and Rh tumors, respectively. The RBE for neutrons for division delay was found to be 2.9 and 2.8 for the SAF and Rh tumors, while the RBE for growth delay was 3.4 and 3.5. Fractionation of the X-ray dose caused a reduction in division delay at higher total doses (10 or 12 Gy) but was without effect at the lower dose studied (6 Gy). These studies show the feasibility of measuring cell cycle delays in vivo, and future developments are suggested for a possible predictive test in patients receiving radiotherapy. 17 refs., 6 figs., 2 tabs.

  7. A bioassay to measure energy metabolism in mouse colonic crypts, organoids, and sorted stem cells.

    PubMed

    Fan, Yang-Yi; Davidson, Laurie A; Callaway, Evelyn S; Wright, Gus A; Safe, Stephen; Chapkin, Robert S

    2015-07-01

    Evidence suggests that targeting cancer cell energy metabolism might be an effective therapeutic approach for selective ablation of malignancies. Using a Seahorse Extracellular Flux Analyzer, we have demonstrated that select environmental agents can alter colonic mitochondrial function by increasing respiration-induced proton leak, thereby inducing apoptosis, a marker of colon cancer risk. To further probe bioenergetics in primary intestinal cells, we developed methodology that can be modified and adapted to measure the bioenergetic profiles of colonic crypts, the basic functional unit of the colon, and colonic organoids, an ex vivo 3D culture of colonic crypts. Furthermore, in combination with the MoFlo Astrios High-Speed Cell Sorter, we were able to measure the bioenergetic profiles of colonic adult stem and daughter cells from Lgr5-EGFP-IRES-creER(T2) transgenic mice. We examined the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a full arylhydrocarbon receptor agonist, known to affect gastrointestinal function and cancer risk, on the bioenergetic profiles of intestinal epithelial cells. Mouse colonic crypts, organoids, or sorted single cells were seeded onto Matrigel-precoated Seahorse XF24 microplates for extracellular flux analysis. Temporal analyses revealed distinct energy metabolic profiles in crypts and organoids challenged with TCDD. Furthermore, sorted Lgr5(+) stem cells exhibited a Warburg-like metabolic profile. This is noteworthy because perturbations in stem cell dynamics are generally believed to represent the earliest step toward colon tumorigenesis. We propose that our innovative methodology may facilitate future in vivo/ex vivo metabolic studies using environmental agents affecting colonocyte energy metabolism. PMID:25977509

  8. Unsupervised Estimation of Mouse Sleep Scores and Dynamics Using a Graphical Model of Electrophysiological Measurements.

    PubMed

    Yaghouby, Farid; O'Hara, Bruce F; Sunderam, Sridhar

    2016-06-01

    The proportion, number of bouts, and mean bout duration of different vigilance states (Wake, NREM, REM) are useful indices of dynamics in experimental sleep research. These metrics are estimated by first scoring state, sometimes using an algorithm, based on electrophysiological measurements such as the electroencephalogram (EEG) and electromyogram (EMG), and computing their values from the score sequence. Isolated errors in the scores can lead to large discrepancies in the estimated sleep metrics. But most algorithms score sleep by classifying the state from EEG/EMG features independently in each time epoch without considering the dynamics across epochs, which could provide contextual information. The objective here is to improve estimation of sleep metrics by fitting a probabilistic dynamical model to mouse EEG/EMG data and then predicting the metrics from the model parameters. Hidden Markov models (HMMs) with multivariate Gaussian observations and Markov state transitions were fitted to unlabeled 24-h EEG/EMG feature time series from 20 mice to model transitions between the latent vigilance states; a similar model with unbiased transition probabilities served as a reference. Sleep metrics predicted from the HMM parameters did not deviate significantly from manual estimates except for rapid eye movement sleep (REM) ([Formula: see text]; Wilcoxon signed-rank test). Changes in value from Light to Dark conditions correlated well with manually estimated differences (Spearman's rho 0.43-0.84) except for REM. HMMs also scored vigilance state with over 90% accuracy. HMMs of EEG/EMG features can therefore characterize sleep dynamics from EEG/EMG measurements, a prerequisite for characterizing the effects of perturbation in sleep monitoring and control applications. PMID:27121993

  9. A bioassay to measure energy metabolism in mouse colonic crypts, organoids, and sorted stem cells

    PubMed Central

    Fan, Yang-Yi; Davidson, Laurie A.; Callaway, Evelyn S.; Wright, Gus A.; Safe, Stephen

    2015-01-01

    Evidence suggests that targeting cancer cell energy metabolism might be an effective therapeutic approach for selective ablation of malignancies. Using a Seahorse Extracellular Flux Analyzer, we have demonstrated that select environmental agents can alter colonic mitochondrial function by increasing respiration-induced proton leak, thereby inducing apoptosis, a marker of colon cancer risk. To further probe bioenergetics in primary intestinal cells, we developed methodology that can be modified and adapted to measure the bioenergetic profiles of colonic crypts, the basic functional unit of the colon, and colonic organoids, an ex vivo 3D culture of colonic crypts. Furthermore, in combination with the MoFlo Astrios High-Speed Cell Sorter, we were able to measure the bioenergetic profiles of colonic adult stem and daughter cells from Lgr5-EGFP-IRES-creERT2 transgenic mice. We examined the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a full arylhydrocarbon receptor agonist, known to affect gastrointestinal function and cancer risk, on the bioenergetic profiles of intestinal epithelial cells. Mouse colonic crypts, organoids, or sorted single cells were seeded onto Matrigel-precoated Seahorse XF24 microplates for extracellular flux analysis. Temporal analyses revealed distinct energy metabolic profiles in crypts and organoids challenged with TCDD. Furthermore, sorted Lgr5+ stem cells exhibited a Warburg-like metabolic profile. This is noteworthy because perturbations in stem cell dynamics are generally believed to represent the earliest step toward colon tumorigenesis. We propose that our innovative methodology may facilitate future in vivo/ex vivo metabolic studies using environmental agents affecting colonocyte energy metabolism. PMID:25977509

  10. Total lymphoid irradiation and discordant cardiac xenografts

    SciTech Connect

    Kaplan, E.; Dresdale, A.R.; Diehl, J.T.; Katzen, N.A.; Aronovitz, M.J.; Konstam, M.A.; Payne, D.D.; Cleveland, R.J. )

    1990-01-01

    Total lymphoid irradiation can prolong concordant cardiac xenografts. The effects of total lymphoid irradiation in a discordant xenograft model (guinea pig to rat) were studied with and without adjuvant pharmacologic immunosuppression. Inbred Lewis rats were randomly allocated to one of four groups. Group 1 (n = 6) served as a control group and rats received no immunosuppression. Group 2 (n = 5) received triple-drug therapy that consisted of intraperitoneal azathioprine (2 mg/kg), cyclosporine (20 mg/kg), and methylprednisolone (1 mg/kg) for 1 week before transplantation. Group 3 animals (n = 5) received 15 Gy of total lymphoid irradiation in 12 divided doses over a 3-week period. Group 4 (n = 6) received both triple-drug therapy and total lymphoid irradiation as described for groups 2 and 3. Complement-dependent cytotoxicity assay was performed to determine if a correlation between complement-dependent cytotoxicity and rejection-free interval existed. Rejection was defined as cessation of graft pulsation and was confirmed by histologic test results. Only groups 1 and 2 showed a difference in survival (group 1, 6.9 +/- 1.0 minutes; group 2, 14.2 +/- 2.7 minutes, p = 0.02). Although total lymphoid irradiation did decrease complement-dependent cytotoxicity, linear regression revealed no correlation between complement-dependent cytotoxicity and graft survival (coefficient of correlation, 0.30). Unlike concordant cardiac xenografts, total lymphoid irradiation with or without triple-drug therapy does not prolong graft survival.

  11. Differentiation of xenografted human fetal lung parenchyma

    PubMed Central

    Pavlovic, Jelena; Floros, Joanna; Phelps, David S.; Wigdahl, Brian; Welsh, Patricia; Weisz, Judith; Shearer, Debra A.; Pree, Alphonse Leure du; Myers, Roland; Howett, Mary K.

    2009-01-01

    The goal of this study was to characterize xenografted human fetal lung tissue with respect to developmental stage-specific cytodifferentiation. Human fetal lung tissue (pseudoglandular stage) was grafted either beneath the renal capsule or the skin of athymic mice (NCr-nu). Tissues were analyzed from 3 to 42 days post-engraftment for morphological alterations by light and electron microscopy (EM), and for surfactant protein mRNA and protein by reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry (ICC), respectively. The changes observed resemble those seen in human lung development in utero in many respects, including the differentiation of epithelium to the saccular stage. Each stage occurred over approximately one week in the graft in contrast to the eight weeks of normal in utero development. At all time points examined, all four surfactant proteins (SP-A, SP-B, SP-C, and SP-D) were detected in the epithelium by ICC. Lamellar bodies were first identified by EM in 14 day xenografts. By day 21, a significant increase in lamellar body expression was observed. Cellular proliferation, as marked by PCNA ICC and elastic fiber deposition resembled those of canalicular and saccular in utero development. This model in which xenografted lung tissue in different stages of development is available may facilitate the study of human fetal lung development and the impact of various pharmacological agents on this process. PMID:17555893

  12. Structural and functional measurements of fertilized mouse oocytes with combined high-resolution OCT and inverted microscope (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Karnowski, Karol; Ajduk, Anna; Wojtkowski, Maciej; Szkulmowski, Maciej

    2016-03-01

    We present a comprehensive imaging methodology for 3D structural and functional measurements of fertilized mouse oocytes. In contrary to methods used for mouse zygote imaging so far OCT provides 3D data without z axis movement of sample or objective lens. Furthermore, complex scanning protocols used in this study give access to different scales of repetition times and thus may become a tool for investigation of a different dynamic processes. Additionally, proposed scanning approach via variety of statistic operations can be used to enhance the quality of structural images. OCT system capabilities are presented and compared to standard microscopy. With a single 3D measurements one can extract 3D structure of the oocytes as well as en-face images that correspond to both bright and dark field microscopy. As an example of dynamic oocyte imaging pronuclei motion during development is presented. Limitations and possibilities of the new system are discussed.

  13. Simultaneous Measurement of Multiple Mouse Ear Proteins with Multiplex ELISA Assays

    PubMed Central

    Trune, Dennis R.; Larrain, Barbara E.; Hausman, Frances A.; Kempton, J. Beth; MacArthur, Carol J.

    2011-01-01

    A recent advancement in enzyme-linked immunosorbent assay (ELISA) technology is the multiplex antibody array that measures multiple proteins simultaneously within a single sample. This allows reduction in sample volume, time, labor, and material costs, while increasing sensitivity over single ELISA. Current multiplex platforms include planar-based systems using microplates or slides, or bead-based suspension assay with microspheres. To determine the applicability of this technology for ear research, we used 3 different multiplex ELISA-based immunoassay arrays from 4 different companies to measure cytokine levels in mouse middle and inner ear tissue lysate extracts 24 hours following transtympanic Haemophilus influenzae inoculation. Middle and inner ear tissue lysates were analyzed using testing services from Quansys BioSciences, Aushon Biosystems SearchLight (both microplate-based), Milliplex MAP Sample (bead-based), and a RayBiotech, Inc. (slide-based) kit. Samples were assayed in duplicate or triplicate. Results were compared to determine their relative sensitivity and reliability for measures of cytokine related to inflammation. The cytokine pg/ml amounts varied among the multiplex assays, so a comparison also was made of the mean fold increase in cytokines from untreated controls. Several cytokines and chemokines were elevated, the extent dependent upon the assay sensitivity. Those most significantly elevated were IL-1α, IL-1β, IL-6, TNFα, VEGF, IL-8/MIP-2. The results of the multiplex systems were compared with single ELISA kits (IL-1β, IL-6) to assess sensitivity over the traditional method. Overall, the Quansys Biosciences and SearchLight arrays showed the greatest sensitivity, both employing the same multiplex methodology of a spotted array within a microplate well with chemiluminescent detection. They also were more sensitive than the traditional single ELISA performed with commercial kits and matched gene expression changes determined by quantitative

  14. Comparison of In Vitro Cell Culture and a Mouse Assay for Measuring Infectivity of Cryptosporidium parvum

    PubMed Central

    Rochelle, Paul A.; Marshall, Marilyn M.; Mead, Jan R.; Johnson, Anne M.; Korich, Dick G.; Rosen, Jeffrey S.; De Leon, Ricardo

    2002-01-01

    In vitro cell cultures were compared to neonatal mice for measuring the infectivity of five genotype 2 isolates of Cryptosporidium parvum. Oocyst doses were enumerated by flow cytometry and delivered to animals and cell monolayers by using standardized procedures. Each dose of oocysts was inoculated into up to nine replicates of 9 to 12 mice or 6 to 10 cell culture wells. Infections were detected by hematoxylin and eosin staining in CD-1 mice, by reverse transcriptase PCR in HCT-8 and Caco-2 cells, and by immunofluorescence microscopy in Madin-Darby canine kidney (MDCK) cells. Infectivity was expressed as a logistic transformation of the proportion of animals or cell culture wells that developed infection at each dose. In most instances, the slopes of the dose-response curves were not significantly different when we compared the infectivity models for each isolate. The 50% infective doses for the different isolates varied depending on the method of calculation but were in the range from 16 to 347 oocysts for CD-1 mice and in the ranges from 27 to 106, 31 to 629, and 13 to 18 oocysts for HCT-8, Caco-2, and MDCK cells, respectively. The average standard deviations for the percentages of infectivity for all replicates of all isolates were 13.9, 11.5, 13.2, and 10.7% for CD-1 mice, HCT-8 cells, Caco-2 cells, and MDCK cells, respectively, demonstrating that the levels of variability were similar in all assays. There was a good correlation between the average infectivity for HCT-8 cells and the results for CD-1 mice across all isolates for untreated oocysts (r = 0.85, n = 25) and for oocysts exposed to ozone and UV light (r = 0.89, n = 29). This study demonstrated that in vitro cell culture was equivalent to the “gold standard,” mouse infectivity, for measuring the infectivity of C. parvum and should therefore be considered a practical and accurate alternative for assessing oocyst infectivity and inactivation. However, the high levels of variability displayed by all

  15. Effect of Curcumin on Pro-angiogenic Factors in the Xenograft Model of Breast Cancer.

    PubMed

    Ferreira, Livia Carvalho; Arbab, Ali S; Jardim-Perassi, Bruna Victorasso; Borin, Thaiz Ferraz; Varma, Nadimpalli R S; Iskander, A S M; Shankar, Adarsh; Ali, Meser M; Zuccari, Debora Aparecida Pires de Campos

    2015-01-01

    The formation of a new blood vessel is stimulated by angiogenic factors. Curcumin, which is the active ingredient of the spice plant Curcuma longa L and is used as food and traditional medicine, has shown anticancer effects against different types of cancers. We evaluated the effects of curcumin on angiogenesis/pro-angiogenic factors in a mouse model of human breast cancer. Cell viability was measured by the MTT assay after curcumin treatment in triple-negative breast cancer cells (MDA-MB-231). For the in vivo study, human breast cancer was induced in athymic mice and treated with 300 mg/kg/day of curcumin administered intraperitoneally. Tumor size was measured weekly, and the animals underwent single photon emission computed tomography (SPECT) scanning with Tc-99m tagged VEGF-c to detect the in vivo expression of VEGFR2/3. In addition, the expression of proangiogenic/ growth factors in the tumor extracts was evaluated by a membrane antibody array. Histological analysis was performed to confirm the effect of curcumin on neovascularization. The MTT assay showed that curcumin significantly reduced the cell viability of MDA-MB-231 cells. In breast cancer xenografts, curcumin treatment led to a decrease in tumor volume and cell proliferation (Ki-67) compared with the vehicle treated group. Tc-99m-HYNIC-VEGF-c-SPECT imaging showed decreased uptake to the tumor, which may indicate a lower expression of VEGFR2/3 in curcumin treated tumors; however, a statistically significant difference was not achieved (p>0.05). Additionally, curcumin treatment showed a significantly low level of expression of pro-angiogenic factors (p<0.05) and a decrease in micro-vessel density (vWF) in animals compared with that of vehicle treated tumors. In conclusion, curcumin treatment showed effectiveness in reducing tumor growth and cell proliferation, as well as in the inhibition of angiogenesis. PMID:25991545

  16. Quantitative Aging Pattern in Mouse Urine Vapor as Measured by Gas-Liquid Chromatography

    NASA Technical Reports Server (NTRS)

    Robinson, Arthur B.; Dirren, Henri; Sheets, Alan; Miquel, Jaime; Lundgren, Paul R.

    1975-01-01

    We have discovered a quantitative aging pattern in mouse urine vapor. The diagnostic power of the pattern has been found to be high. We hope that this pattern will eventually allow quantitative estimates of physiological age and some insight into the biochemistry of aging.

  17. Establishment and characterization of novel xenograft models of human biliary tract carcinomas.

    PubMed

    Emura, Fabian; Kamma, Hiroshi; Ghosh, Mila; Koike, Naoto; Kawamoto, Toru; Saijo, Kaoru; Ohno, Tadao; Ohkohchi, Nobuhiro; Todoroki, Takeshi

    2003-11-01

    In order to develop new therapeutic regimens for biliary tract cancers, which carry dismal prognoses, the establishment of a human biliary tract cancer xenograft model is essential. Herein, we report the successful establishment and characterization of two xenograft models of human biliary tract cancers. An adenosquamous gallbladder cancer cell line (TGBC-44) and a bile duct adenocarcinoma cell line (TGBC-47) were obtained from fresh surgical specimens in our department and subcutaneously inoculated into nude mice. The overall tumor take rate was 100% and solid tumors grew measurable after 5 and 7 days for TGBC-44 and TGBC-47, respectively. Tumor doubling time was 3.9+/-1.1 and 4.1+/-0.5 days in the exponential growth phase in TGBC-44 and TGBC-47 xenografts, respectively. Isozyme test and karyotype analysis confirmed the human origin. Histopathology analysis revealed that the TGBC-44 xenograft retained both the squamous and the adenocarcinoma components, and the TGBC-47 xenograft exhibited poorly differentiated adenocarcinoma as in the corresponding original tumors. Immunohistochemistry and Western blotting studies revealed positive and similar expression of platelet derived endothelial growth factor/thymidine phosphorylase (PDGF/TP), thymidylate synthase (TS), and cyclooxygenase-2 (COX-2) in both original tumors and xenograft models. No macroscopic metastases were found at the time of sacrifice. We have successfully established two models of human biliary tract cancer, gallbladder and bile duct cancer. Models retained the morphological and biochemical characteristics of the original tumor and demonstrated constant biological behavior in all transplanted mice. These models could be useful tools for developing new diagnostic and therapeutic strategies against biliary tract cancers. PMID:14532968

  18. Multimodality Imaging Methods for Assessing Retinoblastoma Orthotopic Xenograft Growth and Development

    PubMed Central

    Corson, Timothy W.; Samuels, Brian C.; Wenzel, Andrea A.; Geary, Anna J.; Riley, Amanda A.; McCarthy, Brian P.; Hanenberg, Helmut; Bailey, Barbara J.; Rogers, Pamela I.; Pollok, Karen E.; Rajashekhar, Gangaraju; Territo, Paul R.

    2014-01-01

    Genomic studies of the pediatric ocular tumor retinoblastoma are paving the way for development of targeted therapies. Robust model systems such as orthotopic xenografts are necessary for testing such therapeutics. One system involves bioluminescence imaging of luciferase-expressing human retinoblastoma cells injected into the vitreous of newborn rat eyes. Although used for several drug studies, the spatial and temporal development of tumors in this model has not been documented. Here, we present a new model to allow analysis of average luciferin flux () through the tumor, a more biologically relevant parameter than peak bioluminescence as traditionally measured. Moreover, we monitored the spatial development of xenografts in the living eye. We engineered Y79 retinoblastoma cells to express a lentivirally-delivered enhanced green fluorescent protein-luciferase fusion protein. In intravitreal xenografts, we assayed bioluminescence and computed , as well as documented tumor growth by intraocular optical coherence tomography (OCT), brightfield, and fluorescence imaging. In vivo bioluminescence, ex vivo tumor size, and ex vivo fluorescent signal were all highly correlated in orthotopic xenografts. By OCT, xenografts were dense and highly vascularized, with well-defined edges. Small tumors preferentially sat atop the optic nerve head; this morphology was confirmed on histological examination. In vivo, in xenografts showed a plateau effect as tumors became bounded by the dimensions of the eye. The combination of modeling and in vivo intraocular imaging allows both quantitative and high-resolution, non-invasive spatial analysis of this retinoblastoma model. This technique will be applied to other cell lines and experimental therapeutic trials in the future. PMID:24901248

  19. Multimodality imaging methods for assessing retinoblastoma orthotopic xenograft growth and development.

    PubMed

    Corson, Timothy W; Samuels, Brian C; Wenzel, Andrea A; Geary, Anna J; Riley, Amanda A; McCarthy, Brian P; Hanenberg, Helmut; Bailey, Barbara J; Rogers, Pamela I; Pollok, Karen E; Rajashekhar, Gangaraju; Territo, Paul R

    2014-01-01

    Genomic studies of the pediatric ocular tumor retinoblastoma are paving the way for development of targeted therapies. Robust model systems such as orthotopic xenografts are necessary for testing such therapeutics. One system involves bioluminescence imaging of luciferase-expressing human retinoblastoma cells injected into the vitreous of newborn rat eyes. Although used for several drug studies, the spatial and temporal development of tumors in this model has not been documented. Here, we present a new model to allow analysis of average luciferin flux ([Formula: see text]) through the tumor, a more biologically relevant parameter than peak bioluminescence as traditionally measured. Moreover, we monitored the spatial development of xenografts in the living eye. We engineered Y79 retinoblastoma cells to express a lentivirally-delivered enhanced green fluorescent protein-luciferase fusion protein. In intravitreal xenografts, we assayed bioluminescence and computed [Formula: see text], as well as documented tumor growth by intraocular optical coherence tomography (OCT), brightfield, and fluorescence imaging. In vivo bioluminescence, ex vivo tumor size, and ex vivo fluorescent signal were all highly correlated in orthotopic xenografts. By OCT, xenografts were dense and highly vascularized, with well-defined edges. Small tumors preferentially sat atop the optic nerve head; this morphology was confirmed on histological examination. In vivo, [Formula: see text] in xenografts showed a plateau effect as tumors became bounded by the dimensions of the eye. The combination of [Formula: see text] modeling and in vivo intraocular imaging allows both quantitative and high-resolution, non-invasive spatial analysis of this retinoblastoma model. This technique will be applied to other cell lines and experimental therapeutic trials in the future. PMID:24901248

  20. Human skeletal muscle xenograft as a new preclinical model for muscle disorders.

    PubMed

    Zhang, Yuanfan; King, Oliver D; Rahimov, Fedik; Jones, Takako I; Ward, Christopher W; Kerr, Jaclyn P; Liu, Naili; Emerson, Charles P; Kunkel, Louis M; Partridge, Terence A; Wagner, Kathryn R

    2014-06-15

    Development of novel therapeutics requires good animal models of disease. Disorders for which good animal models do not exist have very few drugs in development or clinical trial. Even where there are accepted, albeit imperfect models, the leap from promising preclinical drug results to positive clinical trials commonly fails, including in disorders of skeletal muscle. The main alternative model for early drug development, tissue culture, lacks both the architecture and, usually, the metabolic fidelity of the normal tissue in vivo. Herein, we demonstrate the feasibility and validity of human to mouse xenografts as a preclinical model of myopathy. Human skeletal muscle biopsies transplanted into the anterior tibial compartment of the hindlimbs of NOD-Rag1(null) IL2rγ(null) immunodeficient host mice regenerate new vascularized and innervated myofibers from human myogenic precursor cells. The grafts exhibit contractile and calcium release behavior, characteristic of functional muscle tissue. The validity of the human graft as a model of facioscapulohumeral muscular dystrophy is demonstrated in disease biomarker studies, showing that gene expression profiles of xenografts mirror those of the fresh donor biopsies. These findings illustrate the value of a new experimental model of muscle disease, the human muscle xenograft in mice, as a feasible and valid preclinical tool to better investigate the pathogenesis of human genetic myopathies and to more accurately predict their response to novel therapeutics. PMID:24452336

  1. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy.

    PubMed

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-01-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. Intrinsic multiphoton fluorescence properties of moxifloxacin and gatifloxacin were characterized, and their distributions in mouse cornea in vivo were measured by 3D MPM imaging. Both moxifloxacin and gatifloxacin had similar multiphoton spectra, while moxifloxacin had stronger fluorescence than gatifloxacin. MPM imaging of mouse cornea in vivo showed (1) moxifloxacin had good penetration through the superficial corneal epithelium, while gatifloxacin had relatively poor penetration, (2) both ophthalmic solutions had high intracellular distribution. In vivo MPM results were consistent with previous studies. This study demonstrates the feasibility of MPM as a method for in vivo direct measurement of moxifloxacin and gatifloxacin in the cornea. PMID:27138688

  2. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy

    PubMed Central

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-01-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. Intrinsic multiphoton fluorescence properties of moxifloxacin and gatifloxacin were characterized, and their distributions in mouse cornea in vivo were measured by 3D MPM imaging. Both moxifloxacin and gatifloxacin had similar multiphoton spectra, while moxifloxacin had stronger fluorescence than gatifloxacin. MPM imaging of mouse cornea in vivo showed (1) moxifloxacin had good penetration through the superficial corneal epithelium, while gatifloxacin had relatively poor penetration, (2) both ophthalmic solutions had high intracellular distribution. In vivo MPM results were consistent with previous studies. This study demonstrates the feasibility of MPM as a method for in vivo direct measurement of moxifloxacin and gatifloxacin in the cornea. PMID:27138688

  3. In vivo 3D measurement of moxifloxacin and gatifloxacin distributions in the mouse cornea using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Seunghun; Lee, Jun Ho; Park, Jin Hyoung; Yoon, Yeoreum; Chung, Wan Kyun; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2016-05-01

    Moxifloxacin and gatifloxacin are fourth-generation fluoroquinolone antibiotics used in the clinic to prevent or treat ocular infections. Their pharmacokinetics in the cornea is usually measured from extracted ocular fluids or tissues, and in vivo direct measurement is difficult. In this study multiphoton microscopy (MPM), which is a 3D optical microscopic technique based on multiphoton fluorescence, was applied to the measurement of moxifloxacin and gatifloxacin distribution in the cornea. Intrinsic multiphoton fluorescence properties of moxifloxacin and gatifloxacin were characterized, and their distributions in mouse cornea in vivo were measured by 3D MPM imaging. Both moxifloxacin and gatifloxacin had similar multiphoton spectra, while moxifloxacin had stronger fluorescence than gatifloxacin. MPM imaging of mouse cornea in vivo showed (1) moxifloxacin had good penetration through the superficial corneal epithelium, while gatifloxacin had relatively poor penetration, (2) both ophthalmic solutions had high intracellular distribution. In vivo MPM results were consistent with previous studies. This study demonstrates the feasibility of MPM as a method for in vivo direct measurement of moxifloxacin and gatifloxacin in the cornea.

  4. A conditional mouse model for measuring the frequency of homologous recombination events in vivo in the absence of essential genes.

    PubMed

    Brown, Adam D; Claybon, Alison B; Bishop, Alexander J R

    2011-09-01

    The ability to detect and repair DNA damage is crucial to the prevention of various diseases. Loss of function of genes involved in these processes is known to result in significant developmental defects and/or predisposition to cancer. One such DNA repair mechanism, homologous recombination, has the capacity to repair a wide variety of lesions. Knockout mouse models of genes thought to be involved in DNA repair processes are frequently lethal, making in vivo studies very difficult, if not impossible. Therefore, we set out to develop an in vivo conditional mouse model system to facilitate investigations into the involvement of essential genes in homologous recombination. To test our model, we measured the frequency of spontaneous homologous recombination using the pink-eyed unstable mouse model, in which we conditionally excised either Blm or full-length Brca1 (breast cancer 1, early onset). These two genes are hypothesized to have opposing roles in homologous recombination. In summary, our in vivo data supports in vitro studies suggesting that BLM suppresses homologous recombination, while full-length BRCA1 promotes this process. PMID:21709021

  5. High quality optical microangiography of ocular microcirculation and measurement of total retinal blood flow in mouse eye

    NASA Astrophysics Data System (ADS)

    Zhi, Zhongwei; Yin, Xin; Dziennis, Suzan; Alpers, Charles E.; Wang, Ruikang K.

    2013-03-01

    Visualization and measurement of retinal blood flow (RBF) is important to the diagnosis and management of different eye diseases, including diabetic retinopathy. Optical microangiography (OMAG) is developed for generating 3D dynamic microcirculation image and later refined into ultra-high sensitive OMAG (UHS-OMAG) for true capillary vessels imaging. Here, we present the application of OMAG imaging technique for visualization of depth-resolved vascular network within retina and choroid as well as measurement of total retinal blood flow in mice. A fast speed spectral domain OCT imaging system at 820nm with a line scan rate of 140 kHz was developed to image mouse posterior eye. By applying UHS-OMAG scanning protocol and processing algorithm, we achieved true capillary level imaging of retina and choroid vasculature in mouse eye. The vascular pattern within different retinal layers and choroid was presented. An en face Doppler OCT approach [1] without knowing Doppler angle was adopted for the measurement of total retinal blood flow. The axial blood flow velocity is measured in an en face plane by raster scanning and the flow is calculated by integrating over the vessel area of the central retinal artery.

  6. Trifluoromethyl Fluorocoxib A Detects Cyclooxygenase-2 Expression in Inflammatory Tissues and Human Tumor Xenografts

    PubMed Central

    2014-01-01

    Fluorocoxib A is an effective COX-2-targeted optical imaging agent, used for in vivo detection of inflammatory tissues and premalignant and malignant tumors that express elevated levels of COX-2 (Uddin et al. Cancer Res. 2010, 70, 3618–3627). In an effort to discover novel optical probes for COX-2, a trifluoromethyl analogue of fluorocoxib A (CF3-fluorocoxib A) was synthesized and evaluated for its ability to inhibit COX-2 in vitro purified enzyme and human cancer cell lines. Kinetic analysis revealed that CF3-fluorocoxib A is a slow, tight binding inhibitor of COX-2 that exhibits low nanomolar inhibitory potency. While CF3-fluorocoxib A and fluorocoxib A are similar in structure, CF3-fluorocoxib A shows improved potency in inhibition of wtCOX-2 and with a series of site-directed COX-2 mutants. After intraperitoneal injection, selective uptake of CF3-fluorocoxib A is detected in inflamed mouse paws compared to noninflamed contralateral paws by optical imaging, and uptake is blocked by pretreatment with the COX-2 inhibitor, celecoxib. Selective uptake is also detected in the COX-2-positive human tumor xenografts (1483 HNSCC) as compared with the COX-2-negative tumor xenografts (HCT116) in an in vivo nude mouse tumor model. These in vitro and in vivo studies suggest that binding to COX-2 is the major determinant of uptake of CF3-fluorocoxib A into the inflamed tissues and tumor xenografts. Thus, this new COX-2-targeted imaging probe should find utility in the detection and evaluation of COX-2 status in naturally occurring malignancies. PMID:24900856

  7. A murine xenograft model for a transmissible cancer in Tasmanian devils.

    PubMed

    Kreiss, A; Tovar, C; Obendorf, D L; Dun, K; Woods, G M

    2011-03-01

    The number of Tasmanian devils in the wild is rapidly declining owing to a transmissible cancer, devil facial tumor disease (DFTD). Although progress has been made to understand the spread of this disease, crucial research on the pathogenesis of DFTD has been limited because of the threatened status of the host species. Here, the authors describe the development of a NOD/SCID (nonobese diabetic / severe combined immunodeficiency) mouse model that reproduces DFTD and provides a much-needed model to undertake studies into this intriguing transmissible cancer. Histologically, the DFTD produced in NOD/SCID mice (xenografted DFTD) was indistinguishable from the DFTD identified in Tasmanian devils. At the protein level, all xenografted DFTD tumors expressed periaxin, a marker that confirmed the diagnosis of DFTD. The karyotype of DFTD in NOD/SCID mice reproduced similar chromosomal alterations as seen in diseased devils. Furthermore, each NOD/SCID mouse inoculated with cultured DFTD tumor cells developed tumors, whereas DFTD did not develop in any of the inoculated immune-competent BALB/c mice. PMID:20861503

  8. Measuring oxygen tension modulation, induced by a new pre-radiotherapy therapeutic, in a mammary window chamber mouse model

    NASA Astrophysics Data System (ADS)

    Schafer, Rachel; Gmitro, Arthur F.

    2015-03-01

    Tumor regions under hypoxic or low oxygen conditions respond less effectively to many treatment strategies, including radiation therapy. A novel investigational therapeutic, NVX-108 (NuvOx Pharma), has been developed to increase delivery of oxygen through the use of a nano-emulsion of dodecofluoropentane. By raising pO2 levels prior to delivering radiation, treatment efficacy may be improved. To aid in evaluating the novel drug, oxygen tension was quantitatively measured, spatially and temporally, to record the effect of administrating NVX-108 in an orthotopic mammary window chamber mouse model of breast cancer. The oxygen tension was measured through the use of an oxygen-sensitive coating, comprised of phosphorescent platinum porphyrin dye embedded in a polystyrene matrix. The coating, applied to the surface of the coverslip of the window chamber through spin coating, is placed in contact with the mammary fat pad to record the oxygenation status of the surface tissue layer. Prior to implantation of the window chamber, a tumor is grown in the SCID mouse model by injection of MCF-7 cells into the mammary fat pad. Two-dimensional spatial distributions of the pO2 levels were obtained through conversion of measured maps of phosphorescent lifetime. The resulting information on the spatial and temporal variation of the induced oxygen modulation could provide valuable insight into the optimal timing between administration of NVX-108 and radiation treatment to provide the most effective treatment outcome.

  9. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo

    PubMed Central

    He, Yan; Du, Zhiyun; Ma, Shijing; Liu, Yue; Li, Dongli; Huang, Huarong; Jiang, Sen; Cheng, Shupeng; Wu, Wenjing; Zhang, Kun; Zheng, Xi

    2016-01-01

    Silver nanoparticles (AgNPs) have now been recognized as promising therapeutic molecules and are extending their use in cancer diagnosis and therapy. This study demonstrates for the first time the antitumor activity of green-synthesized AgNPs against lung cancer in vitro and in vivo. Cytotoxicity effect was explored on human lung cancer H1299 cells in vitro by MTT and trypan blue assays. Apoptosis was measured by morphological assessment, and nuclear factor-κB (NF-κB) transcriptional activity was determined by a luciferase reporter gene assay. The expressions of phosphorylated stat3, bcl-2, survivin, and caspase-3 were examined by Western blot analysis. AgNPs showed dose-dependent cytotoxicity and stimulation of apoptosis in H1299 cells. The effects on H1299 cells correlated well with the inhibition of NF-κB activity, a decrease in bcl-2, and an increase in caspase-3 and survivin expression. AgNPs significantly suppressed the H1299 tumor growth in a xenograft severe combined immunodeficient (SCID) mouse model. The results demonstrate the anticancer activities of AgNPs, suggesting that they may act as potential beneficial molecules in lung cancer chemoprevention and chemotherapy, especially for early-stage intervention. PMID:27217750

  10. Antitumor effect of Kanglaite® injection in human pancreatic cancer xenografts

    PubMed Central

    2014-01-01

    Background Kanglaite® injection (KLT), with a main ingredient of Coix seed oil (a traditional Chinese medicine), has been widely used for cancer treatment in China. KLT has an inhibitory effect on many kinds of tumors and PI3K/Akt/mTOR signaling promotes cell survival, proliferation, and progression in cancer cells. Therefore, targeting this pathway may lead to the development of novel therapeutic approaches for human cancers. Methods Here, we examined the effects of KLT on the PI3K/Akt/mTOR pathway in pancreatic cancer xenografts in mice, and assessed its therapeutic potential. Growth and apoptosis of tumor xenografts were examined, and the expression levels of genes and proteins involved in the PI3K/Akt/mTOR pathway were measured by RT-PCR and western blotting, respectively. Results Our results revealed that KLT dramatically inhibited the growth of pancreatic cancer xenografts and induced apoptosis simultaneously. Furthermore, it downregulated the expression of phospho-Akt and phospho-mTOR. Conclusions These results suggest that KLT can suppress growth and induce apoptosis of pancreatic cancer xenografts. Moreover, KLT can downregulate the expression of phospho-Akt and phospho-mTOR to modulate the PI3K/Akt/mTOR signaling pathway. PMID:25005526

  11. Microfluidic assay for precise measurements of mouse, rat, and human neutrophil chemotaxis in whole-blood droplets.

    PubMed

    Jones, Caroline N; Hoang, Anh N; Martel, Joseph M; Dimisko, Laurie; Mikkola, Amy; Inoue, Yoshitaka; Kuriyama, Naohide; Yamada, Marina; Hamza, Bashar; Kaneki, Masao; Warren, H Shaw; Brown, Diane E; Irimia, Daniel

    2016-07-01

    Animal models of human disease differ in innate immune responses to stress, pathogens, or injury. Precise neutrophil phenotype measurements could facilitate interspecies comparisons. However, such phenotype comparisons could not be performed accurately with the use of current assays, as they require the separation of neutrophils from blood using species-specific protocols, and they introduce distinct artifacts. Here, we report a microfluidic technology that enables robust characterization of neutrophil migratory phenotypes in a manner independent of the donor species and performed directly in a droplet of whole blood. The assay relies on the particular ability of neutrophils to deform actively during chemotaxis through microscale channels that block the advance of other blood cells. Neutrophil migration is measured directly in blood, in the presence of other blood cells and serum factors. Our measurements reveal important differences among migration counts, velocity, and directionality among neutrophils from 2 common mouse strains, rats, and humans. PMID:26819316

  12. Measurement of in vivo mutant frequency in lymphocytes in the mouse

    SciTech Connect

    Dempsey, J.L.; Morley, A.A.

    1986-01-01

    A limiting-dilution cloning technique for quantifying in vivo mutations at the hypoxanthine phosphoribosyl transferase locus in mouse splenocytes was developed. Mouse splenocytes were cultured in round-bottom microwells with irradiated feeder cells, concanavalin A, and a source of interleukin 2 at five cells/well in the absence of thioguanine, and at 5 X 10(4) cells/well in the presence of 2.5 micrograms/ml thioguanine; mutant frequency was calculated as the ratio of the cloning efficiencies with or without thioguanine. The geometric mean (95% range) for the mutant frequency in 20 mice was 1.54 X 10(-6) (4.7 X 10(-7) -2.6 X 10(6)) and whole-body X-irradiation resulted in a dose-related increase in mutant frequency of up to approximately 20 times the baseline level. The in vivo murine mutation assay should be a useful system for genotoxicity testing and may be of particular value in establishing risk estimates for human populations exposed to genotoxins.

  13. Ovarian Tumor Attachment, Invasion, and Vascularization Reflect Unique Microenvironments in the Peritoneum: Insights from Xenograft and Mathematical Models

    PubMed Central

    Steinkamp, Mara P.; Winner, Kimberly Kanigel; Davies, Suzy; Muller, Carolyn; Zhang, Yong; Hoffman, Robert M.; Shirinifard, Abbas; Moses, Melanie; Jiang, Yi; Wilson, Bridget S.

    2013-01-01

    Ovarian cancer relapse is often characterized by metastatic spread throughout the peritoneal cavity with tumors attached to multiple organs. In this study, interaction of ovarian cancer cells with the peritoneal tumor microenvironment was evaluated in a xenograft model based on intraperitoneal injection of fluorescent SKOV3.ip1 ovarian cancer cells. Intra-vital microscopy of mixed GFP-red fluorescent protein (RFP) cell populations injected into the peritoneum demonstrated that cancer cells aggregate and attach as mixed spheroids, emphasizing the importance of homotypic adhesion in tumor formation. Electron microscopy provided high resolution structural information about local attachment sites. Experimental measurements from the mouse model were used to build a three-dimensional cellular Potts ovarian tumor model (OvTM) that examines ovarian cancer cell attachment, chemotaxis, growth, and vascularization. OvTM simulations provide insight into the relative influence of cancer cell–cell adhesion, oxygen availability, and local architecture on tumor growth and morphology. Notably, tumors on the mesentery, omentum, or spleen readily invade the “open” architecture, while tumors attached to the gut encounter barriers that restrict invasion and instead rapidly expand into the peritoneal space. Simulations suggest that rapid neovascularization of SKOV3.ip1 tumors is triggered by constitutive release of angiogenic factors in the absence of hypoxia. This research highlights the importance of cellular adhesion and tumor microenvironment in the seeding of secondary ovarian tumors on diverse organs within the peritoneal cavity. Results of the OvTM simulations indicate that invasion is strongly influenced by features underlying the mesothelial lining at different sites, but is also affected by local production of chemotactic factors. The integrated in vivo mouse model and computer simulations provide a unique platform for evaluating targeted therapies for ovarian cancer

  14. Time-resolved blood flow measurement in the in vivo mouse model by optical frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Walther, Julia; Mueller, Gregor; Meissner, Sven; Cimalla, Peter; Homann, Hanno; Morawietz, Henning; Koch, Edmund

    2009-07-01

    In this study, we demonstrate that phase-resolved Doppler optical frequency domain imaging (OFDI) is very suitable to quantify the pulsatile blood flow within a vasodynamic measurement in the in vivo mouse model. For this, an OFDI-system with a read-out rate of 20 kHz and a center wavelength of 1320 nm has been used to image the time-resolved murine blood flow in 300 μμm vessels. Because OFDI is less sensitive to fringe washout due to axial sample motion, it is applied to analyze the blood flow velocities and the vascular dynamics in six-week-old C57BL/6 mice compared to one of the LDLR knockout strain kept under sedentary conditions or with access to voluntary wheel running. We have shown that the systolic as well as the diastolic phase of the pulsatile arterial blood flow can be well identified at each vasodynamic state. Furthermore, the changes of the flow velocities after vasoconstriction and -dilation were presented and interpreted in the entire physiological context. With this, the combined measurement of time-resolved blood flow and vessel diameter provides the basis to analyze the vascular function and its influence on the blood flow of small arteries of different mouse strains in response to different life styles.

  15. Renal Capsule Xenografting and Subcutaneous Pellet Implantation for the Evaluation of Prostate Carcinogenesis and Benign Prostatic Hyperplasia

    PubMed Central

    Nicholson, Tristan M.; Uchtmann, Kristen S.; Valdez, Conrad D.; Theberge, Ashleigh B.; Miralem, Tihomir; Ricke, William A.

    2013-01-01

    New therapies for two common prostate diseases, prostate cancer (PrCa) and benign prostatic hyperplasia (BPH), depend critically on experiments evaluating their hormonal regulation. Sex steroid hormones (notably androgens and estrogens) are important in PrCa and BPH; we probe their respective roles in inducing prostate growth and carcinogenesis in mice with experiments using compressed hormone pellets. Hormone and/or drug pellets are easily manufactured with a pellet press, and surgically implanted into the subcutaneous tissue of the male mouse host. We also describe a protocol for the evaluation of hormonal carcinogenesis by combining subcutaneous hormone pellet implantation with xenografting of prostate cell recombinants under the renal capsule of immunocompromised mice. Moreover, subcutaneous hormone pellet implantation, in combination with renal capsule xenografting of BPH tissue, is useful to better understand hormonal regulation of benign prostate growth, and to test new therapies targeting sex steroid hormone pathways. PMID:24022657

  16. Renal capsule xenografting and subcutaneous pellet implantation for the evaluation of prostate carcinogenesis and benign prostatic hyperplasia.

    PubMed

    Nicholson, Tristan M; Uchtmann, Kristen S; Valdez, Conrad D; Theberge, Ashleigh B; Miralem, Tihomir; Ricke, William A

    2013-01-01

    New therapies for two common prostate diseases, prostate cancer (PrCa) and benign prostatic hyperplasia (BPH), depend critically on experiments evaluating their hormonal regulation. Sex steroid hormones (notably androgens and estrogens) are important in PrCa and BPH; we probe their respective roles in inducing prostate growth and carcinogenesis in mice with experiments using compressed hormone pellets. Hormone and/or drug pellets are easily manufactured with a pellet press, and surgically implanted into the subcutaneous tissue of the male mouse host. We also describe a protocol for the evaluation of hormonal carcinogenesis by combining subcutaneous hormone pellet implantation with xenografting of prostate cell recombinants under the renal capsule of immunocompromised mice. Moreover, subcutaneous hormone pellet implantation, in combination with renal capsule xenografting of BPH tissue, is useful to better understand hormonal regulation of benign prostate growth, and to test new therapies targeting sex steroid hormone pathways. PMID:24022657

  17. Fiber optic light-scattering measurement system for evaluation of embryo viability: light-scattering characteristics from live mouse embryo

    NASA Astrophysics Data System (ADS)

    Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto

    1997-06-01

    We measured angular distribution of the light scattering from live mouse embryo with 632.8nm in wavelength to evaluate the embryo viability. We aim to measure the mitochondrial density in human embryo which have relation to the embryo viability. We have constructed the light scattering measurement system to detect the mitochondrial density non-invasively. We have employed two optical fibers for the illumination and sensing to change the angle between these fibers. There were two dips on the scattering angular distribution from the embryo. These dips existed on 30 and 85 deg. We calculated the scattering angular pattern by Mie theory to fit the measured scattering estimated scattering size and density. The best fitting was obtained when the particle size and density were 0.9 micrometers and 1010 particles per ml, respectively. These values coincided with the approximated values of mitochondrial in the embryo. The measured light scattering may mainly originated from mitochondria in spite of the existence of the various scattering particles in the embryo. Since our simple scattering measurement may offer the mitochondrial density in the embryo, it might become the practical method of human embryo on in vitro fertilization-embryo transfer.

  18. Patient-Derived Tumor Xenografts Are Susceptible to Formation of Human Lymphocytic Tumors1

    PubMed Central

    Bondarenko, Gennadiy; Ugolkov, Andrey; Rohan, Stephen; Kulesza, Piotr; Dubrovskyi, Oleksii; Gursel, Demirkan; Mathews, Jeremy; O’Halloran, Thomas V.; Wei, Jian J.; Mazar, Andrew P.

    2015-01-01

    Patient-derived xenograft (PDX) tumor models have emerged as a new approach to evaluate the effects of cancer drugs on patients’ personalized tumor grafts enabling to select the best treatment for the cancer patient and providing a new tool for oncology drug developers. Here, we report that human tumors engrafted in immunodeficient mice are susceptible to formation of B-and T-cell PDX tumors. We xenografted human primary and metastatic tumor samples into immunodeficient mice and found that a fraction of PDX tumors generated from patients’ samples of breast, colon, pancreatic, bladder and renal cancer were histologically similar to lymphocytic neoplasms. Moreover, we found that the first passage of breast and pancreatic cancer PDX tumors after initial transplantation of the tumor pieces from the same human tumor graft could grow as a lymphocytic tumor in one mouse and as an adenocarcinoma in another mouse. Whereas subcutaneous PDX tumors resembling human adenocarcinoma histology were slow growing and non-metastatic, we found that subcutaneous PDX lymphocytic tumors were fast growing and formed large metastatic lesions in mouse lymph nodes, liver, lungs, and spleen. PDX lymphocytic tumors were comprised of B-cells which were Epstein-Barr virus positive and expressed CD45 and CD20. Because B-cells are typically present in malignant solid tumors, formation of B-cell tumor may evolve in a wide range of PDX tumor models. Although PDX tumor models show great promise in the development of personalized therapy for cancer patients, our results suggest that confidence in any given PDX tumor model requires careful screening of lymphocytic markers. PMID:26476081

  19. Systematic review of the relationship between amyloid-β levels and measures of transgenic mouse cognitive deficit in Alzheimer's disease.

    PubMed

    Foley, Avery M; Ammar, Zeena M; Lee, Robert H; Mitchell, Cassie S

    2015-01-01

    Amyloid-β (Aβ) is believed to directly affect memory and learning in Alzheimer's disease (AD). It is widely suggested that there is a relationship between Aβ40 and Aβ42 levels and cognitive performance. In order to explore the validity of this relationship, we performed a meta-analysis of 40 peer-reviewed, published AD transgenic mouse studies that quantitatively measured Aβ levels in brain tissue after assessing cognitive performance. We examined the relationship between Aβ levels (Aβ40, Aβ42, or the ratio of Aβ42 to Aβ40) and cognitive function as measured by escape latency times in the Morris water maze or exploratory preference percentage in the novel object recognition test. Our systematic review examined five mouse models (Tg2576, APP, PS1, 3xTg, APP(OSK)-Tg), gender, and age. The overall result revealed no statistically significant correlation between quantified Aβ levels and experimental measures of cognitive function. However, enough of the trends were of the same sign to suggest that there probably is a very weak qualitative trend visible only across many orders of magnitude. In summary, the results of the systematic review revealed that mice bred to show elevated levels of Aβ do not perform significantly worse in cognitive tests than mice that do not have elevated Aβ levels. Our results suggest two lines of inquiry: 1) Aβ is a biochemical "side effect" of the AD pathology; or 2) learning and memory deficits in AD are tied to the presence of qualitatively "high" levels of Aβ but are not quantitatively sensitive to the levels themselves. PMID:25362040

  20. In utero Measurement of Heart Rate in Mouse by Noninvasive M-mode Echocardiography

    PubMed Central

    Kim, WooJin; Seidah, Nabil G.; Prat, Annik

    2013-01-01

    Congenital heart disease (CHD) is the most frequent noninfectious cause of death at birth. The incidence of CHD ranges from 4 to 50/1,000 births (Disease and injury regional estimates, World Health Organization, 2004). Surgeries that often compromise the quality of life are required to correct heart defects, reminding us of the importance of finding the causes of CHD. Mutant mouse models and live imaging technology have become essential tools to study the etiology of this disease. Although advanced methods allow live imaging of abnormal hearts in embryos, the physiological and hemodynamic states of the latter are often compromised due to surgical and/or lengthy procedures. Noninvasive ultrasound imaging, however, can be used without surgically exposing the embryos, thereby maintaining their physiology. Herein, we use simple M-mode ultrasound to assess heart rates of embryos at E18.5 in utero. The detection of abnormal heart rates is indeed a good indicator of dysfunction of the heart and thus constitutes a first step in the identification of developmental defects that may lead to heart failure. PMID:24300115

  1. Dynamic optical coherence tomography measurements of elastic wave propagation in tissue-mimicking phantoms and mouse cornea in vivo

    NASA Astrophysics Data System (ADS)

    Li, Jiasong; Wang, Shang; Manapuram, Ravi Kiran; Singh, Manmohan; Menodiado, Floredes M.; Aglyamov, Salavat; Emelianov, Stanislav; Twa, Michael D.; Larin, Kirill V.

    2013-12-01

    We demonstrate the use of phase-stabilized swept-source optical coherence tomography to assess the propagation of low-amplitude (micron-level) waves induced by a focused air-pulse system in tissue-mimicking phantoms, a contact lens, a silicone eye model, and the mouse cornea in vivo. The results show that the wave velocity can be quantified from the analysis of wave propagation, thereby enabling the estimation of the sample elasticity using the model of surface wave propagation for the tissue-mimicking phantoms. This noninvasive, noncontact measurement technique involves low-force methods of tissue excitation that can be potentially used to assess the biomechanical properties of ocular and other delicate tissues in vivo.

  2. Antibody-mediated Xenograft Injury: Mechanisms and Protective Strategies

    PubMed Central

    Pierson, Richard N.

    2009-01-01

    The use of porcine organs for clinical transplantation is a promising potential solution to the shortage of human organs. Preformed anti-pig antibody is the primary cause of hyperacute rejection, while elicited antibody can contribute to subsequent “delayed” xenograft rejection. This article will review recent progress to overcome antibody mediated xenograft rejection, through modification of the host immunity and use of genetically engineered pig organs. PMID:19376229

  3. Global Conservation of Protein Status between Cell Lines and Xenografts.

    PubMed

    Biau, Julian; Chautard, Emmanuel; Court, Frank; Pereira, Bruno; Verrelle, Pierre; Devun, Flavien; De Koning, Leanne; Dutreix, Marie

    2016-08-01

    Common preclinical models for testing anticancer treatment include cultured human tumor cell lines in monolayer, and xenografts derived from these cell lines in immunodeficient mice. Our goal was to determine how similar the xenografts are compared with their original cell line and to determine whether it is possible to predict the stability of a xenograft model beforehand. We studied a selection of 89 protein markers of interest in 14 human cell cultures and respective subcutaneous xenografts using the reverse-phase protein array technology. We specifically focused on proteins and posttranslational modifications involved in DNA repair, PI3K pathway, apoptosis, tyrosine kinase signaling, stress, cell cycle, MAPK/ERK signaling, SAPK/JNK signaling, NFκB signaling, and adhesion/cytoskeleton. Using hierarchical clustering, most cell culture-xenograft pairs cluster together, suggesting a global conservation of protein signature. Particularly, Akt, NFkB, EGFR, and Vimentin showed very stable protein expression and phosphorylation levels highlighting that 4 of 10 pathways were highly correlated whatever the model. Other proteins were heterogeneously conserved depending on the cell line. Finally, cell line models with low Akt pathway activation and low levels of Vimentin gave rise to more reliable xenograft models. These results may be useful for the extrapolation of cell culture experiments to in vivo models in novel targeted drug discovery. PMID:27567954

  4. Survivin inhibitor YM155 suppresses gastric cancer xenograft growth in mice without affecting normal tissues

    PubMed Central

    Cheng, Xiao Jiao; Lin, Jia Cheng; Ding, Yan Fei; Zhu, Liming; Ye, Jing; Tu, Shui Ping

    2016-01-01

    Survivin overexpression is associated with poor prognosis of human gastric cancer, and is a target for gastric cancer therapy. YM155 is originally identified as a specific inhibitor of survivin. In this study, we investigated the antitumor effect of YM155 on human gastric cancer. Our results showed that YM155 treatment significantly inhibited cell proliferation, reduced colony formation and induced apoptosis of gastric cancer cells in a dose-dependent manner. Accordingly, YM155 treatment significantly decreased survivin expression without affecting XIAP expression and increased the cleavage of apoptosis-associated proteins caspase 3, 7, 8, 9. YM155 significantly inhibited sphere formation of gastric cancer cells, suppressed expansion and growth of the formed spheres (cancer stem cell-like cells, CSCs) and downregulated the protein levels of β-catenin, c-Myc, Cyclin D1 and CD44 in gastric cancer cells. YM155 infusion at 5 mg/kg/day for 7 days markedly inhibited growth of gastric cancer xenograft in a nude mouse model. Immunohistochemistry staining and Western Blot showed that YM155 treatment inhibited expression of survivin and CD44, induced apoptosis and reduced CD44+ CSCs in xenograft tumor tissues in vivo. No obvious pathological changes were observed in organs (e.g. heart, liver, lung and kidney) in YM155-treated mice. Our results demonstrated that YM155 inhibits cell proliferation, induces cell apoptosis, reduces cancer stem cell expansion, and inhibits xenograft tumor growth in gastric cancer cells. Our results elucidate a new mechanism by which YM155 inhibits gastric cancer growth by inhibition of CSCs. YM155 may be a promising agent for gastric cancer treatment. PMID:26771139

  5. Survivin inhibitor YM155 suppresses gastric cancer xenograft growth in mice without affecting normal tissues.

    PubMed

    Cheng, Xiao Jiao; Lin, Jia Cheng; Ding, Yan Fei; Zhu, Liming; Ye, Jing; Tu, Shui Ping

    2016-02-01

    Survivin overexpression is associated with poor prognosis of human gastric cancer, and is a target for gastric cancer therapy. YM155 is originally identified as a specific inhibitor of survivin. In this study, we investigated the antitumor effect of YM155 on human gastric cancer. Our results showed that YM155 treatment significantly inhibited cell proliferation, reduced colony formation and induced apoptosis of gastric cancer cells in a dose-dependent manner. Accordingly, YM155 treatment significantly decreased survivin expression without affecting XIAP expression and increased the cleavage of apoptosis-associated proteins caspase 3, 7, 8, 9. YM155 significantly inhibited sphere formation of gastric cancer cells, suppressed expansion and growth of the formed spheres (cancer stem cell-like cells, CSCs) and downregulated the protein levels of β-catenin, c-Myc, Cyclin D1 and CD44 in gastric cancer cells. YM155 infusion at 5 mg/kg/day for 7 days markedly inhibited growth of gastric cancer xenograft in a nude mouse model. Immunohistochemistry staining and Western Blot showed that YM155 treatment inhibited expression of survivin and CD44, induced apoptosis and reduced CD44+ CSCs in xenograft tumor tissues in vivo. No obvious pathological changes were observed in organs (e.g. heart, liver, lung and kidney) in YM155-treated mice. Our results demonstrated that YM155 inhibits cell proliferation, induces cell apoptosis, reduces cancer stem cell expansion, and inhibits xenograft tumor growth in gastric cancer cells. Our results elucidate a new mechanism by which YM155 inhibits gastric cancer growth by inhibition of CSCs. YM155 may be a promising agent for gastric cancer treatment. PMID:26771139

  6. Nimbolide, a Limonoid Triterpene, Inhibits Growth of Human Colorectal Cancer Xenografts by Suppressing the Proinflammatory Microenvironment

    PubMed Central

    Gupta, Subash C.; Prasad, Sahdeo; Sethumadhavan, Dhanya R.; Nair, Mangalam S.; Mo, Yin-Yuan; Aggarwal, Bharat B.

    2014-01-01

    Purpose Extensive research over the past decade has revealed that the proinflammatory microenvironment plays a critical role in the development of colorectal cancer (CRC). Whether nimbolide, a limonoid triterpene, can inhibit the growth of CRC was investigated in the present study. Experimental Design The effect of nimbolide on proliferation of CRC cell lines was examined by MTT assay, apoptosis by caspase activation and poly-ADP ribose polymerase cleavage, nuclear factor-kappa B (NF-kB) activation by DNA-binding assay, and protein expression by Western blotting. The effect of nimbolide on the tumor growth in vivo was examined in CRC xenografts in a nude mouse model. Results Nimbolide inhibited proliferation, induced apoptosis, and suppressed NF-κB activation and NF-κB–regulated tumorigenic proteins in CRC cells. The suppression of NF-κB activation by nimbolide was caused by sequential inhibition of IκB kinase (IKK) activation, IκBα phosphorylation, and p65 nuclear translocation. Furthermore, the effect of nimbolide on IKK activity was found to be direct. In vivo, nimbolide (at 5 and 20 mg/kg body weight), injected intraperitoneally after tumor inoculation, significantly decreased the volume of CRC xenografts. The limonoid-treated xenografts exhibited significant down-regulation in the expression of proteins involved in tumor cell survival (Bcl-2, Bcl-xL, c-IAP-1, survivin, Mcl-1), proliferation (c-Myc, cyclin D1), invasion (MMP-9, ICAM-1), metastasis (CXCR4), and angiogenesis (VEGF). The limonoid was found to be bioavailable in the blood plasma and tumor tissues of treated mice. Conclusions Our studies provide evidence that nimbolide can suppress the growth of human CRC through modulation of the proinflammatory microenvironment. PMID:23766363

  7. A Dual Tracer 18F-FCH/18F-FDG PET Imaging of an Orthotopic Brain Tumor Xenograft Model.

    PubMed

    Fu, Yilong; Ong, Lai-Chun; Ranganath, Sudhir H; Zheng, Lin; Kee, Irene; Zhan, Wenbo; Yu, Sidney; Chow, Pierce K H; Wang, Chi-Hwa

    2016-01-01

    Early diagnosis of low grade glioma has been a challenge to clinicians. Positron Emission Tomography (PET) using 18F-FDG as a radio-tracer has limited utility in this area because of the high background in normal brain tissue. Other radiotracers such as 18F-Fluorocholine (18F-FCH) could provide better contrast between tumor and normal brain tissue but with high incidence of false positives. In this study, the potential application of a dual tracer 18F-FCH/18F-FDG-PET is investigated in order to improve the sensitivity of PET imaging for low grade glioma diagnosis based on a mouse orthotopic xenograft model. BALB/c nude mice with and without orthotopic glioma xenografts from U87 MG-luc2 glioma cell line are used for the study. The animals are subjected to 18F-FCH and 18F-FDG PET imaging, and images acquired from two separate scans are superimposed for analysis. The 18F-FCH counts are subtracted from the merged images to identify the tumor. Micro-CT, bioluminescence imaging (BLI), histology and measurement of the tumor diameter are also conducted for comparison. Results show that there is a significant contrast in 18F-FCH uptake between tumor and normal brain tissue (2.65 ± 0.98), but with a high false positive rate of 28.6%. The difficulty of identifying the tumor by 18F-FDG only is also proved in this study. All the tumors can be detected based on the dual tracer technique of 18F-FCH/18F-FDG-PET imaging in this study, while the false-positive caused by 18F-FCH can be eliminated. Dual tracer 18F-FCH/18F-FDG PET imaging has the potential to improve the visualization of low grade glioma. 18F-FCH delineates tumor areas and the tumor can be identified by subtracting the 18F-FCH counts. The sensitivity was over 95%. Further studies are required to evaluate the possibility of applying this technique in clinical trials. PMID:26844770

  8. A Dual Tracer 18F-FCH/18F-FDG PET Imaging of an Orthotopic Brain Tumor Xenograft Model

    PubMed Central

    Ranganath, Sudhir H.; Zheng, Lin; Kee, Irene; Zhan, Wenbo; Yu, Sidney; Chow, Pierce K. H.; Wang, Chi-Hwa

    2016-01-01

    Early diagnosis of low grade glioma has been a challenge to clinicians. Positron Emission Tomography (PET) using 18F-FDG as a radio-tracer has limited utility in this area because of the high background in normal brain tissue. Other radiotracers such as 18F-Fluorocholine (18F-FCH) could provide better contrast between tumor and normal brain tissue but with high incidence of false positives. In this study, the potential application of a dual tracer 18F-FCH/18F-FDG-PET is investigated in order to improve the sensitivity of PET imaging for low grade glioma diagnosis based on a mouse orthotopic xenograft model. BALB/c nude mice with and without orthotopic glioma xenografts from U87 MG-luc2 glioma cell line are used for the study. The animals are subjected to 18F-FCH and 18F-FDG PET imaging, and images acquired from two separate scans are superimposed for analysis. The 18F-FCH counts are subtracted from the merged images to identify the tumor. Micro-CT, bioluminescence imaging (BLI), histology and measurement of the tumor diameter are also conducted for comparison. Results show that there is a significant contrast in 18F-FCH uptake between tumor and normal brain tissue (2.65 ± 0.98), but with a high false positive rate of 28.6%. The difficulty of identifying the tumor by 18F-FDG only is also proved in this study. All the tumors can be detected based on the dual tracer technique of 18F-FCH/ 18F-FDG-PET imaging in this study, while the false-positive caused by 18F-FCH can be eliminated. Dual tracer 18F-FCH/18F-FDG PET imaging has the potential to improve the visualization of low grade glioma. 18F-FCH delineates tumor areas and the tumor can be identified by subtracting the 18F-FCH counts. The sensitivity was over 95%. Further studies are required to evaluate the possibility of applying this technique in clinical trials. PMID:26844770

  9. A 90Y-labelled anti-ROBO1 monoclonal antibody exhibits antitumour activity against hepatocellular carcinoma xenografts during ROBO1-targeted radioimmunotherapy

    PubMed Central

    2014-01-01

    Background ROBO1 is a membrane protein that functions in axon guidance. ROBO1 contributes to tumour metastasis and angiogenesis and may have potential as a target protein of immunotherapy because ROBO1 is specifically expressed at high levels in hepatocellular carcinoma. In this study, we examined biodistribution and radioimmunotherapy (RIT) using a radioisotope-labelled anti-ROBO1 monoclonal antibody (MAb) against hepatocellular carcinoma models. Methods ROBO1-positive HepG2 human hepatocellular carcinoma xenograft nude mice were used in this study. We conjugated anti-ROBO1 MAb with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and the conjugates were labelled with 111In and 90Y. To study biodistribution, the 111In-DOTA-anti-ROBO1 MAb was injected into HepG2 xenograft mice via the tail vein. To evaluate any antitumour effect, a RIT study was performed, and the 90Y-DOTA-anti-ROBO1 MAb was injected via the tail vein. Tumour volume, mouse weight, and blood cell count were periodically measured throughout the experiments. The tumours and organs of mice were collected, and a histopathological analysis was carried out. Results The tumour uptake of 111In-anti-ROBO1 MAb in HepG2 xenograft mice was 15.0% ± 0.69% injected dose per gram at 48 h after injection. Immunotherapy with cold-anti-ROBO1 MAb (70 μg) did not cause a significant antitumour effect. RIT with 6.7 MBq of 90Y-anti-ROBO1 MAb caused significant tumour growth suppression. Transient body weight loss and bone-marrow suppression were observed. Histopathological analyses of tumours revealed the fatal degeneration of tumour cells, significant reduction of the Ki-67 index, and an increase of the apoptosis index. Normal organs showed no significant injury, but a transient reduction of hematopoietic cells was observed in the spleen and in the sternal bone marrow. Conclusions These results suggest that RIT with 90Y-anti-ROBO1 MAb is a promising treatment for ROBO1-positive hepatocellular

  10. Therapeutic effect against human xenograft tumors in nude mice by the third generation microtubule stabilizing epothilones.

    PubMed

    Chou, Ting-Chao; Zhang, Xiuguo; Zhong, Zi-Yang; Li, Yong; Feng, Li; Eng, Sara; Myles, David R; Johnson, Robert; Wu, Nian; Yin, Ye Ingrid; Wilson, Rebecca M; Danishefsky, Samuel J

    2008-09-01

    The epothilones represent a promising class of natural product-based antitumor drug candidates. Although these compounds operate through a microtubule stabilization mechanism similar to that of taxol, the epothilones offer a major potential therapeutic advantage in that they retain their activity against multidrug-resistant cell lines. We have been systematically synthesizing and evaluating synthetic epothilone congeners that are not accessible through modification of the natural product itself. We report herein the results of biological investigations directed at two epothilone congeners: iso-fludelone and iso-dehydelone. Iso-fludelone, in particular, exhibits a number of properties that render it an excellent candidate for preclinical development, including biological stability, excellent solubility in water, and remarkable potency relative to other epothilones. In nude mouse xenograft settings, iso-fludelone was able to achieve therapeutic cures against a number of human cancer cell lines, including mammarian-MX-1, ovarian-SK-OV-3, and the fast-growing, refractory, subcutaneous neuroblastoma-SK-NAS. Strong therapeutic effect was observed against drug-resistant lung-A549/taxol and mammary-MCF-7/Adr xenografts. In addition, iso-fludelone was shown to exhibit a significant therapeutic effect against an intracranially implanted SK-NAS tumor. PMID:18755900

  11. AML cells are differentially sensitive to chemotherapy treatment in a human xenograft model.

    PubMed

    Wunderlich, Mark; Mizukawa, Benjamin; Chou, Fu-Sheng; Sexton, Christina; Shrestha, Mahesh; Saunthararajah, Yogen; Mulloy, James C

    2013-03-21

    As acute myeloid leukemia (AML) xenograft models improve, the potential for using them to evaluate novel therapeutic strategies becomes more appealing. Currently, there is little information on using standard chemotherapy regimens in AML xenografts. Here we have characterized the immunodeficient mouse response to combined Ara-C (cytarabine) and doxorubicin treatment. We observed significant toxicity associated with doxorubicin that required optimization of the route of injection as well as the maximum-tolerated dose for immunodeficient strains. Mice treated with an optimized 5-day induction protocol showed transient weight loss, short-term reduction of peripheral blood cell and platelet counts, and slight anemia. Considerable cytotoxicity was observed in the bone marrow (BM), with primitive LSK cells having a significant survival advantage relative to more mature cells, consistent with the idea of chemotherapy targeting actively growing cells. Treated leukemic mice demonstrated reduced disease burden and increased survival, demonstrating efficacy. AML cells showed significantly increased sensitivity to doxorubicin-containing therapy compared with murine BM cells. Although early treatment could result in some cures, mice with significant leukemia grafts were not cured by using induction therapy alone. Overall, the data show that this model system is useful for the evaluation of novel chemotherapies in combination with standard induction therapy. PMID:23349390

  12. ³¹P-MRS studies of melanoma xenografts with different metastatic potential.

    PubMed

    Li, Lin Z; Zhou, Rong; Leeper, Dennis B; Glickson, Jerry D

    2011-01-01

    Previously we reported that three imaging methods, dynamic contrast enhanced magnetic resonance imaging (DCE-MRI), T1(ρ)-MRI, and ultralow temperature NADH/flavoprotein fluorescence imaging (redox scanning), could differentiate the less metastatic human melanoma cell line A375P from a more metastatic line C8161 growing as mouse xenografts in nude mice (Li LZ et al. Adv. Exp. Med. Biol., 2007, 599:67-78; PNAS, 2009, 106:6608-6613). The more metastatic C8161 tumor was characterized by less blood perfusion/permeability, a more oxidized mitochondrial redox state in the tumor core, and a smaller T1(ρ) relaxation time constant averaged across the entire tumor section. In the current study, we have further probed the bioenergetic status and tissue microenvironment of these tumors by applying whole tumor phosphorous magnetic resonance spectroscopy ((31)P-MRS) to these two xenografts in a vertical bore 9.4-T Varian magnet. The phosphomonoester (PME)/βNTP ratio and intracellular pH value (pHi) were determined. The phosphomonoester (PME)/βNTP was higher in the more metastatic C8161 tumors (n=4) than in the less metastatic A375P tumors (n=4) (p < 0.1). No significant difference between the pHi of C8161 and A375P was observed. PMID:21445771

  13. Elevated DNA polymerase alpha, DNA polymerase beta, and DNA topoisomerase II in a melphalan-resistant rhabdomyosarcoma xenograft that is cross-resistant to nitrosoureas and topotecan.

    PubMed

    Friedman, H S; Dolan, M E; Kaufmann, S H; Colvin, O M; Griffith, O W; Moschel, R C; Schold, S C; Bigner, D D; Ali-Osman, F

    1994-07-01

    Previous investigations have revealed that the human TE-671 MR human rhabdomyosarcoma xenograft selected in vivo for melphalan resistance (M. C. Rosenberg, et al., Cancer Res., 49: 6917-6922, 1989) is cross-resistant to a wide variety of alkylating agents and to bleomycin, but is collaterally sensitive to etoposide. Although glutathione levels were noted to be elevated in TE-671 MR compared to the melphalan-sensitive parental TE-671 xenograft, treatment with buthionine sulfoximine to deplete glutathione levels did not fully restore melphalan sensitivity in the TE-671 MR xenograft. The present studies were undertaken to search for additional mechanisms of resistance in the TE-671 MR xenograft. Drug sensitivity testing performed at the dose of agents that was lethal to 10% of the animals revealed that the TE-671 MR xenograft maintained resistance to the bifunctional cross-linking agent 1,3-bis(2-chloroethyl)-1-nitrosourea and was cross-resistant to the topoisomerase I poison topotecan. Treatment with buthionine sulfoximine did not sensitize the TE-671 MR xenograft to 1,3-bis(2-chloroethyl)-1-nitrosourea. Further, even though O6-alkylguanine-DNA alkyltransferase levels were high in both the TE-671 and TE-671 MR xenografts, depletion of O6-alkylguanine-DNA alkyltransferase activity by treatment with O6-benzylguanine substantially sensitized the TE-671 xenografts but not the TE-671 MR xenografts, suggesting an additional mechanism of resistance. Measurement of additional enzyme activities that might be involved in DNA repair revealed significant elevations in DNA polymerase alpha (46 +/- 8 (SD) units/mg protein in TE-671, 69 +/- 6 units/mg protein in TE-671 MR, P < 0.05) and DNA polymerase beta (0.43 +/- 0.01 units/mg protein in TE-671, 0.78 +/- 0.12 units/mg protein in TE-671 MR, P < 0.05) but not DNA polymerase delta or total DNA ligase. Examination of topoisomerases by activity assays and Western blotting revealed a 2-fold increase in topoisomerase II and a 2-fold

  14. Ursodeoxycholic acid induces apoptosis in hepatocellular carcinoma xenografts in mice

    PubMed Central

    Liu, Hui; Xu, Hong-Wei; Zhang, Yu-Zhen; Huang, Ya; Han, Guo-Qing; Liang, Tie-Jun; Wei, Li-Li; Qin, Cheng-Yong; Qin, Cheng-Kun

    2015-01-01

    AIM: To evaluate the efficacy of ursodeoxycholic acid (UDCA) as a chemotherapeutic agent for the treatment of hepatocellular carcinoma (HCC). METHODS: BALB/c nude mice were randomized into four groups 24 h before subcutaneous injection of hepatocarcinoma BEL7402 cells suspended in phosphate buffered saline (PBS) into the right flank. The control group (n = 10) was fed a standard diet while treatment groups (n = 10 each) were fed a standard daily diet supplemented with different concentrations of UDCA (30, 50 and 70 mg/kg per day) for 21 d. Tumor growth was measured once each week, and tumor volume (V) was calculated with the following equation: V = (L × W2) × 0.52, where L is the length and W is the width of the xenograft. After 21 d, mice were killed under ether anesthesia, and tumors were excised and weighed. Apoptosis was evaluated through detection of DNA fragmentation with gel electrophoresis and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Western blot analysis was performed to determine the expression of apoptosis-related proteins BAX, BCL2, APAF1, cleaved caspase-9, and cleaved caspase-3. RESULTS: UDCA suppressed tumor growth relative to controls. The mean tumor volumes were the following: control, 1090 ± 89 mm3; 30 mg/kg per day, 612 ± 46 mm3; 50 mg/kg per day, 563 ± 38 mm3; and 70 mg/kg per day, 221 ± 26 mm3. Decreased tumor volumes reached statistical significance relative to control xenografts (30 mg/kg per day, P < 0.05; 50 mg/kg per day, P < 0.05; 70 mg/kg per day, P < 0.01). Increasing concentrations of UDCA led to increased DNA fragmentation observed on gel electrophoresis and in the TUNEL assay (control, 1.6% ± 0.3%; 30 mg/kg per day, 2.9% ± 0.5%; 50 mg/kg per day, 3.15% ± 0.7%, and 70 mg/kg per day, 4.86% ± 0.9%). Western blot analysis revealed increased expression of BAX, APAF1, cleaved-caspase-9 and cleaved-caspase-3 proteins, which induce apoptosis, but decreased expression of BCL2

  15. Pairwise Comparison of 89Zr- and 124I-labeled cG250 Based on Positron Emission Tomography Imaging and Non-Linear Immunokinetic Modeling: In Vivo Carbonic Anhydrase IX Receptor Binding and Internalization in Mouse Xenografts of Clear Cell Renal Carcinoma

    PubMed Central

    Cheal, Sarah M.; Punzalan, Blesida; Doran, Michael G.; Evans, Michael J.; Osborne, Joseph R.; Lewis, Jason S.; Zanzonico, Pat; Larson, Steven M.

    2014-01-01

    Purpose The positron-emitting tomography (PET) tracer, 124I-cG250, directed against carbonic anhydrase IX (CAIX) shows promise for pre-surgical diagnosis of clear renal cell carcinoma (cRCC) [1, 2]. The radiometal zirconium-89 (89Zr), however, may offer advantages as a surrogate PET nuclide over 124I in terms of greater tumor uptake and retention [3]. In the current report, we have developed a non-linear immunokinetic model to facilitate a quantitative comparison of absolute uptake and antibody turnover between 124I-cG250 and 89Zr- cG250 using a human cRCC xenograft tumor model in mice. We believe that his unique model better relates quantitative imaging data to the salient biologic features of tumor antibody-antigen binding and turnover. Methods We conducted experiments with 89Zr-cG250 and 124I-cG250 using a human ccRCC cell line (SK-RC-38) to characterize the binding affinity and internalization kinetics of the two tracers in vitro. Serial-PET imaging was performed in mice bearing sub-cutaneous cRCC tumors to simultaneously detect and quantify time-dependent tumor uptake in vivo. Using the known specific activities of the two tracers, the equilibrium rates of antibody internalization and turnover in the tumor were derived from the PET images using non-linear compartmental modeling. Results The two tracers demonstrate virtually identical tumor-cell binding and internalization but with markedly different retentions in vitro. Superior PET images were obtained using 89Zr-cG250, owing to the more prolonged trapping of the radiolabel in the tumor and simultaneous wash-out from normal tissues. Estimates of cG250-CAIX complex turnover were 1.35–5.51 × 1012 molecules per hour per gram of tumor (20% of receptors internalized per hour), and the ratio of 124I/89Zr atoms released per unit time by tumor was 17.5. Conclusions Pairwise evaluation of 89Zr-cG250 and 124I-cG250 provided the basis for a non-linear immunokinetic model which yielded quantitative information about

  16. Orally available stilbene derivatives as potent HDAC inhibitors with antiproliferative activities and antitumor effects in human tumor xenografts.

    PubMed

    Kachhadia, Virendra; Rajagopal, Sridharan; Ponpandian, Thanasekaran; Vignesh, Radhakrishnan; Anandhan, Karnambaram; Prabhu, Daivasigamani; Rajendran, Praveen; Nidhyanandan, Saranya; Roy, Anshu Mittal; Ahamed, Fakrudeen Ali; Surendran, Narayanan; Rajagopal, Sriram; Narayanan, Shridhar; Gopalan, Balasubramanian

    2016-01-27

    Herein we report the synthesis and activity of a novel class of HDAC inhibitors based on 2, 3-diphenyl acrylic acid derivatives. The compounds in this series have shown to be potent HDAC inhibitors possessing significant antiproliferative activity. Further compounds in this series were subjected to metabolic stability in human liver microsomes (HLM), mouse liver microsomes (MLM), and exhibits promising stability in both. These efforts culminated with the identification of a developmental candidate (5a), which displayed desirable PK/PD relationships, significant efficacy in the xenograft models and attractive ADME profiles. PMID:26689485

  17. Mapping the Redox State of CHOP-Treated Non-Hodgkin’s Lymphoma Xenografts in Mice

    PubMed Central

    Xu, He N.; Mir, Tahreem A.; Lee, Seung-Cheol; Feng, Min; Farhad, Namisa; Choe, Regine; Glickson, Jerry D.; Li, Lin Z.

    2015-01-01

    Drug treatment may alter the metabolism of cancer cells and may alter the mitochondrial redox state. Using the redox scanner that collects the fluorescence signals from both the oxidized flavoproteins (Fp) and the reduced form of nicotin-amide adenine dinucleotide (NADH) in snap-frozen tumor tissues, we investigated the effects of chemotherapy on mouse xenografts of a human diffuse large B-cell lymphoma cell line (DLCL2). The mice in the treatment group were treated with CHOP – cyclophosphamide (C) + hydroxydoxorubicin (H) + Oncovin (O) + prednisone (P) using the following regimen: CHO administration on day 1 followed by prednisone administration on day 1–5. On day 5 the mitochondrial redox state of the treated group was slightly more reduced than that of the control group (p = 0.049), and the Fp content of the treated group was significantly decreased (p = 0.033). PMID:23852501

  18. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers

    PubMed Central

    Bradford, James R.; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J.; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T.

    2016-01-01

    The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX). Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment. In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery. PMID:26980748

  19. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers.

    PubMed

    Bradford, James R; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T

    2016-04-12

    The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX).Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment.In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery. PMID:26980748

  20. Intraductal Delivery of Adenoviruses Targets Pancreatic Tumors in Transgenic Ela-myc Mice and Orthotopic Xenografts

    PubMed Central

    José, Anabel; Sobrevals, Luciano; Camacho-Sánchez, Juan Miguel; Huch, Meritxell; Andreu, Núria; Ayuso, Eduard; Navarro, Pilar; Alemany, Ramon; Fillat, Cristina

    2013-01-01

    Gene-based anticancer therapies delivered by adenoviruses are limited by the poor viral distribution into the tumor. In the current work we have explored the feasibility of targeting pancreatic tumors through a loco-regional route. We have taken advantage of the ductal network in the pancreas to retrogradelly inject adenoviruses through the common bile duct in two different mouse models of pancreatic carcinogenesis: The transgenic Ela-myc mice that develop mixed neoplasms displaying both acinar-like and duct-like neoplastic cells affecting the whole pancreas; and mice bearing PANC-1 and BxPC-3 orthotopic xenografts that constitute a model of localized human neoplastic tumors. We studied tumor targeting and the anticancer effects of newly thymidine kinase-engineered adenoviruses both in vitro and in vivo, and conducted comparative studies between intraductal or intravenous administration. Our data indicate that the intraductal delivery of adenovirus efficiently targets pancreatic tumors in the two mouse models. The in vivo application of AduPARTKT plus ganciclovir (GCV) treatment induced tumor regression in Ela-myc mice. Moreover, the intraductal injection of ICOVIR15-TKT oncolytic adenoviruses significantly improved mean survival of mice bearing PANC-1 and BxPC-3 pancreatic xenografts from 30 to 52 days and from 20 to 68 days respectively (p<0.0001) when combined with GCV. Of notice, both AduPARTKT and ICOVIR15-TKT antitumoral responses were stronger by ductal viral application than intravenously, in line with the 38-fold increase in pancreas transduction observed upon ductal administration. In summary our data show that cytotoxic adenoviruses retrogradelly injected to the pancreas can be a feasible approach to treat localized pancreatic tumors. PMID:23328228

  1. pO{sub 2} Fluctuation Pattern and Cycling Hypoxia in Human Cervical Carcinoma and Melanoma Xenografts

    SciTech Connect

    Ellingsen, Christine; Ovrebo, Kirsti Marie; Galappathi, Kanthi; Mathiesen, Berit; Rofstad, Einar K.

    2012-07-15

    Purpose: Blood perfusion in tumors is spatially and temporally heterogeneous, resulting in local fluctuations in tissue oxygen tension (pO{sub 2}) and tissue regions showing cycling hypoxia. In this study, we investigated whether the pO{sub 2} fluctuation pattern and the extent of cycling hypoxia differ between tumor types showing high (e.g., cervical carcinoma xenograft) and low (e.g., melanoma xenograft) fractions of connective tissue-associated blood vessels. Methods and Materials: Two cervical carcinoma lines (CK-160 and TS-415) and two melanoma lines (A-07 and R-18) transplanted into BALB/c nu/nu mice were included in the study. Tissue pO{sub 2} was measured simultaneously in two positions in each tumor by using a two-channel OxyLite fiber-optic oxygen-sensing device. The extent of acute and chronic hypoxia was assessed by combining a radiobiological and a pimonidazole-based immunohistochemical assay of tumor hypoxia. Results: The proportion of tumor regions showing pO{sub 2} fluctuations, the pO{sub 2} fluctuation frequency in these regions, and the relative amplitude of the pO{sub 2} fluctuations were significantly higher in the melanoma xenografts than in the cervical carcinoma xenografts. Cervical carcinoma and melanoma xenografts did not differ significantly in the fraction of acutely hypoxic cells or the fraction of chronically hypoxic cells. However, the ratio between fraction of acutely hypoxic cells and fraction of chronically hypoxic cells was significantly higher in melanoma than in cervical carcinoma xenografts. Conclusions: Temporal heterogeneity in blood flow and tissue pO{sub 2} in tumors may depend on tumor histology. Connective tissue surrounding microvessels may stabilize blood flow and pO{sub 2} and, thus, protect tumor tissue from cycling hypoxia.

  2. Monitoring Antivascular Therapy in Head and Neck Cancer Xenografts using Contrast-enhanced MR and US Imaging

    PubMed Central

    Seshadri, Mukund; Sacadura, Nuno T.; Coulthard, Tonya

    2013-01-01

    Background The overall goal of this study was to non-invasively monitor changes in blood flow of squamous cell carcinoma of the head and neck (SCCHN) xenografts using contrast-enhanced magnetic resonance (MR) and ultrasound (US) imaging. Methods Experimental studies were performed on mice bearing FaDu tumors and SCCHN xenografts derived from human surgical tissue. MR examinations were performed using gadofosveset trisodium at 4.7T. Change in T1-relaxation rate of tumors (ΔR1) and tumor enhancement parameters (amplitude, area under the curve - AUC) were measured at baseline and 24 hours after treatment with a tumor-vascular disrupting agent (tumor-VDA), 5,6-dimethylxanthenone-4-acetic acid (DMXAA; ASA404) and correlated with tumor necrosis and treatment outcome. CE-US was performed using microbubbles (Vevo MicroMarker®) to assess the change in relative tumor blood volume following VDA treatment. Results A marked decrease (up to 68% of baseline) in T1-enhancement of FaDu tumors was observed one day after VDA therapy indicative of a reduction in blood flow. Early (24h) vascular response of individual tumors to VDA therapy detected by MRI correlated with tumor necrosis and volume estimates at 10 days post treatment. VDA treatment also resulted in a significant reduction in AUC and amplitude of patient tumor-derived SCCHN xenografts. Consistent with MRI observations, CE-US revealed a significant reduction in tumor blood volume of patient tumor-derived SCCHN xenografts after VDA therapy. Treatment with VDA resulted in a significant tumor growth inhibition of patient tumor derived SCCHN xenografts. Conclusions These findings demonstrate that both CE-MRI and CE-US allow monitoring of early changes in vascular function following VDA therapy. The results also demonstrate, for the first time, potent vascular disruptive and antitumor activity of DMXAA against patient tumor-derived head and neck carcinoma xenografts. PMID:21901534

  3. IMP1 promotes tumor growth, dissemination and a tumor-initiating cell phenotype in colorectal cancer cell xenografts

    PubMed Central

    Hamilton, Kathryn E.; Noubissi, Felicite K.; Rustgi, Anil K.

    2013-01-01

    Igf2 mRNA binding protein 1 (IMP1, CRD-BP, ZBP-1) is a messenger RNA binding protein that we have shown previously to regulate colorectal cancer (CRC) cell growth in vitro. Furthermore, increased IMP1 expression correlates with enhanced metastasis and poor prognosis in CRC patients. In the current study, we sought to elucidate IMP1-mediated functions in CRC pathogenesis in vivo. Using CRC cell xenografts, we demonstrate that IMP1 overexpression promotes xenograft tumor growth and dissemination into the blood. Furthermore, intestine-specific knockdown of Imp1 dramatically reduces tumor number in the Apc Min/+ mouse model of intestinal tumorigenesis. In addition, IMP1 knockdown xenografts exhibit a reduced number of tumor cells entering the circulation, suggesting that IMP1 may directly modulate this early metastatic event. We further demonstrate that IMP1 overexpression decreases E-cadherin expression, promotes survival of single tumor cell-derived colonospheres and promotes enrichment and maintenance of a population of CD24+CD44+ cells, signifying that IMP1 overexpressing cells display evidence of loss of epithelial identity and enhancement of a tumor-initiating cell phenotype. Taken together, these findings implicate IMP1 as a modulator of tumor growth and provide evidence for a novel role of IMP1 in early events in CRC metastasis. PMID:23764754

  4. Pulsed high-intensity focused ultrasound therapy enhances targeted delivery of cetuximab to colon cancer xenograft model in mice.

    PubMed

    Park, Min Jung; Kim, Young-Sun; Yang, Jehoon; Sun, Woo Chul; Park, Hajan; Chae, Sun Young; Namgung, Mi-Sun; Choi, Kyu-Sil

    2013-02-01

    Our aim was to evaluate whether pulsed high-intensity focused ultrasound (HIFU) therapy enhances the effect of an epidermal growth factor receptor-targeted chemotherapeutic drug, cetuximab, in treating human colon cancer xenografts in a mouse model. Balb/c nude mice with subcutaneous xenografts of HT-29 cells were randomly categorized into control (n = 9), pulsed HIFU alone (n = 10), cetuximab monotherapy (n = 8) or combined pulsed HIFU and cetuximab therapy (n = 9) group. Cetuximab, pulsed HIFU therapy, or both were administered three times per week starting from day 8 after tumor cell injection. Based on tumor growth curves up to 34 days, the combination therapy group showed more suppressed tumor growth than all other groups (p < 0.05). The final relative tumor volumes were 5.4 ± 2.1, 5.2 ± 1.3, 4.8 ± 1.8, and 3.1 ± 0.9 for control, pulsed HIFU alone, cetuximab monotherapy, and combination therapy groups, respectively. In conclusion, pulsed HIFU therapy appears to enhance the anti-tumor effect of epidermal growth factor receptor-targeted cetuximab on human colon cancer xenograft models in mice. PMID:23219035

  5. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice.

    PubMed

    Jung, Minsun; Ryu, Young-joon; Kang, Gu

    2015-12-01

    Carcinoma-associated fibroblasts found at the interface between a tumor and the normal stroma play several roles in the development of cancer, including cancer initiation, growth, and progression, thereby also affecting patient prognosis. Although recent studies have focused on carcinoma-associated fibroblasts as potential treatment targets, the origin of these fibroblasts remains unclear. One theory suggests that these cells arise from tumor cells undergoing the epithelial-mesenchymal transition, i.e., tumor cells transform into carcinoma-associated fibroblasts. Therefore, in this study, we aimed to elucidate the cellular origin of carcinoma-associated fibroblasts in a mouse xenograft model. Mice were transplanted with human lung cancer cells (H226 and A549 cells). After sacrifice, tumor masses and surrounding tissues were excised. Interestingly, the excised xenograft tissues contained a significant proportion of desmoplastic fibroblasts that exhibited strong expression of α-smooth muscle actin (SMA). Immunohistochemical staining with pan-cytokeratin, vimentin, β-catenin, E-cadherin, and CD34 showed no evidence of the epithelial-mesenchymal transition. Additional evaluation using dual-color silver in situ hybridization with dinitrophenyl-labeled human epidermal growth factor receptor 2 (HER2) and digoxigenin-labeled chromosome 17 centromere probes also showed similar results. In conclusion, our results revealed that the epithelial-mesenchymal transition may not occur in tumor xenograft models, regardless of evidence supporting this phenomenon in humans. PMID:26564105

  6. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device.

    PubMed

    Zhou, Ying; Basu, Srinjan; Laue, Ernest; Seshia, Ashwin A

    2016-07-15

    Biological populations of cells show considerable cell-to-cell variability. Study of single cells and analysis of cell heterogeneity are considered to be critical in understanding biological processes such as stem cell differentiation and cancer development. Recent advances in lab-on-a-chip techniques have allowed single-cell capture in microfluidic channels with the possibility of precise environmental control and high throughput of experiments with minimal usage of samples and reagents. In recent years, label-free techniques such as electrical impedance spectroscopy have emerged as a non-invasive approach to studying cell properties. In this study, we have designed and fabricated a microfluidic device that combines hydrodynamic trapping of single cells in pre-defined locations with the capability of running electrical impedance measurements within the same device. We have measured mouse embryonic stem cells (mESCs) at different states during differentiation (t=0h, 24h and 48h) and quantitatively analysed the changes in electrical parameters of cells during differentiation. A marked increase in the magnitude of the cell impedance is found during cell differentiation, which can be attributed to an increase in cell size. The analysis of the measurements shows that the nucleus-to-cytoplasm ratio decreases during this process. The degree of cell heterogeneity is observed to be the highest when the cells are at the transition state (24h), compare with cells at undifferentiated (0h) and fully differentiated (48h) states. The device enables highly efficient single cell trapping and provides sensitive, label-free electrical impedance measurements of individual cells, enabling the possibility of quantitatively analysing their physical state as well as studying the associated heterogeneity of a cell population. PMID:26963790

  7. Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device

    PubMed Central

    Zhou, Ying; Basu, Srinjan; Laue, Ernest; Seshia, Ashwin A.

    2016-01-01

    Biological populations of cells show considerable cell-to-cell variability. Study of single cells and analysis of cell heterogeneity are considered to be critical in understanding biological processes such as stem cell differentiation and cancer development. Recent advances in lab-on-a-chip techniques have allowed single-cell capture in microfluidic channels with the possibility of precise environmental control and high throughput of experiments with minimal usage of samples and reagents. In recent years, label-free techniques such as electrical impedance spectroscopy have emerged as a non-invasive approach to studying cell properties. In this study, we have designed and fabricated a microfluidic device that combines hydrodynamic trapping of single cells in pre-defined locations with the capability of running electrical impedance measurements within the same device. We have measured mouse embryonic stem cells (mESCs) at different states during differentiation (t=0 h, 24 h and 48 h) and quantitatively analysed the changes in electrical parameters of cells during differentiation. A marked increase in the magnitude of the cell impedance is found during cell differentiation, which can be attributed to an increase in cell size. The analysis of the measurements shows that the nucleus-to-cytoplasm ratio decreases during this process. The degree of cell heterogeneity is observed to be the highest when the cells are at the transition state (24 h), compare with cells at undifferentiated (0 h) and fully differentiated (48 h) states. The device enables highly efficient single cell trapping and provides sensitive, label-free electrical impedance measurements of individual cells, enabling the possibility of quantitatively analysing their physical state as well as studying the associated heterogeneity of a cell population. PMID:26963790

  8. A human fetal prostate xenograft model of developmental estrogenization.

    PubMed

    Saffarini, Camelia M; McDonnell-Clark, Elizabeth V; Amin, Ali; Boekelheide, Kim

    2015-01-01

    Prostate cancer is a common disease in older men. Rodent models have demonstrated that an early and later-life exposure to estrogen can lead to cancerous lesions and implicated hormonal dysregulation as an avenue for developing future prostate neoplasia. This study utilizes a human fetal prostate xenograft model to study the role of estrogen in the progression of human disease. Histopathological lesions were assessed in 7-, 30-, 90-, 200-, and 400-day human prostate xenografts. Gene expression for cell cycle, tumor suppressors, and apoptosis-related genes (ie, CDKN1A, CASP9, ESR2, PTEN, and TP53) was performed for 200-day estrogen-treated xenografts. Glandular hyperplasia was observed in xenografts given both an initial and secondary exposure to estradiol in both 200- and 400-day xenografts. Persistent estrogenic effects were verified using immunohistochemical markers for cytokeratin 10, p63, and estrogen receptor α. This model provides data on the histopathological state of the human prostate following estrogenic treatment, which can be utilized in understanding the complicated pathology associated with prostatic disease and early and later-life estrogenic exposures. PMID:25633637

  9. Intracellular Doppler Signatures of Platinum Sensitivity Captured by Biodynamic Profiling in Ovarian Xenografts

    PubMed Central

    Merrill, Daniel; An, Ran; Sun, Hao; Yakubov, Bakhtiyor; Matei, Daniela; Turek, John; Nolte, David

    2016-01-01

    Three-dimensional (3D) tissue cultures are replacing conventional two-dimensional (2D) cultures for applications in cancer drug development. However, direct comparisons of in vitro 3D models relative to in vivo models derived from the same cell lines have not been reported because of the lack of sensitive optical probes that can extract high-content information from deep inside living tissue. Here we report the use of biodynamic imaging (BDI) to measure response to platinum in 3D living tissue. BDI combines low-coherence digital holography with intracellular Doppler spectroscopy to study tumor drug response. Human ovarian cancer cell lines were grown either in vitro as 3D multicellular monoculture spheroids or as xenografts in nude mice. Fragments of xenografts grown in vivo in nude mice from a platinum-sensitive human ovarian cell line showed rapid and dramatic signatures of induced cell death when exposed to platinum ex vivo, while the corresponding 3D multicellular spheroids grown in vitro showed negligible response. The differences in drug response between in vivo and in vitro growth have important implications for predicting chemotherapeutic response using tumor biopsies from patients or patient-derived xenografts. PMID:26732545

  10. Intracellular Doppler Signatures of Platinum Sensitivity Captured by Biodynamic Profiling in Ovarian Xenografts.

    PubMed

    Merrill, Daniel; An, Ran; Sun, Hao; Yakubov, Bakhtiyor; Matei, Daniela; Turek, John; Nolte, David

    2016-01-01

    Three-dimensional (3D) tissue cultures are replacing conventional two-dimensional (2D) cultures for applications in cancer drug development. However, direct comparisons of in vitro 3D models relative to in vivo models derived from the same cell lines have not been reported because of the lack of sensitive optical probes that can extract high-content information from deep inside living tissue. Here we report the use of biodynamic imaging (BDI) to measure response to platinum in 3D living tissue. BDI combines low-coherence digital holography with intracellular Doppler spectroscopy to study tumor drug response. Human ovarian cancer cell lines were grown either in vitro as 3D multicellular monoculture spheroids or as xenografts in nude mice. Fragments of xenografts grown in vivo in nude mice from a platinum-sensitive human ovarian cell line showed rapid and dramatic signatures of induced cell death when exposed to platinum ex vivo, while the corresponding 3D multicellular spheroids grown in vitro showed negligible response. The differences in drug response between in vivo and in vitro growth have important implications for predicting chemotherapeutic response using tumor biopsies from patients or patient-derived xenografts. PMID:26732545

  11. Intracellular Doppler Signatures of Platinum Sensitivity Captured by Biodynamic Profiling in Ovarian Xenografts

    NASA Astrophysics Data System (ADS)

    Merrill, Daniel; An, Ran; Sun, Hao; Yakubov, Bakhtiyor; Matei, Daniela; Turek, John; Nolte, David

    2016-01-01

    Three-dimensional (3D) tissue cultures are replacing conventional two-dimensional (2D) cultures for applications in cancer drug development. However, direct comparisons of in vitro 3D models relative to in vivo models derived from the same cell lines have not been reported because of the lack of sensitive optical probes that can extract high-content information from deep inside living tissue. Here we report the use of biodynamic imaging (BDI) to measure response to platinum in 3D living tissue. BDI combines low-coherence digital holography with intracellular Doppler spectroscopy to study tumor drug response. Human ovarian cancer cell lines were grown either in vitro as 3D multicellular monoculture spheroids or as xenografts in nude mice. Fragments of xenografts grown in vivo in nude mice from a platinum-sensitive human ovarian cell line showed rapid and dramatic signatures of induced cell death when exposed to platinum ex vivo, while the corresponding 3D multicellular spheroids grown in vitro showed negligible response. The differences in drug response between in vivo and in vitro growth have important implications for predicting chemotherapeutic response using tumor biopsies from patients or patient-derived xenografts.

  12. Noninvasive Radiofrequency Field Destruction of Pancreatic Adenocarcinoma Xenografts Treated with Targeted Gold Nanoparticles

    PubMed Central

    Glazer, Evan S.; Zhu, Cihui; Massey, Katheryn L.; Thompson, C. Shea; Kaluarachchi, Warna D.; Hamir, Amir N.; Curley, Steven A.

    2010-01-01

    Purpose Pancreatic carcinoma is one of the deadliest cancers with few effective treatments. Gold nanoparticles (AuNPs) are potentially therapeutic because of the safety demonstrated thus far and their physio-chemical characteristics. We utilized the astounding heating rates of AuNPs in nonionizing radiofrequency (RF) radiation to investigate human pancreatic xenograft destruction in a murine model. Experimental Design Weekly, Panc-1 and Capan-1 human pancreatic carcinoma xenografts in immunocompromised mice were exposed to an RF field 36 hours after treatment (intraperitoneal) with cetuximab or PAM4 antibody conjugated AuNPs, respectively. Tumor sizes were measured weekly while necrosis and cleaved caspase-3 were investigated with H&E staining and immunofluorescence, respectively. In addition, AuNP internalization and cytotoxicity were investigated in vitro with confocal microscopy and flow cytometry, respectively. Results Panc-1 cells demonstrated increased apoptosis with decreased viability after treatment with cetuximab conjugated AuNPs and RF field exposure (p = 0.00005). Differences in xenograft volumes were observed within 2 weeks of initiating therapy. Cetuximab-conjugated and PAM4-conjugated AuNPs demonstrated RF field-induced destruction of Panc-1 and Capan-1 pancreatic carcinoma xenografts after six weeks of weekly treatment (p = 0.004 and p = 0.035, respectively). There was no evidence of injury to murine organs. Cleaved caspase-3 and necrosis were both increased in treated tumors. Conclusions This study demonstrates a potentially novel cancer therapy by non-invasively inducing intracellular hyperthermia with targeted AuNPs in an RF field. While the therapy is dependent on the specificity of the targeting antibody, normal tissues were without toxicity despite systemic therapy and whole body RF field exposure. PMID:21138869

  13. Generation of Pediatric Leukemia Xenograft Models in NSG-B2m Mice: Comparison with NOD/SCID Mice.

    PubMed

    Gopalakrishnapillai, Anilkumar; Kolb, E Anders; Dhanan, Priyanka; Bojja, Aruna Sri; Mason, Robert W; Corao, Diana; Barwe, Sonali P

    2016-01-01

    Generation of orthotopic xenograft mouse models of leukemia is important to understand the mechanisms of leukemogenesis, cancer progression, its cross talk with the bone marrow microenvironment, and for preclinical evaluation of drugs. In these models, following intravenous injection, leukemic cells home to the bone marrow and proliferate there before infiltrating other organs, such as spleen, liver, and the central nervous system. Moreover, such models have been shown to accurately recapitulate the human disease and correlate with patient response to therapy and prognosis. Thus, various immune-deficient mice strains have been used with or without recipient preconditioning to increase engraftment efficiency. Mice homozygous for the severe combined immune deficiency (SCID) mutation and with non-obese diabetic background (NOD/SCID) have been used in the majority of leukemia xenograft studies. Later, NOD/SCID mice deficient for interleukin 2 receptor gamma chain (IL2Rγ) gene called NSG mice became the model of choice for leukemia xenografts. However, engraftment of leukemia cells without irradiation preconditioning still remained a challenge. In this study, we used NSG mice with null alleles for major histocompatibility complex class I beta2-microglobulin (β2m) called NSG-B2m. This is a first report describing the 100% engraftment efficiency of pediatric leukemia cell lines and primary samples in NSG-B2m mice in the absence of host preconditioning by sublethal irradiation. We also show direct comparison of the engraftment efficiency and growth rate of pediatric acute leukemia cells in NSG-B2m and NOD/SCID mice, which showed 80-90% engraftment efficiency. Secondary and tertiary xenografts in NSG-B2m mice generated by injection of cells isolated from the spleens of leukemia-bearing mice also behaved similar to the primary patient sample. We have successfully engrafted 25 acute lymphoblastic leukemia (ALL) and 5 acute myeloid leukemia (AML) patient samples with

  14. Generation of Pediatric Leukemia Xenograft Models in NSG-B2m Mice: Comparison with NOD/SCID Mice

    PubMed Central

    Gopalakrishnapillai, Anilkumar; Kolb, E. Anders; Dhanan, Priyanka; Bojja, Aruna Sri; Mason, Robert W.; Corao, Diana; Barwe, Sonali P.

    2016-01-01

    Generation of orthotopic xenograft mouse models of leukemia is important to understand the mechanisms of leukemogenesis, cancer progression, its cross talk with the bone marrow microenvironment, and for preclinical evaluation of drugs. In these models, following intravenous injection, leukemic cells home to the bone marrow and proliferate there before infiltrating other organs, such as spleen, liver, and the central nervous system. Moreover, such models have been shown to accurately recapitulate the human disease and correlate with patient response to therapy and prognosis. Thus, various immune-deficient mice strains have been used with or without recipient preconditioning to increase engraftment efficiency. Mice homozygous for the severe combined immune deficiency (SCID) mutation and with non-obese diabetic background (NOD/SCID) have been used in the majority of leukemia xenograft studies. Later, NOD/SCID mice deficient for interleukin 2 receptor gamma chain (IL2Rγ) gene called NSG mice became the model of choice for leukemia xenografts. However, engraftment of leukemia cells without irradiation preconditioning still remained a challenge. In this study, we used NSG mice with null alleles for major histocompatibility complex class I beta2-microglobulin (β2m) called NSG-B2m. This is a first report describing the 100% engraftment efficiency of pediatric leukemia cell lines and primary samples in NSG-B2m mice in the absence of host preconditioning by sublethal irradiation. We also show direct comparison of the engraftment efficiency and growth rate of pediatric acute leukemia cells in NSG-B2m and NOD/SCID mice, which showed 80–90% engraftment efficiency. Secondary and tertiary xenografts in NSG-B2m mice generated by injection of cells isolated from the spleens of leukemia-bearing mice also behaved similar to the primary patient sample. We have successfully engrafted 25 acute lymphoblastic leukemia (ALL) and 5 acute myeloid leukemia (AML) patient samples with

  15. Optical measurement of mouse strain differences in cerebral blood flow using indocyanine green

    PubMed Central

    Kang, Hye-Min; Sohn, Inkyung; Kim, Seunggyu; Kim, Daehwan; Jung, Junyang; Jeong, Joo-Won; Park, Chan

    2015-01-01

    C57BL/6 mice have more cerebral arterial branches and collaterals than BALB/c mice. We measured and compared blood flow dynamics of the middle cerebral artery (MCA) in these two strains, using noninvasive optical imaging with indocyanine green (ICG). Relative maximum fluorescence intensity (Imax) and the time needed for ICG to reach Imax in the MCA of C57BL/c were lower than that in BALB/c mice. Moreover, the mean transit time was significantly lower in C57BL/6 than in BALB/c mice. These data suggest that the higher number of arterial branches and collaterals in C57BL/6 mice yields a lower blood flow per cerebral artery. PMID:25833343

  16. Procedural learning as a measure of functional impairment in a mouse model of ischemic stroke.

    PubMed

    Linden, Jérôme; Van de Beeck, Lise; Plumier, Jean-Christophe; Ferrara, André

    2016-07-01

    Basal ganglia stroke is often associated with functional deficits in patients, including difficulties to learn and execute new motor skills (procedural learning). To measure procedural learning in a murine model of stroke (30min right MCAO), we submitted C57Bl/6J mice to various sensorimotor tests, then to an operant procedure (Serial Order Learning) specifically assessing the ability to learn a simple motor sequence. Results showed that MCAO affected the performance in some of the sensorimotor tests (accelerated rotating rod and amphetamine rotation test) and the way animals learned a motor sequence. The later finding seems to be caused by difficulties regarding the chunking of operant actions into a coherent motor sequence; the appeal for food rewards and ability to press levers appeared unaffected by MCAO. We conclude that assessment of motor learning in rodent models of stroke might improve the translational value of such models. PMID:27001455

  17. Regression of lung and colon cancer xenografts by depleting or inhibiting RLIP76 (Ral-binding protein 1).

    PubMed

    Singhal, Sharad S; Singhal, Jyotsana; Yadav, Sushma; Dwivedi, Seema; Boor, Paul J; Awasthi, Yogesh C; Awasthi, Sanjay

    2007-05-01

    Ral-binding protein 1 (RALBP1) is a stress-responsive and stress-protective multispecific transporter of glutathione conjugates (GS-E) and xenobiotic toxins. It is frequently overexpressed in malignant cells and plays a prominent antiapoptotic role selectively in cancer cells through its ability to control cellular concentration of proapoptotic oxidized lipid byproducts. In the absence of chemotherapy, depletion or inhibition of RALBP1 causes regression of syngeneic mouse B16 melanoma. Because RALBP1 transports anthracycline and Vinca alkaloid drugs, as well as GS-E, and because it confers resistance to these drugs, we proposed that depletion or inhibition of RALBP1 should cause regression of human solid tumors that overexpress RALBP1 and augment chemotherapy efficacy. Non-small-cell lung cancer (NSCLC) H358 and H520 and colon SW480 cell lines were used. Cytotoxic synergy between anti-RALBP1 immunoglobulin G (IgG), cis-diammine-dichloroplatinum (II) [CDDP], and vinorelbine was examined in cell culture and xenografts of NSCLC cells. Effects of RALBP1 depletion by antisense were examined in xenografts of NSCLC H358, NSCLC H520, and colon SW480 cells. RALBP1 depletion by phosphorothioate antisense was confirmed and was associated with rapid, complete, and sustained remissions in established s.c. human lung and colon xenografts. RALBP1 inhibition by anti-RALBP1 IgG was equally as effective as antisense and enhanced CDDP-vinorelbine in lung cancer xenografts. These studies show that RALBP1 is a transporter that serves as a key effector function in cancer cell survival and is a valid target for cancer therapy, and confirm that inhibitory modulation of RALBP1 transport activity at the cell surface is sufficient for antitumor effects. PMID:17483352

  18. Dynamics of circulating gamma delta T cell activity in an immunocompetent mouse model of high-grade glioma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human gamma delta T cells are potent effectors against glioma cell lines in vitro and in human/mouse xenograft models of glioblastoma, however, this effect has not been investigated in an immunocompetent mouse model. In this report, we established GL261 intracranial gliomas in syngeneic WT C57BL/6 m...

  19. Patient-derived bladder cancer xenografts: a systematic review.

    PubMed

    Bernardo, Carina; Costa, Céu; Sousa, Nuno; Amado, Francisco; Santos, Lúcio

    2015-10-01

    Patient-derived tumor xenografts (PDTXs) are said to accurately reflect the heterogeneity of human tumors. In the case of human bladder cancer, few studies are available featuring these models. The best methodology to develop and the real value of the model remain unclear. This systematic review aims to elucidate the best methodology to establish and use PDTXs to study the characteristics and behavior of human bladder tumors. The value and potential application of these models are also addressed. A comprehensive literature search was performed to identify published studies using xenograft models directly established from human bladder cancer samples into mice. A total of 12 studies were included in the final analysis. All studies differed in design; the reported take rate varied between 11% and 80%, with the implantation via dorsal incision and with matrigel obtaining the higher take rate. Advanced stage and high-grade tumors were associated with increased take rate. Xenografts preserved the original tumor identity in the establishment phase and after serial passages. Although some studies suggest a correlation between engraftment success and clinical prognosis, evidence about the association between the response of xenografts to treatment and the clinical response of the tumor of origin is still missing. All methodological approaches resulted in the establishment of tumor xenografts with preservation of the original tumor identity but variable take rate. The time needed to establish the model and propagate xenografts to a number suitable for drug testing is the main limitation of the model, along with the success rate and lack of consistency in the early passages. Comparison between tumor response in mice and clinical outcome remains to be assessed. PMID:25742701

  20. Cardiac function and perfusion dynamics measured on a beat-by-beat basis in the live mouse using ultra-fast 4D optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Ford, Steven J.; Deán-Ben, Xosé L.; Razansky, Daniel

    2015-03-01

    The fast heart rate (~7 Hz) of the mouse makes cardiac imaging and functional analysis difficult when studying mouse models of cardiovascular disease, and cannot be done truly in real-time and 3D using established imaging modalities. Optoacoustic imaging, on the other hand, provides ultra-fast imaging at up to 50 volumetric frames per second, allowing for acquisition of several frames per mouse cardiac cycle. In this study, we combined a recently-developed 3D optoacoustic imaging array with novel analytical techniques to assess cardiac function and perfusion dynamics of the mouse heart at high, 4D spatiotemporal resolution. In brief, the heart of an anesthetized mouse was imaged over a series of multiple volumetric frames. In another experiment, an intravenous bolus of indocyanine green (ICG) was injected and its distribution was subsequently imaged in the heart. Unique temporal features of the cardiac cycle and ICG distribution profiles were used to segment the heart from background and to assess cardiac function. The 3D nature of the experimental data allowed for determination of cardiac volumes at ~7-8 frames per mouse cardiac cycle, providing important cardiac function parameters (e.g., stroke volume, ejection fraction) on a beat-by-beat basis, which has been previously unachieved by any other cardiac imaging modality. Furthermore, ICG distribution dynamics allowed for the determination of pulmonary transit time and thus additional quantitative measures of cardiovascular function. This work demonstrates the potential for optoacoustic cardiac imaging and is expected to have a major contribution toward future preclinical studies of animal models of cardiovascular health and disease.

  1. Prevalence of Endogenous CD34+ Adipose Stem Cells Predicts Human Fat Graft Retention in a Xenograft Model

    PubMed Central

    Philips, Brian J.; Grahovac, Tara L.; Valentin, Jolene E.; Chung, Christopher W.; Bliley, Jacqueline M.; Pfeifer, Melanie E.; Roy, Sohini B.; Dreifuss, Stephanie; Kelmendi-Doko, Arta; Kling, Russell E.; Ravuri, Sudheer K.; Marra, Kacey G.; Donnenberg, Vera S.; Donnenberg, Albert D.; Rubin, J. Peter

    2014-01-01

    Background Fat grafting is a promising technique for soft-tissue augmentation, although graft retention is highly unpredictable and factors that affect graft survival have not been well defined. Because of their capacity for differentiation and growth factor release, adipose-derived stem cells may have a key role in graft healing. The authors’ objective was to determine whether biological properties of adipose-derived stem cells present within human fat would correlate with in vivo outcomes of graft volume retention. Methods Lipoaspirate from eight human subjects was processed using a standardized centrifugation technique and then injected subcutaneously into the flanks of 6-week-old athymic nude mice. Graft masses and volumes were measured, and histologic evaluation, including CD31+ staining for vessels, was performed 8 weeks after transplantation. Stromal vascular fraction isolated at the time of harvest from each subject was analyzed for surface markers by multi-parameter flow cytometry, and also assessed for proliferation, differentiation capacity, and normoxic/hypoxic vascular endothelial growth factor secretion. Results Wide variation in percentage of CD34+ progenitors within the stromal vascular fraction was noted among subjects and averaged 21.3 ± 15 percent (mean ± SD). Proliferation rates and adipogenic potential among stromal vascular fraction cells demonstrated moderate interpatient variability. In mouse xenograft studies, retention volumes ranged from approximately 36 to 68 percent after 8 weeks, with an overall average of 52 ± 11 percent. A strong correlation (r = 0.78, slope = 0.76, p < 0.05) existed between stromal vascular fraction percentage of CD34+ progenitors and high graft retention. Conclusion Inherent biological differences in adipose tissue exist between patients. In particular, concentration of CD34+ progenitor cells within the stromal vascular fraction may be one of the factors used to predict human fat graft retention. (Plast

  2. Non-invasive measurement of cerebral oxygen metabolism in the mouse brain by ultra-high field (17)O MR spectroscopy.

    PubMed

    Cui, Weina; Zhu, Xiao-Hong; Vollmers, Manda L; Colonna, Emily T; Adriany, Gregor; Tramm, Brandon; Dubinsky, Janet M; Öz, Gülin

    2013-12-01

    To assess cerebral energetics in transgenic mouse models of neurologic disease, a robust, efficient, and practical method for quantification of cerebral oxygen consumption is needed. (17)O magnetic resonance spectroscopy (MRS) has been validated to measure cerebral metabolic rate of oxygen (CMRO2) in the rat brain; however, mice present unique challenges because of their small size. We show that CMRO2 measurements with (17)O MRS in the mouse brain are highly reproducible using 16.4 Tesla and a newly designed oxygen delivery system. The method can be utilized to measure mitochondrial function in mice quickly and repeatedly, without oral intubation, and has numerous potential applications to study cerebral energetics. PMID:24064490

  3. Non-invasive measurement of cerebral oxygen metabolism in the mouse brain by ultra-high field 17O MR spectroscopy

    PubMed Central

    Cui, Weina; Zhu, Xiao-Hong; Vollmers, Manda L; Colonna, Emily T; Adriany, Gregor; Tramm, Brandon; Dubinsky, Janet M; Öz, Gülin

    2013-01-01

    To assess cerebral energetics in transgenic mouse models of neurologic disease, a robust, efficient, and practical method for quantification of cerebral oxygen consumption is needed. 17O magnetic resonance spectroscopy (MRS) has been validated to measure cerebral metabolic rate of oxygen (CMRO2) in the rat brain; however, mice present unique challenges because of their small size. We show that CMRO2 measurements with 17O MRS in the mouse brain are highly reproducible using 16.4 Tesla and a newly designed oxygen delivery system. The method can be utilized to measure mitochondrial function in mice quickly and repeatedly, without oral intubation, and has numerous potential applications to study cerebral energetics. PMID:24064490

  4. Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning.

    PubMed

    Hong, Weizhe; Kennedy, Ann; Burgos-Artizzu, Xavier P; Zelikowsky, Moriel; Navonne, Santiago G; Perona, Pietro; Anderson, David J

    2015-09-22

    A lack of automated, quantitative, and accurate assessment of social behaviors in mammalian animal models has limited progress toward understanding mechanisms underlying social interactions and their disorders such as autism. Here we present a new integrated hardware and software system that combines video tracking, depth sensing, and machine learning for automatic detection and quantification of social behaviors involving close and dynamic interactions between two mice of different coat colors in their home cage. We designed a hardware setup that integrates traditional video cameras with a depth camera, developed computer vision tools to extract the body "pose" of individual animals in a social context, and used a supervised learning algorithm to classify several well-described social behaviors. We validated the robustness of the automated classifiers in various experimental settings and used them to examine how genetic background, such as that of Black and Tan Brachyury (BTBR) mice (a previously reported autism model), influences social behavior. Our integrated approach allows for rapid, automated measurement of social behaviors across diverse experimental designs and also affords the ability to develop new, objective behavioral metrics. PMID:26354123

  5. Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning

    PubMed Central

    Hong, Weizhe; Kennedy, Ann; Burgos-Artizzu, Xavier P.; Zelikowsky, Moriel; Navonne, Santiago G.; Perona, Pietro; Anderson, David J.

    2015-01-01

    A lack of automated, quantitative, and accurate assessment of social behaviors in mammalian animal models has limited progress toward understanding mechanisms underlying social interactions and their disorders such as autism. Here we present a new integrated hardware and software system that combines video tracking, depth sensing, and machine learning for automatic detection and quantification of social behaviors involving close and dynamic interactions between two mice of different coat colors in their home cage. We designed a hardware setup that integrates traditional video cameras with a depth camera, developed computer vision tools to extract the body “pose” of individual animals in a social context, and used a supervised learning algorithm to classify several well-described social behaviors. We validated the robustness of the automated classifiers in various experimental settings and used them to examine how genetic background, such as that of Black and Tan Brachyury (BTBR) mice (a previously reported autism model), influences social behavior. Our integrated approach allows for rapid, automated measurement of social behaviors across diverse experimental designs and also affords the ability to develop new, objective behavioral metrics. PMID:26354123

  6. A robust and rapid xenograft model to assess efficacy of chemotherapeutic agents for human acute myeloid leukemia

    PubMed Central

    Saland, E; Boutzen, H; Castellano, R; Pouyet, L; Griessinger, E; Larrue, C; de Toni, F; Scotland, S; David, M; Danet-Desnoyers, G; Vergez, F; Barreira, Y; Collette, Y; Récher, C; Sarry, J-E

    2015-01-01

    Relevant preclinical mouse models are crucial to screen new therapeutic agents for acute myeloid leukemia (AML). Current in vivo models based on the use of patient samples are not easy to establish and manipulate in the laboratory. Our objective was to develop robust xenograft models of human AML using well-characterized cell lines as a more accessible and faster alternative to those incorporating the use of patient-derived AML cells. Five widely used AML cell lines representing various AML subtypes were transplanted and expanded into highly immunodeficient non-obese diabetic/LtSz-severe combined immunodeficiency IL2Rγcnull mice (for example, cell line-derived xenografts). We show here that bone marrow sublethal conditioning with busulfan or irradiation has equal efficiency for the xenotransplantation of AML cell lines. Although higher number of injected AML cells did not change tumor engraftment in bone marrow and spleen, it significantly reduced the overall survival in mice for all tested AML cell lines. On the basis of AML cell characteristics, these models also exhibited a broad range of overall mouse survival, engraftment, tissue infiltration and aggressiveness. Thus, we have established a robust, rapid and straightforward in vivo model based on engraftment behavior of AML cell lines, all vital prerequisites for testing new therapeutic agents in preclinical studies. PMID:25794133

  7. Real time in vivo imaging and measurement of serine protease activity in the mouse hippocampus using a dedicated complementary metal-oxide semiconductor imaging device.

    PubMed

    Ng, David C; Tamura, Hideki; Tokuda, Takashi; Yamamoto, Akio; Matsuo, Masamichi; Nunoshita, Masahiro; Ishikawa, Yasuyuki; Shiosaka, Sadao; Ohta, Jun

    2006-09-30

    The aim of the present study is to demonstrate the application of complementary metal-oxide semiconductor (CMOS) imaging technology for studying the mouse brain. By using a dedicated CMOS image sensor, we have successfully imaged and measured brain serine protease activity in vivo, in real-time, and for an extended period of time. We have developed a biofluorescence imaging device by packaging the CMOS image sensor which enabled on-chip imaging configuration. In this configuration, no optics are required whereby an excitation filter is applied onto the sensor to replace the filter cube block found in conventional fluorescence microscopes. The fully packaged device measures 350 microm thick x 2.7 mm wide, consists of an array of 176 x 144 pixels, and is small enough for measurement inside a single hemisphere of the mouse brain, while still providing sufficient imaging resolution. In the experiment, intraperitoneally injected kainic acid induced upregulation of serine protease activity in the brain. These events were captured in real time by imaging and measuring the fluorescence from a fluorogenic substrate that detected this activity. The entire device, which weighs less than 1% of the body weight of the mouse, holds promise for studying freely moving animals. PMID:16542733

  8. 184AA3: a xenograft model of ER+ breast adenocarcinoma.

    PubMed

    Hines, William C; Kuhn, Irene; Thi, Kate; Chu, Berbie; Stanford-Moore, Gaelen; Sampayo, Rocío; Garbe, James C; Stampfer, Martha; Borowsky, Alexander D; Bissell, Mina J

    2016-01-01

    Despite the prevalence and significant morbidity resulting from estrogen receptor positive (ER(+)) breast adenocarcinomas, there are only a few models of this cancer subtype available for drug development and arguably none for studying etiology. Those models that do exist have questionable clinical relevance. Given our goal of developing luminal models, we focused on six cell lines derived by minimal mutagenesis from normal human breast cells, and asked if any could generate clinically relevant xenografts, which we then extensively characterized. Xenografts of one cell line, 184AA3, consistently formed ER(+) adenocarcinomas that had a high proliferative rate and other features consistent with "luminal B" intrinsic subtype. Squamous and spindle cell/mesenchymal differentiation was absent, in stark contrast to other cell lines that we examined or others have reported. We explored intratumoral heterogeneity produced by 184AA3 by immunophenotyping xenograft tumors and cultured cells, and characterized marker expression by immunofluorescence and flow cytometry. A CD44(High) subpopulation was discovered, yet their tumor forming ability was far less than CD44(Low) cells. Single cell cloning revealed the phenotypic plasticity of 184AA3, consistent with the intratumoral heterogeneity observed in xenografts. Characterization of ER expression in cultures revealed ER protein and signaling is intact, yet when estrogen was depleted in culture, and in vivo, it did not impact cell or tumor growth, analogous to therapeutically resistant ER(+) cancers. This model is appropriate for studies of the etiology of ovarian hormone independent adenocarcinomas, for identification of therapeutic targets, predictive testing, and drug development. PMID:26661596

  9. Human Immunodeficiency Virus Type 1 Infection of Neural Xenografts

    NASA Astrophysics Data System (ADS)

    Cvetkovich, Therese A.; Lazar, Eliot; Blumberg, Benjamin M.; Saito, Yoshihiro; Eskin, Thomas A.; Reichman, Richard; Baram, David A.; del Cerro, Coca; Gendelman, Howard E.; del Cerro, Manuel; Epstein, Leon G.

    1992-06-01

    Human immunodeficiency virus type 1 (HIV-1) infection is highly specific for its human host. To study HIV-1 infection of the human nervous system, we have established a small animal model in which second-trimester (11 to 17.5 weeks) human fetal brain or neural retina is transplanted to the anterior chamber of the eye of immunosuppressed adult rats. The human xenografts vascularized, formed a blood-brain barrier, and differentiated, forming neurons and glia. The xenografts were infected with cell-free HIV-1 or with HIV-1-infected human monocytes. Analysis by polymerase chain reaction revealed HIV-1 sequences in DNA from xenograft tissue exposed to HIV-1 virions, and in situ hybridization demonstrated HIV-1 mRNA localized in macrophages and multinucleated giant cells. Pathological damage was observed only in neural xenografts containing HIV-1-infected human monocytes, supporting the hypothesis that these cells mediate neurotoxicity. This small animal model allows the study of direct and indirect effects of HIV-1 infection on developing human fetal neural tissues, and it should prove useful in evaluating antiviral therapies, which must ultimately target HIV-1 infection of the brain.

  10. Establishment and characterisation of patient-derived xenografts as paraclinical models for gastric cancer

    PubMed Central

    Choi, Yoon Young; Lee, Jae Eun; Kim, Hyunki; Sim, Moon Hee; Kim, Ka-Kyung; Lee, Gunho; Kim, Hyoung-Il; An, Ji Yeong; Hyung, Woo Jin; Kim, Choong-Bai; Noh, Sung Hoon; Kim, Sangwoo; Cheong, Jae-Ho

    2016-01-01

    The patient-derived xenograft (PDX) model is emerging as a promising translational platform to duplicate the characteristics of tumours. However, few studies have reported detailed histological and genomic analyses for model fidelity and for factors affecting successful model establishment of gastric cancer. Here, we generated PDX tumours surgically-derived from 62 gastric cancer patients. Fifteen PDX models were successfully established (24.2%, 15/62) and passaged to maintain tumours in immune-compromised mice. Diffuse type and low tumour cell percentage were negatively correlated with success rates (p = 0.005 and p = 0.025, respectively), while reducing ex vivo and overall procedure times were positively correlated with success rates (p = 0.003 and p = 0.01, respectively). The histology and genetic characteristics of PDX tumour models were stable over subsequent passages. Lymphoma transformation occurred in five cases (33.3%, 5/15), and all were in the NOG mouse, with none in the nude mouse. Together, the present study identified Lauren classification, tumour cell percentages, and ex vivo times along with overall procedure times, as key determinants for successful PDX engraftment. Furthermore, genetic and histological characteristics were highly consistent between primary and PDX tumours, which provide realistic paraclinical models, enabling personalised development of treatment options for gastric cancer. PMID:26926953

  11. Antitumor Activity of Garcinol in Human Prostate Cancer Cells and Xenograft Mice.

    PubMed

    Wang, Yu; Tsai, Mei-Ling; Chiou, Li-Yu; Ho, Chi-Tang; Pan, Min-Hsiung

    2015-10-21

    Garcinol, which is isolated from fruit rinds of Garcinia indica, is a polyisoprenylated benzophenone. It has been studied for its antitumor activity by inducing apoptosis and inhibiting autophagy in human prostate cancer cells. The Bax/Bcl-2 ratio increased when garcinol was applied to PC-3 cells indicating a presence of apoptosis. Meanwhile, procaspases-9 and -3 were suppressed with attenuating PARP and DFF-45. Autophagy was inhibited through activating p-mTOR and p-PI3 Kinase/AKT by garcinol, which as a result induced the cells to apoptosis directly. In addition, the apoptosis effect of garcinol in a xenograft mouse model was also tested, suggesting a consistent result with PC-3 cell model. The tumor size was reduced more than 80 percent after the mouse accepted the garcinol treatment. Garcinol was demonstrated to have a strong antitumor activity through inhibiting autophagy and inducing apoptosis, which was discovered for the first time. Based on these findings, our data suggests that garcinol deserves further investigation as a potent chemopreventive agent. PMID:26442822

  12. Neuroblastoma patient-derived orthotopic xenografts reflect the microenvironmental hallmarks of aggressive patient tumours.

    PubMed

    Braekeveldt, Noémie; Wigerup, Caroline; Tadeo, Irene; Beckman, Siv; Sandén, Caroline; Jönsson, Jimmie; Erjefält, Jonas S; Berbegall, Ana P; Börjesson, Anna; Backman, Torbjörn; Øra, Ingrid; Navarro, Samuel; Noguera, Rosa; Gisselsson, David; Påhlman, Sven; Bexell, Daniel

    2016-06-01

    Treatment of high-risk childhood neuroblastoma is a clinical challenge which has been hampered by a lack of reliable neuroblastoma mouse models for preclinical drug testing. We have previously established invasive and metastasising patient-derived orthotopic xenografts (PDXs) from high-risk neuroblastomas that retained the genotypes and phenotypes of patient tumours. Given the important role of the tumour microenvironment in tumour progression, metastasis, and treatment responses, here we analysed the tumour microenvironment of five neuroblastoma PDXs in detail. The PDXs resembled their parent tumours and retained important stromal hallmarks of aggressive lesions including rich blood and lymphatic vascularisation, pericyte coverage, high numbers of cancer-associated fibroblasts, tumour-associated macrophages, and extracellular matrix components. Patient-derived tumour endothelial cells occasionally formed blood vessels in PDXs; however, tumour stroma was, overall, of murine origin. Lymphoid cells and lymphatic endothelial cells were found in athymic nude mice but not in NSG mice; thus, the choice of mouse strain dictates tumour microenvironmental components. The murine tumour microenvironment of orthotopic neuroblastoma PDXs reflects important hallmarks of aggressive and metastatic clinical neuroblastomas. Neuroblastoma PDXs are clinically relevant models for preclinical drug testing. PMID:27000989

  13. Stromal cell-derived CSF-1 blockade prolongs xenograft survival of CSF-1-negative neuroblastoma

    PubMed Central

    Abraham, Dietmar; Zins, Karin; Sioud, Mouldy; Lucas, Trevor; Schäfer, Romana; Stanley, E. Richard; Aharinejad, Seyedhossein

    2011-01-01

    The molecular mechanisms of tumor–host interactions that render neuroblastoma (NB) cells highly invasive are unclear. Cancer cells upregulate host stromal cell colony-stimulating factor-1 (CSF-1) production to recruit tumor-associated macrophages (TAMs) and accelerate tumor growth by affecting extracellular matrix remodeling and angiogenesis. By coculturing NB with stromal cells in vitro, we showed the importance of host CSF-1 expression for macrophage recruitment to NB cells. To examine this interaction in NB in vivo, mice bearing human CSF-1-expressing SK-N-AS and CSF-1-negative SK-NDZ NB xenografts were treated with intratumoral injections of small interfering RNAs directed against mouse CSF-1. Significant suppression of both SK-N-AS and SK-N-DZ NB growth by these treatments was associated with decreased TAM infiltration, matrix metalloprotease (MMP)-12 levels and angiogenesis compared to controls, while expression of tissue inhibitors of MMPs increased following mouse CSF-1 blockade. Furthermore, Tie-2-positive and -negative TAMs recruited by host CSF-1 were identified in NB tumor tissue by confocal microscopy and flow cytometry. However, host-CSF-1 blockade prolonged survival only in CSF-1-negative SK-N-DZ NB. These studies demonstrated that increased CSF-1 production by host cells enhances TAM recruitment and NB growth and that the CSF-1 phenotype of NB tumor cells adversely affects survival. PMID:19711348

  14. G3139 and other CpG-containing immunostimulatory phosphorothioate oligodeoxynucleotides are potent suppressors of the growth of human tumor xenografts in nude mice.

    PubMed

    Gekeler, Volker; Gimmnich, Petra; Hofmann, Hans-Peter; Grebe, Carola; Römmele, Michaela; Leja, Astrid; Baudler, Monika; Benimetskaya, Luba; Gonser, Barbara; Pieles, Uwe; Maier, Thomas; Wagner, Thomas; Sanders, Karl; Beck, James F; Hanauer, Guido; Stein, C A

    2006-01-01

    dose of 12 mg/kg, alone induced extensive enlargement of the spleen. Immunostimulation was evaluated in vitro by flow cytometric measurements of the CD80 and CD86 activation markers found on CD19+ murine splenocytes. The CpG-ODN producing strong antitumor effects in vivo also induced these activation markers in vitro, in contrast to the in vivo inactive G3139-mC. Our data indicate a significant contribution of the immunostimulatory properties of CpG-ODN (including G3139) to the antitumor effects observed in nude mouse xenograft models. This is in contrast to previous data presented by other authors indicating that the activity of G3139 in human tumor xenografts was Bcl-2 specific. Furthermore, as nude mice are devoid of T cells, a T cell-mediated immune response apparently is not required for the potent antitumor responses observed here; innate immune responses are sufficient. PMID:16584297

  15. Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue.

    PubMed

    Mirsch, Johanna; Tommasino, Francesco; Frohns, Antonia; Conrad, Sandro; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Löbrich, Markus

    2015-10-01

    Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles. PMID:26392532

  16. Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue

    PubMed Central

    Mirsch, Johanna; Tommasino, Francesco; Frohns, Antonia; Conrad, Sandro; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Löbrich, Markus

    2015-01-01

    Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles. PMID:26392532

  17. Gastrointestinal cancer studies in the human to nude mouse heterotransplant system.

    PubMed

    Schmidt, M; Deschner, E E; Thaler, H T; Clements, L; Good, R A

    1977-05-01

    Human gastrointestinal cancer xenografts were established in the nude mouse. Grafts were accomplished with gastric adenocarcinomas, gastric leiomyosarcoma, histiocytic lymphoma of the stomach and gallbladder, pancreatic tumors, colonic cancers and cell lines of duodenal (HUTU-80) and pancreatic (HS-766-T) cancers, melanoma (SK-Mel-5), and murine metastasizing Lewis lung carcinoma. The rate of successful xenografting of these tumors varied from virtually 100% with colon and duodenal cancer, 50% for a pancreatic cancer (P-1), to only 17% for gastric adenocarcinoma. Pancreas and colon adenocarcinomas have been maintained by successive xenotransplantation over 16 and 19 months, respectively. Human xenografts retained morphological identity with tissues of origin through several transplant generations and shared some of their ultrastructural characteristics but did not metastasize. Rodent xenografts, of heterogenous origin were characterized by differences in the duration of the latent period and in the rate of their initial development as described by the average doubling times and average slopes (B) of their growth curves. Differences between B of the Lewis lung carcinoma and all of the human xenografts and between B of a pancreatic adenocarcinoma and three other neoplasms were significant (P less than 0.05 to 0.04). Labeling indices determined for 14 cancer transplants were in the range of previously reported data for similar neoplasms in patients or other xenograft systems. These findings suggest that the nude mouse model can be used to evaluate endogenous properties of gastrointestinal cancers and their responses to exogenous agents. PMID:321290

  18. Novel system using microliter order sample volume for measuring arterial radioactivity concentrations in whole blood and plasma for mouse PET dynamic study

    NASA Astrophysics Data System (ADS)

    Kimura, Yuichi; Seki, Chie; Hashizume, Nobuya; Yamada, Takashi; Wakizaka, Hidekatsu; Nishimoto, Takahiro; Hatano, Kentaro; Kitamura, Keishi; Toyama, Hiroshi; Kanno, Iwao

    2013-11-01

    This study aimed to develop a new system, named CD-Well, for mouse PET dynamic study. CD-Well allows the determination of time-activity curves (TACs) for arterial whole blood and plasma using 2-3 µL of blood per sample; the minute sample size is ideal for studies in small animals. The system has the following merits: (1) measures volume and radioactivity of whole blood and plasma separately; (2) allows measurements at 10 s intervals to capture initial rapid changes in the TAC; and (3) is compact and easy to handle, minimizes blood loss from sampling, and delay and dispersion of the TAC. CD-Well has 36 U-shaped channels. A drop of blood is sampled into the opening of the channel and stored there. After serial sampling is completed, CD-Well is centrifuged and scanned using a flatbed scanner to define the regions of plasma and blood cells. The length measured is converted to volume because the channels have a precise and uniform cross section. Then, CD-Well is exposed to an imaging plate to measure radioactivity. Finally, radioactivity concentrations are computed. We evaluated the performance of CD-Well in in vitro measurement and in vivo 18F-fluorodeoxyglucose and [11C]2-carbomethoxy-3β-(4-fluorophenyl) tropane studies. In in vitro evaluation, per cent differences (mean±SE) from manual measurement were 4.4±3.6% for whole blood and 4.0±3.5% for plasma across the typical range of radioactivity measured in mouse dynamic study. In in vivo studies, reasonable TACs were obtained. The peaks were captured well, and the time courses coincided well with the TAC derived from PET imaging of the heart chamber. The total blood loss was less than 200 µL, which had no physiological effect on the mice. CD-Well demonstrates satisfactory performance, and is useful for mouse PET dynamic study.

  19. The Anti-Proliferative Effect of Boron Neutron Capture Therapy in a Prostate Cancer Xenograft Model

    PubMed Central

    Yoshikawa, Yuki; Takai, Tomoaki; Ibuki, Naokazu; Hirano, Hajime; Nomi, Hayahito; Kawabata, Shinji; Kiyama, Satoshi; Miyatake, Shin-Ichi; Kuroiwa, Toshihiko; Suzuki, Minoru; Kirihata, Mitsunori; Azuma, Haruhito

    2015-01-01

    Purpose Boron neutron capture therapy (BNCT) is a selective radiation treatment for tumors that preferentially accumulate drugs carrying the stable boron isotope, 10B. BNCT has been evaluated clinically as an alternative to conventional radiation therapy for the treatment of brain tumors, and more recently, recurrent advanced head and neck cancer. Here we investigated the effect of BNCT on prostate cancer (PCa) using an in vivo mouse xenograft model that we have developed. Materials and Methods Mice bearing the xenotransplanted androgen-independent human PCa cell line, PC3, were divided into four groups: Group 1: untreated controls; Group 2: Boronophenylalanine (BPA); Group 3: neutron; Group 4: BPA-mediated BNCT. We compared xenograft growth among these groups, and the body weight and any motility disturbance were recorded. Immunohistochemical (IHC) studies of the proliferation marker, Ki-67, and TUNEL staining were performed 9 weeks after treatment. Results The in vivo studies demonstrated that BPA-mediated BNCT significantly delayed tumor growth in comparison with the other groups, without any severe adverse events. There was a significant difference in the rate of freedom from gait abnormalities between the BPA-mediated BNCT group and the other groups. The IHC studies revealed that BNCT treatment significantly reduced the number of Ki-67-positive cells in comparison with the controls (mean±SD 6.9±1.5 vs 12.7±4.0, p<0.05), while there was no difference in the number of apoptotic cells, suggesting that BPA-mediated BNCT reduced PCa progression without affecting apoptosis at 9 weeks post-treatment. Conclusions This study has provided the first preclinical proof-of-principle data to indicate that BPA-mediated BNCT reduces the in vivo growth of PCa. Although further studies will be necessary, BNCT might be a novel potential treatment for PCa. PMID:26325195

  20. CysLT1R Antagonists Inhibit Tumor Growth in a Xenograft Model of Colon Cancer

    PubMed Central

    Savari, Sayeh; Liu, Minghui; Zhang, Yuan; Sime, Wondossen; Sjölander, Anita

    2013-01-01

    The expression of the inflammatory G-protein coupled receptor CysLT1R has been shown to be upregulated in colon cancer patients and associated with poor prognosis. The present study investigated the correlation between CysLT1R and colon cancer development in vivo using CysLT1R antagonists (ZM198,615 or Montelukast) and the nude mouse xenograft model. Two drug administration regimens were established. The first regimen was established to investigate the importance of CysLT1R in tumor initiation. Nude mice were inoculated with 50 µM CysLT1R antagonist-pretreated HCT-116 colon cancer cells and received continued treatment (5 mg/kg/day, intraperitoneally). The second regimen aimed to address the role of CysLT1R in tumor progression. Nude mice were inoculated with non-pretreated HCT-116 cells and did not receive CysLT1R antagonist treatment until recordable tumor appearance. Both regimens resulted in significantly reduced tumor size, attributed to changes in proliferation and apoptosis as determined by reduced Ki-67 levels and increased levels of p21WAF/Cip1 (P<0.01), cleaved caspase 3, and the caspase-cleaved product of cytokeratin 18. Decreased levels of VEGF (P<0.01) and reduced vessel size (P<0.05) were also observed, the latter only in the ZM198,615-pretreatment group. Furthermore, we performed a series of in vitro studies using the colon cancer cell line HCT-116 and CysLT1R antagonists. In addition to significant reductions in cell proliferation, adhesion and colony formation, we observed induction of cell cycle arrest and apoptosis in a dose-dependent manner. The ability of Montelukast to inhibit growth of human colon cancer xenograft was further validated by using two additional colon cancer cell lines, SW-480 and HT-29. Our results demonstrate that CysLT1R antagonists inhibit growth of colon cancer xenografts primarily by reducing proliferation and inducing apoptosis of the tumor cells. PMID:24039952

  1. Vasculature analysis of patient derived tumor xenografts using species-specific PCR assays: evidence of tumor endothelial cells and atypical VEGFA-VEGFR1/2 signalings

    PubMed Central

    2014-01-01

    Background Tumor endothelial transdifferentiation and VEGFR1/2 expression by cancer cells have been reported in glioblastoma but remain poorly documented for many other cancer types. Methods To characterize vasculature of patient-derived tumor xenografts (PDXs), largely used in preclinical anti-angiogenic assays, we designed here species-specific real-time quantitative RT-PCR assays. Human and mouse PECAM1/CD31, ENG/CD105, FLT1/VEGFR1, KDR/VEGFR2 and VEGFA transcripts were analyzed in a large series of 150 PDXs established from 8 different tumor types (53 colorectal, 14 ovarian, 39 breast and 15 renal cell cancers, 6 small cell and 5 non small cell lung carcinomas, 13 cutaneous melanomas and 5 glioblastomas) and in two bevacizumab-treated non small cell lung carcinomas xenografts. Results As expected, mouse cell proportion in PDXs -evaluated by quantifying expression of the housekeeping gene TBP- correlated with all mouse endothelial markers and human VEGFA RNA levels. More interestingly, we observed human PECAM1/CD31 and ENG/CD105 expression in all tumor types, with higher rate in glioblastoma and renal cancer xenografts. Human VEGFR expression profile varied widely depending on tumor types with particularly high levels of human FLT1/VEGFR1 transcripts in colon cancers and non small cell lung carcinomas, and upper levels of human KDR/VEGFR2 transcripts in non small cell lung carcinomas. Bevacizumab treatment induced significant low expression of mouse Pecam1/Cd31, Eng/Cd105, Flt1/Vegfr1 and Kdr/Vefr2 while the human PECAM1/CD31 and VEGFA were upregulated. Conclusions Taken together, our results strongly suggest existence of human tumor endothelial cells in all tumor types tested and of both stromal and tumoral autocrine VEGFA-VEGFR1/2 signalings. These findings should be considered when evaluating molecular mechanisms of preclinical response and resistance to tumor anti-angiogenic strategies. PMID:24625025

  2. Development of a phase-sensitive Fourier domain optical coherence tomography system to measure mouse organ of Corti vibrations in two cochlear turns

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Sripriya; Zhang, Yuan; Petrie, Tracy; Jacques, Steven; Wang, Ruikang; Nuttall, Alfred L.

    2015-12-01

    In this study, we have developed a phase-sensitive Fourier-domain optical coherence tomography system to simultaneously measure the in vivo inner ear vibrations in the hook area and second turn of the mouse cochlea. This technical development will enable measurement of intra-cochlear distortion products at ideal locations such as the distortion product generation site and reflection site. This information is necessary to un-mix the complex mixture of intra-cochlear waves comprising the DPOAE and thus leads to the non-invasive identification of the local region of cochlear damage.

  3. Development of a phase-sensitive Fourier domain optical coherence tomography system to measure mouse organ of Corti vibrations in two cochlear turns

    SciTech Connect

    Ramamoorthy, Sripriya; Zhang, Yuan; Jacques, Steven; Petrie, Tracy; Wang, Ruikang; Nuttall, Alfred L.

    2015-12-31

    In this study, we have developed a phase-sensitive Fourier-domain optical coherence tomography system to simultaneously measure the in vivo inner ear vibrations in the hook area and second turn of the mouse cochlea. This technical development will enable measurement of intra-cochlear distortion products at ideal locations such as the distortion product generation site and reflection site. This information is necessary to un-mix the complex mixture of intra-cochlear waves comprising the DPOAE and thus leads to the non-invasive identification of the local region of cochlear damage.

  4. Establishment and characterization of five new human renal tumor xenografts.

    PubMed Central

    Beniers, A. J.; Peelen, W. P.; Schaafsma, H. E.; Beck, J. L.; Ramaekers, F. C.; Debruyne, F. M.; Schalken, J. A.

    1992-01-01

    Ten different human renal cell carcinoma (RCC) primary tumors were xenografted into BALB/c nu/nu mice. Five of the tumors (NU-10, NU-12, NU-20, NU-22, and NU-28) gave rise to serially transplantable tumors that were further characterized. Histology, DNA index, immunohistochemical characteristics, growth rate, and clonogenic potential were followed from primary tumor to the 5th to 15th transplant passage. Only one of the tumors (NU-20) showed remarkable instability for all tested parameters in the first five transplant passages. Histology of the other tumors was essentially the same to the histology of the primary tumors, although differences between human and host-derived vessels were apparent. DNA index values in general showed a trend toward an aneuploid character of the xenografts. Immunohistochemical analyses showed a loss of intensity of staining but a concomitant rise in the fraction of positively staining cells with antibodies against cytokeratins, vimentin, tumor-associated antigens, and human leukocyte antigen (HLA) class I antigens. Human leukocyte antigen class II antigen expression showed a loss of intensity as well as a decrease in the fraction of positive cells. Tumor doubling time was lowest in transplant passage number 0, and stable growth was noticed in transplant passages 1 through 4. Clonogenic potential of four of the lines was higher for the xenografts than for the primary tumors. The authors conclude that, on xenografting, histologic characteristics of the primary tumor are essentially conserved. Progression in the first transplant passages, however, results in tumors with a more aggressive character. Images Figure 1 PMID:1739137

  5. Development of Patient Derived Xenograft Models of Overt Spontaneous Breast Cancer Metastasis: A Cautionary Note

    PubMed Central

    Paez-Ribes, Marta; Man, Shan; Xu, Ping; Kerbel, Robert S.

    2016-01-01

    Several approaches are being evaluated to improve the historically limited value of studying transplanted primary tumors derived by injection of cells from established cell lines for predicting subsequent cancer therapy outcomes in patients and clinical trials. These approaches include use of genetically engineered mouse models (GEMMs) of spontaneous tumors, or patient tumor tissue derived xenografts (PDXs). Almost all such therapy studies utilizing such models involve treatment of established primary tumors. An alternative approach we have developed involves transplanted human tumor xenografts derived from established cell lines to treat mice with overt visceral metastases after primary tumor resection. The rationale is to mimic the more challenging circumstance of treating patients with late stage metastatic disease. These metastatic models entail prior in vivo selection of heritable, phenotypically stable variants with increased aggressiveness for spontaneous metastasis; they were derived by orthotopic injection of tumor cells followed by primary tumor resection and serial selection of distant spontaneous metastases, from which variant cell lines having a more aggressive heritable metastatic phenotype were established. We attempted to adopt this strategy for breast cancer PDXs. We studied five breast cancer PDXs, with the emphasis on two, called HCI-001 and HCI-002, both derived from triple negative breast cancer patients. However significant technical obstacles were encountered. These include the inherent slow growth rates of PDXs, the rarity of overt spontaneous metastases (detected in only 3 of 144 mice), very high rates of tumor regrowths at the primary tumor resection site, the failure of the few human PDX metastases isolated to manifest a more aggressive metastatic phenotype upon re-transplantation into new hosts, and the formation of metastases which were derived from de novo mouse thymomas arising in aged SCID mice that we used for the experiments. We

  6. Moral sensibilities and moral standing: Caplan on xenograft "donors".

    PubMed

    Nelson, James Lindemann

    1993-07-01

    [I]nterest in animals as a source of organs and tissues for human beings remains strong. New developments in immunosuppression technology promise to lower the technical barriers to a routine use of nonhumans as organ donors, and the image of colonies of animals kept at the ready for supplying the growing human need for new organs seems a much more plausible scenario now than it did when broached by transplantation specialists in the Sixties. As Arthur Caplan has powerfully argued, the prospects that other sources of organs may resolve the supply problem are grim.... In the face of these "pro-xenograft" pressures, it becomes all the more signficant to assess arguments against the practice that rest on considerations of the moral status of the nonhumans from whom the organs are taken. To be sure, xenograft faces other moral difficulties -- for example, concerns about the quality of informed consent obtained for recipients, worries about the possibility that xenografting will serve as a vector by which new and possibly virulent viruses become established in humans, and problems about whether such spending is equitable in the light of other unresolved human needs. Yet whether we morally wrong animals in taking their organs and their lives remains a decidedly central issue here, one that cannot be finessed away by developing better informed consent procedures, better anti-viral strategies, or by situating transplantation medicine in a just health care system. PMID:11651606

  7. Evaluation of the NOD/SCID xenograft model for glucocorticoid-regulated gene expression in childhood B-cell precursor acute lymphoblastic leukemia

    PubMed Central

    2011-01-01

    Background Glucocorticoids such as prednisolone and dexamethasone are critical drugs used in multi-agent chemotherapy protocols used to treat acute lymphoblastic leukemia (ALL), and response to glucocorticoids is highly predictive of outcome. The NOD/SCID xenograft mouse model of ALL is a clinically relevant model in which the mice develop a systemic leukemia which retains the fundamental biological characteristics of the original disease. Here we report a study evaluating the NOD/SCID xenograft mouse model to investigate glucocorticoid-induced gene expression. Cells from a glucocorticoid-sensitive xenograft derived from a child with B-cell precursor ALL were inoculated into NOD/SCID mice. When highly engrafted the mice were randomized into groups of 4 to receive dexamethasone 15 mg/kg by intraperitoneal injection or vehicle control. Leukemia cells were harvested from mice spleens at 0, 8, 24 or 48 hours thereafter, and gene expression analyzed on Illumina WG-6_V3 chips, comparing all groups to time 0 hours. Results The 8 hour dexamethasone-treated timepoint had the highest number of significantly differentially expressed genes, with fewer observed at the 24 and 48 hour timepoints, and with minimal changes seen across the time-matched controls. When compared to publicly available datasets of glucocorticoid-induced gene expression from an in vitro cell line study and from an in vivo study of patients with ALL, at the level of pathways, expression changes in the 8 hour xenograft samples showed a similar response to patients treated with glucocorticoids. Replicate analysis revealed that at the 8 hour timepoint, a dataset with high signal and differential expression, using data from 3 replicates instead of 4 resulted in excellent recovery scores of > 0.9. However at other timepoints with less signal very poor recovery scores were obtained with 3 replicates. Conclusions The NOD/SCID xenograft mouse model provides a reproducible experimental system in which to

  8. Xenograft models for undifferentiated pleomorphic sarcoma not otherwise specified are essential for preclinical testing of therapeutic agents

    PubMed Central

    Becker, Marc; Graf, Claudine; Tonak, Marcus; Radsak, Markus P.; Bopp, Tobias; Bals, Robert; Bohle, Rainer M.; Theobald, Matthias; Rommens, Pol-Maria; Proschek, Dirk; Wehler, Thomas C.

    2016-01-01

    Undifferentiated pleomorphic sarcoma not otherwise specified belongs to the heterogeneous group of soft tissue tumors. It is preferentially located in the upper and lower extremities of the body, and surgical resection remains the only curative treatment. Preclinical animal models are crucial to improve the development of novel chemotherapeutic agents for the treatment of undifferentiated pleomorphic sarcoma. However, this approach has been hampered by the lack of reproducible animal models. The present study established two xenograft animal models generated from stable non-clonal cell cultures, and investigated the difference in chemotherapeutic effects on tumor growth between undifferentiated pleomorphic sarcoma in vivo and in vitro. The cell cultures were generated from freshly isolated tumor tissues of two patients with undifferentiated pleomorphic sarcoma. For the in vivo analysis, these cells were injected subcutaneously into immunodeficient mice. The mice were monitored for tumor appearance and treated with the most common or innovative chemotherapeutic agents available to date. Furthermore, the same drugs were administered to in vitro cell cultures. The most effective tumor growth inhibition in vitro was observed with doxorubicin and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA), also known as vorinostat. In the in vivo xenograft mouse model, the combination of doxorubicin and the tyrosine kinase inhibitor pazopanib induced a significant tumor reduction. By contrast, treatment with vorinostat did not reduce the tumor growth. Taken together, the results obtained from drug testing in vitro differed significantly from the in vivo results. Therefore, the novel and reproducible xenograft animal model established in the present study demonstrated that in vivo models are required to test potential chemotherapeutic agents for the treatment of undifferentiated pleomorphic sarcoma prior to clinical use, since animal models are more similar

  9. Genetically engineered pre-microRNA-34a prodrug suppresses orthotopic osteosarcoma xenograft tumor growth via the induction of apoptosis and cell cycle arrest

    PubMed Central

    Zhao, Yong; Tu, Mei-Juan; Wang, Wei-Peng; Qiu, Jing-Xin; Yu, Ai-Xi; Yu, Ai-Ming

    2016-01-01

    Osteosarcoma (OS) is the most common primary malignant bone tumor in children, and microRNA-34a (miR-34a) replacement therapy represents a new treatment strategy. This study was to define the effectiveness and safety profiles of a novel bioengineered miR-34a prodrug in orthotopic OS xenograft tumor mouse model. Highly purified pre-miR-34a prodrug significantly inhibited the proliferation of human 143B and MG-63 cells in a dose dependent manner and to much greater degrees than controls, which was attributed to induction of apoptosis and G2 cell cycle arrest. Inhibition of OS cell growth and invasion were associated with release of high levels of mature miR-34a from pre-miR-34a prodrug and consequently reduction of protein levels of many miR-34a target genes including SIRT1, BCL2, c-MET, and CDK6. Furthermore, intravenous administration of in vivo-jetPEI formulated miR-34a prodrug significantly reduced OS tumor growth in orthotopic xenograft mouse models. In addition, mouse blood chemistry profiles indicated that therapeutic doses of bioengineered miR-34a prodrug were well tolerated in these animals. The results demonstrated that bioengineered miR-34a prodrug was effective to control OS tumor growth which involved the induction of apoptosis and cell cycle arrest, supporting the development of bioengineered RNAs as a novel class of large molecule therapeutic agents. PMID:27216562

  10. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis

    SciTech Connect

    Santamaria-Martinez, Albert; Barquinero, Jordi; Barbosa-Desongles, Anna; Hurtado, Antoni; Pinos, Tomas; Seoane, Joan; Poupon, Marie-France; Morote, Joan; Reventos, Jaume; Munell, Francina

    2009-10-15

    Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture and sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45{sup -}, CD81{sup +} and Sca-1{sup +}). We also demonstrated that SP clonal cells secrete transforming growth factor {beta}1 (TGF-{beta}1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-{beta}1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.

  11. Famitinib exerted powerful antitumor activity in human gastric cancer cells and xenografts

    PubMed Central

    Ge, Sai; Zhang, Qiyue; He, Qiong; Zou, Jianling; Liu, Xijuan; Li, Na; Tian, Tiantian; Zhu, Yan; Gao, Jing; Shen, Lin

    2016-01-01

    Famitinib (SHR1020), a novel multi-targeted tyrosine kinase inhibitor, has antitumor activity against several solid tumors via targeting vascular endothelial growth factor receptor 2, c-Kit and platelet-derived growth factor receptor β. The present study investigated famitinib's activity against human gastric cancer cells in vitro and in vivo. Cell viability and apoptosis were measured, and cell cycle analysis was performed following famitinib treatment using 3-(4,5-dimethylthiazol −2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labeling assay and western blotting. Subsequently, cluster of differentiation 34 staining was used to evaluate microvessel density. BGC-823-derived xenografts in nude mice were established to assess drug efficacy in vivo. Famitinib inhibited cell proliferation by inducing cell cycle arrest at the G2/M phase and caused cell apoptosis in a dose-dependent manner in gastric cancer cell lines. In BGC-823 xenograft models, famitinib significantly slowed tumor growth in vivo via inhibition of angiogenesis. Compared with other chemotherapeutics such as 5-fluorouracil, cisplatin or paclitaxel alone, famitinib exhibited the greatest tumor suppression effect (>85% inhibition). The present study demonstrated for the first time that famitinib has efficacy against human gastric cancer in vitro and in vivo, which may lay the foundations for future clinical trials. PMID:27602110

  12. KISS1 over-expression suppresses metastasis of pancreatic adenocarcinoma in a xenograft mouse model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identifying molecular targets for treatment of pancreatic cancer metastasis is critical due to the high frequency of dissemination prior to diagnosis of this lethal disease. Because the KISS1 metastasis suppressor is expressed at reduced levels in advanced pancreatic cancer, we hypothesized that re-...

  13. Consumption of lycopene inhibits the growth and progression of colon cancer in a mouse xenograft model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A previous study indicated that lycopene could significantly inhibit the proliferation of human colon cancer cells in vitro. However, the in vivo anticancer effects of lycopene against colon cancer have not been demonstrated yet. Therefore, this study investigated whether consumption of lycopene cou...

  14. Development of a circulating miRNA assay to monitor tumor burden: From mouse to man

    PubMed Central

    Greystoke, Alastair; Ayub, Mahmood; Rothwell, Dominic G.; Morris, Dan; Burt, Deborah; Hodgkinson, Cassandra L.; Morrow, Christopher J.; Smith, Nigel; Aung, Kyaw; Valle, Juan; Carter, Louise; Blackhall, Fiona; Dive, Caroline; Brady, Ged

    2016-01-01

    Circulating miRNA stability suggests potential utility of miRNA based biomarkers to monitor tumor burden and/or progression, particularly in cancer types where serial biopsy is impractical. Assessment of miRNA specificity and sensitivity is challenging within the clinical setting. To address this, circulating miRNAs were examined in mice bearing human SCLC tumor xenografts and SCLC patient derived circulating tumor cell explant models (CDX). We identified 49 miRNAs using human TaqMan Low Density Arrays readily detectable in 10 μl tail vein plasma from mice carrying H526 SCLC xenografts that were low or undetectable in non-tumor bearing controls. Circulating miR-95 measured serially in mice bearing CDX was detected with tumor volumes as low as 10 mm3 and faithfully reported subsequent tumor growth. Having established assay sensitivity in mouse models, we identified 26 miRNAs that were elevated in a stage dependent manner in a pilot study of plasma from SCLC patients (n = 16) compared to healthy controls (n = 11) that were also elevated in the mouse models. We selected a smaller panel of 10 previously reported miRNAs (miRs 95, 141, 200a, 200b, 200c, 210, 335#, 375, 429) that were consistently elevated in SCLC, some of which are reported to be elevated in other cancer types. Using a multiplex qPCR assay, elevated levels of miRNAs across the panel were also observed in a further 66 patients with non-small cell lung, colorectal or pancreatic cancers. The utility of this circulating miRNA panel as an early warning of tumor progression across several tumor types merits further evaluation in larger studies. PMID:26654130

  15. Effects of VU0410120, a novel GlyT1 inhibitor, on measures of sociability, cognition and stereotypic behaviors in a mouse model of autism.

    PubMed

    Burket, Jessica A; Benson, Andrew D; Green, Torrian L; Rook, Jerri M; Lindsley, Craig W; Conn, P Jeffrey; Deutsch, Stephen I

    2015-08-01

    The NMDA receptor is a highly regulated glutamate-gated cationic channel receptor that has an important role in the regulation of sociability and cognition. The genetically-inbred Balb/c mouse has altered endogenous tone of NMDA receptor-mediated neurotransmission and is a model of impaired sociability, relevant to Autism Spectrum Disorders (ASDs). Because glycine is an obligatory co-agonist that works cooperatively with glutamate to promote opening of the ion channel, one prominent strategy to promote NMDA receptor-mediated neurotransmission involves inhibition of the glycine type 1 transporter (GlyT1). The current study evaluated the dose-dependent effects of VU0410120, a selective, high-affinity competitive GlyT1 inhibitor, on measures of sociability, cognition and stereotypic behaviors in Balb/c and Swiss Webster mice. The data show that doses of VU0410120 (i.e., 18 and 30mg/kg) that improve measures of sociability and spatial working memory in the Balb/c mouse strain elicit intense stereotypic behaviors in the Swiss Webster comparator strain (i.e., burrowing and jumping). Furthermore, the data suggest that selective GlyT1 inhibition improves sociability and spatial working memory at doses that do not worsen or elicit stereotypic behaviors in a social situation in the Balb/c strain. However, the elicitation of stereotypic behaviors in the Swiss Webster comparator strain at therapeutically relevant doses of VU0410120 suggest that genetic factors (i.e., mouse strain differences) influence sensitivity to GlyT1-elicited stereotypic behaviors, and emergence of intense stereotypic behaviors may be dose-limiting side effects of this interventional strategy. PMID:25784602

  16. Antitumor effects of a monoclonal antibody to human CCR9 in leukemia cell xenografts.

    PubMed

    Chamorro, Sonia; Vela, Maria; Franco-Villanueva, Ana; Carramolino, Laura; Gutiérrez, Julio; Gómez, Lucio; Lozano, María; Salvador, Beatriz; García-Gallo, Mónica; Martínez-A, Carlos; Kremer, Leonor

    2014-01-01

    Tumor expression of certain chemokine receptors is associated with resistance to apoptosis, migration, invasiveness and metastasis. Because CCR9 chemokine receptor expression is very restricted in healthy tissue, whereas it is present in tumors of distinct origins including leukemias, melanomas, prostate and ovary carcinomas, it can be considered a suitable candidate for target-directed therapy. Here, we report the generation and characterization of 91R, a mouse anti-human CCR9 IgG2b monoclonal antibody that recognizes an epitope within the CCR9 N-terminal domain. This antibody inhibits the growth of subcutaneous xenografts from human acute T lymphoblastic leukemia MOLT-4 cells in immunodeficient Rag2(-/-) mice. Tumor size in 91R-treated mice was reduced by 85% compared with isotype-matched antibody-treated controls. Tumor reduction in 91R-treated mice was concomitant with an increase in the apoptotic cell fraction and tumor necrotic areas, as well as a decrease in the fraction of proliferating cells and in tumor vascularization. In the presence of complement or murine natural killer cells, 91R promoted in vitro lysis of MOLT-4 leukemia cells, indicating that this antibody might eliminate tumor cells via complement- and cell-dependent cytotoxicity. The results show the potential of the 91R monoclonal antibody as a therapeutic agent for treatment of CCR9-expressing tumors. PMID:24870448

  17. Application of a patient-derived xenograft model in cytolytic viral activation therapy for nasopharyngeal carcinoma

    PubMed Central

    Hsu, Cheng-Lung; Kuo, Yung-Chia; Huang, Yenlin; Huang, Yin-Cheng; Lui, Kar-Wai; Chang, Kai-Ping; Lin, Tung-Liang; Fan, Hsien-Chi; Lin, An-Chi; Hsieh, Chia-Hsun; Lee, Li-Yu; Wang, Hung-Ming; Li, Hsin-Pai; Chang, Yu-Sun

    2015-01-01

    Nasopharyngeal carcinoma (NPC) is an Epstein Barr virus (EBV)-related malignancy in which the tumor microenvironment plays a pivotal role in tumor progression. Here, we developed two patient-derived xenograft (PDX) mouse lines from engrafted NPC metastatic tumors. Positive staining for EBV-encoded small RNAs confirmed that these tumors harbored EBV, and gene expression profile analyses further showed that the PDX was highly similar to the primary parent tumor. In vivo drug screening using the PDX system demonstrated that gemcitabine had the best antitumor effect among the tested drugs. The donor of this PDX also showed excellent responsiveness to gemcitabine treatment. The combination of gemcitabine and valproic acid exerted synergistic antitumor effects. Further addition of ganciclovir to this two-drug combination regimen enhanced cytolytic viral activation, yielding the best antitumor response among tested regimens. Treatment with this three-drug combination regimen decreased plasma EBV-DNA load, tumor viral concentration, and the number of viable tumor cells to a greater extent than the two-drug gemcitabine and valproic acid combination. These results highlight the value of PDX models in the development of EBV-targeted strategies to treat NPC. PMID:26416517

  18. MACROscopic imaging of tumor xenografts using fluorescence, phase contrast, and transmitted light

    NASA Astrophysics Data System (ADS)

    Constantinou, Paul; Nicklee, Trudey; Hedley, David W.; Wilson, Brian C.; Damaskinos, Savvas

    2004-10-01

    Recent advances in imaging technology have contributed greatly to biological science. Confocal fluorescence microscopes (CFM) can acquire 2D and 3D images of biological samples such as live or fixed cells and tissues. Specimens that are large (e.g., a 10 mm x 10 mm tissue section) and overfill the field of view (FOV) of typical microscope objectives require use of image tiling to cover the entire specimen. This can be time consuming and cause artefacts in the composite image. The MACROscope system (Biomedical Photometrics Inc, Waterloo, Canada), is a confocal device with a 22 mm x 70 mm FOV; ideal for imaging large tissue sections in a single frame. The system used here is a prototype capable of simultaneous acquisition from up to three detection channels. Fluorescence images of SiHa mouse tumour xenografts stained with CD31-Cy3, showing blood vessel location, and EF5-Cy5, showing areas of tissue hypoxia, were collected. Differential phase contrast (DPC) images of the same section were also recorded to show tissue morphology. Finally, RGB transmitted light images of human tongue and pancreas tissues were obtained. This new device avoids the need for image tiling and provides simultaneous imaging of multiple fluorescently-labeled tissue specific markers in large biological samples. This enables time- and cost-efficient high-throughput screening of (immuno)histopathological samples. This device may also serve in the imaging of high-throughput DNA and tissue arrays.

  19. Tryptophan PET Imaging of the Kynurenine Pathway in Patient-Derived Xenograft Models of Glioblastoma.

    PubMed

    Guastella, Anthony R; Michelhaugh, Sharon K; Klinger, Neil V; Kupsky, William J; Polin, Lisa A; Muzik, Otto; Juhász, Csaba; Mittal, Sandeep

    2016-01-01

    Increasing evidence demonstrates the immunosuppressive kynurenine pathway's (KP) role in the pathophysiology of human gliomas. To study the KP in vivo, we used the noninvasive molecular imaging tracer α-[(11)C]-methyl-l-tryptophan (AMT). The AMT-positron emission tomography (PET) has shown high uptake in high-grade gliomas and predicted survival in patients with recurrent glioblastoma (GBM). We generated patient-derived xenograft (PDX) models from dissociated cells, or tumor fragments, from 5 patients with GBM. Mice bearing subcutaneous tumors were imaged with AMT-PET, and tumors were analyzed to detect the KP enzymes indoleamine 2,3-dioxygenase (IDO) 1, IDO2, tryptophan 2,3-dioxygenase, kynureninase, and kynurenine 3-monooxygenase. Overall, PET imaging showed robust tumoral AMT uptake in PDX mice with prolonged tracer accumulation over 60 minutes, consistent with AMT trapping seen in humans. Immunostained tumor tissues demonstrated positive detection of multiple KP enzymes. Furthermore, intracranial implantation of GBM cells was performed with imaging at both 9 and 14 days postimplant, with a marked increase in AMT uptake at 14 days and a corresponding high level of tissue immunostaining for KP enzymes. These results indicate that our PDX mouse models recapitulate human GBM, including aberrant tryptophan metabolism, and offer an in vivo system for development of targeted therapeutics for patients with GBM. PMID:27151136

  20. Mitochondrially targeted wild-type p53 induces apoptosis in a solid human tumor xenograft model

    PubMed Central

    Palacios, Gustavo; Crawford, Howard C.; Vaseva, Angelina; Moll, Ute M.

    2013-01-01

    Classic but also novel roles of p53 are becoming increasingly well characterized. We previously showed that ex vivo retroviral transfer of mitochondrially targeted wild type p53 (mitop53) in the Eμ-myc mouse lymphoma model efficiently induces tumor cell killing in vivo. In an effort to further explore the therapeutic potential of mitop53 for its pro-apoptotic effect in solid tumors, we generated replication-deficient recombinant human Adenovirus type 5 vectors. We show here that adenoviral delivery of mitop53 by intratumoral injection into HCT116 human colon carcinoma xenograft tumors in nude mice is surprisingly effective, resulting in tumor cell death of comparable potency to conventional p53. These apoptotic effects in vivo were confirmed by Ad5-mitop53 mediated cell death of HCT116 cells in culture. Together, these data provide encouragement to further explore the potential for novel mitop53 proteins in cancer therapy to execute the shortest known circuitry of p53 death signaling. PMID:18719383

  1. Absence of preferential uptake of ( sup 125 I)iododihydrorhodamine 123 by four human tumor xenografts

    SciTech Connect

    Kinsey, B.M.; Van den Abbeele, A.D.; Adelstein, S.J.; Kassis, A.I. )

    1989-11-01

    The biodistribution of ({sup 125}I)iododihydrorhodamine 123 has been studied over a 96-h period in four human tumor xenograft models: HT-29 colon adenocarcinoma, PC-3 prostate carcinoma, HT-1080 fibrosarcoma, and PaCa-2 pancreatic carcinoma. Elimination of radioactivity in the tumor-bearing nude mice was rapid during the first 24 h and slow thereafter. The lack of uptake in the thyroid indicated there was little, if any, deiodination of the molecule. Activity was found mainly in the liver and spleen. Accumulation of radioactivity was low in all four tumors examined. At 4 h postinjection, as well as at 24 and 48 h, however, the total radioactive content in each of the four tumors was directly proportional to the weight of the tumor sample. This correlation was independent of tumor type, route of injection (i.v./i.p.) or dose (1.2-6 microCi/mouse). This was not true for any of the normal tissues, suggesting that this accumulation may be governed by certain intrinsic characteristics of the cancers tested.

  2. Reversing Cancer Multidrug Resistance in Xenograft Models via Orchestrating Multiple Actions of Functional Mesoporous Silica Nanoparticles.

    PubMed

    Yang, Debin; Wang, Tingfang; Su, Zhigui; Xue, Lingjing; Mo, Ran; Zhang, Can

    2016-08-31

    A multistimuli responsive drug delivery system (DDS) based on sulfhydryl and amino-cofunctionalized mesoporous silica nanoparticles (SH/NH2-MSNs) has been developed, in which the multifunctional hyaluronic acid (HA) derivatives were grafted onto the SH/NH2-MSNs by disulfide bonds for targeting delivery, controlling drug release and reversing multidrug resistance (MDR). The doxorubicin (Dox) loaded multifunctional HA derivatives modified mesoporous silica nanoparticles (Dox/HHS-MSNs) were enzyme and redox sensitive, which could respond to the intracellular stimuli of hyaluronidase (HAase) and glutathione (GSH) successively and prevent drug leakage before reaching the tumor tissues. The cellular uptake experiments showed that Dox/HHS-MSNs were vulnerable to be endocytosed into the Dox-resistant human breast adenocarcinoma (MCF-7/ADR) cells, efficiently realized the endolysosomal escape and remained in the cytoplasm. Because of orchestrating multiple actions above including active targeting, endolysosomal escape and efficient multilevel drug release, Dox/HHS-MSNs could induce the strongest apoptosis and cytotoxicity of MCF-7/ADR cells. Furthermore, a series of in vivo studies on MCF-7/ADR tumor-bearing xenograft mouse models demonstrated that Dox/HHS-MSNs possessed the enhanced tumor-targeting capacity and the best therapeutic efficacy to reverse cancer MDR. PMID:27420116

  3. Tryptophan PET Imaging of the Kynurenine Pathway in Patient-Derived Xenograft Models of Glioblastoma

    PubMed Central

    Guastella, Anthony R.; Michelhaugh, Sharon K.; Klinger, Neil V.; Kupsky, William J.; Polin, Lisa A.; Muzik, Otto; Juhász, Csaba; Mittal, Sandeep

    2016-01-01

    Increasing evidence demonstrates the immunosuppressive kynurenine pathway’s (KP) role in the pathophysiology of human gliomas. To study the KP in vivo, we used the noninvasive molecular imaging tracer α-[11C]-methyl-l-tryptophan (AMT). The AMT-positron emission tomography (PET) has shown high uptake in high-grade gliomas and predicted survival in patients with recurrent glioblastoma (GBM). We generated patient-derived xenograft (PDX) models from dissociated cells, or tumor fragments, from 5 patients with GBM. Mice bearing subcutaneous tumors were imaged with AMT-PET, and tumors were analyzed to detect the KP enzymes indoleamine 2,3-dioxygenase (IDO) 1, IDO2, tryptophan 2,3-dioxygenase, kynureninase, and kynurenine 3-monooxygenase. Overall, PET imaging showed robust tumoral AMT uptake in PDX mice with prolonged tracer accumulation over 60 minutes, consistent with AMT trapping seen in humans. Immunostained tumor tissues demonstrated positive detection of multiple KP enzymes. Furthermore, intracranial implantation of GBM cells was performed with imaging at both 9 and 14 days postimplant, with a marked increase in AMT uptake at 14 days and a corresponding high level of tissue immunostaining for KP enzymes. These results indicate that our PDX mouse models recapitulate human GBM, including aberrant tryptophan metabolism, and offer an in vivo system for development of targeted therapeutics for patients with GBM. PMID:27151136

  4. Analysis of the Lipidome of Xenografts Using MALDI-IMS and UHPLC-ESI-QTOF

    NASA Astrophysics Data System (ADS)

    Fernández, Roberto; Lage, Sergio; Abad-García, Beatriz; Barceló-Coblijn, Gwendolyn; Terés, Silvia; López, Daniel H.; Guardiola-Serrano, Francisca; Martín, M. Laura; Escribá, Pablo V.; Fernández, José A.

    2014-07-01

    Human tumor xenografts in immunodeficient mice are a very popular model to study the development of cancer and to test new drug candidates. Among the parameters analyzed are the variations in the lipid composition, as they are good indicators of changes in the cellular metabolism. Here, we present a study on the distribution of lipids in xenografts of NCI-H1975 human lung cancer cells, using MALDI imaging mass spectrometry and UHPLC-ESI-QTOF. The identification of lipids directly from the tissue by MALDI was aided by the comparison with identification using ESI ionization in lipid extracts from the same xenografts. Lipids belonging to PCs, PIs, SMs, DAG, TAG, PS, PA, and PG classes were identified and their distribution over the xenograft was determined. Three areas were identified in the xenograft, corresponding to cells in different metabolic stages and to a layer of adipose tissue that covers the xenograft.

  5. Optimal Design for Informative Protocols in Xenograft Tumor Growth Inhibition Experiments in Mice.

    PubMed

    Lestini, Giulia; Mentré, France; Magni, Paolo

    2016-09-01

    Tumor growth inhibition (TGI) models are increasingly used during preclinical drug development in oncology for the in vivo evaluation of antitumor effect. Tumor sizes are measured in xenografted mice, often only during and shortly after treatment, thus preventing correct identification of some TGI model parameters. Our aims were (i) to evaluate the importance of including measurements during tumor regrowth and (ii) to investigate the proportions of mice included in each arm. For these purposes, optimal design theory based on the Fisher information matrix implemented in PFIM4.0 was applied. Published xenograft experiments, involving different drugs, schedules, and cell lines, were used to help optimize experimental settings and parameters using the Simeoni TGI model. For each experiment, a two-arm design, i.e., control versus treatment, was optimized with or without the constraint of not sampling during tumor regrowth, i.e., "short" and "long" studies, respectively. In long studies, measurements could be taken up to 6 g of tumor weight, whereas in short studies the experiment was stopped 3 days after the end of treatment. Predicted relative standard errors were smaller in long studies than in corresponding short studies. Some optimal measurement times were located in the regrowth phase, highlighting the importance of continuing the experiment after the end of treatment. In the four-arm designs, the results showed that the proportions of control and treated mice can differ. To conclude, making measurements during tumor regrowth should become a general rule for informative preclinical studies in oncology, especially when a delayed drug effect is suspected. PMID:27306546

  6. Stromal platelet-derived growth factor receptor α (PDGFRα) provides a therapeutic target independent of tumor cell PDGFRα expression in lung cancer xenografts

    PubMed Central

    Gerber, David E.; Gupta, Puja; Dellinger, Michael T.; Toombs, Jason E.; Peyton, Michael; Duignan, Inga; Malaby, Jennifer; Bailey, Timothy; Burns, Colleen; Brekken, Rolf A.; Loizos, Nick

    2012-01-01

    In lung cancer, platelet-derived growth factor receptor α (PDGFRα) is expressed frequently by tumor-associated stromal cells and by cancer cells in a subset of tumors. We sought to determine the effect of targeting stromal PDGFRα in preclinical lung tumor xenograft models (human tumor, mouse stroma). Effects of anti-human (IMC-3G3) and anti-mouse (1E10) PDGFRα mAbs on proliferation and PDGFRα signaling were evaluated in lung cancer cell lines and mouse fibroblasts. Therapy studies were performed using established PDGFRα-positive H1703 cells and PDGFRα-negative Calu-6, H1993, and A549 subcutaneous tumors in immunocompromised mice treated with vehicle, anti-PDGFRα mAbs, chemotherapy, or combination therapy. Tumors were analyzed for growth and levels of growth factors. IMC-3G3 inhibited PDGFRα activation and the growth of H1703 cells in vitro and tumor growth in vivo, but had no effect on PDGFRα-negative cell lines or mouse fibroblasts. 1E10 inhibited growth and PDGFRα activation of mouse fibroblasts, but had no effect on human cancer cell lines in vitro. In vivo, 1E10-targeted inhibition of murine PDGFRα reduced tumor growth as single-agent therapy in Calu-6 cells and enhanced the effect of chemotherapy in xenografts derived from A549 cells. We also identified that low expression cancer cell expression of VEGF-A and elevated expression of PDGF-AA were associated with response to stromal PDGFRα targeting. We conclude that stromal PDGFRα inhibition represents a means for enhancing control of lung cancer growth in some cases, independent of tumor cell PDGFRα expression. PMID:22933705

  7. Longitudinal measures of cognition in the Ts65Dn mouse: Refining windows and defining modalities for therapeutic intervention in Down syndrome.

    PubMed

    Olmos-Serrano, J Luis; Tyler, William A; Cabral, Howard J; Haydar, Tarik F

    2016-05-01

    Mouse models have provided insights into adult changes in learning and memory in Down syndrome, but an in-depth assessment of how these abnormalities develop over time has never been conducted. To address this shortcoming, we conducted a longitudinal behavioral study from birth until late adulthood in the Ts65Dn mouse model to measure the emergence and continuity of learning and memory deficits in individuals with a broad array of tests. Our results demonstrate for the first time that the pace at which neonatal and perinatal milestones are acquired is correlated with later cognitive performance as an adult. In addition, we find that life-long behavioral indexing stratifies mice within each genotype. Our expanded assessment reveals that diminished cognitive flexibility, as measured by reversal learning, is the most robust learning and memory impairment in both young and old Ts65Dn mice. Moreover, we find that reversal learning degrades with age and is therefore a useful biomarker for studying age-related decline in cognitive ability. Altogether, our results indicate that preclinical studies aiming to restore cognitive function in Ts65Dn should target both neonatal milestones and reversal learning in adulthood. Here we provide the quantitative framework for this type of approach. PMID:26854932

  8. Enhancement of tumor initiation and expression of KCNMA1, MORF4L2 and ASPM genes in the adenocarcinoma of lung xenograft after vorinostat treatment.

    PubMed

    Kuo, Wei-Ying; Wu, Chun-Yi; Hwu, Luen; Lee, Jhih-Shian; Tsai, Cheng-Han; Lin, Kang-Ping; Wang, Hsin-Ell; Chou, Teh-Ying; Tsai, Chun-Ming; Gelovani, Juri; Liu, Ren-Shyan

    2015-04-20

    Cancer stem cells (CSCs) are usually tolerant to chemotherapy and radiotherapy and associated with tumor relapse. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor (HDACI), is currently being used in clinical trials of lung cancer. However, SAHA facilitates the formation of induced pluripotent stem cells from somatic cells. We hypothesized that SAHA would mediate the CSCs properties and subsequently confer a more malignant phenotype in lung cancer. Transfected H1299 lung cancer cells, which stably expresses a triple fused reporter gene (DsRedm-Fluc-tTKsr39) under the control of CMV promoter was used to establish a xenograft mouse model. After the treatment of SAHA, H1299 cell line and tumor xenografts were sorted by fluorescence-activated cell sorting (FACS) based on aldehyde dehydrogenase (ALDH) activity. We found that SAHA could suppress the growth of xenografted H1299 tumors with decreased proportion of ALDHbr lung cancer cells indicating that SAHA may target CSCs. However, SAHA significantly enhanced the tumor initiating capacity and the expression of malignant genes such as KCNMA1, MORF4L2 and ASPM in the remaining living ALDHbr cells. These findings suggested that SAHA treatment created a more drug-resistant state in residual ALDHbr cells. The in vivo imaging technique may facilitate searching and characterization of CSCs. PMID:25796627

  9. Orthotopic glioblastoma stem-like cell xenograft model in mice to evaluate intra-arterial delivery of bevacizumab: from bedside to bench.

    PubMed

    Burkhardt, Jan-Karl; Hofstetter, Christoph P; Santillan, Alejandro; Shin, Benjamin J; Foley, Conor P; Ballon, Douglas J; Pierre Gobin, Y; Boockvar, John A

    2012-11-01

    Bevacizumab (BV), a humanized monocolonal antibody directed against vascular endothelial growth factor (VEGF), is a standard intravenous (IV) treatment for recurrent glioblastoma multiforme (GBM), that has been introduced recently as an intra-arterial (IA) treatment modality in humans. Since preclinical models have not been reported, we sought to develop a tumor stem cell (TSC) xenograft model to investigate IA BV delivery in vivo. Firefly luciferase transduced patient TSC were injected into the cortex of 35 nude mice. Tumor growth was monitored weekly using bioluminescence imaging. Mice were treated with either intraperitoneal (IP) or IA BV, with or without blood-brain barrier disruption (BBBD), or with IP saline injection (controls). Tumor tissue was analyzed using immunohistochemistry and western blot techniques. Tumor formation occurred in 31 of 35 (89%) mice with a significant signal increase over time (p=0.018). Post mortem histology revealed an infiltrative growth of TSC xenografts in a similar pattern compared to the primary human GBM. Tumor tissue analyzed at 24 hours after treatment revealed that IA BV treatment with BBBD led to a significantly higher intratumoral BV concentration compared to IA BV alone, IP BV or controls (p<0.05). Thus, we have developed a TSC-based xenograft mouse model that allows us to study IA chemotherapy. However, further studies are needed to analyze the treatment effects after IA BV to assess tumor progression and overall animal survival. PMID:22985932

  10. Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts

    PubMed Central

    2015-01-01

    The NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) employed a pair of reference xenograft proteomes for initial platform validation and ongoing quality control of its data collection for The Cancer Genome Atlas (TCGA) tumors. These two xenografts, representing basal and luminal-B human breast cancer, were fractionated and analyzed on six mass spectrometers in a total of 46 replicates divided between iTRAQ and label-free technologies, spanning a total of 1095 LC–MS/MS experiments. These data represent a unique opportunity to evaluate the stability of proteomic differentiation by mass spectrometry over many months of time for individual instruments or across instruments running dissimilar workflows. We evaluated iTRAQ reporter ions, label-free spectral counts, and label-free extracted ion chromatograms as strategies for data interpretation (source code is available from http://homepages.uc.edu/~wang2x7/Research.htm). From these assessments, we found that differential genes from a single replicate were confirmed by other replicates on the same instrument from 61 to 93% of the time. When comparing across different instruments and quantitative technologies, using multiple replicates, differential genes were reproduced by other data sets from 67 to 99% of the time. Projecting gene differences to biological pathways and networks increased the degree of similarity. These overlaps send an encouraging message about the maturity of technologies for proteomic differentiation. PMID:26653538

  11. Isolation and characterization of renal cancer stem cells from patient-derived xenografts

    PubMed Central

    Azzi, Sandy; Gallerne, Cindy; Michel, Julien Giron; Chiabotto, Giulia; Lecoz, Vincent; Romei, Cristina; Spaggiari, Grazia Maria; Pezzolo, Annalisa; Pistoia, Vito; Angevin, Eric; Gad, Sophie; Ferlicot, Sophie; Messai, Yosra; Kieda, Claudine; Clay, Denis; Sabatini, Federica; Escudier, Bernard; Camussi, Giovanni; Eid, Pierre; Azzarone, Bruno; Chouaib, Salem

    2016-01-01

    As rapidly developing patient-derived xenografts (PDX) could represent potential sources of cancer stem cells (CSC), we selected and characterized non-cultured PDX cell suspensions from four different renal carcinomas (RCC). Only the cell suspensions from the serial xenografts (PDX-1 and PDX-2) of an undifferentiated RCC (RCC-41) adapted to the selective CSC medium. The cell suspension derived from the original tumor specimen (RCC-41-P-0) did not adapt to the selective medium and strongly expressed CSC-like markers (CD133 and CD105) together with the non-CSC tumor marker E-cadherin. In comparison, PDX-1 and PDX-2 cells exhibited evolution in their phenotype since PDX-1 cells were CD133high/CD105-/Ecadlow and PDX-2 cells were CD133low/CD105-/Ecad-. Both PDX subsets expressed additional stem cell markers (CD146/CD29/OCT4/NANOG/Nestin) but still contained non-CSC tumor cells. Therefore, using different cell sorting strategies, we characterized 3 different putative CSC subsets (RCC-41-PDX-1/CD132+, RCC-41-PDX-2/CD133-/EpCAMlow and RCC-41-PDX-2/CD133+/EpCAMbright). In addition, transcriptomic analysis showed that RCC-41-PDX-2/CD133− over-expressed the pluripotency gene ERBB4, while RCC-41-PDX-2/CD133+ over-expressed several tumor suppressor genes. These three CSC subsets displayed ALDH activity, formed serial spheroids and developed serial tumors in SCID mice, although RCC-41-PDX-1/CD132+ and RCC-41-PDX-2/CD133+ displayed less efficiently the above CSC properties. RCC-41-PDX-1/CD132+ tumors showed vessels of human origin with CSC displaying peri-vascular distribution. By contrast, RCC-41-PDX-2 originated tumors exhibiting only vessels of mouse origin without CSC peri-vascular distribution. Altogether, our results indicate that PDX murine microenvironment promotes a continuous redesign of CSC phenotype, unmasking CSC subsets potentially present in a single RCC or generating ex novo different CSC-like subsets. PMID:26551931

  12. Mango polyphenolics suppressed tumor growth in breast cancer xenografts in mice: role of the PI3K/AKT pathway and associated microRNAs.

    PubMed

    Banerjee, Nivedita; Kim, Hyemee; Krenek, Kimberly; Talcott, Stephen T; Mertens-Talcott, Susanne U

    2015-08-01

    The cytotoxic and anti-inflammatory properties of mango polyphenolics including gallic acid and gallotannins have been demonstrated in numerous types of cancers. We hypothesized that the phosphoinositide 3-kinase (PI3K)/AKT pathway and the expression of related miRNAs are involved in the chemotherapeutic activities of mango polyphenolics in a mouse xenograft model for breast cancer. The objectives of this research were to determine the tumor-cytotoxic activities of mango polyphenolics and the underlying molecular mechanisms involving posttranscriptional targets in BT474 breast cancer cells and xenografts in mice. In vitro findings showed cytotoxic effects of mango polyphenolics in BT474 breast cancer cells within a concentration range of 2.5 to 20 mg/L gallic acid equivalents. Mango polyphenolics suppressed the expression of PI3K, AKT, hypoxia inducible factor-1α, and vascular endothelial growth factor (VEGF) mRNA, and pAKT, AKT, pPI3K (p85), VEGF and nuclear factor-kappa B protein levels. The involvement of miR-126 was verified by using antagomiR for miR-126, where mango reversed the effect of the antagomiR of miR-126. In vivo, the intake of mango polyphenolics decreased the tumor volume by 73% in BT474 xenograft-bearing mice compared with the control group. In addition, mango reduced the expression of nuclear factor-kappa B (p65), pAKT, pPI3K, mammalian target of rapamycin, hypoxia inducible factor-1α, and VEGF protein in athymic nude mice. A screening for miRNA expression changes confirmed that mango polyphenolics modulated the expression of cancer-associated miRNAs including miR-126 in the xenografted tumors. In summary, mango polyphenolics have a chemotherapeutic potential against breast cancer that at least in part is mediated through the PI3K/AKT pathway and miR-126. PMID:26194618

  13. A novel xenograft model to study the role of TSLP-induced CRLF2 signals in normal and malignant human B lymphopoiesis.

    PubMed

    Francis, Olivia L; Milford, Terry-Ann M; Martinez, Shannalee R; Baez, Ineavely; Coats, Jacqueline S; Mayagoitia, Karina; Concepcion, Katherine R; Ginelli, Elizabeth; Beldiman, Cornelia; Benitez, Abigail; Weldon, Abby J; Arogyaswamy, Keshav; Shiraz, Parveen; Fisher, Ross; Morris, Christopher L; Zhang, Xiao-Bing; Filippov, Valeri; Van Handel, Ben; Ge, Zheng; Song, Chunhua; Dovat, Sinisa; Su, Ruijun Jeanna; Payne, Kimberly J

    2016-04-01

    Thymic stromal lymphopoietin (TSLP) stimulates in-vitro proliferation of human fetal B-cell precursors. However, its in-vivo role during normal human B lymphopoiesis is unknown. Genetic alterations that cause overexpression of its receptor component, cytokine receptor-like factor 2 (CRLF2), lead to high-risk B-cell acute lymphoblastic leukemia implicating this signaling pathway in leukemogenesis. We show that mouse thymic stromal lymphopoietin does not stimulate the downstream pathways (JAK/STAT5 and PI3K/AKT/mTOR) activated by the human cytokine in primary high-risk leukemia with overexpression of the receptor component. Thus, the utility of classic patient-derived xenografts for in-vivo studies of this pathway is limited. We engineered xenograft mice to produce human thymic stromal lymphopoietin (+T mice) by injection with stromal cells transduced to express the cytokine. Control (-T) mice were produced using stroma transduced with control vector. Normal levels of human thymic stromal lymphopoietin were achieved in sera of +T mice, but were undetectable in -T mice. Patient-derived xenografts generated from +T as compared to -T mice showed a 3-6-fold increase in normal human B-cell precursors that was maintained through later stages of B-cell development. Gene expression profiles in high-risk B-cell acute lymphoblastic leukemia expanded in +T mice indicate increased mTOR pathway activation and are more similar to the original patient sample than those from -T mice. +T/-T xenografts provide a novel pre-clinical model for understanding this pathway in B lymphopoiesis and identifying treatments for high-risk B-cell acute lymphoblastic leukemia with overexpression of cytokine-like factor receptor 2. PMID:26611474

  14. Evaluation of (188)Re-labeled NGR-VEGI protein for radioimaging and radiotherapy in mice bearing human fibrosarcoma HT-1080 xenografts.

    PubMed

    Ma, Wenhui; Shao, Yahui; Yang, Weidong; Li, Guiyu; Zhang, Yingqi; Zhang, Mingru; Zuo, Changjing; Chen, Kai; Wang, Jing

    2016-07-01

    Vascular endothelial growth inhibitor (VEGI) is an anti-angiogenic protein, which includes three isoforms: VEGI-174, VEGI-192, and VEGI-251. The NGR (asparagine-glycine-arginine)-containing peptides can specifically bind to CD13 (Aminopeptidase N) receptor which is overexpressed in angiogenic blood vessels and tumor cells. In this study, a novel NGR-VEGI fusion protein was prepared and labeled with (188)Re for radioimaging and radiotherapy in mice bearing human fibrosarcoma HT-1080 xenografts. Single photon emission computerized tomography (SPECT) imaging results revealed that (188)Re-NGR-VEGI exhibits good tumor-to-background contrast in CD13-positive HT-1080 tumor xenografts. The CD13 specificity of (188)Re-NGR-VEGI was further verified by significant reduction of tumor uptake in HT-1080 tumor xenografts with co-injection of the non-radiolabeled NGR-VEGI protein. The biodistribution results demonstrated good tumor-to-muscle ratio (4.98 ± 0.25) of (188)Re-NGR-VEGI at 24 h, which is consistent with the results from SPECT imaging. For radiotherapy, 18.5 MBq of (188)Re-NGR-VEGI showed excellent tumor inhibition effect in HT-1080 tumor xenografts with no observable toxicity, which was confirmed by the tumor size change and hematoxylin and eosin (H&E) staining of major mouse organs. In conclusion, these data demonstrated that (188)Re-NGR-VEGI has the potential as a theranostic agent for CD13-targeted tumor imaging and therapy. PMID:26768609

  15. Development and characterization of xenograft model systems for adenoid cystic carcinoma

    PubMed Central

    Moskaluk, Christopher A.; Baras, Alexander S.; Mancuso, Stefani; Fan, Hao; Davidson, Robert; Dirks, Dawn; Golden, Wendy; Frierson, Henry F.

    2014-01-01

    Adenoid Cystic Carcinoma (ACC) is one of the most common malignancies to arise in human salivary glands, and also arises in glandular tissue of other organ systems. To address the paucity of experimental model systems for this tumor type, we have undertaken a program of transplanting tissue samples of human ACC into immunodeficient nu/nu mice to create xenograft model systems. In 17 of 23 attempts (74%) xenograft tumors were successfully grown. In all cases, the histologic appearance of the donating tumor was recapitulated in the subsequent xenograft. Characterization of a subset of xenograft models by immunohistochemical biomarkers and by RNA transcript microarray analysis showed good fidelity in the recapitulation of gene expression patterns in the xenograft tumors compared to the human donor tumors. Since ACC is known to frequently contain a t(6;9) translocation that fuses the MYB and NFIB genes, fluorescence in situ hybridization (FISH) of twelve ACC xenograft models was performed that assayed MYB locus break-apart and MYB-NFIB locus fusion. 11/12 (92%) xenograft models revealed MYB locus rearrangement and 10/12 (83%) xenograft models showed evidence of fusion of the MYB and NFIB loci. The two related xenograft models (derived from primary and metastatic tumors, respectively, of the same human subject) were karyotyped, showing a t(1;6) translocation, suggesting MYB translocation to a novel fusion partner gene. Overall, our results indicate that ACC is amenable to xenografting and that ACC xenograft models recapitulate the molecular and morphologic characteristics of human tumors, suggesting utility as valid experimental and preclinical model systems for this disease. PMID:21709671

  16. Systematic Review of the Relationship between Amyloid-β Levels and Measures of Transgenic Mouse Cognitive Deficit in Alzheimer’s Disease

    PubMed Central

    Foley, Avery M.; Ammar, Zeena M.; Lee, Robert H.; Mitchell, Cassie S.

    2015-01-01

    Amyloid-β (Aβ) is believed to directly affect memory and learning in Alzheimer’s disease (AD). It is widely suggested that there is a relationship between Aβ40 and Aβ42 levels and cognitive performance. In order to explore the validity of this relationship, we performed a meta-analysis of 40 peer-reviewed, published AD transgenic mouse studies that quantitatively measured Aβ levels in brain tissue after assessing cognitive performance. We examined the relationship between Aβ levels (Aβ40, Aβ42, or the ratio of Aβ42 to Aβ40) and cognitive function as measured by escape latency times in the Morris water maze or exploratory preference percentage in the novel object recognition test. Our systematic review examined five mouse models (Tg2576, APP, PS1, 3xTg, APP(OSK)-Tg), gender, and age. The overall result revealed no statistically significant correlation between quantified Aβ levels and experimental measures of cognitive function. However, enough of the trends were of the same sign to suggest that there probably is a very weak qualitative trend visible only across many orders of magnitude. In summary, the results of the systematic review revealed that mice bred to show elevated levels of Aβ do not perform significantly worse in cognitive tests than mice that do not have elevated Aβ levels. Our results suggest two lines of inquiry: 1) Aβ is a biochemical “side effect” of the AD pathology; or 2) learning and memory deficits in AD are tied to the presence of qualitatively “high” levels of Aβ but are not quantitatively sensitive to the levels themselves. PMID:25362040

  17. A flexible electrode array for muscle impedance measurements in the mouse hind limb: A tool to speed research in neuromuscular disease

    NASA Astrophysics Data System (ADS)

    Li, J.; Rutkove, S. B.

    2013-04-01

    Electrical impedance myography (EIM) is a bioelectrical impedance technique focused on the assessment of neuromuscular diseases using tetrapolar surface arrays. Recently, we have shown that reproducible and sensitive EIM measurements can be made on the gastrocnemius muscle of the mouse hind limb and that these are sensitive to disease alterations. A dedicated array would help speed data acquisition and provide additional sensitivity to disease-induced alterations. A flexible electrode array was developed with electrode sizes of 1mm × 1mm by Parlex, Inc. Tetrapolar electrode sets were arranged both parallel to (longitudinal) and orthogonally to (transverse) the major muscle fiber direction of the gastrocnemius muscle. Measurements were made with a dedicated EIM system. A total of 11 healthy animals and 7 animals with spinal muscular atrophy (a form of motor neuron disease) were evaluated after the fur was completely removed with a depilatory agent from the hind limb. Standard electrophysiologic testing (compound motor action potential amplitude and motor unit number estimation) was also performed. The flexible electrode array demonstrated high repeatability in both the longitudinal and transverse directions in the healthy and diseased animals (with intraclass correlation coefficients of 0.94 and 0.89, respectively, for phase angle measured transversely). In addition, differences between healthy and diseased animals were identifiable. For example, the 50 kHz transverse phase angle was higher in the healthy as compared to the SMA animals (16.8° ± 0.5 vs. 14.3° ± 0.7, respectively) at 21 weeks of age (p = 0.01). Differences in anisotropy were also identifiable. Correlations to several standard neurophysiologic parameters also appeared promising. This novel flexible tetrapolar electrode array can be used on the mouse hind limb and provides multidirectional data that can be used to assess muscle health. This technique has the potential of finding widespread use in

  18. Priceless GEMMs: genetically engineered mouse models for colorectal cancer drug development.

    PubMed

    Roper, Jatin; Hung, Kenneth E

    2012-08-01

    To establish effective drug development for colorectal cancer (CRC), preclinical models that are robust surrogates for human disease are crucial. Mouse models are an attractive platform because of their relatively low cost, short life span, and ease of use. There are two main categories of mouse CRC models: xenografts derived from implantation of CRC cells or tumors in immunodeficient mice; and genetically engineered mouse models (GEMMs) derived from modification of human cancer predisposition genes, resulting in spontaneous tumor formation. Here, we review xenografts and GEMMs and focus on their potential application in translational research. Furthermore, we describe newer GEMMs for sporadic CRC that are particularly suitable for drug testing. Finally, we discuss recent advances in small-animal imaging, such as optical colonoscopy, which allow in vivo assessment of tumors. With the increasing sophistication of GEMMs, our preclinical armamentarium provides new hope for the ongoing war against CRC. PMID:22739258

  19. Atrasentan (ABT-627) enhances perfusion and reduces hypoxia in a human tumor xenograft model

    PubMed Central

    Yang, Kwang Mo; Russell, James; Lupu, Mihaela E.; Cho, HyungJoon; Li, Xiao-Feng; Koutcher, Jason A.; Ling, C. Clifton

    2010-01-01

    The endothelin-1 antagonist, Atrasentan (ABT-627) was used to modify perfusion in the human tumor xenograft model, HT29, growing in nude mice. Atrasentan produced a significant increase in perfusion, as measured in vivo by Gd-DTPA DCE-MRI. Changes in tumor hypoxia were assessed by comparing the binding of two hypoxia tracers, pimonidazole and EF5 given before and after Atrasentan administration. In vehicle-treated controls, the distribution of EF5 and pimonidazole was very similar. However, Atrasentan treatment was associated with decreased uptake of the second hypoxia tracer (EF5), relative to the first (pimonidazole). Although Atrasentan had no independent effect on the growth of HT29 tumors, Atrasentan combined with 20 Gy radiation led to a modest but significant increase in tumor growth delay compared to radiation alone. PMID:19717985

  20. Effect of intermittent fasting on prostate cancer tumor growth in a mouse model.

    PubMed

    Thomas, J A; Antonelli, J A; Lloyd, J C; Masko, E M; Poulton, S H; Phillips, T E; Pollak, M; Freedland, S J

    2010-12-01

    Caloric restriction (CR) has been shown to have anti-cancer properties. However, CR may be difficult to apply in humans secondary to compliance and potentially deleterious effects. An alternative is intermittent CR, or in the extreme case intermittent fasting (IF). In a previous small pilot study, we found 2 days per week of IF with ad libitum feeding on the other days resulted in trends toward prolonged survival of mice bearing prostate cancer xenografts. We sought to confirm these findings in a larger study. A total of 100 (7- to 8-week-old) male severe combined immunodeficiency mice were injected subcutaneously with 1 × 10(5) LAPC-4 prostate cancer cells. Mice were randomized to either ad libitum Western Diet (44% carbohydrates, 40% fat and 16% protein) or ad libitum Western Diet with twice-weekly 24 h fasts (IF). Tumor volumes and mouse bodyweights were measured twice weekly. Mice were killed when tumor volumes reached 1000 mm(3). Serum and tumor were collected for analysis of the insulin/insulin-like growth factor 1 (IGF-1) hormonal axis. Overall, there was no difference in mouse survival (P=0.37) or tumor volumes (P ≥ 0.10) between groups. Mouse body weights were similar between arms (P=0.84). IF mice had significantly higher serum IGF-1 levels and IGF-1/IGFBP-3 ratios at killing (P<0.001). However, no difference was observed in serum insulin, IGFBP-3 or tumor phospho-Akt levels (P ≥ 0.39). IF did not improve mouse survival nor did it delay prostate tumor growth. This may be secondary to metabolic adaptations to the 24 h fasting periods. Future studies are required to optimize CR for application in humans. PMID:20733612

  1. Metastatic Melanoma Induced Metabolic Changes in C57BL/6J Mouse Stomach Measured by 1H NMR Spectroscopy

    DOE PAGESBeta

    Hu, M; Wang, Xiliang

    2014-12-05

    Melanoma is a malignant tumor of melanocytes with high capability of invasion and rapid metastasis to other organs. Malignant melanoma is the most common metastatic malignancy found in gastrointestinal tract (GI). To the best of our knowledge, previous studies of melanoma in gastrointestinal tract are all clinical case reports. In this work, 1H NMR-based metabolomics approach is used to investigate the metabolite profiles differences of stomach tissue extracts of metastatic B16-F10 melanoma in C57BL/6J mouse and search for specific metabolite biomarker candidates. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonalmore » Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to evaluate important metabolites responsible for discriminating the control and the melanoma groups. Both PCA and OPLS results reveal that the melanoma group can be well separated from its control group. Among the 50 identified metabolites, it is found that the concentrations of 19 metabolites are statistically and significantly changed with the levels of O-phosphocholine and hypoxanthine down-regulated while the levels of isoleucine, leucine, valine, isobutyrate, threonine, cadaverine, alanine, glutamate, glutamine, methionine, citrate, asparagine, tryptophan, glycine, serine, uracil, and formate up-regulated in the melanoma group. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in stomach.« less

  2. Metastatic Melanoma Induced Metabolic Changes in C57BL/6J Mouse Stomach Measured by 1H NMR Spectroscopy

    SciTech Connect

    Hu, M; Wang, Xiliang

    2014-12-05

    Melanoma is a malignant tumor of melanocytes with high capability of invasion and rapid metastasis to other organs. Malignant melanoma is the most common metastatic malignancy found in gastrointestinal tract (GI). To the best of our knowledge, previous studies of melanoma in gastrointestinal tract are all clinical case reports. In this work, 1H NMR-based metabolomics approach is used to investigate the metabolite profiles differences of stomach tissue extracts of metastatic B16-F10 melanoma in C57BL/6J mouse and search for specific metabolite biomarker candidates. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonal Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to evaluate important metabolites responsible for discriminating the control and the melanoma groups. Both PCA and OPLS results reveal that the melanoma group can be well separated from its control group. Among the 50 identified metabolites, it is found that the concentrations of 19 metabolites are statistically and significantly changed with the levels of O-phosphocholine and hypoxanthine down-regulated while the levels of isoleucine, leucine, valine, isobutyrate, threonine, cadaverine, alanine, glutamate, glutamine, methionine, citrate, asparagine, tryptophan, glycine, serine, uracil, and formate up-regulated in the melanoma group. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in stomach.

  3. Metastatic Melanoma Induced Metabolic Changes in C57BL/6J Mouse Stomach Measured by 1H NMR Spectroscopy

    PubMed Central

    Wang, X; Hu, M; Liu, M; Hu, JZ

    2015-01-01

    Melanoma is a malignant tumor of melanocytes with high capability of invasion and rapid metastasis to other organs. Malignant melanoma is the most common metastatic malignancy found in Gastrointestinal Tract (GI). In this work, the 1H NMR-based metabolomics approach is used to investigate the metabolite profile differences of stomach tissue extracts of metastatic B16-F10 melanoma and control groups in C57BL/6J mouse and to search for specific metabolite biomarker candidates. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonal Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to evaluate important metabolites responsible for discriminating the control and the melanoma groups. Both PCA and OPLS results reveal that the melanoma group can be well separated from its control group. Among the 50 identified metabolites, it is found that the concentrations of 19 metabolites are significantly changed with the levels of O-phosphocholine and hypoxanthine down-regulated while the levels of isoleucine, leucine, valine, isobutyrate, threonine, cadaverine, alanine, glutamate, glutamine, methionine, citrate, asparagine, tryptophan, glycine, serine, uracil, and formate up-regulated in the melanoma group. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in stomach. PMID:26246958

  4. Prevention of pancreatic islet xenograft rejection by dietary vitamin E.

    PubMed Central

    Vajkoczy, P.; Lehr, H. A.; Hübner, C.; Arfors, K. E.; Menger, M. D.

    1997-01-01

    In pancreatic islet transplantation, the adhesion of activated leukocytes to endothelial cells and the loss of microvascular integrity represent the critical microcirculatory events, which promote loss of graft function due to rejection. With the view that oxygen radicals may contribute to graft rejection, we studied the effect of the antioxidant vitamin E on microvascular rejection of islet grafts. Islets were transplanted syngeneically and xenogeneically (rat) into dorsal skin-fold chambers of hamsters, which received a non-vitamin-E-supplemented laboratory chow. Treated animals with xenografts were fed with a diet supplemented with vitamin E in a low (150 mg/kg) and high (8000 mg/kg) concentration. Intravital fluorescence microscopy demonstrated complete vascularization of syngeneic grafts at day 10 after transplantation, intact islet microcirculation at day 20 with a functional capillary density of 653 +/- 6 cm-1, and only few leukocytes adherent to the endothelial lining of the islets' microvasculature (88 +/- 23 mm-2). Xenogeneic islets showed initial signs of rejection at day 6, including adhesion of leukocytes to the microvascular endothelium (610 +/- 110 mm-2) and loss of endothelial integrity. After 20 days, functional capillary density was significantly lower (173 +/- 68 cm-1) when compared with syngeneic grafts, indicating failure of graft acceptance. Supplementation of the diet with low and high concentrations of vitamin E resulted in a significant (P < 0.05) reduction of xenograft leukocyte-endothelium interaction (146 +/- 29 mm-2 and 109 +/- 42 mm-2) at day 6 after transplantation and and adequate development of functional capillary density at day 20 (478 +/- 36 cm-1 and 539 +/- 86 cm-1; P < 0.05), indicating prevention of microvascular rejection. We conclude that dietary supplementation of the lipophilic antioxidant vitamin E attenuates leukocyte-endothelial cell interactions, preserves microvascular integrity, and thus inhibits microvascular

  5. Imaging Axl expression in pancreatic and prostate cancer xenografts

    SciTech Connect

    Nimmagadda, Sridhar; Pullambhatla, Mrudula; Lisok, Ala; Hu, Chaoxin; Maitra, Anirban; Pomper, Martin G

    2014-01-10

    Highlights: •Axl is overexpressed in a variety of cancers. •Axl overexpression confers invasive phenotype. •Axl imaging would be useful for therapeutic guidance and monitoring. •Axl expression imaging is demonstrated in pancreatic and prostate cancer xenografts. •Graded levels of Axl expression imaging is feasible. -- Abstract: The receptor tyrosine kinase Axl is overexpressed in and leads to patient morbidity and mortality in a variety of cancers. Axl–Gas6 interactions are critical for tumor growth, angiogenesis and metastasis. The goal of this study was to investigate the feasibility of imaging graded levels of Axl expression in tumors using a radiolabeled antibody. We radiolabeled anti-human Axl (Axl mAb) and control IgG1 antibodies with {sup 125}I with high specific radioactivity and radiochemical purity, resulting in an immunoreactive fraction suitable for in vivo studies. Radiolabeled antibodies were investigated in severe combined immunodeficient mice harboring subcutaneous CFPAC (Axl{sup high}) and Panc1 (Axl{sup low}) pancreatic cancer xenografts by ex vivo biodistribution and imaging. Based on these results, the specificity of [{sup 125}I]Axl mAb was also validated in mice harboring orthotopic Panc1 or CFPAC tumors and in mice harboring subcutaneous 22Rv1 (Axl{sup low}) or DU145 (Axl{sup high}) prostate tumors by ex vivo biodistribution and imaging studies at 72 h post-injection of the antibody. Both imaging and biodistribution studies demonstrated specific and persistent accumulation of [{sup 125}I]Axl mAb in Axl{sup high} (CFPAC and DU145) expression tumors compared to the Axl{sup low} (Panc1 and 22Rv1) expression tumors. Axl expression in these tumors was further confirmed by immunohistochemical studies. No difference in the uptake of radioactivity was observed between the control [{sup 125}I]IgG1 antibody in the Axl{sup high} and Axl{sup low} expression tumors. These data demonstrate the feasibility of imaging Axl expression in pancreatic

  6. Natural antibodies and the host immune responses to xenografts.

    PubMed

    Cramer, D V

    2000-05-01

    Natural antibodies are present in the serum of individuals in the absence of known antigenic stimulation. These antibodies are primarily IgM, polyreactive, and encoded by immunoglobulin V genes in germline configuration. Natural antibodies are produced by B-1 lymphocytes, cells that form the primary cell of the fetal and newborn B cell repertoire and may represent the basic foundation upon which the adult repertoire of B cell antibodies is based. Natural antibodies react with a variety of endogenous and exogenous antigens, including xenoantigens expressed by tissues between unrelated species. These antibodies are capable of causing the immediate rejection of grafts exchanged across species barriers. One of the central issues related to our understanding of the immunopathologic mechanisms responsible for rejection of xenografts is whether pre-formed natural antibodies and new antibodies induced following xenotransplantation are produced by the same pathways of B cell antibody production. We have established in studies conducted in rodents and humans that the initial phases of antibody production xenogeneic tissues involves the use of a restricted population of Ig germline genes to encode xenoantibody binding. As the humoral xenoantibody response matures, the same closely-related groups of Ig V genes are used to encode antibody binding and there is evidence for an isotype switch to IgG antibody production and the appearance of somatic mutations consistent with antigen-driven affinity maturation. Our findings in both rodent and human studies form the basis for our proposal that the xenograft response reflects the use of B cell natural antibody repertoires originally intended to provide protection against infection. The host humoral response is inadvertently recruited to mount antibody responses against foreign grafts because they display carbohydrate antigens that are shared by common environmental microbes. This model of xenoantibody responses is being tested in our

  7. Interposition Porcine Acellular Dermal Matrix Xenograft Successful Alternative in Treatment for Massive Rotator Cuff

    PubMed Central

    Neumann, Julie; Zgonis, Miltiadis H.; Reay, Kathleen Dolores; Mayer, Stephanie W.; Boggess, Blake; Toth, Alison P.

    2016-01-01

    Objectives: Despite advances in the surgical techniques of rotator cuff repair (RCR), the management of massive rotator cuff tears in shoulders without glenohumeral arthritis poses a difficult problem for surgeons. Failure of massive rotator cuff repairs range from 20-90% at one to two years postoperatively using arthrography, ultrasound, or magnetic resonance imaging. Additionally, there are inconsistent outcomes reported with debridement alone of massive rotator cuff tears as well as limitations seen with other current methods of operative intervention including arthroplasty and tendon transfers. The purpose of this prospective, comparative study was to determine if the repair of massive rotator cuff tears using an interposition porcine acellular dermal matrix xenograft improves subjective function, pain, range of motion, and strength at greater than two years follow-up. To our knowledge, this is the largest prospective series reporting outcomes of using porcine acellular dermal matrix xenograft as an interposition graft. Methods: Thirty-seven patients (37 shoulders) with an average age of 66 years (range 51-80 years) were prospectively followed for 33 months (range 23-48) following massive RCR using porcine acellular dermal matrix interposition xenograft. Subjective outcomes were measured using the Visual Analog Scale (VAS) pain score (0-10, 0 = no pain), Modified American Shoulder and Elbow Score (M-ASES), and Short-Form12 (SF-12) scores. Preoperative and postoperative objective outcome measures included active range of motion and supraspinatus and infraspinatus manual muscle strength. Postoperative outcome measures included quantitative muscle strength using a dynamometer and static and dynamic ultrasonography to assess the integrity of the repair. Results: Average VAS pain score decreased from 4.5 to 1.1 (P<0.001). Average postoperative M-ASES was 89.23. Average postoperative SF-12 was 52.6. Mean forward flexion, external and internal rotation significantly

  8. Photosensitivity of murine skin greatly depends on the genetic background: clinically relevant dose as a new measure to replace minimal erythema dose in mouse studies.

    PubMed

    Gyöngyösi, Nóra; Lőrincz, Kende; Keszeg, András; Haluszka, Dóra; Bánvölgyi, András; Tátrai, Erika; Kárpáti, Sarolta; Wikonkál, Norbert M

    2016-07-01

    Artificial UV irradiation of murine skin is a frequently used method for testing photosensitivity, study carcinogenesis and photoprotective effects of different compounds. However, doses of UV radiation and mouse strains used in experiments vary greatly. The genetic background of mice may influence the photosensitivity as melanin content, pigmentation and hair cycle parameters are dissimilar. Doses of UV are often expressed in relation to the minimal erythema dose (MED) that was not necessarily determined for the given strain. We set out to standardize the method of measuring photosensitivity in three commonly used mouse strains, C57BL/6N, Balb/c and SKH-1. We found that MED may not be determined for some strains as erythema development in mice with diverse genotypes differs greatly. We measured the oedema response in vivo and ex vivo by using OCT. Given the strain-specific variability of erythema, we introduced Clinically Relevant Dose (CRD) as a new term to replace MED in experiments, to describe the lowest dose that triggers a perceptible skin reaction in mice. Not only the CRD but the proportion of erythema and oedema were different in strains examined. C57BL/6N mice display skin reactions at the lowest UVB dose, while SKH-1 hairless mice show changes, mostly oedema, after higher doses of UVB. The cellular composition and skin thickness were examined by histopathology. IL-1beta and IL-6 levels in skin correlated with the increasing doses of UVB. Despite the variations in the degree of erythema and oedema, no major differences in cytokine expressions were seen among various strains of mice. PMID:26910301

  9. Human airway xenograft models of epithelial cell regeneration.

    PubMed

    Puchelle, E; Peault, B

    2000-01-01

    Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID) and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa. PMID:11667974

  10. Immunohistochemical Quantification of the Vitamin B12 Transport Protein (TCII), Cell Surface Receptor (TCII-R) and Ki-67 in Human Tumor Xenografts

    PubMed Central

    Sysel, Annette M.; Valli, Victor E.; Nagle, Ray B.; Bauer, Joseph A.

    2014-01-01

    Background/Aim Cancer cells have an essential demand for vitamin B12 (cobalamin) to enable cellular replication. The present pilot study quantified the immunohistochemical expression of vitamin B12 transport protein (Transcobalamin II; TCII), cell surface receptor (Transcobalamin II-R; TCII-R) and proliferation protein (Ki-67) in human tumor xenografts. Materials and Methods Tissue microarray slides containing 34 xenograft tumor tissues were immunohistochemically stained using TCN2 (anti-TCII), CD320 (anti-TCII-R) and MIB-1 (anti-Ki-67) antibodies. Representatively stained areas of all slides were digitally imaged and protein expression was quantified using ImageJ software plugins. Results All xenograft tumor tissues stained positively for TCII, TCII-R and Ki-67 proteins; expression varied both within and between tumor types. Correlation between TCII/TCII-R and Ki-67 expression was not significant in xenograft tissues. Conclusion Proliferating cancer cells express measurable levels of TCII and TCII-R. Immunohistochemical quantification of these markers may be useful as a tool for detection of tumors, tailored selection of anti-tumor therapies and surveillance for evidence of recurrent disease. PMID:24122983

  11. Integrated Transcriptomic and Glycomic Profiling of Glioma Stem Cell Xenografts.

    PubMed

    Wildburger, Norelle C; Zhou, Shiyue; Zacharias, Lauren G; Kroes, Roger A; Moskal, Joseph R; Schmidt, Mary; Mirzaei, Parvin; Gumin, Joy; Lang, Frederick F; Mechref, Yehia; Nilsson, Carol L

    2015-09-01

    Bone marrow-derived human mesenchymal stem cells (BM-hMSCs) have the innate ability to migrate or home toward and engraft in tumors such as glioblastoma (GBM). Because of this unique property of BM-hMSCs, we have explored their use for cell-mediated therapeutic delivery for the advancement of GBM treatment. Extravasation, the process by which blood-borne cells—such as BM-hMSCs—enter the tissue, is a highly complex process but is heavily dependent upon glycosylation for glycan-glycan and glycan-protein adhesion between the cell and endothelium. However, in a translationally significant preclinical glioma stem cell xenograft (GSCX) model of GBM, BM-hMSCs demonstrate unequal tropism toward these tumors. We hypothesized that there may be differences in the glycan compositions between the GSCXs that elicit homing ("attractors") and those that do not ("non-attractors") that facilitate or impede the engraftment of BM-hMSCs in the tumor. In this study, glycotranscriptomic analysis revealed significant heterogeneity within the attractor phenotype and the enrichment of high mannose type N-glycan biosynthesis in the non-attractor phenotype. Orthogonal validation with topical PNGase F deglycosylation on the tumor regions of xenograft tissue, followed by nLC-ESI-MS, confirmed the presence of increased high mannose type N-glycans in the non-attractors. Additional evidence provided by our glycomic study revealed the prevalence of terminal sialic acid-containing N-glycans in non-attractors and terminal galactose and N-acetyl-glucosamine N-glycans in attractors. Our results provide the first evidence for differential glycomic profiles in attractor and non-attractor GSCXs and extend the scope of molecular determinates in BM-hMSC homing to glioma. PMID:26185906

  12. Phosphonooxymethyl Prodrug of Triptolide: Synthesis, Physicochemical Characterization, and Efficacy in Human Colon Adenocarcinoma and Ovarian Cancer Xenografts.

    PubMed

    Patil, Satish; Lis, Lev G; Schumacher, Robert J; Norris, Beverly J; Morgan, Monique L; Cuellar, Rebecca A D; Blazar, Bruce R; Suryanarayanan, Raj; Gurvich, Vadim J; Georg, Gunda I

    2015-12-10

    A disodium phosphonooxymethyl prodrug of the antitumor agent triptolide was prepared from the natural product in three steps (39% yield) and displayed excellent aqueous solubility at pH 7.4 (61 mg/mL) compared to the natural product (17 μg/mL). The estimated shelf life (t90) for hydrolysis of the prodrug at 4 °C and pH 7.4 was found to be two years. In a mouse model of human colon adenocarcinoma (HT-29), the prodrug administered intraperitoneally was effective in reducing or eliminating xenograft tumors at dose levels as low as 0.3 mg/kg when given daily and at 0.9 mg/kg when given less frequently. When given via intraperitoneal and oral routes at daily doses of 0.6 and 0.9 mg/kg, the prodrug was also effective and well tolerated in a mouse model of human ovarian cancer (A2780). PMID:26596892

  13. Quantitation of Murine Stroma and Selective Purification of the Human Tumor Component of Patient-Derived Xenografts for Genomic Analysis.

    PubMed

    Schneeberger, Valentina E; Allaj, Viola; Gardner, Eric E; Poirier, J T; Rudin, Charles M

    2016-01-01

    Patient-derived xenograft (PDX) mouse models are increasingly used for preclinical therapeutic testing of human cancer. A limitation in molecular and genetic characterization of PDX tumors is the presence of integral murine stroma. This is particularly problematic for genomic sequencing of PDX models. Rapid and dependable approaches for quantitating stromal content and purifying the malignant human component of these tumors are needed. We used a recently developed technique exploiting species-specific polymerase chain reaction (PCR) amplicon length (ssPAL) differences to define the fractional composition of murine and human DNA, which was proportional to the fractional composition of cells in a series of lung cancer PDX lines. We compared four methods of human cancer cell isolation: fluorescence-activated cell sorting (FACS), an immunomagnetic mouse cell depletion (MCD) approach, and two distinct EpCAM-based immunomagnetic positive selection methods. We further analyzed DNA extracted from the resulting enriched human cancer cells by targeted sequencing using a clinically validated multi-gene panel. Stromal content varied widely among tumors of similar histology, but appeared stable over multiple serial tumor passages of an individual model. FACS and MCD were superior to either positive selection approach, especially in cases of high stromal content, and consistently allowed high quality human-specific genomic profiling. ssPAL is a dependable approach to quantitation of murine stromal content, and MCD is a simple, efficient, and high yield approach to human cancer cell isolation for genomic analysis of PDX tumors. PMID:27611664

  14. Phosphonooxymethyl Prodrug of Triptolide: Synthesis, Physicochemical Characterization, and Efficacy in Human Colon Adenocarcinoma and Ovarian Cancer Xenografts

    PubMed Central

    2015-01-01

    A disodium phosphonooxymethyl prodrug of the antitumor agent triptolide was prepared from the natural product in three steps (39% yield) and displayed excellent aqueous solubility at pH 7.4 (61 mg/mL) compared to the natural product (17 μg/mL). The estimated shelf life (t90) for hydrolysis of the prodrug at 4 °C and pH 7.4 was found to be two years. In a mouse model of human colon adenocarcinoma (HT-29), the prodrug administered intraperitoneally was effective in reducing or eliminating xenograft tumors at dose levels as low as 0.3 mg/kg when given daily and at 0.9 mg/kg when given less frequently. When given via intraperitoneal and oral routes at daily doses of 0.6 and 0.9 mg/kg, the prodrug was also effective and well tolerated in a mouse model of human ovarian cancer (A2780). PMID:26596892

  15. Human Adipose Tissue-Derived Stromal/Stem Cells Promote Migration and Early Metastasis of Triple Negative Breast Cancer Xenografts

    PubMed Central

    Rowan, Brian G.; Gimble, Jeffrey M.; Sheng, Mei; Anbalagan, Muralidharan; Jones, Ryan K.; Frazier, Trivia P.; Asher, Majdouline; Lacayo, Eduardo A.; Friedlander, Paul L.; Kutner, Robert; Chiu, Ernest S.

    2014-01-01

    Background Fat grafting is used to restore breast defects after surgical resection of breast tumors. Supplementing fat grafts with adipose tissue-derived stromal/stem cells (ASCs) is proposed to improve the regenerative/restorative ability of the graft and retention. However, long term safety for ASC grafting in proximity of residual breast cancer cells is unknown. The objective of this study was to determine the impact of human ASCs derived from abdominal lipoaspirates of three donors, on a human breast cancer model that exhibits early metastasis. Methodology/Principal Findings Human MDA-MB-231 breast cancer cells represents “triple negative” breast cancer that exhibits early micrometastasis to multiple mouse organs [1]. Human ASCs were derived from abdominal adipose tissue from three healthy female donors. Indirect co-culture of MDA-MB-231 cells with ASCs, as well as direct co-culture demonstrated that ASCs had no effect on MDA-MB-231 growth. Indirect co-culture, and ASC conditioned medium (CM) stimulated migration of MDA-MB-231 cells. ASC/RFP cells from two donors co-injected with MDA-MB-231/GFP cells exhibited a donor effect for stimulation of primary tumor xenografts. Both ASC donors stimulated metastasis. ASC/RFP cells were viable, and integrated with MDA-MB-231/GFP cells in the tumor. Tumors from the co-injection group of one ASC donor exhibited elevated vimentin, matrix metalloproteinase-9 (MMP-9), IL-8, VEGF and microvessel density. The co-injection group exhibited visible metastases to the lung/liver and enlarged spleen not evident in mice injected with MDA-MB-231/GFP alone. Quantitation of the total area of GFP fluorescence and human chromosome 17 DNA in mouse organs, H&E stained paraffin sections and fluorescent microscopy confirmed multi-focal metastases to lung/liver/spleen in the co-injection group without evidence of ASC/RFP cells. Conclusions Human ASCs derived from abdominal lipoaspirates of two donors stimulated metastasis of MDA-MB-231

  16. Optical Coherence Tomography to Measure Sound-Induced Motions Within the Mouse Organ of Corti In Vivo.

    PubMed

    Jawadi, Zina; Applegate, Brian E; Oghalai, John S

    2016-01-01

    The measurement of mechanical vibrations within the living cochlea is critical to understanding the first nonlinear steps in auditory processing, hair cell stimulation, and cochlear amplification. However, it has proven to be a challenging endeavor. This chapter describes how optical coherence tomography (OCT) can be used to measure vibrations within the tissues of the organ of Corti. These experimental measurements can be performed within the unopened cochlea of living mice routinely and reliably. PMID:27259941

  17. Curative radioimmunotherapy of human mammary carcinoma xenografts with iodine-131-labeled monoclonal antibodies

    SciTech Connect

    Senekowitsch, R.; Reidel, G.; Moellenstaedt, S.Kr.; Kriegel, H.; Pabst, H.W. )

    1989-04-01

    The radioiodinated monoclonal antibody BW 495/36 showed an exceptionally high uptake and long residence time in human ductal mammary carcinoma xenografts in nude mice. There was a mean tumor uptake of 82%/g 24 hr p.i., decreasing with a biologic half-life of approximately 6 days, to 15%/g by Day 16. The tumor-to-blood ratio increased from 2.8 to 21.4 and the percentage of the whole-body retention recovered in the tumor from 47% to 80% during the same time interval. The therapeutic efficiency of two injections of 7.4 MBq {sup 131}I-BW 495/36 was evaluated by comparing the tumor size with that in mice injected with either the same amount of the unlabeled MoAb, the same radioactivity of an {sup 131}I-labeled nonspecific MoAb, or with saline only. The high tumor accumulation of {sup 131}I-BW 495/36 led to a total tumor dose of 77 Gy resulting in a mean reduction in tumor diameter of 50%, corresponding to a reduction in tumor volume of 88% within 42 days p.i. Unlabeled MoAb had no effect on tumor growth compared with controls, whereas {sup 131}I nonspecific antibody caused a slight inhibition of tumor growth. Histologic tumor sections showed large areas of necrosis and a pronounced vacuolation of the tumor cell cytoplasm between Days 7 and 30 p.i. By Day 42 all remaining tissue in the tumor was identified as mouse connective tissue.

  18. Monitoring PAI-1 and VEGF Levels in 6 Human Squamous Cell Carcinoma Xenografts During Fractionated Irradiation

    SciTech Connect

    Bayer, Christine; Kielow, Achim; Schilling, Daniela; Maftei, Constantin-Alin; Zips, Daniel; Yaromina, Ala; Baumann, Michael; Molls, Michael; Multhoff, Gabriele

    2012-11-01

    Purpose: Previous studies have shown that the plasminogen activator inhibitor type-1 (PAI-1) and vascular endothelial growth factor (VEGF) are regulated by hypoxia and irradiation and are involved in neoangiogenesis. The aim of this study was to determine in vivo whether changes in PAI-1 and VEGF during fractionated irradiation could predict for radiation resistance. Methods and Materials: Six xenografted tumor lines from human squamous cell carcinomas (HSCC) of the head and neck were irradiated with 0, 3, 5, 10, and 15 daily fractions of 2 Gy. The PAI-1 and VEGF antigen levels in tumor lysates were determined by enzyme-linked immunosorbent assay kits. The amounts of PAI-1 and VEGF were compared with the dose to cure 50% of tumors (TCD{sub 50}). Colocalization of PAI-1, pimonidazole (hypoxia), CD31 (endothelium), and Hoechst 33342 (perfusion) was examined by immunofluorescence. Results: Human PAI-1 and VEGF (hVEGF) expression levels were induced by fractionated irradiation in UT-SCC-15, UT-SCC-14, and UT-SCC-5 tumors, and mouse VEGF (msVEGF) was induced only in UT-SCC-5 tumors. High hVEGF levels were significantly associated with radiation sensitivity after 5 fractions (P=.021), and high msVEGF levels were significantly associated with radiation resistance after 10 fractions (P=.007). PAI-1 staining was observed in the extracellular matrix, the cytoplasm of fibroblast-like stroma cells, and individual tumor cells at all doses of irradiation. Colocalization studies showed PAI-1 staining close to microvessels. Conclusions: These results indicate that the concentration of tumor-specific and host-specific VEGF during fractionated irradiation could provide considerably divergent information for the outcome of radiation therapy.

  19. Assessment of tumour viability in human lung cancer xenografts with texture-based image analysis

    PubMed Central

    Turkki, Riku; Linder, Nina; Holopainen, Tanja; Wang, Yinhai; Grote, Anne; Lundin, Mikael; Alitalo, Kari; Lundin, Johan

    2015-01-01

    Aims To build and evaluate an automated method for assessing tumour viability in histological tissue samples using texture features and supervised learning. Methods H&E-stained sections (n=56) of human non-small cell lung adenocarcinoma xenografts were digitised with a whole-slide scanner. A novel image analysis method based on local binary patterns and a support vector machine classifier was trained with a set of sample regions (n=177) extracted from the whole-slide images and tested with another set of images (n=494). The extracted regions, or single-tissue entity images, were chosen to represent as pure as possible examples of three morphological tissue entities: viable tumour tissue, non-viable tumour tissue and mouse host tissue. Results An agreement of 94.5% (area under the curve=0.995, kappa=0.90) was achieved to classify the single-tissue entity images in the test set (n=494) into the viable tumour and non-viable tumour tissue categories. The algorithm assigned 250 of the 252 non-viable and 219 of the 242 of viable sample regions to the correct categories, respectively. This corresponds to a sensitivity of 90.5% and specificity of 99.2%. Conclusions The proposed image analysis-based tumour viability assessment resulted in a high agreement with expert annotations. By providing extraction of detailed information of the tumour microenvironment, the automated method can be used in preclinical research settings. The method could also have implications in cancer diagnostics, cancer outcome prognostics and prediction. PMID:26021331

  20. Treatment with Tie2-siRNA in combination with carboplatin suppresses the growth of Ishikawa human endometrial carcinoma cell xenografts in vivo

    PubMed Central

    GUO, FEIFEI; XUN, QINGYING; ZHOU, HUAIJUN

    2013-01-01

    It is well-known that tumor angiogenesis is important in cancer development, and studies on blocking angiogenesis to treat tumors have become one of the most promising and active fields in anticancer research. The present study investigated the effect of siRNA targeting the tyrosine kinase receptor 2 (Tie2) gene in combination with carboplatin in a mouse model of endometrial carcinoma in an attempt to elucidate the role of Tie2 in the carcinogenesis and progression of endometrial carcinoma via angiogenesis, in order to establish a basis for the development of complementary molecule targeting and chemotherapeutic actions. Ishikawa cells were used to establish a human endometrial carcinoma nude mouse tumor xenograft model. Tie2-siRNA (20 μg/mouse) and/or carboplatin (25.0 mg·kg−1) were administered as the treatment strategy. Real-time PCR and western blotting were used to evaluate the expression levels of Tie2 mRNA and protein and immunohistochemistry was used to assess the vessel density of the tumor tissues. The present data demonstrated that Tie2-siRNA and/or carboplatin were able to suppress the growth of endometrial xenografts in vivo and attenuate the expression of Tie2 mRNA and protein, as assessed by real-time PCR and western blotting. Furthermore, immunohistochemical assessment showed that the vessel density of the tumors decreased with treatment. The present results suggest that treatment with Tie2-siRNA or carboplatin alone was able to inhibit the growth of human endometrial carcinoma nude mouse xenografts markedly and decrease the expression of Tie2. The combination of Tie2-siRNA and carboplatin increased the therapeutic effect of carboplatin which may eliminate the tumor microenvironment, increase the apoptosis of tumor cells, normalize the abnormal tumor vessels and increase the efficiency of chemotherapy for endometrial carcinoma with carboplatin. The synergy of Tie2-siRNA in combination with carboplatin may involve the regulation of other

  1. Combination therapy of anti-cancer bioactive peptide with Cisplatin decreases chemotherapy dosing and toxicity to improve the quality of life in xenograft nude mice bearing human gastric cancer

    PubMed Central

    2014-01-01

    Background A great challenge of cancer chemotherapy is to eliminate cancer cells and concurrently maintain the quality of life (QOL) for cancer patients. Previously, we identified a novel anti-cancer bioactive peptide (ACBP), a peptide induced in goat spleen or liver following immunization with human gastric cancer protein extract. ACBP alone exhibited anti-tumor activity without measurable side effects. Thus, we hypothesize that ACBP and combined chemotherapy could improve the efficacy of treatment and lead to a better QOL. Results In this study, ACBP was isolated and purified from immunized goat liver, and designated as ACBP-L. The anti-tumor activity was investigated in a previously untested human gastric cancer MGC-803 cell line and tumor model. ACBP-L inhibited cell proliferation in vitro in a dose and time dependent manner, titrated by MTT assay. The effect of ACBP-L on cell morphology was observed through light and scanning electron microscopy. In vivo ACBP-L alone significantly inhibited MGC-803 tumor growth in a xenograft nude mouse model without measurable side effects. Treatment with the full dosage of Cisplatin alone (5 mg/kg every 5 days) strongly suppressed tumor growth. However, the QOL in these mice had been significantly affected when measured by food intakes and body weight. The combinatory regiment of ACBP-L with a fewer doses of Cisplatin (5 mg/kg every 10 days) resulted in a similar anti-tumor activity with improved QOL. 18F-FDG PET/CT scan was used to examine the biological activity in tumors of live animals and indicated the consistent treatment effects. The tumor tissues were harvested after treatment, and ACBP-L and Cisplatin treatment suppressed Bcl-2, and induced Bax, Caspase 3, and Caspase 8 molecules as detected by RT-PCR and immunohistochemistry. The combinatory regiment induced stronger Bax and Caspase 8 protein expression. Conclusion Our current finding in this gastric cancer xenograft animal model demonstrated that ACBP-L could

  2. Morphine modulates doxorubicin uptake and improves efficacy of chemotherapy in an intracranial xenograft model of human glioblastoma.

    PubMed

    da Ros, Martina; Iorio, Anna Lisa; Consolante, Dario; Cardile, Francesco; Muratori, Monica; Fantappiè, Ornella; Lucchesi, Maurizio; Guidi, Milena; Pisano, Claudio; Sardi, Iacopo

    2016-01-01

    Morphine may alter the permeability of Blood-Brain Barrier (BBB), enhancing the access of molecules normally unable to cross it, as Doxorubicin (Dox). In addition, morphine seems to mediate the uptake of Dox into the brain by its reduced efflux mediated by P-glycoprotein (P-gp). We evaluated the antitumor efficacy of Dox plus morphine treatment by an orthotopic glioblastoma xenograft model. Foxn1 mice were injected with U87MG-luc cells in the left lobe of the brain and treated with Dox (5 mg/kg and 2.5 mg/kg, weekly) with or without morphine pretreatment (10 mg/kg, weekly). Bioluminescence imaging (BLI) was used to monitoring tumor growth and response to therapy. Additionally, we investigated the role of morphine on the uptake of Dox by MDCKII cells transfected with human MDR1 gene encoding for P-gp. The data demonstrate that only Dox 5 mg/kg determined a significant tumor regression while the lower dose (2.5 mg/kg) was not effective. However, if combined with morphine, the group treated with Dox 2.5 mg/kg showed a decreasing tumor growth. The average BLI for Dox 2.5 mg/kg plus morphine was 5 fold lower than Dox 2.5 mg/kg alone (P=0.0053) and 8 fold lower than vehicle (P=0.0004). Additionally, Dox increased in MDCKII-P-gp transfected cells only in the presence of morphine with a significantly higher level comparing control group (3.84) vs Dox plus morphine group (12.29, P<0.05). Our results indicate that Dox alone and in combination with morphine appear to be effective in controlling the growth of glioblastoma in a xenograft mouse model. PMID:27152241

  3. Morphine modulates doxorubicin uptake and improves efficacy of chemotherapy in an intracranial xenograft model of human glioblastoma

    PubMed Central

    da Ros, Martina; Iorio, Anna Lisa; Consolante, Dario; Cardile, Francesco; Muratori, Monica; Fantappiè, Ornella; Lucchesi, Maurizio; Guidi, Milena; Pisano, Claudio; Sardi, Iacopo

    2016-01-01

    Morphine may alter the permeability of Blood-Brain Barrier (BBB), enhancing the access of molecules normally unable to cross it, as Doxorubicin (Dox). In addition, morphine seems to mediate the uptake of Dox into the brain by its reduced efflux mediated by P-glycoprotein (P-gp). We evaluated the antitumor efficacy of Dox plus morphine treatment by an orthotopic glioblastoma xenograft model. Foxn1 mice were injected with U87MG-luc cells in the left lobe of the brain and treated with Dox (5 mg/kg and 2.5 mg/kg, weekly) with or without morphine pretreatment (10 mg/kg, weekly). Bioluminescence imaging (BLI) was used to monitoring tumor growth and response to therapy. Additionally, we investigated the role of morphine on the uptake of Dox by MDCKII cells transfected with human MDR1 gene encoding for P-gp. The data demonstrate that only Dox 5 mg/kg determined a significant tumor regression while the lower dose (2.5 mg/kg) was not effective. However, if combined with morphine, the group treated with Dox 2.5 mg/kg showed a decreasing tumor growth. The average BLI for Dox 2.5 mg/kg plus morphine was 5 fold lower than Dox 2.5 mg/kg alone (P=0.0053) and 8 fold lower than vehicle (P=0.0004). Additionally, Dox increased in MDCKII-P-gp transfected cells only in the presence of morphine with a significantly higher level comparing control group (3.84) vs Dox plus morphine group (12.29, P<0.05). Our results indicate that Dox alone and in combination with morphine appear to be effective in controlling the growth of glioblastoma in a xenograft mouse model. PMID:27152241

  4. Tomato paste alters NF-κB and cancer-related mRNA expression in prostate cancer cells, xenografts, and xenograft microenvironment.

    PubMed

    Kolberg, Marit; Pedersen, Sigrid; Bastani, Nasser E; Carlsen, Harald; Blomhoff, Rune; Paur, Ingvild

    2015-01-01

    Tomatoes may protect against prostate cancer development, possibly through targeting signaling pathways such as nuclear factor-κB (NF-κB). We investigated whether tomato paste could modulate NF-κB activity and cancer-related gene expression in human derived prostate cancer cells (PC3) and PC3 xenografts. PC3-cells were stably transduced with an NF-κB-luciferase construct, and treated with tomato extracts or vehicle control. Nude mice bearing PC3 xenografts were fed a Western-like diet with or without 10% tomato paste for 6.5 wk. The tomato diet significantly inhibited TNFα stimulated NF-κB activity in cultured PC3 cells, and modulated the expression of genes associated with inflammation, apoptosis, and cancer progression. Accumulation of lycopene occurred in liver, xenografts, and serum of mice fed tomato diet. Tomato paste in the diet did not affect tumor size in mice; however, there was a trend toward inhibition of NF-κB activity in the xenografts. The effect of tomato on gene expression was most prominent in the xenograft microenvironment, where among others NFKB2, STAT3, and STAT6 showed higher expression levels after tomato treatment. Our findings support biological activity of tomatoes in cancer-related inflammation. PMID:25664890

  5. Measurement of OH, O, and NO densities and their correlations with mouse melanoma cell death rate treated by a nanosecond pulsed streamer discharge

    NASA Astrophysics Data System (ADS)

    Yagi, Ippei; Shirakawa, Yuki; Hirakata, Kenta; Akiyama, Taketoshi; Yonemori, Seiya; Mizuno, Kazue; Ono, Ryo; Oda, Tetsuji

    2015-10-01

    Mouse melanoma cells in a culture medium are treated using a nanosecond pulsed streamer discharge plasma and the correlations between the rate of cell death and the densities of reactive species (OH, O, and NO) in the plasma are measured. The plasma is irradiated onto the culture medium surface with a vertical gas flow of an O2/N2 mixture from a glass tube at various gas flow rates and O2 concentrations. The densities of the reactive species are measured very close to the culture medium surface, where the reactive species interact with the culture medium, using laser-induced fluorescence. In the case of the N2 discharge (O2 = 0%), an increase in gas flow rate decreases OH density because it lowers the water vapor concentration by diluting the vapor, which is required for OH production. The increase in gas flow rate also leads to a decreased cell death rate. In the case of the O2/N2 discharge, on the other hand, an increase in O2 concentration at a fixed flow rate does not affect the rate of cell death, although it considerably changes the O and NO densities. These findings indicate that some reactive species derived from water vapor such as OH are responsible for the melanoma cell death, whereas those from O2, such as O and NO, are less likely responsible. They also indicate the importance of water evaporation from the culture medium surface in cell treatment.

  6. Evaluation of 89Zr-pertuzumab in Breast Cancer Xenografts

    PubMed Central

    2015-01-01

    Pertuzumab is a monoclonal antibody that binds to HER2 and is used in combination with another HER2–specific monoclonal antibody, trastuzumab, for the treatment of HER2+ metastatic breast cancer. Pertuzumab binds to an HER2 binding site distinct from that of trastuzumab, and its affinity is enhanced when trastuzumab is present. We aim to exploit this enhanced affinity of pertuzumab for its HER2 binding epitope and adapt this antibody as a PET imaging agent by radiolabeling with 89Zr to increase the sensitivity of HER2 detection in vivo. Here, we investigate the biodistribution of 89Zr-pertuzumab in HER2–expressing BT-474 and HER2–nonexpressing MDA-MB-231 xenografts to quantitatively assess HER2 expression in vivo. In vitro cell binding studies were performed resulting in retained immunoreactivity and specificity for HER2–expressing cells. In vivo evaluation of 89Zr-pertuzumab was conducted in severely combined immunodeficient mice, subcutaneously inoculated with BT-474 and MDA-MB-231 cells. 89Zr-pertuzumab was systemically administered and imaged at 7 days postinjection (p.i.) followed by terminal biodistribution studies. Higher tumor uptake was observed in BT-474 compared to MDA-MB-231 xenografts with 47.5 ± 32.9 and 9.5 ± 1.7% ID/g, respectively at 7 days p.i (P = 0.0009) and blocking studies with excess unlabeled pertuzumab showed a 5-fold decrease in BT-474 tumor uptake (P = 0.0006), confirming the in vivo specificity of this radiotracer. Importantly, we observed that the tumor accumulation of 89Zr-pertuzumab was increased in the presence of unlabeled trastuzumab, at 173 ± 74.5% ID/g (P = 0.01). Biodistribution studies correlate with PET imaging quantification using max SUV (r = 0.98, P = 0.01). Collectively, these results illustrate that 89Zr-pertuzumab as a PET imaging agent may be beneficial for the quantitative and noninvasive assessment of HER2 expression in vivo especially for patients undergoing trastuzumab therapy. PMID:25058168

  7. Measuring DNA Damage and Repair in Mouse Splenocytes After Chronic In Vivo Exposure to Very Low Doses of Beta- and Gamma-Radiation.

    PubMed

    Flegal, Matthew; Blimkie, Melinda S; Wyatt, Heather; Bugden, Michelle; Surette, Joel; Klokov, Dmitry

    2015-01-01

    Low dose radiation exposure may produce a variety of biological effects that are different in quantity and quality from the effects produced by high radiation doses. Addressing questions related to environmental, occupational and public health safety in a proper and scientifically justified manner heavily relies on the ability to accurately measure the biological effects of low dose pollutants, such as ionizing radiation and chemical substances. DNA damage and repair are the most important early indicators of health risks due to their potential long term consequences, such as cancer. Here we describe a protocol to study the effect of chronic in vivo exposure to low doses of γ- and β-radiation on DNA damage and repair in mouse spleen cells. Using a commonly accepted marker of DNA double-strand breaks, phosphorylated histone H2AX called γH2AX, we demonstrate how it can be used to evaluate not only the levels of DNA damage, but also changes in the DNA repair capacity potentially produced by low dose in vivo exposures. Flow cytometry allows fast, accurate and reliable measurement of immunofluorescently labeled γH2AX in a large number of samples. DNA double-strand break repair can be evaluated by exposing extracted splenocytes to a challenging dose of 2 Gy to produce a sufficient number of DNA breaks to trigger repair and by measuring the induced (1 hr post-irradiation) and residual DNA damage (24 hrs post-irradiation). Residual DNA damage would be indicative of incomplete repair and the risk of long-term genomic instability and cancer. Combined with other assays and end-points that can easily be measured in such in vivo studies (e.g., chromosomal aberrations, micronuclei frequencies in bone marrow reticulocytes, gene expression, etc.), this approach allows an accurate and contextual evaluation of the biological effects of low level stressors. PMID:26168333

  8. Microfluidic-based measurement of erythrocyte sedimentation rate for biophysical assessment of blood in an in vivo malaria-infected mouse

    PubMed Central

    Kang, Yang Jun; Ha, Young-Ran; Lee, Sang-Joon

    2014-01-01

    This study suggests a new erythrocyte sedimentation rate (ESR) measurement method for the biophysical assessment of blood by using a microfluidic device. For an effective ESR measurement, a disposable syringe filled with blood is turned upside down and aligned at 180° with respect to gravitational direction. When the blood sample is delivered into the microfluidic device from the top position of the syringe, the hematocrit of blood flowing in the microfluidic channel decreases because the red blood cell-depleted region is increased from the top region of the syringe. The variation of hematocrit is evaluated by consecutively capturing images and conducting digital image processing technique for 10 min. The dynamic variation of ESR is quantitatively evaluated using two representative parameters, namely, time constant (λ) and ESR-area (AESR). To check the performance of the proposed method, blood samples with various ESR values are prepared by adding different concentrations of dextran solution. λ and AESR are quantitatively evaluated by using the proposed method and a conventional method, respectively. The proposed method can be used to measure ESR with superior reliability, compared with the conventional method. The proposed method can also be used to quantify ESR of blood collected from malaria-infected mouse under in vivo condition. To indirectly compare with the results obtained by the proposed method, the viscosity and velocity of the blood are measured using the microfluidic device. As a result, the biophysical properties, including ESR and viscosity of blood, are significantly influenced by the parasitemia level. These experimental demonstrations support the notion that the proposed method is capable of effectively monitoring the biophysical properties of blood. PMID:25379099

  9. Can bone marrow aspirate concentrate change the mineralization pattern of the anterior maxilla treated with xenografts? A preliminary study

    PubMed Central

    Pelegrine, André Antonio; Teixeira, Marcelo Lucchesi; Sperandio, Marcelo; Almada, Thiago Sousa; Kahnberg, Karl Erik; Pasquali, Paulo José; Aloise, Antonio Carlos

    2016-01-01

    Objective: To evaluate bony reconstruction of the atrophic anterior maxilla using particulate grafts with or without autologous bone marrow aspirate concentrate (BMAC). Materials and Methods: Eight patients with atrophy of the anterior maxilla due to teeth loss were selected and split into groups according to the type of material used: Control Group (CG) (n = 4) - particulate xenograft only and Test Group (TG) (n = 4) - a combination of particulate xenograft and BMAC. Both groups received a collagen membrane to cover the xenograft. After 4 months, during implant placement, a sample of bone was removed from the graft area using a 2 mm diameter trephine bur. The specimens were fixed and preserved for histomorphometric evaluation, which included the following parameters: Mineralized tissue (MT) and non-MT (NMT). Cone beam computed tomography was performed at 3 time intervals to measure bone thickness: (1) Before grafting, (2) 4 months and (3) 8 months postgrafting, using localized bone gain (mm) as the outcome variable. Results: Tomographic analysis revealed bone gain in CG of 3.78 ± 1.35 mm and 4.34 ± 1.58 mm at 4 and 8 months, respectively. TG showed an increase of 3.79 ± 0.52 mm and 4.09 ± 1.33 mm after 4 and 8 months, respectively. Histomorphometric analysis revealed that, for CG, MT- and NMT-related values were 52.3% ± 16.78% and 47.70% ± 5.55%, respectively, whereas for TG, they were 65.04% ± 20.98% and 34.96 ± 10.38, respectively. Conclusion: Although radiographic bone gain appeared similar between the groups, the use of BMAC obtained via the BMAC® method revealed an increased mineralization trend in the anterior maxilla. It must be highlighted, however, that this is a preliminary study with a relatively small sample population and further studies with larger sample sizes are needed to verify these results. PMID:27041895

  10. Patient-Derived Xenograft Models in Gynecological Malignancies

    PubMed Central

    Scott, Clare L.; Mackay, Helen J; Haluska, Paul

    2014-01-01

    OVERVIEW In the era of targeted therapies, patients with gynecological malignancies have not yet been major beneficiaries of this new class of agents. This may reflect the fact that the main tumor types, ovarian, uterine and cervical cancers, are a highly heterogeneous group of cancers, with variable response to standard chemotherapies. This is also likely due to poor model development in which to study the diversity of these cancers. Cancer-derived cell lines fail to adequately recapitulate molecular hallmarks of specific cancer subsets and complex microenvironments, which may be critical for sensitivity to targeted therapies. Patient derived xenografts (PDX), using fresh human tumor without prior in vitro culture, combined with whole genome expression, gene copy number and sequencing analyses, could dramatically aid novel therapy development in gynecological malignancies. Gynecological tumors can be engrafted in immunodeficient mice with a high rate of success and within a reasonable time frame. The resulting PDX accurately recapitulate the patient’s tumour in histological, molecular and in vivo treatment response characteristics. Orthotopic PDX develop complications relevant for the clinic, such as ascites and bowel obstruction, providing opportunities for understanding the biology of these clinical problems. Thus, PDX have great promise for delivering improved understanding of gynecological malignancies, serve as better models for designing novel therapies and clinical trials and could underpin individualized, directed therapy for patients from whom PDX models have been established. PMID:24857111

  11. Metastatic phenotype in CWR22 prostate cancer xenograft following castration

    PubMed Central

    Seedhouse, Steven J.; Affronti, Hayley C.; Karasik, Ellen; Gillard, Bryan M.; Azabdaftari, Gissou; Smiraglia, Dominic J.

    2015-01-01

    Background CWR22 is a human xenograft model of primary prostate cancer (PCa) that is often utilized to study castration recurrent (CR) PCa. CWR22 recapitulates clinical response to androgen deprivation therapy (ADT), in that tumors regress in response to castration, but can recur after a period of time. Methods Two cohorts of mice, totaling 117 mice were implanted with CWR22, allowed to develop tumors, castrated by pellet removal and followed for a period of 32 and 50 weeks. Mice presenting with tumors >2.0 cm3 at the primary site, moribund appearance, or palpable masses other than the primary tumor were sacrificed prior to the endpoint of the study. Tumor tissue, serum, and abnormal lesions were collected upon necropsy and analyzed by IHC, H&E, and PCR for presence of metastatic lesions arising from CWR22. Results Herein, we report that CWR22 progresses after castration from a primary, hormonal therapy‐naïve tumor to metastatic disease in 20% of castrated nude mice. Histological examination of CWR22 primary tumors revealed distinct pathologies that correlated with metastatic outcome after castration. Conclusion This is the first report and characterization of spontaneous metastasis in the CWR22 model, thus, CWR22 is a bona‐fide model of clinical PCa representing the full progression from androgen‐sensitive, primary PCa to metastatic CR‐PCa. Prostate 76:359–368, 2016. © 2015 The Authors. The Prostate published by Wiley Periodicals, Inc. PMID:26642837

  12. Rapid in vivo measurement of β-amyloid reveals biphasic clearance kinetics in an Alzheimer's mouse model.

    PubMed

    Yuede, Carla M; Lee, Hyo; Restivo, Jessica L; Davis, Todd A; Hettinger, Jane C; Wallace, Clare E; Young, Katherine L; Hayne, Margaret R; Bu, Guojun; Li, Chen-Zhong; Cirrito, John R

    2016-05-01

    Findings from genetic, animal model, and human studies support the observation that accumulation of the β-amyloid (Aβ) peptide in the brain plays a central role in the pathogenic cascade of Alzheimer's disease (AD). Human studies suggest that one key factor leading to accumulation is a defect in brain Aβ clearance. We have developed a novel microimmunoelectrode (MIE) to study the kinetics of Aβ clearance using an electrochemical approach. This is the first study using MIEs in vivo to measure rapid changes in Aβ levels in the brains of living mice. Extracellular, interstitial fluid (ISF) Aβ levels were measured in the hippocampus of APP/PS1 mice. Baseline levels of Aβ40 in the ISF are relatively stable and begin to decline within minutes of blocking Aβ production with a γ-secretase inhibitor. Pretreatment with a P-glycoprotein inhibitor, which blocks blood-brain barrier transport of Aβ, resulted in significant prolongation of Aβ40 half-life, but only in the latter phase of Aβ clearance from the ISF. PMID:27069115

  13. Flow Cytometric Analysis of BrdU Incorporation as a High-Throughput Method for Measuring Adult Neurogenesis in the Mouse

    PubMed Central

    Balu, Darrick T.; Hodes, Georgia E.; Hill, Tiffany E.; Ho, Nancy; Rahman, Zia; Bender, Corey N.; Ring, Robert H.; Dwyer, Jason M.; Rosenzweig-Lipson, Sharon; Hughes, Zoe A.; Schechter, Lee E.; Lucki, Irwin

    2009-01-01

    Introduction The generation of new neurons occurs throughout adulthood in discrete brain regions, and may be regulated by neuropsychiatric diseases and therapeutic drug treatments. Most current methods that study this process measure the labeling of newborn cells by 5-bromo-2-deoxyuridine (BrdU) using immunohistochemical methods followed by the microscopic counting of BrdU positive cells. This method is time consuming and labor intensive, typically taking several weeks to analyze. Methods Therefore, we characterized a method to measure BrdU incorporation in the adult mouse hippocampus in vivo by using flow cytometry, which normally allows analysis of data within a single day. Results The present study compared multiple BrdU dosing and loading protocols to determine a dosing strategy that produced the best signal to noise ratio. BrdU incorporation was also compared across different brain regions. The method was sensitive to a number of experimental disease manipulations. Induction of type-1 diabetes and depletion of norepinephrine reduced hippocampal cell proliferation. In contrast, chronic administration of electroconvulsive shock, a somatic treatment for depression, as well as chronic treatment with the antidepressant fluoxetine elevated hippocampal cell proliferation. This increase in cell proliferation with fluoxetine was detected as early as 14 days into treatment. Moreover, comparing measures of cell proliferation obtained by immunohistochemical and flow cytometric methods within the same animals were convergent and significantly correlated to each other. Flow cytometry was also sufficiently sensitive to quantify the survival of newly born cells. Discussion These experiments validate the utility of flow cytometry in analyzing hippocampal cell proliferation and survival in a reliable and high-throughput fashion. The speedy analysis afforded by flow cytometry lends itself to be utilized in novel drug discovery and physiology. PMID:19121403

  14. Noise exposure modulates cochlear inner hair cell ribbon volumes, correlating with changes in auditory measures in the FVB/nJ mouse.

    PubMed

    Paquette, Stephen T; Gilels, Felicia; White, Patricia M

    2016-01-01

    Cochlear neuropathy resulting from unsafe noise exposure is a life altering condition that affects many people. This hearing dysfunction follows a conserved mechanism where inner hair cell synapses are lost, termed cochlear synaptopathy. Here we investigate cochlear synaptopathy in the FVB/nJ mouse strain as a prelude for the investigation of candidate genetic mutations for noise damage susceptibility. We used measurements of auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to assess hearing recovery in FVB/nJ mice exposed to two different noise levels. We also utilized confocal fluorescence microscopy in mapped whole mount cochlear tissue, in conjunction with deconvolution and three-dimensional modeling, to analyze numbers, volumes and positions of paired synaptic components. We find evidence for significant synapse reorganization in response to both synaptopathic and sub-synaptopathic noise exposures in FVB/nJ. Specifically, we find that the modulation in volume of very small synaptic ribbons correlates with the presence of reduced ABR peak one amplitudes in both levels of noise exposures. These experiments define the use of FVB/nJ mice for further genetic investigations into the mechanisms of noise damage. They further suggest that in the cochlea, neuronal-inner hair cell connections may dynamically reshape as part of the noise response. PMID:27162161

  15. Noise exposure modulates cochlear inner hair cell ribbon volumes, correlating with changes in auditory measures in the FVB/nJ mouse

    PubMed Central

    Paquette, Stephen T.; Gilels, Felicia; White, Patricia M.

    2016-01-01

    Cochlear neuropathy resulting from unsafe noise exposure is a life altering condition that affects many people. This hearing dysfunction follows a conserved mechanism where inner hair cell synapses are lost, termed cochlear synaptopathy. Here we investigate cochlear synaptopathy in the FVB/nJ mouse strain as a prelude for the investigation of candidate genetic mutations for noise damage susceptibility. We used measurements of auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to assess hearing recovery in FVB/nJ mice exposed to two different noise levels. We also utilized confocal fluorescence microscopy in mapped whole mount cochlear tissue, in conjunction with deconvolution and three-dimensional modeling, to analyze numbers, volumes and positions of paired synaptic components. We find evidence for significant synapse reorganization in response to both synaptopathic and sub-synaptopathic noise exposures in FVB/nJ. Specifically, we find that the modulation in volume of very small synaptic ribbons correlates with the presence of reduced ABR peak one amplitudes in both levels of noise exposures. These experiments define the use of FVB/nJ mice for further genetic investigations into the mechanisms of noise damage. They further suggest that in the cochlea, neuronal-inner hair cell connections may dynamically reshape as part of the noise response. PMID:27162161

  16. Monitoring of Tumor Growth with [18F]-FET PET in a Mouse Model of Glioblastoma: SUV Measurements and Volumetric Approaches

    PubMed Central

    Holzgreve, Adrien; Brendel, Matthias; Gu, Song; Carlsen, Janette; Mille, Erik; Böning, Guido; Mastrella, Giorgia; Unterrainer, Marcus; Gildehaus, Franz J.; Rominger, Axel; Bartenstein, Peter; Kälin, Roland E.; Glass, Rainer; Albert, Nathalie L.

    2016-01-01

    Noninvasive tumor growth monitoring is of particular interest for the evaluation of experimental glioma therapies. This study investigates the potential of positron emission tomography (PET) using O-(2-18F-fluoroethyl)-L-tyrosine ([18F]-FET) to determine tumor growth in a murine glioblastoma (GBM) model—including estimation of the biological tumor volume (BTV), which has hitherto not been investigated in the pre-clinical context. Fifteen GBM-bearing mice (GL261) and six control mice (shams) were investigated during 5 weeks by PET followed by autoradiographic and histological assessments. [18F]-FET PET was quantitated by calculation of maximum and mean standardized uptake values within a universal volume-of-interest (VOI) corrected for healthy background (SUVmax/BG, SUVmean/BG). A partial volume effect correction (PVEC) was applied in comparison to ex vivo autoradiography. BTVs obtained by predefined thresholds for VOI definition (SUV/BG: ≥1.4; ≥1.6; ≥1.8; ≥2.0) were compared to the histologically assessed tumor volume (n = 8). Finally, individual “optimal” thresholds for BTV definition best reflecting the histology were determined. In GBM mice SUVmax/BG and SUVmean/BG clearly increased with time, however at high inter-animal variability. No relevant [18F]-FET uptake was observed in shams. PVEC recovered signal loss of SUVmean/BG assessment in relation to autoradiography. BTV as estimated by predefined thresholds strongly differed from the histology volume. Strikingly, the individual “optimal” thresholds for BTV assessment correlated highly with SUVmax/BG (ρ = 0.97, p < 0.001), allowing SUVmax/BG-based calculation of individual thresholds. The method was verified by a subsequent validation study (n = 15, ρ = 0.88, p < 0.01) leading to extensively higher agreement of BTV estimations when compared to histology in contrast to predefined thresholds. [18F]-FET PET with standard SUV measurements is feasible for glioma imaging in the GBM mouse model

  17. Monitoring of Tumor Growth with [(18)F]-FET PET in a Mouse Model of Glioblastoma: SUV Measurements and Volumetric Approaches.

    PubMed

    Holzgreve, Adrien; Brendel, Matthias; Gu, Song; Carlsen, Janette; Mille, Erik; Böning, Guido; Mastrella, Giorgia; Unterrainer, Marcus; Gildehaus, Franz J; Rominger, Axel; Bartenstein, Peter; Kälin, Roland E; Glass, Rainer; Albert, Nathalie L

    2016-01-01

    Noninvasive tumor growth monitoring is of particular interest for the evaluation of experimental glioma therapies. This study investigates the potential of positron emission tomography (PET) using O-(2-(18)F-fluoroethyl)-L-tyrosine ([(18)F]-FET) to determine tumor growth in a murine glioblastoma (GBM) model-including estimation of the biological tumor volume (BTV), which has hitherto not been investigated in the pre-clinical context. Fifteen GBM-bearing mice (GL261) and six control mice (shams) were investigated during 5 weeks by PET followed by autoradiographic and histological assessments. [(18)F]-FET PET was quantitated by calculation of maximum and mean standardized uptake values within a universal volume-of-interest (VOI) corrected for healthy background (SUVmax/BG, SUVmean/BG). A partial volume effect correction (PVEC) was applied in comparison to ex vivo autoradiography. BTVs obtained by predefined thresholds for VOI definition (SUV/BG: ≥1.4; ≥1.6; ≥1.8; ≥2.0) were compared to the histologically assessed tumor volume (n = 8). Finally, individual "optimal" thresholds for BTV definition best reflecting the histology were determined. In GBM mice SUVmax/BG and SUVmean/BG clearly increased with time, however at high inter-animal variability. No relevant [(18)F]-FET uptake was observed in shams. PVEC recovered signal loss of SUVmean/BG assessment in relation to autoradiography. BTV as estimated by predefined thresholds strongly differed from the histology volume. Strikingly, the individual "optimal" thresholds for BTV assessment correlated highly with SUVmax/BG (ρ = 0.97, p < 0.001), allowing SUVmax/BG-based calculation of individual thresholds. The method was verified by a subsequent validation study (n = 15, ρ = 0.88, p < 0.01) leading to extensively higher agreement of BTV estimations when compared to histology in contrast to predefined thresholds. [(18)F]-FET PET with standard SUV measurements is feasible for glioma imaging in the GBM mouse model

  18. Visualization of plasmid delivery to keratinocytes in mouse and human epidermis

    PubMed Central

    González-González, Emilio; Kim, Yeu-Chun; Speaker, Tycho J.; Hickerson, Robyn P.; Spitler, Ryan; Birchall, James C.; Lara, Maria Fernanda; Hu, Rong-hua; Liang, Yanhua; Kirkiles-Smith, Nancy; Prausnitz, Mark R.; Milstone, Leonard M.; Contag, Christopher H.; Kaspar, Roger L.

    2011-01-01

    The accessibility of skin makes it an ideal target organ for nucleic acid-based therapeutics; however, effective patient-friendly delivery remains a major obstacle to clinical utility. A variety of limited and inefficient methods of delivering nucleic acids to keratinocytes have been demonstrated; further advances will require well-characterized reagents, rapid noninvasive assays of delivery, and well-developed skin model systems. Using intravital fluorescence and bioluminescence imaging and a standard set of reporter plasmids we demonstrate transfection of cells in mouse and human xenograft skin using intradermal injection and two microneedle array delivery systems. Reporter gene expression could be detected in individual keratinocytes, in real-time, in both mouse skin as well as human skin xenografts. These studies revealed that non-invasive intravital imaging can be used as a guide for developing gene delivery tools, establishing a benchmark for comparative testing of nucleic acid skin delivery technologies. PMID:22355673

  19. Effects of different storage protocols on cat testis tissue potential for xenografting and recovery of spermatogenesis.

    PubMed

    Mota, Paula C; Ehmcke, Jens; Westernströer, Birgit; Gassei, Kathrin; Ramalho-Santos, João; Schlatt, Stefan

    2012-01-15

    The loss of genetic diversity due to premature death of valuable individuals is a significant problem in animal conservation programs, including endangered felids. Testis tissue xenografting has emerged as a system to obtain spermatozoa from dead immature animals, however protocols to store this tissue before xenografting are still lacking. This study focused on testis tissue cryopreservation and storage from the domestic cat (Felis catus) classified as "pre-pubertal" and "pubertal" according to spermatogenesis development. Grafts from testis tissue cryopreserved with DMSO 1.4M, recovered after 10 weeks xenografting, presented seminiferous tubules with no germ cells. On the contrary, testis tissue from pre-pubertal animals preserved in ice-cold medium for 2 to 5 days presented no loss of viability or spermatogenic potential, while the number of grafts of pubertal cat testis tissue with germ cells after 10 weeks of xenografting decreased with increasing storage time. Nevertheless, even grafts from pre-pubertal cat testis tissue presented lower anti-DDX4 and anti-BOULE staining (proteins necessary for the meiosis completion), when compared with adult cat testis. Finally, a strong correlation found between testis weight and xenograft outcome may help choose good candidates for xenografting. PMID:21958640

  20. Mutational Landscapes of Sequential Prostate Metastases and Matched Patient Derived Xenografts during Enzalutamide Therapy

    PubMed Central

    Kohli, Manish; Wang, Liguo; Xie, Fang; Sicotte, Hugues; Yin, Ping; Dehm, Scott M.; Hart, Steven N.; Vedell, Peter T.; Barman, Poulami; Qin, Rui; Mahoney, Douglas W.; Carlson, Rachel E.; Eckel-Passow, Jeanette E.; Atwell, Thomas D.; Eiken, Patrick W.; McMenomy, Brendan P.; Wieben, Eric D.; Jha, Gautam; Jimenez, Rafael E.; Weinshilboum, Richard; Wang, Liewei

    2015-01-01

    Developing patient derived models from individual tumors that capture the biological heterogeneity and mutation landscape in advanced prostate cancer is challenging, but essential for understanding tumor progression and delivery of personalized therapy in metastatic castrate resistant prostate cancer stage. To demonstrate the feasibility of developing patient derived xenograft models in this stage, we present a case study wherein xenografts were derived from cancer metastases in a patient progressing on androgen deprivation therapy and prior to initiating pre-chemotherapy enzalutamide treatment. Tissue biopsies from a metastatic rib lesion were obtained for sequencing before and after initiating enzalutamide treatment over a twelve-week period and also implanted subcutaneously as well as under the renal capsule in immuno-deficient mice. The genome and transcriptome landscapes of xenografts and the original patient tumor tissues were compared by performing whole exome and transcriptome sequencing of the metastatic tumor tissues and the xenografts at both time points. After comparing the somatic mutations, copy number variations, gene fusions and gene expression we found that the patient’s genomic and transcriptomic alterations were preserved in the patient derived xenografts with high fidelity. These xenograft models provide an opportunity for predicting efficacy of existing and potentially novel drugs that is based on individual metastatic tumor expression signature and molecular pharmacology for delivery of precision medicine. PMID:26695660

  1. Xenograft survival in two species combinations using total-lymphoid irradiation and cyclosporine

    SciTech Connect

    Knechtle, S.J.; Halperin, E.C.; Bollinger, R.R.

    1987-02-01

    Total lymphoid irradiation (TLI) has profound immunosuppressive actions and has been applied successfully to allotransplantation but not xenotransplantation. Cyclosporine (CsA) has not generally permitted successful xenotransplantation of organs but has not been used in combination with TLI. TLI and CsA were given alone and in combination to rats that were recipients of hamster or rabbit cardiac xenografts. Combined TLI and CsA prolonged survival of hamster-to-rat cardiac xenografts from three days in untreated controls to greater than 100 days in most recipients. TLI alone significantly prolonged rabbit to rat xenograft survival with doubling of survival time. However, combined treatment did not significantly prolong rabbit-to-rat cardiac xenograft survival compared with TLI alone. The hamster and rat are phylogenetically closely related. Transplants from hamsters to rat are concordant xenografts since the time course of unmodified rejection is similar to first-set rejection of allografts. Although the rabbit-to-rat transplant is also between concordant species (average survival of untreated controls: 3.2 days) the rabbit and rat are more distantly related. These results suggest that TLI is an effective immunosuppressant when applied to cardiac xenotransplants in these animal models; that the choice of species critically affects xenograft survival when TLI and/or CsA are used for immunosuppression; and that the closely related species combination tested has markedly prolonged (greater than 100 days) survival using combined TLI and CsA.

  2. Inhibitory Effects of Calcitriol on the Growth of MCF-7 Breast Cancer Xenografts in Nude Mice: Selective Modulation of Aromatase Expression in vivo

    PubMed Central

    Swami, Srilatha; Krishnan, Aruna V.; Wang, Jennifer Y.; Jensen, Kristin; Peng, Lihong; Albertelli, Megan A.

    2011-01-01

    Calcitriol (1,25-dihydroxyvitamin D3), the hormonally active metabolite of vitamin D, exerts many anticancer effects in breast cancer (BCa) cells. We have previously shown using cell culture models that calcitriol acts as a selective aromatase modulator (SAM) and inhibits estrogen synthesis and signaling in BCa cells. We have now examined calcitriol effects in vivo on aromatase expression, estrogen signaling, and tumor growth when used alone and in combination with aromatase inhibitors (AIs). In immunocompromised mice bearing MCF-7 xenografts, increasing doses of calcitriol exhibited significant tumor inhibitory effects (~50% to 70% decrease in tumor volume). At the suboptimal doses tested, anastrozole and letrozole also caused significant tumor shrinkage when used individually. Although the combinations of calcitriol and the AIs caused a statistically significant increase in tumor inhibition in comparison to the single agents, the cooperative interaction between these agents appeared to be minimal at the doses tested. Calcitriol decreased aromatase expression in the xenograft tumors. Importantly, calcitriol also acted as a SAM in the mouse, decreasing aromatase expression in the mammary adipose tissue, while increasing it in bone marrow cells and not altering it in the ovaries and uteri. As a result, calcitriol significantly reduced estrogen levels in the xenograft tumors and surrounding breast adipose tissue. In addition, calcitriol inhibited estrogen signaling by decreasing tumor ERα levels. Changes in tumor gene expression revealed the suppressive effects of calcitriol on inflammatory and growth signaling pathways and demonstrated cooperative interactions between calcitriol and AIs to modulate gene expression. We hypothesize that cumulatively these calcitriol actions would contribute to a beneficial effect when calcitriol is combined with an AI in the treatment of BCa. PMID:21686077

  3. The 6-OHDA mouse model of Parkinson's disease - Terminal striatal lesions provide a superior measure of neuronal loss and replacement than median forebrain bundle lesions.

    PubMed

    Bagga, V; Dunnett, S B; Fricker, R A

    2015-07-15

    Unilateral 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal pathway produce side-biased motor impairments that reflect the motor deficits seen in Parkinson's disease (PD). This toxin-induced model in the rat has been used widely, to evaluate possible therapeutic strategies, but has not been well established in mice. With the advancements in mouse stem cell research we believe the requirement for a mouse model is essential for the therapeutic potential of these and other mouse-derived cells to be efficiently assessed. This aim of this study focused on developing a mouse model of PD using the 129 P2/OLA Hsd mouse strain as this is widely used in the generation of mouse embryonic stem cells. Both unilateral 6-OHDA medial forebrain bundle (MFB) and striatal lesion protocols were compared, with mice analysed for appropriate drug-induced rotational bias. Results demonstrated that lesioned mice responded to d-amphetamine with peak rotation dose at 5mg/kg and 10mg/kg for MFB and striatal lesions respectively. Apomorphine stimulation produced no significant rotational responses, at any dose, in either the MFB or striatal 6-OHDA lesioned mice. Analysis of dopamine neuron loss revealed that the MFB lesion was unreliable with little correlation between dopamine neuron loss and rotational asymmetry. Striatal lesions however were more reliable, with a strong correlation between dopamine neuron loss and rotational asymmetry. Functional recovery of d-amphetamine-induced rotational bias was shown following transplantation of E13 mouse VM tissue into the lesioned striatum; confirming the validity of this mouse model. PMID:25841616

  4. Validation of the labeled bicarbonate technique for measurement of short-term energy expenditure in the mouse.

    PubMed

    Speakman, J R; Thomson, S C

    1997-12-01

    The energy expenditure of free-living animals has been studied extensively by the doubly-labeled water (DLW) technique. This method provides a reasonably accurate estimate of daily energy needs. However, there is considerable interest in the energy demands of animals over much shorter timescales, for which the DLW technique is less useful. We examined the possibility of measuring the expenditure of small animals over these shorter timescales from the washout kinetics of a bolus dose of 13C labeled bicarbonate. The study involved 19 laboratory mice which were injected either i.p. or s.c. with 0.2 ml of 13C labeled bicarbonate in water. Mice were placed in a standard respirometry system, maintained at different temperatures to precipitate a 3 fold variation in metabolism. Samples of breath were collected from the chamber into vacutainers at one minute intervals for approximately 40 minutes to an hour. Samples were analyzed by admission to a mass spectrometer (VG Optima) via a GC interface which identified and admitted the CO2 peak. The log converted isotope elimination was linear (r2 > 98% in all cases) indicating a single pool was involved. We evaluated the pool size from a dilution series of the injectate in equilibrium with CO2 gas. Conventional compartmental analysis produced an estimate which on average across the 19 individuals provided a reasonable estimate of the CO2 production. Individual estimates were however imprecise and the overall correlation between isotope and calorimeter estimates had an r2 of only 15%. Reasons for this discrepancy are unclear. Nevertheless an empirical model, using the elimination gradient, pool size and route of isotope administration as predictors explained 86% of the variation in CO2 production. Elimination of a bolus dose of 13C labeled bicarbonate provides a useful tool for estimating the energy metabolism of mice over intervals between 15 and 40 minutes. PMID:9467215

  5. Indirect Measurement of Regional Axon Diameter in Excised Mouse Spinal Cord with Q-space Imaging: Simulation and Experimental Studies

    PubMed Central

    Ong, Henry H.; Wright, Alex C.; Wehrli, Suzanne L.; Souza, Andre; Schwartz, Eric D.; Hwang, Scott N.; Wehrli, Felix W.

    2008-01-01

    Q-space imaging (QSI), a diffusion MRI technique, can provide quantitative tissue architecture information at cellular dimensions not amenable by conventional diffusion MRI. By exploiting regularities in molecular diffusion barriers, QSI can estimate the average barrier spacing such as the mean axon diameter in white matter (WM). In this work, we performed ex vivo QSI on cervical spinal cord sections from healthy C57BL/6 mice at 400MHz using a custom-designed uniaxial 50T/m gradient probe delivering a 0.6 µm displacement resolution capable of measuring axon diameters on the scale of 1 µm. After generating QSI-derived axon diameter maps, diameters were calculated using histology from seven WM tracts (dorsal corticospinal, gracilis, cuneatus, rubrospinal, spinothalamic, reticulospinal, and vestibulospinal tracts) each with different axon diameters. We found QSI-derived diameters from regions drawn in the seven WM tracts (1.1 to 2.1 µm) to be highly correlated (r2 = 0.95) with those calculated from histology (0.8 to 1.8 µm). The QSI-derived values overestimated those obtained by histology by approximately 20%, which is likely due to the presence of extra-cellular signal. Finally, simulations on images of synthetic circular axons and axons from histology suggest that QSI-derived diameters are informative despite diameter and axon shape variation and the presence of intra-cellular and extra-cellular signal. QSI may be able to quantify nondestructively changes in WM axon architecture due to pathology or injury at the cellular level. PMID:18342541

  6. Indirect measurement of regional axon diameter in excised mouse spinal cord with q-space imaging: simulation and experimental studies.

    PubMed

    Ong, Henry H; Wright, Alex C; Wehrli, Suzanne L; Souza, Andre; Schwartz, Eric D; Hwang, Scott N; Wehrli, Felix W

    2008-05-01

    Q-space imaging (QSI), a diffusion MRI technique, can provide quantitative tissue architecture information at cellular dimensions not amenable by conventional diffusion MRI. By exploiting regularities in molecular diffusion barriers, QSI can estimate the average barrier spacing such as the mean axon diameter in white matter (WM). In this work, we performed ex vivo QSI on cervical spinal cord sections from healthy C57BL/6 mice at 400 MHz using a custom-designed uniaxial 50T/m gradient probe delivering a 0.6 microm displacement resolution capable of measuring axon diameters on the scale of 1 microm. After generating QSI-derived axon diameter maps, diameters were calculated using histology from seven WM tracts (dorsal corticospinal, gracilis, cuneatus, rubrospinal, spinothalamic, reticulospinal, and vestibulospinal tracts) each with different axon diameters. We found QSI-derived diameters from regions drawn in the seven WM tracts (1.1 to 2.1 microm) to be highly correlated (r(2)=0.95) with those calculated from histology (0.8 to 1.8 microm). The QSI-derived values overestimated those obtained by histology by approximately 20%, which is likely due to the presence of extra-cellular signal. Finally, simulations on images of synthetic circular axons and axons from histology suggest that QSI-derived diameters are informative despite diameter and axon shape variation and the presence of intra-cellular and extra-cellular signal. QSI may be able to quantify nondestructively changes in WM axon architecture due to pathology or injury at the cellular level. PMID:18342541

  7. Collagen density and alignment in responsive and resistant trastuzumab-treated breast cancer xenografts

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Cook, Rebecca S.; Lee, Jae H.; Arteaga, Carlos L.; Skala, Melissa C.

    2015-02-01

    Tumor collagen characteristics influence tumor malignancy, invasion, and metastasis. This study investigates the effects of trastuzumab (Tz) on the collagen of Tz-responsive (BT474) and Tz-resistant (HR6) breast cancer xenografts. Collagen content was assessed by in vivo second harmonic generation (SHG) imaging and histological trichrome staining of tumor sections. Collagen SHG imaging of control BT474 and HR6 tumors demonstrated increased collagen density after 14 days of treatment (p<0.05). Trichrome staining revealed decreased collagen in Tz-treated BT474 and HR6 tumors at 2, 5, and 14 days of treatment, suggesting that Tz affects the tumor microenvironment independent of epithelial cell response. Additionally, collagen alignment analysis revealed significantly less aligned collagen in the Tz-treated BT474 tumors at day 14 compared with control BT474 tumors. There was no correlation between SHG endpoints (collagen density and alignment) and trichrome staining (p>0.05), consistent with the physically distinctive nature of these measurements. There was also no correlation between tumor size and collagen endpoints (p>0.05). These results identify changes within the collagen compartment of the tumor microenvironment following Tz treatment, which are independent from the tumor cell response to Tz, and demonstrate that intravital collagen SHG imaging is capable of measuring dynamic changes in tumor microenvironment following treatment that complements trichrome staining.

  8. Patient-derived xenograft (PDX) tumors increase growth rate with time

    PubMed Central

    Pearson, Alexander T.; Finkel, Kelsey A.; Warner, Kristy A.; Nör, Felipe; Tice, David; Martins, Manoela D.; Jackson, Trachette L.; Nör, Jacques E.

    2016-01-01

    Patient-derived xenograft (PDX) models are frequently used for translational cancer research, and are assumed to behave consistently as the tumor ages. However, growth rate constancy as a function of time is unclear. Notably, variable PDX growth rates over time might have implications for the interpretation of translational studies. We characterized four PDX models through several in vivo passages from primary human head and neck squamous cell carcinoma and salivary gland adenoid cystic carcinoma. We developed a mathematical approach to merge growth data from different passages into a single measure of relative tumor volume normalized to study initiation size. We analyzed log-relative tumor volume increase with linear mixed effect models. Two oral pathologists analyzed the PDX tissues to determine if histopathological feature changes occurred over in vivo passages. Tumor growth rate increased over time. This was determined by repeated measures linear regression statistical analysis in four different PDX models. A quadratic statistical model for the temporal effect predicted the log-relative tumor volume significantly better than a linear time effect model. We found a significant correlation between passage number and histopathological features of higher tumor grade. Our mathematical treatment of PDX data allows statistical analysis of tumor growth data over long periods of time, including over multiple passages. Non-linear tumor growth in our regression models revealed the exponential growth rate increased over time. The dynamic tumor growth rates correlated with quantifiable histopathological changes that related to passage number in multiple types of cancer. PMID:26783960

  9. Mouse Phenome Database

    PubMed Central

    Grubb, Stephen C.; Bult, Carol J.; Bogue, Molly A.

    2014-01-01

    The Mouse Phenome Database (MPD; phenome.jax.org) was launched in 2001 as the data coordination center for the international Mouse Phenome Project. MPD integrates quantitative phenotype, gene expression and genotype data into a common annotated framework to facilitate query and analysis. MPD contains >3500 phenotype measurements or traits relevant to human health, including cancer, aging, cardiovascular disorders, obesity, infectious disease susceptibility, blood disorders, neurosensory disorders, drug addiction and toxicity. Since our 2012 NAR report, we have added >70 new data sets, including data from Collaborative Cross lines and Diversity Outbred mice. During this time we have completely revamped our homepage, improved search and navigational aspects of the MPD application, developed several web-enabled data analysis and visualization tools, annotated phenotype data to public ontologies, developed an ontology browser and released new single nucleotide polymorphism query functionality with much higher density coverage than before. Here, we summarize recent data acquisitions and describe our latest improvements. PMID:24243846

  10. Mouse phenome database.

    PubMed

    Grubb, Stephen C; Bult, Carol J; Bogue, Molly A

    2014-01-01

    The Mouse Phenome Database (MPD; phenome.jax.org) was launched in 2001 as the data coordination center for the international Mouse Phenome Project. MPD integrates quantitative phenotype, gene expression and genotype data into a common annotated framework to facilitate query and analysis. MPD contains >3500 phenotype measurements or traits relevant to human health, including cancer, aging, cardiovascular disorders, obesity, infectious disease susceptibility, blood disorders, neurosensory disorders, drug addiction and toxicity. Since our 2012 NAR report, we have added >70 new data sets, including data from Collaborative Cross lines and Diversity Outbred mice. During this time we have completely revamped our homepage, improved search and navigational aspects of the MPD application, developed several web-enabled data analysis and visualization tools, annotated phenotype data to public ontologies, developed an ontology browser and released new single nucleotide polymorphism query functionality with much higher density coverage than before. Here, we summarize recent data acquisitions and describe our latest improvements. PMID:24243846

  11. Gene expression in human ovarian tissue after xenografting.

    PubMed

    Van Langendonckt, A; Romeu, L; Ambroise, J; Amorim, C; Bearzatto, B; Gala, J L; Donnez, J; Dolmans, M M

    2014-06-01

    Cryobanking and transplantation of ovarian tissue is a promising approach to restore fertility in cancer patients. However, ischemic stress following avascular ovarian cortex grafting is known to induce stromal tissue fibrosis and alterations in follicular development. The aim of the study was to analyze the impact of freeze-thawing and grafting procedures on gene expression in human ovarian tissue. Frozen-thawed ovarian tissue from 14 patients was xenografted for 7 days to nude mice and one ungrafted fragment was used as a control. Immediately after recovery, grafts were processed for RNA extraction and histological analysis. Their expression profile was screened by whole-genome oligonucleotide array (n = 4) and validated by reverse-transcriptase polymerase chain analysis (n = 10). After data filtering, the Limma package was used to build a linear regression model for each gene and to compute its fold change between tissues on Days 0 and 7. After adjusting the P-value by the Sidak method, 84 of the transcripts were significantly altered after 7 days of grafting, including matrix metalloproteinase-9 and -14 and angiogenic factors such as placental growth factor and C-X-C chemokine receptor type 4 (CXCR4). Major biological processes were related to tissue remodeling, including secretory processes, cellular adhesion and response to chemical and hormonal stimuli. Angiopoietin signaling, the interleukin-8 pathway and peroxisome proliferator-activated receptor activation were shown to be differentially regulated. On Day 7, overexpression was confirmed by PCR for interleukin-8, transforming growth factor-beta 1, matrix metalloproteinase-14 and CXCR4, compared with ungrafted controls. In conclusion, new as well as known genes involved in tissue restructuring and angiogenesis were identified and found to play a key role during the first days after human ovarian tissue transplantation. This will facilitate the development of strategies to optimize grafting techniques. PMID

  12. In vivo imaging of xenograft tumors using an epidermal growth factor receptor-specific affibody molecule labeled with a near-infrared fluorophore.

    PubMed

    Gong, Haibiao; Kovar, Joy; Little, Garrick; Chen, Huaxian; Olive, David Michael

    2010-02-01

    Overexpression of epidermal growth factor receptor (EGFR) is associated with many types of cancers. It is of great interest to noninvasively image the EGFR expression in vivo. In this study, we labeled an EGFR-specific Affibody molecule (Eaff) with a near-infrared (NIR) dye IRDye800CW maleimide and tested the binding of this labeled molecule (Eaff800) in cell culture and xenograft mouse tumor models. Unlike EGF, Eaff did not activate the EGFR signaling pathway. Results showed that Eaff800 was bound and taken up specifically by EGFR-overexpressing A431 cells. When Eaff800 was intravenously injected into nude mice bearing A431 xenograft tumors, the tumor could be identified 1 hour after injection and it became most prominent after 1 day. Images of dissected tissue sections demonstrated that the accumulation of Eaff800 was highest in the liver, followed by the tumor and kidney. Moreover, in combination with a human EGFR type 2 (HER2)-specific probe Haff682, Eaff800 could be used to distinguish between EGFR- and HER2-overexpressing tumors. Interestingly, the organ distribution pattern and the clearance rate of Eaff800 were different from those of Haff682. In conclusion, Eaff molecule labeled with a NIR fluorophore is a promising molecular imaging agent for EGFR-overexpressing tumors. PMID:20126472

  13. Mechanistic Effects of Long-Term Ultraviolet B Irradiation Induce Epidermal and Dermal Changes in Human Skin Xenografts

    PubMed Central

    Hachiya, Akira; Sriwiriyanont, Penkanok; Fujimura, Tsutomu; Ohuchi, Atsushi; Kitahara, Takashi; Takema, Yoshinori; Kitzmiller, William J.; Visscher, Marty O.; Tsuboi, Ryoji; Boissy, Raymond E.

    2009-01-01

    UVB irradiation has been reported to induce photoaging and suppress systemic immune function that could lead to photocarcinogenesis. However, because of the paucity of an UVB-induced photodamaged skin model, precise and temporal mechanism(s) underlying the deleterious effects of long-term UVB exposure on human skin have yet to be delineated. In this study, we established a model using human skin xenografted onto severe combined immunodeficient mice, which were subsequently challenged by repeated UVB irradiation for 6 weeks. Three-dimensional optical image analysis of skin replicas and noninvasive biophysical measurements illustrated a significant increase in skin surface roughness, similar to premature photoaging, and a significant loss of skin elasticity after long-term UVB exposure. Resembling authentically aged skin, UVB-exposed samples exhibited significant increases in epithelial keratins (K6, K16, K17), elastins, and matrix metalloproteinases (MMP-1, MMP-9, MMP-12) as well as degradation of collagens (I, IV, VII). The UVB-induced deterioration of fibrous keratin intermediate filaments was also observed in the stratum corneum. Additionally, similarities in gene expression patterns between our model and chronologically aged skin substantiated the plausible relationship between photodamage and chronological age. Furthermore, severe skin photodamage was observed when neutralizing antibodies against TIMP-1, an endogenous inhibitor of MMPs, were administered during the UVB exposure regimen. Taken together, these findings suggest that our skin xenograft model recapitulates premature photoaged skin and provides a comprehensive tool with which to assess the deleterious effects of UVB irradiation. PMID:19147832

  14. Lipid Extraction from Mouse Feces

    PubMed Central

    Kraus, Daniel; Yang, Qin; Kahn, Barbara B.

    2016-01-01

    The analysis of feces composition is important for the study of energy metabolism, which comprises various measurements of energy intake, energy expenditure, and energy wasting. The current protocol describes how to measure energy-dense lipids in mouse feces using a modification of the method proposed by Folch et al. (1957). PMID:27110587

  15. The development and validation of an immunoassay for the measurement of anti-thymidine phosphorylase antibodies in mouse and dog sera.

    PubMed

    Gasson, Charlotte; Levene, Michelle; Bax, Bridget E

    2013-01-01

    Erythrocyte encapsulated thymidine phosphorylase (EE-TP) is under development as an enzyme replacement therapy for mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), a fatal metabolic disorder resulting from an inherited deficiency of the enzyme thymidine phosphorylase. We report here the development and validation of a sensitive electrochemiluminescent (ECL) bridging immunoassay to support Good Laboratory Practice (GLP)-compliant preclinical safety studies of EE-TP in the mouse and dog. Affinity-purified rabbit anti-E. coli thymidine phosphorylase (TP) antibody was used as a calibrator standard with an effective working range of 2.5-7500 ng/mL. The minimum required dilution (MRD) for both mouse and dog sera was 1:10. The mean analytical recoveries for anti-TP antibodies spiked into serum at 70 ng/mL and 7000 ng/mL were 117.9% and 93.2%, respectively for mouse, and 112.0% and 104.3%, respectively for dog. The intra-assay precision (coefficient of variation, CV) ranged between 1.1% and 8.0% in mouse serum, and 1.9% and 2.5% in dog serum. Inter-assay precision ranged between -1.6% and 6.7% in mouse serum, and -13.0% and -2.5% in dog serum. Assay cut-point/screening cut-point correction factors were 201.37 and 44.4, respectively for mouse and dog sera. For future analysis of positive test samples, less than 37.12% (mouse) and 31.41% (dog) inhibition of the assay signal in the confirmation assay will confer anti-TP antibody specificity. Assay drift and hook effects (prozone) were not observed. The intra-assay and inter-assay accuracy for robustness were within ±20%. PMID:23146222

  16. Imaging the microenvironment of pancreatic cancer patient-derived orthotopic xenografts (PDOX) growing in transgenic nude mice expressing GFP, RFP, or CFP.

    PubMed

    Hoffman, Robert M; Bouvet, Michael

    2016-09-28

    We have developed a multi-color, imageable, orthotopic mouse model for individual patients with pancreatic cancer. The tumors are labeled by first passaging them orthotopically through transgenic nude mice expressing green fluorescent protein (GFP), red fluorescent protein (RFP), or cyan fluorescent protein (CFP). Passage of the tumors in these colored transgenic mice labels the stromal cells of the tumor. The cancer cells in the PDOX are labeled in situ with GFP by telomerase-dependent adenovirus OBP-401. The models are termed imageable patient-derived orthotopic xenografts (iPDOX). The tumors acquired brightly-fluorescent stromal cells from the transgenic host mice, which were stably associated with the tumors through multiple passages. The colored fluorescent protein-expressing stromal cells included cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). This model enables powerful color-coded imaging of the interaction of cancer and stromal cells during tumor progression and treatment. PMID:26742463

  17. The vascular disrupting activity of OXi8006 in endothelial cells and its phosphate prodrug OXi8007 in breast tumor xenografts.

    PubMed

    Strecker, Tracy E; Odutola, Samuel O; Lopez, Ramona; Cooper, Morgan S; Tidmore, Justin K; Charlton-Sevcik, Amanda K; Li, Li; MacDonough, Matthew T; Hadimani, Mallinath B; Ghatak, Anjan; Liu, Li; Chaplin, David J; Mason, Ralph P; Pinney, Kevin G; Trawick, Mary Lynn

    2015-12-01

    This study describes the vascular disrupting ability and the mechanism of action of the indole-based tubulin-binding compound, OXi8006, and its water-soluble phosphate prodrug OXi8007. Treatment of rapidly proliferating human umbilical vein endothelial cells (HUVECs), used as a model for the tumor vasculature, with OXi8006 or OXi8007, caused potent microtubule disruption followed by extensive reorganization of the cytoskeletal network. The mechanism of action involved an increase in focal adhesion formation associated with an increase in phosphorylation of both non-muscle myosin light chain and focal adhesion kinase. These effects were dramatically diminished by an inhibitor of RhoA kinase, a downstream effector of RhoA. Cell cycle blockade at G2/M and cytotoxicity toward rapidly proliferating HUVECs were also observed. Capillary-like networks of HUVECs were disrupted by the action of both OXi8006 and OXi8007. The prodrug OXi8007 exhibited potent and rapid dose-dependent antivascular activity assessed by dynamic bioluminescence imaging (BLI) in an MDA-MB-231-luc breast cancer xenograft mouse model. By 6 hours post treatment, over 93% of the BLI signal was abolished with only a slight recovery at 24 hours. These findings were confirmed by histology. The results from this study demonstrate that OXi8007 is a potent vascular disrupting agent acting through an anti-microtubule mechanism involving RhoA. PMID:26325604

  18. Suppression subtractive hybridization method for the identification of a new strain of murine hepatitis virus from xenografted SCID mice.

    PubMed

    Islam, Mohammed M; Toohey, Brendan; Purcell, Damian F J; Kannourakis, George

    2015-12-01

    During attempts to clone retroviral determinants associated with a mouse model of Langerhans cell histiocytosis (LCH), suppression subtractive hybridization (SSH) was used to identify unique viruses in the liver of severe combined immunodeficiency (SCID) mice transplanted with LCH tissues. A partial genomic sequence of a murine coronavirus was identified, and the whole genome (31428 bp) of the coronavirus was subsequently sequenced using PCR cloning techniques. Nucleotide sequence comparisons revealed that the genome sequence of the new virus was 91-93% identical to those of known murine hepatitis viruses (MHVs). The predicted open reading frame from the nucleotide sequence encoded all known proteins of MHVs. Analysis at the protein level showed that the virus was closely related to the highly virulent MHV-JHM strain. The virus strain was named MHV-MI. No type D retroviruses were found. Degenerate PCR targeting of type D retrovirus and 5'-RACE targeting of other types of retroviruses confirmed the absence of any retroviral association with the LCH xenografted SCID mice. PMID:26347284

  19. Pharmacological inhibition of p38 MAPK reduces tumor growth in patient-derived xenografts from colon tumors

    PubMed Central

    Papaioannou, Marilena; Lopez-Casas, Pedro Pablo; Llonch, Elisabet; Hidalgo, Manuel; Gorgoulis, Vassilis G.; Nebreda, Angel R.

    2015-01-01

    Colorectal cancer is a major health problem and the second cause of cancer related death in western countries. Signaling pathways that control tissue homeostasis are often deregulated during tumorigenesis and contribute to tumor development. Studies in mouse models have shown that the p38 MAPK pathway regulates homeostasis in colon epithelial cells but also plays an important role in colon tumor maintenance. In this study, we have investigated the role of p38 MAPK signaling in patient-derived xenografts (PDXs) from three different human colon tumors representing clinical heterogeneity and that recapitulate the human tumor conditions both at histological and molecular levels. We have found that PH797804, a chemical inhibitor of p38 MAPK, reduces tumor growth of the three PDXs, which correlates with impaired colon tumor cell proliferation and survival. The inhibition of p38 MAPK in PDXs results in downregulation of the IL-6/STAT3 signaling pathway, which is a key regulator of colon tumorigenesis. Our results show the importance of p38 MAPK in human colon tumor growth using a preclinical model, and support that inhibition of p38 MAPK signaling may have therapeutic interest for colon cancer treatment. PMID:25890501

  20. B1 Sequence-Based Real-Time Quantitative PCR: A Sensitive Method for Direct Measurement of Mouse Plasma DNA Levels After Gamma Irradiation

    SciTech Connect

    Zhang Hengshan; Zhang, Steven B.; Sun Weimin; Yang Shanmin; Zhang Mei; Wang Wei; Liu Chaomei; Zhang Kunzhong; Swarts, Steven; Fenton, Bruce M.; Keng, Peter; Maguire, David; Okunieff, Paul Zhang Lurong

    2009-08-01

    Purpose: Current biodosimetric techniques for determining radiation exposure have inherent delays, as well as quantitation and interpretation limitations. We have identified a new technique with the advantage of directly measuring circulating DNA by amplifying inter-B1 regions in the mouse genome, providing a sensitive method for quantitating plasma DNA. Methods and Materials: Real-time quantitative polymerase chain reaction (PCR) was used to detect levels of DNA by amplifying inter-B1 genomic DNA in plasma samples collected at 0-48 h from mice receiving 0-10 Gy total- or partial-body irradiation ({sup 137}Cs {gamma}-ray source at {approx}1.86 Gy/min; homogeneity: {+-} 6.5%). Results: The correlation coefficient between DNA levels and the threshold cycle value (C{sub T}) was 0.996, and the average recoveries of DNA in the assay were 87%. This assay revealed that when BALB/c mice were exposed to 10 Gy total-body irradiation (TBI), plasma DNA levels gradually increased beginning at 3 h after irradiation, peaked at 9 h, and returned to baseline within 48 h. Increased plasma DNA levels were also detected following upper-torso or lower-torso partial-body irradiation; however, TBI approximately doubled those plasma DNA levels at the same radiation dose. This technique therefore reflects total body cell damage. The advantages of this assay are that DNA extraction is not required, the assay is highly sensitive (0.002 ng), and results can be obtained within 2.5 h after collection of plasma samples. Conclusions: A radiation dose-dependent increase of plasma DNA was observed in the dose range from 2 to 10 Gy, suggesting that plasma DNA may be a useful radiation biomarker and adjunct to existing cell-based assays.

  1. B1 Sequence-based real-time Quantitative PCR: A sensitive method for direct measurement of mouse plasma DNA levels after gamma irradiation

    PubMed Central

    Zhang, Hengshan; Zhang, Steven B.; Sun, Weimin; Yang, Shanmin; Zhang, Mei; Wang, Wei; Liu, Chaomei; Zhang, Kunzhong; Swarts, Steven; Fenton, Bruce M.; Keng, Peter; Maguire, David; Okunieff, Paul; Zhang, Lurong

    2010-01-01

    Purpose Current biodosimetric techniques for determining radiation exposure have inherent delays, and quantitation and interpretation limitations. We have identified a new technique with the advantage of directly measuring circulating DNA by amplifying inter-B1 regions in the mouse genome, providing a sensitive method for quantitating plasma DNA. Methods and Materials Real-time quantitative PCR was used to detect levels of DNA by amplifying inter-B1 genomic DNA in plasma samples collected at 0-48 hrs from mice receiving 0-10 Gy total- or partial-body irradiation [137Cs γ-ray source at ≈1.86 Gy/min (homogeneity: ±6.5%)]. Results The correlation coefficient between DNA levels and the threshold cycle value (CT) was 0.996, and the average recoveries of DNA in the assay were 87%. This assay revealed that when BALB/c mice were exposed to 10 Gy TBI, plasma DNA levels gradually increased beginning at 3 hours after irradiation, peaked at 9 hours, and returned to baseline within 48 hours. Increased plasma DNA levels were also detected following upper-torso or lower-torso partial-body irradiation; however, TBI approximately doubled those plasma DNA levels at the same radiation dose. This technique therefore reflects total body cell damage. The advantages of this assay are that DNA extraction is not required, the assay is highly sensitive (0.002 ng), and results can be obtained within 2.5 hours after collection of plasma samples. Conclusions A radiation dose-dependent increase of plasma DNA was observed in the dose range from 2—10 Gy, suggesting that plasma DNA may be a useful radiation biomarker and adjunct to existing cell-based assays. PMID:19616745

  2. Development of Follicle-Stimulating Hormone Receptor Binding Probes to Image Ovarian Xenografts

    PubMed Central

    Lee, Chung-Wein; Guo, Lili; Matei, Daniela; Stantz, Keith

    2015-01-01

    The Follicle-Stimulating Hormone Receptor (FSHR) is used as an imaging biomarker for the detection of ovarian cancer (OC). FSHR is highly expressed on ovarian tumors and involved with cancer development and metastatic signaling pathways. A decapeptide specific to the FSHR extracellular domain is synthesized and conjugated to fluorescent dyes to image OC cells in vitro and tumors xenograft model in vivo. The in vitro binding curve and the average number of FSHR per cell are obtained for OVCAR-3 cells by a high resolution flow cytometer. For the decapeptide, the measured EC50 was 160 μM and the average number of receptors per cell was 1.7 × 107. The decapeptide molecular imaging probe reached a maximum tumor to muscle ratio five hours after intravenous injection and a dose-dependent plateau after 24–48 hours. These results indicate the potential application of a small molecular weight imaging probe specific to ovarian cancer through binding to FSHR. Based on these results, multimeric constructs are being developed to optimize binding to ovarian cells and tumors. PMID:26779384

  3. Interstitial Fluid Pressure and Vascularity of Intradermal and Intramuscular Human Tumor Xenografts

    SciTech Connect

    Gulliksrud, Kristine; Galappathi, Kanthi; Rofstad, Einar K.

    2011-05-01

    Purpose: High interstitial fluid pressure (IFP) in tumors has been shown to be associated with poor prognosis. Mechanisms underlying the intertumor heterogeneity in IFP were investigated in this study. Methods and Materials: A-07 melanoma xenografts were transplanted intradermally or intramuscularly in BALB/c nu/nu mice. IFP was measured in the center of the tumors with a Millar catheter. Tumor blood perfusion and extracellular volume fraction were assessed by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The necrotic fraction, vascular density, and vessel diameters of the tumors were determined by image analysis of histological preparations. Results: Significant intertumor heterogeneity in IFP, blood perfusion, and microvascular morphology was observed whether the tumors were transplanted intradermally or intramuscularly. High IFP was mainly a consequence of high resistance to blood flow caused by low vessel diameters in either transplantation site. IFP decreased with increasing blood perfusion in intradermal tumors and increased with increasing blood perfusion in intramuscular tumors, mainly because the morphology of the tumor microvasculature differed systematically between the two tumor models. Conclusion: The potential of DCE-MRI as a noninvasive method for assessing the IFP of tumors may be limited because any relationship between IFP and blood perfusion may differ with the tumor growth site.

  4. Moxifloxacin increases anti-tumor and anti-angiogenic activity of irinotecan in human xenograft tumors.

    PubMed

    Reuveni, Debby; Halperin, Drora; Fabian, Ina; Tsarfaty, Galia; Askenasy, Nadir; Shalit, Itamar

    2010-04-15

    Camptothecins (CPTs) are topoisomerase I inhibitors chemotherapeutic agents used in combination chemotherapy. We showed previously that combination of moxifloxacin (MXF) and CPT induced inhibitory effects on topoisomerase I activity, on proliferation of HT-29 cells in vitro and enhanced apoptosis, compared to CPT alone. Analysis of secretion of the pro-angiogenic factors IL-8 and VEGF showed significant reduction by MXF. Using a murine model of human colon carcinoma xenograft, we compared the effects of MXF/CPT in vitro to MXF/irinotecan combination in vivo. We show that the MXF/CPT inhibitory effects observed in vitro are reflected in the inhibition of the progressive growth of HT-29 cells implanted in SCID mice. Using caliper measurements, Doppler ultrasonography, image analyses and immunohistochemistry of nuclear proteins (Ki-67) and vascular endothelial cells (CD-31) we show that addition of MXF (45mg/kg) to a relatively ineffective dose of irinotecan (20mg/kg), results in a 50% and 30% decrease, respectively, in tumor size and a decrease in Ki-67 staining. Power Doppler Ultrasound showed a significant, pronounced decrease in the number of blood vessels, as did CD-31 staining, indicating decreased blood flow in tumors in mice treated with MXF alone or MXF/irinotecan compared to irinotecan. These results suggest that the combination of MXF/irinotecan may result in enhanced anti-neoplastic/anti-angiogenic activity. PMID:20025849

  5. Imaging Tumor Variation in Response to Photodynamic Therapy in Pancreatic Cancer Xenograft Models

    SciTech Connect

    Samkoe, Kimberley S.; Chen, Alina; Rizvi, Imran; O'Hara, Julia A.; Hoopes, P. Jack; Pereira, Stephen P.; Hasan, Tayyaba; Pogue, Brian W.

    2010-01-15

    Purpose: A treatment monitoring study investigated the differential effects of orthotopic pancreatic cancer models in response to interstitial photodynamic therapy (PDT), and the validity of using magnetic resonance imaging as a surrogate measure of response was assessed. Methods and Materials: Different orthotopic pancreatic cancer xenograft models (AsPC-1 and Panc-1) were used to represent the range of pathophysiology observed in human beings. Identical dose escalation studies (10, 20, and 40J/cm) using interstitial verteporfin PDT were performed, and magnetic resonance imaging with T2-weighted and T1-weighted contrast were used to monitor the total tumor volume and the vascular perfusion volume, respectively. Results: There was a significant amount of necrosis in the slower-growing Panc-1 tumor using high light dose, although complete necrosis was not observed. Lower doses were required for the same level of tumor kill in the faster-growing AsPC-1 cell line. Conclusions: The tumor growth rate and vascular pattern of the tumor affect the optimal PDT treatment regimen, with faster-growing tumors being relatively easier to treat. This highlights the fact that therapy in human beings shows a heterogeneous range of outcomes, and suggests a need for careful individualized treatment outcomes assessment in clinical work.

  6. Simvastatin sensitizes human gastric cancer xenograft in nude mice to capecitabine by suppressing nuclear factor-kappa B-regulated gene products.

    PubMed

    Manu, Kanjoormana A; Shanmugam, Muthu K; Li, Feng; Chen, Luxi; Siveen, Kodappully Sivaraman; Ahn, Kwang Seok; Kumar, Alan Prem; Sethi, Gautam

    2014-03-01

    Chemoresistance remains a major problem in the treatment of gastric cancer patients. Hence, novel pharmacological agents that can overcome drug resistance are urgently required. Whether simvastatin can sensitize the gastric cancer to the antitumor effects of capecitabine in vitro and in vivo was investigated. The effect of simvastatin on the proliferation of gastric cancer cells was examined by mitochondrial dye-uptake 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method, apoptosis by esterase staining, NF-κB activation by DNA binding assay, and protein expression by western blot analysis. The effect of simvastatin on the tumor growth in xenograft mouse model of human gastric cancer was also examined. Simvastatin suppressed the proliferation of gastric cancer cells, enhanced the apoptotic effects of capecitabine, suppressed the constitutive activation of NF-κB, and abrogated the expression of cyclooxygenase-2 (COX-2), cyclin D1, Bcl-2, survivin, CXC motif receptor 4, and MMP-9 proteins. In a xenograft mouse model, we observed that the administration of simvastatin alone (5 mg/kg body weight, intraperitoneal thrice/week) significantly suppressed the growth of the tumor and this effect was further potentiated by capecitabine treatment. As compared to the vehicle control, simvastatin also suppressed the expression of NF-κB-regulated gene products such as cyclin D1, COX-2, ICAM-1, MMP-9, survivin, Bcl-xL, and XIAP in tumor tissues. Overall, our results demonstrate that simvastatin can enhance the effects of capecitabine through suppression of NF-κB-regulated markers of proliferation, invasion, angiogenesis, and metastasis. PMID:24233024

  7. Co-Inhibition of GLUT-1 Expression and the PI3K/Akt Signaling Pathway to Enhance the Radiosensitivity of Laryngeal Carcinoma Xenografts In Vivo

    PubMed Central

    Xu, Bin; Zhou, Min-Li; Zhou, Shui-Hong; Fan, Jun; Lu, Zhong-Jie

    2015-01-01

    In the present study, we investigated the role of GLUT-1 and PI3K/Akt signaling in radioresistance of laryngeal carcinoma xenografts. Volume, weight, radiosensitization, and the rate of inhibition of tumor growth in the xenografts were evaluated in different groups. Apoptosis was evaluated by TUNEL assay. In addition, mRNA and protein levels of GLUT-1, p-Akt, and PI3K in the xenografts were measured. Treatment with LY294002, wortmannin, wortmannin plus GLUT-1 AS-ODN, and LY294002 plus GLUT-1 AS-ODN after X-ray irradiation significantly reduced the size and weight of the tumors, rate of tumor growth, and apoptosis in tumors compared to that observed in the 10-Gy group (p<0.05). In addition, mRNA and protein expression of GLUT-1, p-Akt, and PI3K was downregulated. The E/O values of LY294002, LY294002 plus GLUT-1 AS-ODN, wortmannin, and wortmannin plus GLUT-1 AS-ODN were 2.7, 1.1, 1.8, and 1.8, respectively. Taken together, these data indicate that GLUT-1 AS-ODN as well as the inhibitors of PI3K/Akt signaling may act as radiosensitizers of laryngeal carcinoma in vivo. PMID:26600164

  8. Combination of Vandetanib, Radiotherapy, and Irinotecan in the LoVo Human Colorectal Cancer Xenograft Model

    SciTech Connect

    Wachsberger, Phyllis; Burd, Randy; Ryan, Anderson; Daskalakis, Constantine; Dicker, Adam P.

    2009-11-01

    Purpose: The tumor growth kinetics of the human LoVo colorectal xenograft model was assessed in response to vandetanib, an orally available receptor tyrosine kinase inhibitor, radiotherapy (RT), or irinotecan (CPT-11), as single therapies and in combination. Methods and Materials: LoVo cells were injected subcutaneously into the right hind limb (5x10{sup 6} cells in 100muL phosphate-buffered saline) of athymic NCR NUM mice and tumors were grown to a volume of 200-300 mm{sup 3} before treatment. Vandetanib was administered at 50 mg/kg daily orally for 14 days starting on Day 1. RT was given as three fractions (3x3 Gy) on Days 1, 2, and 3. CPT-11 was given at 15 mg/kg intraperitoneally on Days 1 and 3. Tumor volumes were measured on a daily basis and calculated by measuring tumor diameters with digital calipers in two orthogonal dimensions. Results: All three single treatments (vandetanib, CPT-11, and radiation) significantly slowed LoVo colorectal tumor growth. Vandetanib significantly increased the antitumor effects of CPT-11 and radiation when given in combination with either of these treatments. These treatment combinations resulted in a slow tumor growth rate during the 2 weeks of vandetanib administration. The triple combination of vandetanib, CPT-11, and radiation produced the most marked improvement in response as observed by measurable shrinkage of tumors during the first week of treatment. Conclusions: The tumor growth delay kinetics observed in this study of the LoVo colorectal model suggest concurrent and sustained post-sequencing of vandetanib with cytotoxic therapy may be beneficial in tumors of this type.

  9. Over-Expression of the LH Receptor Increases Distant Metastases in an Endometrial Cancer Mouse Model

    PubMed Central

    Pillozzi, Serena; Fortunato, Angelo; De Lorenzo, Emanuele; Borrani, Elena; Giachi, Massimo; Scarselli, Gianfranco; Arcangeli, Annarosa; Noci, Ivo

    2013-01-01

    Objective: The aim of the present study was to define the role of luteinizing hormone receptor (LH-R) expression in endometrial cancer (EC), using preclinical mouse models, to further transfer these data to the clinical setting. Materials and Methods: The role of LH-R over-expression was studied using EC cells (Hec1A, e.g., cells with low endogenous LH-R expression) transfected with the LH-R (Hec1A-LH-R). In vitro cell proliferation was measured through the WST-1 assay, whereas cell invasion was measured trough the matrigel assay. The effects of LH-R over-expression in vivo were analyzed in an appropriately developed preclinical mouse model of EC, which mimicked postmenopausal conditions. The model consisted in an orthotopic xenograft of Hec1A cells into immunodeficient mice treated daily with recombinant LH, to assure high levels of LH. Results: In vitro data indicated that LH-R over-expression increased Hec1A invasiveness. In vivo results showed that tumors arising from Hec1A-LH-R cells injection displayed a higher local invasion and a higher number of distant metastases, mainly in the lung, compared to tumors obtained from the injection of Hec1A cells. LH withdrawal strongly inhibited local and distant metastatic spread of tumors, especially those arising from Hec1A-LH-R cells. Conclusion: The over-expression of the LH-R increases the ability of EC cells to undergo local invasion and metastatic spread. This occurs in the presence of high LH serum concentrations. PMID:24312898

  10. MONICA: a compact, portable dual gamma camera system for mouse whole-body imaging

    SciTech Connect

    Choyke, Peter L; Xia, Wenze; Seidel, Jurgen; Kakareka, John W; Pohida, Thomas J; Milenic, Diane E; Proffitt, James; Majewski, Stan; Weisenberger, Andrew G; Green, Michael V

    2010-04-01

    Introduction We describe a compact, portable dual-gamma camera system (named "MONICA" for MObile Nuclear Imaging CAmeras) for visualizing and analyzing the whole-body biodistribution of putative diagnostic and therapeutic single photon emitting radiotracers in animals the size of mice. Methods Two identical, miniature pixelated NaI(Tl) gamma cameras were fabricated and installed ?looking up? through the tabletop of a compact portable cart. Mice are placed directly on the tabletop for imaging. Camera imaging performance was evaluated with phantoms and field performance was evaluated in a weeklong In-111 imaging study performed in a mouse tumor xenograft model. Results Tc-99m performance measurements, using a photopeak energy window of 140 keV?10%, yielded the following results: spatial resolution (FWHM at 1 cm), 2.2 mm; sensitivity, 149 cps (counts per seconds)/MBq (5.5 cps/μCi); energy resolution (FWHM, full width at half maximum), 10.8%; count rate linearity (count rate vs. activity), r2=0.99 for 0?185 MBq (0?5 mCi) in the field of view (FOV); spatial uniformity, <3% count rate variation across the FOV. Tumor and whole-body distributions of the In-111 agent were well visualized in all animals in 5-min images acquired throughout the 168-h study period. Conclusion Performance measurements indicate that MONICA is well suited to whole-body single photon mouse imaging. The field study suggests that inter-device communications and user-oriented interfaces included in the MONICA design facilitate use of the system in practice. We believe that MONICA may be particularly useful early in the (cancer) drug development cycle where basic whole-body biodistribution data can direct future development of the agent under study and where logistical factors, e.g., limited imaging space, portability and, potentially, cost are important.

  11. Keratinocyte-Derived Chemokine Induces Prostate Epithelial Hyperplasia and Reactive Stroma in a Novel Transgenic Mouse Model

    PubMed Central

    Schauer, Isaiah G.; Ressler, Steven J.; Rowley, David R.

    2009-01-01

    Background Interleukin-8 (IL-8) is upregulated in fibrotic and malignant diseases and is a key mediator of proliferative responses. Elevated IL-8 was recently correlated with benign prostatic hyperplasia epithelium and a myofibroblast reactive stroma. Thus, we sought to determine whether overexpressed IL-8 and keratinocyte-derived chemokine (KC), the functional murine homolog of IL-8, induce prostate epithelial hyperplasia and a reactive phenotype. Methods Transgenic mice that overexpress KC within prostate epithelia and xenograft models with engineered human cells that overexpress IL-8 were developed. Results Overexpression of KC in transgenic mice produced hyperplastic prostate epithelial acini associated with a periacinar reactive stroma. KC induced an altered epithelial/stroma proliferation index ratio, increased acini diameter, epithelial infolding, and expression of prototypical reactive stroma markers. Overexpression of IL-8 in normal human prostate epithelial xenografts correlated with elevated epithelial proliferation index and altered morphology. Elevated human prostate stromal and epithelial cell proliferation, nodule-like morphology and increased xenograft survival were observed in IL-8-overexpressing orthotopic xenografts. Conclusions Together, these data demonstrate that overexpression of IL-8/KC results in a prostate epithelial hyperplasia with an associated reactive stroma phenotype. The novel transgenic mouse and human xenograft models described here may be useful in dissecting key mechanisms of IL-8 induced prostate hyperplasia and reactive stroma. PMID:19021203

  12. [sup 90]Y-labeled antibody uptake by human tumor xenografts and the effect of systemic administration of EDTA

    SciTech Connect

    Rowlinson-Busza, G.; Snook, D.; Epenetos, A.A. )

    1994-03-30

    A human tumor xenograft model was used to compare the tumor and normal tissue uptake of a tumor-associated monoclonal antibody radiolabeled with [sup 125]I or [sup 90]Y. Nude mice bearing SC xenografts of the human colon adenocarcinoma, HT29, were injected with a mixture of [sup 125]I- and [sup 90]Y-DTPA-labeled AUA1 monoclonal antibody, which recognizes an antigen expressed on the surface of the tumor cells. In addition, the effect of systemic ethylenediaminetetraacetic acid (EDTA) administration on [sup 90]Y-labeled antibody clearance, tumor uptake of antibody and bone accumulation of [sup 90]Y was studied in a nude mouse model of intraperitoneal cancer. Both the absolute amount (%id[center dot]g[sup -1]) and the tumor:normal tissue ratios were superior for the [sup 90]Y-labeled antibody, compared with the iodinated antibody, with the notable exception of bone. These results suggest that [sup 90]Y is a preferable isotope to iodine for radioimmunotherapy of solid masses, but that myelotoxicity due to bone uptake of released [sup 90]Y will limit the radiation dose which can be given when DTPA is used to chelate the [sup 90]Y. The [sup 90]Y-labeled antibody showed similar serum stability in vitro in the presence or absence of EDTA after incubation for up to 48 h. In vivo, urine excretion of [sup 90]Y was significantly enhanced in mice receiving daily injections of 20 mg EDTA for 3 days, commencing 2 h after intraperitoneal antibody administration, compared with control mice. There was no significant difference in the tumor uptake of [sup 90]Y-labeled antibody in EDTA-treated and control mice at any time-point up to 9 days postinjection. However, the bone levels of [sup 90]Y were significantly reduced in EDTA-treated mice at all times from 1 to 9 days. Based on these results, it should be possible to increase the amount of [sup 90]Y-labeled antibody administered, by chelating the released [sup 90]Y with systemic EDTA to facilitate its excretion. 50 refs., 5 figs.

  13. Development of dog mammary tumor xenograft in immunosuppressed Swiss albino mice.

    PubMed

    Rajmani, R S; Singh, Prafull Kumar; Kumar, Sanjay; Kumar, G Ravi; Sahoo, Aditya P; Santra, Lakshman; Saxena, Shikha; Singh, Lakshya Veer; Chaturvedi, Uttara; Saxena, Lovleen; Desai, G S; Gupta, Shishir Kumar; Kumar, Amit; Jadon, N S; Tiwari, Ashok K

    2014-10-01

    Development and study of dog mammary tumour xenograft in immunosuppressed Swiss Albino Mice adds a new dimension in cancer research as dog tumors have many similarities with human tumors regarding progression, histopathology, molecular mechanism, immune response and therapy. Failure of the immune system to recognize and eliminate cancer cells leads to cancer progression and the fight between immune cells and cancer cells has a great role in understanding the mechanism of cancer progression and elimination. Rejection and acceptance of tumour xenograft depends on efficiency of CD4+, CD8+ and NK cell populations. In the present investigation, dog mammary tumor xenograft in cyclosporine-A and gamma-irradiated, immunosuppressed Swiss Albino mice was developed and the immune cell status of graft accepted and rejected mice was assessed. It was observed that all the major immune cells (CD4+, CD8+ and NK cells) play an equal role in tumour rejection. PMID:25345242

  14. Establishment and characterization of a canine xenograft model of inflammatory mammary carcinoma.

    PubMed

    Camacho, L; Peña, L; González Gil, A; Cáceres, S; Díez, L; Illera, J C

    2013-12-01

    Canine inflammatory mammary cancer (IMC) and human inflammatory breast cancer (IBC) are the most aggressive form of mammary/breast cancer. Both species naturally develop it, sharing epidemiological, clinical and histological characteristics. Thus, IMC has been suggested as a model to study the human disease. We have developed the first IMC xenograft model in SCID mice. Xenografts reproduced the histological features from the primary tumor, were highly aggressive and showed dermal tumor emboli, distinctive hallmarks of IMC/IBC. This model was hormone receptors positive and HER2 negative. Our findings showed that estrogens and androgens are locally produced in tissues. Factors related to tumor vascularization showed positive expression and xenografts with the highest expression of all analyzed vascular factors had the highest rate of tumor proliferation. The role of steroid hormones and the angio/lymphangiogenic properties found in this model, provide additional knowledge for future interventions in the diagnosis, treatment and prevention of the disease. PMID:23972378

  15. Maturation of the developing human fetal prostate in a rodent xenograft model

    PubMed Central

    Saffarini, Camelia M.; McDonnell, Elizabeth V.; Amin, Ali; Spade, Daniel J.; Huse, Susan M.; Kostadinov, Stefan; Hall, Susan J.; Boekelheide, Kim

    2015-01-01

    Background Prostate cancer is the most commonly diagnosed non-skin cancer in men. The etiology of prostate cancer is unknown, although both animal and epidemiologic data suggest that early life exposures to various toxicants, may impact DNA methylation status during development, playing an important role. Methods We have developed a xenograft model to characterize the growth and differentiation of human fetal prostate implants (gestational age 12-24 weeks) that can provide new data on the potential role of early life stressors on prostate cancer. The expression of key immunohistochemical markers responsible for prostate maturation was evaluated, including p63, cytokeratin 18, α-smooth muscle actin, vimentin, caldesmon, Ki-67, prostate specific antigen, estrogen receptor-α, and androgen receptor. Xenografts were separated into epithelial and stromal compartments using laser capture microdissection (LCM), and the DNA methylation status was assessed in >480,000 CpG sites throughout the genome. Results Xenografts demonstrated growth and maturation throughout the 200 days of post-implantation evaluation. DNA methylation profiles of laser capture micro-dissected tissue demonstrated tissue-specific markers clustered by their location in either the epithelium or stroma of human prostate tissue. Differential methylated promoter region CpG-associated gene analysis revealed significantly more stromal than epithelial DNA methylation in the 30 and 90-day xenografts. Functional classification analysis identified CpG-related gene clusters in methylated epithelial and stromal human xenografts. Conclusion This study of human fetal prostate tissue establishes a xenograft model that demonstrates dynamic growth and maturation, allowing for future mechanistic studies of the developmental origins of later life proliferative prostate disease. PMID:24038131

  16. Anti-tumor effect of bevacizumab on a xenograft model of feline mammary carcinoma

    PubMed Central

    MICHISHITA, Masaki; OHTSUKA, Aya; NAKAHIRA, Rei; TAJIMA, Tsuyoshi; NAKAGAWA, Takayuki; SASAKI, Nobuo; ARAI, Toshiro; TAKAHASHI, Kimimasa

    2015-01-01

    Feline mammary carcinomas are characterized by rapid progression and metastases. Vascular endothelial growth factor (VEGF) is a key regulator of tumor angiogenesis, proliferation and metastasis. The present study aimed to investigate the effects of a single drug therapy of bevacizumab on a xenograft model of feline mammary carcinoma expressing VEGF protein. Bevacizumab treatment suppressed tumor growth by inhibiting angiogenesis and enhancing apoptosis; however, it did not affect the tumor proliferation index. Thus, bevacizumab had anti-tumor effects on a xenograft model, and this may be useful for the treatment of feline mammary carcinoma. PMID:26616000

  17. Monitoring longitudinal changes in irradiated head and neck cancer xenografts using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Vishwanath, Karthik; Jiang, Shudong; Gunn, Jason R.; Marra, Kayla; Andreozzi, Jacqueline M.; Pogue, Brian W.

    2016-02-01

    Radiation therapy is often used as the preferred clinical treatment for control of localized head and neck cancer. However, during the course of treatment (6-8 weeks), feedback about functional and/or physiological changes within impacted tissue are not obtained, given the onerous financial and/or logistical burdens of scheduling MRI, PET or CT scans. Diffuse optical sensing is well suited to address this problem since the instrumentation can be made low-cost and portable while still being able to non-invasively provide information about vascular oxygenation in vivo. Here we report results from studies that employed an optical fiber-based portable diffuse reflectance spectroscopy (DRS) system to longitudinally monitor changes in tumor vasculature within two head and neck cancer cell lines (SCC-15 and FaDu) xenografted in the flanks of nude mice, in two separate experiments. Once the tumor volumes were 100mm3, 67% of animals received localized (electron beam) radiation therapy in five fractions (8Gy/day, for 5 days) while 33% of the animals served as controls. DRS measurements were obtained from each animal on each day of treatment and then for two weeks post-treatment. Reflectance spectra were parametrized to extract total hemoglobin concentration and blood oxygen-saturation and the resulting time-trends of optical parameters appear to be dissimilar for the two cell-lines. These findings are also compared to previous animal experiments (using the FaDu line) that were irradiated using a photon beam radiotherapy protocol. These results and implications for the use of fiber-based DRS measurements made at local (irradiated) tumor site as a basis for identifying early radiotherapy-response are presented and discussed.

  18. Effect of Melatonin on Tumor Growth and Angiogenesis in Xenograft Model of Breast Cancer

    PubMed Central

    Jardim-Perassi, Bruna Victorasso; Arbab, Ali S.; Ferreira, Lívia Carvalho; Borin, Thaiz Ferraz; Varma, Nadimpalli R. S.; Iskander, A. S. M.; Shankar, Adarsh; Ali, Meser M.; de Campos Zuccari, Debora Aparecida Pires

    2014-01-01

    As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (p<0.05). The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size and cell proliferation (Ki-67) compared to control animals after 21 days of treatment (p<0.05). Expression of VEGF receptor 2 decreased significantly in the treated animals compared to that of control when determined by immunohistochemistry (p<0.05) but the changes were not significant on SPECT (p>0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (p<0.05). However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05). In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell

  19. The selective VEGFR1-3 inhibitor axitinib (AG-013736) shows antitumor activity in human neuroblastoma xenografts.

    PubMed

    Rössler, Jochen; Monnet, Yann; Farace, Francoise; Opolon, Paule; Daudigeos-Dubus, Estelle; Bourredjem, Abderrahmane; Vassal, Gilles; Geoerger, Birgit

    2011-06-01

    Tumor angiogenesis in childhood neuroblastoma is an important prognostic factor suggesting a potential role for antiangiogenic agents in the treatment of high-risk disease. Within the KidsCancerKinome project, we evaluated the new oral selective pan-VEGFR tyrosine kinase inhibitor axitinib (AG-013736) against neuroblastoma cell lines and the subcutaneous and orthotopic xenograft model IGR-N91 derived from a primary bone marrow metastasis. Axitinib reduced cell proliferation in a dose-dependent manner with IC(50) doses between 274 and >10,000 nmol/l. Oral treatment with 30 mg/kg BID for 2 weeks in advanced tumors yielded significant tumor growth delay, with a median time to reach five times initial tumor volume of 11.4 days compared to controls (p = 0.0006) and resulted in significant reduction in bioluminescence. Simultaneous inhibition of VEGFR downstream effector mTOR using rapamycin 20 mg/kg q2d×5 did not statistically enhance tumor growth delay compared to single agent activities. Axitinib downregulated VEGFR-2 phosphorylation resulting in significantly decreased microvessel density (MVD) and overall surface fraction of tumor vessels (OSFV) in all xenografts as measured by CD34 immunohistochemical staining (mean MVD ± SD and OSFV at 14 days 21.27 ± 10.03 in treated tumors vs. 48.79 ± 17.27 in controls and 0.56% vs. 1.29%; p = 0.0006, respectively). We further explored the effects of axitinib on circulating mature endothelial cells (CECs) and endothelial progenitor cells (CEPs) measured by flow cytometry. While only transient modification was observed for CECs, CEP counts were significantly reduced during and up to 14 days after end of treatment. Axitinib has potent antiangiogenic properties that may warrant further evaluation in neuroblastoma. PMID:20715103

  20. MR Imaging Biomarkers to Monitor Early Response to Hypoxia-Activated Prodrug TH-302 in Pancreatic Cancer Xenografts

    PubMed Central

    Zhang, Xiaomeng; Wojtkowiak, Jonathan W.; Martinez, Gary V.; Cornnell, Heather H.; Hart, Charles P.; Baker, Amanda F.; Gillies, Robert

    2016-01-01

    TH-302 is a hypoxia-activated prodrug known to activate selectively under the hypoxic conditions commonly found in solid tumors. It is currently being evaluated in clinical trials, including two trials in Pancreatic Ductal Adenocarcinomas (PDAC). The current study was undertaken to evaluate imaging biomarkers for prediction and response monitoring of TH-302 efficacy in xenograft models of PDAC. Dynamic contrast-enhanced (DCE) and diffusion weighted (DW) magnetic resonance imaging (MRI) were used to monitor acute effects on tumor vasculature and cellularity, respectively. Three human PDAC xenografts with known differential responses to TH-302 were imaged prior to, and at 24 h and 48 hours following a single dose of TH-302 or vehicle to determine if imaging changes presaged changes in tumor volumes. DW-MRI was performed at five b-values to generate apparent diffusion coefficient of water (ADC) maps. For DCE-MRI, a standard clinically available contrast reagent, Gd-DTPA, was used to determine blood flow into the tumor region of interest. TH-302 induced a dramatic decrease in the DCE transfer constant (Ktrans) within 48 hours after treatment in the sensitive tumors, Hs766t and Mia PaCa-2, whereas TH-302 had no effect on the perfusion behavior of resistant SU.86.86 tumors. Tumor cellularity, estimated from ADC, was significantly increased 24 and 48 hours after treatment in Hs766t, but was not observed in the Mia PaCa-2 and SU.86.86 groups. Notably, growth inhibition of Hs766t was observed immediately (day 3) following initiation of treatment, but was not observed in MiaPaCa-2 tumors until 8 days after initiation of treatment. Based on these preclinical findings, DCE-MRI measures of vascular perfusion dynamics and ADC measures of cell density are suggested as potential TH-302 response biomarkers in clinical trials. PMID:27227903

  1. Cancer-Associated Fibroblasts in a Human HEp-2 Established Laryngeal Xenografted Tumor Are Not Derived from Cancer Cells through Epithelial-Mesenchymal Transition, Phenotypically Activated but Karyotypically Normal

    PubMed Central

    Wang, Mei; Wu, Chun-Ping; Pan, Jun-Yan; Zheng, Wen-Wei; Cao, Xiao-Juan; Fan, Guo-Kang

    2015-01-01

    Cancer-associated fibroblasts (CAFs) play a crucial role in cancer progression and even initiation. However, the origins of CAFs in various cancer types remain controversial, and one of the important hypothesized origins is through epithelial-mesenchymal transition (EMT) from cancer cells. In this study, we investigated whether the HEp-2 laryngeal cancer cells are able to generate CAFs via EMT during tumor formation, which is now still unknown. The laryngeal xenografted tumor model was established by inoculating the HEp-2 laryngeal cancer cell line in nude mice. Primary cultured CAFs from the tumor nodules and matched normal fibroblasts (NFs) from the adjacent connective tissues were subcultured, purified, and verified by immunofluorescence. Migration, invasion, and proliferation potentials were compared between the CAFs and NFs. A co-culture of CAFs with HEp-2 cells and a co-injection of CAFs with HEp-2 cells in nude mice were performed to examine the cancer-promoting potential of CAFs to further verify their identity. Karyotypic analyses of the CAFs, NFs, and HEp-2 cells were conducted. A co-culture of NFs with HEp-2 cells was also performed to examine the expression of activated markers of CAFs. A pathological examination confirmed that the laryngeal xenografted tumor model was successfully established, containing abundant CAFs. Immunocytochemical staining verified the purities and identities of the CAFs and NFs. Although the CAFs manifested higher migration, invasion, proliferation, and cancer-promoting capacities compared with the NFs, an analysis of chromosomes revealed that both the CAFs and NFs showed typical normal mouse karyotypes. In addition, the NFs co-cultured with HEp-2 cells did not show induced expressions of activated markers of CAFs. Our findings reveal that the CAFs in the HEp-2 established laryngeal xenografted tumor are not of laryngeal cancer origin but of mouse origin, indicating that the HEp-2 laryngeal cancer cells cannot generate their

  2. Busulfan depletes neutrophils and delays accelerated acute rejection of discordant xenografts in the guinea pig-to-rat model.

    PubMed

    Brauer, Robert B; Beck, Tino; Stehle, Ingo; Kremer, Marcus; Heidecke, Claus-Dieter

    2003-01-01

    Complement factor C6 plays a critical role in mediating hyperacute rejection of discordant xenografts. In order to explore the mechanism of discordant xenograft rejection, we investigated kinetics and phenotypes of the cellular infiltrate in xenografts in untreated and leukocyte-depleted recipients, in relation to graft survival. Guinea pig cardiac xenografts were heterotopically transplanted to totally C6-deficient PVG (C-) rats. Grafts were removed after 0, 6, 12, and 24 h ( n = 6). Histological evaluation was performed with hematoxylin and eosin (H & E) and immunoperoxidase staining. The agents fucoidin and busulfan were applied to delay xenograft rejection further. Within 6 h, minimal perivascular edema with isolated infiltrating CD11b/c- and ED1-positive cells were found. An intense infiltration of CD11b/c- and ED1-positive cells with interstitial hemorrhage was present after 24 h, though with little CD161 and CD3 cell infiltration. Inhibition of cell adhesion by fucoidin did not prolong xenograft survival (34 +/- 15 h, n = 4, P<0.47), but the depletion of granulocytes by injection of busulfan did prolong survival of the discordant xenografts, to 62 +/- 22 h ( n = 7, P < or = 0.0039). These results demonstrate a significant effect of specific depletion of granulocytes and macrophages by busulfan therapy on guinea pig cardiac xenograft survival in PVG (C-) rats, suggesting the participation of these infiltrating cells in the xenoreactive rejection process. PMID:12545340

  3. 5-Iodo-2-Pyrimidinone-2'-Deoxyribose-Mediated Cytotoxicity and Radiosensitization in U87 Human Glioblastoma Xenografts

    SciTech Connect

    Kinsella, Timothy J. Kinsella, Michael T.; Seo, Yuji; Berk, Gregory

    2007-11-15

    Purpose: 5-Iodo-2-pyrimidinone-2'-deoxyribose (IPdR) is a novel orally administered (p.o.) prodrug of 5-iododeoxyuridine. Because p.o. IPdR is being considered for clinical testing as a radiosensitizer in patients with high-grade gliomas, we performed this in vivo study of IPdR-mediated cytotoxicity and radiosensitization in a human glioblastoma xenograft model, U87. Methods and Materials: Groups of 8 or 9 athymic male nude mice (6-8 weeks old) were implanted with s.c. U87 xenograft tumors (4 x 10{sup 6} cells) and then randomized to 10 treatment groups receiving increasing doses of p.o. IPdR (0, 100, 250, 500, and 1000 mg/kg/d) administered once daily (q.d.) x 14 days with or without radiotherapy (RT) (0 or 2 Gy/d x 4 days) on days 11-14 of IPdR treatment. Systemic toxicity was determined by body weight measurements during and after IPdR treatment. Tumor response was assessed by changes in tumor volumes. Results: IPdR alone at doses of {>=}500 mg/kg/d resulted in moderate inhibition of tumor growth. The combination of IPdR plus RT resulted in a significant IPdR dose-dependent tumor growth delay, with the maximum radiosensitization using {>=}500 mg/kg/d. IPdR doses of 500 and 1000 mg/kg/d resulted in transient 5-15% body weight loss during treatment. Conclusions: In U87 human glioblastoma s.c. xenografts, p.o. IPdR given q.d. x 14 days and RT given 2 Gy/d x 4 days (days 11-14 of IPdR treatment) results in a significant tumor growth delay in an IPdR dose-dependent pattern. The use of p.o. IPdR plus RT holds promise for Phase I/II testing in patients with high-grade gliomas.

  4. Mouse Curve Biometrics

    SciTech Connect

    Schulz, Douglas A.

    2007-10-08

    A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.

  5. Enhancement of monoclonal antibody uptake in human colon tumor xenografts following irradiation

    SciTech Connect

    Kalofonos, H.; Rowlinson, G.; Epenetos, A.A. )

    1990-01-01

    Indium-111-labeled AUA1 tumor-associated monoclonal antibody raised against an antigen of colon adenocarcinoma was used to evaluate the effect of ionizing radiation on antibody uptake by the LoVo adenocarcinoma cell line grown as a xenograft in nude mice. Tumors were exposed to single doses of external X-irradiation of between 400 and 1600 cGy followed, 24 h later, by administration of specific or nonspecific antibody. Animals were sacrificed 3 days after antibody administration. At doses higher than 400 cGy, tumor uptake with both specific and nonspecific antibody was significantly increased. No difference in changes in tumor volume was observed between the groups receiving irradiation and the controls. Specific antibody uptake by tumors was always significantly higher than nonspecific having an approximate 4-fold binding advantage. Vascular permeability and the vascular volume of irradiated and control tumors was measured 24 and 72 h after irradiation, using iodine-125-labeled nonspecific antibody and labelling of the red blood cells in vivo with 99mTcO4. At doses higher than 400 cGy, vascular permeability in the tumor 24 h after irradiation was significantly increased (P less than 0.05), while the vascular volume decreased (P less than 0.001) compared to control values. However at 72 h after irradiation there was no difference between treated and control groups. The results obtained in this study suggest a potential value of external irradiation to increase monoclonal antibody uptake by tumors governed mainly by the increased vascular permeability of the tumor vasculature soon after the irradiation exposure.

  6. High-resolution MRI analysis of breast cancer xenograft on the chick chorioallantoic membrane.

    PubMed

    Zuo, Zhi; Syrovets, Tatiana; Genze, Felicitas; Abaei, Alireza; Ma, Genshan; Simmet, Thomas; Rasche, Volker

    2015-04-01

    The chick chorioallantoic membrane (CAM) model has been successfully used to study angiogenesis, cancer progression and its pharmacological treatment, tumor pharmacokinetics, and properties of novel nanomaterials. MRI is an attractive technique for non-invasive and longitudinal monitoring of physiological processes and tumor growth. This study proposes an age-adapted cooling regime for immobilization of the chick embryo, enabling high-resolution MRI of the embryo and the CAM tumor xenograft. 64 chick embryos were enrolled in this study. The novel immobilization and imaging protocol was optimized in 29 embryos. From d7 to d18 immobilization of the embryo up to 90 min was achieved by cooling at 4 °C pre-imaging, with cooling times adapted to age. Its application to tumor growth monitoring was evaluated in 15 embryos after xenotransplantation of human MDA-MB-231 breast cancer cells on CAM. Tumor volumes were monitored from d4 to d9 after grafting (d11 to d16 after incubation) applying a T2 -weighted multislice RARE sequence. At d9 after grafting, the tumors were collected and compared with the MRI-derived data by histology and weight measurements. Additional imaging methods comprising DWI, T2 mapping, and the bio-distribution of contrast agents were tested at d9 after grafting in 20 further embryos. With the adaptive cooling regime, motion artifacts could be completely avoided for up to 90 min scan time, enabling high-resolution in ovo imaging. Excellent anatomical details could be obtained in the embryo and tumors. Tumor volumes could be quantified over time. The results prove the feasibility of high-resolution MRI for longitudinal tumor and organ growth monitoring. The suggested method is promising for future applications such as testing tailored and/or targeted treatment strategies, longitudinal monitoring of tumor development, analysis of therapeutic efficacies of drugs, or assessment of tumor pharmacokinetics. The method provides an alternative to animal

  7. Building a Brainier Mouse.

    ERIC Educational Resources Information Center

    Tsien, Joe Z.

    2000-01-01

    Describes a genetic engineering project to build an intelligent mouse. Cites understanding the molecular basis of learning and memory as a very important step. Concludes that while science will never create a genius mouse that plays the stock market, it can turn a mouse into a quick learner with a better memory. (YDS)

  8. Optimized Protocol To Analyze Changes in the Lipidome of Xenografts after Treatment with 2-Hydroxyoleic Acid.

    PubMed

    Fernández, Roberto; Garate, Jone; Lage, Sergio; Terés, Silvia; Higuera, Mónica; Bestard-Escalas, Joan; Martin, M Laura; López, Daniel H; Guardiola-Serrano, Francisca; Escribá, Pablo V; Barceló-Coblijn, Gwendolyn; Fernández, José A

    2016-01-01

    Xenografts are a popular model for the study of the action of new antitumor drugs. However, xenografts are highly heterogeneous structures, and therefore it is sometimes difficult to evaluate the effects of the compounds on tumor metabolism. In this context, imaging mass spectrometry (IMS) may yield the required information, due to its inherent characteristics of sensitivity and spatial resolution. To the best of our knowledge, there is still no clear analysis protocol to properly evaluate the changes between samples due to the treatment. Here we present a protocol for the evaluation of the effect of 2-hydroxyoleic acid (2-OHOA), an antitumor compound, on xenografts lipidome based on IMS. Direct treated/control comparison did not show conclusive results. As we will demonstrate, a more sophisticated protocol was required to evaluate these changes including the following: (1) identification of different areas in the xenograft, (2) classification of these areas (necrotic/viable) to compare similar types of tissues, (3) suppression of the effect of the variation of adduct formation between samples, and (4) normalization of the variables using the standard deviation to eliminate the excessive impact of the stronger peaks in the statistical analysis. In this way, the 36 lipid species that experienced the largest changes between treated and control were identified. Furthermore, incorporation of 2-hydroxyoleic acid to a sphinganine base was also confirmed by MS/MS. Comparison of the changes observed here with previous results obtained with different techniques demonstrates the validity of the protocol. PMID:26607740

  9. BRCA1 and BRCA2 mutations sensitize to chemotherapy in patient-derived pancreatic cancer xenografts

    PubMed Central

    Lohse, I; Borgida, A; Cao, P; Cheung, M; Pintilie, M; Bianco, T; Holter, S; Ibrahimov, E; Kumareswaran, R; Bristow, R G; Tsao, M-S; Gallinger, S; Hedley, D W

    2015-01-01

    Background: Germline mutations of the BRCA tumour suppressors have been associated with increased risk of pancreatic cancer. Clinical evidence suggests that these patients may be more sensitive to treatment with cisplatin. As the frequency of germline BRCA mutations is low, definitive experimental data to support the clinical observations are still missing. Methods: We tested gemcitabine and cisplatin sensitivity of four BRCA1 and BRCA2 mutant and three BRCA1 and BRCA2 wild-type (WT) patient-derived pancreatic cancer xenografts. Results: We observed treatment sensitivity to gemcitabine and cisplatin in the BRCA WT and mutant models. The BRCA1 and BRCA2 mutant xenografts were significantly more sensitive to cisplatin although these models also showed sensitivity to gemcitabine. The BRCA1 and BRCA2 WT models showed sensitivity to gemcitabine but not cisplatin. Treatment sensitivity in the xenograft models closely resembled treatment response in the corresponding patients. Discussion: We have characterised a panel of xenografts derived from pancreatic cancer patients carrying germline BRCA mutations, and shown that their genetic features resemble the patient donor. Our results support further clinical testing of treatment regimens combining gemcitabine and platinum drugs in this patient population, as well as preclinical research aiming to identify mechanisms of cisplatin resistance in BRCA mutant pancreatic cancers. PMID:26180923

  10. Human xenograft models as useful tools to assess the potential of novel therapeutics in prostate cancer

    PubMed Central

    van Weerden, W M; Bangma, C; de Wit, R

    2008-01-01

    With docetaxel as effective chemotherapy for hormone refractory prostate cancer (HRPC), the number of new treatment combinations for HRPC is expanding demanding a fast-track screening system. This review elaborates on the use of xenograft models to select the most promising combination therapies for entering into phase II clinical trials. PMID:19088719

  11. The inhibitory efficacy of methylseleninic acid against colon cancer xenografts in C57BL/6 mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data indicate that methylselenol is a critical selenium (Se) metabolite for anticancer activity in vivo. We tested the hypoththesis that oral dosing methylseleninic acid (MSeA), a methylselenol precursor, inhibits the growth of colon cancer xenografts in C57BL/6 mice fed a Se adequate diet. In this...

  12. Heart Xenograft Survival With Chimeric Pig Donors and Modest Immune Suppression

    PubMed Central

    Beschorner, William E.; Sudan, Debra L.; Radio, Stanley J.; Yang, Tianyu; Franco, Kenneth L.; Hill, Arthur C.; Shearon, C. Carson; Thompson, Scott C.; Dixon, Robert S.; Johnson, Noel D.; Kuszynski, Charles A.; Rubocki, Ronald J.; Lechtenberg, Kelly F.; Matamoros, Aurelio; Goertzen, Timothy C.; Fox, Ira J.; Langnas, Alan N.

    2003-01-01

    Objective To assess the use of donor pigs with cellular chimerism for prevention of acute rejection with modest immune suppression. The clinical use of pig organ xenografts is currently precluded by severe acute rejection, which resists standard immune suppression. Summary Background Data For long-term survival of pig organ xenografts, immune suppression significantly greater than used with allografts would currently be necessary, leaving the recipient immune deficient and at increased risk for infections. Induction of immune tolerance and tissue accommodation could enhance xenograft survival but would lead to complications and frequent graft failure. Induction of cellular chimerism within the donor pigs, however, could accomplish these goals before transplantation, significantly reducing the risk. Methods Marrow cells from sheep were infused into fetal pigs. Heart xenografts from chimeric or nonchimeric pigs were transplanted heterotopically into recipient sheep, simultaneous with infusion of splenocytes. Posttransplant suppression consisted of cyclosporine and tapered corticosteroids, comparable with allotransplants. Results All of the control grafts (n = 12) were rejected by acute vascular rejection in 4 to 8 days. In contrast, only one episode of vascular rejection was observed in the experimental group (n = 13). Four experimental recipients had an episode of moderate diffuse cellular rejection (grade 3) and one had moderate focal cellular rejection (grade 2). Each episode responded to pulse steroids. Seven grafts showed no significant rejection. There was little evidence of immune deficiency, infection, or toxicity. Conclusions Acute vascular rejection was prevented in a large animal model without the need for severe immune suppression. PMID:12560785

  13. Andrographolide radiosensitizes human ovarian cancer SKOV3 xenografts due to an enhanced apoptosis and autophagy.

    PubMed

    Zhang, Chao; Qiu, Xingsheng

    2015-11-01

    Andrographolide (AND), a diterpenoid lactone isolated from Andrographis paniculata, has been shown to have radiosensitivity in several types of cancer. Whether AND can radiosensitize ovarian cancer remains unknown. The present study investigated the radiosensitizing effects of AND in human ovarian SKOV3 xenografts and examined the molecular mechanisms of AND-mediated radiosensitization. Nude mice bearing human ovarian SKOV3 were treated with AND to investigate the effects of drug administration on tumor growth, radiosensitivity, apoptosis, and autophagy. Subsequent Western blot analysis and monodansylcadaverine (MDC) staining (autophagy analysis) were used to determine the role of AND. Finally, the pathway of apoptosis was characterized by caspase-3 activity assay as well as TUNEL analysis. AND potently sensitized SKOV3 xenografts to radiation. Moreover, apoptosis and autophagy in radiation combined with drug-treated xenografts increased significantly compared with the simple drug or single radiation treatment. This result was associated with an increase in the Bax/Bcl-2 protein ratio and p-p53 expression after exposure to combination treatment. Meanwhile, the level of Beclin 1 and Atg5 and the conversion from LC3-I to LC3-II, three important proteins involved in autophagy, were increased. AND acts as a strong radiosensitizer in human ovarian SKOV3 xenografts in vivo by increasing the Bax/Bcl-2 protein ratio and promoting the activation of caspase-3, leading to enhanced apoptosis as well as autophagy. PMID:26014516

  14. Tumor-targeting Salmonella typhimurium A1-R in combination with doxorubicin eradicate soft tissue sarcoma in a patient-derived orthotopic xenograft (PDOX) model

    PubMed Central

    Murakami, Takashi; DeLong, Jonathan; Eilber, Fritz C.; Zhao, Ming; Zhang, Yong; Zhang, Nan; Singh, Arun; Russell, Tara; Deng, Samantha; Reynoso, Jose; Quan, Cuong; Hiroshima, Yukihiko; Matsuyama, Ryusei; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Chawla, Sant; Endo, Itaru; Hoffman, Robert M.

    2016-01-01

    A patient with high grade undifferentiated pleomorphic soft-tissue sarcoma from a striated muscle was grown orthotopically in the right biceps femoris muscle of mice to establish a patient-derived orthotopic xenograft (PDOX) model. Twenty PDOX mice were divided into 4 groups: G1, control without treatment; G2, Salmonella typhimurium (S. typhimurium)A1-R administered by intratumoral (i.t.) injection once a week for 4 weeks; G3, doxorubicin (DOX) administered by intraperitoneal (i.p.) injection once a week for 4 weeks; G4, S. typhimurium A1-R (i.t.) administered once a week for 2 weeks followed by i.p. doxorubicin once a week for 2 weeks. On day 25 from the initiation of treatment, tumor volume in G2, G3, and G4 was significantly lower than G1. Mice found without gross tumor included one mouse (20%) in G2; one mouse (20%) in G3; and 3 mice (60%) in G4. Body weight loss did not significantly differ between the 3 treated groups or from the untreated control. Histological examination revealed eradication of tumor only in G4 where mice were treated with S. typhimurium A1-R followed by DOX. Our present study indicates future clinical potential of combining S. typhimurium A1-R with chemotherapy such as DOX for soft tissue sarcoma patients. PMID:26859573

  15. Biobanking of patient and patient-derived xenograft ovarian tumour tissue: efficient preservation with low and high fetal calf serum based methods

    PubMed Central

    Alkema, Nicolette G.; Tomar, Tushar; Duiker, Evelien W.; Jan Meersma, Gert; Klip, Harry; van der Zee, Ate G. J.; Wisman, G. Bea A.; de Jong, Steven

    2015-01-01

    Using patient-derived xenografts (PDXs) for preclinical cancer research demands proper storage of tumour material to facilitate logistics and to reduce the number of animals needed. We successfully established 45 subcutaneous ovarian cancer PDXs, reflecting all histological subtypes, with an overall take rate of 68%. Corresponding cells from mouse replaced human tumour stromal and endothelial cells in second generation PDXs as demonstrated with mouse-specific vimentin and CD31 immunohistochemical staining. For biobanking purposes two cryopreservation methods, a fetal calf serum (FCS)-based (95%v/v) “FCS/DMSO” protocol and a low serum-based (10%v/v) “vitrification” protocol were tested. After primary cryopreservation, tumour take rates were 38% and 67% using either the vitrification or FCS/DMSO-based cryopreservation protocol, respectively. Cryopreserved tumour tissue of established PDXs achieved take rates of 67% and 94%, respectively compared to 91% using fresh PDX tumour tissue. Genotyping analysis showed that no changes in copy number alterations were introduced by any of the biobanking methods. Our results indicate that both protocols can be used for biobanking of ovarian tumour and PDX tissues. However, FCS/DMSO-based cryopreservation is more successful. Moreover, primary engraftment of fresh patient-derived tumours in mice followed by freezing tissue of successfully established PDXs is the preferred way of efficient ovarian cancer PDX biobanking. PMID:26440065

  16. In Vivo Functional Platform Targeting Patient-Derived Xenografts Identifies WDR5-Myc Association as a Critical Determinant of Pancreatic Cancer.

    PubMed

    Carugo, Alessandro; Genovese, Giannicola; Seth, Sahil; Nezi, Luigi; Rose, Johnathon Lynn; Bossi, Daniela; Cicalese, Angelo; Shah, Parantu Krushnakant; Viale, Andrea; Pettazzoni, Piergiorgio Francesco; Akdemir, Kadir Caner; Bristow, Christopher Aaron; Robinson, Frederick Scott; Tepper, James; Sanchez, Nora; Gupta, Sonal; Estecio, Marcos Roberto; Giuliani, Virginia; Dellino, Gaetano Ivan; Riva, Laura; Yao, Wantong; Di Francesco, Maria Emilia; Green, Tessa; D'Alesio, Carolina; Corti, Denise; Kang, Ya'an; Jones, Philip; Wang, Huamin; Fleming, Jason Bates; Maitra, Anirban; Pelicci, Pier Giuseppe; Chin, Lynda; DePinho, Ronald Anthony; Lanfrancone, Luisa; Heffernan, Timothy Paul; Draetta, Giulio Francesco

    2016-06-28

    Current treatment regimens for pancreatic ductal adenocarcinoma (PDAC) yield poor 5-year survival, emphasizing the critical need to identify druggable targets essential for PDAC maintenance. We developed an unbiased and in vivo target discovery approach to identify molecular vulnerabilities in low-passage and patient-derived PDAC xenografts or genetically engineered mouse model-derived allografts. Focusing on epigenetic regulators, we identified WDR5, a core member of the COMPASS histone H3 Lys4 (H3K4) MLL (1-4) methyltransferase complex, as a top tumor maintenance hit required across multiple human and mouse tumors. Mechanistically, WDR5 functions to sustain proper execution of DNA replication in PDAC cells, as previously suggested by replication stress studies involving MLL1, and c-Myc, also found to interact with WDR5. We indeed demonstrate that interaction with c-Myc is critical for this function. By showing that ATR inhibition mimicked the effects of WDR5 suppression, these data provide rationale to test ATR and WDR5 inhibitors for activity in this disease. PMID:27320920

  17. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    SciTech Connect

    Lee, Hae-June; Yoon, Changhwan; Park, Do Joong; Kim, Yeo-Jung; Schmidt, Benjamin; Lee, Yoon-Jin; Tap, William D.; Eisinger-Mathason, T.S. Karin; Choy, Edwin; Kirsch, David G.; Simon, M. Celeste; and others

    2015-03-01

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm{sup 3} within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm{sup 3} for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature.

  18. Sodium Selenite Radiosensitizes Hormone-Refractory Prostate Cancer Xenograft Tumors but Not Intestinal Crypt Cells In Vivo

    SciTech Connect

    Tian Junqiang; Ning Shouchen; Knox, Susan J.

    2010-09-01

    Purpose: We have previously shown that sodium selenite (SSE) increases radiation-induced cell killing of human prostate carcinoma cells in vitro. In this study we further evaluated the in vivo radiosensitizing effect of SSE in prostate cancer xenograft tumors and normal radiosensitive intestinal crypt cells. Methods and Materials: Immunodeficient (SCID) mice with hormone-independent LAPC-4 (HI-LAPC-4) and PC-3 xenograft tumors (approximately 200 mm{sup 3}) were divided into four groups: control (untreated), radiation therapy (XRT, local irradiation), SSE (2 mg/kg, intraperitoneally, 3 times/week), and XRT plus SSE. The XRT was given at the beginning of the regimen as a single dose of 5 Gy for HI-LAPC-4 tumors and a single dose of 7 Gy followed by a fractional dose of 3 Gy/d for 5 days for PC-3 tumors. The tumor volume was measured 3 times per week. The radiosensitizing effect of SSE on normal intestinal epithelial cells was assessed by use of a crypt cell microcolony assay. Results: In the efficacy study, SSE alone significantly inhibited the tumor growth in HI-LAPC-4 tumors but not PC-3 tumors. Sodium selenite significantly enhanced the XRT-induced tumor growth inhibition in both HI-LAPC-4 and PC-3 tumors. In the toxicity study, SSE did not affect the intestinal crypt cell survival either alone or in combination with XRT. Conclusions: Sodium selenite significantly enhances the effect of radiation on well-established hormone-independent prostate tumors and does not sensitize the intestinal epithelial cells to radiation. These results suggest that SSE may increase the therapeutic index of XRT for the treatment of prostate cancer.

  19. Effects of verapamil and alcohol on blood flow, melphalan uptake and cytotoxicity, in murine fibrosarcomas and human melanoma xenografts.

    PubMed

    Robinson, B A; Clutterbuck, R D; Millar, J L; McElwain, T J

    1986-05-01

    Verapamil had previously been shown to increase cellular melphalan uptake and cytotoxicity in fibrosarcomas, and increased the area under the blood concentration versus time curve (AUC) for melphalan in CBA mice. Verapamil (10 mg kg-1 i.p.) had no effect on the fractional distribution of cardiac output (FDCO), measured with 86Rb-rubidium chloride, to subcutaneous fibrosarcomas. 14C-Melphalan uptake by FS13 fibrosarcomas was increased 60 min after verapamil (10 mg kg-1 i.p.), but not after lower doses which did not affect the AUC. Flunarizine (5 mg kg-1 i.p.) also had no effect on FDCO to FS13 fibrosarcomas, and tended to increase 14C-melphalan content of blood and the fibrosarcomas and to promote growth delay by melphalan. Alcohol increased FDCO to FS13 fibrosarcomas, maximally at a 1:20 dilution in saline, but had no effect on 14C-melphalan uptake or growth delay. Thus, melphalan cytotoxicity correlated with tumour melphalan uptake, and both followed changes in the AUC for melphalan but not changes in FDCO. In these murine fibrosarcomas melphalan uptake and cytotoxicity were not limited by blood flow. In subcutaneous human melanoma HX46 xenografts, verapamil had no effect on the FDCO, nor on 14C-melphalan uptake, and did not affect blood 14C-melphalan levels, suggesting absence of effects on the AUC and on cellular uptake. Alcohol did not increase the FDCO to HX46 xenografts, providing evidence for a different vascular supply. PMID:3718818

  20. 90Y-Labeled Anti-ROBO1 Monoclonal Antibody Exhibits Antitumor Activity against Small Cell Lung Cancer Xenografts

    PubMed Central

    Fujiwara, Kentaro; Koyama, Keitaro; Suga, Kosuke; Ikemura, Masako; Saito, Yasutaka; Hino, Akihiro; Iwanari, Hiroko; Kusano-Arai, Osamu; Mitsui, Kenichi; Kasahara, Hiroyuki; Fukayama, Masashi; Kodama, Tatsuhiko; Hamakubo, Takao; Momose, Toshimitsu

    2015-01-01

    Introduction ROBO1 is a membrane protein that contributes to tumor metastasis and angiogenesis. We previously reported that 90Y-labeled anti-ROBO1 monoclonal antibody (90Y-anti-ROBO1 IgG) showed an antitumor effect against ROBO1-positive tumors. In this study, we performed a biodistribution study and radioimmunotherapy (RIT) against ROBO1-positive small cell lung cancer (SCLC) models. Methods For the biodistribution study, 111In-labeled anti-ROBO1 monoclonal antibody (111In-anti-ROBO1 IgG) was injected into ROBO1-positive SCLC xenograft mice via the tail vein. To evaluate antitumor effects, an RIT study was performed, and SCLC xenograft mice were treated with 90Y-anti-ROBO1 IgG. Tumor volume and body weight were periodically measured throughout the experiments. The tumors and organs of mice were then collected, and a pathological analysis was carried out. Results As a result of the biodistribution study, we observed tumor uptake of 111In-anti-ROBO1 IgG. The liver, kidney, spleen, and lung showed comparably high accumulation of 111In-labeled anti-ROBO1. In the RIT study, 90Y-anti-ROBO1 IgG significantly reduced tumor volume compared with baseline. Pathological analyses of tumors revealed coagulation necrosis and fatal degeneration of tumor cells, significant reduction in the number of Ki-67-positive cells, and an increase in the number of apoptotic cells. A transient reduction of hematopoietic cells was observed in the spleen, sternum, and femur. Conclusions These results suggest that RIT with 90Y-anti-ROBO1 IgG is a promising treatment for ROBO1-positive SCLC. PMID:26017283

  1. Non-invasive evaluation of antiangiogenic effect in a mouse tumor model by DCE-MRI with Gd-DTPA cystamine copolymers

    PubMed Central

    Wu, Xueming; Jeong, Eun-Kee; Emerson, Lyska; Hoffman, John; Parker, Dennis L.; Lu, Zheng-Rong

    2009-01-01

    The efficacy of polydisulfide-based biodegradable macromolecular Gd(III) complexes, Gd-DTPA cystamine copolymers (GDCC), for assessing tumor microvascular characteristics and monitoring antiangiogenesis therapy was investigated in a mouse model using dynamic contrast-enhanced MRI (DCE-MRI). The mice bearing human colon tumor xenografts were intraperitoneally injected with an antiangiogenesis agent Avastin® three times in a week at a dose of 200 µg/mouse. DCE-MRI with GDCC of 40 KDa (GDCC-40) was performed before and at 36 hours after the first treatment with Avastin® and at the end of treatment (7 days). Gd(DTPA-BMA) was used as a low molecular weight control. The tumor vascular parameters, endothelial transfer coefficient Ktrans and factional plasma volume fPV, were calculated from the DCE-MRI data with a two-compartment model. The Ktrans and fPV in tumor periphery estimated by DCE-MRI with GDCC-40 before and after the antiangiogenesis treatment correlated well to tumor growth before and after the treatment in the tumor model. In contrast, the parameters estimated by Gd(DTPA-BMA) did not show significant correlation to the therapeutic efficacy. This study demonstrates that DCE-MRI with the biodegradable macromolecular MRI contrast agent can provide effective assessment of the antiangiogenic efficacy of Avastin® in the animal tumor model based on measured vascular parameters in tumor periphery. PMID:19958031

  2. Iron-Oxide-Based Nanovector for Tumor Targeted siRNA Delivery in an Orthotopic Hepatocellular Carcinoma Xenograft Mouse Model.

    PubMed

    Wang, Kui; Kievit, Forrest M; Sham, Jonathan G; Jeon, Mike; Stephen, Zachary R; Bakthavatsalam, Arvind; Park, James O; Zhang, Miqin

    2016-01-27

    Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide. Small interfering RNA (siRNA) holds promise as a new class of therapeutics for HCC, as it can achieve sequence-specific gene knockdown with low cytotoxicity. However, the main challenge in the clinical application of siRNA lies in the lack of effective delivery approaches that need to be highly specific and thus incur low or no systemic toxicity. Here, a nonviral nanoparticle-based gene carrier is presented that can specifically deliver siRNA to HCC. The nanovector (NP-siRNA-GPC3 Ab) is made of an iron oxide core coated with chitosan-polyethylene glycol (PEG) grafted polyethyleneimine copolymer, which is further functionalized with siRNA and conjugated with a monoclonal antibody (Ab) against human glypican-3 (GPC3) receptor highly expressed in HCC. A rat RH7777 HCC cell line that coexpresses human GPC3 and firefly luciferase (Luc) is established to evaluate the nanovector. The nanoparticle-mediated delivery of siRNA against Luc effectively suppresses Luc expression in vitro without notable cytotoxicity. Significantly, NP-siLuc-GPC3 Ab administered intravenously in an orthotopic model of HCC is able to specifically bound to tumor and induce remarkable inhibition of Luc expression. The findings demonstrate the potential of using this nanovector for targeted delivery of therapeutic siRNA to HCC. PMID:26641029

  3. Concomitant consumption of lycopene and fish oil inhibits tumor growth and progression in a mouse xenograft model of colon cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our previous report showed that concomitant supplementation of lycopene and eicosa-pentaenoic acid synergistically inhibited the proliferation of human colon cancer HT-29 cells in vitro. To validate our findings, the present study investigated whether consumption of lycopene and fish oil would help ...

  4. Systems Analysis of a Mouse Xenograft Model Reveals Annexin A1 as a Regulator of Gene Expression in Tumor Stroma

    PubMed Central

    Yi, Ming

    2012-01-01

    Annexin A1 is a multi functional molecule which is involved in inflammation, innate and adaptive immune systems, tumor progression and metastasis. We have previously showed the impaired tumor growth, metastasis, angiogenesis and wound healing in annexin A1 knockout mice. While tumor is a piece of heterogeneous mass including not only malignant tumor cells but also the stroma, the importance of the tumor stroma for tumor progression and metastasis is becoming increasingly clear. The tumor stroma is comprised by various components including extracellular matrix and non-malignant cells in the tumor, such as endothelial cells, fibroblasts, immune cells, inflammatory cells. Based on our previous finding of pro-angiogenic functions for annexin A1 in vascular endothelial cell sprouting, wound healing, tumor growth and metastasis, and the previously known properties for annexin A1 in immune cells and inflammation, this study hypothesized that annexin A1 is a key functional player in tumor development, linking the various components in tumor stroma by its actions in endothelial cells and immune cells. Using systems analysis programs commercially available, this paper further compared the gene expression between tumors from annexin A1 wild type mice and annexin A1 knockout mice and found a list of genes that significantly changed in the tumor stroma that lacked annexin A1. This revealed annexin A1 to be an effective regulator in tumor stroma and suggested a mechanism that annexin A1 affects tumor development and metastasis through interaction with the various components in the microenvironment surrounding the tumor cells. PMID:23077482

  5. Xenograft assessment of predictive biomarkers for standard head and neck cancer therapies.

    PubMed

    Stein, Andrew P; Swick, Adam D; Smith, Molly A; Blitzer, Grace C; Yang, Robert Z; Saha, Sandeep; Harari, Paul M; Lambert, Paul F; Liu, Cheng Z; Kimple, Randall J

    2015-05-01

    Head and neck squamous cell carcinoma (HNSCC) remains a challenging cancer to treat with overall 5-year survival on the order of 50-60%. Therefore, predictive biomarkers for this disease would be valuable to provide more effective and individualized therapeutic approaches for these patients. While prognostic biomarkers such as p16 expression correlate with outcome; to date, no predictive biomarkers have been clinically validated for HNSCC. We generated xenografts in immunocompromised mice from six established HNSCC cell lines and evaluated response to cisplatin, cetuximab, and radiation. Tissue microarrays were constructed from pre- and posttreatment tumor samples derived from each xenograft experiment. Quantitative immunohistochemistry was performed using a semiautomated imaging and analysis platform to determine the relative expression of five potential predictive biomarkers: epidermal growth factor receptor (EGFR), phospho-EGFR, phospho-Akt, phospho-ERK, and excision repair cross-complementation group 1 (ERCC1). Biomarker levels were compared between xenografts that were sensitive versus resistant to a specific therapy utilizing a two-sample t-test with equal standard deviations. Indeed the xenografts displayed heterogeneous responses to each treatment, and we linked a number of baseline biomarker levels to response. This included low ERCC1 being associated with cisplatin sensitivity, low phospho-Akt correlated with cetuximab sensitivity, and high total EGFR was related to radiation resistance. Overall, we developed a systematic approach to identifying predictive biomarkers and demonstrated several connections between biomarker levels and treatment response. Despite these promising initial results, this work requires additional preclinical validation, likely involving the use of patient-derived xenografts, prior to moving into the clinical realm for confirmation among patients with HNSCC. PMID:25619980

  6. Xenograft assessment of predictive biomarkers for standard head and neck cancer therapies

    PubMed Central

    Stein, Andrew P; Swick, Adam D; Smith, Molly A; Blitzer, Grace C; Yang, Robert Z; Saha, Sandeep; Harari, Paul M; Lambert, Paul F; Liu, Cheng Z; Kimple, Randall J

    2015-01-01

    Head and neck squamous cell carcinoma (HNSCC) remains a challenging cancer to treat with overall 5-year survival on the order of 50–60%. Therefore, predictive biomarkers for this disease would be valuable to provide more effective and individualized therapeutic approaches for these patients. While prognostic biomarkers such as p16 expression correlate with outcome; to date, no predictive biomarkers have been clinically validated for HNSCC. We generated xenografts in immunocompromised mice from six established HNSCC cell lines and evaluated response to cisplatin, cetuximab, and radiation. Tissue microarrays were constructed from pre- and posttreatment tumor samples derived from each xenograft experiment. Quantitative immunohistochemistry was performed using a semiautomated imaging and analysis platform to determine the relative expression of five potential predictive biomarkers: epidermal growth factor receptor (EGFR), phospho-EGFR, phospho-Akt, phospho-ERK, and excision repair cross-complementation group 1 (ERCC1). Biomarker levels were compared between xenografts that were sensitive versus resistant to a specific therapy utilizing a two-sample t-test with equal standard deviations. Indeed the xenografts displayed heterogeneous responses to each treatment, and we linked a number of baseline biomarker levels to response. This included low ERCC1 being associated with cisplatin sensitivity, low phospho-Akt correlated with cetuximab sensitivity, and high total EGFR was related to radiation resistance. Overall, we developed a systematic approach to identifying predictive biomarkers and demonstrated several connections between biomarker levels and treatment response. Despite these promising initial results, this work requires additional preclinical validation, likely involving the use of patient-derived xenografts, prior to moving into the clinical realm for confirmation among patients with HNSCC. PMID:25619980

  7. Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts.

    PubMed

    Cottu, P; Marangoni, E; Assayag, F; de Cremoux, P; Vincent-Salomon, A; Guyader, Ch; de Plater, L; Elbaz, C; Karboul, N; Fontaine, J J; Chateau-Joubert, S; Boudou-Rouquette, P; Alran, S; Dangles-Marie, V; Gentien, D; Poupon, M-F; Decaudin, D

    2012-06-01

    Resistance to endocrine therapy is a major complication of luminal breast cancer and studies of the biological features of hormonal resistance are limited by the lack of adequate preclinical models. The aim of this study is to establish and characterize a panel of primary human luminal breast carcinoma xenografts, and to evaluate their response to endocrine therapies. Four hundred and twenty-three tumor fragments obtained directly from patients have been grafted in the interscapular fatpad of Swiss nude mice. After stable engraftment with estradiol supplementation, xenografted tumors have been validated by conventional pathology and immunohistochemistry examination, and additional molecular studies. In vivo tumor growth and response to different endocrine treatments were evaluated. We have engrafted 423 tumors including 314 ER+ tumors, and 8 new luminal breast cancer xenografts have been obtained (2.5%). Tumor take was much lower for luminal tumors than for non-luminal tumors (2.5 vs. 24.7%, P < 0.0001), and was associated with two independent criteria, i.e., ER status (P < 0.0001) and a high grade tumor (P = 0.05). Histological and immunohistochemical analyses performed on patient's tumors and xenografts showed striking similarities in the tumor morphology as well as in the expression level of ER, PR, and HER2. Response to hormone therapy, evaluated in 6 luminal models, showed different sensitivities, thus exhibiting heterogeneity similar to what is observed in the clinic. We have established a panel of primary human luminal breast cancer xenografts, recapitulating the biological and clinical behaviors of patient tumors, and therefore suitable for further preclinical experiments. PMID:22002565

  8. Anti-tumor efficacy of paclitaxel against human lung cancer xenografts.

    PubMed

    Yamori, T; Sato, S; Chikazawa, H; Kadota, T

    1997-12-01

    We examined paclitaxel for anti-tumor activity against human lung cancer xenografts in nude mice and compared its efficacy with that of cisplatin, currently a key drug for lung cancer chemotherapy. Five non-small cell lung cancers (A549, NCI-H23, NCI-H226, NCI-H460 and NCI-H522) and 2 small cell lung cancers (DMS114 and DMS273) were chosen for this study, since these cell lines have been well characterized as regards in vitro and in vivo drug sensitivity. These cells were exposed to graded concentrations of paclitaxel (0.1 to 1000 nM) for 48 h. The 50% growth-inhibitory concentrations (GI50) for the cell lines ranged from 4 to 24 nM, which are much lower than the achievable peak plasma concentration of paclitaxel. In the in vivo study, 4 cell lines (A549, NCI-H23, NCI-H460, DMS-273) were grown as subcutaneous tumors xenografts in nude mice. Paclitaxel was given intravenously as consecutive daily injections for 5 days at the doses of 24 and 12 mg/kg/day. Against every xenograft, paclitaxel produced a statistically significant tumor growth inhibition compared to the saline control. Paclitaxel at 24 mg/kg/day was more effective than cisplatin at 3 mg/kg/day with the same dosing schedule as above, although the toxicity of paclitaxel was similar to or rather lower than that of cisplatin, in terms of body weight loss. In addition, paclitaxel showed potent activity against 2 other lung cancer xenografts (NCI-H226 and DMS114). Therefore, paclitaxel showed more effective, wider-spectrum anti-tumor activity than cisplatin in this panel of 6 lung cancer xenografts. These findings support the potential utility of paclitaxel in the treatment of human lung cancer. PMID:9473739

  9. Orthotopic Human Choroidal Melanoma Xenografts in Nude Rats with Aggressive and Nonaggressive PAS Staining Patterns

    PubMed Central

    Braun, Rod D.; Abbas, Asad

    2007-01-01

    PURPOSE Choroidal melanoma is the most common primary ocular cancer among the adult population. Patient survival has been linked to the periodic acid-Schiff base (PAS)–positive vascular patterns in the tumors. The presence of PAS-positive loops or cross-linking parallel channels is a marker of an aggressive tumor. The purpose of this study was to develop new xenograft models of human choroidal melanoma that predictably demonstrate the PAS staining patterns associated with nonaggressive and aggressive tumors in humans. METHODS Three human choroidal melanoma cell lines (C918, M619, and OCM-1) were used. C918 and M619 are considered aggressive, based on their ability to form PAS-positive channels in vitro. The nonaggressive OCM-1 cells do not form these channels. C918, M619, and OCM-1 spheroids were grown and implanted in the suprachoroidal space of 20, 17, and 16 WAG/RijHs-rnu nude rats, respectively. Tumors were grown for 1 to >4 weeks, and histology was performed to evaluate tumor growth and determine PAS labeling patterns. RESULTS Growth of C918, M619, and OCM-1 xenografts were histologically verified in 20/20, 15/17, and 16/16 rats, respectively. PAS staining revealed loops and cross-linking parallel channels, typical of aggressive tumors in patients, in 90% of C918 and 100% of M619 xenografts. Only 4 of 16 OCM-1 xenografts showed PAS-positive loops. The rest showed no PAS staining or only perivascular staining, indicative of nonaggressive tumors. CONCLUSIONS It is possible to grow human choroidal melanoma orthotopic xenografts in nude rats that reproduce the PAS staining patterns associated with aggressive and nonaggressive choroidal melanomas in patients. PMID:16384938

  10. Lysyl oxidase like-4 monoclonal antibody demonstrates therapeutic effect against head and neck squamous cell carcinoma cells and xenografts.

    PubMed

    Görögh, Tibor; Quabius, Elgar S; Heidebrecht, Hans; Nagy, Andreas; Muffels, Till; Haag, Jochen; Ambrosch, Petra; Hoffmann, Markus

    2016-05-15

    A new member of the lysyl oxidase (LOX) family, lysyl oxidase-like 4 (LOXL4), is overexpressed in head and neck squamous cell carcinoma (HNSCC) compared to normal squamous epithelium. A monoclonal antibody (mAb) derived from fusion of Balb/c mouse splenocytes immunized with LOXL4 specific peptide was used to evaluate its therapeutic efficacy in 15 HNSCC cell lines associated with LOXL4 overexpression. For xenograft experiments 41 severe combined immunodeficient (SCID) mice were used to analyze LOXL4-mAb mediated tumor regression. Cell viability was analyzed using cytotoxicity-, and clonogenic-assays. Significant suppression of tumor cell growth was observed in 12 out of 15 (80%) tumor cell lines after 48 hr exposure to the mAb (LD50 of 15 µg/ml to 45 µg/ml). The effect induced by the antibody could be blocked by pre-incubation of the antibody with the peptide used for immunization of the mice and antibody generation, indicating that the effect of the antibody is specific. In mice inoculated with HNSCC cells, i.v. injections of the LOXL4-mAb resulted within 70 days in extensive tumor destruction in all treated animals whereas no tumor regression occurred in control animals. In mice pre-immunized i.v. with LOXL4-mAb and subsequently injected with HNSCC cells, tumor development was considerably delayed in contrast to non LOXL4-mAb pre-immunized animals. These results demonstrate that the LOXL4-mAb has potent antitumor activity and suggest its suitability as a therapeutic immune agent applicable to HNSCC exhibiting tumor specific upregulation of LOXL4. PMID:26756583

  11. Influence of Handling Conditions on the Establishment and Propagation of Head and Neck Cancer Patient Derived Xenografts

    PubMed Central

    Stein, Andrew P.; Saha, Sandeep; Liu, Cheng Z.; Hartig, Gregory K.; Lambert, Paul F.; Kimple, Randall J.

    2014-01-01

    Background Patient derived xenografts (PDXs) for head and neck cancer (HNC) and other cancers represent powerful research platforms. Most groups implant patient tissue into immunodeficient mice immediately although the significance of this time interval is anecdotal. We tested the hypothesis that the time from tumor excision to implantation is crucial for PDX passaging and establishment. Methods We examined whether time or storage medium affected PDX viability for passaging two established HNC PDXs (UW-SCC34, UW-SCC52). Tumors were harvested, stored in ice-cold media or saline for 0–48 hours, and implanted into new mice. Tumor growth was compared by two-way ANOVA with respect to time and storage condition. Three new HNC PDXs (UW-SCC63-65) were generated by implanting patient tissue into mice immediately (Time 0) and 24 hours after receiving tissue from the operating room. Results Similar quantities of tumor were implanted into each mouse. At the end of the experiment, no significant difference was seen in mean tumor weight between the media and saline storage conditions for UW-SCC34 or UW-SCC52 (p = 0.650 and p = 0.177, respectively). No difference in tumor formation prevalence was seen on the basis of time from harvest to implantation (≥13 of 16 tumors grew at every time point). Histological analysis showed strong similarity to the initial tumor across all groups. Tumors developed at both Time 0 and 24 hours for UW-SCC63 and UW-SCC64. Conclusions We demonstrated that neither storage medium nor time from tumor excision to implantation (up to 48 hours) affected viability or histological differentiation in a subsequent passage for two HNC PDXs. Moreover, we revealed that fresh patient tissue is viable up to 24 hours post-resection. This information is important as it applies to the development and sharing of PDXs. PMID:24967635

  12. Microspheres targeted with a mesothelin antibody and loaded with doxorubicin reduce tumor volume of human mesotheliomas in xenografts

    PubMed Central

    2013-01-01

    Background Malignant mesotheliomas (MMs) are chemoresistant tumors related to exposure to asbestos fibers. The long latency period of MM (30-40 yrs) and heterogeneity of tumor presentation make MM difficult to diagnose and treat at early stages. Currently approved second-line treatments following surgical resection of MMs include a combination of cisplatin or carboplatin (delivered systemically) and pemetrexed, a folate inhibitor, with or without subsequent radiation. The systemic toxicities of these treatments emphasize the need for more effective, localized treatment regimens. Methods Acid-prepared mesoporous silica (APMS) microparticles were loaded with doxorubicin (DOX) and modified externally with a mesothelin (MB) specific antibody before repeated intraperitoneal (IP) injections into a mouse xenograft model of human peritoneal MM. The health/weight of mice, tumor volume/weight, tumor necrosis and cell proliferation were evaluated in tumor-bearing mice receiving saline, DOX high (0.2 mg/kg), DOX low (0.05 mg/kg), APMS-MB, or APMS-MB-DOX (0.05 mg/kg) in saline. Results Targeted therapy (APMS-MB-DOX at 0.05 mg/kg) was more effective than DOX low (0.05 mg/kg) and less toxic than treatment with DOX high (0.2 mg/kg). It also resulted in the reduction of tumor volume without loss of animal health and weight, and significantly decreased tumor cell proliferation. High pressure liquid chromatography (HPLC) of tumor tissue confirmed that APMS-MB-DOX particles delivered DOX to target tissue. Conclusions Data suggest that targeted therapy results in greater chemotherapeutic efficacy with fewer adverse side effects than administration of DOX alone. Targeted microparticles are an attractive option for localized drug delivery. PMID:24024776

  13. Coibamide A, a natural lariat depsipeptide, inhibits VEGFA/VEGFR2 expression and suppresses tumor growth in glioblastoma xenografts.

    PubMed

    Serrill, Jeffrey D; Wan, Xuemei; Hau, Andrew M; Jang, Hyo Sang; Coleman, Daniel J; Indra, Arup K; Alani, Adam W G; McPhail, Kerry L; Ishmael, Jane E

    2016-02-01

    Coibamide A is a cytotoxic lariat depsipeptide isolated from a rare cyanobacterium found within the marine reserve of Coiba National Park, Panama. Earlier testing of coibamide A in the National Cancer Institute in vitro 60 human tumor cell line panel (NCI-60) revealed potent anti-proliferative activity and a unique selectivity profile, potentially reflecting a new target or mechanism of action. In the present study we evaluated the antitumor activity of coibamide A in several functional cell-based assays and in vivo. U87-MG and SF-295 glioblastoma cells showed reduced migratory and invasive capacity and underwent G1 cell cycle arrest as, likely indirect, consequences of treatment. Coibamide A inhibited extracellular VEGFA secreted from U87-MG glioblastoma and MDA-MB-231 breast cancer cells with low nM potency, attenuated proliferation and migration of normal human umbilical vein endothelial cells (HUVECs) and selectively decreased expression of vascular endothelial growth factor receptor 2 (VEGFR2). We report that coibamide A retains potent antitumor properties in a nude mouse xenograft model of glioblastoma; established subcutaneous U87-MG tumors failed to grow for up to 28 days in response to 0.3 mg/Kg doses of coibamide A. However, the natural product was also associated with varied patterns of weight loss and thus targeted delivery and/or medicinal chemistry approaches will almost certainly be required to improve the toxicity profile of this unusual macrocycle. Finally, similarities between coibamide A- and apratoxin A-induced changes in cell morphology, decreases in VEGFR2 expression and macroautophagy signaling in HUVECs raise the possibility that both cyanobacterial natural products share a common mechanism of action. PMID:26563191

  14. Enhancement by N-methylformamide of the effect of ionizing radiation on a human colon tumor xenografted in nude mice

    SciTech Connect

    Dexter, D.L.; Lee, E.S.; Bliven, S.F.; Glicksman, A.S.; Leith, J.T.

    1984-11-01

    Polar solvents, which induce differentiation in murine and human tumor cells, enhance the effect of ionizing radiation on cultured mouse mammary and human colon cancer cells. To determine whether this enhancement occurs in vivo, DLD-2 human colon carcinoma xenografts in nude mice were treated with combinations of 6 MV photon irradiation, the polar solvent N-methylformamide (NMF), or combinations of the two agents. Nude mice bearing 300-mg s.c. implants of DLD-2 tumors were treated i.p. with 150 mg NMF/kg daily for 19 days. Local tumor irradiations were administered as graded single doses or as fractionated doses, daily for 4 days, following the third NMF injection. The growth-inhibiting effect of the radiation treatment for both single dose and fractionation protocols was enhanced by the polar solvent. NMF alone increased the time required for a doubling of initial tumor volume by 1.7 days, compared to control tumors. Initial tumor volume doubling times compared to untreated controls were increased by 3.6 and 7.6 days by photon doses of 10.0 and 13.75 Gy, respectively, whereas NMF plus 10.0 or 13.75 Gy increased the DLD-2 regrowth delay time by 7.5 or 12.9 days. NMF caused essentially equivalent enhancements, whether split-dose schedules of 2.5 Gy daily for 4 days, and 3.44 Gy daily for 4 days, or single doses of 10.0 and 13.75 Gy were used; therefore, radiation enhancement was not due to effects on sublethal damage repair. The results support the use of NMF, currently in Phase 1-Phase 2 clinical trials, with radiation in the therapy of selected human neoplasms.

  15. pH-Responsive Artemisinin Dimer in Lipid Nanoparticles Are Effective Against Human Breast Cancer in a Xenograft Model

    PubMed Central

    ZHANG, YITONG J.; ZHAN, XI; WANG, LIGUO; HO, RODNEY J.Y.; SASAKI, TOMIKAZU

    2016-01-01

    Artemisinin (ART), a well-known antimalaria drug, also exhibits anticancer activities. We previously reported a group of novel dimeric artemisinin piperazine conjugates (ADPs) possessing pH-dependent aqueous solubility and a proof-of-concept lipid nanoparticle formulation based on natural egg phosphatidylcholine (EPC). EPC may induce allergic reactions in individuals sensitive to egg products. Therefore, the goal of this report is to develop ADP-synthetic lipid particles suitable for in vivo evaluation. We found that ADP binds to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) with greater than 90% efficiency and forms drug–lipid particles (d ~ 80 nm). Cryo-electron microscopy of the ADP drug–lipid particles revealed unilamellar vesicle-like structures. Detailed characterization studies show insertion of the ADP lead compound, ADP109, into the DPPC membrane and the presence of an aqueous core. Over 50% of the ADP109 was released in 48 hours at pH4 compared with less than 20% at neutral. ADP109–lipid particles exhibited high potency against human breast cancer, but was tolerated well by nontumorigenic cells. In MDA-MB-231 mouse xenograft model, lipid-bound ADP109 particles were more effective than paclitaxel in controlling tumor growth. Cellular uptake studies showed endocytosis of the nanoparticles and release of core-trapped marker throughout the cytosol at 37°C. These results demonstrate, for the first time, the in vivo feasibility of lipid-bound ART dimer for cancer chemotherapy. PMID:25753991

  16. Ability to Generate Patient-Derived Breast Cancer Xenografts Is Enhanced in Chemoresistant Disease and Predicts Poor Patient Outcomes

    PubMed Central

    Akcakanat, Argun; Chen, Ken; Zheng, Xiaofeng; Zhao, Hao; Eterovic, Agda Karina; Sangai, Takafumi; Holder, Ashley M.; Sharma, Chandeshwar; Chen, Huiqin; Do, Kim-Anh; Tarco, Emily; Gagea, Mihai; Naff, Katherine A.; Sahin, Aysegul; Multani, Asha S.; Black, Dalliah M.; Mittendorf, Elizabeth A.; Bedrosian, Isabelle; Mills, Gordon B.; Gonzalez-Angulo, Ana Maria; Meric-Bernstam, Funda

    2015-01-01

    Background Breast cancer patients who are resistant to neoadjuvant chemotherapy (NeoCT) have a poor prognosis. There is a pressing need to develop in vivo models of chemo resistant tumors to test novel therapeutics. We hypothesized that patient-derived breast cancer xenografts (BCXs) from chemo- naïve and chemotherapy-exposed tumors can provide high fidelity in vivo models for chemoresistant breast cancers. Methods Patient tumors and BCXs were characterized with short tandem repeat DNA fingerprinting, reverse phase protein arrays, molecular inversion probe arrays, and next generation sequencing. Results Forty-eight breast cancers (24 post-chemotherapy, 24 chemo-naïve) were implanted and 13 BCXs were established (27%). BCX engraftment was higher in TNBC compared to hormone-receptor positive cancer (53.8% vs. 15.6%, p = 0.02), in tumors from patients who received NeoCT (41.7% vs. 8.3%, p = 0.02), and in patients who had progressive disease on NeoCT (85.7% vs. 29.4%, p = 0.02). Twelve patients developed metastases after surgery; in five, BCXs developed before distant relapse. Patients whose tumors developed BCXs had a lower recurrence-free survival (p = 0.015) and overall survival (p<0.001). Genomic losses and gains could be detected in the BCX, and three models demonstrated a transformation to induce mouse tumors. However, overall, somatic mutation profiles including potential drivers were maintained upon implantation and serial passaging. One BCX model was cultured in vitro and re-implanted, maintaining its genomic profile. Conclusions BCXs can be established from clinically aggressive breast cancers, especially in TNBC patients with poor response to NeoCT. Future studies will determine the potential of in vivo models for identification of genotype-phenotype correlations and individualization of treatment. PMID:26325287

  17. Negligible Colon Cancer Risk from Food-Borne Acrylamide Exposure in Male F344 Rats and Nude (nu/nu) Mice-Bearing Human Colon Tumor Xenografts

    PubMed Central

    Raju, Jayadev; Roberts, Jennifer; Sondagar, Chandni; Kapal, Kamla; Aziz, Syed A.; Caldwell, Don; Mehta, Rekha

    2013-01-01

    Acrylamide, a possible human carcinogen, is formed in certain carbohydrate-rich foods processed at high temperature. We evaluated if dietary acrylamide, at doses (0.5, 1.0 or 2.0 mg/kg diet) reflecting upper levels found in human foods, modulated colon tumorigenesis in two rodent models. Male F344 rats were randomized to receive diets without (control) or with acrylamide. 2-weeks later, rats in each group received two weekly subcutaneous injections of either azoxymethane (AOM) or saline, and were killed 20 weeks post-injections; colons were assessed for tumors. Male athymic nude (nu/nu) mice bearing HT-29 human colon adenocarcinoma cells-derived tumor xenografts received diets without (control) or with acrylamide; tumor growth was monitored and mice were killed 4 weeks later. In the F344 rat study, no tumors were found in the colons of the saline-injected rats. However, the colon tumor incidence was 54.2% and 66.7% in the control and the 2 mg/kg acrylamide-treated AOM-injected groups, respectively. While tumor multiplicity was similar across all diet groups, tumor size and burden were higher in the 2 mg/kg acrylamide group compared to the AOM control. These results suggest that acrylamide by itself is not a “complete carcinogen”, but acts as a “co-carcinogen” by exacerbating the effects of AOM. The nude mouse study indicated no differences in the growth of human colon tumor xenografts between acrylamide-treated and control mice, suggesting that acrylamide does not aid in the progression of established tumors. Hence, food-borne acrylamide at levels comparable to those found in human foods is neither an independent carcinogen nor a tumor promoter in the colon. However, our results characterize a potential hazard of acrylamide as a colon co-carcinogen in association with known and possibly other environmental tumor initiators/promoters. PMID:24040114

  18. Comparison of the Lonidamine Potentiated Effect of Nitrogen Mustard Alkylating Agents on the Systemic Treatment of DB-1 Human Melanoma Xenografts in Mice

    PubMed Central

    Nath, Kavindra; Nelson, David S.; Putt, Mary E.; Leeper, Dennis B.; Garman, Bradley; Nathanson, Katherine L.; Glickson, Jerry D.

    2016-01-01

    Previous NMR studies demonstrated that lonidamine (LND) selectively diminishes the intracellular pH (pHi) of DB-1 melanoma and mouse xenografts of a variety of other prevalent human cancers while decreasing their bioenergetic status (tumor βNTP/Pi ratio) and enhancing the activities of melphalan and doxorubicin in these cancer models. Since melphalan and doxorubicin are highly toxic agents, we have examined three other nitrogen (N)-mustards, chlorambucil, cyclophosphamide and bendamustine, to determine if they exhibit similar potentiation by LND. As single agents LND, melphalan and these N-mustards exhibited the following activities in DB-1 melanoma xenografts; LND: 100% tumor surviving fraction (SF); chlorambucil: 100% SF; cyclophosphamide: 100% SF; bendamustine: 79% SF; melphalan: 41% SF. When combined with LND administered 40 min prior to administration of the N-mustard (to maximize intracellular acidification) the following responses were obtained; chlorambucil: 62% SF; cyclophosphamide: 42% SF; bendamustine: 36% SF; melphalan: 10% SF. The effect of LND on the activities of these N-mustards is generally attributed to acid stabilization of the aziridinium active intermediate, acid inhibition of glutathione-S-transferase, which acts as a scavenger of aziridinium, and acid inhibition of DNA repair by O6-alkyltransferase. Depletion of ATP by LND may also decrease multidrug resistance and increase tumor response. At similar maximum tolerated doses, our data indicate that melphalan is the most effective N-mustard in combination with LND when treating DB-1 melanoma in mice, but the choice of N-mustard for coadministration with LND will also depend on the relative toxicities of these agents, and remains to be determined. PMID:27285585

  19. Optical mouse acting as biospeckle sensor

    NASA Astrophysics Data System (ADS)

    da Silva, Michel Melo; Nozela, Jose Roberto de Almeida; Chaves, Marcio Jose; Alves Braga, Roberto; Rabal, Hector Jorge

    2011-04-01

    In this work we propose some experiments with the use of optical computer mouse, associated to low cost lasers that can be used to perform several measurements with applications in industry and in human health monitoring. The mouse was used to grab the movements produced by speckle pattern changes and to get information through the adaptation of its structure. We measured displacements in wood samples under strain, variations of the diameter of an artery due to heart beat and, through a hardware simulation, the movement of an eye, an experiment that could be of low cost help for communication to severely handicapped motor patients. Those measurements were done in spite of the fact that the CCD sensor of the mice is monolithically included into an integrated circuit so that the raw image cannot be accessed. If, as was the case with primitive optical mouse, that signal could be accessed, the quality and usefulness of the measurements could be significantly increased. As it was not possible, a webcam sensor was used for measuring the drying of paint, a standard phenomenon for testing biospeckle techniques, in order to prove the usefulness of the mouse design. The results showed that the use of the mouse associated to a laser pointer could be the way to get metrological information from many phenomena involving the whole field spatial displacement, as well as the use of the mouse as in its prime version allowed to get images of the speckle patterns and to analyze them.

  20. Variegated clonality and rapid emergence of new molecular lesions in xenografts of acute lymphoblastic leukemia are associated with drug resistance.

    PubMed

    Nowak, Daniel; Liem, Natalia L M; Mossner, Maximilian; Klaumünzer, Marion; Papa, Rachael A; Nowak, Verena; Jann, Johann C; Akagi, Tadayuki; Kawamata, Norihiko; Okamoto, Ryoko; Thoennissen, Nils H; Kato, Motohiro; Sanada, Masashi; Hofmann, Wolf-Karsten; Ogawa, Seishi; Marshall, Glenn M; Lock, Richard B; Koeffler, H Phillip

    2015-01-01

    The use of genome-wide copy-number analysis and massive parallel sequencing has revolutionized the understanding of the clonal architecture of pediatric acute lymphoblastic leukemia (ALL) by demonstrating that this disease is composed of highly variable clonal ancestries following the rules of Darwinian selection. The current study aimed to analyze the molecular composition of childhood ALL biopsies and patient-derived xenografts with particular emphasis on mechanisms associated with acquired chemoresistance. Genomic DNA from seven primary pediatric ALL patient samples, 29 serially passaged xenografts, and six in vivo selected chemoresistant xenografts were analyzed with 250K single-nucleotide polymorphism arrays. Copy-number analysis of non-drug-selected xenografts confirmed a highly variable molecular pattern of variegated subclones. Whereas primary patient samples from initial diagnosis displayed a mean of 5.7 copy-number alterations per sample, serially passaged xenografts contained a mean of 8.2 and chemoresistant xenografts a mean of 10.5 copy-number alterations per sample, respectively. Resistance to cytarabine was explained by a new homozygous deletion of the DCK gene, whereas methotrexate resistance was associated with monoallelic deletion of FPGS and mutation of the remaining allele. This study demonstrates that selecting for chemoresistance in xenografted human ALL cells can reveal novel mechanisms associated with drug resistance. PMID:25450514

  1. Effects of combined treatment with rapamycin and cotylenin A, a novel differentiation-inducing agent, on human breast carcinoma MCF-7 cells and xenografts

    PubMed Central

    Kasukabe, Takashi; Okabe-Kado, Junko; Kato, Nobuo; Sassa, Takeshi; Honma, Yoshio

    2005-01-01

    Introduction Rapamycin, an inhibitor of the serine/threonine kinase target of rapamycin, induces G1 arrest and/or apoptosis. Although rapamycin and its analogues are attractive candidates for cancer therapy, their sensitivities with respect to growth inhibition differ markedly among various cancer cells. Using human breast carcinoma cell line MCF-7 as an experimental model system, we examined the growth-inhibitory effects of combinations of various agents and rapamycin to find the agent that most potently enhances the growth-inhibitory effect of rapamycin. Method We evaluated the growth-inhibitory effect of rapamycin plus various agents, including cotylenin A (a novel inducer of differentiation of myeloid leukaemia cells) to MCF-7 cells, using either MTT assay or trypan blue dye exclusion test. The cell cycle was analyzed using propidium iodide-stained nuclei. Expressions of several genes in MCF-7 cells with rapamycin plus cotylenin A were studied using cDNA microarray analysis and RT-PCR. The in vitro results of MCF-7 cells treated with rapamycin plus cotylenin A were further confirmed in vivo in a mouse xenograft model. Results We found that the sensitivity of rapamycin to MCF-7 cells was markedly affected by cotylenin A. This treatment induced growth arrest of the cells at the G1 phase, rather than apoptosis, and induced senescenc