Science.gov

Sample records for mpr1 confers ethanol

  1. An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role.

    PubMed

    Nishimura, Akira; Kotani, Tetsuya; Sasano, Yu; Takagi, Hiroshi

    2010-09-01

    Saccharomyces cerevisiaeSigma1278b has the MPR1 gene encoding the N-acetyltransferase Mpr1 that acetylates the proline metabolism intermediate Delta(1)-pyrroline-5-carboxylate (P5C)/glutamate-gamma-semialdehyde (GSA) in vitro. In addition, Mpr1 protects cells from various oxidative stresses by regulating the levels of intracellular reactive oxygen species (ROS). However, the relationship between P5C/GSA acetylation and antioxidative mechanism involving Mpr1 remains unclear. Here, we report the synthesis of oxidative stress-induced arginine via P5C/GSA acetylation catalyzed by Mpr1. Gene disruption analysis revealed that Mpr1 converts P5C/GSA into N-acetyl-GSA for arginine synthesis in the mitochondria, indicating that Mpr1 mediates the proline and arginine metabolic pathways. More importantly, Mpr1 regulate ROS generation by acetylating toxic P5C/GSA. Under oxidative stress conditions, the transcription of PUT1 encoding the proline oxidase Put1 and MPR1 was strongly induced, and consequently, the arginine content was significantly increased. We also found that two deletion mutants (Deltampr1/2 and Deltaput1) were more sensitive to high-temperature stress than the wild-type strain, but that direct treatment with arginine restored the cell viability of these mutants. These results suggest that Mpr1-dependent arginine synthesis confers stress tolerance. We propose an antioxidative mechanism that is involved in stress-induced arginine synthesis requiring Mpr1 and Put1. PMID:20550582

  2. Structural and functional analysis of the yeast N-acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism.

    PubMed

    Nasuno, Ryo; Hirano, Yoshinori; Itoh, Takafumi; Hakoshima, Toshio; Hibi, Takao; Takagi, Hiroshi

    2013-07-16

    Mpr1 (sigma1278b gene for proline-analog resistance 1), which was originally isolated as N-acetyltransferase detoxifying the proline analog L-azetidine-2-carboxylate, protects yeast cells from various oxidative stresses. Mpr1 mediates the L-proline and L-arginine metabolism by acetylating L-Δ(1)-pyrroline-5-carboxylate, leading to the L-arginine-dependent production of nitric oxide, which confers oxidative stress tolerance. Mpr1 belongs to the Gcn5-related N-acetyltransferase (GNAT) superfamily, but exhibits poor sequence homology with the GNAT enzymes and unique substrate specificity. Here, we present the X-ray crystal structure of Mpr1 and its complex with the substrate cis-4-hydroxy-L-proline at 1.9 and 2.3 Å resolution, respectively. Mpr1 is folded into α/β-structure with eight-stranded mixed β-sheets and six α-helices. The substrate binds to Asn135 and the backbone amide of Asn172 and Leu173, and the predicted acetyl-CoA-binding site is located near the backbone amide of Phe138 and the side chain of Asn178. Alanine substitution of Asn178, which can interact with the sulfur of acetyl-CoA, caused a large reduction in the apparent kcat value. The replacement of Asn135 led to a remarkable increase in the apparent Km value. These results indicate that Asn178 and Asn135 play an important role in catalysis and substrate recognition, respectively. Such a catalytic mechanism has not been reported in the GNAT proteins. Importantly, the amino acid substitutions in these residues increased the L-Δ(1)-pyrroline-5-carboxylate level in yeast cells exposed to heat stress, indicating that these residues are also crucial for its physiological functions. These studies provide some benefits of Mpr1 applications, such as the breeding of industrial yeasts and the development of antifungal drugs. PMID:23818613

  3. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    DOEpatents

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  4. Structure-based molecular design for thermostabilization of N-acetyltransferase Mpr1 involved in a novel pathway of L-arginine synthesis in yeast.

    PubMed

    Nasuno, Ryo; Hirase, Saeka; Norifune, Saki; Watanabe, Daisuke; Takagi, Hiroshi

    2016-02-01

    Previously, N-Acetyltransferase Mpr1 was suggested to be involved in a novel pathway of L-arginine biosynthesis in yeast. Our recent crystallographic analysis demonstrated that the overall structure of Mpr1 is a typical folding among proteins in the Gcn5-related N-acetyltransferase superfamily, and also provided clues to the design of mutations for improvement of the enzymatic functions. Here, we constructed new stable variants, Asn203Lys- and Asn203Arg-Mpr1, which exhibited 2.4-fold and 2.2-fold longer activity half-lives than wild-type Mpr1, respectively, by structure-based molecular design. The replacement of Asn203 with a basic amino acid was suggested to stabilize α-helix 2, which is important for the Mpr1 structure, probably by neutralizing its dipole. In addition, the combination of two amino acid substitutions at positions 65 and 203 in Mpr1, Phe65Leu, which was previously isolated by the screening from PCR random mutagenesis library of MPR1, and Asn203Lys or Asn203Arg, led to further stabilization of Mpr1. Our growth assay suggests that overexpression of the stable Mpr1 variants increase L-arginine synthesis in yeast cells. Our finding is the first report on the rational engineering of Mpr1 for thermostabilization and could be useful in the construction of new yeast strains with higher L-arginine synthetic activity and also improved fermentation ability. PMID:26454877

  5. Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen reactive species caused by a toxic proline catabolism intermediate.

    PubMed

    Nomura, Michiyo; Takagi, Hiroshi

    2004-08-24

    The MPR1 gene, which is found in the Sigma1278b strain but is not present in the sequenced laboratory strain S288C, of the budding yeast Saccharomyces cerevisiae encodes a previously uncharacterized N-acetyltransferase that detoxifies the proline analogue azetidine-2-carboxylate (AZC). However, it is unlikely that AZC is a natural substrate of Mpr1 because AZC is found only in some plant species. In our search for the physiological function of Mpr1, we found that mpr1-disrupted cells were hypersensitive to oxidative stresses and contained increased levels of reactive oxygen species (ROS). In contrast, overexpression of MPR1 leads to an increase in cell viability and a decrease in ROS level after oxidative treatments. These results indicate that Mpr1 can reduce intracellular oxidation levels. Because put2-disrupted yeast cells lacking Delta(1)-pyrroline-5-carboxylate (P5C) dehydrogenase have increased ROS, we examined the role of Mpr1 in put2-disrupted strains. When grown on media containing urea and proline as the nitrogen source, put2-disrupted cells did not grow as well as WT cells and accumulated intracellular levels of P5C that were first detected in yeast cells and ROS. On the other hand, put2-disrupted cells that overexpressed MPR1 had considerably lower ROS levels. In vitro studies with bacterially expressed Mpr1 demonstrated that Mpr1 can acetylate P5C, or, more likely, its equilibrium compound glutamate-gamma-semialdehyde, at neutral pH. These results suggest that the proline catabolism intermediate P5C is toxic to yeast cells because of the formation of ROS, and Mpr1 regulates the ROS level under P5C-induced oxidative stress. PMID:15308773

  6. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria

    PubMed Central

    Haft, Rembrandt J. F.; Keating, David H.; Schwaegler, Tyler; Schwalbach, Michael S.; Vinokur, Jeffrey; Tremaine, Mary; Peters, Jason M.; Kotlajich, Matthew V.; Pohlmann, Edward L.; Ong, Irene M.; Grass, Jeffrey A.; Kiley, Patricia J.; Landick, Robert

    2014-01-01

    The molecular mechanisms of ethanol toxicity and tolerance in bacteria, although important for biotechnology and bioenergy applications, remain incompletely understood. Genetic studies have identified potential cellular targets for ethanol and have revealed multiple mechanisms of tolerance, but it remains difficult to separate the direct and indirect effects of ethanol. We used adaptive evolution to generate spontaneous ethanol-tolerant strains of Escherichia coli, and then characterized mechanisms of toxicity and resistance using genome-scale DNAseq, RNAseq, and ribosome profiling coupled with specific assays of ribosome and RNA polymerase function. Evolved alleles of metJ, rho, and rpsQ recapitulated most of the observed ethanol tolerance, implicating translation and transcription as key processes affected by ethanol. Ethanol induced miscoding errors during protein synthesis, from which the evolved rpsQ allele protected cells by increasing ribosome accuracy. Ribosome profiling and RNAseq analyses established that ethanol negatively affects transcriptional and translational processivity. Ethanol-stressed cells exhibited ribosomal stalling at internal AUG codons, which may be ameliorated by the adaptive inactivation of the MetJ repressor of methionine biosynthesis genes. Ethanol also caused aberrant intragenic transcription termination for mRNAs with low ribosome density, which was reduced in a strain with the adaptive rho mutation. Furthermore, ethanol inhibited transcript elongation by RNA polymerase in vitro. We propose that ethanol-induced inhibition and uncoupling of mRNA and protein synthesis through direct effects on ribosomes and RNA polymerase conformations are major contributors to ethanol toxicity in E. coli, and that adaptive mutations in metJ, rho, and rpsQ help protect these central dogma processes in the presence of ethanol. PMID:24927582

  7. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria.

    PubMed

    Haft, Rembrandt J F; Keating, David H; Schwaegler, Tyler; Schwalbach, Michael S; Vinokur, Jeffrey; Tremaine, Mary; Peters, Jason M; Kotlajich, Matthew V; Pohlmann, Edward L; Ong, Irene M; Grass, Jeffrey A; Kiley, Patricia J; Landick, Robert

    2014-06-24

    The molecular mechanisms of ethanol toxicity and tolerance in bacteria, although important for biotechnology and bioenergy applications, remain incompletely understood. Genetic studies have identified potential cellular targets for ethanol and have revealed multiple mechanisms of tolerance, but it remains difficult to separate the direct and indirect effects of ethanol. We used adaptive evolution to generate spontaneous ethanol-tolerant strains of Escherichia coli, and then characterized mechanisms of toxicity and resistance using genome-scale DNAseq, RNAseq, and ribosome profiling coupled with specific assays of ribosome and RNA polymerase function. Evolved alleles of metJ, rho, and rpsQ recapitulated most of the observed ethanol tolerance, implicating translation and transcription as key processes affected by ethanol. Ethanol induced miscoding errors during protein synthesis, from which the evolved rpsQ allele protected cells by increasing ribosome accuracy. Ribosome profiling and RNAseq analyses established that ethanol negatively affects transcriptional and translational processivity. Ethanol-stressed cells exhibited ribosomal stalling at internal AUG codons, which may be ameliorated by the adaptive inactivation of the MetJ repressor of methionine biosynthesis genes. Ethanol also caused aberrant intragenic transcription termination for mRNAs with low ribosome density, which was reduced in a strain with the adaptive rho mutation. Furthermore, ethanol inhibited transcript elongation by RNA polymerase in vitro. We propose that ethanol-induced inhibition and uncoupling of mRNA and protein synthesis through direct effects on ribosomes and RNA polymerase conformations are major contributors to ethanol toxicity in E. coli, and that adaptive mutations in metJ, rho, and rpsQ help protect these central dogma processes in the presence of ethanol. PMID:24927582

  8. Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation

    PubMed Central

    2013-01-01

    Background Genetic engineering of industrial microorganisms often suffers from undesirable side effects on essential functions. Reverse engineering is an alternative strategy to improve multifactorial traits like low glycerol/high ethanol yield in yeast fermentation. Previous rational engineering of this trait always affected essential functions like growth and stress tolerance. We have screened Saccharomyces cerevisiae biodiversity for specific alleles causing lower glycerol/higher ethanol yield, assuming higher compatibility with normal cellular functionality. Previous work identified ssk1E330N…K356N as causative allele in strain CBS6412, which displayed the lowest glycerol/ethanol ratio. Results We have now identified a unique segregant, 26B, that shows similar low glycerol/high ethanol production as the superior parent, but lacks the ssk1E330N…K356N allele. Using segregants from the backcross of 26B with the inferior parent strain, we applied pooled-segregant whole-genome sequence analysis and identified three minor quantitative trait loci (QTLs) linked to low glycerol/high ethanol production. Within these QTLs, we identified three novel alleles of known regulatory and structural genes of glycerol metabolism, smp1R110Q,P269Q, hot1P107S,H274Y and gpd1L164P as causative genes. All three genes separately caused a significant drop in the glycerol/ethanol production ratio, while gpd1L164P appeared to be epistatically suppressed by other alleles in the superior parent. The order of potency in reducing the glycerol/ethanol ratio of the three alleles was: gpd1L164P > hot1P107S,H274Y ≥ smp1R110Q,P269Q. Conclusions Our results show that natural yeast strains harbor multiple specific alleles of genes controlling essential functions, that are apparently compatible with survival in the natural environment. These newly identified alleles can be used as gene tools for engineering industrial yeast strains with multiple subtle changes, minimizing the risk of

  9. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production.

    PubMed

    Sasano, Yu; Watanabe, Daisuke; Ukibe, Ken; Inai, Tomomi; Ohtsu, Iwao; Shimoi, Hitoshi; Takagi, Hiroshi

    2012-04-01

    Lignocellulosic biomass is a promising source for bioethanol production, because it is abundant worldwide and has few competing uses. However, the treatment of lignocelllulosic biomass with weak acid to release cellulose and hemicellulose generates many kinds of byproducts including furfural and 5-hydroxymethylfurfural, which inhibit fermentation by yeast, because they generate reactive oxygen species (ROS) in cells. In order to acquire high tolerance to oxidative stress in bioethanol yeast strains, we focused on the transcription activator Msn2 of Saccharomyces cerevisiae, which regulates numerous genes involved in antioxidative stress responses, and constructed bioethanol yeast strains that overexpress Msn2 constitutively. The Msn2-overexpressing bioethanol strains showed tolerance to oxidative stress, probably due to the high-level expression of various antioxidant enzyme genes. Unexpectedly, these strains showed ethanol sensitivity compared with the control strain, probably due to imbalance of the expression level between Msn2 and Msn4. In the presence of furfural, the engineered strains exhibited reduced intracellular ROS levels, and showed rapid growth compared with the control strain. The fermentation test in the presence of furfural revealed that the Msn2-overexpressing strains showed improvement of the initial rate of fermentation. Our results indicate that overexpression of the transcription activator Msn2 in bioethanol yeast strains confers furfural tolerance by reducing the intracellular ROS levels and enhances the initial rate of fermentation in the presence of furfural, suggesting that these strains are capable of adapting rapidly to various compounds that inhibit fermentation by inducing ROS accumulation. Our results not only promise to improve bioethanol production from lignocellulosic biomass, but also provide novel insights for molecular breeding of industrial yeast strains. PMID:22178024

  10. Ethanol poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002644.htm Ethanol poisoning To use the sharing features on this page, please enable JavaScript. Ethanol poisoning is caused by drinking too much alcohol. ...

  11. Ethanol Basics

    SciTech Connect

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  12. Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter reviews the current process technologies for fuel ethanol production. In the US, almost all commercial fuel ethanol is produced from corn whereas cane sugar is used almost exclusively in Brazil. In Europe, two major types of feedstock considered for fuel ethanol production are be...

  13. Fuel ethanol

    SciTech Connect

    Not Available

    1989-02-01

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the current local feedstock requirement.

  14. Ethanol production in recombinant hosts

    DOEpatents

    Ingram, Lonnie O'Neal; Barbosa-Alleyne, Maria D.

    2005-02-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  15. Mechanisms of naturally evolved ethanol resistance in Drosophila melanogaster.

    PubMed

    Fry, James D

    2014-11-15

    The decaying fruit in which Drosophila melanogaster feed and breed can contain ethanol in concentrations as high as 6-7%. In this cosmopolitan species, populations from temperate regions are consistently more resistant to ethanol poisoning than populations from the tropics, but little is known about the physiological basis of this difference. I show that when exposed to low levels of ethanol vapor, flies from a tropical African population accumulated 2-3 times more internal ethanol than flies from a European population, giving evidence that faster ethanol catabolism by European flies contributes to the resistance difference. Using lines differing only in the origin of their third chromosome, however, I show that faster ethanol elimination cannot fully explain the resistance difference, because relative to African third chromosomes, European third chromosomes confer substantially higher ethanol resistance, while having little effect on internal ethanol concentrations. European third chromosomes also confer higher resistance to acetic acid, a metabolic product of ethanol, than African third chromosomes, suggesting that the higher ethanol resistance conferred by the former might be due to increased resistance to deleterious effects of ethanol-derived acetic acid. In support of this hypothesis, when ethanol catabolism was blocked with an Alcohol dehydrogenase mutant, there was no difference in ethanol resistance between flies with European and African third chromosomes. PMID:25392459

  16. Greenhouse gas emissions related to ethanol produced from corn

    SciTech Connect

    Marland, G.

    1994-04-01

    This report confers the details of a panel meeting discussion on greenhouse gases. The topic of this discussion was ethanol. Members discussed all aspects of growing corn and producing ethanol. Then the question was raised as to whether or not this is a suitable substitute to fossil fuel usage in the reduction of greenhouse gas emissions.

  17. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, L.O.; Barbosa-Alleyne, M.D.F.

    1996-01-09

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

  18. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, L.O.; Barbosa-Alleyne, M.D.F.

    1999-06-29

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

  19. Ethanol production in Gram-positive microbes

    DOEpatents

    Ingram, Lonnie O'Neal; Barbosa-Alleyne, Maria D. F.

    1996-01-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  20. Ethanol production in gram-positive microbes

    DOEpatents

    Ingram, Lonnie O'Neal; Barbosa-Alleyne, Maria D. F.

    1999-01-01

    The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

  1. Ethanol Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  2. Autophagy and ethanol neurotoxicity

    PubMed Central

    Luo, Jia

    2015-01-01

    Excessive ethanol exposure is detrimental to the brain. The developing brain is particularly vulnerable to ethanol such that prenatal ethanol exposure causes fetal alcohol spectrum disorders (FASD). Neuronal loss in the brain is the most devastating consequence and is associated with mental retardation and other behavioral deficits observed in FASD. Since alcohol consumption during pregnancy has not declined, it is imperative to elucidate the underlying mechanisms and develop effective therapeutic strategies. One cellular mechanism that acts as a protective response for the central nervous system (CNS) is autophagy. Autophagy regulates lysosomal turnover of organelles and proteins within cells, and is involved in cell differentiation, survival, metabolism, and immunity. We have recently shown that ethanol activates autophagy in the developing brain. The autophagic preconditioning alleviates ethanol-induced neuron apoptosis, whereas inhibition of autophagy potentiates ethanol-stimulated reactive oxygen species (ROS) and exacerbates ethanol-induced neuroapoptosis. The expression of genes encoding proteins required for autophagy in the CNS is developmentally regulated; their levels are much lower during an ethanol-sensitive period than during an ethanol-resistant period. Ethanol may stimulate autophagy through multiple mechanisms; these include induction of oxidative stress and endoplasmic reticulum stress, modulation of MTOR and AMPK signaling, alterations in BCL2 family proteins, and disruption of intracellular calcium (Ca2+) homeostasis. This review discusses the most recent evidence regarding the involvement of autophagy in ethanol-mediated neurotoxicity as well as the potential therapeutic approach of targeting autophagic pathways. PMID:25484085

  3. Recombinant yeast with improved ethanol tolerance and related methods of use

    DOEpatents

    Gasch, Audrey P.; Lewis, Jeffrey A.

    2012-05-15

    The present invention provides isolated Elo1 and Mig3 nucleic acid sequences capable of conferring increased ethanol tolerance on recombinant yeast and methods of using same in biofuel production, particularly ethanol production. Methods of bioengineering yeast using the Elo1 and, or, Mig3 nucleic acid sequences are also provided.

  4. Ethanol and neuronal metabolism.

    PubMed

    Mandel, P; Ledig, M; M'Paria, J R

    1980-01-01

    The effect of ethanol on membrane enzymes (Na+, K+ and Mg2+ ATPases, 5'-nucleotidase, adenylate cyclase) alcohol dehydrogenase, aldehyde dehydrogenase and superoxide dismutase were studied in nerve cells (established cell lines, primary cultures of chick and rat brain) cultured in the presence of 100 mM ethanol, and in total rat brain, following various ethanol treatments of the rats (20% ethanol as the sole liquid source, intraperitoneal injection). The results show a difference between neuronal and glial cells. Most of the observed changes in enzymatic activities returned rapidly to control values when ethanol was withdrawn from the culture medium or from the diet. Alcohol dehydrogenase was more stimulated by ethanol than aldehyde dehydrogenase; therefore acetaldehyde may be accumulated. The inhibition of superoxide dismutase activity may allow an accumulation of cytotoxic O2- radicals in nervous tissue and may explain the polymorphism of lesions brought about by alcohol intoxication. PMID:6264495

  5. Fermentation method producing ethanol

    DOEpatents

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  6. Ethanol immunosuppression in vitro

    SciTech Connect

    Kaplan, D.R.

    1986-03-01

    Ethanol in concentrations equivalent to levels achieved by the ingestion of moderate to large amounts of alcoholic beverages has been shown to inhibit mitogen and anti-CD3 stimulated human T lymphocyte proliferation. This inhibition was monophasic suggesting that ethanol affected a single limiting component of T cell proliferation. In experiments designed to test the effect of ethanol on various aspects of proliferation, it was demonstrated that ethanol inhibited the capacity of exogenously supplied interleukin 2 to stimulate proliferation of T cells that had previously acquired interleukin 2 receptors in a monophasic, dose-dependent manner. Moreover, there was no suppression of interleukin 2 production or interleukin 2 receptor acquisition. Thus, ethanol was shown to mediate immunosuppression by a mechanism specific to one component of proliferation. Additive inhibition of T cell proliferation was seen with ethanol plus cyclosporin A which inhibits interleukin 2 production. The level of inhibition with 250 ng/ml cyclosporin A alone was equivalent to the level seen with 62 ng/ml cyclosporin A plus 20 mM (94 mg%) ethanol. Ethanol also suppressed an immune effector mechanism. NK cytotoxicity was depressed in a monophasic, dose-dependent manner. Thus, ethanol might be considered as a possible adjunct in immunosuppressive therapy.

  7. Biomedical Conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    As a result of Biomedical Conferences, Vivo Metric Systems Co. has produced cardiac electrodes based on NASA technology. Frequently in science, one highly specialized discipline is unaware of relevant advances made in other areas. In an attempt to familiarize researchers in a variety of disciplines with medical problems and needs, NASA has sponsored conferences that bring together university scientists, practicing physicians and manufacturers of medical instruments.

  8. Dehydrate ethanol without distillation

    SciTech Connect

    Not Available

    1993-10-01

    Usina da Pedra (Serrana, state of Sao Paulo, Brazil) produces 60 million gal/yr of ethanol in 180 operating days. Until this year, the plant made 96 vol.% ethanol that is used as automotive fuel, and absolute ethanol (99.5 vol. %), which is blended with gasoline. Water is the remainder in both products. The ethanol is produced from the fermentation of sugar cane, and distilled with benzene. Benzene lowers the boiling point of the ethanol-water mixture and ties up the water. In May, Usina da Pedra installed a process that dehydrates ethanol by adsorption, not distillation. A vapor-phase process containing molecular sieves, handles throughputs as high as 160,000 acfh and has a maximum capacity of 70 million gal/yr. In addition to generating safer products, the energy savings gained by switching from distillation to adsorption are significant. The adsorptive system requires input of only 2,900 Btu per gallon of ethanol; one-third the energy consumed by distillation systems that employ benzene or cyclohexane.

  9. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    PubMed Central

    2012-01-01

    Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to improve alcoholic

  10. Conference Summary

    ERIC Educational Resources Information Center

    Doherty, Cait

    2009-01-01

    This article summarizes an original conference, organised by the Child Care Research Forum (http://www.qub.ac.uk/sites/ccrf/), which brought together experts from all over Northern Ireland to showcase some of the wealth of research with children and young people that is going on in the country today. Developed around the six high-level outcomes of…

  11. Process for producing ethanol

    SciTech Connect

    Lantero, O.J.; Fish, J.J.

    1993-07-27

    A process is described for producing ethanol from raw materials containing a high dry solid mash level having fermentable sugars or constituents which can be converted into sugars, comprising the steps of: (a) liquefaction of the raw materials in the presence of an alpha amylase to obtain liquefied mash; (b) saccharification of the liquefied mash in the presence of a glucoamylase to obtain hydrolysed starch and sugars; (c) fermentation of the hydrolysed starch and sugars by yeast to obtain ethanol; and (d) recovering the obtained ethanol, wherein an acid fungal protease is introduced to the liquefied mash during the saccharification and/or to the hydrolysed starch and sugars during the fermentation, thereby increasing the rate of production of ethanol as compared to a substantially similar process conducted without the introduction of the protease.

  12. Ethanol and oxidative stress.

    PubMed

    Sun, A Y; Ingelman-Sundberg, M; Neve, E; Matsumoto, H; Nishitani, Y; Minowa, Y; Fukui, Y; Bailey, S M; Patel, V B; Cunningham, C C; Zima, T; Fialova, L; Mikulikova, L; Popov, P; Malbohan, I; Janebova, M; Nespor, K; Sun, G Y

    2001-05-01

    This article represents the proceedings of a workshop at the 2000 ISBRA Meeting in Yokohama, Japan. The chair was Albert Y. Sun. The presentations were (1) Ethanol-inducible cytochrome P-4502E1 in alcoholic liver disease, by Magnus Ingelman-Sundberg and Etienne Neve; (2) Regulation of NF-kappaB by ethanol, by H. Matsumoto, Y. Nishitani, Y. Minowa, and Y. Fukui; (3) Chronic ethanol consumption increases concentration of oxidized proteins in rat liver, by Shannon M. Bailey, Vinood B. Patel, and Carol C. Cunningham; (4) Antiphospholipids antibodies and oxidized modified low-density lipoprotein in chronic alcoholic patients, by Tomas Zima, Lenka Fialova, Ludmila Mikulikova, Ptr Popov, Ivan Malbohan, Marta Janebova, and Karel Nespor; and (5) Amelioration of ethanol-induced damage by polyphenols, by Albert Y. Sun and Grace Y. Sun. PMID:11391077

  13. Biofuel Ethanol Transport Risk

    EPA Science Inventory

    Ethanol production has increased rapidly over the last 10 years and many communities lack awareness of the increased and growing extent of biofuel transportation through their jurisdictions. These communities and their emergency responders may not have the information and resour...

  14. Ethanol production from lignocellulose

    DOEpatents

    Ingram, Lonnie O.; Wood, Brent E.

    2001-01-01

    This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by 1/3 to 1/2. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.

  15. Minocycline reduces ethanol drinking.

    PubMed

    Agrawal, R G; Hewetson, A; George, C M; Syapin, P J; Bergeson, S E

    2011-06-01

    Alcoholism is a disease characterized by continued alcohol consumption despite recurring negative consequences. Thus, medications that reduce the drive to consume alcohol can be beneficial in treating alcoholism. The neurobiological systems that regulate alcohol consumption are complex and not fully understood. Currently, medications are available to treat alcoholism that act either by causing accumulation of a toxic metabolite of ethanol, or by targeting specific transmitter receptors. The purpose of our study was to investigate a new potential therapeutic pathway, neuroimmune interactions, for effects on ethanol consumption. We hypothesized that neuroimmune activity of brain glia may have a role in drinking. We utilized minocycline, a second generation tetracycline antibiotic that has immune modulatory actions, to test our hypothesis because it is known to suppress microglia, and to a lesser extent astroglia, activity following many types of insults to the brain. Treatment with 50mg/kg minocycline significantly reduced ethanol intake in male and female C57Bl/6J mice using a free choice voluntary drinking model. Saline injections did not alter ethanol intake. Minocycline had little effect on water intake or body weight change. The underlying mechanism whereby minocycline reduced ethanol intake requires further study. The results suggest that drugs that alter neuroimmune pathways may represent a new approach to developing additional therapies to treat alcoholism. PMID:21397005

  16. Oleanolic acid ethanol monosolvate

    PubMed Central

    Froelich, Anna; Gzella, Andrzej K.

    2010-01-01

    Crystals of the title compound (systematic name: 3β-hy­droxy­olean-12-en-28-oic acid ethanol monosolvate), C30H48O3·C2H5OH, were obtained from unsuccessful co-crystallization trials. The asymmetric unit contains two symmetry-independent oleanolic acid mol­ecules, as well as two ethanol solvent mol­ecules. Inter­molecular O—H⋯O hydrogen bonds stabilize the crystal packing. In the oleanolic acid mol­ecules, ring C has a slightly distorted envelope conformation, while rings A, B, D and E adopt chair conformations and rings D and E are cis-fused. Both independent ethanol mol­ecules are orientationally disordered [occupancy ratios of 0.742 (8):0.258 (8) and 0.632 (12):0.368 (12). PMID:21588987

  17. Effect of chronic pentobarbital treatment on the development of cross-tolerance to ethanol and barbital.

    PubMed

    Khanna, J M; Lê, A D; Gougos, A; Kalant, H

    1988-09-01

    Recently, we reported that a chronic regimen of ethanol by intubation, which produced clear tolerance to ethanol-induced hypothermia, ataxia and sleep, produced only a marginal degree of cross-tolerance to these effects of pentobarbital. The present experiments were designed to test the reverse process by examining cross-tolerance to pentobarbital after chronic pretreatment with ethanol, chronic pentobarbital treatment by gavage conferred clear cross-tolerance to both barbital- and ethanol-induced hypothermia, ataxia and sleep. In a separate experiment, cross-tolerance to barbital- and ethanol-induced hypothermia and ataxia was demonstrated over a wide range of test doses. Determination of ethanol blood levels as well as a complete time course of absorption, distribution and elimination of ethanol suggested that pharmacokinetic alterations may play a role in the development of cross-tolerance to ethanol in pentobarbital-treated subjects. The asymmetry of cross-tolerance raises the possibility that pentobarbital and ethanol invoke tolerance by mechanisms that are not wholly identical. This possibility requires further exploration. Conceivably the actions of ethanol which mediate the measured effects form a subset of a larger range of pentobarbital actions that could provide a stronger stimulus to tolerance development. PMID:3252249

  18. Ethanol from sweet sorghum

    SciTech Connect

    Polack, J.A.; Day, D,F.

    1980-08-01

    Sweet sorghum has long been of interest to sugar farmers and sugar processors. The thought has been that one could plant the sweet sorghum on fallow land and harvest it and process it in September, before the start of the regular sugar cane griding season. Several disadvantages have prevented its use in sugar production, but these seem much less of a problem if ethanol is to be produced. The DOE has targeted sweet sorghum as a prime crop for ethanol production, and the planting of 14 million new acres in sweet sorghum is the underlying assumption in a DOE plant to produce 11 billion gallons of alcohol fuel by the year 2000.

  19. Next conference

    NASA Astrophysics Data System (ADS)

    Hexemer, Alexander; Toney, Michael F.

    2010-11-01

    After the successful conference on Synchrotron Radiation in Polymer Science (SRPS) in Rolduc Abbey (the Netherlands), we are now looking forward to the next meeting in this topical series started in 1995 by H G Zachmann, one of the pioneers of the use of synchrotron radiation techniques in polymer science. Earlier meetings were held in Hamburg (1995), Sheffield (2002), Kyoto (2006), and Rolduc (2009). In September of 2012 the Synchrotron Radiation and Polymer Science V conferences will be organized in a joint effort by the SLAC National Accelerator Laboratory and Lawrence Berkeley National Laboratory. Stanford Linear Accelerator Laboratory Stanford Linear Accelerator Laboratory Advanced Light Source at LBL Advanced Light Source at LBL The conference will be organised in the heart of beautiful San Francisco. The program will consist of invited and contributed lectures divided in sessions on the use of synchrotron SAXS/WAXD, imaging and tomography, soft x-rays, x-ray spectroscopy, GISAXS and reflectivity, micro-beams and hyphenated techniques in polymer science. Poster contributions are more than welcome and will be highlighted during the poster sessions. Visits to both SLAC as well as LBL will be organised. San Francisco can easily be reached. It is served by two major international airports San Francisco International Airport and Oakland International Airport. Both are being served by most major airlines with easy connections to Europe and Asia as well as national destinations. Both also boast excellent connections to San Francisco city centre. We are looking forward to seeing you in the vibrant city by the Bay in September 2012. Golden gate bridge Alexander Hexemer Lawrence Berkeley National Laboratory, Advanced Light Source, Berkeley, CA 94720, USA Michael F Toney Stanford Synchrotron Radiation Lightsource, Menlo Pk, CA 94025, USA E-mail: ahexemer@lbl.gov, mftoney@slac.stanford.edu

  20. Conferences revisited

    NASA Astrophysics Data System (ADS)

    Radcliffe, Jonathan

    2008-08-01

    Way back in the mid-1990s, as a young PhD student, I wrote a Lateral Thoughts article about my first experience of an academic conference (Physics World 1994 October p80). It was a peach of a trip - most of the lab decamped to Grenoble for a week of great weather, beautiful scenery and, of course, the physics. A whole new community was there for me to see in action, and the internationality of it all helped us to forget about England's non-appearance in the 1994 World Cup finals.

  1. Conference Summary

    NASA Technical Reports Server (NTRS)

    Harrington, James, Jr.; Thomas, Valerie

    2000-01-01

    The MU-SPIN conference focused on showcasing successful experiences with information technology to enhance faculty and student development in areas of scientific and technical research and education. And it provided a forum for discussing increased participation of MU-SPIN schools in NASA Flight Missions and NASA Educational and Public Outreach activities. Opportunities for Involvement sessions focused on Space Science, Earth Science, Education, and Aeronautics. These sessions provided insight into the missions of NASA's enterprises and NASA's Education program. Presentations by NASA scientists, university Principal Investigators, and other affiliates addressed key issues for increased minority involvement.

  2. Ethanol Impacts on BTEX Plumes

    EPA Science Inventory

    The impacts of ethanol on benzene, toluene, ethylbenzene and xylenes (BTEX) are beginning to become established through laboratory, modeling and field research. Usage of ethanol, which increased due to federal mandates, drives interest and potential impacts on BTEX. Through co...

  3. Ethanol Myths Fact Sheet

    SciTech Connect

    2009-10-27

    Ethanol is a clean, renewable fuel that is helping to reduce our nation’s dependence on oil and can offer additional economic and environmental benefits in the future. This fact sheet is intended to address some common misconceptions about this important alternative fuel.

  4. The Conference Experience.

    ERIC Educational Resources Information Center

    Woolls, Blanche; Hartman, Linda; Corey, Linda; Marcoux, Betty; Jay, M. Ellen; England, Jennifer

    2003-01-01

    Includes five articles on conference experiences: preplanning for a library conference; top ten reasons to attend an AASL (American Association of School Librarians) national conference; why should you bother to fill out a conference evaluation form; a case for conferences; and AASL tours. (LRW)

  5. Sorghum to Ethanol Research

    SciTech Connect

    Jeff Dahlberg, Ph D; Ed Wolfrum, Ph D

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  6. Sorghum to Ethanol Research

    SciTech Connect

    Dahlberg, Jeff; Wolfrum, Ed

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called dedicated bioenergy crops including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  7. Tolerance to ethanol and cross-tolerance to pentobarbital and barbital in four rat strains.

    PubMed

    Khanna, J M; Kalant, H; Shah, G; Chau, A

    1991-07-01

    Chronic ethanol treatment by gastric intubation conferred tolerance to ethanol-induced motor impairment and hypnosis in four different rat strains: Fischer 344, Long-Evans, Sprague-Dawley, and Wistar. Cross-tolerance to barbital was also observed in all strains after chronic treatment with ethanol. However, chronic ethanol treatment failed to produce cross-tolerance to pentobarbital-induced motor impairment and hypnosis in any of the four strains. The demonstration of cross-tolerance to barbital and the lack of it to pentobarbital after chronic ethanol treatment confirms and extends recent observations on the specificity of the site and/or mechanism of action of sedative-hypnotic drugs that differ in lipid solubility. PMID:1784599

  8. Innovative inexpensive ethanol

    SciTech Connect

    Mackek, S. )

    1991-03-01

    New Energy Company of Indiana which produces 70 million gallons of ethanol per year, avoids the headaches often associated with organic by-products by creating an efficient and profitable sideline business. This paper reports that stretching across 55 acres in South Bend, Ind., New Energy's plant is the largest in the U.S. built specifically for fuel alcohol. The $186-million complex is a dramatic advance in the art of producing ethanol and its co-products. As the demand grows in the coming years for fuel alcohol-proven as an octane booster and a clean-burning alternative fuel. New Energy looks forward to increase production and profits. At the company's six-year-old plant, fuel alcohol is made from 26 million bushels a year of No. 2 yellow dent corn. Left at the bottom of the first column, after the alcohol has been boiled off, is stillage that contains more than 90% of the corn's protein and fat content, and virtually all of its vitamins and minerals, along with the yeast used to make the ethanol. While technically a waste product of the fuel alcohol process, this material's quantity and organic content not only make it difficult and costly to dispose, but its nutritional quality makes it an excellent candidate to be further processed into animal feed.

  9. Xylose fermentation to ethanol

    SciTech Connect

    McMillan, J.D.

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  10. Binge ethanol exposure in late gestation induces ethanol aversion in the dam but enhances ethanol intake in the offspring and affects their postnatal learning about ethanol

    PubMed Central

    Chotro, M. Gabriela; Arias, Carlos; Spear, Norman E.

    2009-01-01

    Previous studies show that exposure to 1 or 2 g/kg ethanol during the last days of gestation increases ethanol acceptance in infant rats. We tested whether prenatal exposure to 3 g/kg, a relatively high ethanol dose, generates an aversion to ethanol in both the dam and offspring, and whether this prenatal experience affects the expression of learning derived from ethanol exposure postnatally. The answer was uncertain, since postnatal administration of a 3 g/kg ethanol dose induces an aversion to ethanol after postnatal day 10 but increases ethanol acceptance when administered during the first postnatal week. In the present study pregnant rats received intragastric administrations of water or ethanol (3 g/kg) on gestation days 17-20. On postnatal days 7-8 or 10-11 the offspring were administered water or ethanol (3 g/kg). Intake of ethanol and water, locomotor activity in an open-field and ethanol odor preference were evaluated in the pups, while the mothers were evaluated in terms of ethanol intake. Results indicated an aversion to ethanol in dams that had been administered ethanol during gestation, despite a general increase in ethanol intake observed in their pups relative to controls. The prenatal ethanol exposure also potentiated the increase in ethanol intake observed after intoxication on postnatal days 7-8. Ethanol intoxication on postnatal days 10-11 reduced ethanol consumption; this ethanol aversion was still evident in infant rats exposed prenatally to ethanol despite their general increase in ethanol intake. No effects of prenatal ethanol exposure were observed in terms of motor activity or odor preference. It is concluded that prenatal exposure to ethanol, even in a dose that induces ethanol aversion in the gestating dam, increases ethanol intake in infant rats and that this experience modulates age-related differences in subsequent postnatal learning about ethanol. PMID:19801275

  11. Conference Summary

    NASA Astrophysics Data System (ADS)

    Sanders, David B.

    2014-07-01

    This conference on ``Multi-wavelength AGN Surveys and Studies'' has provided a detailed look at the explosive growth over the past decade, of available astronomical data from a growing list of large scale sky surveys, from radio-to-gamma rays. We are entering an era were multi-epoch (months to weeks) surveys of the entire sky, and near-instantaneous follow-up observations of variable sources, are elevating time-domain astronomy to where it is becoming a major contributor to our understanding of Active Galactic Nuclei (AGN). While we can marvel at the range of extragalactic phenomena dispayed by sources discovered in the original ``Markarian Survey'' - the first large-scale objective prism survey of the Northern Sky carried out at the Byurakan Astronomical Observtory almost a half-century ago - it is clear from the talks and posters presented at this meeting that the data to be be obtained over the next decade will be needed if we are to finally understand which phase of galaxy evolution each Markarian Galaxy represents.

  12. Effect of ganaxolone and THIP on operant and limited-access ethanol self-administration

    PubMed Central

    Ramaker, Marcia J.; Strong, Moriah N.; Ford, Matthew M.; Finn, Deborah A.

    2013-01-01

    Recent evidence suggests that GABAA receptor ligands may regulate ethanol intake via effects at both synaptic and extrasynaptic receptors. For example, the endogenous neurosteroid, allopregnanolone (ALLO) has a similar pharmacological profile as ethanol, and it alters ethanol intake in rodent models. Additionally, recent evidence suggests that δ-subunit containing extrasynaptic GABAA receptors may confer high sensitivity to both ethanol and neurosteroids. The purpose of the present study was to determine the effects of ganaxolone (GAN; an ALLO analogue) and gaboxadol (THIP; a GABAA receptor agonist with selectivity for the extrasynaptic δ-subunit) on ethanol intake, drinking patterns, and bout characteristics in operant and limited access self-administration procedures. In separate studies, the effects of GAN (0 – 10 mg/kg) and THIP (2 – 16 mg/kg) were tested in C57BL/6J male mice provided with two-hour access to a two-bottle choice of water or 10% ethanol or trained to respond for 30 minutes of access to 10% ethanol. GAN had no overall significant effect on operant ethanol self-administration, but tended to decrease the latency to consume the first bout. In the limited-access procedure, GAN dose-dependently decreased ethanol intake. THIP dose-dependently decreased ethanol intake in both paradigms, altering both the consummatory and appetitive processes of operant self-administration as well as shifting the drinking patterns in both procedures. These results add to literature suggesting time-dependent effects of neurosteroids to promote the onset, and to subsequently decrease, ethanol drinking behavior, and they support a role for extrasynaptic GABAA receptor activation in ethanol reinforcement. PMID:22613838

  13. Final report (September, 1999--February, 2002) [Public outreach and information dissemination - cellulosic and corn-based ethanol outreach project

    SciTech Connect

    Ames, Jeremy; Werner, Carol

    2002-08-01

    EESI's ''Ethanol, Climate Protection, Oil Reduction'' (ECO) electr[on]ic newsletter reaches out to the environmental and agricultural communities, state/local government officials and other interested parties, and provides a forum for dialogue about ''the potential benefits of ethanol--and particularly the expanded opportunities provided by cellulosic ethanol--with a special focus on climate protection.'' Each issue features expert commentary, excerpts from recent studies about ethanol, a summary of current government activity on ethanol, and ''notable quotables.'' The newsletter is distributed primarily via email and is also posted on EESI's web site. EESI also conducts outreach on the benefits of ethanol and other biofuels by attending and speaking at conferences, meetings and workshops around the country. The 16 issues of the newsletter published through December 2001 are included as attachments.

  14. Conference Scene

    PubMed Central

    Leeder, J Steven; Lantos, John; Spielberg, Stephen P

    2015-01-01

    A major challenge for clinicians, pharmaceutical companies and regulatory agencies is to better understand the relative contributions of ontogeny and genetic variation to observed variability in drug disposition and response across the pediatric age spectrum from preterm and term newborns, to infants, children and adolescents. Extrapolation of adult experience with pharmacogenomics and personalized medicine to pediatric patients of different ages and developmental stages, is fraught with many challenges. Compared with adults, pediatric pharmacogenetics and pharmacogenomics involves an added measure of complexity as variability owing to developmental processes, or ontogeny, is superimposed upon genetic variation. Furthermore, some pediatric diseases have no adult correlate or are more prevalent in children compared with adults, and several adverse drug reactions are unique to children, or occur at a higher frequency in children. The primary objective of this conference was to initiate an ongoing series of annual meetings on ‘Pediatric Pharmacogenomics and Personalized Medicine’ organized by the Center for Personalized Medicine and Therapeutic Innovation and Division of Clinical Pharmacology and Medical Therapeutics at Children’s Mercy Hospitals and Clinics in Kansas City, MO, USA. The primary goals of the inaugural meeting were: to bring together clinicians, basic and translational scientists and allied healthcare practitioners, and engage in a multi- and cross-disciplinary dialog aimed at implementing personalized medicine in pediatric settings; to provide a forum for the presentation and the dissemination of research related to the application of pharmacogenomic strategies to investigations of variability of drug disposition and response in children; to explore the ethical, legal and societal implications of pharmacogenomics and personalized medicine that are unique to children; and finally, to create networking opportunities for stimulating discussion

  15. Coproduction of ethanol and glycerol.

    PubMed

    Gong, C S; Du, J X; Cao, N J; Tsao, G T

    2000-01-01

    Ethanol and glycerol are both metabolic products of yeasts. There are occasions when coproduction of both is considered desirable in industrial operations. In this article, we describe the potential of integrating the two processes. A LORRE Y8 yeast culture isolated from molasses is capable of efficient glycerol production from glucose, and a yeast Culture 1400 is an excellent producer of ethanol. By controlling the process conditions, the ratio of ethanol and glycerol production can be varied. PMID:10849818

  16. Ethanol from municipal cellulosic wastes

    NASA Astrophysics Data System (ADS)

    Parker, A. J., Jr.; Timbario, T. J.; Mulloney, J. A., Jr.

    This paper addresses the use of municipal cellulosic wastes as a feedstock for producing ethanol fuels, and describes the application of enzymatic hydrolysis technology for their production. The concept incorporates recent process technology developments within the framework of an existing industry familiar with large-scale ethanol fermentation (the brewing industry). Preliminary indications are that the cost of producing ethanol via enzymatic hydrolysis in an existing plant with minimal facility modifications (low capital investment) can be significantly less than that of ethanol from grain fermentation.

  17. Xylose utilizing Zymomonas mobilis with improved ethanol production in biomass hydrolysate medium

    SciTech Connect

    Caimi, Perry G; Hitz, William D; Viitanen, Paul V; Stieglitz, Barry

    2013-10-29

    Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

  18. Xylose utilizing zymomonas mobilis with improved ethanol production in biomass hydrolysate medium

    SciTech Connect

    Caimi, Perry G; Hitz, William D; Stieglitz, Barry; Viitanen, Paul V

    2013-07-02

    Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

  19. Increased ethanol consumption despite taste aversion in mice with a human tryptophan hydroxylase 2 loss of function mutation.

    PubMed

    Lemay, Francis; Doré, François Y; Beaulieu, Jean-Martin

    2015-11-16

    Polymorphisms in the gene encoding the brain serotonin synthesis enzyme Tph2 have been identified in mental illnesses, with co-morbidity of substance use disorder. However, little is known about the impact of Tph2 gene variants on addiction. Mice expressing a human Tph2 loss of function variant were used to investigate consequences of aversive conditions on ethanol intake. Mice were familiarized either with ethanol or a solution containing both ethanol and the bittering agent quinine. Effect of familiarization to ethanol or an ethanol-quinine solution was then evaluated using a two-bottles preference test in Tph2-KI and control littermates. Mice from both genotypes displayed similar levels of ethanol consumption and quinine avoidance when habituated to ethanol alone. In contrast, addition of quinine to ethanol during the familiarization period resulted in a reduction of avoidance for the quinine-ethanol solution only in mutant mice. These results indicate that loss of function mutation in Tph2 results in greater motivation for ethanol consumption under aversive conditions and may confer enhanced sensitivity to alcohol use disorder. PMID:26497913

  20. Improved ethanol precipitation of DNA.

    PubMed

    Fregel, Rosa; González, Ana; Cabrera, Vicente M

    2010-04-01

    In this Short Communication, a shorter version of the standard DNA ethanol precipitation and purification protocol is described. It uses a mixture of 70% ethanol, 75 mM ammonium acetate and different concentrations of different carriers to perform DNA precipitation and washing in only one step. PMID:20336673

  1. Atmospheric chemistry: Ethanol and ozone

    NASA Astrophysics Data System (ADS)

    Madronich, Sasha

    2014-06-01

    Ethanol has been heralded as a cleaner fuel for cars than gasoline. An analysis of air quality data suggests that a switch from ethanol to gasoline use in São Paulo in response to changing prices led unexpectedly to lower local levels of ozone pollution.

  2. Ethanolic fermentation of lignocellulose hydrolysates

    SciTech Connect

    Hahn-Haegerdal, B.

    1996-12-31

    This minireview discusses various factors which require consideration for the ethanolic fermentation of lignocellulose hydrolysates. The production of an alternative transportation fuel requires pretreatment of the biomass and detoxification to enhance the fermentability. Recombinant DNA technology makes it possible to engineer new microorganisms for efficient ethanol production from all sugars present in the hydrolysates. 60 refs.

  3. Ethanol Coproducts for Livestock Diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rapid growth of the ethanol industry in the United States has generated large quantities of ethanol coproducts, primarily distillers dried grains with solubles (DDGS), available as a feedstuff for livestock. These coproducts are often added to livestock diets as a source of protein and energy. The...

  4. PRODUCTION OF ETHANOL FROM GRAIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    World ethanol production and use of ethanol as motor fuel is increasing. In the United States, 6.3 billion gallons (24 billion liters) of new annual production capacity was planned or under construction in 2007, in addition to annual production capacity of 6.1 billion gallons (23 billion liters) fr...

  5. The South Dakota Ethanol Industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the need for biorenewable fuels increases, the ethanol industry in the U.S. continues to thrive and grow. The same is true here in South Dakota as well. In fact, South Dakota has been a leader in ethanol production for years, and will continue to be for years to come. This industry is making a...

  6. The anesthetic action of ethanol analyzed by genetics in Caenorhabditis elegans

    SciTech Connect

    Hong, Mingi; Choi, Myung Kyu; Lee, Junho

    2008-02-29

    Acute exposure to ethanol causes paralysis at high concentrations in the nematode Caenorhabditis elegans. We set out to elucidate the mechanism of the anesthetic action of ethanol by genetic approaches. We identified nine mutations that conferred reduced sensitivity to ethanol after chemical, irradiation, or transposon insertion mutagenesis. Of these nine, we further characterized five mutations that defined four genes, jud-1-jud-4. Analysis of the phenotypes of the animals heterozygous for two unlinked genes revealed that jud-1 and jud-3 act synergistically in a gene dose-dependent manner. We cloned jud-4 and found that it encodes a protein with limited homology to human Homer proteins. jud-4 was expressed in the hypodermis and vulva muscles, suggesting that this gene acts in tissues directly exposed to the external environment. Characterization of the other mutations identified in this study will facilitate the elucidation of the molecular mechanism for the anesthetic action of ethanol.

  7. Ethanol producer looks to hardwoods as raw material

    SciTech Connect

    Anderson, E.

    1988-01-04

    Bio-Regional Energy Associates (BREA), has launched a project to produce fuel ethanol from the vast reserves of low-value hardwoods that are conveniently located around Floyd, Va., the company's home base. The typical ethanol producer, adds Brecc Avellar, BREA's technical director, has relatively few coproducts to help shoulder production costs, and even relatively few raw materials from which to choose. BREA, he says, is trying to diversify on both ends. Staengl recently outlined the company's plans to develop its wood hydrolysis technology at the International Conference on (Fuel) Alcohols and Chemicals from Biomass held at Montego Bay, Jamaica. The company, he says, is building in three stages a pilot-scale (30 to 40 tons per day) wood hydrolysis and fermentation plant. The goal is to develop markets for the most diverse and highest-value products from each of the three basic wood components - cellulose, hemicellulose and lignin.

  8. The General Conference Mennonites.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    General Conference Mennonites and Old Order Amish are compared and contrasted in the areas of physical appearance, religious beliefs, formal education, methods of farming, and home settings. General Conference Mennonites and Amish differ in physical appearance and especially in dress. The General Conference Mennonite men and women dress the same…

  9. Parent Conferences. Beginnings Workshop.

    ERIC Educational Resources Information Center

    Duffy, Roslyn; And Others

    1997-01-01

    Presents six workshop sessions on parent conferences: (1) "Parents' Perspectives on Conferencing" (R. Duffy); (2) "Three Way Conferences" (G. Zeller); (3) "Conferencing with Parents of Infants" (K. Albrecht); (4) "Conferencing with Parents of School-Agers" (L. G. Miller); (5) "Cross Cultural Conferences" (J. Gonzalez-Mena); and (6) "Working with…

  10. Environmental Releases in the Fuel Ethanol Industry

    EPA Science Inventory

    Corn ethanol is the largest produced alternate biofuel in the United States. More than 13 billion gallons of ethanol were produced in 2010. The projected corn ethanol production is 15 billion gallons by 2015. With increased production of ethanol, the environmental releases from e...

  11. Plant cell walls to ethanol.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of plant cell walls to ethanol constitutes generation 2 bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation, and separation. Ultimately, it is desired to combine as man...

  12. Fuel ethanol from raw corn

    SciTech Connect

    Weller, C.L.; Rodda, E.D.; Steinberg, M.P.

    1983-06-01

    Crude amylase preparations were produced by growing Aspergillus awamori and A. niger on raw ground whole corn. These Koji preparations were used to hydrolyze the starch of raw ground whole corn to sugars during simultaneous fermentation of the sugars to ethanol by distillers active dry yeast. Ethanol concentrations of the fermentation beers were determined with gas-chromatography. These fermentations yielded an average of 89.6% theoretical ethanol compared to control, conventional, fermentations that had an average of 89.8%. Carbon dioxide evolutions were determined with use of Alwood valves. Both the Koji and conventional fermentations produced an average of 0.48 gram of carbon dioxide per gram of dry substrate starch within 72 hours. However, initially the conventional fermentation rate was greater. Koji dehydrated at 41/sup 0/C had no apparent detrimental effects on theoretical ethanol yield.

  13. Fuel ethanol from raw corn

    SciTech Connect

    Weller, C.L.; Rodda, E.D.; Steinberg, M.P.

    1983-06-01

    Crude amylase preparations were produced by growing Aspergillus awamori and A. niger on raw ground whole corn. These Koji preparations were used to hydrolyze the starch of raw ground whole corn to sugars during simultaneous fermentation of the sugars to ethanol by distillers active dry yeast. Ethanol concentrations of the fermentation beers were determined with gas-chromatography. These fermentations yielded an average of 89.6% theoretical ethanol compared to control, conventional, fermentations that had an average of 89.8%. Carbon dioxide evolutions were determined with use of Alwood valves. Both the Koji and conventional fermentations produced an average of 0.48 gram of carbon dioxide per gram of dry substrate starch within 72 hours. However, initially the conventional fermentation rate was greater. Koji dehydrated at 41 degrees C had no apparent detrimental effects on theoretical ethanol yield.

  14. Ethanol-induced analgesia

    SciTech Connect

    Pohorecky, L.A.; Shah, P.

    1987-09-07

    The effect of ethanol (ET) on nociceptive sensitivity was evaluated using a new tail deflection response (TDR) method. The IP injection of ET (0.5 - 1.5 g/kg) produced raid dose-dependent analgesia. Near maximal effect (97% decrease in TDR) was produced with the 1.5 g/kg dose of ET ten minutes after injection. At ninety minutes post-injection there was still significant analgesia. Depression of ET-induced nociceptive sensitivity was partially reversed by a 1 mg/kg dose of naloxone. On the other hand, morphine (0.5 or 5.0 mg/kg IP) did not modify ET-induced analgesia, while 3.0 minutes of cold water swim (known to produce non-opioid mediated analgesia) potentiated ET-induced analgesic effect. The 0.5 g/kg dose of ET by itself did not depress motor activity in an open field test, but prevented partially the depression in motor activity produced by cold water swim (CWS). Thus, the potentiation by ET of the depression of the TDR produced by CWS cannot be ascribed to the depressant effects of ET on motor activity. 21 references, 4 figures, 1 table.

  15. Chronic ethanol treatment potientials ethanol-induced increases in interstitial nucleus accumbens endocannabinoid levels in rats

    PubMed Central

    Alvarez-Jaimes, Lily; Stouffer, David G.; Parsons, Loren H.

    2013-01-01

    We employed in vivo microdialysis to characterize the effect of an ethanol challenge injection on endocannabinoid levels in the nucleus accumbens of ethanol-naïve and chronic ethanol-treated rats. Ethanol (0.75 and 2 g/kg, i.p.) dose-dependently increased dialysate 2-arachidonoylglycerol (to a maximum 157 ± 20% of baseline) and decreased anandamide (to a minimum 52 ± 9% of baseline) in ethanol-naïve rats. The endocannabinoid clearance inhibitor N-(4-hydrophenyl) arachidonoylamide (AM404; 3 mg/kg) potentiated ethanol effects on 2-arachidonoylglycerol levels but did not alter ethanol-induced decreases in anandamide. AM404 alone did not alter dialysate levels of either endocannabinoid. Then, we characterized the effect of ethanol challenge on nucleus accumbens endocannabinoid levels in rats previously maintained on an ethanol-containing liquid diet. Ethanol challenge produced a greater and more prolonged increase in 2-arach-idonoylglycerol (to a maximum 394 ± 135% of baseline) in ethanol-experienced than in ethanol-naïve rats. The profile in ethanol-experienced rats was similar to that produced by AM404 pre-treatment in ethanol-naïve rats. AM404 in ethanol-experienced rats led to a further enhancement in the 2-arachidonoylglycerol response to ethanol challenge (to a maximum 704 ± 174% of baseline). Our findings demonstrate that ethanol-induced increases in nucleus accumbens 2-arachidonoylglycerol are potentiated in animals with a history of ethanol consumption. PMID:19650871

  16. Effect of ethanol on energy expenditure.

    PubMed

    Suter, P M; Jéquier, E; Schutz, Y

    1994-04-01

    The thermogenic response induced by ethanol ingestion in humans has not been extensively studied. This study was designed to determine the thermic effect of ethanol added to a normal diet in healthy nonalcoholic subjects, using indirect calorimetry measurements over a 24-h period in a respiration chamber. The thermic effect of ethanol was also measured when ethanol was ingested in the fasting state, using a ventilated hood system during a 5-h period. Six subjects ingested 95.6 +/- 1.8 (SE) g ethanol in 1 day partitioned over three meals; there was a 5.5 +/- 1.2% increase in 24-h energy expenditure compared with a control day in which all conditions were identical except that no ethanol was consumed. The calculated ethanol-induced thermogenesis (EIT) was 22.5 +/- 4.7% of the ethanol energy ingested. Ingestion of 31.9 +/- 0.6 g ethanol in the fasting state led to a 7.4 +/- 0.6% increase in energy expenditure over baseline values, and the calculated EIT was 17.1 +/- 2.2%. It is concluded that in healthy nonalcoholic adults ethanol elicits a thermogenic response equal to approximately 20% of the ethanol energy. Thus the concept of the apparently inefficient utilization of ethanol energy is supported by these results which show that only approximately 80% of the ethanol energy is used as metabolizable energy for biochemical processes in healthy nonalcoholic moderate ethanol consumers. PMID:8184963

  17. New microbe can make ethanol

    SciTech Connect

    Not Available

    1989-03-01

    Researchers have created a bacterium that converts all of the sugars from inedible vegetable waste and other woody material into ethanol by inserting the genes of the bacterium Zymomonas mobilis into Escherichia coli. The resulting bacterium converts 90% -95% of the main forms of sugar in biomass into 4% - 6% concentrations of ethanol. The goal is to reach a 7% to 8% concentration. Current ethanol production from corn in a yeast-fermentation process yields a 10% - 12% ethanol concentration, but the conversion rate is less efficient than with the new bacterium. Zymomonas, found in cactus plants and used by the Aztecs to make alcohol, was selected for its known conversion efficiency. Providing the engineering challenges can be overcome, there could be several pilot plants running in 3-5 years. Even though it is not currently profitable to make ethanol from vegetable waste, if the fact that this new process reduces the total material by 90% were taken into account, perhaps a landfill reduction credit based on current tipping fees would make the actual costs both more realistic and more attractive.

  18. The effects of ethanol on angiogenesis after myocardial infarction, and preservation of angiogenesis with rosuvastatin after heavy drinking.

    PubMed

    Zhang, Yuying; Yuan, Haitao; Sun, Yongle; Wang, Yong; Wang, Aihong

    2016-08-01

    The cardioprotective effects of moderate alcohol consumption and statins have been known for years. However, heavy or binge drinking confers a high risk of cardiovascular disease. This study aimed to investigate the effects of different levels of alcohol consumption on acute myocardial infarction that was induced experimentally in rats, with a focus on the potential mechanism of angiogenesis and the effects of statins on heavy drinking. The experimental rats were fed low-dose ethanol (0.5 g/kg/day), high-dose ethanol (5 g/kg/day), and high-dose ethanol with rosuvastatin (10 mg/kg/day) during the entire experiment. Acute myocardial infarctions were induced 4 weeks after the beginning of the experiment. We assessed the capillary density in the myocardium via immunohistochemistry and quantified the expression of vascular endothelial growth factor (VEGF) and endostatin via enzyme-linked immunosorbent assay kits on the 4th day after myocardial infarction. The results revealed that low ethanol consumption promoted angiogenesis in association with higher VEGF and lower endostatin. High ethanol intake suppressed angiogenesis with unchanged VEGF and elevated endostatin. Treatment with rosuvastatin preserved angiogenesis following high ethanol intake, with an upregulation of VEGF. This study highlights that low ethanol consumption obviously promotes angiogenesis in myocardial-infarction rats while increasing the expression of VEGF, whereas high ethanol consumption inhibits ischemia-induced angiogenesis. This study also provides evidence that rosuvastatin alleviates the inhibitory effects of heavy drinking on angiogenesis. PMID:27565753

  19. Fuel ethanol production in Brazil

    SciTech Connect

    Macedo, I.C.

    1993-12-31

    The Brazilian ethanol from sugar cane program is the largest commercial liquid fuel from biomass system in operation today, with a production of 12 million m{sup 3} ethanol/year. During its 15 years of existence many issues were considered, under varying economic and strategic conditions. An overview is presented of the program development, present situation and main trends. Main subjects are technology development and implementation, costs, environmental benefits and constraints, and social/institutional issues. Is shown that the debate over the program has led to a sound knowledge on key issues (energy and CO{sub 2} balance, technology level and cost reduction, agricultural mechanization and job creation, land utilization, urban-air pollution effects, ethanol distribution, blending and use in dedicated engines.) With this basic knowledge some trends for the near future are considered (gains in productivity/conversion efficiency and cost implications; change to unburnt cane harvesting and technology development for cane trash conversion).

  20. Ethanol production method and system

    DOEpatents

    Chen, M.J.; Rathke, J.W.

    1983-05-26

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  1. Fuel ethanol from black locust

    SciTech Connect

    Kamdem, P.D.

    1993-12-31

    Black locust (Robinia psudoacacia) chips from single clone at different ages (1 to 20 years) were analyzed in terms of lignin, extractives, and carbohydrate content. Samples with high carbohydrate content were chosen for liquid ethanol conversion, by using a simultaneous saccharification fermentation process. To achieve efficient fermentation, samples were extracted with benzene and ethanol, and then treated with a 1% sulfuric acid solution for 10 minutes at 130{degrees}C. Celluclast 1.5L and Novozym 188 were used to reduce cellulose into glucose and yeasts such as B. clausenii and/or S. cerevisiae to ferment available sugars. Preliminary results indicate a negative influence of extractives present in black locust. Those extractives are mainly flavonoids (Robinetin an dihydrorobinetin) which are relatively toxic to some wood destroying organisms. Older trees give low ethanol yield and high ash content.

  2. Ethanol-Induced Alcohol Dehydrogenase E (AdhE) Potentiates Pneumolysin in Streptococcus pneumoniae

    PubMed Central

    Luong, Truc Thanh; Kim, Eun-Hye; Bak, Jong Phil; Nguyen, Cuong Thach; Choi, Sangdun; Briles, David E.; Pyo, Suhkneung

    2014-01-01

    Alcohol impairs the host immune system, rendering the host more vulnerable to infection. Therefore, alcoholics are at increased risk of acquiring serious bacterial infections caused by Streptococcus pneumoniae, including pneumonia. Nevertheless, how alcohol affects pneumococcal virulence remains unclear. Here, we showed that the S. pneumoniae type 2 D39 strain is ethanol tolerant and that alcohol upregulates alcohol dehydrogenase E (AdhE) and potentiates pneumolysin (Ply). Hemolytic activity, colonization, and virulence of S. pneumoniae, as well as host cell myeloperoxidase activity, proinflammatory cytokine secretion, and inflammation, were significantly attenuated in adhE mutant bacteria (ΔadhE strain) compared to D39 wild-type bacteria. Therefore, AdhE might act as a pneumococcal virulence factor. Moreover, in the presence of ethanol, S. pneumoniae AdhE produced acetaldehyde and NADH, which subsequently led Rex (redox-sensing transcriptional repressor) to dissociate from the adhE promoter. An increase in AdhE level under the ethanol condition conferred an increase in Ply and H2O2 levels. Consistently, S. pneumoniae D39 caused higher cytotoxicity to RAW 264.7 cells than the ΔadhE strain under the ethanol stress condition, and ethanol-fed mice (alcoholic mice) were more susceptible to infection with the D39 wild-type bacteria than with the ΔadhE strain. Taken together, these data indicate that AdhE increases Ply under the ethanol stress condition, thus potentiating pneumococcal virulence. PMID:25312953

  3. Long-term alterations in vulnerability to addiction to drugs of abuse and in brain gene expression after early life ethanol exposure.

    PubMed

    Barbier, Estelle; Pierrefiche, Olivier; Vaudry, David; Vaudry, Hubert; Daoust, Martine; Naassila, Mickaël

    2008-12-01

    Exposure to ethanol early in life can have long-lasting implications on brain function and drug of abuse response later in life. The present study investigated in rats, the long-term consequences of pre- and postnatal (early life) ethanol exposure on drug consumption/reward and the molecular targets potentially associated with these behavioral alterations. Since a relationship has been demonstrated between heightened drugs intake and susceptibility to drugs-induced locomotor activity/sensitization, anxiolysis, we tested these behavioral responses, depending on the drug, in control and early life ethanol-exposed animals. Our results show that progeny exposed to early life ethanol displayed increased consumption of ethanol solutions and increased sensitivity to cocaine rewarding effects assessed in the conditioned place preference test. Offspring exposed to ethanol were more sensitive to the anxiolytic effect of ethanol and the increased sensitivity could, at least in part, explain the alteration in the consumption of ethanol for its anxiolytic effects. In addition, the sensitivity to hypothermic effects of ethanol and ethanol metabolism were not altered by early life ethanol exposure. The sensitization to cocaine (20 mg/kg) and to amphetamine (1.2 mg/kg) was increased after early life ethanol exposure and, could partly explain, an increase in the rewarding properties of psychostimulants. Gene expression analysis revealed that expression of a large number of genes was altered in brain regions involved in the reinforcing effects of drugs of abuse. Dopaminergic receptors and transporter binding sites were also down-regulated in the striatum of ethanol-exposed offspring. Such long-term neurochemical alterations in transmitter systems and in the behavioral responses to ethanol and other drugs of abuse may confer an increased liability for addiction in exposed offspring. PMID:18713641

  4. Feasibility of producing ethanol from food waste.

    PubMed

    Kim, Jae Hyung; Lee, Jun Cheol; Pak, Daewon

    2011-01-01

    Food waste generated in Korea is rich in carbohydrate as high as 65% of total solids. Using the food waste, the feasibility of ethanol production was investigated in a lab-scale fermentor. Pretreatment with hydrolyzing enzymes including carbohydrase, glucoamylase, cellulase and protease were tested for hydrolysis of food waste. The carbohydrase was able to hydrolyze and produce glucose with a glucose yield of 0.63 g glucose/g total solid. Enzymatic hydrolysis and ethanol fermentation by using carbohydrase and Saccharomyces cerevisiae were conducted in the batch mode. For separated hydrolysis and fermentation (SHF), ethanol concentration reached at the level corresponding to an ethanol yield of 0.43 g ethanol/g total solids. For simultaneous saccharification and fermentation (SSF), the ethanol yield was 0.31 g ethanol/g total solids. During the continuous operation of SHF, the volumetric ethanol production rate was 1.18 g/lh with an ethanol yield of 0.3g ethanol/g total solids. For SSF process, the volumetric ethanol production rate was 0.8 g/lh with an ethanol yield of 0.2g ethanol/g total solids. PMID:21596551

  5. Ethanol Demand in United States Gasoline Production

    SciTech Connect

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  6. Enabling High Efficiency Ethanol Engines

    SciTech Connect

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  7. The Learning Conference

    ERIC Educational Resources Information Center

    Ravn, Ib

    2007-01-01

    Purpose: The purpose of this paper is to call attention to the fact that conferences for professionals rely on massive one-way communication and hence produce little learning for delegates--and to introduce an alternative, the "learning conference", that involves delegates in fun and productive learning processes. Design/methodology/approach: A…

  8. Conference Planning Manual.

    ERIC Educational Resources Information Center

    Vermont Library Association, Burlington.

    Intended as a useful aid for organizing its annual spring meeting, this general conference planning manual developed by the Vermont Library Association provides a blueprint for planners on the responsibilities of the planning committee, the conference chair, and others; site selection and local arrangements; program and sessions planning;…

  9. Adolescent Prejudice Reduction Conference.

    ERIC Educational Resources Information Center

    Ketroser, Heidi

    1988-01-01

    Discusses the fifth annual Dr. Curtis C. Melnick Adolescent Prejudice Reduction Conference sponsored by the Greater Chicago (Illinois) Regional Office of the Anti-Defamation League of the B'nai B'rith. The day-long conference addressed issues of prejudice and allowed students and staff from various high schools to explore their concerns with…

  10. From Conference to Journal

    ERIC Educational Resources Information Center

    McCartney, Robert; Tenenberg, Josh

    2008-01-01

    Revising and extending conference articles for journal publication benefits both authors and readers. The new articles are more complete, and benefit from peer review, feedback from conference presentation, and greater editorial consistency. For those articles that are appropriate, we encourage authors to do this, and present two examples of such…

  11. The Effective Clinical Conference.

    ERIC Educational Resources Information Center

    Wink, Diane M.

    1995-01-01

    Examines the common problems with clinical conferences and suggests approaches to maximize student learning. Suggests that an effective clinical conference has three characteristics: (1) it is a group event; (2) it contributes to the achievement of course and clinical objectives; and (3) it provides a setting for students to explore personal…

  12. ASE Annual Conference 2010

    ERIC Educational Resources Information Center

    McCune, Roger

    2010-01-01

    In this article, the author describes the ASE Annual Conference 2010 which was held at Nottingham after a gap of 22 years. As always, the main conference was preceded by International Day, an important event for science educators from across the world. There were two strands to the programme: (1) "What works for me?"--sharing new ideas and tried…

  13. Lyndon Johnson's Press Conferences.

    ERIC Educational Resources Information Center

    Cooper, Stephen

    Because President Lyndon Johnson understood well the publicity value of the American news media, he sought to exploit them. He saw reporters as "torch bearers" for his programs and policies and used the presidential press conference chiefly for promotional purposes. Although he met with reporters often, his press conferences were usually…

  14. District Leadership Conference Planner.

    ERIC Educational Resources Information Center

    Washington State Coordinating Council for Occupational Education, Olympia.

    This manual provides usable guidelines and planning forms and materials for planning district leadership conferences, which were designed and initiated in Washington State to meet the problems in student enrollment and, consequently, Distributive Education Clubs of America membership. The conferences have become a useful means to increase…

  15. ICCK Conference Final Report

    SciTech Connect

    Green, William H.

    2013-05-28

    The 7th International Conference on Chemical Kinetics (ICCK) was held July 10-14, 2011, at Massachusetts Institute of Technology (MIT), in Cambridge, MA, hosted by Prof. William H. Green of MIT's Chemical Engineering department. This cross-disciplinary meeting highlighted the importance of fundamental understanding of elementary reactions to the full range of chemical investigations. The specific conference focus was on elementary-step kinetics in both the gas phase and in condensed phase. The meeting provided a unique opportunity to discuss how the same reactive species and reaction motifs manifest under very different reaction conditions (e.g. atmospheric, aqueous, combustion, plasma, in nonaqueous solvents, on surfaces.). The conference featured special sessions on new/improved experimental techniques, improved models and data analysis for interpreting complicated kinetics, computational kinetics (especially rate estimates for large kinetic models), and a panel discussion on how the community should document/archive kinetic data. In the past, this conference had been limited to homogeneous gas-phase and liquid-phase systems. This conference included studies of heterogeneous kinetics which provide rate constants for, or insight into, elementary reaction steps. This Grant from DOE BES covered about half of the subsidies we provided to students and postdocs who attended the conference, by charging them reduced-rate registration fees. The complete list of subsidies provided are listed in Table 1 below. This DOE funding was essential to making the conference affordable to graduate students, and indeed the attendance at this conference was higher than at previous conferences in this series. Donations made by companies provided additional subsidies, leveraging the DOE funding. The conference was very effective in educating graduate students and important in fostering scientific interactions, particularly between scientists studying gas phase and liquid phase kinetics

  16. A Quantitative Gas Chromatographic Ethanol Determination.

    ERIC Educational Resources Information Center

    Leary, James J.

    1983-01-01

    Describes a gas chromatographic experiment for the quantitative determination of volume percent ethanol in water ethanol solutions. Background information, procedures, and typical results are included. Accuracy and precision of results are both on the order of two percent. (JN)

  17. Re-engineering bacteria for ethanol production

    DOEpatents

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  18. CONFERENCE NOTE: Conference on Precision Electromagnetic Measurements

    NASA Astrophysics Data System (ADS)

    1991-01-01

    The next Conference on Precision Electromagnetic Measurements (CPEM), will be held from 9 to 12 June 1992 at the Centre des Nouvelles Industries et Technologies (CNIT), La Défense, Paris, France. This conference, which is held every two years and whose importance and high level, confirmed by thirty years' experience, are recognized throughout the world, can be considered as a forum in which scientists, metrologists and professionals will have the opportunity to present and compare their research results on fundamental constants, standards and new techniques of precision measurement in the electromagnetic domain. Topics The following topics are regarded as the most appropriate for this conference: realization of units and fundamental constants d.c. a.c. and high voltage time and frequency radio-frequency and microwaves dielectrics, antennas, fields lasers, fibre optics advanced instrumentation, cryoelectronics. There will also be a session on international cooperation. Conference Language The conference language will be English. No translation will be provided. Organizers Société des Electriciens et des Electroniciens (SEE). Bureau National de Métrologie (BNM) Sponsors Institute of Electrical and Electronics Engineers (IEEE) Instrumentation & Measurement Society Union Radio Scientifique Internationale United States National Institute of Standards and Technology Centre National d'Etudes des Télécommunications Mouvement Français pour la Qualité, Section Métrologie Comité National Français de Radioélectricité Scientifique Contact Jean Zara, CPEM 92 publicity, Bureau National de Métrologie, 22, rue Monge, 75005 Paris Tel.: (33) 1 46 34 48 16, Fax: (33) 1 46 34 48 63

  19. Mechanisms of Ethanol Tolerance in Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saccharomyces cerevisiae is a superb ethanol producer, yet is also sensitive to higher ethanol concentrations especially under high gravity or very high gravity fermentation conditions. Ethanol tolerance is associated with interplay of complex networks at the genome level. Although significant eff...

  20. Advanced Biorefineries for Production of Fuel Ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review, "Advanced biorefineries for production of fuel ethanol," is a chapter in the Wiley book entitled Biomass to Biofuels: Strategies for Global Industries and is intended to cover all major ethanol production processes to date. The chapter discusses current fuel ethanol production processe...

  1. SMALL SCALE ETHANOL DRYING - PHASE II

    EPA Science Inventory

    This program exceeded all key milestones. Using cellulose Waste, CMS demonstrated novel ethanol drying membranes via small scale dephlegmation process that yields fuel grade ethanol (FGE) at a lower cost than large switch grass ethanol plants. This success yields positive valu...

  2. PRODUCTION OF ETHANOL FROM CORN AND SUGARCANE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production and use of ethanol for fuel is increasing world-wide in response to economic, security, and environmental concerns. Ethanol is used to reduce reliance on imported oil and to reduce the risk of disruption of domestic oil production. Other reasons cited for use of ethanol include its role...

  3. Binge ethanol intoxication heightens subsequent ethanol intake in adolescent, but not adult, rats.

    PubMed

    Fabio, María Carolina; Nizhnikov, Michael E; Spear, Norman E; Pautassi, Ricardo Marcos

    2014-04-01

    A question still to be answered is whether ethanol initiation has a greater effect on ethanol consumption if it occurs during adolescence than in adulthood. This study assessed the effect of ethanol initiation during adolescence or adulthood on voluntary ethanol consumption when animals were still within the same age range. Adolescent or adult rats were given 5, 2, or 0 ethanol exposures. The animals were tested for ethanol consumption through two-bottle choice tests, before undergoing a 1-week deprivation. A two-bottle assessment was conducted after the deprivation. Adolescents, but not adults, given two ethanol administrations during initiation exhibited significantly higher ethanol intake during the pre-deprivation period. These adolescents also exhibited a threefold increase in ethanol intake after 7 days of drug withdrawal, when compared with controls. These findings suggest that very brief experience with binge ethanol intoxication in adolescence, but not in adulthood, impacts later predisposition to drink. PMID:23341340

  4. Ethanol production by recombinant hosts

    DOEpatents

    Ingram, Lonnie O.; Beall, David S.; Burchhardt, Gerhard F. H.; Guimaraes, Walter V.; Ohta, Kazuyoshi; Wood, Brent E.; Shanmugam, Keelnatham T.

    1995-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  5. Ethanol production by recombinant hosts

    DOEpatents

    Fowler, David E.; Horton, Philip G.; Ben-Bassat, Arie

    1996-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  6. The ontogeny of ethanol aversion.

    PubMed

    Saalfield, Jessica; Spear, Linda

    2016-03-15

    Recent work has suggested separate developmental periods within the broader framework of adolescence, with data suggesting distinct alterations and vulnerabilities within these intervals. While previous research has suggested reduced sensitivity to the aversive effects of alcohol in adolescence relative to adults, a more detailed ontogeny of this effect has yet to be conducted. The adolescent brain undergoes significant transitions throughout adolescence, including in regions linked with drug reward and aversion. The current study aimed to determine the ontogeny of ethanol aversion by utilizing a conditioned taste aversion procedure at six different ages to test the hypothesis that the transitions into, through, and out of adolescence are associated with ontogenetic alterations in sensitivity to the aversive properties of ethanol. Non-deprived animals given Boost® as the conditioned stimulus (CS) were used in Experiment 1, whereas Experiment 2 used water-restricted animals provided with a saccharin/sucrose solution as the CS. In both experiments, an attenuated sensitivity to the aversive properties of ethanol was evident in adolescents compared to adults, although more age differences were apparent in water deprived animals than when a highly palatable CS was given to ad libitum animals. Overall, the data suggest an attenuated sensitivity to the aversive properties of ethanol that is most pronounced during pre- and early adolescence, declining thereafter to reach the enhanced aversive sensitivity of adults. PMID:26774181

  7. Ethanol fermentation using novel techniques

    SciTech Connect

    Kim, K.

    1984-01-01

    Potato starch, sweet potato, and Jerusalem artichoke were hydrolyzed using high pressure extrusion and/or acid and the hydrolysates were utilized as substrates for ethanol fermentation. The first extrusion at 13,000 to 40,000 psi did not completely hydrolyze the starch solution to fermentable sugar. At elevated temperatures (79-97/sup 0/C) and in the presence of HCl, the high pressure extrusion (13,000 psi) effectively hydrolyzed starch into fermentable sugars to yield 12.1, 22.4, and 30.5 dextrose equivalent (DE) in 1, 2, and 3 N HCl, respectively. Maximal reducing sugar value of 84.2 DE and 0.056% hydroxymethylfurfural (HMF) was achieved after heating 8% sweet potato slurry (SPS) in 1 N HCl at 110/sup 0/C for 15 min. The degraded SPS was then fermented at 37/sup 0/C using an alcohol-tolerant strain of Saccharomyces cerevisiae to give 41.6 g of 200 proof ethanol from 400 g fresh Georgia Red Sweet potato tuber. A maximal reducing sugar value of 83.5 fructose equivalent and 0.004% HMF was formed from Jerusalem artichoke slurry (JAS) containing 8% total solid following heating in 0.1 N HCl at 97/sup 0/C for 10 min. The degraded JAS was then fermented at 37 C and 29.1 g 200 proof ethanol was produced from 320 g fresh tuber of Jerusalem artichoke. Continuous ethanol fermentation was successfully achieved using a bioreactor where cells were immobilized onto inorganic, channeled porous alumina beads. A maximum productivity (27.0/g ethanol/l.h) was achieved with the bioreactor at 35 C using malt yeast extract broth containing 10% glucose as the feedstock. The immobilized cell system showed good operational and storage stability, and could be stored for more than five months without loss of productivities.

  8. Fetal ethanol exposure increases ethanol intake by making it smell and taste better.

    PubMed

    Youngentob, Steven L; Glendinning, John I

    2009-03-31

    Human epidemiologic studies reveal that fetal ethanol exposure is highly predictive of adolescent ethanol avidity and abuse. Little is known about how fetal exposure produces these effects. It is hypothesized that fetal ethanol exposure results in stimulus-induced chemosensory plasticity. Here, we asked whether gestational ethanol exposure increases postnatal ethanol avidity in rats by altering its taste and odor. Experimental rats were exposed to ethanol in utero via the dam's diet, whereas control rats were either pair-fed an iso-caloric diet or given food ad libitum. We found that fetal ethanol exposure increased the taste-mediated acceptability of both ethanol and quinine hydrochloride (bitter), but not sucrose (sweet). Importantly, a significant proportion of the increased ethanol acceptability could be attributed directly to the attenuated aversion to ethanol's quinine-like taste quality. Fetal ethanol exposure also enhanced ethanol intake and the behavioral response to ethanol odor. Notably, the elevated intake of ethanol was also causally linked to the enhanced odor response. Our results demonstrate that fetal exposure specifically increases ethanol avidity by, in part, making it taste and smell better. More generally, they establish an epigenetic chemosensory mechanism by which maternal patterns of drug use can be transferred to offspring. Given that many licit (e.g., tobacco products) and illicit (e.g., marijuana) drugs have noteworthy chemosensory components, our findings have broad implications for the relationship between maternal patterns of drug use, child development, and postnatal vulnerability. PMID:19273846

  9. 76 FR 64083 - Reliability Technical Conference; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... Energy Regulatory Commission Reliability Technical Conference; Notice of Technical Conference Take notice... reliability of the Bulk-Power System. The conference will explore the progress made on the priorities for addressing risks to reliability that were identified in earlier Commission technical conferences....

  10. 10 CFR 501.32 - Conferences (other than prepetition conferences).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SANCTIONS Written Comments, Public Hearings and Conferences During Administrative Proceedings § 501.32 Conferences (other than prepetition conferences). (a) At any time following commencement of a proceeding... proceeding. Conferences held after the commencement of an administrative proceeding before OFE shall...

  11. 47 CFR 1.248 - Prehearing conferences; hearing conferences.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Prehearing conferences; hearing conferences. 1.248 Section 1.248 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Hearing Proceedings Prehearing Procedures § 1.248 Prehearing conferences; hearing conferences. Link to an amendment published at 76 FR...

  12. 47 CFR 1.248 - Prehearing conferences; hearing conferences.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Prehearing conferences; hearing conferences. 1.248 Section 1.248 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Hearing Proceedings Prehearing Procedures § 1.248 Prehearing conferences; hearing conferences. (a)...

  13. Transport and degradation of ethanol in groundwater

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Khan, Imtiyaz A.; Chen, Xun-Hong; Spalding, Roy F.

    2006-01-01

    Ethanol is rapidly replacing methyl tert-butyl ether (M tBE), the primary fuel oxygenate in the US, and ethanol releases from spills and leaky underground storage tanks (LUSTs) are anticipated. Ethanol has received little attention as a potential groundwater contaminant. This study investigates the fate and transport of ethanol under transient conditions in a sand and gravel aquifer. A pulse containing approximately 220 mg L - 1 ethanol and 16 mg L - 1 bromide was injected into the shallow sand and gravel aquifer and monitored to estimate its persistence and transport. The plume was monitored for 2.5 months using downgradient multilevel samplers (MLSs). Values for ethanol retardation were measured from ethanol and bromide breakthrough data and compared to estimates using published Koc values for low carbon aquifer sediments ( foc = 10 μg C g - 1 sediment). Ethanol transport was not retarded ( R = 0.99). A 3-dimensional model reasonably simulated bromide and ethanol breakthrough curves. An average first-order decay constant was estimated to be 0.32 d - 1 ( t1 / 2 = 2.2 d). At the second fence, 75% of the injected bromide and less than 3% of ethanol remained in the plume. Monitored terminal electron acceptor concentrations demonstrated that the majority of the ethanol was transformed by anaerobic processes other than denitrification and sulfate reduction.

  14. Transport and degradation of ethanol in groundwater.

    PubMed

    Zhang, Yi; Khan, Imtiyaz A; Chen, Xun-Hong; Spalding, Roy F

    2006-01-10

    Ethanol is rapidly replacing methyl tert-butyl ether (MtBE), the primary fuel oxygenate in the US, and ethanol releases from spills and leaky underground storage tanks (LUSTs) are anticipated. Ethanol has received little attention as a potential groundwater contaminant. This study investigates the fate and transport of ethanol under transient conditions in a sand and gravel aquifer. A pulse containing approximately 220 mg L-1 ethanol and 16 mg L-1 bromide was injected into the shallow sand and gravel aquifer and monitored to estimate its persistence and transport. The plume was monitored for 2.5 months using downgradient multilevel samplers (MLSs). Values for ethanol retardation were measured from ethanol and bromide breakthrough data and compared to estimates using published Koc values for low carbon aquifer sediments (foc=10 microg C g-1 sediment). Ethanol transport was not retarded (R=0.99). A 3-dimensional model reasonably simulated bromide and ethanol breakthrough curves. An average first-order decay constant was estimated to be 0.32 d-1 (t1/2=2.2 d). At the second fence, 75% of the injected bromide and less than 3% of ethanol remained in the plume. Monitored terminal electron acceptor concentrations demonstrated that the majority of the ethanol was transformed by anaerobic processes other than denitrification and sulfate reduction. PMID:16330124

  15. DNA sequencing conference, 2

    SciTech Connect

    Cook-Deegan, R.M.; Venter, J.C.; Gilbert, W.; Mulligan, J.; Mansfield, B.K.

    1991-06-19

    This conference focused on DNA sequencing, genetic linkage mapping, physical mapping, informatics and bioethics. Several were used to study this sequencing and mapping. This article also discusses computer hardware and software aiding in the mapping of genes.

  16. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  17. Insider conference tips

    NASA Astrophysics Data System (ADS)

    Tennant, Jill

    2012-01-01

    Attending an educator conference and its associated exhibit hall can be a rewarding experience for your brain. But if you keep in mind these insider's tips, your feet, arms, stomach, and wallet will also thank you.

  18. Lunar & Planetary Science Conference.

    ERIC Educational Resources Information Center

    Warner, Jeffrey L.; And Others

    1982-01-01

    Summaries of different topics discussed at the Lunar and Planetary Science Conference are presented to provide updated information to nonplanetologists. Some topics include Venus, isotopes, chondrites, creation science, cosmic dust, cratering, moons and rings, igneous rocks, and lunar soil. (DC)

  19. Ethanol versus naphtha under Brazil's economy

    SciTech Connect

    Luchi, N.R.

    1982-05-01

    Ethanol is able to replace naphtha in two of its major usages, as raw material for ethylene production and as fuel for Otto engines. This possibility raises the question of value - or opportunity cost - of ethanol. Ethanol's economic value as a fuel is that value which equals the cost of the fuel consumed by a given vehicle travelling a given distance. In each case, unblended gasoline, a gasoline and ethanol blend or hydrated alcohol alone are the alternative fuels used. Ethanol's economic value as feedstock for producing ethylene is defined as that which makes the revenue from the ethylene derived from alcohol equal to the total revenue of products resulting from thermal cracking of 1 m/sup 3/ of naphtha. In this paper it is shown that ethanol's highest value corresponds to its use as hydrated alcohol feedstock for ethylene production. However, present tax laws and subsidies favor ethanol fuel use. 4 refs.

  20. Multiphoton processes: conference proceedings

    SciTech Connect

    Lambropoulos, P.; Smith, S.J.

    1984-01-01

    The chapters of this volume represent the invited papers delivered at the conference. They are arranged according to thermatic proximity beginning with atoms and continuing with molecules and surfaces. Section headings include multiphoton processes in atoms, field fluctuations and collisions in multiphoton process, and multiphoton processes in molecules and surfaces. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)

  1. Development of tolerance to and physical dependence on ethanol: daily versus repeated cycles treatment with ethanol.

    PubMed

    Pohorecky, L A; Roberts, P

    1991-10-01

    We examined the effect of various treatment schedules with ethanol on the development of tolerance and the severity of withdrawal in rats. Tolerance to ethanol was examined after a challenge dose of ethanol using rectal temperature, dowel performance, and tail flick response; open field activity and the startle response were determined during withdrawal. Animals treated daily with ethanol developed greater tolerance, and also lost it faster, compared with animals subjected to repeated cycles of 3 days of ethanol treatment followed by 3 drug-free days. Also, the severity of withdrawal was greater in animals treated daily with ethanol. In the second study, we examined the development of tolerance and withdrawal severity of animals subjected to three different schedules of daily ethanol administration. Overall, the animals receiving continuous infusion of ethanol showed the most severe withdrawal and had, except for dowel performance, the fastest loss of tolerance to ethanol. PMID:1755516

  2. Alkylation of toluene with ethanol

    SciTech Connect

    Walendziewski, J.; Trawczynski, J.

    1996-10-01

    A series of Y and ZSM-5 zeolite based catalysts was prepared. Zeolites were cation exchanged and formed with 50% of aluminum hydroxide as a binder, and the obtained catalysts were finally thermally treated. Activity tests in alkylation of toluene with ethanol were carried out in the temperature range of 325--400 C, in nitrogen or hydrogen stream, and a pressure up to 3 MPa. The feed consisted of toluene and ethanol mixed in a mole ratio 1/1 or 2/1. The obtained results showed that among the studied catalysts the highest activity in the alkylation reaction was attained by ZSM-5 zeolite based catalyst with a moderate acidity and medium silica to alumina ratio, i.e., {approximately}50. Activity and selectivity of the most active catalyst as well as conversion of the feed components were similar to those reported in other papers. The content of p-ethyltoluene in alkylation products attained ca. 60%.

  3. Ethanol annual report FY 1990

    SciTech Connect

    Texeira, R.H.; Goodman, B.J.

    1991-01-01

    This report summarizes the research progress and accomplishments of the US Department of Energy (DOE) Ethanol from Biomass Program, field managed by the Solar Energy Research Institute, during FY 1990. The report includes an overview of the entire program and summaries of individual research projects. These projects are grouped into the following subject areas: technoeconomic analysis; pretreatment; cellulose conversion; xylose fermentation; and lignin conversion. Individual papers have been indexed separately for inclusion on the data base.

  4. Ethanol Production from Ulva fasciata

    NASA Astrophysics Data System (ADS)

    Masutani, Evan M.; Yoza, Brandon A.

    The theoretical potential yield of Ulva fasciata as a biomass feedstock for fermentative ethanol was found to be about 310 L per tonne, dry weight. U. fasciata has numerous characteristics that render it a suitable mariculture energy crop. Specifically, it forms large complex structures that grow quickly, with high (14%) dry to wet weight percentages, holocellulose content for the dry mass of 51%, carbohydrate content of 5%, and relatively low (5%) lignin content. Enzymatic saccharification with a commercial cellulase (Accelerase) from Genencor was investigated: After a 12 hr digestion, 25% of the potential glucose was recovered from the cellulose fraction. The hydrolysate was supplemented with a modified YM medium and used directly for batch fermentation. A 12 hr incubation resulted in complete utilization of the glucose and production of ethanol. In this preliminary investigation, the ethanol yield corresponded to approximately 126 L per tonne (dry weight) of macroalga, or 43% of the theoretical alcohol yield with respect to only the cellulose and carbohydrate contents. Theoretical yields are higher when the hemicellulose fraction is considered. While sugar recovery needs further optimization, the data suggest that additional work is warranted.

  5. Solid state production of ethanol from sorghum

    SciTech Connect

    Henk, L.L.; Linden, J.C.

    1995-12-01

    Ethanol, produced from renewable resources, such as corn, sugar cane and sweet sorghum, is used as an oxygenate in reformulated gasoline. For biofuels to become economical, means of lowering production costs must be found. Our research focuses on using a modified method of ensiling to produce ethanol from sorghum. Formic acid, +/- cellulase, and yeast were applied to fresh field-chopped sorghum and then packed tightly into five-gallon plastic silos. Counter-current extraction methods were used as a means of biofuel separation. Sorghum receiving 5 IU/grain dry weight cellulase produced 37.7 liters of ethanol per metric ton on a wet weight basis. Sorghum not receiving cellulose additives produced 23.4 liters of ethanol per metric ton. An ethanol plant of intermediate size (565,272 liters of anhydrous ethanol/year) can operate using sorghum grown on less than 1400 acres.

  6. Process for producing ethanol from syngas

    SciTech Connect

    Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

    2013-05-14

    The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

  7. The Role of Cellulosic Ethanol in Transportation

    SciTech Connect

    Robert M. Neilson, Jr.

    2007-10-01

    Petroleum provides essentially all of the energy used today in the transportation sector. To reduce this dependence on fossil energy, other fuels are beginning to be used, notably ethanol and biodiesel. Almost all fuel ethanol is produced by the conversion of corn grain to starch with subsequent fermentation to ethanol. In 2006, almost 5 billion gallons of fuel ethanol were produced, which used 17% of domestic corn production. The DOE has a goal to displace 30% of motor gasoline demand or 60 billion gallons per year by 2030. To achieve this goal, production of ethanol from lignocellulosic sources (e.g., agricultural residues, forest residues, and dedicated energy crops) is needed. This paper will describe the production of cellulosic ethanol as well as the issues and benefits associated with its production.

  8. Psychopharmacological interactions between nicotine and ethanol.

    PubMed

    Rose, Jed E; Brauer, Lisa H; Behm, Frederique M; Cramblett, Matthew; Calkins, Kevin; Lawhon, Dawn

    2004-02-01

    Epidemiological, clinical, and laboratory evidence has shown a positive correlation between cigarette smoking and ethanol use, and previous studies suggest some commonality in the neural pathways mediating effects of nicotine and ethanol. In this study, the subjective and behavioral interactions among nicotine, ethanol, and the nicotinic antagonist mecamylamine were investigated. The main objectives were to determine how the rewarding effects of nicotine might be modified by ethanol, and to compare the effects of ethanol with those of a nicotinic antagonist (mecamylamine). A total of 48 smokers who regularly consumed alcoholic beverages participated in four laboratory sessions presenting a 2 (nicotine vs. denicotinized cigarette smoke)x2 (10 mg oral mecamylamine hydrochloride vs. placebo)x2 (ethanol.5 g/kg vs. placebo) design, with ethanol as a between-subjects factor. Dependent measures included blood alcohol concentration (BAC), as assessed by breath alcohol detector; subjective drug effects; and rate of ad lib smoking during a 2-hr period. Results showed that peak BAC averaged.03 g/dl in the ethanol condition. Ethanol potentiated some of the subjective rewarding effects of nicotine, including smoking satisfaction, stimulant as well as calming effects, and relief of craving for cigarettes. During the ad lib smoking period, mecamylamine decreased satisfaction associated with the nicotine-containing cigarettes; mecamylamine also induced smoking but only in the placebo ethanol condition. These results highlight the potent interaction between ethanol and nicotinic systems, and suggest that ethanol can potentiate the rewarding effects of nicotine as well as offset some of the effects of a nicotinic antagonist. PMID:14982697

  9. Electrocatalysis of anodic oxidation of ethanol

    NASA Astrophysics Data System (ADS)

    Tarasevich, M. R.; Korchagin, O. V.; Kuzov, A. V.

    2013-11-01

    The results of fundamental and applied studies in the field of electrocatalysis of anodic oxidation of ethanol in fuel cells are considered. Features of the mechanism of ethanol electrooxidation are discussed as well as the structure and electrochemical properties of the most widely used catalysts of this process. The prospects of further studies of direct ethanol fuel cells with alkaline and acidic electrolytes are outlined. The bibliography includes 166 references.

  10. Biological production of ethanol fom coal

    SciTech Connect

    Not Available

    1992-05-01

    Research is continuing in an attempt to increase both the ethanol concentration and product ratio using C. ljungdahlii. The purpose of this report is to present data (acetate to ethanol) utilizing a medium prepared especially for C. ljungdahlii. Medium development studies are presented, as well as reactor studies with the new medium in batch reactors. Continuous stirred tank reactor (CSTR) with cell recycle. The use of this new medium has resulted in significant improvements in cell concentration, ethanol concentration and product ratio.

  11. Conference -- summary and comment.

    PubMed

    Fairweather, D

    1974-01-01

    500 delegates met at the IPPF twenty-first Anniversary Conference which was held in Brighton on October 22-27, 1973. The theme of the conference was Planning for the Future. In his welcoming speech Dr. Fernando Tamayo, IPPF President, noted that the quality of life is everybody's business. Mr. Rafael Salas, UNFPA Executive Director, gave the keynote speech pointing out the need for a comprehensive approach to the problem of rapid population growth. The motto of the World Population Year 1974, "1 world for all," should be the goal. "A Survey of Unmet Needs in Family Planning," which was the result of family planning studies in 209 countries, was the background document of the conference. Other important papers of the conference were Dr. Thorsten Sjovall's paper "Human Rights and Welfare Aspects," Dr. Bernard Berelson's paper "Contribution of Family Planning to Demographic, Economic and Social Goals"; Rodney Shearman's "New Possibilities for Fertility Control"; Dr. Alexander Kessler's report "Barriers between Contraceptive Services and the Consumer"; papers on social and economic change and planned parenthood; a discussion by Professor Francis Okediji on "Social and Cultural Values affecting Fertility and the Adoption of Family Planning in Africa," following a speech by Mrs. Nani Soewondo on the influence of legislation and policy in improving the status of women; and the final paper by Mrs. Wendy Marson entitled "A View for the Future." At the final session of the conference Professor Brian Abel-Smith presented a summary of the proceedings. The writer believes that energy was generated by the exchange of views at the conference and that energy must be harnessed and driven forward by the IPPF Governing Body and Management Planning Committee. A major degree of flexibility in outlook and action must be maintained. PMID:12178347

  12. EPRI electric vehicle conference

    SciTech Connect

    Pfleeger, D.

    1999-10-01

    Lower operating and maintenance costs, quiet and clean operation appear the main factors in choosing electric over the typical internal combustion powered equipment. The Conference was sponsored by the Electric Power Research Institute (EPRI). EPRI is a cooperative effort by major electric companies across the USA, founded in 1973 and headquartered in Palo Alto, CA. Featured at the Conference were presentations on regulatory issues, lift truck technologies, automotive advances and other industrial applications to include automated guided vehicles, personnel carriers and electric bicycles. Approximately 25 exhibitors displayed components, subassemblies and complete vehicles.

  13. Ethanol from sugar crops: a critical review

    SciTech Connect

    Lipinsky, E.S.; Allen, B.R.; Bose, A.; Kresovich, S.

    1981-01-01

    Due to the hardships resulting from rising oil prices and periodic production shortfalls, many developing countries, especially those with warm humid climates, have explored ethanol production from sugar crops. This critical review offers information on ethanol production for development planners. Two sugar crop-based ethanol systems, raw sugar facility retrofit and conventional juice extraction, are first examined. The agronomy of sugar crops (cane, beet, sorghum) is then described, as are the steps in crop processing (extraction, fermentation, distillation, stillage disposal). The costs of producing ethanol from a typical sugarcane processing plant and from a state-of-the-art molasses processing facility are presented, and the trade-offs between producing ethanol or raw sugar from sugarcane weighed. Finally, the properties of ethanol in automotive fuels are outlined, along with important storage, handling, and safety considerations. Three major problems are cited in ethanol production from sugar crops: adverse environmental effects (10 gallons of waste to 1 gallon of ethanol); the high cost of conventional milling equipment; and the loss of potential revenue from raw sugar sales. A future possibility of producing ethanol from fibrous residues (bagasse) is noted. Included are a 64-item bibliography (1936-1980) and 31 tables.

  14. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect

    Pitstick, M.E.

    1992-01-01

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  15. Intracellular accumulation of ethanol in yeast

    SciTech Connect

    Loueiro, V.; Ferreira, H.G.

    1983-09-01

    Ethanol produced in the course of a batch fermentation by Saccharomyces cerevisiae or added from the outside, affects adversely the specific rate of growth of the yeast population, its viability, its specific rate of fermentation, and the specific rates of the uptake of sugar and amino acids. The underlying mechanisms are many and include irreversible denaturation and hyperbolic noncompetitive inhibition of glycolytic enzymes, the exponential noncompetitive inhibition of glucose, maltose, and ammonium transport, the depression of the optimum and the maximum temperature for growth, the increase of the minimum temperature for growth, and the enhancement of thermal death and petite mutation. Nagodawithana and Steinkraus reported that added ethanol was less toxic for S. cerevisiae than ethanol produced by the yeast. The death rates were lower in the presence of added ethanol than those measured at similar external ethanol concentrations endogenously produced. They proposed that, due to an unbalance between the rates of production and the net outflux of ethanol, there would be an intracellular accumulation of ethanol which in turn would explain the apparently greater inhibitory potency of endogenously produced ethanol present in the medium. This hypothesis was supported by the findings of several authors who reported that the intracellular concentration of ethanol, in the course of batch fermentation, is much higher than its concentration in the extracellular medium. The present work is an attempt to clarify this matter. (Refs. 32).

  16. Feasibility of solar assisted ethanol production

    NASA Astrophysics Data System (ADS)

    Holden, M. L.; Shekar, A. N.; Smith, T. F.

    1981-12-01

    Interest in alternative liquid fuels is growing due to the increasing scarcity and cost of conventional fuels. One such alternative is ethanol fuel. A positive energy balance associated with production of ethanol fuel, however, has been a point of concern. Utilizing 'free' solar process energy can displace non-renewable fuels and produce a more favorable energy balance. The purpose of this study is to ascertain the feasibility of a solar assisted ethanol fuel production system utilizing a simulation model. System sensitivity to collector area, configuration, and type along with ethanol fuel production rate, distillation pressure and temperature, and thermal energy storage size are examined.

  17. Mixed waste paper to ethanol fuel

    SciTech Connect

    Not Available

    1991-01-01

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  18. Emissions from ethanol and LPG fueled vehicles

    SciTech Connect

    Pitstick, M.E.

    1992-12-31

    This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

  19. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOEpatents

    Ljungdahl, Lars G.; Carriera, Laura H.

    1983-01-01

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  20. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOEpatents

    Ljungdahl, L.G.; Carriera, L.H.

    1983-05-24

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  1. Pervaporation of ethanol produced from banana waste.

    PubMed

    Bello, Roger Hoel; Linzmeyer, Poliana; Franco, Cláudia Maria Bueno; Souza, Ozair; Sellin, Noeli; Medeiros, Sandra Helena Westrupp; Marangoni, Cintia

    2014-08-01

    Banana waste has the potential to produce ethanol with a low-cost and sustainable production method. The present work seeks to evaluate the separation of ethanol produced from banana waste (rejected fruit) using pervaporation with different operating conditions. Tests were carried out with model solutions and broth with commercial hollow hydrophobic polydimethylsiloxane membranes. It was observed that pervaporation performance for ethanol/water binary mixtures was strongly dependent on the feed concentration and operating temperature with ethanol concentrations of 1-10%; that an increase of feed flow rate can enhance the permeation rate of ethanol with the water remaining at almost the same value; that water and ethanol fluxes was increased with the temperature increase; and that the higher effect in flux increase was observed when the vapor pressure in the permeate stream was close to the ethanol vapor pressure. Better results were obtained with fermentation broth than with model solutions, indicated by the permeance and membrane selectivity. This could be attributed to by-products present in the multicomponent mixtures, facilitating the ethanol permeability. By-products analyses show that the presence of lactic acid increased the hydrophilicity of the membrane. Based on this, we believe that pervaporation with hollow membrane of ethanol produced from banana waste is indeed a technology with the potential to be applied. PMID:24834817

  2. Gestational Exposure to Inhaled Vapors of Ethanol and Gasoline-Ethanol Blends in Rats

    EPA Science Inventory

    The US automotive fleet is powered primarily by gasoline-ethanol fuel blends containing up to 10% ethanol (ElO). Uncertainties regarding the health risks associated with exposure to ElO prompted assessment of the effects of prenatal exposure to inhaled vapors of gasoline-ethanol ...

  3. Ethanol: a brief economic evaluation

    SciTech Connect

    Not Available

    1980-09-01

    Del Rio Farms, Inc. has a large farm in the Imperial Valley area of California, a known geothermal resource area. The 10 MW geothermal flash steam power plant, operated by Union Oil Company, is located on their property. Presently the owners have under consideration a 10 million gallon per year ethanol plant. The initial feed to the plant would be corn, with sugar beets as a possible alternate feed. The ultimate plan is to use waste products and biomass feed stocks. Geothermal water would provide the necessary process heat for the plant. An economic evaluation was performed to assist in the planning. Each of the following conclusions are based on an ethanol plant that produces 10 million gallons of ethanol per year. Over a 20 year period, the plant using a corn feed stock would generate a rate of return of +12% on a total equity capital investment of $33,000,000. Over a 15 year period, the plant using a corn feed stock is probably not economically feasible since it would have a rate of return less than 12% or a total equity capital investment of $33,000,000. A corn feed stock plant operates at a loss for the first seven years if 95% of the $33,000,000 cost is debt financed. The plant is economically feasible only if offsetting energy income from other profitable operation permits taking advantage of investment tax credits and depletion allowances that are available. If this is true, the project is highly feasible, paying back twice the 5% equity capital in the first year.

  4. High ethanol dose during early adolescence induces locomotor activation and increases subsequent ethanol intake during late adolescence.

    PubMed

    Acevedo, María Belén; Molina, Juan Carlos; Nizhnikov, Michael E; Spear, Norman E; Pautassi, Ricardo Marcos

    2010-07-01

    Adolescent initiation of ethanol consumption is associated with subsequent heightened probability of ethanol use disorders. The present study examined the relationship between motivational sensitivity to ethanol initiation in adolescent rats and later ethanol intake. Experiment 1 determined that ethanol induces locomotor activation shortly after administration but not if tested at a later post-administration interval. In Experiment 2, adolescent rats were assessed for ethanol-induced locomotor activation on postnatal Day 28. These animals were then evaluated for ethanol-mediated conditioned taste aversion and underwent a 16-day-long ethanol intake protocol. Ethanol-mediated aversive effects were unrelated to ethanol locomotor stimulation or subsequent ethanol consumption patterns. Ethanol intake during late adolescence was greatest in animals initiated to ethanol earliest at postnatal Day 28. Females that were more sensitive to ethanol's locomotor-activating effects showed a transient increase in ethanol self-administration. Blood ethanol concentrations during initiation were not related to ethanol-induced locomotor activation. Adolescent rats appeared sensitive to the locomotor-stimulatory effects of ethanol. Even brief ethanol exposure during adolescence may promote later ethanol intake. PMID:20373327

  5. The ethanol program in Brazil

    NASA Astrophysics Data System (ADS)

    Goldemberg, José

    2006-10-01

    The number of automobiles in the world has been growing fast and today requires one quarter of the global petroleum consumption. This problem requires adequate solutions, one of which Brazil has achieved with the Sugarcane Ethanol Program. This paper presents the history of this program, from its launch in the 1970s to the today's condition of full competitiveness in a free market. It also shows how it can be replicated to other countries, in order to replace 10 per cent of the world's gasoline consumption.

  6. 78 FR 27963 - Reliability Technical Conference; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Reliability Technical Conference; Notice of Technical Conference Take notice that the Federal Energy Regulatory Commission will hold a Technical Conference on Tuesday, July 9, 2013 from 9:00 a.m. to 5:00 p.m....

  7. Ethanol Inhibits Activation of NLRP3 and AIM2 Inflammasomes in Human Macrophages–A Novel Anti-Inflammatory Action of Alcohol

    PubMed Central

    Nurmi, Katariina; Virkanen, Juhani; Rajamäki, Kristiina; Niemi, Katri; Kovanen, Petri T.; Eklund, Kari K.

    2013-01-01

    Objective In the pathogenesis of coronary atherosclerosis, local macrophage-driven inflammation and secretion of proinflammatory cytokines, interleukin-1β (IL-1β) in particular, are recognized as key factors. Moderate alcohol consumption is associated with a reduced risk of coronary artery disease mortality. Here we examined in cultured human macrophages whether ethanol modulates the intracellular processes involved in the secretion of IL-1β. Results Ethanol decreased dose-dependently the production of mature IL-1β induced by activators of the NLRP3 inflammasome, i.e. ATP, cholesterol crystals, serum amyloid A and nigericin. Ethanol had no significant effect on the expression of NLRP3 or IL1B mRNA in LPS-primed macrophages. Moreover, secretion of IL-1β was decreased in parallel with reduction of caspase-1 activation, demonstrating that ethanol inhibits inflammasome activation instead of synthesis of pro-IL-1β. Acetaldehyde, a highly reactive metabolite of ethanol, had no effect on the ATP-induced IL-1β secretion. Ethanol also attenuated the secretion of IL-1β triggered by synthetic double-stranded DNA, an activator of the AIM2 inflammasome. Ethanol conferred the inhibitory functions by attenuating the disruption of lysosomal integrity and ensuing leakage of the lysosomal protease cathepsin B and by reducing oligomerization of ASC. Conclusion Ethanol-induced inhibition of the NLRP3 inflammasome activation in macrophages may represent a biological pathway underlying the protective effect of moderate alcohol consumption on coronary heart disease. PMID:24244322

  8. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Journal of Engineering Education, 1972

    1972-01-01

    Includes abstracts of papers presented at the 80th Annual Conference of the American Society for Engineering Education. The broad areas include aerospace, affiliate and associate member council, agricultural engineering, biomedical engineering, continuing engineering studies, chemical engineering, civil engineering, computers, cooperative…

  9. Open Mind Conference

    NASA Technical Reports Server (NTRS)

    King, Alexander H.

    1995-01-01

    Open Mind, The Association for the achievement of diversity in higher education, met in conference in Albuquerque, New Mexico, between October 16 and 18, 1992. A number of workgroups met to discuss the goals, structure, and generally evaluate the Association and its achievements. A summary of the workgroup sessions and their minutes are included.

  10. APPA 2011 Conference Highlights

    ERIC Educational Resources Information Center

    Facilities Manager, 2011

    2011-01-01

    This article presents highlights of APPA conference that was held on July 16-18, 2011. The highlights feature photos of 2011-2012 board of directors, outgoing senior regional representatives to the board, meritorious service award, APPA fellow, president's recognition and gavel exchange, and diamond business partner award.

  11. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Engineering Education, 1976

    1976-01-01

    Presents the abstracts of 158 papers presented at the American Society for Engineering Education's annual conference at Knoxville, Tennessee, June 14-17, 1976. Included are engineering topics covering education, aerospace, agriculture, biomedicine, chemistry, computers, electricity, acoustics, environment, mechanics, and women. (SL)

  12. Grammar! A Conference Report.

    ERIC Educational Resources Information Center

    King, Lid, Ed.; Boaks, Peter, Ed.

    Papers from a conference on the teaching of grammar, particularly in second language instruction, include: "Grammar: Acquisition and Use" (Richard Johnstone); "Grammar and Communication" (Brian Page); "Linguistic Progression and Increasing Independence" (Bernardette Holmes); "La grammaire? C'est du bricolage!" ("Grammar? That's Hardware!") (Barry…

  13. Microbicides 2006 conference

    PubMed Central

    Ramjee, Gita; Shattock, Robin; Delany, Sinead; McGowan, Ian; Morar, Neetha; Gottemoeller, Megan

    2006-01-01

    Current HIV/AIDS statistics show that women account for almost 60% of HIV infections in Sub-Saharan Africa. HIV prevention tools such as male and female condoms, abstinence and monogamy are not always feasible options for women due to various socio-economic and cultural factors. Microbicides are products designed to be inserted in the vagina or rectum prior to sex to prevent HIV acquisition. The biannual Microbicides conference took place in Cape Town, South Africa from 23–26 April 2006. The conference was held for the first time on the African continent, the region worst affected by the HIV/AIDS pandemic. The conference brought together a record number of 1,300 scientists, researchers, policy makers, healthcare workers, communities and advocates. The conference provided an opportunity for an update on microbicide research and development as well as discussions around key issues such as ethics, acceptability, access and community involvement. This report discusses the current status of microbicide research and development, encompassing basic and clinical science, social and behavioural science, and community mobilisation and advocacy activities. PMID:17038196

  14. Declining Enrollment Conference Report.

    ERIC Educational Resources Information Center

    Arizona State Dept. of Education, Phoenix.

    This report summarizes the results of a conference on declining enrollment sponsored by the Arizona State Department of Education. Topics covered include school closing, budget implications of declining enrollment, staffing problems and reduction in force, board of education and community support, problems of small school districts, and…

  15. A Conference of Hope.

    ERIC Educational Resources Information Center

    American Printing House for the Blind, Louisville, KY. Dept. of Educational Research.

    Presented are the proceedings of the First Historic Helen Keller World Conference on Services to Deaf-Blind Youths and Adults, held in New York City in September, 1977 on the theme "The Deaf-Blind Person in the Community." Reports have the following titles and authors: "Definition, Demography, Causes and Prevention of Deaf-Blindness; Finding and…

  16. 2002 NASPSA Conference Abstracts.

    ERIC Educational Resources Information Center

    Journal of Sport & Exercise Psychology, 2002

    2002-01-01

    Contains abstracts from the 2002 conference of the North American Society for the Psychology of Sport and Physical Activity. The publication is divided into three sections: the preconference workshop, "Effective Teaching Methods in the Classroom;" symposia (motor development, motor learning and control, and sport psychology); and free…

  17. The interparliamentary conference

    SciTech Connect

    Not Available

    1990-01-01

    The purpose of this conference was to provide a forum for exchange of information on environmental problems with global origins and consequences. The areas of major concern included the following: global climate change; deforestation and desertification; preservation of biological diversity; safeguarding oceans and water resources; population growth; destruction of the stratospheric ozone layer; and sustainable development.

  18. International waste management conference

    SciTech Connect

    Not Available

    1989-01-01

    This book contains the proceedings of the international waste management conference. Topics covered include: Quality assurance in the OCR WM program; Leading the spirit of quality; Dept. of Energy hazardous waste remedial actions program; management of hazardous waste projects; and System management and quality assurance.

  19. REGIONAL CONFERENCE SUMMARIES, 1966.

    ERIC Educational Resources Information Center

    Bureau of Adult, Vocational, and Technical Education (DHEW/OE), Washington, DC. Div. of Vocational and Technical Education.

    AN AVERAGE OF 200 TEACHER EDUCATORS, STATE DIRECTORS, LAYMEN, AND REPRESENTATIVES OF VARIOUS AGENCIES ATTENDED EACH OF NINE REGIONAL CONFERENCES CONDUCTED THROUGHOUT THE UNITED STATES TO DISCUSS THE INFLUENCE OF SOCIAL AND ECONOMIC CHANGES AND PROBLEMS IN PLANNING AND CONDUCTING VOCATIONAL AND TECHNICAL EDUCATION PROGRAMS. MAJOR SPEECHES PRESENTED…

  20. Metabolic Engineering X Conference

    SciTech Connect

    Flach, Evan

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  1. IATUL Conference 1985.

    ERIC Educational Resources Information Center

    Information Services and Use, 1985

    1985-01-01

    Summarizes presentations at conference on theme "The future of information resources for science and technology and role of libraries": industrial and commercial use of national, regional, and university resources; balance between public- and private-sector resources; local access in national and regional context; access to information in…

  2. Conference summary - Personal views

    NASA Astrophysics Data System (ADS)

    Lub, J.

    2016-05-01

    This is a collection of remarks on the three and a half days of the RR Lyrae 2015 Conference, limited only by my own lack of attention and understanding. I end with some personal recollections on my complete failure, even though doing the necessary calculations, to spot the importance and the possible application of Fourier amplitudes and phases of the RR Lyrae light curves.

  3. Knowledge Sharing at Conferences

    ERIC Educational Resources Information Center

    De Vries, Bregje; Pieters, Jules

    2007-01-01

    To improve the quality in teaching and learning, opportunities need to be provided where practitioners and researchers meet and share visions, disseminate findings, co-construct ideas, and set research agendas together. Visiting a conference is one well-known and established way to do this. But are they effective? A survey was conducted among the…

  4. Government Quality Conference Proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Government Quality Conference was an attempt to bring together executive organizations and senior individuals in the Federal Government that have a desire to improve productivity. It was designed to provide an exchange of ideas based on experience, and to encourage individual management initiatives to tap the capabilities of Federal employees.

  5. Cocaine attenuates vasoconstriction to ethanol

    SciTech Connect

    Bove, A.A.; Morley, D.; Vosacek, R.; Zhang, X.Y.; Shah, R. )

    1991-03-11

    The purpose of this study was to determine the combined effects of cocaine and ethanol on vasomotor tone. Using a standard isolated vascular ring preparation, 24 rings from 7 New Zealand White Rabbits were studied. All rings were denuded as verified by methacholine challenge. The dose response to NE for each ring was used as a standard for vasoconstrictors Dose response curves to ETH and C were done in random order. Concentrations of both ETH and C employed were physiologically attainable in man and below thresholds for coma or death. The dose response curve to ETH was repeated after addition of 4 {times} 10{sup {minus}5} M C to the arterial bath. After adding 1,500 ug/ml of ETH, the dose response curve to C was repeated. Ethanol, alone caused significant vasoconstriction of arterial rings. After the addition of C to the bath, the dose response to ETH was significantly shifted to the right, peak contraction achieved was 36.6 {plus minus} 3.2% of maximal NE contraction. Cocaine alone did not result in any change in resting tension of the rings. When ETH was added to the bath, C caused vasoconstriction, the peak value equivalent to 12.5 {plus minus} 2.2% of maximal contraction to NE.

  6. Social consequences of ethanol: Impact of age, stress, and prior history of ethanol exposure.

    PubMed

    Varlinskaya, Elena I; Spear, Linda P

    2015-09-01

    The adolescent period is associated with high significance of interactions with peers, high frequency of stressful situations, and high rates of alcohol use. At least two desired effects of alcohol that may contribute to heavy and problematic drinking during adolescence are its abilities to both facilitate interactions with peers and to alleviate anxiety, perhaps especially anxiety seen in social contexts. Ethanol-induced social facilitation can be seen using a simple model of adolescence in the rat, with normal adolescents, but not their more mature counterparts, demonstrating this ethanol-related social facilitation. Prior repeated stress induces expression of ethanol-induced social facilitation in adults and further enhances socially facilitating effects of ethanol among adolescent rats. In contrast, under normal circumstances, adolescent rats are less sensitive than adults to the social inhibition induced by higher ethanol doses and are insensitive to the socially anxiolytic effects of ethanol. Sensitivity to the socially anxiolytic effects of ethanol can be modified by prior stress or ethanol exposure at both ages. Shortly following repeated restraint or ethanol exposure, adolescents exhibit social anxiety-like behavior, indexed by reduced social preference, and enhanced sensitivity to the socially anxiolytic effects of ethanol, indexed through ethanol-associated reinstatement of social preference in these adolescents. Repeated restraint, but not repeated ethanol, induces similar effects in adults as well, eliciting social anxiety-like behavior and increasing their sensitivity to the socially anxiolytic effects of acute ethanol; the stressor also decreases sensitivity of adults to ethanol-induced social inhibition. The persisting consequences of early adolescent ethanol exposure differ from its immediate consequences, with males exposed early in adolescence, but not females or those exposed later in adolescence, showing social anxiety-like behavior when tested

  7. PRACTICAL GUIDE TO CONFERENCE LEADERSHIP.

    ERIC Educational Resources Information Center

    MORGAN, JOHN S.

    THIS GUIDE TO CONFERENCE LEADERSHIP BEGINS WITH A CHAPTER ON LEADERSHIP PSYCHOLOGY AND GOES ON TO PRESENT OUTLINES FOR RUNNING CONFERENCES. THE LEADER PREPARES FOR THE MEETING BY COLLECTING FACTS ON THE SUBJECT, PREPARING AN OUTLINE, KNOWING THE PARTICIPANTS, MAKING PHYSICAL ARRANGEMENTS, AND WRITING THE TENTATIVE SUMMARY. IN THE CONFERENCE HE…

  8. Fourth National Conference on Citizenship.

    ERIC Educational Resources Information Center

    Department of Justice, Washington, DC.

    The proceedings contain the papers given and digests of group topics discussed at the 1949 National Conference on Citizenship held in New York. An introduction by the chairman of the conference committee identified the conference theme as "Responsible American Citizens" and noted that discussion would center on citizens in politics, in the world,…

  9. ALA Conference 2009: Chicago Hope

    ERIC Educational Resources Information Center

    Berry, John N., III

    2009-01-01

    There is joy among those who have the funds to go to Chicago for the American Library Association (ALA) annual conference, July 9-15. Every librarian knows there is nothing better than a Chicago gathering, with the city's wonderful haunts, museums, restaurants, and fine memories of past conferences. The conference program covers nearly every…

  10. CONVERSION OF CORN FIBROUS MATERIAL INTO ETHANOL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over 1.7 billion gallons of fuel ethanol were produced in the U.S. (2001), over 90% of which was produced from corn. Corn is prepared for ethanol fermentation by either wet milling or dry grinding in approximately equal volumes. In both processes, the fibrous components of the kernel are folded in...

  11. ANAEROBIC DIGESTION POTENTIAL FOR ETHANOL PROCESSING RESIDUES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of corn-based ethanol in the U.S. is dramatically increasing, and consequently so is the quantity of byproduct materials generated from this processing sector. These coproduct streams are currently solely utilized as livestock feed, which is a route that provides ethanol processors w...

  12. Ethanol processing coproducts - economics, impacts, sustainability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of corn-based ethanol in the U.S. is dramatically increasing; as is the quantity of coproducts generated from this processing sector. These streams are primarily utilized as livestock feed, which is a route that provides ethanol processors with a substantial revenue source and signif...

  13. SEPARATION AND CONCENTRATION OF ETHANOL BY PERVAPORATION

    EPA Science Inventory

    A significant issue affecting widespread acceptance of bioethanol as a sustainable fuel is the energy used to grow the feedstock, ferment the feedstock to ethanol, and separate dry ethanol from the fermentation broth. For the latter, the best current technology is two-step disti...

  14. Controlled Antibiotic use during Fuel Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of fuel ethanol from corn feedstock is a rapidly growing industry in the US. The ability to make a profit in ethanol production from corn is marginal, and depends heavily on the sale of byproducts of the fermentation process. The fermentation reaction is optimized for yeast growth a...

  15. Ethanol emission from loose corn silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silage and silage-containing feed on dairy farms have recently been identified as a source of volatile organic compound (VOC) emissions. In this work, we present measurements of ethanol (a dominant silage VOC) emission from loose corn silage samples made using a wind tunnel system. Flux of ethanol f...

  16. Bacterial Contamination of Fuel Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial fuel ethanol is not produced under sterile, pure-culture conditions, and consequently bacterial contamination is a recurring problem. The offending microbes are generally species of lactic acid bacteria that drain the sugar available for conversion to ethanol and scavenge essential micro...

  17. Composition and Behavior of Fuel Ethanol

    EPA Science Inventory

    Ethanol usage in the United States has increased due in part to the elimination of methyl tert-butyl ether from the fuel supply and to the mandates of Congress. Two samples, one each from a wet mill and a dry mill ethanol plant, were obtained before denaturing. Each of these ...

  18. Outlook for Biomass Ethanol Production and Demand

    EIA Publications

    2000-01-01

    This paper presents a midterm forecast for biomass ethanol production under three different technology cases for the period 2000 to 2020, based on projections developed from the Energy Information Administration's National Energy Modeling System. An overview of cellulose conversion technology and various feedstock options and a brief history of ethanol usage in the United States are also presented.

  19. Idaho ethanol distillery processing corn and potatoes

    SciTech Connect

    Not Available

    1980-12-01

    The completion and successful testing of a 500,000 gallons per year anhydrous ethanol distillery located on the Janss Farms south of the town of Wendell, Idaho is reported. The plant will utilize crops grown on Janss Farms as well as locally purchased materials, the stillage will be fed directly to cattle, while the ethanol will be sold for the blending of gasohol.

  20. Sweden will build an ethanol plant

    SciTech Connect

    Not Available

    1981-09-16

    It is reported that a 10 million dollar demonstration plant for producing ethanol by continuous fermentation will be built in Sweden. The plant will have a capacity of 20,000 liters/day of ethanol and 30.5 metric tons/day of protein-rich cattle fodder using potatoes and grain as feedstock.

  1. Ethanol Making Significant Impact on South Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the need for biorenewable fuels increases, the ethanol industry in the U.S. continues to thrive and grow. The same is true here in South Dakota as well. In fact, South Dakota has been a leader in ethanol production for years, and will continue to be for years to come. This industry is making a...

  2. Integrated Biosensor Systems for Ethanol Analysis

    NASA Astrophysics Data System (ADS)

    Alhadeff, Eliana M.; Salgado, Andrea M.; Cós, Oriol; Pereira, Nei; Valero, Francisco; Valdman, Belkis

    Different integrated systems with a bi-enzymatic biosensor, working with two different methods for ethanol detection—flow injection analysis (FIA) or sequential injection analysis (SIA)—were developed and applied for ethanol extracted from gasohol mixtures, as well as for samples of alcoholic beverages and fermentation medium. A detection range of 0.05-1.5 g ethanol/l, with a correlation coefficient of 0.9909, has been reached when using FIA system, working with only one microreactor packed with immobilized alcohol oxidase and injecting free horseradish peroxidase. When using both enzymes, immobilized separately in two microreactors, the detection ranges obtained varied from 0.001 to 0.066 g ethanol/l, without on-line dilution to 0.010-0.047 g ethanol/l when a 1:7,000 dilution ratio was employed, reaching correlation coefficients of 0.9897 and 0.9992, respectively. For the integrated biosensor SIA system with the stop-flow technique, the linear range was 0.005-0.04 g/l, with a correlation coefficient of 0.9922.

  3. Ethanol as an economic competitor to gasoline

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fuel ethanol is one of the technology success stories of the 21st century. In less then one third of a century it has gone from being a material produced rather inefficiently in small quantities to a major commercial product. This success can be attributed not only to the fact that ethanol is a rene...

  4. Fuel ethanol production from agricultural residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethanol is a renewable oxygenated fuel. In 2012, about 13.3 billion gallons of fuel ethanol was produced from corn in the USA which makes up 10% of gasoline supply. Various agricultural residues such as corn stover, wheat straw, rice straw and barley straw can serve as low-cost lignocellulosic fee...

  5. [Progress on engineered strains for ethanol production].

    PubMed

    Wang, Fan-qiang; Xu, Ping

    2006-08-01

    With the 21 century's coming, the era of cheap oil is coming to the end. There has been an increasing worldwide interest in fuel ethanol. In the last two decades, lots of work has been done to develop strains for ethanol producing. Research progress on metabolic engineering of strains for fuel ethanol production is summarized, including genetically engineered Saccharomyces cerevisiae to utilize starch, pentose and cellulose, Zymomonas mobilis to ferment arabinose and xylose, Escherichia coli and Klebsiella oxytoca to introduce heterogenous ethanol production pathway. The aim of engineering these strains is to obtain an ideal microorganism which can converse the available carbon sources to ethanol rapidly and efficiently with high tolerance to ethanol and to inhibitory components in the cheap materials such as lignocellulose hydrolysate. The importance of fuel ethanol will be a stimulus to develop engineered hardy strains to utilize cheap materials for high ethanol concentration production. Since both Saccharomyces cerevisiae and Zymomonas mobilis are generally regarded as safe (GRAS), genetically engineered Saccharomyces cerevisiae which can utilize raw starch directly and recombinant Zymomonas mobilis which can ferment glucose, arabinose and xylose in the lignocellulose hydrolysate have potential application to industry in the near future. PMID:17037078

  6. Ethanol production using engineered mutant E. coli

    DOEpatents

    Ingram, Lonnie O.; Clark, David P.

    1991-01-01

    The subject invention concerns novel means and materials for producing ethanol as a fermentation product. Mutant E. coli are transformed with a gene coding for pyruvate decarboxylase activity. The resulting system is capable of producing relatively large amounts of ethanol from a variety of biomass sources.

  7. Hulless winter barley for ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hulless barley is viable feedstock alternative to corn for ethanol production in areas where small grains are produced. The first barley-based ethanol plant in the US is currently under construction by Osage BioEnergy LLC in Hopewell, VA. New hulless winter barley varieties developed by Virginia T...

  8. Manufacturing Ethyl Acetate From Fermentation Ethanol

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Ingham, John D.

    1991-01-01

    Conceptual process uses dilute product of fermentation instead of concentrated ethanol. Low-concentration ethanol, extracted by vacuum from fermentation tank, and acetic acid constitutes feedstock for catalytic reaction. Product of reaction goes through steps that increases ethyl acetate content to 93 percent by weight. To conserve energy, heat exchangers recycle waste heat to preheat process streams at various points.

  9. Ethanol and the environment: Clarifying the controversy

    SciTech Connect

    Goodman, B.J.; Wyman, C.E.

    1993-12-31

    Domestic transportation fuels are almost exclusively (about 97%) derived petroleum and account for about 64% of the total petroleum used in the United States. Few substitutes are currently available for petroleum-based transportation fuels, making the United States extremely vulnerable, both strategically and economically, to supply disruptions. In recent years, interest in ethanol as a fuel extender, octane enhancer, and oxygenate has increased dramatically because of concerns associated with conventional transportation fuels. Ethanol is produced commercially from sugar in Brazil and starch crops in United States. However, lignocellulosic biomass such as agricultural residues, forestry wastes, municipal solid waste, and dedicated energy crops can also be converted into ethanol. This resource provides a low-cost, abundant feedstock that would support large-scale ethanol production in this country. Ethanol can be used as a 10% blend, reacted with isobutylene to form ethyl tertiary butyl ether (ETBE), or used directly as a neat fuel. The fuel properties and processing requirements of each of these options must be properly accounted for in order to compare the merits of ethanol use with conventional fuels. The advantages and disadvantages of using ethanol as a blend, as ETBE, or as a neat fuel will be discussed and an overview of enzymatic hydrolysis technology for producing ethanol from lignocellulosic biomass will be present.

  10. Maternal ethanol consumption by pregnant guinea pigs causes neurobehavioral deficits and increases ethanol preference in offspring.

    PubMed

    Shea, Kayla M; Hewitt, Amy J; Olmstead, Mary C; Brien, James F; Reynolds, James N

    2012-02-01

    The objective of this study was to test the hypothesis that prenatal exposure to ethanol, through maternal consumption of an aqueous ethanol solution, induces neurobehavioral deficits and increases ethanol preference in offspring. Pregnant Dunkin-Hartley-strain guinea pigs were given 24-h access to an aqueous ethanol solution (5%, v/v) sweetened with sucralose (1 g/l), or water sweetened with sucralose (1 g/l), throughout gestation. Spontaneous locomotor activity was measured in the offspring on postnatal day (PD) 10. The offspring underwent either ethanol preference testing using a two-bottle-choice paradigm beginning on PD 40 or Morris water maze testing using a hidden moving platform design beginning on PD 60. Maternal consumption of a 5% (v/v) ethanol solution (average daily dose of 2.3±0.1 g of ethanol/kg maternal body weight; range: 1.8-2.8 g/kg) decreased offspring birth weight, increased spontaneous locomotor activity, and increased preference for an aqueous ethanol solution. In the Morris water maze test, sucralose-exposed offspring decreased escape latency on the second day of testing, whereas the ethanol-exposed offspring showed no improvement. These data demonstrate that moderate maternal consumption of ethanol produces hyperactivity, enhances ethanol preference, and impairs learning and memory in guinea pig offspring. PMID:22157142

  11. Moderate ethanol ingestion and cardiovascular protection: from epidemiologic associations to cellular mechanisms.

    PubMed

    Krenz, Maike; Korthuis, Ronald J

    2012-01-01

    While ethanol intake at high levels (3-4 or more drinks), either in acute (occasional binge drinking) or chronic (daily) settings, increases the risk for myocardial infarction and stroke, an inverse relationship between regular consumption of alcoholic beverages at light to moderate levels (1-2 drinks per day) and cardiovascular risk has been consistently noted in a large number of epidemiologic studies. Although initially attributed to polyphenolic antioxidants in red wine, subsequent work has established that the ethanol component contributes to the beneficial effects associated with moderate intake of alcoholic beverages regardless of type (red versus white wine, beer, spirits). Concerns have been raised with regard to interpretation of epidemiologic evidence for this association including heterogeneity of the reference groups examined in many studies, different lifestyles of moderate drinkers versus abstainers, and favorable risk profiles in moderate drinkers. However, better controlled epidemiologic studies and especially work conducted in animal models and cell culture systems have substantiated this association and clearly established a cause and effect relationship between alcohol consumption and reductions in tissue injury induced by ischemia/reperfusion (I/R), respectively. The aims of this review are to summarize the epidemiologic evidence supporting the effectiveness of ethanol ingestion in reducing the likelihood of adverse cardiovascular events such as myocardial infarction and ischemic stroke, even in patients with co-existing risk factors, to discuss the ideal quantities, drinking patterns, and types of alcoholic beverages that confer protective effects in the cardiovascular system, and to review the findings of recent experimental studies directed at uncovering the mechanisms that underlie the cardiovascular protective effects of antecedent ethanol ingestion. Mechanistic interrogation of the signaling pathways invoked by antecedent ethanol

  12. Ethanol mandate thrown out by appeals court

    SciTech Connect

    Begley, R.

    1995-05-10

    In a victory for the oil industry, a federal appeals court has overturned EPA`s mandate for ethanol use in reformulated gasoline (REG), saying the agency lacks authority to require 30% of the oxygenate market be reserved for ethanol. EPA says the ruling does not prevent ethanols use in RFG - {open_quotes}It only says that EPA cannot dictate the recipe.{close_quotes} Charles DiBona, president of the American Petroleum Institute (API), says {open_quotes}API and its member companies are not opposed to the use of ethanol as an oxygenate. We oppose this illegal mandate.{close_quotes} Urvan Sternfels, president of the National Petroleum Refiners Association, says, {open_quotes}Mandating market shares for any product is unsound economic policy.{close_quotes} The two trade groups led the legal battle against the ethanol requirement.

  13. Infrastructure Requirements for an Expanded Fuel Ethanol Industry

    SciTech Connect

    Reynolds, Robert E.

    2002-01-15

    This report provides technical information specifically related to ethanol transportation, distribution, and marketing issues. This report required analysis of the infrastructure requirements for an expanded ethanol industry.

  14. European Conference on Health Economics.

    PubMed

    Malmivaara, Antti

    2010-12-01

    The biennial European Conference on Health Economics was held in Finland this year, at the Finlandia Hall in the centre of Helsinki. The European conferences rotate among European countries and fall between the biennial world congresses organized by the International Health Economics Association (iHEA). A record attendance of approximately 800 delegates from 50 countries around the world were present at the Helsinki conference. The theme of the conference was 'Connecting Health and Economics'. All major topics of health economics were covered in the sessions. For the first time, social care economics was included in the agenda of the European Conference as a session of its own. PMID:21155696

  15. Circadian activity rhythms and voluntary ethanol intake in male and female ethanol-preferring rats: effects of long-term ethanol access.

    PubMed

    Rosenwasser, Alan M; McCulley, Walter D; Fecteau, Matthew

    2014-11-01

    Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian

  16. Circadian Activity Rhythms and Voluntary Ethanol Intake in Male and Female Ethanol-Preferring Rats: Effects of Long-Term Ethanol Access

    PubMed Central

    Rosenwasser, Alan M.; McCulley, Walter D.; Fecteau, Matthew

    2014-01-01

    Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian

  17. Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis

    PubMed Central

    Stambuk, Boris U.; Dunn, Barbara; Alves, Sergio L.; Duval, Eduarda H.; Sherlock, Gavin

    2009-01-01

    Fuel ethanol is now a global energy commodity that is competitive with gasoline. Using microarray-based comparative genome hybridization (aCGH), we have determined gene copy number variations (CNVs) common to five industrially important fuel ethanol Saccharomyces cerevisiae strains responsible for the production of billions of gallons of fuel ethanol per year from sugarcane. These strains have significant amplifications of the telomeric SNO and SNZ genes, which are involved in the biosynthesis of vitamins B6 (pyridoxine) and B1 (thiamin). We show that increased copy number of these genes confers the ability to grow more efficiently under the repressing effects of thiamin, especially in medium lacking pyridoxine and with high sugar concentrations. These genetic changes have likely been adaptive and selected for in the industrial environment, and may be required for the efficient utilization of biomass-derived sugars from other renewable feedstocks. PMID:19897511

  18. IEEE conference record -- Abstracts

    SciTech Connect

    Not Available

    1994-01-01

    This conference covers the following areas: computational plasma physics; vacuum electronic; basic phenomena in fully ionized plasmas; plasma, electron, and ion sources; environmental/energy issues in plasma science; space plasmas; plasma processing; ball lightning/spherical plasma configurations; plasma processing; fast wave devices; magnetic fusion; basic phenomena in partially ionized plasma; dense plasma focus; plasma diagnostics; basic phenomena in weakly ionized gases; fast opening switches; MHD; fast z-pinches and x-ray lasers; intense ion and electron beams; laser-produced plasmas; microwave plasma interactions; EM and ETH launchers; solid state plasmas and switches; intense beam microwaves; and plasmas for lighting. Separate abstracts were prepared for 416 papers in this conference.

  19. Mississippi Climate & Hydrology Conference

    SciTech Connect

    Lawford, R.; Huang, J.

    2002-05-01

    The GEWEX Continental International Project (GCIP), which started in 1995 and completed in 2001, held its grand finale conference in New Orleans, LA in May 2002. Participants at this conference along with the scientists funded through the GCIP program are invited to contribute a paper to a special issue of Journal of Geophysical Research (JGR). This special JGR issue (called GCIP3) will serve as the final report on scientific research conducted by GCIP investigators. Papers are solicited on the following topical areas, but are not limited to, (1) water energy budget studies; (2) warm season precipitation; (3) predictability and prediction system; (4) coupled land-atmosphere models; (5) climate and water resources applications. The research areas cover observations, modeling, process studies and water resources applications.

  20. NSI conference support

    NASA Technical Reports Server (NTRS)

    Aaron, Susan

    1991-01-01

    One of the many services NSI provides as an extension of customer/user support is to attend major scientific conferences. The conference effort provides NASA/OSSA scientists with many benefits: (1) scientist get to see NSI in action; they utilize the network to read email, and have recently begun to demonstrate their scientific research to their colleagues; (2) scientist get an opportunity to meet and interact with NSI Staff, which gives scientists a chance to get status on their requirements, ask about network status, get acquainted with our procedures, and learn about services; and (3) scientists are exposed to networking in a larger sense; particularly by knowing about other NASA groups who provide valuable scientific resources over the Internet.

  1. Metabolic Engineering VII Conference

    SciTech Connect

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  2. Stability-indicating HPLC method for the determination of darunavir ethanolate.

    PubMed

    Reddy, B V Rami; Jyothi, G; Reddy, B S; Raman, N V V S S; Reddy, K Subhash Chander; Rambabu, C

    2013-01-01

    A novel stability-indicating reversed-phase high-performance liquid chromatographic (HPLC) method has been developed for the quantitative determination of darunavir ethanolate, an HIV-1 protease inhibitor. The chromatographic separation was achieved using an X-Bridge C18 (150 × 4.6 mm × 3.5 µm) HPLC column in isocratic mode employing 0.01M ammonium formate (pH.3.0) buffer and acetonitrile in the ratio of 55:45 (v/v) with a flow rate of 1.0 mL/min. The detector wavelength was monitored at 265 nm and the column temperature was maintained at 30°C. Darunavir ethanolate was exposed to thermal, photolytic, acid, base and oxidative stress conditions. Considerable degradation of the drug substance was found to occur under acid, base and oxidative stress conditions. The peak homogeneity data of darunavir ethanolate obtained by photodiode array detection demonstrated the specificity of the method in the presence of degradants. The degradation products were well resolved from primary peak of darunavir, indicating that the method is specific and stability-indicating. The HPLC method was validated as per International Conference on Harmonization guidelines with respect to specificity, precision, linearity, accuracy and robustness. Regression analysis showed a correlation coefficient value greater than 0.999. The accuracy of the method was established based on the recovery obtained for darunavir ethanolate. PMID:23097581

  3. Phosphatidylinositol from alcoholic rats is uniquely able to render membranes tolerant to disordering by ethanol

    SciTech Connect

    Ellingson, J.S.; Taraschi, T.F.; Rubin, E.

    1986-05-01

    Rat liver microsomal membranes from rats chronically fed ethanol are resistant (tolerant) to membrane disordering by 50-100 mM ethanol. To identify the molecular basis of tolerance, the authors quantitatively separated microsomal phospholipids (PL's) extracted from control and ethanol-fed rats by preparative HPLC, and examined, by electron spin resonance, the structural properties of multilamellar vesicles (MLV's) prepared by recombining control and alcoholic PL's. MLV's made from alcoholic PL's (mixed in same molar ratios as in microsomes) were tolerant to disordering by ethanol, whereas control MLV's were not. If alcoholic phosphatidylcholine (66.5%), phosphatidylethanolamine (21%) or phosphatidylserine (4.0%) replaced their respective PL in control MLV's, the membranes were not tolerant. In contrast, when 8.5% alcoholic phosphatidylinositol (PI) replaced control PI, the MLV's were tolerant. Alcoholic rat PI (8.5%) also conferred tolerance to MLV's containing 91.5% bovine PL's. The authors conclude that the acquisition of membrane tolerance in alcoholic liver microsomes is related to changes in PI.

  4. Energy Conferences and Symposia; (USA)

    SciTech Connect

    Osborne, J.H.; Simpson, W.F. Jr.

    1991-01-01

    Energy Conferences and Symposia, a monthly publication, was instituted to keep scientists, engineers, managers, and related energy professionals abreast of meetings sponsored by the Department of Energy (DOE) and by other technical associations. Announcements cover conference, symposia, workshops, congresses, and other formal meetings pertaining to DOE programmatic interests. Complete meeting information, including title, sponsor, and contact, is presented in the main section, which is arranged alphabetically by subject area. Within a subject, citations are sorted by beginning data of the meeting. New listings are indicated by a bullet after the conference number and DOE-sponsored conferences are indicated by a star. Two indexes are provided for cross referencing conference information. The Chronological Index lists conference titles by dates and gives the subject area where complete information they may be found. The Location Index is alphabetically sorted by the city where the conference will be held.

  5. 1999 IEEE radar conference

    SciTech Connect

    1999-07-01

    This conference addresses the stringent radar technology demands facing the next century: target detection, tracking and identification; changing target environment; increased clutter mitigation techniques; air traffic control; transportation; drug smuggling; remote sensing, and other consumer oriented applications. A timely discussion covers how to minimize costs for these emerging areas. Advanced radar technology theory and applications are also presented. Topics covered include: signal processing; space time adaptive processing/antennas; surveillance technology; radar systems; dual use; and phenomenology.

  6. SAARC Conference on Children.

    PubMed

    1992-01-01

    In September 1992, in Colombo, Sri Lanka, ministry representatives attended the 2nd South Asian Ministerial Conference on Children to discuss child survival and safe motherhood, maternal and child nutrition, basic education, safe water, sanitation, the environment, child rights, and sociopolitical strategy to reach goals and to reduce poverty. To achieve the 7 major goals and essential supportive goals for the region, each country must define tasks in manageable terms based on country-specific and community-specific needs and importance while at the same time countries should cooperate to strengthen prospects of achieving goals emerging as priorities. The Conference called for countries to reinforce their National Plans of Action with a regional perspective and to consider representative goals in primary education, diarrhea control, iodine deficiency disorders, reducing gender disparity, family size, child labor, drinking water, guinea worm disease, immunization, maternal mortality, and nutrition. The Conference emphasized that the strategy for reaching child-centered goals should be integrated with the total development strategy and be a holistic approach. For example, governments need to expand social safety programs for children and women because of structural adjustments in the economy. The resolution also called on governments to allow community-led local planning. A working group at the conference made recommendations for supporting/sectoral goals on water supply, sanitation, and environment. For example, it called for universal access to potable water and sanitary means of excreta disposal by 2000 and for adequate shelter and services to improve the living environment of children in South Asia. Some recommended strategies to achieve these goals were community participation; decentralization; promotion of self-reliance, cost-sharing, and sustainability; and special training for women. Other areas they addressed were home gardens for vegetables and fruits

  7. Moldova. Historic regional conference.

    PubMed

    Moshin, V

    1995-05-01

    The Directorate of Maternal and Child Health and the Family Planning Association of Moldova organized a regional conference, which was held October 18-19, 1994, in Kishinev, Moldova, with the support of the United Nations Population Fund (UNFPA), the World Health Organization (WHO), and the International Planned Parenthood Federation (IPPF). The conference,"Problems of Family Planning in Eastern Europe," was attended by approximately 400 Moldovan delegates of governmental and nongovernmental organizations (NGOs), and by 25 delegates from Romania, Russia, Belarus, the Ukraine, and Georgia. The President of Moldova and the Ministry of Public Health of Moldova gave their approval. The main objectives of the conference were to inform the public about the recommendations of the ICPD, to analyze the status of women's reproductive health and family planning in Eastern Europe, and to find ways of implementing the ICPD Plan of Action. Major problems identified during the conference were: 1) the social and economic problems facing most families; 2) the high rate of morbidity and mortality; 3) the decrease in birth rate; 4) the increase in abortions; 5) the rising incidence of venereal disease; and 6) the absence of an effective family planning system. It was agreed that cooperation between governments and NGOs is essential in designing population programs for each country. The following goals were set: 1) to provide populations with sufficient contraceptives; 2) to actively promote family planning concepts through the mass media; 3) to train specialists and to open family planning offices and centers; 4) to introduce sex education in the curricula of Pedagogical Institutes; and 5) to create national and regional statistical and sociological databases on population issues. PMID:12222268

  8. New improvements for lignocellulosic ethanol.

    PubMed

    Margeot, Antoine; Hahn-Hagerdal, Bärbel; Edlund, Maria; Slade, Raphael; Monot, Frédéric

    2009-06-01

    The use of lignocellulosic biomass for the production of biofuels will be unavoidable if liquid fossil fuels are to be replaced by renewable and sustainable alternatives. Ethanol accounts for the majority of biofuel use worldwide, and the prospect of its biological production from abundant lignocellulosic feedstocks is attractive. The recalcitrance of these raw materials still renders proposed processes complex and costly, but there are grounds for optimism. The application of new, engineered enzyme systems for cellulose hydrolysis, the construction of inhibitor-tolerant pentose-fermenting industrial yeast strains, combined with optimized process integration promise significant improvements. The opportunity to test these advances in pilot plants paves the way for large-scale units. This review summarizes recent progress in this field, including the validation at pilot scale, and the economic and environmental impacts of this production pathway. PMID:19502048

  9. SALT Science Conference 2015

    NASA Astrophysics Data System (ADS)

    Buckley, David; Schroeder, Anja

    The Southern African Large Telescope (SALT) has seen great changes in the last years following the beginning of full time science operations in 2011. The three first generation instruments, namely the SALTICAM imager, the Robert Stobie Spectrograph (RSS) and its multiple modes and finally in 2014, the new High Resolution Spectrograph (HRS), have commissioned it. The SALT community now eagerly anticipate the installation and commissioning of the near-infrared arm of RSS, likely to commence in 2016. The the third "Science with SALT" conference was held at the Stellenbosch Institute of Advanced Study from 1-5 June 2015. The goals of this conference were to: -Present and discuss recent results from SALT observations; -Anticipate scientific programs that will be carried out with new SALT instrumentation such as RSS-NIR; -Provide a scientific environment in which to foster inter-institutional and inter-facility collaborations between scientists at the different SALT partners; -Provide an opportunity for students and postdocs to become more engaged in SALT science and operations; -Encourage the scientific strategic planning that will be necessary to insure an important role for SALT in an era of large astronomical facilities in the southern hemisphere such as MeerKAT, the SKA, LSST, and ALMA; -Consider options for future instrumentation and technical development of SALT; and, -Present, discuss, and engage in the SALT Collateral Benefits program led by SAAO. Conference proceedings editors: David Buckley and Anja Schroeder

  10. 2004 Mutagenesis Gordon Conference

    SciTech Connect

    Dr. Sue Jinks-Robertson

    2005-09-16

    Mutations are genetic alterations that drive biological evolution and cause many, if not all, human diseases. Mutation originates via two distinct mechanisms: ''vertical'' variation is de novo change of one or few bases, whereas ''horizontal'' variation occurs by genetic recombination, which creates new mosaics of pre-existing sequences. The Mutagenesis Conference has traditionally focused on the generation of mutagenic intermediates during normal DNA synthesis or in response to environmental insults, as well as the diverse repair mechanisms that prevent the fixation of such intermediates as permanent mutations. While the 2004 Conference will continue to focus on the molecular mechanisms of mutagenesis, there will be increased emphasis on the biological consequences of mutations, both in terms of evolutionary processes and in terms of human disease. The meeting will open with two historical accounts of mutation research that recapitulate the intellectual framework of this field and thereby place the current research paradigms into perspective. The two introductory keynote lectures will be followed by sessions on: (1) mutagenic systems, (2) hypermutable sequences, (3) mechanisms of mutation, (4) mutation avoidance systems, (5) mutation in human hereditary and infectious diseases, (6) mutation rates in evolution and genotype-phenotype relationships, (7) ecology, mutagenesis and the modeling of evolution and (8) genetic diversity of the human population and models for human mutagenesis. The Conference will end with a synthesis of the meeting as the keynote closing lecture.

  11. The Effects of Chronic Ethanol Administration on Amygdala Neuronal Firing and Ethanol Withdrawal Seizures

    PubMed Central

    Feng, Hua-Jun; Faingold, Carl L.

    2008-01-01

    Summary Physical dependence on ethanol results in an ethanol withdrawal (ETX) syndrome including susceptibility to audiogenic seizures (AGS) in rodents after abrupt cessation of ethanol. Chronic ethanol administration and ETX induce functional changes of neurons in several brain regions, including the amygdala. Amygdala neurons are requisite elements of the neuronal network subserving AGS propagation during ETX induced by a subacute “binge” ethanol administration protocol. However, the effects of chronic ethanol administration on amygdala neuronal firing and ETX seizure behaviors are unknown. In the present study ethanol (5 g/kg) was administered intragastrically in Sprague-Dawley rats once daily for 28 days [chronic intermittent ethanol (CIE) protocol]. One week later the rats began receiving ethanol intragastrically 3 times daily for 4 days (binge protocol). Microwire electrodes were implanted prior to CIE or on the day after CIE ended day 29 to record extracellular action potentials in lateral amygdala (LAMG) neurons. The first dose of ethanol administered in the binge protocol following CIE treatment did not alter LAMG neuronal firing, which contrasts with firing suppression seen previously in the binge protocol alone. These data indicate that CIE induces neuroadaptive changes in the ETX network which reduce LAMG response to ethanol. LAMG neuronal responses to acoustic stimuli prior to AGS were significantly decreased during ETX as compared to those before ethanol treatment. LAMG neurons fired tonically throughout the tonic convulsions during AGS. CIE plus binge treatment resulted in a significantly greater mean seizure duration and a significantly elevated incidence of death than was seen previously with the binge protocol alone, indicating an elevated seizure severity following chronic ethanol administration. PMID:18614185

  12. Ethanol production from potato peel waste (PPW).

    PubMed

    Arapoglou, D; Varzakas, Th; Vlyssides, A; Israilides, C

    2010-10-01

    Considerable concern is caused by the problem of potato peel waste (PPW) to potato industries in Europe. An integrated, environmentally-friendly solution is yet to be found and is currently undergoing investigation. Potato peel is a zero value waste produced by potato processing plants. However, bio-ethanol produced from potato wastes has a large potential market. If Federal Government regulations are adopted in light of the Kyoto agreement, the mandatory blending of bio-ethanol with traditional gasoline in amounts up to 10% will result in a demand for large quantities of bio-ethanol. PPW contain sufficient quantities of starch, cellulose, hemicellulose and fermentable sugars to warrant use as an ethanol feedstock. In the present study, a number of batches of PPW were hydrolyzed with various enzymes and/or acid, and fermented by Saccharomyces cerevisae var. bayanus to determine fermentability and ethanol production. Enzymatic hydrolysis with a combination of three enzymes, released 18.5 g L(-1) reducing sugar and produced 7.6 g L(-1) of ethanol after fermentation. The results demonstrate that PPW, a by-product of the potato industry features a high potential for ethanol production. PMID:20471817

  13. Neurosteroid Influences on Sensitivity to Ethanol

    PubMed Central

    Helms, Christa M.; Rossi, David J.; Grant, Kathleen A.

    2011-01-01

    This review will highlight a variety of mechanisms by which neurosteroids affect sensitivity to ethanol, including physiological states associated with activity of the hypothalamic–pituitary–adrenal (HPA) and hypothalamic–pituitary–gonadal (HPG) axes, and the effects of chronic exposure to ethanol, in addition to behavioral implications. To date, γ-aminobutyric acid (GABAA) receptor mechanisms are a major focus of the modulation of ethanol effects by neuroactive steroids. While NMDA receptor mechanisms are gaining prominence in the literature, these complex data would be best discussed separately. Accordingly, GABAA receptor mechanisms are emphasized in this review with brief mention of some NMDA receptor mechanisms to point out contrasting neuroactive steroid pharmacology. Overall, the data suggest that neurosteroids are virtually ubiquitous modulators of inhibitory neurotransmission. Neurosteroids appear to affect sensitivity to ethanol in specific brain regions and, consequently, specific behavioral tests, possibly related to the efficacy and potency of ethanol to potentiate the release of GABA and increase neurosteroid concentrations. Although direct interaction of ethanol and neuroactive steroids at common receptor binding sites has been suggested in some studies, this proposition is still controversial. It is currently difficult to assign a specific mechanism by which neuroactive steroids could modulate the effects of ethanol in particular behavioral tasks. PMID:22654852

  14. Lithium-mediated protection against ethanol neurotoxicity.

    PubMed

    Luo, Jia

    2010-01-01

    Lithium has long been used as a mood stabilizer in the treatment of manic-depressive (bipolar) disorder. Recent studies suggest that lithium has neuroprotective properties and may be useful in the treatment of acute brain injuries such as ischemia and chronic neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. One of the most important neuroprotective properties of lithium is its anti-apoptotic action. Ethanol is a neuroteratogen and fetal alcohol spectrum disorders (FASD) are caused by maternal ethanol exposure during pregnancy. FASD is the leading cause of mental retardation. Ethanol exposure causes neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. Excessive alcohol consumption is also associated with Wernicke-Korsakoff syndrome and neurodegeneration in the adult brain. Recent in vivo and in vitro studies indicate that lithium is able to ameliorate ethanol-induced neuroapoptosis. Lithium is an inhibitor of glycogen synthase kinase 3 (GSK3) which has recently been identified as a mediator of ethanol neurotoxicity. Lithium's neuroprotection may be mediated by its inhibition of GSK3. In addition, lithium also affects many other signaling proteins and pathways that regulate neuronal survival and differentiation. This review discusses the recent evidence of lithium-mediated protection against ethanol neurotoxicity and potential underlying mechanisms. PMID:20661453

  15. Ethanol for the treatment of cardiac arrhythmias

    PubMed Central

    Schurmann, Paul; Peñalver, Jorge; Valderrábano, Miguel

    2015-01-01

    Introduction Ethanol infusion was an early mode of ablative treatment for cardiac arrhythmias. Its initial descriptions involved coronary intra-arterial delivery, targeting arrhythmogenic substrates in drug-refractory ventricular tachycardia or the atrioventricular node. Largely superseded by radiofrequency ablation (RFA) and other contact-based technologies as a routine ablation strategy, intracoronary arterial ethanol infusion remains as an alternative option in the treatment of ventricular tachycardia when conventional ablation fails. Arrhythmic foci that are deep-seated in the myocardium may not be amenable to catheter ablation from either the endocardium or the epicardium by RFA, but they can be targeted by an ethanol infusion. Recent findings Recently, we have explored ethanol injection through cardiac venous systems, in order to avoid the risks of complications and limitations of coronary arterial instrumentation. Vein of Marshall ethanol infusion is being studied as an adjunctive procedure in ablation of atrial fibrillation, and coronary venous ethanol infusion for ventricular tachycardia. Conclusion Ethanol ablation remains useful as a bail-out technique for refractory cases to RFA, or as an adjunctive therapy that may improve the efficacy of catheter ablation procedures. PMID:26049378

  16. Ethanol cytotoxic effect on trophoblast cells.

    PubMed

    Clave, S; Joya, X; Salat-Batlle, J; Garcia-Algar, O; Vall, O

    2014-03-01

    Prenatal ethanol exposure may cause both, altered fetal neurodevelopment and impaired placental function. These disturbances can lead to growth retardation, which is one of the most prevalent features in Fetal Alcohol Syndrome (FAS). It is not known whether there is a specific pattern of cytotoxicity caused by ethanol that can be extrapolated to other cell types. The aim of this study was to determine the cytotoxic effects caused by sustained exposure of trophoblast cells to ethanol. The cytotoxic effect of sustained exposure to standard doses of ethanol on an in vitro human trophoblast cell line, JEG3, was examined. Viable cell count by exclusion method, total protein concentration, lactate dehydrogenase (LDH) activity and activation of apoptotic markers (P-H2AX, caspase-3 and PARP-1) were determined. Sustained exposure to ethanol decreased viable cell count and total protein concentration. LDH activity did not increased in exposed cells but apoptotic markers were detected. In addition, there was a dose-dependent relationship between ethanol concentration and apoptotic pathways activation. Sustained ethanol exposure causes cellular cytotoxicity by apoptotic pathways induction as a result of DNA damage. This apoptotic induction may partially explain the altered function of placental cells and the damage previously detected in other tissues. PMID:24374569

  17. Lithium protects ethanol-induced neuronal apoptosis

    SciTech Connect

    Zhong Jin . E-mail: jizhong@iupui.edu; Yang Xianlin; Yao Weiguo; Lee Weihua

    2006-12-01

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3{beta}, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3{beta} (ser9). In addition, the selective GSK-3{beta} inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits.

  18. Cellulose to ethanol production. Final report

    SciTech Connect

    Not Available

    1985-01-01

    The original proposed project was followed until February of 1982 when it became apparent that until further work is completed on development of enzymes, the conversion of cellulose (namely paper mill waste) to ethanol for commercial sale is not feasible. Our approach to the project at this time was to still meet our goal of a economical 100,000 gallon/year ethanol plant. In the early part of 1981 we inquired about fodder beets for conversion to ethanol and through Pacific Seed Production Company and purchased seed for planting in 1981. We planted a quarter acre which was harvested in late fall of 1981. The fodder beets were kept in cold storage until we were ready for testing. Tests were run in February and March. Results indicated that it would be economically feasible to produce ethanol in a 100,000 gallon/year plant using fodder beets. This final report is in two sections. The first section covers the tests on conversion of cellulose to ethanol and the second section covers tests on conversion of fodder beets to ethanol. A 100,000 gallon/year ethanol plant will require 7850 tons of Monarose fodder beets and 157 acres at 50 ton per acre.

  19. GSK3β in Ethanol Neurotoxicity

    PubMed Central

    2016-01-01

    Alcohol consumption during pregnancy is a significant public health problem and may result in a wide range of adverse outcomes for the child. The developing central nervous system (CNS) is particularly susceptible to ethanol toxicity. Children with fetal alcohol spectrum disorders (FASD) have a variety of cognitive, behavioral, and neurological impairments. FASD currently represents the leading cause of mental retardation in North America ahead of Down syndrome and cerebral palsy. Ethanol exposure during development causes multiple abnormalities in the brain such as permanent loss of neurons, ectopic neurons, and alterations in synaptogenesis and myelinogenesis. These alcohol-induced structural alterations in the developing brain underlie many of the behavioral deficits observed in FASD. The cellular and molecular mechanisms of ethanol neurotoxicity, however, remain unclear. Ethanol elicits cellular stresses, including oxidative stress and endoplasmic reticulum stress. Glycogen synthase kinase 3β (GSK3β), a multifunctional serine/ threonine kinase, responds to various cellular stresses. GSK3β is particularly abundant in the developing CNS, and regulates diverse developmental events in the immature brain, such as neurogenesis and neuronal differentiation, migration, and survival. Available evidence indicates that the activity of GSK3β in the CNS is affected by ethanol. GSK3β inhibition provides protection against ethanol neurotoxicity, whereas high GSK3β activity/expression sensitizes neuronal cells to ethanol-induced damages. It appears that GSK3β is a converging signaling point that mediates some of ethanol’s neurotoxic effects. PMID:19507062

  20. PREFACE: Wake Conference 2015

    NASA Astrophysics Data System (ADS)

    Barney, Andrew; Nørkær Sørensen, Jens; Ivanell, Stefan

    2015-06-01

    The 44 papers in this volume constitute the proceedings of the 2015 Wake Conference, held in Visby on the island of Gotland in Sweden. It is the fourth time this conference has been held. The Wake Conference series started in Visby, where it was held in 2009 and 2011. In 2013 it took place in Copenhagen where it was combined with the International Conference on Offshore Wind Energy and Ocean Energy. In 2015 it is back where it started in Visby, where it takes place at Uppsala University Campus Gotland, June 9th-11th. The global yearly production of electrical energy by wind turbines has grown tremendously in the past decade and it now comprises more than 3% of the global electrical power consumption. Today the wind power industry has a global annual turnover of more than 50 billion USD and an annual average growth rate of more than 20%. State-of-the-art wind turbines have rotor diameters of up to 150 m and 8 MW installed capacity. These turbines are often placed in large wind farms that have a total production capacity corresponding to that of a nuclear power plant. In order to make a substantial impact on one of the most significant challenges of our time, global warming, the industry's growth has to continue for a decade or two yet. This in turn requires research into the physics of wind turbine wakes and wind farms. Modern wind turbines are today clustered in wind farms in which the turbines are fully or partially influenced by the wake of upstream turbines. As a consequence, the wake behind the wind turbines has a lower mean wind speed and an increased turbulence level, as compared to the undisturbed flow outside the farm. Hence, wake interaction results in decreased total production of power, caused by lower kinetic energy in the wind, and an increase in the turbulence intensity. Therefore, understanding the physical nature of the vortices and their dynamics in the wake of a turbine is important for the optimal design of a wind farm. This conference is aimed

  1. Endoplasmic Reticulum Stress and Ethanol Neurotoxicity.

    PubMed

    Yang, Fanmuyi; Luo, Jia

    2015-01-01

    Ethanol abuse affects virtually all organ systems and the central nervous system (CNS) is particularly vulnerable to excessive ethanol exposure. Ethanol exposure causes profound damages to both the adult and developing brain. Prenatal ethanol exposure induces fetal alcohol spectrum disorders (FASD) which is associated with mental retardation and other behavioral deficits. A number of potential mechanisms have been proposed for ethanol-induced brain damage; these include the promotion of neuroinflammation, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, and thiamine deficiency. The endoplasmic reticulum (ER) regulates posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress and induces unfolded protein response (UPR) which are mediated by three transmembrane ER signaling proteins: pancreatic endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6). UPR is initiated to protect cells from overwhelming ER protein loading. However, sustained ER stress may result in cell death. ER stress has been implied in various CNS injuries, including brain ischemia, traumatic brain injury, and aging-associated neurodegeneration, such as Alzheimer's disease (AD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). However, effects of ethanol on ER stress in the CNS receive less attention. In this review, we discuss recent progress in the study of ER stress in ethanol-induced neurotoxicity. We also examine the potential mechanisms underlying ethanol-mediated ER stress and the interaction among ER stress, oxidative stress and autophagy in the context of ethanol neurotoxicity. PMID:26473940

  2. Ethanol as a fuel additive in Zimbabwe

    SciTech Connect

    Wenman, C.M.; Tannock, J.

    1984-11-01

    To obtain maximum yield of ethanol from sugar and to dispose of the stillage in the most effective economic way possible are the main problems facing Zimbabwe's fuel ethanol industry. In order to monitor the production of ethanol from sugar cane, High Pressure Liquid Chromatography is used as it is a simple method and the results are reproducible, accurate and produced with little delay. In order to dispose of the stillage, it has been used as a fertilizer and as animal feed but incineration and microbiological digestion of the stillage may provide better long-term solutions.

  3. Use of clinoptilolite in ethanol dehydration

    SciTech Connect

    Tihmillioglu, F.; Ulku, S.

    1996-12-01

    Clinoptilolite-type natural zeolite, which exists in various regions of Turkey, has been experimentally studied. For the ethanol-water-local clinoptilolite system, uptake and breakthrough curves were determined under a nitrogen gas atmosphere. In adsorption kinetics and adsorption equilibrium studies, the effects of particle size, temperature and, amount of zeolite on the uptake rate have been investigated. The breakthrough curves for four different flow rates of ethanol and three different bed heights were determined in dynamic column studies. The results of the experiments show that intraparticle diffusion is the main resistance. The local clinoptilolite is a promising adsorbent for water adsorption from aqueous ethanol.

  4. Wastepaper as a feedstock for ethanol production

    SciTech Connect

    Bergeron, P.W.; Riley, C.J.

    1991-11-01

    The possibility of using wastepaper as a cheap feedstock for production of ethanol is discussed. As the single largest material category in the municipal solid waste (MSW) stream, wastepaper is the main target of efforts to reduce the volume of MSW. And in the process for producing ethanol from lignocellulosics, the feedstock represents the highest cost. If wastepaper could be obtained cheaply in large enough quantities and if conversion process cost and efficiency prove to be similar to those for wood, the cost of ethanol could be significantly reduced. At the same time, the volume of wastepaper that must be disposed of in landfills could be lessened. 13 refs., 3 figs., 7 tabs.

  5. Assessment of Ethanol Trends on the ISS

    NASA Technical Reports Server (NTRS)

    Perry, Jay; Carter, Layne; Kayatin, Matthew; Gazda, Daniel; McCoy, Torin; Limero, Thomas

    2016-01-01

    The International Space Station (ISS) Environmental Control and Life Support System (ECLSS) provides a working environment for six crewmembers through atmosphere revitalization and water recovery systems. In the last year, elevated ethanol levels have presented a unique challenge for the ISS ECLSS. Ethanol is monitored on the ISS by the Air Quality Monitor (AQM). The source of this increase is currently unknown. This paper documents the credible sources for the increased ethanol concentration, the monitoring provided by the AQM, and the impact on the atmosphere revitalization and water recovery systems.

  6. Biological production of ethanol from coal

    SciTech Connect

    Not Available

    1990-01-01

    Previous results have shown that the medium pH, the composition of the medium and concentration of medium constituents significantly affect the ratio of ethanol to acetate in the product stream when fermenting CO, CO{sub 2} and H{sub 2} in synthesis gas to products by Clostridium ljungdahlii. An additional batch study was carried out varying the agitation rate at pH 4, 4.5 and 5.0. It was speculated that increased agitation rates in combination with low pH might result in increased ethanol production while, at the same time, yielding higher cell concentrations which could eventually result in higher ethanol concentrations.

  7. Gangliosides, or sialic acid, antagonize ethanol intoxication

    SciTech Connect

    Klemm, W.R.; Boyles, R.; Matthew, J.; Cherian, L.

    1988-01-01

    Because ethanol elicits a dose-dependent hydrolysis of brain sialogangliosides, the authors tested the possibility that injected gangliosides might antagonize intoxicating doses of ethanol. Clear anti-intoxication effects were seen at 24 hr post-injection of mixed mouse-brain gangliosides at 125-130 mg/kg, but not at lower or higher doses. Sleep time was reduced on the order of 50%, and roto-rod agility was significantly enhanced. Sialic acid (SA) similarly antagonized ethanol; however, the precursor of SA, N-acetyl-D-mannosamine, as well as ceramide and asialoganglioside did not.

  8. Pharmacokinetics of Ethanol - Issues of Forensic Importance.

    PubMed

    Jones, A W

    2011-07-01

    A reliable method for the quantitative analysis of ethanol in microvolumes (50-100 μL) of blood became available in 1922, making it possible to investigate the absorption, distribution, metabolism, and excretion (ADME) of ethanol in healthy volunteers. The basic principles of ethanol pharmacokinetics were established in the 1930s, including the notion of zero-order elimination kinetics from blood and distribution of the absorbed dose into the total body water. The hepatic enzyme alcohol dehydrogenase (ADH) is primarily responsible for the oxidative metabolism of ethanol. This enzyme was purified and characterized in the early 1950s and shown to have a low Michaelis constant (km), being about ~0.1 g/L. Liver ADH is therefore saturated with substrate after the first couple of drinks and for all practical purposes the concentration-time (C-T) profiles of ethanol are a good approximation to zero-order kinetics. However, because of dose-dependent saturation kinetics, the entire postabsorptive declining part of the blood-alcohol concentration (BAC) curve looks more like a hockey stick rather than a straight line. A faster rate of ethanol elimination from blood in habituated individuals (alcoholics) is explained by participation of a high km microsomal enzyme (CYP2E1), which is inducible after a period of chronic heavy drinking. Owing to the combined influences of genetic and environmental factors, one expects a roughly threefold difference in elimination rates of ethanol from blood (0.1-0.3 g/L/h) between individuals. The volume of distribution (Vd) of ethanol, which depends on a person's age, gender, and proportion of fat to lean body mass, shows a twofold variation between individuals (0.4-0.8 L/kg). This forensic science review traces the development of forensic pharmacokinetics of ethanol from a historical perspective, followed by a discussion of important issues related to the disposition and fate of ethanol in the body, including (a) quantitative evaluation of

  9. Environmental analysis of biomass-ethanol facilities

    SciTech Connect

    Corbus, D.; Putsche, V.

    1995-12-01

    This report analyzes the environmental regulatory requirements for several process configurations of a biomass-to-ethanol facility. It also evaluates the impact of two feedstocks (municipal solid waste [MSW] and agricultural residues) and three facility sizes (1000, 2000, and 3000 dry tons per day [dtpd]) on the environmental requirements. The basic biomass ethanol process has five major steps: (1) Milling, (2) Pretreatment, (3) Cofermentation, (4) Enzyme production, (5) Product recovery. Each step could have environmental impacts and thus be subject to regulation. Facilities that process 2000 dtpd of MSW or agricultural residues would produce 69 and 79 million gallons of ethanol, respectively.

  10. Ethanol production: energy, economic, and environmental losses.

    PubMed

    Pimentel, David; Patzek, Tad; Cecil, Gerald

    2007-01-01

    The prime focus of ethanol production from corn is to replace the imported oil used in American vehicles, without expending more fossil energy in ethanol production than is produced as ethanol energy. In a thorough and up-to-date evaluation of all the fossil energy costs of ethanol production from corn, every step in the production and conversion process must be included. In this study, 14 energy inputs in average U.S. corn production are included. Then, in the fermentation/distillation operation, 9 more identified fossil fuel inputs are included. Some energy and economic credits are given for the by-products, including dried distillers grains (DDG). Based on all the fossil energy inputs, a total of 1.43 kcal fossil energy is expended to produced 1 kcal ethanol. When the energy value of the DDG, based on the feed value of the DDG as compared to that of soybean meal, is considered, the energy cost of ethanol production is reduced slightly, to 1.28 kcal fossil energy input per 1 kcal ethanol produced. Several proethanol investigators have overlooked various energy inputs in U.S. corn production, including farm machinery, processing machinery, and the use of hybrid corn. In other studies, unrealistic, low energy costs were attributed to such inputs as nitrogen fertilizer, insecticides, and herbicides. Controversy continues concerning the energy and economic credits that should be assigned to the by-products. The U.S. Department of Energy reports that 17.0 billion L ethanol was produced in 2005. This represents only less than 1% of total oil use in the U.S. These yields are based on using about 18% of total U.S. corn production and 18% of cornland. Because the production of ethanol requires large inputs of both oil and natural gas in production, the U.S. is importing both oil and natural gas to produce ethanol. Furthermore, the U.S. Government is spending about dollar 3 billion annually to subsidize ethanol production, a subsidy of dollar 0.79/L ethanol produced. With

  11. Developing Biofuel in the Teaching Laboratory: Ethanol from Various Sources

    ERIC Educational Resources Information Center

    Epstein, Jessica L.; Vieira, Matthew; Aryal, Binod; Vera, Nicolas; Solis, Melissa

    2010-01-01

    In this series of experiments, we mimic a small-scale ethanol plant. Students discover that the practical aspects of ethanol production are determined by the quantity of biomass produced per unit land, rather than the volume of ethanol produced per unit of biomass. These experiments explore the production of ethanol from different sources: fruits,…

  12. KINETICS OF ETHANOL BIODEGRADATION UNDER METHANOGENIC CONDITIONS IN GASOLINE SPILLS

    EPA Science Inventory

    Ethanol is commonly used as a fuel oxygenate. A concern has been raised that biodegradation of ethanol from a spill of gasoline may inhibit the natural biodegradation of fuel hydrocarbons, including benzene. Ethanol is miscible in water, and ethanol is readily metabolized by mi...

  13. EFFECT OF ETHANOL ON THE NATURAL ANAEROBIC BIODEGRADATION OF BENZENE

    EPA Science Inventory

    Ethanol is commonly used as a fuel oxygenate. A concern has been raised that the presence of ethanol from a spill of gasoline may inhibit the natural biodegradation of fuel hydrocarbons, including benzene. Ethanol is miscible in water, and ethanol is readily metabolized by micr...

  14. Radiolysis of ethanol and ethanol-water solutions: A tool for studying bioradical reactions

    NASA Astrophysics Data System (ADS)

    Jore, D.; Champion, B.; Kaouadji, N.; Jay-Gerin, J.-P.; Ferradini, C.

    Radiolysis of pure ethanol and ethanol-water solutions is examined in view of its relevance to the study of biological radical mechanisms. On the basis of earlier studies, a consistent reaction scheme is adopted. New data on radical yields are obtained from the radiolysis of dilute solutions of vitamins E and C in these solvents. It is shown that the radiolysis of ethanolic solutions provide an efficient tool to study radical reactions of water-insoluble biomolecules.

  15. Rural Energy Conference Project

    SciTech Connect

    Dennis Witmer; Shannon Watson

    2008-12-31

    Alaska remains, even at the beginning of the 21st century, a place with many widely scattered, small, remote communities, well beyond the end of both the road system and the power grid. These communities have the highest energy costs of any place in the United States, despite the best efforts of the utilities that service them. This is due to the widespread dependence on diesel electric generators, which require small capital investments, but recent increases in crude oil prices have resulted in dramatic increases in the cost of power. In the enabling legislation for the Arctic Energy Office in 2001, specific inclusion was made for the study of ways of reducing the cost of electrical power in these remote communities. As part of this mandate, the University of Alaska has, in conjunction with the US Department of Energy, the Denali Commission and the Alaska Energy Authority, organized a series of rural energy conferences, held approximately every 18 months. The goal of these meeting was to bring together rural utility operators, rural community leaders, government agency representatives, equipment suppliers, and researchers from universities and national laboratories to discuss the current state of the art in rural power generation, to discuss current projects, including successes as well as near successes. Many of the conference presenters were from industry and not accustomed to writing technical papers, so the typical method of organizing a conference by requesting abstracts and publishing proceedings was not considered viable. Instead, the organizing committee solicited presentations from appropriate individuals, and requested that (if they were comfortable with computers) prepare Power point presentations that were collected and posted on the web. This has become a repository of many presentations, and may be the best single source of information about current projects in the state of Alaska.

  16. Effects of ethanol ingestion on sperm monosaccharides and fertility.

    PubMed

    Srikanth, V; Aruldhas, M M; Srinivasan, N; Govindarajulu, P; Balasubramanian, K

    1999-01-01

    Chronic alcohol abuse is often associated with reproductive disorders. Sperm monosaccharides play an indispensable role in sperm-egg interactions and fertilization. Ethanol (3 g/kg body weight as 25%, v/v) was given by gastric intubation twice daily for 30 days while in another group, rats which had been treated with ethanol were withdrawn from treatment for a further period of 30 days, in order to assess the reversibility of the ethanol-induced effects. Epididymal ethanol content, sperm monosaccharides and the fertility of ethanol treated and ethanol withdrawn rats were assessed. Ethanol ingestion caused a significant decrease in sperm monosaccharides suggesting defective glycosylation of sperm surface proteins. Sperm monosaccharides and fertility were returned to normal following the withdrawal of ethanol. Ethanol-induced changes in sperm monosaccharides may be one of the reasons for the reduced fertility of ethanol treated rats. PMID:10092946

  17. Networks Technology Conference

    NASA Technical Reports Server (NTRS)

    Tasaki, Keiji K. (Editor)

    1993-01-01

    The papers included in these proceedings represent the most interesting and current topics being pursued by personnel at GSFC's Networks Division and supporting contractors involved in Space, Ground, and Deep Space Network (DSN) technical work. Although 29 papers are represented in the proceedings, only 12 were presented at the conference because of space and time limitations. The proceedings are organized according to five principal technical areas of interest to the Networks Division: Project Management; Network Operations; Network Control, Scheduling, and Monitoring; Modeling and Simulation; and Telecommunications Engineering.

  18. LEAP 1992: Conference summary

    SciTech Connect

    Dover, C.B.

    1992-12-01

    We present a summary of the many new results in antiproton ({bar p}) physics presented at the LEAP `92 conference, in the areas of meson spectroscopy, {bar N}N scattering, annihilation and spin observables, strangeness and charm production, {bar N} annihilation in nuclei, atomic physics with very low energy {bar p}`s, the exploration of fundamental symmetries and interactions with {bar p} (CP, T, CPT, gravitation), and the prospects for new {bar p} facilities at ultralow energies or energies above the LEAR regime ({ge} 2 GeV/c).

  19. LEAP 1992: Conference summary

    SciTech Connect

    Dover, C.B.

    1992-12-01

    We present a summary of the many new results in antiproton ([bar p]) physics presented at the LEAP '92 conference, in the areas of meson spectroscopy, [bar N]N scattering, annihilation and spin observables, strangeness and charm production, [bar N] annihilation in nuclei, atomic physics with very low energy [bar p]'s, the exploration of fundamental symmetries and interactions with [bar p] (CP, T, CPT, gravitation), and the prospects for new [bar p] facilities at ultralow energies or energies above the LEAR regime ([ge] 2 GeV/c).

  20. MESON2000 Conference Summary

    SciTech Connect

    Barnes, T.

    2001-04-26

    This short contribution is a lite MESON2000 conference summary. As appropriate for the 600th anniversary of the Jagellonian University, it begins with a brief summary of the last 600 years of European history and its place in hadron physics. Next a ''physicist chirality'' order parameter PC is introduced. When applied to MESON2000 plenary speakers this order parameter illustrates the separation of hadron physicists into disjoint communities. The individual plenary talks in MESON2000 are next sorted according to the subconference associated with each of the 36 plenary speakers. Finally, I conclude with a previously unreported Feynman story regarding the use of models in hadron physics.

  1. Aerospace Environmental Technology Conference

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297.

  2. Synergistic temperature and ethanol effect on Saccharomyces cerevisiae dynamic behaviour in ethanol bio-fuel production.

    PubMed

    Aldiguier, A S; Alfenore, S; Cameleyre, X; Goma, G; Uribelarrea, J L; Guillouet, S E; Molina-Jouve, C

    2004-07-01

    The impact of ethanol and temperature on the dynamic behaviour of Saccharomyces cerevisiae in ethanol biofuel production was studied using an isothermal fed-batch process at five different temperatures. Fermentation parameters and kinetics were quantified. The best performances were found at 30 and 33 degrees C around 120 g l(-1) ethanol produced in 30 h with a slight benefit for growth at 30 degrees C and for ethanol production at 33 degrees C. Glycerol formation, enhanced with increasing temperatures, was coupled with growth for all fermentations; whereas, a decoupling phenomenon occurred at 36 and 39 degrees C pointing out a possible role of glycerol in yeast thermal protection. PMID:15098119

  3. Ethanol enrichment from ethanol-water mixtures using high frequency ultrasonic atomization.

    PubMed

    Kirpalani, D M; Suzuki, K

    2011-09-01

    The influence of high frequency ultrasound on the enrichment of ethanol from ethanol-water mixtures was investigated. Experiments performed in a continuous enrichment system showed that the generated atomized mist was at a higher ethanol concentration than the feed and the enrichment ratio was higher than the vapor liquid equilibrium curve for ethanol-water above 40 mol%. Well-controlled experiments were performed to analyze the effect of physical parameters; temperature, carrier gas flow and collection height on the enrichment. Droplet size measurements of the atomized mist and visualization of the oscillating fountain jet formed during sonication were made to understand the separation mechanism. PMID:21300561

  4. Production of ethanol from sugar cane

    SciTech Connect

    Hayes, F.W.

    1982-04-20

    An integrated process is provided for producing ethanol from sugar cane. Harvested cane is chopped and shredded to provide a mass of fiber and juice which is digested in a first digester with a hemicellulase enzyme. Fibrous residue is separated by centrifuge and passed to a second digester for digestion with a mixed culture of a cellulase enzyme and an ethanol-producing culture. Fibrous residue from is pressed to provide a recycle juice extract and then burned to provide at least part of the heat energy requirement of the process. Juice extracts from digesters separated by centrifuges are combined, sterilized, flashed and passed to a fermentor for fermentation with an ethanol-producing microorganism. Ethanol is recovered from the process by separation utilizing a membrane.

  5. Interaction of ethanol with opiate receptors

    SciTech Connect

    Yukhananov, R.Y.; Bujov, Y.V.; Maiskii, A.I.

    1986-04-01

    The authors study the action of ethanol on membrane-bound opiate receptors. Ethanol at 37/sup 0/C was shown to produce dose-dependent inhibition of binding of /sup 3/H-naloxone with opiate receptors. ID/sub 50/ under these conditions was 462 mM. Temperature-dependent inhibition of ligand-receptor binding suggests that ethanol does not compete for the stereospecific binding site of /sup 3/H-naloxone. Analysis of the inhibitory action of ethanol on /sup 3/H-naloxone binding in animals at different stages of experimental alcoholism revealed no differences between the control and experimental animals after 3.5 and 10 months of voluntary alcoholization.

  6. Energy balance of wheat conversion to ethanol

    SciTech Connect

    Stumborg, M.A.; Zentner, R.P.; Coxworth, E.

    1996-12-31

    The Western Canadian ethanol industry uses wheat as the preferred feed stock. The net energy balance of an ethanol system based on this starchy feed stock is of interest if Canada utilizes ethanol fuels from wheat as one of its measures to meet international commitments for greenhouse gas reduction and energy conservation under the Green Plan. The wheat to ethanol production systems for the Brown and Thin Black soil zones of the Canadian Prairies were analyzed from soil to processing completion to determine the net energy balance. The data clearly demonstrates the positive net energy balance, with the energy balance ranging from 1.32 to 1.63:1 for the Brown soil zone, and from 1.19 to 1.47:1 for the Thin Black soil zone. The final energy balance depends upon the agronomic practices and wheat variety assumed for the production system.

  7. Adapting ethanol fuels to diesel engines

    SciTech Connect

    Not Available

    1981-08-01

    During the 2nd International Alcohol Symposium 1977, Daimler-Benz reported on the advantages and disadvantages of the various methods of using ethanol in originally diesel-operated commercial vehicles, and especially about the first results in the field of adapting the ethanol fuel to the requirements of conventional diesel engines. Investigations to this effect were continued by Daimler-Benz AG, Stuttgart, and Mercedes-Benz of Brasil in coordination with competent Brazilian government departments. The development effort is primarily adapted to Brazilian conditions, since ethanol fuel is intended as a long-term project in this country. This report is presented under headings - auto-ignition; durability tests; remedial measures; the injection systems; ethanol quality.

  8. Ethanol drinking in socially housed squirrel monkeys.

    PubMed

    Mandillo, S; Titchen, K; Miczek, K A

    1998-07-01

    This study proposes a method to assess voluntary alcohol drinking in socially living squirrel monkeys. Group-housed squirrel monkeys were induced to drink a sucrose solution and subsequently an ethanol/sucrose solution in an experimental chamber attached to the home colony room, allowing the daily intake to be monitored for each individual without disrupting the social context. Sucrose concentration (0.03-0.6 M, corresponding to 1-20%) and ethanol concentration (0-4%) were gradually increased in tap water and in a 0.6 M (ca. 20%) sucrose solution during daily 30-min and 10-min sessions, respectively. Blood ethanol levels ranged from 10-50 mg/dl and remained below intoxication level. These experiments demonstrate that it is feasible to arrange conditions under which individual socially housed squirrel monkeys voluntarily drink a sweetened ethanol solution. PMID:10065925

  9. Treatment of biomass to obtain ethanol

    DOEpatents

    Dunson, Jr., James B.; Elander, Richard T.; Tucker, III, Melvin P.; Hennessey, Susan Marie

    2011-08-16

    Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  10. Xylose fermentation to ethanol by Pachysolen tannophilus

    SciTech Connect

    Schvester, P.; Robinson, C.W.; Moo-Young, M.

    1983-01-01

    Results of batch studies on the bioconversion of D-xylose by the pentose-fermenting yeast Pachysolen tannophilus are reported. A significant level of aeration was found to be necessary to stimulate biomass growth and to enhance the rate of ethanol production. Ethanol production appears to be restricted by substrate inhibition at initial D-xylose concentrations in excess of about 40 g/l. At this value, a maximum ethanol yield from substrate of only 27.4 mass % was achieved, which was only 53.7% of the theoretical maximum. Significant amounts (up to 14% mass yield) of by-product xylitol also were produced. The advantages and disadvantages of this direct bioconversion process for industrial application are discussed and compared to other ethanol production processes. 15 references, 10 figures, 4 tables.