Science.gov

Sample records for mrna inhibits proliferation

  1. An oligomer complementary to c-myc mRNA inhibits proliferation of HL-60 promyelocytic cells and induces differentiation.

    PubMed Central

    Holt, J T; Redner, R L; Nienhuis, A W

    1988-01-01

    To study the role of a nuclear proto-oncogene in the regulation of cell growth and differentiation, we inhibited HL-60 c-myc expression with a complementary antisense oligomer. This oligomer was stable in culture and entered cells, forming an intracellular duplex. Incubation of cells with the anti-myc oligomer decreased the steady-state levels of c-myc protein by 50 to 80%, whereas a control oligomer did not significantly affect the c-myc protein concentration. Direct inhibition of c-myc expression with the anti-myc oligomer was associated with a decreased cell growth rate and an induction of myeloid differentiation. Related antisense oligomers with 2- to 12-base-pair mismatches with c-myc mRNA did not influence HL-60 cells. Thus, the effects of the antisense oligomer exhibited sequence specificity, and furthermore, these effects could be reversed by hybridization competition with another complementary oligomer. Antisense inhibition of a nuclear proto-oncogene apparently bypasses cell surface events in affecting cell proliferation and differentiation. Images PMID:3280975

  2. Runx3 Expression Inhibits Proliferation and Distinctly Alters mRNA Expression of Bax in AGS and A549 Cancer Cells

    PubMed Central

    Torshabi, Maryam; Faramarzi, Mohammad Ali; Tabatabaei Yazdi, Mojtaba; Ostad, Seyyed Naser; Gharemani, Mohammad Hosein

    2011-01-01

    Runx3, a member of Runt-related transcription factor (Runx) proteins with tumor suppressor effect, is a tissue–restricted and cancer related transcription factor that regulate cell proliferation and growth, as well as differentiation. In the present study, exogenous Run3 was transiently expressed in AGS (human gastric adenocarcinoma), with undetectable Runx3 protein and in A549 (human lung carcinoma) with low levels of endogenous Runx3 protein. The GFP tagged Runx3 was transfected into AGS and A549 cells using fugene6 and PolyFect and Runx3 expression was confirmed by fluorescent microscopy and RT-PCR. The effect of Runx3 transfection on cell proliferation was determined by MTT assay and the results were confirmed by the trypan blue dye exclusion method. The effect of Runx3 expression on mRNA expression of BCL2-associated X protein (Bax) was evaluated using RT-PCR. In AGS and A549 cells, Runx3 expression inhibited cell proliferation (p < 0.01). The growth inhibition was less in A549 cells. We show that Runx3 expression increases Bax mRNA expression in AGS cells when compared with control (p < 0.05), but no significant differences in mRNA expression was observed in both examined cells. Runx3 expression has antiproliferative effect in AGS cell perhaps via increase in expression of Bax. The effect of Runx3 on A549 cells’ viability which has endogenous level of Runx3 is not related to Bax. These findings implicate a complex regulation by Runx3 in inhibition of cell proliferation utilizing Bax. PMID:24250365

  3. BTG/Tob family members Tob1 and Tob2 inhibit proliferation of mouse embryonic stem cells via Id3 mRNA degradation

    SciTech Connect

    Chen, Yuanfan; Wang, Chenchen; Wu, Jenny; Li, Lingsong

    2015-07-03

    The mammalian BTG/Tob family is a group of proteins with anti-proliferative ability, and there are six members including BTG1, BTG2/PC3/Tis21, BTG3/ANA, BTG4/PC3B, Tob1/Tob and Tob2. Among them, Tob subfamily members, specifically Tob1/Tob and Tob2, have the most extensive C-terminal regions. As previously reported, overexpression of BTG/Tob proteins is associated with the inhibition of G1 to S-phase cell cycle progression and decreased cell proliferation in a variety of cell types. Tob subfamily proteins have similar anti-proliferative effects on cell cycle progression in cultured tumor cells. An important unresolved question is whether or not they have function in rapidly proliferating cells, such as embryonic stem cells (ESCs). Tob1 and Tob2 were expressed ubiquitously in mouse ESCs (mESCs), suggesting a possible role in early embryonic development and mESCs. To address the above question and explore the possible functions of the Tob subfamily in ESCs, we established ESCs from different genotypic knockout inner cell mass (ICM). We found that Tob1{sup −/−}, Tob2{sup −/−}, and Tob1/2 double knockout (DKO, Tob1{sup −/−} & Tob2{sup −/−}) ESCs grew faster than wild type (WT) ESCs without losing pluripotency, and we provide a possible mechanistic explanation for these observations: Tob1 and Tob2 inhibit the cell cycle via degradation of Id3 mRNA, which is a set of directly targeted genes of BMP4 signaling in mESCs that play critical roles in the maintenance of ESC properties. Together, our data suggest that BTG/Tob family protein Tob1 and Tob2 regulation cell proliferation does not compromise the basic properties of mESCs. - Highlights: • We established mouse Tob1/2 double knockout embryonic stem cells. • Tob1 and Tob2 inhibit the proliferation of ESCs without effect on pluripotency. • Tob1 and Tob2 involved in the degradation of Id3 in mESCs.

  4. Inorganic sulfur reduces cell proliferation by inhibiting of ErbB2 and ErbB3 protein and mRNA expression in MDA-MB-231 human breast cancer cells

    PubMed Central

    Ha, Ae Wha; Hong, Kyung Hee; Kim, Hee Sun

    2013-01-01

    Dietary inorganic sulfur is the minor component in our diet, but some studies suggested that inorganic sulfur is maybe effective to treat cancer related illness. Therefore, this study aims to examine the effects of inorganic sulfur on cell proliferation and gene expression in MDA-MB-231 human breast cancer cells. MDA-MB-231 cells were cultured the absence or presence of various concentrations (12.5, 25, or 50 µmol/L) of inorganic sulfur. Inorganic sulfur significantly decreased proliferation after 72 h of incubation (P < 0.05). The protein expression of ErbB2 and its active form, pErbB2, were significantly reduced at inorganic sulfur concentrations of 50 µmol/L and greater than 25 µmol/L, respectively (P < 0.05). The mRNA expression of ErbB2 was significantly reduced at an inorganic sulfur concentration of 50 µmol/L (P < 0.05). The protein expression of ErbB3 and its active form, pErbB3, and the mRNA expression of ErbB3 were significantly reduced at inorganic sulfur concentrations greater than 25 µmol/L (P < 0.05). The protein and mRNA expression of Akt were significantly reduced at an inorganic sulfur concentration of 50 µmol/L (P < 0.05), but pAkt was not affected by inorganic sulfur treatment. The protein and mRNA expression of Bax were significantly increased with the addition of inorganic sulfur concentration of 50 µmol/L (P < 0.05). In conclusion, cell proliferation was suppressed by inorganic sulfur treatment through the ErbB-Akt pathway in MDA-MB-231 cells. PMID:23610600

  5. Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation

    PubMed Central

    Tang, Jun; Lobatto, Mark E.; Hassing, Laurien; van der Staay, Susanne; van Rijs, Sarian M.; Calcagno, Claudia; Braza, Mounia S.; Baxter, Samantha; Fay, Francois; Sanchez-Gaytan, Brenda L.; Duivenvoorden, Raphaël; Sager, Hendrik B.; Astudillo, Yaritzy M.; Leong, Wei; Ramachandran, Sarayu; Storm, Gert; Pérez-Medina, Carlos; Reiner, Thomas; Cormode, David P.; Strijkers, Gustav J.; Stroes, Erik S. G.; Swirski, Filip K.; Nahrendorf, Matthias; Fisher, Edward A.; Fayad, Zahi A.; Mulder, Willem J. M.

    2015-01-01

    Inflammation drives atherosclerotic plaque progression and rupture, and is a compelling therapeutic target. Consequently, attenuating inflammation by reducing local macrophage accumulation is an appealing approach. This can potentially be accomplished by either blocking blood monocyte recruitment to the plaque or increasing macrophage apoptosis and emigration. Because macrophage proliferation was recently shown to dominate macrophage accumulation in advanced plaques, locally inhibiting macrophage proliferation may reduce plaque inflammation and produce long-term therapeutic benefits. To test this hypothesis, we used nanoparticle-based delivery of simvastatin to inhibit plaque macrophage proliferation in apolipoprotein E–deficient mice (Apoe−/−) with advanced atherosclerotic plaques. This resulted in the rapid reduction of plaque inflammation and favorable phenotype remodeling. We then combined this short-term nanoparticle intervention with an 8-week oral statin treatment, and this regimen rapidly reduced and continuously suppressed plaque inflammation. Our results demonstrate that pharmacologically inhibiting local macrophage proliferation can effectively treat inflammation in atherosclerosis. PMID:26295063

  6. Inhibition of fibroblast proliferation by Actinobacillus actinomycetemcomitans.

    PubMed Central

    Shenker, B J; Kushner, M E; Tsai, C C

    1982-01-01

    We have examined soluble sonic extracts of Actinobacillus actinomycetemcomitans for their ability to alter human and murine fibroblast proliferation. We found that extracts of all A. actinomycetemcomitans strains examined (both leukotoxic and nonleukotoxic) caused a dose-dependent inhibition of both murine and human fibroblast proliferation as assessed by DNA synthesis ([3H]thymidine incorporation). Addition of sonic extract simultaneously with [3H]thymidine had no effect on incorporation, indicating that suppression was not due to the presence of excessive amounts of cold thymidine. Inhibition of DNA synthesis was also paralleled by decreased RNA synthesis ([3H]uridine incorporation) and by a decrease in cell growth as assessed by direct cell counts; there was no effect on cell viability. The suppressive factor(s) is heat labile; preliminary purification and characterization studies indicate that it is a distinct and separate moiety from other A. actinomycetemcomitans mediators previously reported, including leukotoxin, immune suppressive factor, and endotoxin. Although it is not clear how A. actinomycetemcomitans acts to cause disease, we propose that one aspect of the pathogenicity of this organism rests in its ability to inhibit fibroblast growth, which in turn could contribute to the collagen loss associated with certain forms of periodontal disease, in particular juvenile periodontitis. PMID:7152684

  7. TLR2 Activation Inhibits Embryonic Neural Progenitor Cell Proliferation

    PubMed Central

    Okun, Eitan; Griffioen, Kathleen J.; Gen-Son, Tae; Lee, Jong-Hwan; Roberts, Nicholas J.; Mughal, Mohamed R.; Hutchison, Emmette; Cheng, Aiwu; Arumugam, Thiruma V.; Lathia, Justin D.; van Praag, Henriette; Mattson, Mark P.

    2010-01-01

    Toll-like receptors (TLRs) play essential roles in innate immunity, and increasing evidence indicates that these receptors are expressed in neurons, astrocytes and microglia in the brain, where they mediate responses to infection, stress and injury. To address the possibility that TLR2 heterodimer activation could affect progenitor cells in the developing brain, we analyzed the expression of TLR2 throughout the mouse cortical development, and assessed the role of TLR2 heterodimer activation in neural progenitor cell (NPC) proliferation. TLR2 mRNA and protein was expressed in the cortex in embryonic and early postnatal stages of development, and in cultured cortical NPC. While NPC from TLR2-deficient and wild type embryos had the same proliferative capacity, TLR2 activation by the synthetic bacterial lipopeptides Pam3CSK4 and FSL1, or low molecular weight hyaluronan, an endogenous ligand for TLR2, inhibited neurosphere formation in vitro. Intracerebral in utero administration of TLR2 ligands resulted in ventricular dysgenesis characterized by increased ventricle size, reduced proliferative area around the ventricles, increased cell density, an increase in PH3+ cells and a decrease in BrdU+ cells in the sub-ventricular zone. Our findings indicate that loss of TLR2 does not result in defects in cerebral development. However, TLR2 is expressed and functional in the developing telencephalon from early embryonic stages and infectious agent-related activation of TLR2 inhibits NPC proliferation. TLR2–mediated inhibition of NPC proliferation may therefore be a mechanism by which infection, ischemia and inflammation adversely affect brain development. PMID:20456021

  8. Activation of GPR30 inhibits cardiac fibroblast proliferation.

    PubMed

    Wang, Hao; Zhao, Zhuo; Lin, Marina; Groban, Leanne

    2015-07-01

    The incidence of left ventricular diastolic dysfunction significantly increases in postmenopausal women suggesting the association between estrogen loss and diastolic dysfunction. The in vivo activation of G protein-coupled estrogen receptor (GPR30) attenuates the adverse effects of estrogen loss on cardiac fibrosis and diastolic dysfunction in mRen2.Lewis rats. This study was designed to address the effects of GPR30 on cardiac fibroblast proliferation in rats. The expression of GPR30 in cardiac fibroblasts isolated from adult Sprague-Dawley rats was confirmed by RT-PCR, Western blot analysis, and immunofluorescence staining. Results from BrdU incorporation assays, cell counting, carboxyfluorescein diacetate succinimidyl ester labeling in conjunction with flow cytometry, and Ki-67 staining showed that treatment with G1, a specific agonist of GPR30, inhibited cardiac fibroblast proliferation in a dose-dependent manner, which was associated with decreases in CDK1 and cyclin B1 protein expressions. In the GPR30-KO cells, BrdU incorporation, and CDK1 and cyclin B1 expressions significantly increased when compared to GPR30-intact cells. G1 had no effect on BrdU incorporation, CDK1 and cyclin B1 mRNA levels in GPR30-KO cells. In vivo studies showed increases in CDK1 and cyclin B1 mRNA levels, Ki-67-positive cells, and the immunohistochemistry staining of vimentin, a fibroblast marker, in the left ventricles from ovariectomized mRen2.Lewis rats versus hearts from ovary-intact littermates; 2 weeks of G1 treatment attenuated these adverse effects of estrogen loss. This study demonstrates that GPR30 is expressed in rat cardiac fibroblasts, and activation of GPR30 limits proliferation of these cells likely via suppression of the cell cycle proteins, cyclin B1, and CDK1. PMID:25893735

  9. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    SciTech Connect

    Wang, Jia-lei; Lu, Fan-zhen; Shen, Xiao-Yong; Wu, Yun; Zhao, Li-ting

    2014-12-12

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells.

  10. CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation

    SciTech Connect

    Murooka, Thomas T.; Rahbar, Ramtin; Fish, Eleanor N.

    2009-09-18

    The proliferative capacity of cancer cells is regulated by factors intrinsic to cancer cells and by secreted factors in the microenvironment. Here, we investigated the proto-oncogenic potential of the chemokine receptor, CCR5, in MCF-7 breast cancer cell lines. At physiological levels, CCL5, a ligand for CCR5, enhanced MCF-7.CCR5 proliferation. Treatment with the mTOR inhibitor, rapamycin, inhibited this CCL5-inducible proliferation. Because mTOR directly modulates mRNA translation, we investigated whether CCL5 activation of CCR5 leads to increased translation. CCL5 induced the formation of the eIF4F translation initiation complex through an mTOR-dependent process. Indeed, CCL5 initiated mRNA translation, shown by an increase in high-molecular-weight polysomes. Specifically, we show that CCL5 mediated a rapid up-regulation of protein expression for cyclin D1, c-Myc and Dad-1, without affecting their mRNA levels. Taken together, we describe a mechanism by which CCL5 influences translation of rapamycin-sensitive mRNAs, thereby providing CCR5-positive breast cancer cells with a proliferative advantage.

  11. [Effects of PTK787 on cell proliferation and expression of fak mRNA in K562].

    PubMed

    Di, Xiao-Hua; Chen, Ri-Ling; Liu, Xiao-Li; Tian, Chuan; Guo, Ya-Nan

    2010-06-01

    The aim of this study was to investigate the effects of tyrosine kinase inhibitor PTK787 on cell proliferation, cell cycle and the expression of fak mRNA of human chronic myeloid leukemia (CML) cell line K562, and to explore the mechanism of PTK787 against acute myeloid leukemia. The MTT method was used to detect the effects of PTK787 in various concentrations and at different time points on proliferation of K562 cells; the flow cytometry was used to determine the effects of PTK787 in different concentrations on cell cycle of K562 cells; the RT-PCR was used to assay the expression of fak mRNA in K562 cells treated with PTK787 for 48 hours. The results showed that along with increasing of the concentration and prolonging of time, the inhibitory rate of PTK787 on K562 proliferation was gradually enhanced. The comparison between various concentration groups at same time or comparison between various time groups in same concentration showed significant differences (p < 0.05), in which the effect of 320 micromol/L PTK787 on cells was strongest, while the continuous increase of PTK787 concentration or prolong of action time did not enhance the inhibitory rate on K562 proliferation. With increasing of drug concentration, the cell proportion in G(1) phase gradually increased, the cell proportion in S phase gradually decreased, the comparison between various groups revealed significant differences (p < 0.05), however the continuous increase of drug concentration from 160 micromol/L did not obviously change the cell proportion in phases of cell cycle. With increasing of drug concentration, the expression of fak mRNA in K562 cells gradually reduced with significant differences between various groups (p < 0.05), but with continuous increase of drug concentration from 160 micromol/L, the effect of PTK787 on the expression of fak mRNA in K562 cells also did not obviously change. It is concluded that the PTK787 shows effect of anti-leukemia cells through inhibiting transformation

  12. Triptolide inhibits COX-2 expression by regulating mRNA stability in TNF-{alpha}-treated A549 cells

    SciTech Connect

    Sun, Lixin; Zhang, Shuang; Jiang, Zhenzhou; Huang, Xin; Wang, Tao; Huang, Xiao; Li, Han; Zhang, Luyong

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Triptolide inhibited COX-2 expression and the half-life of COX-2 mRNA is decreased. Black-Right-Pointing-Pointer The HuR protein shuttling from nucleus to cytoplasm is inhibited by triptolide. Black-Right-Pointing-Pointer Triptolide inhibited 3 Prime -UTR fluorescence reporter gene activity. Black-Right-Pointing-Pointer COX-2 mRNA binding to HuR is decreased by triptolide in pull-down experiments. -- Abstract: Cyclooxygenase-2 (COX-2) over-expression is frequently associated with human non-small-cell lung cancer (NSCLC) and involved in tumor proliferation, invasion, angiogenesis and resistance to apoptosis. In the present study, the effects of triptolide on COX-2 expression in A549 cells were investigated and triptolide was found to inhibit TNF-{alpha}-induced COX-2 expression. In our further studies, it was found that triptolide decreased the half-life of COX-2 mRNA dramatically and that it inhibited 3 Prime -untranslated region (3 Prime -UTR) fluorescence reporter gene activity. Meanwhile, triptolide inhibited the HuR shuttling from nucleus to cytoplasm. After triptolide treatment, decreased COX-2 mRNA in pull-down experiments with anti-HuR antibodies was observed, indicating that the decreased cytoplasmic HuR is responsible for the decreased COX-2 mRNA. Taken together, our results provided evidence for the first time that triptolide inhibited COX-2 expression by COX-2 mRNA stability modulation and post-transcriptional regulation. These results provide a novel mechanism of action for triptolide which may be important in the treatment of lung cancer.

  13. The inhibition of histone deacetylase 8 suppresses proliferation and inhibits apoptosis in gastric adenocarcinoma.

    PubMed

    Song, Shiyuan; Wang, Ying; Xu, Po; Yang, Ruina; Ma, Zhikun; Liang, Shuo; Zhang, Guangping

    2015-11-01

    Histone deacetylase 8 (HDAC8), a unique member of class I HDACs, shows remarkable correlation with advanced disease stage. The depletion of HDAC8 leads to inhibition of proliferation, apoptosis and cell cycle arrest in multiple malignant tumors. However, little is known about the contribution of HDAC8 to the tumorigenesis of gastric cancer (GC). The present study investigated expression of HDAC8 in GC cell lines and tissues, and the roles of HDAC8 inhibition in the proliferation, cell cycle and apoptosis of gastric cancer cells and explored the potential mechanisms. In the present study, quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry were used to examine the mRNA and protein expression of HDAC8 in GC cell lines and tissues. Then, the correlation between the clinicopathological parameters and the expression of HDAC8 was assessed. Finally, siRNA transfection and HDAC8 plasmid was performed to explore the functions of HDAC8 in GC progression in vitro. We found that the expression of HDAC8 was significantly upregulated both in GC cell lines and tumor tissues compared to human normal gastric epithelial cell, GES-1 and matched non-tumor tissues. Furthermore, depletion of HDAC8 remarkably inhibited GC cell proliferation, increased the apoptosis rate and G0/G1 phase percentage in vitro. Western blotting showed that the expression of protein promoting apoptosis such as, Bmf, activated caspase-3, caspase-6 were elevated following HDAC8 depletion. Our data exhibited an important role of HDAC8 in promoting gastric cancer tumorigenesis and identify this HDAC8 as a potential therapeutic target for the treatment of gastric cancer. PMID:26412386

  14. Vitamin D inhibition of lung adenocarcinoma cell proliferation in vitro.

    PubMed

    Li, Rong; Lou, Yuqing; Zhang, Weiyan; Dong, Qianggang; Han, Baohui

    2014-11-01

    Vitamin D has the capability to inhibit tumor cell proliferation and promote tumor cell apoptosis but whether this mechanism exists in lung adenocarcinoma cells remains to be studied. Our objective is to explore whether vitamin D has the capability to inhibit lung adenocarcinoma cell proliferation and synergize with cisplatin. Our method was to explore the effect of different concentrations of 1,25(OH)2D3 with or without cisplatin on lung adenocarcinoma cells by detecting cell proliferation rates at different time points. 1,25(OH)2D3 was capsulated with nanomaterial before acting on lung adenocarcinoma cells, and cell proliferation rates at different time points were detected with the CCK-8 method. When vitamin D was applied at a concentration of 1 × 10(-7) and 1 × 10(-6) mol/L on A549, PC9, SPC-A1, and H1650 cells for 72 h, no inhibition occurred on cell proliferation. Between the concentrations of 1 × 10(-5) and 0.5 × 10(-5) mol/L, inhibition on cell proliferation increased with drug action time. Between the concentration of 2.5 × 10(-5) and 0.03 × 10(-5) mol/L, inhibition on cell proliferation increased with increasing drug concentration. Analysis using bivariate correlations showed that the correlation coefficient of the proliferation inhibition rate and drug content was 0.580 (p < 0.0001). The correlation coefficient of proliferation inhibition rate and the drug action time was 0.379 (p = 0.01). The combined use of vitamin D and dichlorodiammine-platinum(II) (DDP) significantly increased the inhibition rate on A549 cell proliferation, which peaked after culturing for 96 h (Table 4). Further analysis using bivariate correlations showed that the correlation coefficient between proliferation inhibition rate and DDP concentration was 0.319 (p < 0.0001). The correlation coefficient of the proliferation inhibition rate and vitamin D concentration was 0.269 (p < 0.0001). The correlation coefficient of proliferation inhibition and drug action time was 0.221(p

  15. SIRT1 inhibits the mouse intestinal motility and epithelial proliferation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SIRT1 inhibits the mouse intestinal motility and epithelial proliferation. Sirtuin 1 (SIRT1), a NAD+-dependent histone deacetylase, is involved in a wide array of cellular processes, including glucose homeostasis, energy metabolism, proliferation and apoptosis, and immune response. However, it is un...

  16. Effect of A-63162 on lymphocyte proliferation, IL-2 production, mRNA for Il-2 and LTB sub 4 production from human mononuclear cells

    SciTech Connect

    Atluru, D.; Atluru, S. ); Woloschak, G.E. )

    1991-03-15

    Lipoxygenase metabolites of arachidonic acid have diversified effects on human lymphocytes. In the present investigation, the authors measured the effects of A-63162, a specific 5-lipoxygenase inhibitor on lymphocyte proliferation, IL-2 production, mRNA for IL-2 and LTB{sub 4} synthesis from peripheral blood human mononuclear cells. A-63162 inhibited the {sup 3}H-thymidine incorporation from PHA or PMA plus A23187 stimulated cultures. The synthesis of IL-2 was also inhibited from PHA plus PMA or PMA plus A23187 stimulated cultures. Further, they found A-63162 also inhibited the accumulation of IL-2 mRNA. And, A-63162 at that above concentration also inhibited the LTB{sub 4} synthesis from A23187 stimulated cultures. The results suggest that endogenous LTB{sub 4} may play an important role in regulating IL-2 production at the message level.

  17. Blue light inhibits proliferation of melanoma cells

    NASA Astrophysics Data System (ADS)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  18. Stabilization of tubulin mRNA by inhibition of protein synthesis in sea urchin embryos.

    PubMed Central

    Gong, Z Y; Brandhorst, B P

    1988-01-01

    An increased level of unpolymerized tubulin caused by depolymerization of microtubules in sea urchin larvae resulted in a rapid loss of tubulin mRNA, which was prevented by nearly complete inhibition of protein synthesis. Results of an RNA run-on assay indicated that inhibition of protein synthesis does not alter tubulin gene transcription. Analysis of the decay of tubulin mRNA in embryos in which RNA synthesis was inhibited by actinomycin D indicated that inhibition of protein synthesis prevents the destabilization of tubulin mRNA. The effect was similar whether mRNA was maintained on polysomes in the presence of emetine or anisomycin or displaced from the polysomes in the presence of puromycin or pactamycin; thus, the stabilization of tubulin mRNA is not dependent on the state of the polysomes after inhibition of protein synthesis. Even after tubulin mRNA declined to a low level after depolymerization of microtubules, it could be rescued by treatment of embryos with inhibitors of protein synthesis. Tubulin mRNA could be induced to accumulate prematurely in gastrulae but not in plutei if protein synthesis was inhibited, an observation that is indicative of the importance of the autogenous regulation of tubulin mRNA stability during embryogenesis. Possible explanations for the role of protein synthesis in the control of mRNA stability are discussed. Images PMID:3211150

  19. Mitophagy inhibits proliferation by decreasing cyclooxygenase-2 (COX-2) in arsenic trioxide-treated HepG2 cells.

    PubMed

    Niu, Zhidan; Zhang, Wenya; Gu, Xueyan; Zhang, Xiaoning; Qi, Yongmei; Zhang, Yingmei

    2016-07-01

    Mitochondrial damage can trigger mitophagy and eventually suppress proliferation. However, the effect of mitophagy on proliferation remains unclear. In this study, HepG2 cells were used to assess mitophagy and proliferation arrest in response to As2O3 exposure. The stimulatory effect of As2O3 on mitophagy was investigated by assessing morphology (mitophagosome and mitolysosome) and relevant proteins (PINK1, LC3 II/I, and COX IV). Additionally, the relationship of mitophagy and proliferation was explored through the use of mitophagy inhibitors (CsA, Mdivi-1). Interestingly, the inhibition of mitophagy rescued proliferation arrest by restoring COX-2 protein level and countered the elimination of mitochondria-located COX-2 and up-regulated the COX-2 mRNA level. Taken together, our findings indicated that mitophagy can be induced and can inhibit proliferation by reducing COX-2 in HepG2 cells during As2O3 treatment. PMID:27318970

  20. MiR-520b suppresses proliferation of hepatoma cells through targeting ten-eleven translocation 1 (TET1) mRNA

    SciTech Connect

    Zhang, Weiying; Lu, Zhanping; Gao, Yuen; Ye, Lihong; Song, Tianqiang; Zhang, Xiaodong

    2015-05-08

    Accumulating evidence indicates that microRNAs are able to act as oncogenes or tumor suppressor genes in human cancer. We previously reported that miR-520b was down-regulated in hepatocellular carcinoma (HCC) and its deregulation was involved in hepatocarcinogenesis. In the present study, we report that miR-520b suppresses cell proliferation in HCC through targeting the ten-eleven translocation 1 (TET1) mRNA. Notably, we identified that miR-520b was able to target 3′-untranslated region (3′UTR) of TET1 mRNA by luciferase reporter gene assays. Then, we revealed that miR-520b was able to reduce the expression of TET1 at the levels of mRNA and protein using reverse transcription-polymerase chain reaction and Western blotting analysis. In terms of function, 5-ethynyl-2-deoxyuridine (EdU) incorporation and colony formation assays demonstrated that the forced miR-520b expression remarkably inhibited proliferation of hepatoma cells, but TET1 overexpression could rescue the inhibition of cell proliferation mediated by miR-520b. Furthermore, anti-miR-520b enhanced proliferation of hepatoma cells, whereas silencing of TET1 abolished anti-miR-520b-induced acceleration of cell proliferation. Then, we validated that the expression levels of miR-520b were negatively related to those of TET1 mRNA in clinical HCC tissues. Thus, we conclude that miR-520b depresses proliferation of liver cancer cells through targeting 3′UTR of TET1 mRNA. Our finding provides new insights into the mechanism of hepatocarcinogenesis. - Highlights: • TET1 is a novel target gene of miR-520b. • TET1 is upregulated in clinical HCC tissues. • MiR-520b is negatively correlated with TET1 in clinical HCC tissues. • MiR-520b depresses the proliferation of HCC cells through targeting TET1 mRNA.

  1. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    SciTech Connect

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang Zhang, Yi

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  2. Cell proliferation inhibition in reduced gravity

    NASA Technical Reports Server (NTRS)

    Moos, P. J.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Extended durations of spaceflight have been shown to be deleterious on an organismic level; however, mechanisms underlying cellular sensitivity to the gravitational environment remain to be elucidated. The majority of the gravitational studies to date indicates that cell regulatory pathways may be influenced by their gravitational environment. Still, few cell biology experiments have been performed in space flight and even fewer experiments have been repeated on subsequent flights. With flight opportunities on STS-50, 54, and 57, Sf9 cells were flown in the BioServe Fluids Processing Apparatus and cell proliferation was measured with and without exposure to a cell regulatory sialoglycopeptide (CeReS) inhibitor. Results from these flights indicate that the Sf9 cells grew comparable to ground controls, that the CeReS inhibitor bound to its specific receptor, and that its signal transduction cascade was not gravity sensitive.

  3. Calcitriol Inhibits Cervical Cancer Cell Proliferation Through Downregulation of HCCR1 Expression.

    PubMed

    Wang, Guoqing; Lei, Lei; Zhao, Xixia; Zhang, Jun; Zhou, Min; Nan, Kejun

    2014-01-01

    Calcitriol (1α,25-dihydroxyvitamin D3) has demonstrated anticancer activity against several tumors. However, the underlying mechanism for this activity is not yet fully understood. Our experiment was designed and performed to address one aspect of this issue in cervical cancer. HeLa S3 cells were cultured in media with various concentrations of calcitriol. Cell proliferation and cell cycle were assessed by spectrophotometry and flow cytometry, respectively. The mRNA and protein expression levels of human cervical cancer oncogene (HCCR-1) and p21 were determined by RT-PCR and Western blot, respectively. Results indicated that calcitriol inhibited HeLa S3 cell proliferation and induced cell cycle arrest at the G1 phase. Calcitriol decreased HCCR-1 protein expression in a dose- and time-dependent manner. Furthermore, promoter activity analyses revealed that transcriptional regulation was involved in the inhibition of HCCR-1 expression. Overexpression of HCCR-1 in HeLa S3 cells reversed the inhibition of cell proliferation and G1 phase arrest that resulted from calcitriol treatment. In addition, calcitriol increased p21 expression and promoter activity. HCCR-1 overexpression decreased p21 expression and promoter activity. Thus, our results suggested that calcitriol inhibited HeLa S3 cell proliferation by decreasing HCCR-1 expression and increasing p21 expression. PMID:26629942

  4. CPEB1 restrains proliferation of Glioblastoma cells through the regulation of p27(Kip1) mRNA translation.

    PubMed

    Galardi, Silvia; Petretich, Massimo; Pinna, Guillaume; D'Amico, Silvia; Loreni, Fabrizio; Michienzi, Alessandro; Groisman, Irina; Ciafrè, Silvia Anna

    2016-01-01

    The cytoplasmic element binding protein 1 (CPEB1) regulates many important biological processes ranging from cell cycle control to learning and memory formation, by controlling mRNA translation efficiency via 3' untranslated regions (3'UTR). In the present study, we show that CPEB1 is significantly downregulated in human Glioblastoma Multiforme (GBM) tissues and that the restoration of its expression impairs glioma cell lines growth. We demonstrate that CPEB1 promotes the expression of the cell cycle inhibitor p27(Kip1) by specifically targeting its 3'UTR, and competes with miR-221/222 binding at an overlapping site in the 3'UTR, thus impairing miR-221/222 inhibitory activity. Upon binding to p27(Kip1) 3'UTR, CPEB1 promotes elongation of poly-A tail and the subsequent translation of p27(Kip1) mRNA. This leads to higher levels of p27(Kip1) in the cell, in turn significantly inhibiting cell proliferation, and confers to CPEB1 a potential value as a tumor suppressor in Glioblastoma. PMID:27142352

  5. CPEB1 restrains proliferation of Glioblastoma cells through the regulation of p27Kip1 mRNA translation

    PubMed Central

    Galardi, Silvia; Petretich, Massimo; Pinna, Guillaume; D’Amico, Silvia; Loreni, Fabrizio; Michienzi, Alessandro; Groisman, Irina; Ciafrè, Silvia Anna

    2016-01-01

    The cytoplasmic element binding protein 1 (CPEB1) regulates many important biological processes ranging from cell cycle control to learning and memory formation, by controlling mRNA translation efficiency via 3′ untranslated regions (3′UTR). In the present study, we show that CPEB1 is significantly downregulated in human Glioblastoma Multiforme (GBM) tissues and that the restoration of its expression impairs glioma cell lines growth. We demonstrate that CPEB1 promotes the expression of the cell cycle inhibitor p27Kip1 by specifically targeting its 3′UTR, and competes with miR-221/222 binding at an overlapping site in the 3′UTR, thus impairing miR-221/222 inhibitory activity. Upon binding to p27Kip1 3′UTR, CPEB1 promotes elongation of poly-A tail and the subsequent translation of p27Kip1 mRNA. This leads to higher levels of p27Kip1 in the cell, in turn significantly inhibiting cell proliferation, and confers to CPEB1 a potential value as a tumor suppressor in Glioblastoma. PMID:27142352

  6. Inhibition of brain tumor cell proliferation by alternating electric fields

    SciTech Connect

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi E-mail: radioyoon@korea.ac.kr; Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun E-mail: radioyoon@korea.ac.kr; Koh, Eui Kwan

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  7. Expression of the mRNA encoding truncated PPAR alpha does not correlate with hepatic insensitivity to peroxisome proliferators.

    PubMed

    Hanselman, J C; Vartanian, M A; Koester, B P; Gray, S A; Essenburg, A D; Rea, T J; Bisgaier, C L; Pape, M E

    2001-01-01

    Two alternatively spliced forms of human PPAR alpha mRNA, PPAR alpha1 and PPAR alpha2, have been identified. PPAR alpha1 mRNA gives rise to an active PPAR alpha protein while PPAR alpha2 mRNA gives rise to a form of PPAR which lacks the ligand-binding domain. PPAR alpha2 is unable to activate a peroxisome proliferator response element (PPRE) reporter gene construct in transient transfection assays. Both PPAR alpha1 and PPAR alpha2 mRNA are present in human liver, kidney, testes, heart, small intestine, and smooth muscle. In human liver, PPAR alpha2 mRNA abundance is approximately half that of PPAR alpha1 mRNA; a correlation analysis of PPAR alpha1 and PPAR alpha2 mRNA mass revealed an r-value of 0.75 (n = 18). Additional studies with intact liver from various species, showed that the PPAR alpha2/PPAR alpha1 mRNA ratios in rat, rabbit, and mouse liver were less than 0.10; significantly lower than the 0.3 and 0.5 ratios observed in monkey and human livers, respectively. To determine if a high PPAR alpha2/PPAR alpha1 mRNA ratio was associated with insensitivity to peroxisome proliferators, we treated human, rat, and rabbit hepatocytes with WY14643, a potent PPAR alpha activator, and measured acyl CoA oxidase (ACO) mRNA levels. Rat ACO mRNA levels increased markedly in response to WY14643 while human and rabbit hepatocytes were unresponsive. Thus, although the PPAR alpha2/PPAR alpha1 mRNA ratio is low in rabbits, this species is not responsive to peroxisome proliferators. Further studies with male and female rats, which vary significantly in their response to peroxisome proliferators, showed little difference in the ratio of PPAR alpha2/PPAR alpha1 mRNA. These data suggest that selective PPAR alpha2 mRNA expression is not the basis for differential species or gender responses to peroxisome proliferators. PMID:11269670

  8. SIRT1 controls cell proliferation by regulating contact inhibition.

    PubMed

    Cho, Elizabeth H; Dai, Yan

    2016-09-16

    Contact inhibition keeps cell proliferation in check and serves as a built-in protection against cancer development by arresting cell division upon cell-cell contact. Yet the complete mechanism behind this anti-cancer process remains largely unclear. Here we present SIRT1 as a novel regulator of contact inhibition. SIRT1 performs a wide variety of functions in biological processes, but its involvement in contact inhibition has not been explored to date. We used NIH3T3 cells, which are sensitive to contact inhibition, and H460 and DU145 cancer cells, which lack contact inhibition, to investigate the relationship between SIRT1 and contact inhibition. We show that SIRT1 overexpression in NIH3T3 cells overcomes contact inhibition while SIRT1 knockdown in cancer cells restores their lost contact inhibition. Moreover, we demonstrate that p27 protein expression is controlled by SIRT1 in contact inhibition. Overall, our findings underline the critical role of SIRT1 in contact inhibition and suggest SIRT1 inhibition as a potential strategy to suppress cancer cell growth by restoring contact inhibition. PMID:27514448

  9. ALA-PDT inhibits proliferation and promotes apoptosis of SCC cells through STAT3 signal pathway.

    PubMed

    Qiao, Li; Mei, Zhusong; Yang, Zhiyong; Li, Xinji; Cai, Hong; Liu, Wei

    2016-06-01

    Previous studies suggest that apoptosis of carcinoma cells led by photodynamics is mainly intrinsic apoptosis, but whether the extrinsic pathway is involved in the treatment of carcinoma by photodynamic therapy is not confirmed. This research investigated the effect of ALA-PDT on the proliferation and apoptosis of SCC cell A431 and COLO-16, and discussed the role played by JAK/STAT3 signal pathway in this process. Our data showed that the expression levels STAT3 and p-STAT3 protein in the cancer tissue are higher than the corresponding adjacent tissue to carcinoma. The expression level of p-STAT3 in cancerous tissue has a correlation with the tumor size and tissue histopathological differentiation. ALA-PDT could inhibit proliferation of A431 and COLO-16 cells, STAT3 knock down could enhance ALA-PDT's inhibition of cell proliferation, and promote apoptosis induced by ALA-PDT. On the other hand, overexpression of STAT3 has the opposite effect. In addition, ALA-PDT can weaken the protein expression of STAT3 and its target gene Bcl-2 mRNA, and ALA-PDT can strengthen the protein expression of STAT3's target gene Bax mRNA. Overexpression of STAT3 can offset the effect on Bcl-2 and Bax by ALA-PDT; on the other hand, STAT3 knocking down can strengthen ALA-PDT's effect on Bcl-2 and Bax. PMID:26805005

  10. [Emodin inhibits the proliferation, transdifferentiation and collagen synthesis of pulmonary fibroblasts].

    PubMed

    Liu, Lijing; Yin, Huiming; He, Jianbin; Xie, Maofeng; Wang, Zaiyan; Xiao, Hua

    2016-07-01

    Objective To explore the effect of emodin on the proliferation, differentiation into myofibroblasts and collagen synthesis of pulmonary fibroblasts and the underlying mechanisms. Methods Human pulmonary fibroblasts MRC-5 were cultured in vitro, then the cells were inoculated with dimethyl sulfoxide (DMSO) added with 0, 10, 20, 40, 80 and 160 μmol/L emodin for 24, 48 and 72 hours. Inhibitory rate of cell proliferation was analyzed by MTT assay. Based on the results of cell proliferation experiment, MRC-5 cells were treated with DMSO (control group) and 40, 80 μmol/L emodin (in DMSO) for 48 hours. Fluorescence real-time quantitative PCR was then used to measure the mRNA expressions of α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), a disintegrin-like and metalloproteinase with thrombospondin type 1 motif (ADAMTS-1), collagen type 1 (Col1) and collagen type 3 (Col3). The protein expressions of the above mentioned factors were also measured by Western blotting. Results In a concentration- and time-dependent manner, emodin inhibited MRC-5 cell proliferation. After 48 hours of co-culture, in comparison with control group, the mRNA and protein expression levels of α-SMA, TGF-β1, Col1 and Col3 significantly decreased, while the mRNA and protein expression levels of ADAMTS-1 significantly increased in 40 and 80 μmol/L emodin-treated groups. Moreover, in comparison with 40 μmol/L emodin-treated group, the mRNA and protein expressions of α-SMA, TGF-β1, Col1 and Col3 were significantly downregulated, but ADAMTS-1 mRNA and protein expressions were significantly upregulated in 80 μmol/L emodin-treated group. Conclusion Emodin can block pulmonary fibroblast proliferation and differentiation into myofibroblasts, and reduce the synthesis of Col1 and Col3 by inhibiting TGF-β1/ADAMTS-1 signaling pathway. PMID:27363273

  11. The Oncogene LRF Stimulates Proliferation of Mesenchymal Stem Cells and Inhibits Their Chondrogenic Differentiation

    PubMed Central

    Li, Huan; Acharya, Chitrangada; Kumari, Ratna; Fierro, Fernando; Haudenschild, Dominik R.; Nolta, Jan; Di Cesare, Paul E.

    2013-01-01

    Objective. The oncogene leukemia/lymphoma-related factor (LRF) enhances chondrosarcoma proliferation and malignancy. This study aimed to investigate the roles of LRF in chondrogenic differentiation of primary human bone marrow–derived mesenchymal stem cells (BMSCs). Design. LRF was overexpressed in BMSC by lentiviral transduction. Chondrogenic differentiation of BMSC was induced by high-density pellet culture. Western blotting and real-time polymerase chain reaction were used to investigate changes in protein and mRNA levels, respectively, during chondrogenesis. Safranin-O staining, immunohistochemistry, and glycoaminoglycan contents were used to assess cartilage matrix deposition. BMSC proliferation was determined by mitochondrial dehydrogenase activity and cell counting. Cell cycle profiling was performed by flow cytometry. Results. LRF overexpression effectively inhibited protein and mRNA expression of chondrocyte markers and cartilage matrix deposition during chondrogenesis of BMSC. Endogenous LRF expression was constitutively high in undifferentiated BMSC but remained low in primary articular chondrocytes. Endogenous LRF protein was downregulated in a time-dependent manner during chondrogenesis. BMSCs overexpressing LRF had higher proliferation rates and cell population in the S phase. LRF suppressed p53 expression during chondrogenesis and this might prevent differentiating chondrocytes from entering a quiescent state. Conclusion. Our data showed that LRF is important for stimulating stem cell proliferation and cell cycle progression. It is known that LRF is highly expressed in the mouse limb buds prior to overt chondrogenesis; thus, LRF might function to prevent premature chondrogenic differentiation of stem cells. PMID:26069677

  12. Crocin inhibits cell proliferation and enhances cisplatin and pemetrexed chemosensitivity in lung cancer cells

    PubMed Central

    Chen, Shuangshuang; Zhao, Shuang; Wang, Xinxing; Zhang, Luo; Jiang, Enze; Gu, Yuan; Shangguan, Anna Junjie; Zhao, Hong

    2015-01-01

    Background Crocin is the major constituent of saffron, a naturally derived Chinese medicine obtained from the dried stigma of the Crocus sativus flower. It has a variety of pharmacological effects, including anti-oxidative, immunity enhancement, and anti-tumorigenic properties; however, the molecular mechanisms underlying these effects remain unknown. Methods To investigate the effects of crocin on proliferation and apoptosis of lung adenocarcinoma cells, lung adenocarcinoma cell lines, A549 and SPC-A1, were treated with crocin at different dosages. Cell morphological changes were observed by light microscopy. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect the inhibitory effect of crocin on cell proliferation and sensitivity to chemotherapeutic drugs. Flow cytometry was used to characterize cell apoptosis and cell cycle profiles. Reverse transcription-polymerase chain reaction was used to detect mRNA levels of apoptosis-related genes. Results Crocin inhibited cell proliferation and induced apoptosis in A549 and SPC-A1 cells in a concentration-dependent manner, accompanied with an increase of G0/G1 arrest. Crocin significantly increased the mRNA levels of both p53 and B-cell lymphoma 2-associated X protein (Bax), while decreasing B-cell lymphoma 2 (Bcl-2) mRNA expressions. In addition, crocin combined with either cisplatin or pemetrexed showed additive effects on cell proliferation in two lung cancer cell lines. Conclusions Crocin significantly suppressed the proliferation of human lung adenocarcinoma cells and enhanced the chemo sensitivity of these cells to both cisplatin and pemetrexed. The actions of molecular mechanism could be through the induction of cell cycle arrest and apoptosis by p53 and Bax up-regulation but Bcl-2 down-regulation. PMID:26798587

  13. Hydroxyflavanone inhibits gastric carcinoma MGC-803 cell proliferation

    PubMed Central

    Zhang, Haiyan; Zhan, Zhuo; Cui, Mingfu; Gao, Yongjian; Wang, Dayu; Feng, Ye

    2015-01-01

    Gastric carcinoma (GC) is the most common primary malignancy of the digestive tract, with increasing incidence in many countries. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to assess inhibition of HepG2 cell proliferation by 2’-hydroxyflavanone. The STAT3 pathway was performed. 2’-hydroxyflavanone reduced inhibitory effects on MGC-803 cell proliferation. 2’-hydroxyflavanone exhibited the highest inhibition rate. Treatment of MGC-803 cells with 400, 200, and 100 μg/ml 2’-hydroxyflavanone resulted in 88.9±0.7%, 81.2±0.5%, 68.4±0.5% decrease in cell viability, respectively, indicating an IC50 of 9.3 μg/ml. The 100 μg/ml 2’-hydroxyflavanone can significantly inhibit the STAT3 pathway activation. 2’-hydroxyflavanone inhibits MGC-803 cell proliferation by inhibiting STAT3 pathway activation. This extract is therefore a potential drug candidate for treatment of liver cancer. PMID:26629250

  14. Inhibition of cyclooxygenase (COX)-2 affects endothelial progenitor cell proliferation

    SciTech Connect

    Colleselli, Daniela; Bijuklic, Klaudija; Mosheimer, Birgit A.; Kaehler, Christian M. . E-mail: C.M.Kaehler@uibk.ac.at

    2006-09-10

    Growing evidence indicates that inducible cyclooxygenase-2 (COX-2) is involved in the pathogenesis of inflammatory disorders and various types of cancer. Endothelial progenitor cells recruited from the bone marrow have been shown to be involved in the formation of new vessels in malignancies and discussed for being a key point in tumour progression and metastasis. However, until now, nothing is known about an interaction between COX and endothelial progenitor cells (EPC). Expression of COX-1 and COX-2 was detected by semiquantitative RT-PCR and Western blot. Proliferation kinetics, cell cycle distribution and rate of apoptosis were analysed by MTT test and FACS analysis. Further analyses revealed an implication of Akt phosphorylation and caspase-3 activation. Both COX-1 and COX-2 expression can be found in bone-marrow-derived endothelial progenitor cells in vitro. COX-2 inhibition leads to a significant reduction in proliferation of endothelial progenitor cells by an increase in apoptosis and cell cycle arrest. COX-2 inhibition leads further to an increased cleavage of caspase-3 protein and inversely to inhibition of Akt activation. Highly proliferating endothelial progenitor cells can be targeted by selective COX-2 inhibition in vitro. These results indicate that upcoming therapy strategies in cancer patients targeting COX-2 may be effective in inhibiting tumour vasculogenesis as well as angiogenic processes.

  15. Pirfenidone inhibits migration, differentiation, and proliferation of human retinal pigment epithelial cells in vitro

    PubMed Central

    Wang, Jing; Yang, Yangfan; Xu, Jiangang; Lin, Xianchai; Wu, Kaili

    2013-01-01

    Purpose To investigate the effects of pirfenidone (PFD) on the migration, differentiation, and proliferation of retinal pigment epithelial (RPE) cells and demonstrate whether the drug induces cytotoxicity. Methods Human RPE cells (line D407) were treated with various concentrations of PFD. Cell migration was measured with scratch assay. The protein levels of fibronectin (FN), connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), transforming growth factor beta (TGFβS), and Smads were assessed with western blot analyses. Levels of mRNA of TGFβS, FN, and Snail1 were analyzed using reverse transcriptase–polymerase chain reaction. Cell apoptosis was detected with flow cytometry using the Annexin V/PI apoptosis kit, and the percentages of cells labeled in different apoptotic stage were compared. A Trypan Blue assay was used to assess cell viability. Results PFD inhibited RPE cell migration. Western blot analyses showed that PFD inhibited the expression of FN, α-SMA, CTGF, TGFβ1, TGFβ2, Smad2/3, and Smad4. Similarly, PFD also downregulated mRNA levels of Snail1, FN, TGFβ1, and TGFβ2. No significant differences in cell apoptosis or viability were observed between the control and PFD-treated groups. Conclusions PFD inhibited RPE cell migration, differentiation, and proliferation in vitro and caused no significant cytotoxicity. PMID:24415895

  16. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem.

    PubMed

    Street, Ian H; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N; Kieber, Joseph J; Schaller, G Eric

    2015-09-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem. PMID:26149574

  17. MicroRNA-29a inhibits mesenchymal stem cell viability and proliferation by targeting Roundabout 1.

    PubMed

    Zhang, Yudong; Zhou, Shenghua

    2015-10-01

    Secreted Slit glycoproteins and their Roundabout (Robo) receptors have been identified as important axon guidance molecules. The pivotal role of Slit‑Robo signaling is in regulating cell proliferation. MicroRNAs (miRNAs), a class of small non‑coding RNAs, function as critical regulators of gene expression by binding to the 3'‑untranslated region of mRNAs and causing mRNA degradation or translational repression. The present study demonstrated that downregulation of Robo1 using small interfering RNA inhibited mesenchymal stem cell (MSC) proliferation. Additionally, four miRNAs (miR), including miR‑218, miR‑29a, miR‑146 and miR‑148, inhibited the protein expression of Robo1 in the MSCs, with miR‑29 having the most marked effect. A luciferase reporter assay identified Robo1 as a novel target of miR‑29a. Overexpression of miR‑29a suppressed the protein expression levels of Robo1 and Slit2 and inhibited the viability and proliferation of the MSCs. By contrast, overexpression of Robo1 partly rescued these inhibitory effects of miR‑29a on the MSCs confirming that miR‑29a inhibited MSC viability and proliferation, at least partially, by directly targeting Robo1. These results indicated that the miR‑29a/Robo1 axis is crucial for the regulation of MSC viability and proliferation, suggesting that miR‑29a may serve as a potential clinical target for MSC expansion and stem cell transplantation. PMID:26252416

  18. Metformin inhibits the proliferation of A431 cells by modulating the PI3K/Akt signaling pathway

    PubMed Central

    LIU, YINGSHAN; ZHANG, YAN; JIA, KUN; DONG, YUHAO; MA, WEIYUAN

    2015-01-01

    The ability of metformin, an antidiabetic drug with wide applications, to inhibit tumor cell growth has recently been discovered. The PI3K/Akt signaling pathway has been found to play an important role in the survival, proliferation and apoptosis of tumor cells. The aim of the present study was to explore the effect of metformin on the proliferation of A431 human squamous cell carcinoma cells and the underlying molecular mechanisms. A431 cells in the logarithmic growth phase were treated with 0, 15, 30, 45 and 60 mM metformin for 12, 24 and 36 h, respectively. Cell morphology with 45 mM metformin treatment for 24 h was observed under a microscope. The proliferation of A431 cells was detected by the Cell Counting kit-8 colorimetric method. The mRNA expression levels of PI3K and Akt were detected by reverse transcription-polymerase chain reaction (RT-PCR). The protein expression levels of PI3K, Akt and phosphorylated (p)-Akt were detected by western blot analysis. Metformin treatment caused morphological change in A431 cells and inhibited their proliferation in a significant time- and dose-dependent manner. RT-PCR results showed that the mRNA expression of PI3K was inhibited by metformin in a time- and dose-dependent manner (P<0.05). However, there was no significant change in the mRNA expression of Akt following metformin treatment (P>0.05). Western blotting results showed that the protein expression levels of PI3K and p-Akt were inhibited by metformin in a time- and dose-dependent manner (P<0.05). In conclusion, metformin significantly inhibited the proliferation of A431 cells in the current study, which may be strongly associated with the inhibition of the PI3K/Akt signaling pathway. PMID:25780442

  19. Sesquiterpenoid Lactones in Tanacetum huronense Inhibit Human Glioblastoma Cell Proliferation.

    PubMed

    Dissanayake, Amila A; Bejcek, Bruce E; Zhang, Chuan-Rui; Nair, Muraleedharan G

    2016-05-01

    Tanacetum huronense (Lake Huron tansy), which is native to the upper Midwest region of USA and Canada, was examined for the presence of anticancer compounds using an in vitro human tumor cell proliferation inhibition assay, with glioblastoma derived cell line U-87 MG. Bioassay-directed purification of the ethyl acetate extract of the aerial portion of this plant identified six active sesquiterpenoid lactones (1-6). Among these, compounds 5 and 6 are new structural analogs. One of the most abundant isolates, tanacin (4), exhibited the greatest inhibition with an IC50 value of 4.5 μg/mL. PMID:27319121

  20. Fangchinoline inhibits breast adenocarcinoma proliferation by inducing apoptosis.

    PubMed

    Xing, Zhi-Bo; Yao, Lei; Zhang, Guo-Qiang; Zhang, Xian-Yu; Zhang, You-Xue; Pang, Da

    2011-01-01

    Radix Stephaniae tetrandrae, which contains tetrandrine (Tet) and fangchinoline, is traditionally used as an analgesic, antirheumatic, and antihypertensive drug in China. In this study, we investigated its effect on breast cancer cell proliferation and its potential mechanism of action in vitro. Treatment of cells with fangchinoline significantly inhibited MDA-MB-231 cell proliferation in a concentration- and time-dependent manner. To define the mechanism underlying the antiproliferative effects of fangchinoline, we studied its effects on critical molecular events known to regulate the apoptotic machinery. Specifically, we addressed the potential of fangchinoline to induce apoptosis of breast cancer cells. Fangchinoline induced internucleosomal DNA fragmentation, chromatin condensation, activation of caspases-3, -8, and -9, and cleavage of poly(ADP ribose) polymerase, as well as enhanced mitochondrial cytochrome c release. Furthermore, fangchinoline increased the expression of the proapoptotic protein B cell lymphoma-2 associated X (Bax) and decreased the expression of the antiapoptotic protein B cell lymphoma-2 (Bcl-2). In addition, the proliferation-inhibitory effect of fangchinoline was associated with decreased levels of phosphorylated Akt. Our results indicate that fangchinoline can inhibit breast cancer cell proliferation by inducing apoptosis via the mitochondrial apoptotic pathway and decreasing phosphorylated Akt. Thus fangchinoline may be a novel agent that can potentially be developed clinically to target human malignancies. PMID:22130369

  1. Inhibition of REST Suppresses Proliferation and Migration in Glioblastoma Cells

    PubMed Central

    Zhang, Dianbao; Li, Ying; Wang, Rui; Li, Yunna; Shi, Ping; Kan, Zhoumi; Pang, Xining

    2016-01-01

    Glioblastoma (GBM) is the most common primary brain tumor, with poor prognosis and a lack of effective therapeutic options. The aberrant expression of transcription factor REST (repressor element 1-silencing transcription factor) had been reported in different kinds of tumors. However, the function of REST and its mechanisms in GBM remain elusive. Here, REST expression was inhibited by siRNA silencing in U-87 and U-251 GBM cells. Then CCK-8 assay showed significantly decreased cell proliferation, and the inhibition of migration was verified by scratch wound healing assay and transwell assay. Using cell cycle analysis and Annexin V/PI straining assay, G1 phase cell cycle arrest was found to be a reason for the suppression of cell proliferation and migration upon REST silencing, while apoptosis was not affected by REST silencing. Further, the detection of REST-downstream genes involved in cytostasis and migration inhibition demonstrated that CCND1 and CCNE1 were reduced; CDK5R1, BBC3, EGR1, SLC25A4, PDCD7, MAPK11, MAPK12, FADD and DAXX were enhanced, among which BBC3 and DAXX were direct targets of REST, as verified by ChIP (chromatin immunoprecipitation) and Western blotting. These data suggested that REST is a master regulator that maintains GBM cells proliferation and migration, partly through regulating cell cycle by repressing downstream genes, which might represent a potential target for GBM therapy. PMID:27153061

  2. Inhibition of REST Suppresses Proliferation and Migration in Glioblastoma Cells.

    PubMed

    Zhang, Dianbao; Li, Ying; Wang, Rui; Li, Yunna; Shi, Ping; Kan, Zhoumi; Pang, Xining

    2016-01-01

    Glioblastoma (GBM) is the most common primary brain tumor, with poor prognosis and a lack of effective therapeutic options. The aberrant expression of transcription factor REST (repressor element 1-silencing transcription factor) had been reported in different kinds of tumors. However, the function of REST and its mechanisms in GBM remain elusive. Here, REST expression was inhibited by siRNA silencing in U-87 and U-251 GBM cells. Then CCK-8 assay showed significantly decreased cell proliferation, and the inhibition of migration was verified by scratch wound healing assay and transwell assay. Using cell cycle analysis and Annexin V/PI straining assay, G1 phase cell cycle arrest was found to be a reason for the suppression of cell proliferation and migration upon REST silencing, while apoptosis was not affected by REST silencing. Further, the detection of REST-downstream genes involved in cytostasis and migration inhibition demonstrated that CCND1 and CCNE1 were reduced; CDK5R1, BBC3, EGR1, SLC25A4, PDCD7, MAPK11, MAPK12, FADD and DAXX were enhanced, among which BBC3 and DAXX were direct targets of REST, as verified by ChIP (chromatin immunoprecipitation) and Western blotting. These data suggested that REST is a master regulator that maintains GBM cells proliferation and migration, partly through regulating cell cycle by repressing downstream genes, which might represent a potential target for GBM therapy. PMID:27153061

  3. Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation

    SciTech Connect

    Hurtado, Paola A.; Vora, Siddharth; Sume, Siddika Selva; Yang, Dan; Hilaire, Cynthia St.; Guo Ying; Palamakumbura, Amitha H.; Schreiber, Barbara M.; Ravid, Katya; Trackman, Philip C.

    2008-02-01

    Lysyl oxidase is required for the normal biosynthesis and maturation of collagen and elastin. It is expressed by vascular smooth muscle cells, and its increased expression has been previously found in atherosclerosis and in models of balloon angioplasty. The lysyl oxidase propeptide (LOX-PP) has more recently been found to have biological activity as a tumor suppressor, and it inhibits Erk1/2 Map kinase activation. We reasoned that LOX-PP may have functions in normal non-transformed cells. We, therefore, investigated its effects on smooth muscle cells, focusing on important biological processes mediated by Erk1/2-dependent signaling pathways including proliferation and matrix metalloproteinase-9 (MMP-9) expression. In addition, we investigated whether evidence for accumulation of LOX-PP could be found in vivo in a femoral artery injury model. Recombinant LOX-PP was expressed and purified, and was found to inhibit primary rat aorta smooth muscle cell proliferation and DNA synthesis by more than 50%. TNF-{alpha}-stimulated MMP-9 expression and Erk1/2 activation were both significantly inhibited by LOX-PP. Immunohistochemistry studies carried out with affinity purified anti-LOX-PP antibody showed that LOX-PP epitopes were expressed at elevated levels in vascular lesions of injured arteries. These novel data suggest that LOX-PP may provide a feedback control mechanism that serves to inhibit properties associated with the development of vascular pathology.

  4. Miconia sp. Increases mRNA Levels of PPAR Gamma and Inhibits Alpha Amylase and Alpha Glucosidase

    PubMed Central

    Ortíz-Martinez, David Mizael; Rivas-Morales, Catalina; de la Garza-Ramos, Myriam Angelica; Verde-Star, Maria Julia; Nuñez-Gonzalez, Maria Adriana

    2016-01-01

    Diabetes mellitus is a public health problem worldwide. For this reason, ethanolic extract of Miconia sp. from Oaxaca, Mexico, was selected in search of an alternative against this disease. The effect of Miconia sp. on mRNA expression of PPARγ on cell line 3T3-L1, its effect on alpha amylase and alpha glucosidase, lipid accumulation during adipogenesis, and cell viability on VERO cells were evaluated. The mRNA levels of PPARγ increased on 1.393 ± 0.008 folds, lipid accumulation was increased by 29.55% with Miconia sp. extract and 34.57% with rosiglitazone, and α-amylase and α-glycosidase were inhibited with IC50 values from 28.23 ± 2.15 μg/mL and 1.95 ± 0.15 μg/mL, respectively; the IC50 on antiproliferative activity on VERO cells was 314.54 ± 45.40 μg/mL. In case of α-amylase and α-glycosidase assays, IC50 (inhibitory concentration 50) refers to necessary extract amounts to inhibit 50% of enzymatic activity. On the other hand, on antiproliferative activity, IC50 (inhibitory concentration 50) refers to necessary extract amounts to inhibit 50% of cell proliferation. It was concluded that the compounds present in Miconia sp. ethanolic extract increase mRNA expression of PPARγ, inhibit α-amylase and α-glucosidase, and increase lipid accumulation. It constitutes an alternative as adjuvant in diabetes mellitus treatment; therefore, we recommend continuing identifying the compounds responsible for its promising in vivo antidiabetic activity. PMID:27478477

  5. Miconia sp. Increases mRNA Levels of PPAR Gamma and Inhibits Alpha Amylase and Alpha Glucosidase.

    PubMed

    Ortíz-Martinez, David Mizael; Rivas-Morales, Catalina; de la Garza-Ramos, Myriam Angelica; Verde-Star, Maria Julia; Nuñez-Gonzalez, Maria Adriana; Leos-Rivas, Catalina

    2016-01-01

    Diabetes mellitus is a public health problem worldwide. For this reason, ethanolic extract of Miconia sp. from Oaxaca, Mexico, was selected in search of an alternative against this disease. The effect of Miconia sp. on mRNA expression of PPARγ on cell line 3T3-L1, its effect on alpha amylase and alpha glucosidase, lipid accumulation during adipogenesis, and cell viability on VERO cells were evaluated. The mRNA levels of PPARγ increased on 1.393 ± 0.008 folds, lipid accumulation was increased by 29.55% with Miconia sp. extract and 34.57% with rosiglitazone, and α-amylase and α-glycosidase were inhibited with IC50 values from 28.23 ± 2.15 μg/mL and 1.95 ± 0.15 μg/mL, respectively; the IC50 on antiproliferative activity on VERO cells was 314.54 ± 45.40 μg/mL. In case of α-amylase and α-glycosidase assays, IC50 (inhibitory concentration 50) refers to necessary extract amounts to inhibit 50% of enzymatic activity. On the other hand, on antiproliferative activity, IC50 (inhibitory concentration 50) refers to necessary extract amounts to inhibit 50% of cell proliferation. It was concluded that the compounds present in Miconia sp. ethanolic extract increase mRNA expression of PPARγ, inhibit α-amylase and α-glucosidase, and increase lipid accumulation. It constitutes an alternative as adjuvant in diabetes mellitus treatment; therefore, we recommend continuing identifying the compounds responsible for its promising in vivo antidiabetic activity. PMID:27478477

  6. Carbendazim Inhibits Cancer Cell Proliferation by Suppressing Microtubule Dynamics

    PubMed Central

    Yenjerla, Mythili; Cox, Corey; Wilson, Leslie; Jordan, Mary Ann

    2009-01-01

    Carbendazim (methyl 2-benzimidazolecarbamate) is widely used as a systemic fungicide in human food production and appears to act on fungal tubulin. However, it also inhibits proliferation of human cancer cells, including drug- and multidrug-resistant and p53-deficient cell lines. Because of its promising preclinical anti-tumor activity, it has undergone phase I clinical trials and is under further clinical development. Although it weakly inhibits polymerization of brain microtubules and induces G2/M arrest in tumor cells, its mechanism of action in human cells has not been fully elucidated. We examined its mechanism of action in MCF7 human breast cancer cells and found that it inhibits proliferation (IC50, 10 μM) and half-maximally arrests mitosis at a similar concentration (8 μM), in concert with suppression of microtubule dynamic instability without appreciable microtubule depolymerization. It induces mitotic spindle abnormalities and reduces the metaphase intercentromere distance of sister chromatids, indicating reduction of tension on kinetochores, thus leading to metaphase arrest. With microtubules assembled in vitro from pure tubulin, carbendazim also suppresses dynamic instability, reducing the dynamicity by 50% at 10 μM, with only minimal (21%) reduction of polymer mass. Carbendazim binds to mammalian tubulin (Kd, 42.8 ± 4.0 μM). Unlike some benzimidazoles that bind to the colchicine site in tubulin, carbendazim neither competes with colchicine nor competes with vinblastine for binding to brain tubulin. Thus, carbendazim binds to an as yet unidentified site in tubulin and inhibits tumor cell proliferation by suppressing the growing and shortening phases of microtubule dynamic instability, thus inducing mitotic arrest. PMID:19001156

  7. Blocking p55PIK signaling inhibits proliferation and induces differentiation of leukemia cells.

    PubMed

    Wang, G; Deng, Y; Cao, X; Lai, S; Tong, Y; Luo, X; Feng, Y; Xia, X; Gong, J; Hu, J

    2012-11-01

    p55PIK, a regulatory subunit of phosphatidylinositol 3-kinases, promotes cell cycle progression by interacting with cell cycle modulators such as retinoblastoma protein (Rb) via its unique amino-terminal 24 amino-acid residue (N24). Overexpression of N24 specifically inhibits these interactions and leads to cell cycle arrest. Herein, we describe the generation of a fusion protein (Tat transactivator protein (TAT)-N24) that contains the protein transduction domain and N24, and examined its effects on the proliferation and differentiation of leukemia cells. TAT-N24 not only blocks cell proliferation but remarkably induces differentiation of leukemia cells in vitro and in vivo. Systemically administered TAT-N24 also significantly decreases growth of leukemia cell tumors in animal models. Furthermore, overexpression of p55PIK in leukemia cells leads to increased proliferation; however, TAT-N24 blocks this effect and concomitantly induces differentiation. There is significant upregulation of p55PIK mRNA and protein expression in leukemia cells from patients. TAT-N24 inhibits cell cycle progression and induces differentiation of bone marrow cells derived from patients with several different types of leukemia. These results show that cell-permeable N24 peptide induces leukemia cell differentiation and suggest that p55PIK may be a novel drug target for the treatment of hematopoetic malignancies. PMID:22722333

  8. Skeletal unloading inhibits the in vitro proliferation and differentiation of rat osteoprogenitor cells

    NASA Technical Reports Server (NTRS)

    Kostenuik, P. J.; Halloran, B. P.; Morey-Holton, E. R.; Bikle, D. D.

    1997-01-01

    Loss of weight bearing in the growing rat decreases bone formation, osteoblast numbers, and bone maturation in unloaded bones. These responses suggest an impairment of osteoblast proliferation and differentiation. To test this assumption, we assessed the effects of skeletal unloading using an in vitro model of osteoprogenitor cell differentiation. Rats were hindlimb elevated for 0 (control), 2, or 5 days, after which their tibial bone marrow stromal cells (BMSCs) were harvested and cultured. Five days of hindlimb elevation led to significant decreases in proliferation, alkaline phosphatase (AP) enzyme activity, and mineralization of BMSC cultures. Differentiation of BMSCs was analyzed by quantitative competitive polymerase chain reaction of cDNA after 10, 15, 20, and 28 days of culture. cDNA pools were analyzed for the expression of c-fos (an index of proliferation), AP (an index of early osteoblast differentiation), and osteocalcin (a marker of late differentiation). BMSCs from 5-day unloaded rats expressed 50% less c-fos, 61% more AP, and 35% less osteocalcin mRNA compared with controls. These data demonstrate that cultured osteoprogenitor cells retain a memory of their in vivo loading history and indicate that skeletal unloading inhibits proliferation and differentiation of osteoprogenitor cells in vitro.

  9. Atypical role of sprouty in p21 dependent inhibition of cell proliferation in colorectal cancer.

    PubMed

    Zhang, Qiong; Shim, Katherine; Wright, Kevin; Jurkevich, Alexander; Khare, Sharad

    2016-09-01

    Sprouty (SPRY) appears to act as a tumor suppressor in cancer, whereas we reported that SPRY2 functions as a putative oncogene in colorectal cancer (CRC) [Oncogene, 2010, 29: 5241-5253]. In general, various studies established inhibition of cell proliferation by SPRY in cancer. The mechanisms by which SPRY regulates cell proliferation in CRC are investigated. We demonstrate, for the first time, suppression of SPRY2 augmented EGF-dependent oncogenic signaling, however, surprisingly decreased cell proliferation in colon cancer cells. Our data suggest that cell cycle inhibitor p21(WAF1/CIP1) transcriptional activity being regulated by SPRY2. Indeed, suppression of SPRY2 significantly increased p21(WAF1/CIP1) mRNA and protein expression as well as p21(WAF1/CIP1) promoter activity. Conversely, overexpressing SPRY2 triggered a decrease in p21(WAF1/CIP1) promoter activity. Concurrent down-regulation of both SPRY1 and SPRY2 also increased p21(WAF1/CIP1) expression in colon cancer cells. Increased nuclear localization of p21(WAF1/CIP1) in SPRY2 downregulated colon cancer cells may explain the inhibition of cell proliferation in colon cancer cells. Underscoring the biological relevance of these findings in SPRY1 and SPRY2 mutant mouse, recombination of floxed SPRY1 and SPRY2 alleles in mouse embryonic fibroblasts (MEFs) resulted in increased expression and nuclear localization of p21(WAF1/CIP1) and decreased cell proliferation. In CRC, the relationship of SPRY with p21 may provide unique strategies for cancer prevention and treatment. © 2015 The Authors. Molecular Carcinogenesis published by Wiley Periodicals, Inc. PMID:26293890

  10. In vivo inhibition of nitric oxide synthase impairs upregulation of contractile protein mRNA in overloaded plantaris muscle.

    PubMed

    Sellman, Jeff E; DeRuisseau, Keith C; Betters, Jenna L; Lira, Vitor A; Soltow, Quinlyn A; Selsby, Joshua T; Criswell, David S

    2006-01-01

    Inhibition of nitric oxide synthase (NOS) activity in vivo impedes hypertrophy in the overloaded rat plantaris. We investigated the mechanism for this effect by examining early events leading to muscle growth following 5 or 12 days of functional overload. Male Sprague-Dawley rats (approximately 350 g) were randomly divided into three treatment groups: control, N(G)-nitro-L-arginine methyl ester (L-NAME; 90 mg.kg(-1).day(-1)), and 1-(2-trifluoromethyl-phenyl)-imidazole (TRIM; 10 mg.kg(-1).day(-1)). Unilateral removal of synergists induced chronic overload (OL) of the right plantaris. Sham surgery performed on the left hindlimb served as a normally loaded control. L-NAME and TRIM treatments prevented OL-induced skeletal alpha-actin and type I (slow) myosin heavy chain mRNA expression at 5 days. Conversely, neither L-NAME nor TRIM affected hepatocyte growth factor or VEGF mRNA responses to OL at 5 days. However, OL induction of IGF-I and mechanogrowth factor mRNA was greater (P < 0.05) in the TRIM group compared with the controls. Furthermore, the phosphorylated-to-total p70 S6 kinase ratio was higher in OL muscle from NOS-inhibited groups, compared with control OL. At 12 days of OL, the cumulative proliferation of plantaris satellite cells was assessed by subcutaneous implantation of time release 5'-bromo-2'-deoxyuridine pellets during the OL-inducing surgeries. Although OL caused a fivefold increase in the number of mitotically active (5'-bromo-2'-deoxyuridine positive) sublaminar nuclei, this was unaffected by concurrent NOS inhibition. Therefore, NOS activity may provide negative feedback control of IGF-I/p70 S6 kinase signaling during muscle growth. Moreover, NOS activity may be involved in transcriptional regulation of skeletal alpha-actin and type I (slow) myosin heavy chain during functional overload. PMID:16166235

  11. Ribozyme cleaves rex/tax mRNA and inhibits bovine leukemia virus expression.

    PubMed Central

    Cantor, G H; McElwain, T F; Birkebak, T A; Palmer, G H

    1993-01-01

    Bovine leukemia virus (BLV) encodes at least two regulatory proteins, Rex and Tax. Tax, the transactivating protein, stimulates the long terminal repeat to promote viral transcription and may be involved in tumorigenesis. Rex is involved in the transition from early expression of regulatory proteins to later expression of viral structural proteins. We have targeted ribozymes against the mRNA encoding Rex and Tax. The ribozymes consist of the hammer-head catalytic motif flanked by antisense sequences that hybridize with the complementary rex/tax mRNA. To evaluate cleavage in a cell-free system, we transcribed portions of rex/tax mRNA and incubated them with synthetic RNA ribozymes. A ribozyme was identified that cleaves > 80% of the target RNA. Synthetic DNA encoding this ribozyme was cloned into the expression vector pRc/RSV and transfected into BLV-infected bat lung cells. Intracellular cleavage of rex/tax mRNA was confirmed by reverse transcriptase PCR. In cells expressing the ribozyme, viral expression was markedly inhibited. Expression of the BLV core protein p24 was inhibited by 61%, and reverse transcriptase activity in supernatant was inhibited by 92%. Ribozyme inhibition of BLV expression suggests that cattle expressing these sequences may be able to control BLV replication. Images Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:7504287

  12. The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP

    PubMed Central

    Kimura, Tomomi E.; Duggirala, Aparna; Smith, Madeleine C.; White, Stephen; Sala-Newby, Graciela B.; Newby, Andrew C.; Bond, Mark

    2016-01-01

    Aims Inhibition of vascular smooth muscle cell (VSMC) proliferation by intracellular cAMP prevents excessive neointima formation and hence angioplasty restenosis and vein-graft failure. These protective effects are mediated via actin-cytoskeleton remodelling and subsequent regulation of gene expression by mechanisms that are incompletely understood. Here we investigated the role of components of the growth-regulatory Hippo pathway, specifically the transcription factor TEAD and its co-factors YAP and TAZ in VSMC. Methods and results Elevation of cAMP using forskolin, dibutyryl-cAMP or the physiological agonists, Cicaprost or adenosine, significantly increased phosphorylation and nuclear export YAP and TAZ and inhibited TEAD-luciferase report gene activity. Similar effects were obtained by inhibiting RhoA activity with C3-transferase, its downstream kinase, ROCK, with Y27632, or actin-polymerisation with Latrunculin-B. Conversely, expression of constitutively-active RhoA reversed the inhibitory effects of forskolin on TEAD-luciferase. Forskolin significantly inhibited the mRNA expression of the pro-mitogenic genes, CCN1, CTGF, c-MYC and TGFB2 and this was reversed by expression of constitutively-active YAP or TAZ phospho-mutants. Inhibition of YAP and TAZ function with RNAi or Verteporfin significantly reduced VSMC proliferation. Furthermore, the anti-mitogenic effects of forskolin were reversed by overexpression of constitutively-active YAP or TAZ. Conclusion Taken together, these data demonstrate that cAMP-induced actin-cytoskeleton remodelling inhibits YAP/TAZ–TEAD dependent expression of pro-mitogenic genes in VSMC. This mechanism contributes novel insight into the anti-mitogenic effects of cAMP in VSMC and suggests a new target for intervention. PMID:26625714

  13. RNA interference targeting raptor inhibits proliferation of gastric cancer cells

    SciTech Connect

    Wu, William Ka Kei; Lee, Chung Wa; Cho, Chi Hin; Chan, Francis Ka Leung; Yu, Jun; Sung, Joseph Jao Yiu

    2011-06-10

    Mammalian target of rapamycin complex 1 (mTORC1) is dysregulated in gastric cancer. The biologic function of mTORC1 in gastric carcinogenesis is unclear. Here, we demonstrate that disruption of mTORC1 function by RNA interference-mediated downregulation of raptor substantially inhibited gastric cancer cell proliferation through induction of G{sub 0}/G{sub 1}-phase cell cycle arrest. The anti-proliferative effect was accompanied by concomitant downregulation of activator protein-1 and upregulation of Smad2/3 transcriptional activities. In addition, the expression of cyclin D{sub 3} and p21{sup Waf1}, which stabilizes cyclin D/cdk4 complex for G{sub 1}-S transition, was reduced by raptor knockdown. In conclusion, disruption of mTORC1 inhibits gastric cancer cell proliferation through multiple pathways. This discovery may have an implication in the application of mTORC1-directed therapy for the treatment of gastric cancer.

  14. Maduramicin Inhibits Proliferation and Induces Apoptosis in Myoblast Cells

    PubMed Central

    Chen, Xin; Gu, Ying; Singh, Karnika; Shang, Chaowei; Barzegar, Mansoureh; Jiang, Shanxiang; Huang, Shile

    2014-01-01

    Maduramicin, a polyether ionophore antibiotic derived from the bacterium Actinomadura yumaensis, is currently used as a feed additive against coccidiosis in poultry worldwide. It has been clinically observed that maduramicin can cause skeletal muscle and heart cell damage, resulting in skeletal muscle degeneration, heart failure, and even death in animals and humans, if improperly used. However, the mechanism of its toxic action in myoblasts is not well understood. Using mouse myoblasts (C2C12) and human rhabdomyosarcoma (RD and Rh30) cells as an experimental model for myoblasts, here we found that maduramicin inhibited cell proliferation and induced cell death in a concentration-dependent manner. Further studies revealed that maduramicin induced accumulation of the cells at G0/G1 phase of the cell cycle, and induced apoptosis in the cells. Concurrently, maduramicin downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and CDC25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in decreased phosphorylation of Rb. Maduramicin also induced expression of BAK, BAD, DR4, TRADD and TRAIL, leading to activation of caspases 8, 9 and 3 as well as cleavage of poly ADP ribose polymerase (PARP). Taken together, our results suggest that maduramicin executes its toxicity in myoblasts at least by inhibiting cell proliferation and inducing apoptotic cell death. PMID:25531367

  15. Maduramicin inhibits proliferation and induces apoptosis in myoblast cells.

    PubMed

    Chen, Xin; Gu, Ying; Singh, Karnika; Shang, Chaowei; Barzegar, Mansoureh; Jiang, Shanxiang; Huang, Shile

    2014-01-01

    Maduramicin, a polyether ionophore antibiotic derived from the bacterium Actinomadura yumaensis, is currently used as a feed additive against coccidiosis in poultry worldwide. It has been clinically observed that maduramicin can cause skeletal muscle and heart cell damage, resulting in skeletal muscle degeneration, heart failure, and even death in animals and humans, if improperly used. However, the mechanism of its toxic action in myoblasts is not well understood. Using mouse myoblasts (C2C12) and human rhabdomyosarcoma (RD and Rh30) cells as an experimental model for myoblasts, here we found that maduramicin inhibited cell proliferation and induced cell death in a concentration-dependent manner. Further studies revealed that maduramicin induced accumulation of the cells at G0/G1 phase of the cell cycle, and induced apoptosis in the cells. Concurrently, maduramicin downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and CDC25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in decreased phosphorylation of Rb. Maduramicin also induced expression of BAK, BAD, DR4, TRADD and TRAIL, leading to activation of caspases 8, 9 and 3 as well as cleavage of poly ADP ribose polymerase (PARP). Taken together, our results suggest that maduramicin executes its toxicity in myoblasts at least by inhibiting cell proliferation and inducing apoptotic cell death. PMID:25531367

  16. Downregulation of VEGFA inhibits proliferation, promotes apoptosis, and suppresses migration and invasion of renal clear cell carcinoma

    PubMed Central

    Zeng, Fan-Chang; Zeng, Ming-Qiang; Huang, Liang; Li, Yong-Lin; Gao, Ben-Min; Chen, Jun-Jie; Xue, Rui-Zhi; Tang, Zheng-Yan

    2016-01-01

    Objective The aim of this study was to investigate the effects of vascular endothelial growth factor A (VEGFA) on cell proliferation, apoptosis, migration, and invasion in renal clear cell carcinoma (RCCC). Methods Between June 2012 and June 2015, RCCC tissues were obtained for the experimental group, and RCCC adjacent tumor-free kidney parenchyma tissues were obtained for the control group. VEGFA mRNA and protein expressions and phosphoinositide 3-kinase, serine/threonine-specific protein kinase (AKT), and phosphorylated-AKT protein expressions were detected. The chemically synthesized specific siRNA using RNA interference technology was used to inhibit VEGFA gene expression in human RCCC 786-O cells. The negative control (NC) group was transfected with NC sequence, and the blank group was transfected with no sequence. Flow cytometry, scratch test, and cell-penetrating experiment were used to detect cell proliferation, apoptosis, migration, and invasion of 786-O cells. Results Positive expression of VEGFA protein was 60.62% in RCCC tissue and 18.34% in adjacent tissue with statistically significant difference (P<0.001). VEGFA protein and mRNA expressions were higher in RCCC tissue than those in adjacent tissue (both P<0.01). VEGF expression in RCCC tissue was associated with Fuhrman grading and American Joint Committee on Cancer staging (both P<0.05). After RCCC 786-O cells transfecting the VEGFA siRNA, the VEGFA mRNA and protein expressions and phosphoinositide 3-kinase and phosphorylated-AKT protein expressions were significantly decreased, cell proliferation was remarkably inhibited, cell apoptotic ratio was obviously increased, and migration distance and invasive cell number were markedly decreased compared to those in the NC group and the blank group (all P<0.05). Conclusion Inhibition of VEGFA inhibited proliferation, promoted apoptosis, and suppressed migration and invasion of RCCC 786-O cells. VEGF has a potential role in diagnosis and therapy of RCCC

  17. Thrombospondin 2 Inhibits Microvascular Endothelial Cell Proliferation by a Caspase-independent Mechanism

    PubMed Central

    Armstrong, Lucas C.; Björkblom, Benny; Hankenson, Kurt D.; Siadak, Anthony W.; Stiles, Charlotte E.; Bornstein, Paul

    2002-01-01

    The matricellular protein thrombospondin 2 (TSP2) regulates a variety of cell–matrix interactions. A prominent feature of TSP2-null mice is increased microvascular density, particularly in connective tissues synthesized after injury. We investigated the cellular basis for the regulation of angiogenesis by TSP2 in cultures of murine and human fibroblasts and endothelial cells. Fibroblasts isolated from murine and human dermis synthesize TSP2 mRNA and secrete significant amounts of immunoreactive TSP2, whereas endothelial cells from mouse lung and human dermis did not synthesize TSP2 mRNA or protein. Recombinant mouse TSP2 inhibited growth of human microvascular endothelial cells (HMVECs) mediated by basic fibroblast growth factor, insulin-like growth factor-1, epidermal growth factor, and vascular endothelial growth factor (VEGF). HMVECs exposed to TSP2 in the presence of these growth factors had a decreased proportion of cells in S and G2/M phases. HMVECs cultured with a combination of basic fibroblast growth factor, insulin-like growth factor-1, and epidermal growth factor displayed an increased proportion of nonviable cells in the presence of TSP2, but the addition of VEGF blocked this TSP2-mediated impairment of cell viability. TSP2-mediated inhibition of DNA synthesis by HMVECs in the presence of VEGF was not affected by the broad-spectrum caspase inhibitor zVAD-fmk. Similar findings were obtained with TSP1. Taken together, these observations indicate that either TSP2 or TSP1 can inhibit HMVEC proliferation by inhibition of cell cycle progression and induction of cell death, but the mechanisms responsible for TSP2-mediated inhibition of cell cycle progression are independent from those leading to cell death. PMID:12058057

  18. Neutrophil-derived alpha defensins control inflammation by inhibiting macrophage mRNA translation.

    PubMed

    Brook, Matthew; Tomlinson, Gareth H; Miles, Katherine; Smith, Richard W P; Rossi, Adriano G; Hiemstra, Pieter S; van 't Wout, Emily F A; Dean, Jonathan L E; Gray, Nicola K; Lu, Wuyuan; Gray, Mohini

    2016-04-19

    Neutrophils are the first and most numerous cells to arrive at the site of an inflammatory insult and are among the first to die. We previously reported that alpha defensins, released from apoptotic human neutrophils, augmented the antimicrobial capacity of macrophages while also inhibiting the biosynthesis of proinflammatory cytokines. In vivo, alpha defensin administration protected mice from inflammation, induced by thioglychollate-induced peritonitis or following infection withSalmonella entericaserovar Typhimurium. We have now dissected the antiinflammatory mechanism of action of the most abundant neutrophil alpha defensin, Human Neutrophil Peptide 1 (HNP1). Herein we show that HNP1 enters macrophages and inhibits protein translation without inducing the unfolded-protein response or affecting mRNA stability. In a cell-free in vitro translation system, HNP1 powerfully inhibited both cap-dependent and cap-independent mRNA translation while maintaining mRNA polysomal association. This is, to our knowledge, the first demonstration of a peptide released from one cell type (neutrophils) directly regulating mRNA translation in another (macrophages). By preventing protein translation, HNP1 functions as a "molecular brake" on macrophage-driven inflammation, ensuring both pathogen clearance and the resolution of inflammation with minimal bystander tissue damage. PMID:27044108

  19. Viscum album-Mediated COX-2 Inhibition Implicates Destabilization of COX-2 mRNA

    PubMed Central

    Saha, Chaitrali; Hegde, Pushpa; Friboulet, Alain; Bayry, Jagadeesh; Kaveri, Srinivas V.

    2015-01-01

    Extensive use of Viscum album (VA) preparations in the complementary therapy of cancer and in several other human pathologies has led to an increasing number of cellular and molecular approaches to explore the mechanisms of action of VA. We have recently demonstrated that, VA preparations exert a potent anti-inflammatory effect by selectively down-regulating the COX-2-mediated cytokine-induced secretion of prostaglandin E2 (PGE2), one of the important molecular signatures of inflammatory reactions. In this study, we observed a significant down-regulation of COX-2 protein expression in VA-treated A549 cells however COX-2 mRNA levels were unaltered. Therefore, we hypothesized that VA induces destabilisation of COX-2 mRNA, thereby depleting the available functional COX-2 mRNA for the protein synthesis and for the subsequent secretion of PGE2. To address this question, we analyzed the molecular degradation of COX-2 protein and its corresponding mRNA in A549 cell line. Using cyclohexamide pulse chase experiment, we demonstrate that, COX-2 protein degradation is not affected by the treatment with VA whereas experiments on transcriptional blockade with actinomycin D, revealed a marked reduction in the half life of COX-2 mRNA due to its rapid degradation in the cells treated with VA compared to that in IL-1β-stimulated cells. These results thus demonstrate that VA-mediated inhibition of PGE2 implicates destabilization of COX-2 mRNA. PMID:25664986

  20. Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion

    PubMed Central

    Chen, Wen-Liang; Barszczyk, Andrew; Turlova, Ekaterina; Deurloo, Marielle; Liu, Baosong; Yang, Burton B.; Rutka, James T.; Feng, Zhong-Ping; Sun, Hong-Shuo

    2015-01-01

    Glioblastomas are progressive brain tumors with devastating proliferative and invasive characteristics. Ion channels are the second largest target class for drug development. In this study, we investigated the effects of the TRPM7 inhibitor carvacrol on the viability, resistance to apoptosis, migration, and invasiveness of the human U87 glioblastoma cell line. The expression levels of TRPM7 mRNA and protein in U87 cells were detected by RT-PCR, western blotting and immunofluorescence. TRPM7 currents were recorded using whole-cell patch-clamp techniques. An MTT assay was used to assess cell viability and proliferation. Wound healing and transwell experiments were used to evaluate cell migration and invasion. Protein levels of p-Akt/t-Akt, p-ERK1/2/t-ERK1/2, cleaved caspase-3, MMP-2 and phosphorylated cofilin were also detected. TRPM7 mRNA and protein expression in U87 cells is higher than in normal human astrocytes. Whole-cell patch-clamp recording showed that carvacrol blocks recombinant TRPM7 current in HEK293 cells and endogenous TRPM7-like current in U87 cells. Carvacrol treatment reduced the viability, migration and invasion of U87 cells. Carvacrol also decreased MMP-2 protein expression and promoted the phosphorylation of cofilin. Furthermore, carvacrol inhibited the Ras/MEK/MAPK and PI3K/Akt signaling pathways. Therefore, carvacrol may have therapeutic potential for the treatment of glioblastomas through its inhibition of TRPM7 channels. PMID:25965832

  1. miR-138 suppresses cell proliferation and invasion by inhibiting SOX9 in hepatocellular carcinoma

    PubMed Central

    Liu, Yahui; Zhang, Wei; Liu, Kai; Liu, Songyang; Ji, Bai; Wang, Yingchao

    2016-01-01

    Accumulating evidence suggests that miR-138 expression was frequently downregulated in different cancer types and involves in the progression of tumorigenesis. However, the biological role and molecular mechanism of miR-138 involvement in hepatocellular carcinoma (HCC) still remains largely unknown. Therefore, in the present study, we investigated the role of miR-138 in the progression of HCC. We found that miR-138 expression levels were significantly downregulated in HCC tissues and cell lines compared with the corresponding noncancerous liver tissues and normal hepatic cell line. In addition, we also found that enforced expression of miR-138 inhibited proliferation, colony formation, migration and invasion in HCC cells. Using a luciferase reporter assay, SOX9 was confirmed as a direct target of miR-138. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assay showed that overexpression of miR-138 in HCC cells significantly inhibited SOX9 expression on mRNA level and protein level. Furthermore, SOX9 expression was significantly upregulated in HCC tissues and cell lines, and its mRNA expression is negative correlated with miR-138 expression in clinical HCC tissues (r=-0.689, P<0.01). Of note, downregulation of SOX9 performed similar effects with overexpression of miR-138. These findings suggested that miR-138 functioned as a tumor suppressor in HCC partially via repressing SOX9 expression. PMID:27347323

  2. The combination of tetraiodothyroacetic acid and cetuximab inhibits cell proliferation in colorectal cancers with different K-ras status.

    PubMed

    Lee, Yee-Shin; Chin, Yu-Tang; Yang, Yu-Chen S H; Wei, Po-Li; Wu, Han-Chung; Shih, Ai; Lu, Yueh-Tong; Pedersen, Jens Z; Incerpi, Sandra; Liu, Leroy F; Lin, Hung-Yun; Davis, Paul J

    2016-07-01

    Thyroid hormone induces cancer cell proliferation through its cell surface receptor integrin αvβ3. Acting via integrin αvβ3, the deaminated T4 analog tetraiodothyroacetic acid (tetrac), and its nanoparticle formulation nano-diamino-tetrac (NDAT) could inhibit cell proliferation and xenograft growth. In this study, we investigated the T4 effects on proliferation in colorectal cancer cell lines based on the proliferation marker expressions at both mRNA and protein levels. The effects of tetrac/NDAT, the monoclonal anti-EGFR antibody cetuximab, and their combinations on colorectal cancer cell proliferation were examined according to the relevant gene expression profiles and cell count analysis. The results showed that T4 significantly enhanced PCNA, Cyclin D1 and c-Myc levels in both K-ras wild type HT-29 and mutant HCT 116 cells. In HCT 116 cells, the combination of NDAT and cetuximab significantly suppressed the mRNA expressions of proliferative genes PCNA, Cyclin D1, c-Myc and RRM2 raised by T4 compared to cetuximab alone. In addition, T4-suppressed mRNA expressions of pro-apoptotic genes p53 and RRM2B could be significantly elevated by the combination of NDAT and cetuximab compared to cetuximab alone. In the K-ras mutant HCT 116 cells, but not in the K-ras wild type COLO 205 cells, the combinations of tetrac/NDAT and cetuximab significantly reduced cell proliferation compared to cetuximab alone. In conclusion, T4 promoted colorectal cancer cell proliferation which could be repressed by tetrac and NDAT. The combinations of tetrac/NDAT and cetuximab potentiated cetuximab actions in K-ras mutant colorectal cancer cells. PMID:26980146

  3. miR-143 suppresses the proliferation of NSCLC cells by inhibiting the epidermal growth factor receptor

    PubMed Central

    Zhang, Hong-Bo; Sun, Li-Chao; Ling, Lan; Cong, Lu-Hong; Lian, Rui

    2016-01-01

    MicroRNAs (miRs) regulate the proliferation and metastasis of numerous cancer cell types. It was previously reported that miR-143 levels were downregulated in non-small cell lung cancer (NSCLC) tissues and cell lines, and that the migration and invasion of NSCLC cells was inhibited upon suppression of cell proliferation and colony formation by the upregulation of miR-143. Epidermal growth factor receptor (EGFR), which is a vital factor in the promotion of cancer cell proliferation and has been investigated as a potential focus in cancer therapy, has been reported to be a possible target of miR-143. The present study aimed to investigate the role of miR-143 in NSCLC using NSCLC cell lines and primary cells from NSCLC patients. NSCLC cells were co-transfected with EGFR and miR-143, and the mRNA and protein expression of EGFR were analyzed. Furthermore, the activity of the transfected cancer cells with regard to colony formation, migration, invasion and apoptosis were evaluated. The levels of miR-143 were decreased in the NSCLC cell lines and primary cells from patients with NSCLC compared with the controls. Following transfection with miR-143, the ability of NSCLC cells to proliferate, form colonies, migrate and invade was inhibited. Similarly, knockdown of EGFR led to the suppression of NSCLC cell proliferation. The mRNA and protein expression levels of EGFR were significantly reduced following miR-143 overexpression, and the level of miR-143 was inversely correlated with that of EGFR in NSCLC cells. The results of the present study demonstrated that miR-143 was able to suppress NSCLC cell proliferation and invasion by inhibiting the effects of EGFR, suggesting that EGFR may be considered a potential target for NSCLC therapy. PMID:27602093

  4. Kuwanon V Inhibits Proliferation, Promotes Cell Survival and Increases Neurogenesis of Neural Stem Cells

    PubMed Central

    Kong, Sun-Young; Park, Min-Hye; Lee, Mina; Kim, Jae-Ouk; Lee, Ha-Rim; Han, Byung Woo; Svendsen, Clive N.; Sung, Sang Hyun; Kim, Hyun-Jung

    2015-01-01

    Neural stem cells (NSCs) have the ability to proliferate and differentiate into neurons and glia. Regulation of NSC fate by small molecules is important for the generation of a certain type of cell. The identification of small molecules that can induce new neurons from NSCs could facilitate regenerative medicine and drug development for neurodegenerative diseases. In this study, we screened natural compounds to identify molecules that are effective on NSC cell fate determination. We found that Kuwanon V (KWV), which was isolated from the mulberry tree (Morus bombycis) root, increased neurogenesis in rat NSCs. In addition, during NSC differentiation, KWV increased cell survival and inhibited cell proliferation as shown by 5-bromo-2-deoxyuridine pulse experiments, Ki67 immunostaining and neurosphere forming assays. Interestingly, KWV enhanced neuronal differentiation and decreased NSC proliferation even in the presence of mitogens such as epidermal growth factor and fibroblast growth factor 2. KWV treatment of NSCs reduced the phosphorylation of extracellular signal-regulated kinase 1/2, increased mRNA expression levels of the cyclin-dependent kinase inhibitor p21, down-regulated Notch/Hairy expression levels and up-regulated microRNA miR-9, miR-29a and miR-181a. Taken together, our data suggest that KWV modulates NSC fate to induce neurogenesis, and it may be considered as a new drug candidate that can regenerate or protect neurons in neurodegenerative diseases. PMID:25706719

  5. Intracellular autocrine VEGF signaling promotes EBDC cell proliferation, which can be inhibited by Apatinib.

    PubMed

    Peng, Sui; Zhang, Yanyan; Peng, Hong; Ke, Zunfu; Xu, Lixia; Su, Tianhong; Tsung, Allan; Tohme, Samer; Huang, Hai; Zhang, Qiuyang; Lencioni, Riccardo; Zeng, Zhirong; Peng, Baogang; Chen, Minhu; Kuang, Ming

    2016-04-10

    Tumor cells produce vascular endothelial growth factor (VEGF) which can interact with membrane or cytoplasmic VEGF receptors (VEGFRs) to promote cell growth. We aimed to investigate the role of extracellular/intracellular autocrine VEGF signaling and Apatinib, a highly selective VEGFR2 inhibitor, in extrahepatic bile duct cancer (EBDC). We found conditioned medium or recombinant human VEGF treatment promoted EBDC cell proliferation through a phospholipase C-γ1-dependent pathway. This pro-proliferative effect was diminished by VEGF, VEGFR1 or VEGFR2 neutralizing antibodies, but more significantly suppressed by intracellular VEGFR inhibitor. The rhVEGF induced intracellular VEGF signaling by promoting nuclear accumulation of pVEGFR1/2 and enhancing VEGF promoter activity, mRNA and protein expression. Internal VEGFR2 inhibitor Apatinib significantly inhibited intracellular VEGF signaling, suppressed cell proliferation in vitro and delayed xenograft tumor growth in vivo, while anti-VEGF antibody Bevacizumab showed no effect. Clinically, overexpression of pVEGFR1 and pVEGFR2 was significantly correlated with poorer overall survival (P = .007 and P = .020, respectively). In conclusion, the intracellular autocrine VEGF loop plays a predominant role in VEGF-induced cell proliferation. Apatinib is an effective intracellular VEGF pathway blocker that presents a great therapeutic potential in EBDC. PMID:26805764

  6. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation.

    PubMed

    Li, Wenjuan; Zhang, Chunjing; Ren, Amy; Li, Teena; Jin, Rong; Li, Guohong; Gu, Xin; Shi, Runhua; Zhao, Yunfeng

    2015-01-01

    The M2 isoform of pyruvate kinase M2 (PKM2) has been shown to be up-regulated in human skin cancers. To test whether PKM2 may be a target for chemoprevention, shikonin, a natural product from the root of Lithospermum erythrorhizon and a specific inhibitor of PKM2, was used in a chemically-induced mouse skin carcinogenesis study. The results revealed that shikonin treatment suppressed skin tumor formation. Morphological examinations and immunohistochemical staining of the skin epidermal tissues suggested that shikonin inhibited cell proliferation without inducing apoptosis. Although shikonin alone suppressed PKM2 activity, it did not suppress tumor promoter-induced PKM2 activation in the skin epidermal tissues at the end of the skin carcinogenesis study. To reveal the potential chemopreventive mechanism of shikonin, an antibody microarray analysis was performed, and the results showed that the transcription factor ATF2 and its downstream target Cdk4 were up-regulated by chemical carcinogen treatment; whereas these up-regulations were suppressed by shikonin. In a promotable skin cell model, the nuclear levels of ATF2 were increased during tumor promotion, whereas this increase was inhibited by shikonin. Furthermore, knockdown of ATF2 decreased the expression levels of Cdk4 and Fra-1 (a key subunit of the activator protein 1. In summary, these results suggest that shikonin, rather than inhibiting PKM2 in vivo, suppresses the ATF2 pathway in skin carcinogenesis. PMID:25961580

  7. Blockade of MUC1 expression by glycerol guaiacolate inhibits proliferation of human breast cancer cells.

    PubMed

    Smith, J S; Colon, J; Madero-Visbal, R; Isley, B; Konduri, S D; Baker, C H

    2010-10-01

    We sought to determine whether administration of glycerol guaiacolate at an optimal biological dose inhibits human breast cancer cell growth. Human breast cancer MCF-7 and ZR-75-1 cells were treated with glycerol guaiacolate and the therapeutic efficacy and biological activity of this drug was investigated on breast cancer cell growth. MCF-7 cells were injected into the mammary fat pad of overectamized female athymic nude mice. Ten days later, animals were treated with daily intraperitoneal injections of glycerol guaiacolate for six weeks. Tumor size and volume was monitored and immunohistochemistry analysis on MUC1, p21 and ki-67 was performed. Glycerol guaiacolate decreased breast cancer cell growth in a dose-dependent manner, decreased cell migration, and caused G1 cell cycle arrest. Our results demonstrate that glycerol guaiacolate inhibits MUC1 protein and mRNA expression levels and significantly increased p21 expression in human breast cancer cells as well as induced PARP cleavage. Similarly, glycerol guaiacolate inhibited breast tumor growth in vivo as well as enhanced p21 expression and decreased breast tumor cell proliferation (ki-67 expression). Collectively, our results demonstrate that glycerol guaiacolate decreased MUC1 expression and enhanced cell growth inhibition by inducing p21 expression in breast cancer cells. These findings suggest that glycerol guaiacolate may provide a novel and effective approach for the treatment of human breast cancer. PMID:21184665

  8. Hedyotis diffusa Willd extract inhibits HT-29 cell proliferation via cell cycle arrest.

    PubMed

    Lin, Minghe; Lin, Jiumao; Wei, Lihui; Xu, Wei; Hong, Zhenfeng; Cai, Qiaoyan; Peng, Jun; Zhu, Dezeng

    2012-08-01

    Hedyotis diffusa Willd (HDW) has long been used as an important component in several Chinese medicine formulae to clinically treat various types of cancer, including colorectal cancer (CRC). Previously, we reported that HDW inhibits CRC growth via the induction of cancer cell apoptosis and the inhibition of tumor angiogenesis. In the present study, to further elucidate the mechanism of HDW-mediated antitumor activity, we investigated the effect of HDW ethanol extract (EEHDW) on the proliferation of HT-29 human colon carcinoma cells. We found that EEHDW reduced HT-29 cell viability and survival in a dose- and time-dependent manner. We also observed that EEHDW treatment blocked the cell cycle, preventing G1 to S progression, and reduced mRNA expression of pro-proliferative PCNA, Cyclin D1 and CDK4, but increased that of anti-proliferative p21. Our findings suggest that Hedyotis diffusa Willd may be an effective treatment for CRC via the suppression of cancer cell proliferation. PMID:23139718

  9. CXCL5 knockdown expression inhibits human bladder cancer T24 cells proliferation and migration

    SciTech Connect

    Zheng, Jiajia; Zhu, Xi; Zhang, Jie

    2014-03-28

    Highlights: • We first demonstrated CXCL5 is highly expressed in human bladder tumor tissues and cells. • CXCL5 knockdown inhibits proliferation, migration and promotes apoptosis in T24 cells. • CXCL5 knockdown inhibits Snail, PI3K-AKT and ERK1/2 signaling pathways in T24 cells. • CXCL5 is critical for bladder tumor growth and progression. - Abstract: CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCR and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy.

  10. IL-24 is Expressed During Wound Repair and Inhibits TGFα induced Migration and Proliferation of Keratinocytes

    PubMed Central

    Poindexter, Nancy J.; Williams, Ryan R.; Powis, Garth; Jen, Emily; Caudle, Abigail S.; Chada, Sunil; Grimm, Elizabeth A.

    2011-01-01

    Interleukin (IL)-24 is the protein product of melanoma differentiation-associated gene 7 (MDA-7). Originally identified as a tumor suppressor molecule, MDA-7 was renamed IL-24 and classified as a cytokine because of its chromosomal location in the IL-10 locus, its mRNA expression in leukocytes, and its secretory sequence elements. We previously reported that IL-24 is expressed by cytokine-activated monocytes and T lymphocytes. Here, we show that IL-24 is expressed in keratinocytes during wound repair. Paraffin-embedded tissues prepared from human skin sampled at days 2, 6, and 10 after wounding were examined by immunohistochemistry for expression of IL-24. Protein expression was detected in the keratinocyte population with maximum expression at days 2 and 6; and no expression by day 10 (4 of 4 subjects). In vitro studies showed that cytokines involved in wound repair, most notably TGFα, TGFβ, IFNγ and IFNβ, upregulated IL-24 protein expression in normal human epidermal keratinocytes (NHEK). Examination of the function of IL-24 in both in vitro wound repair and migration assays demonstrated that IL-24 inhibits TGFα induced proliferation and migration of NHEKs. These data support the hypothesis that IL-24 functions during an inflammatory response in the skin by inhibiting the proliferation and migration of keratinocytes. PMID:20545760

  11. Cisplatin Inhibits Hippocampal Cell Proliferation and Alters the Expression of Apoptotic Genes

    PubMed Central

    Manohar, Senthilvelan; Jamesdaniel, Samson; Salvi, Richard

    2014-01-01

    The hippocampus, which is critical for memory and spatial navigation, contains a proliferating stem cell niche that is especially vulnerable to anti-neoplastic drugs such as cisplatin. Although the damaging effects of cisplatin have recently been recognized, the molecular mechanisms underlying its toxic effects on this vital region are largely unknown. Using a focused apoptosis gene array, we analyzed the early cisplatin-induced changes in gene expression in the hippocampus of adult Sprague-Dawley rats and compared the results to those from the inferior colliculus, a non-mitotic auditory region resistant to cisplatin-induced cell death. Two days after a 12 mg/kg dose of cisplatin, significant increases were observed in five proapoptotic genes Bik, Bid, Bok, Trp53p2 and Card6 and a significant decrease in one antiapoptotic gene Bcl2a1. In contrast, Nol3, an antiapoptotic gene showed a significant increase in expression. The cisplatin-induced increase in Bid mRNA and decrease in Bcl2a1 mRNA was accompanied by a corresponding increase and decrease of their respective proteins in the hippocampus. In contrast, the cisplatin-induced changes in Bcl2a1, Bid, Bik and Bok gene expression in the inferior colliculus were strikingly different from those in the hippocampus consistent with the greater susceptibility of the hippocampus to cisplatin toxicity. Cisplatin also significantly reduced immunolabeling of the cell proliferation marker Ki67 in the subgranular zone (SGZ) of the hippocampus two days post treatment. These results indicate that cisplatin-induced hippocampal cell death is mediated by increased expression of proapoptotic and antiapoptotic genes and proteins that likely inhibit hippocampal cell proliferation. PMID:24277158

  12. Proliferation of macrophages due to the inhibition of inducible nitric oxide synthesis by oxidized low-density lipoproteins

    PubMed Central

    Brunner, Monika; Gruber, Miriam; Schmid, Diethart; Baran, Halina; Moeslinger, Thomas

    2015-01-01

    Oxidized low-density lipoprotein (ox-LDL) is assumed to be a major causal agent in hypercholesteraemia-induced atherosclerosis. Because the proliferation of lipid-loaden macrophages within atherosclerotic lesions has been described, we investigated the dependence of macrophage proliferation on the inhibition of inducible nitric oxide synthase (iNOS) by hypochlorite oxidized LDL. Ox-LDL induces a dose dependent inhibition of inducible nitric oxide synthesis in lipopolysaccharide-interferon stimulated mouse macrophages (J774.A1) with concomitant macrophage proliferation as assayed by cell counting, tritiated-thymidine incorporation and measurement of cell protein. Native LDL did not influence macrophage proliferation and inducible nitric oxide synthesis. iNOS protein and mRNA was reduced by HOCl-oxidized LDL (0-40 µg/ml) as revealed by immunoblotting and competitive semiquantitative PCR. Macrophage proliferation was increased by the addition of the iNOS inhibitor L-NAME. The addition of ox-LDL to L-NAME containing incubations induced no further statistically significant increase in cell number. Nitric oxide donors decreased ox-LDL induced macrophage proliferation and nitric oxide scavengers restored macrophage proliferation to the initial values achieved by ox-LDL. The decrease of cytosolic DNA fragments in stimulated macrophages incubated with ox-LDL demonstrates that the proliferative actions of ox-LDL are associated with a decrease of NO-induced apoptosis. Our data show that inhibition of iNOS dependent nitric oxide production caused by hypochlorite oxidized LDL enhances macrophage proliferation. This might be a key event in the pathogenesis of atherosclerotic lesions. PMID:26600745

  13. BmKCT toxin inhibits glioma proliferation and tumor metastasis.

    PubMed

    Fan, Shaozhong; Sun, Zhengbo; Jiang, Dahe; Dai, Chao; Ma, Yibao; Zhao, Zhenhuan; Liu, Hui; Wu, Yingliang; Cao, Zhijian; Li, Wenxin

    2010-05-28

    Malignant gliomas are the most common primary brain tumors associated with significant morbidity and mortality. How to target the tumor in situ, and inhibit tumor cell proliferation and invasion is the key for therapy. Gliomas express a glioma-specific chloride ion channel that is sensitive to toxins including BmKCT. In the current study, the inhibitory effect of BmKCT on glioma growth was observed in vivo using the glioma/SD rat model. Furthermore, BmKCT prevented the metastasis of glioma cells in vivo. Moreover, biodistribution experiments with (l3l)I-labeled or Cy5.5-conjugated BmKCT revealed that BmKCT selectively targeted the glioma in situ. Our data suggest that BmKCT could be exploited as a potential therapeutic for glioma diagnosis and therapy. PMID:19906483

  14. Silencing of CDC42 inhibits neuroblastoma cell proliferation and transformation

    PubMed Central

    Lee, Sora; Craig, Brian T.; Romain, Carmelle V.; Qiao, Jingbo; Chung, Dai H.

    2014-01-01

    Cell division cycle 42 (CDC42), a small GTPase of the Rho-subfamily, regulates diverse cellular functions including proliferation, cytoskeletal rearrangement and even promotes malignant transformation. Here, we found that increased expression of CDC42 correlated with undifferentiated neuroblastoma as compared to a more benign phenotype. CDC42 inhibition decreased cell growth and soft agar colony formation, and increased cell death in BE(2)-C and BE(2)-M17 cell lines, but not in SK-N-AS. In addition, silencing of CDC42 decreased expression of N-myc in BE(2)-C and BE(2)-M17 cells. Our findings suggest that CDC42 may play a role in the regulation of aggressive neuroblastoma behavior. PMID:25264923

  15. Amlodipine inhibits cell proliferation via PKD1-related pathway

    SciTech Connect

    Ohba, Takayoshi; Watanabe, Hiroyuki; Murakami, Manabu; Radovanovic, Milena; Iino, Kenji; Ishida, Masaru; Tosa, Shinya; Ono, Kyoichi; Ito, Hiroshi

    2008-05-02

    Human coronary artery smooth muscle cell (hCASMC) proliferation is involved in the progression of coronary artery disease. Amlodipine, a widely used antihypertensive drug, exerts antiproliferative effects by increasing the expression of p21{sup (Waf1/Cip1)}. Polycystic kidney disease 1 (PKD1) is also involved in cell cycle inhibition via p21{sup (Waf1/Cip1)} up-regulation. We clarified the involvement of PKD1-related signaling on hCASMCs. Cultured hCASMCs, which constitutively express PKD1, were stimulated with 5% serum. Amlodipine increased p21{sup (Waf1/Cip1)} expression in a dose- and time-dependent manner, resulting in reduced hCASMC proliferation. The inhibitory effect of amlodipine was mimicked by overexpression of PKD1 and was reversed by a dominant-negative version of PKD1 (R4227X). Immunoblot analysis showed that phosphorylated JAK2 was increased by amlodipine treatment or PKD1 overexpression. A luciferase assay revealed that the overexpression of PKD1 induced STAT1 enhancer activity. These data suggest that PKD1 contributes to the antiproliferative effect of amlodipine on hCASMCs via JAK/STAT signaling and p21{sup (Waf1/Cip1)} up-regulation.

  16. Liver epithelial cells inhibit proliferation and invasiveness of hepatoma cells.

    PubMed

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Jeng, Wen-Juei; Sheen, I-Shyan; Li, Shih-Yun; Hung, Zih-Hang; Hsiau, Hsin-I; Yu, Ming-Che; Chang, Chiung-Fang

    2016-03-01

    Hepatocellular carcinoma (HCC) is a worldwide malignancy with poor prognosis. Liver progenitors or stem cells could be a potential therapy for HCC treatment since they migrate toward tumors. Rat liver epithelial (RLE) cells have both progenitor and stem cell-like properties. Therefore, our study elucidated the therapeutic effect of RLE cells in rat hepatoma cells. RLE cells were isolated from 10-day old rats and characterized for stem cell marker expression. RLE cells and rat hepatoma cells (H4-IIE-C3 cells) were co-cultured and divided into four groups with different ratios of RLE and hepatoma cells. Group A had only rat hepatoma cells as a control group. The ratios of rat hepatoma and RLE cells in group B, C and D were 5:1, 1:1 and 1:5, respectively. Effective inhibition of cell proliferation and migration was found in group D when compared to group A. There was a significant decrease in Bcl2 expression and increase in late apoptosis of rat hepatoma cells when adding more RLE cells. RLE cells reduced cell proliferation and migration of rat hepatoma cells. These results suggested that RLE cells could be used as a potential cell therapy. PMID:26647726

  17. Hydroxyurea treatment inhibits proliferation of Cryptococcus neoformans in mice.

    PubMed

    Tripathi, Kaushlendra; Mor, Visesato; Bairwa, Narendra K; Del Poeta, Maurizio; Mohanty, Bidyut K

    2012-01-01

    The fungal pathogen Cryptococcus neoformans (Cn) is a serious threat to immunocompromised individuals, especially for HIV patients who develop meningoencephalitis. For effective cryptococcal treatment, novel antifungal drugs or innovative combination therapies are needed. Recently, sphingolipids have emerged as important bioactive molecules in the regulation of microbial pathogenesis. Previously we reported that the sphingolipid pathway gene, ISC1, which is responsible for ceramide production, is a major virulence factor in Cn infection. Here we report our studies of the role of ISC1 during genotoxic stress induced by the antineoplastic hydroxyurea (HU) and methyl methanesulfonate (MMS), which affect DNA replication and genome integrity. We observed that Cn cells lacking ISC1 are highly sensitive to HU and MMS in a rich culture medium. HU affected cell division of Cn cells lacking the ISC1 gene, resulting in cell clusters. Cn ISC1, when expressed in a Saccharomyces cerevisiae (Sc) strain lacking its own ISC1 gene, restored HU resistance. In macrophage-like cells, although HU affected the proliferation of wild type (WT) Cn cells by 50% at the concentration tested, HU completely inhibited Cn isc1Δ cell proliferation. Interestingly, our preliminary data show that mice infected with WT or Cn isc1Δ cells and subsequently treated with HU had longer lifespans than untreated, infected control mice. Our work suggests that the sphingolipid pathway gene, ISC1, is a likely target for combination therapy with traditional drugs such as HU. PMID:22783238

  18. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor

    SciTech Connect

    Kato, Haruo Sekine, Yoshitaka; Furuya, Yosuke; Miyazawa, Yoshiyuki; Koike, Hidekazu; Suzuki, Kazuhiro

    2015-05-22

    Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metformin significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling.

  19. miR-150 inhibits terminal erythroid proliferation and differentiation

    PubMed Central

    Sun, Zhiwei; Wang, Ye; Han, Xu; Zhao, Xielan; Peng, Yuanliang; Li, Yusheng; Peng, Minyuan; Song, Jianhui; Wu, Kunlu; Sun, Shumin; Zhou, Weihua; Qi, Biwei; Zhou, Chufan; Chen, Huiyong; An, Xiuli; Liu, Jing

    2015-01-01

    MicroRNAs (miRNAs), a class of small non-coding linear RNAs, have been shown to play a crucial role in erythropoiesis. To evaluate the indispensable role of constant suppression of miR-150 during terminal erythropoiesis, we performed miR-150 gain- and loss-of-function experiments on hemin-induced K562 cells and EPO-induced human CD34+ cells. We found that forced expression of miR-150 suppresses commitment of hemoglobinization and CD235a labeling in both cell types. Erythroid proliferation is also inhibited via inducing apoptosis and blocking the cell cycle when miR-150 is overexpressed. In contrast, miR-150 inhibition promotes terminal erythropoiesis. 4.1 R gene is a new target of miR-150 during terminal erythropoiesis, and its abundance ensures the mechanical stability and deformability of the membrane. However, knockdown of 4.1 R did not affect terminal erythropoiesis. Transcriptional profiling identified more molecules involved in terminal erythroid dysregulation derived from miR-150 overexpression. These results shed light on the role of miR-150 during human terminal erythropoiesis. This is the first report highlighting the relationship between miRNA and membrane protein and enhancing our understanding of how miRNA works in the hematopoietic system. PMID:26543232

  20. Human peroxisome proliferator-activated receptor mRNA and protein expression during development

    EPA Science Inventory

    The peroxisome proliferator-activated receptors (PPAR) are nuclear hormone receptors that regulate lipid and glucose homeostasis and are important in reproduction and development. PPARs are targets ofpharmaceuticals and are also activated by environmental contaminants, including ...

  1. Toll-Like Receptor 2 Mediates Proliferation, Survival, NF-κB Translocation, and Cytokine mRNA Expression in LIF-Maintained Mouse Embryonic Stem Cells

    PubMed Central

    Taylor, Tammi; Kim, Young-June; Ou, Xuan; Derbigny, Wilbert

    2010-01-01

    Toll-like receptor (TLR) activation is important in immune responses and in differentiation of hematopoietic stem cells. We detected mRNA expression of TLRs 1, 2, 3, 5, and 6, but not TLRs 4, 7, 8, and 9 in murine (m)ESC line E14, and noted high cell surface protein expression of TLR2, but not TLR4, for mESC lines R1, CGR8, and E14. ESC lines were cultured in the presence of leukemia inhibitory factor (LIF). Pam3Cys enhanced proliferation and survival of the 3 ESC lines. In contrast, lipopolysaccharide (LPS) decreased proliferation and survival. Pam3Cys and LPS effects on proliferation and survival were blocked by antibody to TLR2, suggesting that effects of both Pam3Cys and LPS on these mESC lines were likely mediated through TLR2. E14 ESC line expressed MyD88. Pam3Cys stimulation of E14 ESCs was associated with induced NF-κB translocation, enhanced phosphorylation of IKK-α/β, and enhanced mRNA, but not protein, expression of tumor necrosis factor-α, interferon-γ, and IL-6. TLR2 activation by Pam3Cys or inhibition by LPS was not associated with changes in morphology or expression of alkaline phosphatase, Oct4, SSEA1, KLF4, or Sox2, markers of undifferentiated mESCs. Our studies identify TLR2 as present and functional in E14, R1, and CGR8 mESC lines. PMID:20132051

  2. Actein Inhibits Cell Proliferation and Migration in Human Osteosarcoma

    PubMed Central

    Chen, Zhi; Wu, Jingdong; Guo, Qinghao

    2016-01-01

    Background Osteosarcoma is one of the most common malignant bone cancers worldwide. Although the traditional chemotherapies have made some progression in the past decades, the mortality of osteosarcoma in children and adolescent is very high. Herein, the role of actein in osteosarcoma was explored. Material/Methods Cell viability assay was performed in osteosarcoma cell lines 143B and U2OS. Colony formation analysis was included when cells were treated with different doses of actin. Cell cycle assay was conducted to further examine the role of actein. Cell apoptotic rate and the relative activities of caspase-3, caspase-8, and caspase-9 were detected in 143B and U2OS osteosarcoma cells. Moreover, transwell assays were used to explore the effects of actein on cell metastasis. Results Actein significantly inhibited osteosarcoma cell viability in a time- and dose-dependent manner. Actein also dramatically suppressed the colony formation ability in osteosarcoma143B and U2OS cells. It was revealed that osteosarcoma cells were arrested in G0/G1 phase in the cell cycle progression and induced to apoptosis by administration of actein. The activities of pro-apoptotic factors such as caspase-3 and caspase-9 were significantly increased by actein. Furthermore, administration of actein decreased cell migrated and invasive abilities in both 143B and U2OS cell lines. Conclusions Actein inhibits tumor growth by inducing cell apoptosis in osteosarcoma. The inhibitive roles of actein in cell proliferation, migration and invasion suggest that actein may serve as a potential therapeutic agent in the treatment of osteosarcoma. PMID:27173526

  3. Inhibition of NF-kappaB stabilizes gadd45alpha mRNA.

    PubMed

    Zheng, Xue; Zhang, Yadong; Chen, Yu-Quan; Castranova, Vince; Shi, Xianglin; Chen, Fei

    2005-04-01

    Growth arrest- and DNA damage-inducible protein alpha (gadd45alpha) is an important regulator for cell cycle, genomic stability, and cell apoptosis. In the present report, we demonstrated that NF-kappaB inhibition due to Ikkbeta deficiency enhanced the stability of gadd45alpha mNRA. Using embryo fibroblast cells derived from wild type (wt) or Ikkbeta gene knockout (Ikkbeta(-/-)) mice, reverse transcription-polymerase chain reaction revealed a three- to fourfold increase of gadd45alpha mRNA in Ikkbeta(-/-) cells compared with wt cells. The deficiency in Ikkbeta substantially decreased basal NF-kappaB activity and increased accumulation of reactive oxygen species (ROS). However, such deficiency had no effect on the basal expression or activity of Akt, FoxO3a, p53, and c-myc that regulate the transcription of gadd45alpha gene positively or negatively. Analysis of gadd45alpha mRNA stability showed a ROS-dependent increase in the half-life of gadd45alpha mRNA in Ikkbeta(-/-) cells. Immunoprecipitation experiments indicated an increased binding of a RNA stabilizing protein, nucleolin, to gadd45alpha mRNA in Ikkbeta(-/-) cells. The binding of nucleolin to gadd45alpha mRNA could be prevented by the antioxidant, N-acetyl-cysteine. Thus, these data are the first to suggest that inhibition of Ikkbeta-NF-kappaB signaling up-regulates the expression of gadd45alpha mNRA through a post-transcriptional, rather than a transcriptional, mechanism. PMID:15721278

  4. Diosgenin relieves goiter via the inhibition of thyrocyte proliferation in a mouse model of Graves' disease

    PubMed Central

    Cai, Hu; Wang, Zhe; Zhang, Hai-qing; Wang, Fu-rong; Yu, Chun-xiao; Zhang, Feng-xia; Gao, Ling; Zhang, Jian; Zhao, Jia-jun

    2014-01-01

    Aim: To investigate the effects of diosgenin (Dio), a naturally occurring steroid saponin, on goiter formation in a mouse model of Graves' disease (GD) and the underlying mechanisms. Methods: Female BALB/c mice were injected with adenovirus expressing the A subunit of thyrotropin receptor to induce GD. The mice were treated with Dio (20, 100 mg·kg−1·d−1, ip) for 12 or 24 d. The serum levels of TT4 and TRAb were examined using radioimmunoassay and electrochemiluminescence. The size and morphology of thyroid glands were examined. Thyrocyte proliferation was determined using BrdU incorporation assay. The expression of proliferation-associated proteins IGF-1, NF-κB, cyclin D1, and PCNA in thyroids was analyzed using immunohistochemistry and real-time PCR. Results: The GD mice showed significantly high serum levels of TRAb and TT4 compared to the normal mice. Treatment of the GD mice with Dio for 24 d dose-dependently reduced the TT4 level and thyroid size, but did not affect the abnormal level of TRAb. Furthermore, Dio treatment dose-dependently reversed the morphological changes and reduced excessive thyrocyte proliferation in thyroids of the GD mice. Dio treatment also dose-dependently reduced the mRNA and protein levels of IGF-1, NF-κB, cyclin D1, and PCNA in thyroids of the GD mice. Conclusion: Dio relieves goiter in a mouse model of GD through the inhibition of thyrocyte proliferation. The mechanisms involve the suppression of IGF-1, NF-κB, cyclin D1, and PCNA expression. PMID:24241350

  5. Inhibition of CD25 (IL-2R alpha) expression and T-cell proliferation by polyclonal anti-thymocyte globulins.

    PubMed Central

    Bonnefoy-Berard, N; Verrier, B; Vincent, C; Revillard, J P

    1992-01-01

    Anti-lymphocyte and anti-thymocyte globulins (ATG) are currently used as immunosuppressive agents in organ transplantation. Their administration in vivo may induce not only lymphocyte depletion but also functional effects which were investigated in the present study. In vitro ATG inhibited T-cell proliferation induced by monocyte-dependent T-cell mitogens, like CD3 antibodies, phytohaemagglutinin (PHA) and concanavalin A (Con A), by monocyte-independent mitogens, like CD2 antibodies, or by protein kinase C activators (phorbol esters) associated with a calcium ionophore. The inhibitory effect of ATG was therefore not solely accounted for by a suppression of co-stimulatory signals delivered by monocytes, but rather implied a direct action on T cells. Addition of recombinant human interleukin-2 (rIL-2) did not overcome the inhibition. Suppression of T-cell proliferation by ATG was characterized by normal RNA synthesis and IL-2 secretion contrasting with markedly reduced expression of the CD25 protein [p55, the alpha-chain of interleukin-2 receptor (IL-2R)] both in cytoplasm and on T-cell membrane, as well as a decreased secretion of interferon-gamma (IFN-gamma). Northern blot analysis revealed increased levels of CD25 and IFN-gamma mRNA, suggesting a post-transcriptional inhibition of these molecules, whereas IL-2 mRNA levels were unchanged. These data demonstrate that inhibition of T-cell proliferation by ATG can be attributed primarily to a post-transcriptional defect of CD25 expression, implying a novel mechanism different from those described with other immunosuppressive agents. Blocking of T-cell proliferation in the late G1 phase of the cell cycle may contribute to the immunosuppressive activity of ATG in prophylactic treatment of allograft rejection. Images Figure 2 PMID:1398765

  6. Delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells.

    PubMed

    Song, Seung Eun; Jo, Hye Jun; Kim, Yong-Woon; Cho, Young-Je; Kim, Jae-Ryong; Park, So-Young

    2016-04-01

    This study examined the effect of delphinidin on high glucose-induced cell proliferation and collagen synthesis in mesangial cells. Glucose dose-dependently (5.6-25 mM) increased cell proliferation and collagen I and IV mRNA levels, whereas pretreatment with delphinidin (50 μM) prevented cell proliferation and the increased collagen mRNA levels induced by high glucose (25 mM). High glucose increased reactive oxygen species (ROS) generation, and this was suppressed by pretreating delphinidin or the antioxidant N-acetyl cysteine. NADPH oxidase (NOX) 1 was upregulated by high glucose, but pretreatment with delphinidin abrogated this upregulation. Increased mitochondrial superoxide by 25 mM glucose was also suppressed by delphinidin. The NOX inhibitor apocynin and mitochondria-targeted antioxidant Mito TEMPO inhibited ROS generation and cell proliferation induced by high glucose. Phosphorylation of extracellular signal regulated kinase (ERK)1/2 was increased by high glucose, which was suppressed by delphinidin, apocynin or Mito TEMPO. Furthermore, PD98059 (an ERK1/2 inhibitor) prevented the high glucose-induced cell proliferation and increased collagen mRNA levels. Transforming growth factor (TGF)-β protein levels were elevated by high glucose, and pretreatment with delphinidin or PD98059 prevented this augmentation. These results suggest that delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells. PMID:27103328

  7. Prostacyclin Analogue Beraprost Inhibits Cardiac Fibroblast Proliferation Depending on Prostacyclin Receptor Activation through a TGF β-Smad Signal Pathway

    PubMed Central

    Yao, Wenjuan; Zhu, Hongyan; Xu, Xiaole; Meng, Guoliang; Zhang, Wei

    2014-01-01

    Previous studies showed that prostacyclin inhibited fibrosis. However, both receptors of prostacyclin, prostacyclin receptor (IP) and peroxisome proliferator-activated receptor (PPAR), are abundant in cardiac fibroblasts. Here we investigated which receptor was vital in the anti-fibrosis effect of prostacyclin. In addition, the possible mechanism involved in protective effects of prostacyclin against cardiac fibrosis was also studied. We found that beraprost, a prostacyclin analogue, inhibited angiotensin II (Ang II)-induced neonatal rat cardiac fibroblast proliferation in a concentration-dependent and time-dependent manner. Beraprost also suppressed Ang II-induced collagen I mRNA expression and protein synthesis in cardiac fibroblasts. After IP expression was knocked down by siRNA, Ang II-induced proliferation and collagen I synthesis could no longer be rescued by beraprost. However, treating cells with different specific inhibitors of PPAR subtypes prior to beraprost and Ang II stimulation, all of the above attenuating effects of beraprost were still available. Moreover, beraprost significantly blocked transforming growth factor β (TGF β) expression as well as Smad2 phosphorylation and reduced Smad-DNA binding activity. Beraprost also increased phosphorylation of cAMP response element binding protein (CREB) at Ser133 in the nucleus. Co-immunoprecipitation analysis revealed that beraprost increased CREB but decreased Smad2 binding to CREB-binding protein (CBP) in nucleus. In conclusion, beraprost inhibits cardiac fibroblast proliferation by activating IP and suppressing TGF β-Smad signal pathway. PMID:24852754

  8. Regulation of PMP22 mRNA by G3BP1 affects cell proliferation in breast cancer cells

    PubMed Central

    2013-01-01

    Background Regulation of mRNAs is one way to control protein levels and thereby important cellular processes such as growth, invasion and apoptosis. G3BPs constitute a family of mRNA-binding proteins, shown to be overexpressed in several cancer types, including breast, colon and pancreas cancer. G3BP has been reported to both stabilize and induce degradation of specific mRNAs. Results Here, we show that G3BP1, but not G3BP2, supports proliferation of several breast cancer cell lines. Global gene expression analyses of G3BP1- and G3BP2-depleted cells indicate that primarily G3BP1, and much less G3BP2, influences mRNA expression levels. Peripheral myelin protein 22 (PMP22) was one gene that was significantly influenced by G3BP1 depletion which led to a 2–3 fold increased expression. Depletion of PMP22 resulted in increased proliferation and the G3BP1-mediated effect on proliferation was not seen upon PMP22-depletion. Conclusions This indicates a novel role for G3BP1 in the regulation of cell proliferation in breast cancer cells, perhaps via a regulatory effect on PMP22 expression. PMID:24321297

  9. Dehydroepiandrosterone inhibits cell proliferation and improves viability by regulating S phase and mitochondrial permeability in primary rat Leydig cells

    PubMed Central

    LIU, LIN; WANG, DIAN; LI, LONGLONG; DING, XIAO; MA, HAITIAN

    2016-01-01

    Dehydroepiandrosterone (DHEA) is widely used as a nutritional supplement and exhibits putative anti-aging properties. However, the molecular basis of the actions of DHEA, particularly on the biological characteristics of target cells, remain unclear. The aim of the current study was to investigate the effects of DHEA on cell viability, cell proliferation, cell cycle and mitochondrial function in primary rat Leydig cells. Adult Leydig cells were purified by Percoll gradient centrifugation, and cell proliferation was detected using a Click-iT® EdU Assay kit and cell cycle assessment performed using flow cytometry. Mitochondrial membrane potential was detected using JC-1 staining assay. The results of the current study demonstrate that DHEA decreased cell proliferation in a dose-dependent manner, whereas it improved cell viability in a time-dependent and dose-dependent manner. Flow cytometry analysis demonstrated that DHEA treatment increased the S phase cell population and decreased the G2/M cell population. Cyclin A and CDK2 mRNA levels were decreased in primary rat Leydig cells following DHEA treatment. DHEA treatment decreased the transmembrane electrical gradient in primary Leydig cells, whereas treatment significantly increased succinate dehydrogenase activity. These results indicated that DHEA inhibits primary rat Leydig cell proliferation by decreasing cyclin mRNA level, whereas it improves cells viability by modulating the permeability of the mitochondrial membrane and succinate dehydrogenase activity. These findings may demonstrate an important molecular mechanism by which DHEA activity is mediated. PMID:27220727

  10. Dehydroepiandrosterone inhibits cell proliferation and improves viability by regulating S phase and mitochondrial permeability in primary rat Leydig cells.

    PubMed

    Liu, Lin; Wang, Dian; Li, Longlong; Ding, Xiao; Ma, Haitian

    2016-07-01

    Dehydroepiandrosterone (DHEA) is widely used as a nutritional supplement and exhibits putative anti‑aging properties. However, the molecular basis of the actions of DHEA, particularly on the biological characteristics of target cells, remain unclear. The aim of the current study was to investigate the effects of DHEA on cell viability, cell proliferation, cell cycle and mitochondrial function in primary rat Leydig cells. Adult Leydig cells were purified by Percoll gradient centrifugation, and cell proliferation was detected using a Click-iT® EdU Assay kit and cell cycle assessment performed using flow cytometry. Mitochondrial membrane potential was detected using JC-1 staining assay. The results of the current study demonstrate that DHEA decreased cell proliferation in a dose‑dependent manner, whereas it improved cell viability in a time‑dependent and dose‑dependent manner. Flow cytometry analysis demonstrated that DHEA treatment increased the S phase cell population and decreased the G2/M cell population. Cyclin A and CDK2 mRNA levels were decreased in primary rat Leydig cells following DHEA treatment. DHEA treatment decreased the transmembrane electrical gradient in primary Leydig cells, whereas treatment significantly increased succinate dehydrogenase activity. These results indicated that DHEA inhibits primary rat Leydig cell proliferation by decreasing cyclin mRNA level, whereas it improves cells viability by modulating the permeability of the mitochondrial membrane and succinate dehydrogenase activity. These findings may demonstrate an important molecular mechanism by which DHEA activity is mediated. PMID:27220727

  11. The Consensus 5' Splice Site Motif Inhibits mRNA Nuclear Export

    PubMed Central

    Lee, Eliza S.; Akef, Abdalla; Mahadevan, Kohila; Palazzo, Alexander F.

    2015-01-01

    In eukaryotes, mRNAs are synthesized in the nucleus and then exported to the cytoplasm where they are translated into proteins. We have mapped an element, which when present in the 3’terminal exon or in an unspliced mRNA, inhibits mRNA nuclear export. This element has the same sequence as the consensus 5’splice site motif that is used to define the start of introns. Previously it was shown that when this motif is retained in the mRNA, it causes defects in 3’cleavage and polyadenylation and promotes mRNA decay. Our new data indicates that this motif also inhibits nuclear export and promotes the targeting of transcripts to nuclear speckles, foci within the nucleus which have been linked to splicing. The motif, however, does not disrupt splicing or the recruitment of UAP56 or TAP/Nxf1 to the RNA, which are normally required for nuclear export. Genome wide analysis of human mRNAs, lncRNA and eRNAs indicates that this motif is depleted from naturally intronless mRNAs and eRNAs, but less so in lncRNAs. This motif is also depleted from the beginning and ends of the 3’terminal exons of spliced mRNAs, but less so for lncRNAs. Our data suggests that the presence of the 5’splice site motif in mature RNAs promotes their nuclear retention and may help to distinguish mRNAs from misprocessed transcripts and transcriptional noise. PMID:25826302

  12. [Knockdown of angiopoietin-like protein 4 inhibits proliferation and promotes apoptosis in cervical cancer SiHa cells].

    PubMed

    Nie, Dan; Liu, Ling; Xia, Jiyi; Wang, Chunyan; Zhan, Ping; Mao, Xiguang

    2016-04-01

    Objective To investigate the effect of lentivirus-mediated shRNA silencing of angiopoietin-like protein 4 (ANGPTL4) on the proliferation and apoptosis of cervical cancer SiHa cells. Methods The ANGPTL4 lentiviral vectors were used to transfect SiHa cells. Real-time quantitative PCR (qRT-PCR) and Western blotting were respectively used to detect ANGPTL4 expression at mRNA and protein levels. The proliferation ability of SiHa cells after transfection was assessed by MTT assay and colony formation assay. The cell cycle was examined by flow cytometry. The annexin V-phycoerythrin/7-aminoactinomycin D (annexin V-PE/7-AAD) staining combined with flow cytometry was used to examine the effect of ANGPTL4 silence on the apoptosis of SiHa cells. Results After the ANGPTL4 lentiviral vectors were transfected into SiHa cells, qRT-PCR and Western blotting showed that the expression of ANGPTL4 mRNA and protein were significantly inhibited in LV3-ANGPTL4 group. The MTT assay showed that the proliferation ability of SiHa cells in LV3-ANGPTL4 group was also inhibited. Colony formation assay revealed that the colony number in LV3-ANGPTL4 group was reduced. The cells in G0/G1 phase and the apoptosis rate increased in LV3-ANGPTL4 group. Conclusion The lentivirus-mediated ANGPTL4 shRNA can inhibit the proliferation, induce the cell cycle arrest in G0/G1 phase, and promote the apoptosis in SiHa cells. PMID:27053616

  13. Inhibition of vaccinia mRNA methylation by 2',5'-linked oligo(adenylic acid) triphosphate

    SciTech Connect

    Sharma, O.K.; Goswami, B.B.

    1981-04-01

    Extracts of interferon-treated cells synthesize unique 2',5'-linked oligo(adenylic acid) 5'-phosphates in the presence of ATP and double-stranded RNA. 2',5'-linked oligo(adenylic acid) 5'-triphosphate inhibits protein synthesis at nanomolar concentrations by activating RNase. We have observed that oligo(adenylic acid) 5'-monophosphate and 5'-triphosphate are potent inhibitors of vaccinia mRNA methylation in vitro. Both the methylation of the 5'-terminal guanine at the 7 position and the 2'-O-ribose methylation of the penultimate nucleoside are inhibited. Such inhibition of mRNA methylation is not due to degradation of the mRNA. Inhibition of the requisite modification of the 5' terminus of mRNA by 2',5'-linked oligo(adenylic acids) may be a mechanism of interferon action against both DNA and RNA viruses in which mRNAs derived from them are capped.

  14. Overexpression of Tau Downregulated the mRNA Levels of Kv Channels and Improved Proliferation in N2A Cells

    PubMed Central

    Li, Xiantao; Hu, Ximu; Li, Xiaoqing; Hao, Xuran

    2015-01-01

    Microtubule binding protein tau has a crucial function in promoting the assembly and stabilization of microtubule. Besides tuning the action potentials, voltage-gated K+ channels (Kv) are important for cell proliferation and appear to play a role in the development of cancer. However, little is known about the possible interaction of tau with Kv channels in various tissues. In the present study, tau plasmids were transiently transfected into mouse neuroblastoma N2A cells to explore the possible linkages between tau and Kv channels. This treatment led to a downregulation of mRNA levels of several Kv channels, including Kv2.1, Kv3.1, Kv4.1, Kv9.2, and KCNH4, but no significant alteration was observed for Kv5.1 and KCNQ4. Furthermore, the macroscopic currents through Kv channels were reduced by 36.5% at +60 mV in tau-tranfected N2A cells. The proliferation rates of N2A cells were also improved by the induction of tau expression and the incubation of TEA (tetraethylammonium) for 48 h by 120.9% and 149.3%, respectively. Following the cotransfection with tau in HEK293 cells, the mRNA levels and corresponding currents of Kv2.1 were significantly declined compared with single Kv2.1 transfection. Our data indicated that overexpression of tau declined the mRNA levels of Kv channels and related currents. The effects of tau overexpression on Kv channels provided an alternative explanation for low sensitivity to anti-cancer chemicals in some specific cancer tissues. PMID:25590133

  15. Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export

    PubMed Central

    Zhang, Liang; Das, Priyabrata; Schmolke, Mirco; Manicassamy, Balaji; Wang, Yaming; Deng, Xiaoyi; Cai, Ling; Tu, Benjamin P.; Forst, Christian V.; Roth, Michael G.; Levy, David E.; García-Sastre, Adolfo; de Brabander, Jef; Phillips, Margaret A.

    2012-01-01

    The NS1 protein of influenza virus is a major virulence factor essential for virus replication, as it redirects the host cell to promote viral protein expression. NS1 inhibits cellular messenger ribonucleic acid (mRNA) processing and export, down-regulating host gene expression and enhancing viral gene expression. We report in this paper the identification of a nontoxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of the virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for de novo pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of vesicular stomatitis virus M (matrix) protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors. PMID:22312003

  16. SPARC expression in CML is associated to imatinib treatment and to inhibition of leukemia cell proliferation

    PubMed Central

    2013-01-01

    Background SPARC is a matricellular glycoprotein with growth-inhibitory and antiangiogenic activity in some cell types. The study of this protein in hematopoietic malignancies led to conflicting reports about its role as a tumor suppressor or promoter, depending on its different functions in the tumor microenvironment. In this study we investigated the variations in SPARC production by peripheral blood cells from chronic myeloid leukemia (CML) patients at diagnosis and after treatment and we identified the subpopulation of cells that are the prevalent source of SPARC. Methods We evaluated SPARC expression using real-time PCR and western blotting. SPARC serum levels were detected by ELISA assay. Finally we analyzed the interaction between exogenous SPARC and imatinib (IM), in vitro, using ATP-lite and cell cycle analysis. Results Our study shows that the CML cells of patients at diagnosis have a low mRNA and protein expression of SPARC. Low serum levels of this protein are also recorded in CML patients at diagnosis. However, after IM treatment we observed an increase of SPARC mRNA, protein, and serum level in the peripheral blood of these patients that had already started at 3 months and was maintained for at least the 18 months of observation. This SPARC increase was predominantly due to monocyte production. In addition, exogenous SPARC protein reduced the growth of K562 cell line and synergized in vitro with IM by inhibiting cell cycle progression from G1 to S phase. Conclusion Our results suggest that low endogenous SPARC expression is a constant feature of BCR/ABL positive cells and that IM treatment induces SPARC overproduction by normal cells. This exogenous SPARC may inhibit CML cell proliferation and may synergize with IM activity against CML. PMID:23383963

  17. Naltrindole inhibits human multiple myeloma cell proliferation in vitro and in a murine xenograft model in vivo.

    PubMed

    Mundra, Jyoti Joshi; Terskiy, Alexandra; Howells, Richard D

    2012-08-01

    It has been demonstrated previously that immune cell activation and proliferation were sensitive to the effects of naltrindole, a nonpeptidic δ-opioid receptor-selective antagonist; therefore, we hypothesized that human multiple myeloma (MM) would be a valuable model for studying potential antineoplastic properties of naltrindole. [(3)H]naltrindole exhibited saturable, low-affinity binding to intact human MM cells; however, the pharmacological profile of the binding site differed considerably from the properties of δ-, κ-, and μ-opioid receptors, and opioid receptor mRNA was not detected in MM cells by reverse transcriptase-polymerase chain reaction. Naltrindole inhibited the proliferation of cultured human U266 MM cells in a time- and dose-dependent manner with an EC(50) of 16 μM. The naltrindole-induced inhibition of U266 cell proliferation was not blocked by a 10-fold molar excess of naltrexone, a nonselective opioid antagonist. Additive inhibition of MM cell proliferation was observed when using a combination of naltrindole with the histone deacetylase inhibitor sodium valproate, the proteasome inhibitor bortezomib, the glucocorticoid receptor agonist dexamethasone, and the HMG CoA reductase inhibitor simvastatin. Treatment of U266 cells with naltrindole significantly decreased the level of the active, phosphorylated form of the kinases, extracellular signal-regulated kinase and Akt, which may be related to its antiproliferative activity. The antiproliferative activity of naltrindole toward MM cells was maintained in cocultures of MM and bone marrow-derived stromal cells, mimicking the bone marrow microenvironment. In vivo, naltrindole significantly decreased tumor cell volumes in human MM cell xenografts in severe combined immunodeficient mice. We hypothesize that naltrindole inhibits the proliferation of MM cells through a nonopioid receptor-dependent mechanism. PMID:22537770

  18. Naltrindole Inhibits Human Multiple Myeloma Cell Proliferation In Vitro and in a Murine Xenograft Model In Vivo

    PubMed Central

    Mundra, Jyoti Joshi; Terskiy, Alexandra

    2012-01-01

    It has been demonstrated previously that immune cell activation and proliferation were sensitive to the effects of naltrindole, a nonpeptidic δ-opioid receptor-selective antagonist; therefore, we hypothesized that human multiple myeloma (MM) would be a valuable model for studying potential antineoplastic properties of naltrindole. [3H]naltrindole exhibited saturable, low-affinity binding to intact human MM cells; however, the pharmacological profile of the binding site differed considerably from the properties of δ-, κ-, and μ-opioid receptors, and opioid receptor mRNA was not detected in MM cells by reverse transcriptase-polymerase chain reaction. Naltrindole inhibited the proliferation of cultured human U266 MM cells in a time- and dose-dependent manner with an EC50 of 16 μM. The naltrindole-induced inhibition of U266 cell proliferation was not blocked by a 10-fold molar excess of naltrexone, a nonselective opioid antagonist. Additive inhibition of MM cell proliferation was observed when using a combination of naltrindole with the histone deacetylase inhibitor sodium valproate, the proteasome inhibitor bortezomib, the glucocorticoid receptor agonist dexamethasone, and the HMG CoA reductase inhibitor simvastatin. Treatment of U266 cells with naltrindole significantly decreased the level of the active, phosphorylated form of the kinases, extracellular signal-regulated kinase and Akt, which may be related to its antiproliferative activity. The antiproliferative activity of naltrindole toward MM cells was maintained in cocultures of MM and bone marrow-derived stromal cells, mimicking the bone marrow microenvironment. In vivo, naltrindole significantly decreased tumor cell volumes in human MM cell xenografts in severe combined immunodeficient mice. We hypothesize that naltrindole inhibits the proliferation of MM cells through a nonopioid receptor-dependent mechanism. PMID:22537770

  19. Hispidulin inhibits proliferation and enhances chemosensitivity of gallbladder cancer cells by targeting HIF-1α

    SciTech Connect

    Gao, Hui; Xie, Jing; Peng, Jianjun; Han, Yantao; Jiang, Qixiao; Han, Mei; Wang, Chunbo

    2015-03-15

    Gallbladder cancer (GBC) is an aggressive malignancy of the bile duct, which is associated with a low (5-year) survival and poor prognosis. The transcription factor HIF-1α is implicated in the angiogenesis, cell survival, epithelial mesenchymal transition (EMT) and invasiveness of GBC. In this study, we have investigated the role of HIF-1α in the pathobilogy of GBC and effect of hispidulin on the molecular events controlled by this transcription factor. We observed that hispidulin caused induction of apoptosis, blockade of growth and cell cycle progression in GBC cells. Our results have demonstrated for the first time that hispidulin-exerted anti-tumor effect involved the suppression of HIF-1α signaling. Hispidulin was found to repress the expression of HIF-1α protein dose-dependently without affecting the HIF-1α mRNA expression. In addition, the inhibition of HIF-1α protein synthesis was revealed to be mediated through the activation of AMPK signaling. Hispidulin also sensitized the tumor cells to Gemcitabine and 5-Fluoroucil by down-regulating HIF-1α/P-gp signaling. Given the low cost and exceedingly safe profile, hispidulin appears to be a promising and novel chemosensitizer for GBC treatment. - Highlights: • Hispidulin inhibits proliferation of gallbladder cancer cells by targeting HIF-1α. • Hispidulin regulates HIF-1α via activating AMPK signaling. • Hispidulin sensitized the GBC cells to chemotherapeutics by down-regulating P-gp.

  20. Vesnarinone suppresses TNFα mRNA expression by inhibiting valosin-containing protein.

    PubMed

    Hotta, Kentaro; Nashimoto, Akihiro; Yasumura, Eiji; Suzuki, Masafumi; Azuma, Motoki; Iizumi, Yosuke; Shima, Daisuke; Nabeshima, Ryusuke; Hiramoto, Masaki; Okada, Akira; Sakata-Sogawa, Kumiko; Tokunaga, Makio; Ito, Takumi; Ando, Hideki; Sakamoto, Satoshi; Kabe, Yasuaki; Aizawa, Shinichi; Imai, Takeshi; Yamaguchi, Yuki; Watanabe, Hajime; Handa, Hiroshi

    2013-05-01

    Vesnarinone is a synthetic quinolinone derivative used in the treatment of cardiac failure and cancer. It is also known to cause agranulocytosis as a side effect, which restricts its use, although the mechanism underlying agranulocytosis is not well understood. Here, we show that vesnarinone binds to valosin-containing protein (VCP), which interacts with polyubiquitinated proteins and is essential for the degradation of IκBα to activate nuclear factor (NF)κB. We show that vesnarinone impairs the degradation of IκBα, and that the impairment of the degradation of IκBα is the result of the inhibition of the interaction between VCP and the 26S proteasome by vesnarinone. These results suggest that vesnarinone suppresses NFκB activation by inhibiting the VCP-dependent degradation of polyubiquitinated IκBα, resulting in the suppression of tumor necrosis factor-α mRNA expression. PMID:23393163

  1. Arginase inhibition reduces interleukin-1β-stimulated vascular smooth muscle cell proliferation by increasing nitric oxide synthase-dependent nitric oxide production

    SciTech Connect

    Yoon, Jeongyeon; Ryoo, Sungwoo

    2013-06-07

    Highlights: •Arginase inhibition suppressed proliferation of IL-1β-stimulated VSMCs in dose-dependent manner. •NO production from IL-1β-induced iNOS expression was augmented by arginase inhibition, reducing VSMC proliferation. •Incubation with cGMP analogues abolished IL-1β-dependent proliferation of VSMCs. -- Abstract: We investigated whether arginase inhibition suppressed interleukin (IL)-1β-stimulated proliferation in vascular smooth muscle cells (VSMCs) and the possible mechanisms involved. IL-1β stimulation increased VSMC proliferation, while the arginase inhibitor BEC and transfection of the antisense (AS) oligonucleotide against arginase I decreased VSMC proliferation and was associated with increased protein content of the cell cycle regulator p21Waf1/Cip1. IL-1β incubation induced inducible nitric oxide synthase (iNOS) mRNA expression and protein levels in a dose-dependent manner, but did not affect arginase I and II expression. Consistent with this data, IL-1β stimulation resulted in increase in NO production that was significantly augmented by arginase inhibition. The specific iNOS inhibitor 1400W abolished IL-1β-mediated NO production and further accentuated IL-1β-stimulated cell proliferation. Incubation with NO donors GSNO and DETA/NO in the presence of IL-1β abolished VSMCs proliferation and increased p21Waf1/Cip1 protein content. Furthermore, incubation with the cGMP analogue 8-Br-cGMP prevented IL-1β-induced VSMCs proliferation. In conclusion, arginase inhibition augmented iNOS-dependent NO production that resulted in suppression of IL-1β-induced VSMCs proliferation in a cGMP-dependent manner.

  2. Myocardin inhibits cellular proliferation by inhibiting NF-kappaB(p65)-dependent cell cycle progression.

    PubMed

    Tang, Ru-Hang; Zheng, Xi-Long; Callis, Thomas E; Stansfield, William E; He, Jiayin; Baldwin, Albert S; Wang, Da-Zhi; Selzman, Craig H

    2008-03-01

    We previously reported the importance of the serum response factor (SRF) cofactor myocardin in controlling muscle gene expression as well as the fundamental role for the inflammatory transcription factor NF-kappaB in governing cellular fate. Inactivation of myocardin has been implicated in malignant tumor growth. However, the underlying mechanism of myocardin regulation of cellular growth remains unclear. Here we show that NF-kappaB(p65) represses myocardin activation of cardiac and smooth muscle genes in a CArG-box-dependent manner. Consistent with their functional interaction, p65 directly interacts with myocardin and inhibits the formation of the myocardin/SRF/CArG ternary complex in vitro and in vivo. Conversely, myocardin decreases p65-mediated target gene activation by interfering with p65 DNA binding and abrogates LPS-induced TNF-alpha expression. Importantly, myocardin inhibits cellular proliferation by interfering with NF-kappaB-dependent cell-cycle regulation. Cumulatively, these findings identify a function for myocardin as an SRF-independent transcriptional repressor and cell-cycle regulator and provide a molecular mechanism by which interaction between NF-kappaB and myocardin plays a central role in modulating cellular proliferation and differentiation. PMID:18296632

  3. Evodiamine inhibits the proliferation of leukemia cell line K562 by regulating peroxisome proliferators-activated receptor gamma (PPARγ) pathway.

    PubMed

    Sun, Chengming; Zhang, Guili; Luan, Shuping; Luan, Caifu; Shao, Huiyuan; Dong, Fei; Liu, Xuena

    2016-08-01

    Evodiamine, a quinolone alkaloid, is one of the major bioactive compounds of Evodia rutaecarpa Bentham (Rutaceae). It exhibits excellent biological activities, especially the anticancer activity. This study aims to investigate the effect of evodiamine on the proliferation of leukemia cell line K562 and to explore the underlying mechanism. The effect of evodiamine on K562 cells proliferation was analyzed by trypan blue dye exclusion assay and MTT assay. The expression levels of peroxisome proliferators-activated receptor gamma (PPARγ), cyclin D1, and p21 were detected by western blot assay. The results demonstrated that evodiamine inhibited the proliferation and decreased the viability of K562 cells in a dose- and time-dependent manner. 2-Chloro-5-nitro-N-phenylbenzamide (GW9662) and/or PPARγ-siRNA pretreatment alleviated the cell growth suppression triggered by evodiamine. Meanwhile, evodiamine intervention elevated the expression of PPARγ in K562 cells, while pretreatment with GW9662 attenuated the enhanced upregulation of PPARγ expression induced by evodiamine. In addition, GW9662 and PPARγ-siRNA pretreatment also significantly attenuated the downregulation of the cell cycle control protein cyclin D1 and the upregulation of cyclin-dependent kinase inhibitor p21 induced by evodiamine. In conclusion, PPARγ signaling pathway may involve in the proliferation inhibition of evodiamine on K562 cells via inhibiting cylcin D1 and stimulating of p21. PMID:26671528

  4. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability

    SciTech Connect

    Zhang, Jingjie; Ouyang, Weiming; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wang, York; Li, Xuejun; Huang, Chuanshu

    2012-09-01

    Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells. -- Highlights: ► SAHA inhibits cell transformation in Cl41 cells. ► SAHA suppresses Cyclin D1 protein expression. ► SAHA decreases cyclin D1 mRNA stability.

  5. Nitro-linoleic acid inhibits vascular smooth muscle cell proliferation via the Keap1/Nrf2 signaling pathway

    PubMed Central

    Villacorta, Luis; Zhang, Jifeng; Garcia-Barrio, Minerva T.; Chen, Xi-lin; Freeman, Bruce A.; Chen, Yuqing E.; Cui, Taixing

    2007-01-01

    Nitroalkenes, the nitration products of unsaturated fatty acids formed via NO-dependent oxidative reactions, have been demonstrated to exert strong biological actions in endothelial cells and monocytes/macrophages; however, little is known about their effects on vascular smooth muscle cells (VSMCs). The present study examined the role of nitro-linoleic acid (LNO2) in the regulation of VSMC proliferation. We observed that LNO2 inhibited VSMC proliferation in a dose-dependent manner. In addition, LNO2 induced growth arrest of VSMCs in the G1/S phase of the cell cycle with an upregulation of the cyclin-dependent kinase inhibitor p27kip1. Furthermore, LNO2 triggered nuclear factor-erythroid 2-related factor 2 (Nrf2) nuclear translocation and activation of the antioxidant-responsive element-driven transcriptional activity via impairing Kelch-like ECH-associating protein 1 (Keap1)-mediated negative control of Nrf2 activity in VSMCs. LNO2 upregulated the expression of Nrf2 protein levels, but not mRNA levels, in VSMCs. A forced activation of Nrf2 led to an upregulation of p27kip1 and growth inhibition of VSMCs. In contrast, knock down of Nrf2 using an Nrf2 siRNA approach reversed the LNO2-induced upregulation of p27kip1 and inhibition of cellular proliferation in VSMCs. These studies provide the first evidence that nitroalkene LNO2 inhibits VSMC proliferation through activation of the Keap1/Nrf2 signaling pathway, suggesting an important role of nitroalkenes in vascular biology. PMID:17468336

  6. Dietary feeding of Opuntia humifusa inhibits UVB radiation-induced carcinogenesis by reducing inflammation and proliferation in hairless mouse model.

    PubMed

    Lee, Jin-A; Jung, Bock-Gie; Kim, Tae-Hoon; Lee, Su-Gil; Park, Young-Seok; Lee, Bong-Joo

    2013-01-01

    It has been validated that ultraviolet B (UVB) irradiation induced both squamous and basal cell carcinomas, as a tumor initiator and promoter. Opuntia humifusa is a member of the Cactaceae family which has been demonstrated in our previous study to have a chemopreventive effect in 7, 12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate induced skin carcinogenesis models. Therefore, this study was designed to determine the protective effects of O. humifusa against photocarcinogenesis. O. humifusa was administrated to mice as a dietary feeding, following exposure to UVB radiation (180 mJ/cm(2)) twice a week of 30 weeks for skin tumor development in hairless mice. Dietary O. humifusa inhibited UVB-induced epidermal hyperplasia, infiltration of leukocytes, level of myeloperoxidase and the levels of proinflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), in UVB exposed skin. Also, O. humifusa significantly inhibited both protein and mRNA expression level of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), proliferating cell nuclear antigen (PCNA) and cyclin D1 compared to the non-O. humifusa treated group. Collectively, these results suggest that O. humifusa could inhibit photocarcinogenesis in mouse skin and that protective effect is associated with the inhibition of not only UVB-induced inflammatory responses involving COX-2, iNOS and proinflammatory cytokines, but also the down-regulation of UVB-induced cellular proliferation. PMID:23789636

  7. Growth inhibition of head and neck squamous cell carcinoma cells by sgRNA targeting the cyclin D1 mRNA based on TRUE gene silencing.

    PubMed

    Iizuka, Satoshi; Oridate, Nobuhiko; Nashimoto, Masayuki; Fukuda, Satoshi; Tamura, Masato

    2014-01-01

    Head and neck squamous cell carcinoma (HNSCC) exhibits increased expression of cyclin D1 (CCND1). Previous studies have shown a correlation between poor prognosis of HNSCC and cyclin D1 overexpression. tRNase ZL-utilizing efficacious gene silencing (TRUE gene silencing) is one of the RNA-mediated gene expression control technologies that have therapeutic potential. This technology is based on a unique enzymatic property of mammalian tRNase ZL, which is that it can cleave any target RNA at any desired site by recognizing a pre-tRNA-like complex formed between the target RNA and an artificial small guide RNA (sgRNA). In this study, we designed several sgRNAs targeting human cyclin D1 mRNA to examine growth inhibition of HNSCC cells. Transfection of certain sgRNAs decreased levels of cyclin D1 mRNA and protein in HSC-2 and HSC-3 cells, and also inhibited their proliferation. The combination of these sgRNAs and cisplatin showed more than additive inhibition of cancer cell growth. These findings demonstrate that TRUE gene silencing of cyclin D1 leads to inhibition of the growth of HNSCC cells and suggest that these sgRNAs alone or combined with cisplatin may be a useful new therapy for HNSCCs. PMID:25437003

  8. Imatinib mesylate inhibits platelet derived growth factor stimulated proliferation of rheumatoid synovial fibroblasts

    SciTech Connect

    Sandler, Charlotta; Joutsiniemi, Saima; Lindstedt, Ken A.; Juutilainen, Timo; Kovanen, Petri T.; Eklund, Kari K. . E-mail: kari.eklund@hus.fi

    2006-08-18

    Synovial fibroblast is the key cell type in the growth of the pathological synovial tissue in arthritis. Here, we show that platelet-derived growth factor (PDGF) is a potent mitogen for synovial fibroblasts isolated from patients with rheumatoid arthritis. Inhibition of PDGF-receptor signalling by imatinib mesylate (1 {mu}M) completely abrogated the PDGF-stimulated proliferation and inhibited approximately 70% of serum-stimulated proliferation of synovial fibroblasts. Similar extent of inhibition was observed when PDGF was neutralized with anti-PDGF antibodies, suggesting that imatinib mesylate does not inhibit pathways other than those mediated by PDGF-receptors. No signs of apoptosis were detected in synovial fibroblasts cultured in the presence of imatinib. These results suggest that imatinib mesylate specifically inhibits PDGF-stimulated proliferation of synovial fibroblasts, and that inhibition of PDGF-receptors could represent a feasible target for novel antirheumatic therapies.

  9. Sirt1 AS lncRNA interacts with its mRNA to inhibit muscle formation by attenuating function of miR-34a

    PubMed Central

    Wang, Guo-qiang; Wang, Yu; Xiong, Yan; Chen, Xiao-Chang; Ma, Mei-ling; Cai, Rui; Gao, Yun; Sun, Yun-mei; Yang, Gong-She; Pang, Wei-Jun

    2016-01-01

    Recent studies demonstrate the functions of long non-coding RNAs (lncRNAs) in mediating gene expression at the transcriptional or translational level. Our previous study identified a Sirt1 antisense (AS) lncRNA transcribed from the Sirt1 AS strand. However, its role and regulatory mechanism is still unknown in myogenesis. Here, functional analyses showed that Sirt1 AS lncRNA overexpression promoted myoblast proliferation, but inhibited differentiation. Mechanistically, Sirt1 AS lncRNA was found to activate its sense gene, Sirt1. The luciferase assay provided evidences that Sirt1 AS lncRNA interacted with Sirt1 3′ UTR and rescued Sirt1 transcriptional suppression by competing with miR-34a. In addition, RNA stability assay showed that Sirt1 AS lncRNA prolonged Sirt1 mRNA half-life from 2 to 10 h. Ribonuclease protection assay further indicated that it fully bound to Sirt1 mRNA in the myoblast cytoplasm. Moreover, Sirt1 AS overexpression led to less mouse weight than the control because of less lean mass and greater levels of Sirt1, whereas the fat mass and levels of miR-34a were not altered. Based on the findings, a novel regulatory mechanism was found that Sirt1 AS lncRNA preferably interacted with Sirt1 mRNA forming RNA duplex to promote Sirt1 translation by competing with miR-34a, inhibiting muscle formation. PMID:26902620

  10. MicroRNA-141 inhibits vascular smooth muscle cell proliferation through targeting PAPP-A

    PubMed Central

    Zhang, Yudong; Chen, Bainan; Ming, Liu; Qin, Hongsong; Zheng, Liu; Yue, Zhang; Cheng, Zhixin; Wang, Yannan; Zhang, Dawei; Liu, Chunmei; Bin, Wang; Hao, Qingzhi; Song, Fuchen; Ji, Bo

    2015-01-01

    It is well known that ox-LDL plays key roles in the development of atherosclerosis, partly by inducing vascular smooth muscle cells (VSMCs) proliferation. Recent findings have revealed that microRNAs, a class of small noncoding RNAs, could regulate cell proliferation in many physiological and pathological conditions. However, the role and function of miRNAs on ox-LDL induced VSMC proliferation are not fully elucidated. In this study, we showed that ox-LDL could suppress miR-141 expression and inhibition of miR-141 could promote VSMCs proliferation. Moreover, we found that PAPPA was the direct target gene of miR-141. Overexpression of PAPPA impaired the miR-141-induced inhibition of proliferation in the VSMCs. Taken together; miR-141 may play important roles in ox-LDL-induced abnormal proliferation of the VSMC. PMID:26823756

  11. Knockdown of Long Noncoding RNA GHET1 Inhibits Cell Proliferation and Invasion of Colorectal Cancer.

    PubMed

    Zhou, Jianyu; Li, Xiaorong; Wu, Meirong; Lin, Changwei; Guo, Yihang; Tian, Buning

    2016-01-01

    Emerging evidence has identified the vital role of long noncoding RNAs (lncRNAs) in the development of colorectal cancer. In this study, we aimed to investigate the role of lncRNA gastric carcinoma highly expressed transcript 1 (GHET1) in colorectal cancer. We analyzed the expression of GHET1 in colorectal cancer (CRC) tissues by using ISH. We found that GHET1 expression was significantly increased in the CRC samples compared with adjacent tissues. Furthermore, the cancer tissues had higher GHET1 mRNA levels than their matched adjacent tissues. GHET1 expression was also significantly increased in the CRC cell lines compared with human normal colon epithelial cells. Downregulation of GHET1 mediated by shRNA suppressed the proliferation, cell cycle arrest, migration, and invasion of colorectal cancer cells in vitro. In addition, inhibition of GHET1 reversed the epithelial-mesenchymal transition in colorectal cancer cell lines. Taken together, our results suggest the potential use of GHET1 as a therapeutic target of colorectal cancer. PMID:27131316

  12. HIV-1 Vif binds to APOBEC3G mRNA and inhibits its translation

    PubMed Central

    Mercenne, Gaëlle; Bernacchi, Serena; Richer, Delphine; Bec, Guillaume; Henriet, Simon; Paillart, Jean-Christophe; Marquet, Roland

    2010-01-01

    The HIV-1 viral infectivity factor (Vif) allows productive infection of non-permissive cells (including most natural HIV-1 targets) by counteracting the cellular cytosine deaminases APOBEC-3G (hA3G) and hA3F. The Vif-induced degradation of these restriction factors by the proteasome has been extensively studied, but little is known about the translational repression of hA3G and hA3F by Vif, which has also been proposed to participate in Vif function. Here, we studied Vif binding to hA3G mRNA and its role in translational repression. Filter binding assays and fluorescence titration curves revealed that Vif tightly binds to hA3G mRNA. Vif overall binding affinity was higher for the 3′UTR than for the 5′UTR, even though this region contained at least one high affinity Vif binding site (apparent Kd = 27 ± 6 nM). Several Vif binding sites were identified in 5′ and 3′UTRs using RNase footprinting. In vitro translation evidenced that Vif inhibited hA3G translation by two mechanisms: a main time-independent process requiring the 5′UTR and an additional time-dependent, UTR-independent process. Results using a Vif protein mutated in the multimerization domain suggested that the molecular mechanism of translational control is more complicated than a simple physical blockage of scanning ribosomes. PMID:19910370

  13. HIV-1 Vif binds to APOBEC3G mRNA and inhibits its translation.

    PubMed

    Mercenne, Gaëlle; Bernacchi, Serena; Richer, Delphine; Bec, Guillaume; Henriet, Simon; Paillart, Jean-Christophe; Marquet, Roland

    2010-01-01

    The HIV-1 viral infectivity factor (Vif) allows productive infection of non-permissive cells (including most natural HIV-1 targets) by counteracting the cellular cytosine deaminases APOBEC-3G (hA3G) and hA3F. The Vif-induced degradation of these restriction factors by the proteasome has been extensively studied, but little is known about the translational repression of hA3G and hA3F by Vif, which has also been proposed to participate in Vif function. Here, we studied Vif binding to hA3G mRNA and its role in translational repression. Filter binding assays and fluorescence titration curves revealed that Vif tightly binds to hA3G mRNA. Vif overall binding affinity was higher for the 3'UTR than for the 5'UTR, even though this region contained at least one high affinity Vif binding site (apparent K(d) = 27 +/- 6 nM). Several Vif binding sites were identified in 5' and 3'UTRs using RNase footprinting. In vitro translation evidenced that Vif inhibited hA3G translation by two mechanisms: a main time-independent process requiring the 5'UTR and an additional time-dependent, UTR-independent process. Results using a Vif protein mutated in the multimerization domain suggested that the molecular mechanism of translational control is more complicated than a simple physical blockage of scanning ribosomes. PMID:19910370

  14. MicroRNA-101 inhibits the proliferation and invasion of bladder cancer cells via targeting c-FOS.

    PubMed

    Long, Yongqi; Wu, Zhiping; Yang, Xinhua; Chen, Lei; Han, Zhijun; Zhang, Yulong; Liu, Jinge; Liu, Wenjin; Liu, Xinyi

    2016-09-01

    MicroRNAs (miRs) have important roles in the parthenogenesis of malignancies. While it has been suggested that deregulation of miR‑101 is involved in bladder cancer, the underlying mechanisms have remained largely elusive. The present study aimed to investigate the roles of miR‑101 in the regulation of bladder cancer cell proliferation and invasion. Reverse‑transcription quantitative polymerase chain reaction analysis revealed that the expression of miR‑101 was significantly reduced in the HT‑1376, BIU87, T24 and 5637 several human bladder cancer cell lines compared to that in the SV‑HUC‑1 normal bladder epithelial cell line. Furthermore, a Targetscan search and a luciferase assay were used to identify c‑FOS as a novel target of miR‑101, and western blot analysis indicated that the protein expression of c‑FOS was shown to be negatively regulated by miR‑101 in bladder cancer T24 cells; however, c‑FOS mRNA expression was not affected. In addition, plasmid‑mediated overexpression of miR‑101 and small hairpin RNA‑mediated inhibition of c‑FOS significantly inhibited the proliferation and invasive capacity of T24 cells, as indicated by an MTT and a Transwell assay, respectively. However, plasmid‑mediated overexpression of c‑FOS reversed the inhibitory effects of miR‑101 overexpression on T24‑cell proliferation and invasion. In conclusion, the present study demonstrated that miR‑101 inhibits the proliferation and invasion of bladder cancer cells, at least partly via targeting c‑FOS, suggesting that miR-101/c‑FOS signaling may represent a potential therapeutic target for bladder cancer. PMID:27485165

  15. Predators inhibit brain cell proliferation in natural populations of electric fish, Brachyhypopomus occidentalis.

    PubMed

    Dunlap, Kent D; Tran, Alex; Ragazzi, Michael A; Krahe, Rüdiger; Salazar, Vielka L

    2016-02-10

    Compared with laboratory environments, complex natural environments promote brain cell proliferation and neurogenesis. Predators are one important feature of many natural environments, but, in the laboratory, predatory stimuli tend to inhibit brain cell proliferation. Often, laboratory predatory stimuli also elevate plasma glucocorticoids, which can then reduce brain cell proliferation. However, it is unknown how natural predators affect cell proliferation or whether glucocorticoids mediate the neurogenic response to natural predators. We examined brain cell proliferation in six populations of the electric fish, Brachyhypopomus occidentalis, exposed to three forms of predator stimuli: (i) natural variation in the density of predatory catfish; (ii) tail injury, presumably from predation attempts; and (iii) the acute stress of capture. Populations with higher predation pressure had lower density of proliferating (PCNA+) cells, and fish with injured tails had lower proliferating cell density than those with intact tails. However, plasma cortisol did not vary at the population level according to predation pressure or at the individual level according to tail injury. Capture stress significantly increased cortisol, but only marginally decreased cell proliferation. Thus, it appears that the presence of natural predators inhibits brain cell proliferation, but not via mechanisms that depend on changes in basal cortisol levels. This study is the first demonstration of predator-induced alteration of brain cell proliferation in a free-living vertebrate. PMID:26842566

  16. Ghrelin and obestatin inhibit enucleation-induced adrenocortical proliferation in the rat.

    PubMed

    Rucinski, Marcin; Trejter, Marcin; Ziolkowska, Agnieszka; Tyczewska, Marianna; Malendowicz, Ludwik K

    2010-05-01

    Studies involving the role of ghrelin (GHREL) in regulating the proliferative activity of various cell types have obtained variable results depending primarily on the experimental model applied. It was recently reported that neither GHREL nor obestatin (OBS) affected the proliferative activity of cultured rat adrenocortical cells. In view of the conflicting results, we investigated the effects of GHREL and OBS on the proliferative activity of rat adrenocortical cells in a model of bilateral enucleation-induced adrenocortical regeneration in the rat. Rats were sacrificed 5 or 8 days after surgery. Twenty-four hours before being sacrificed, the appropriate groups were infused with 3 nmol GHREL or OBS/100 g. The mitotic index was assessed using the stachmokinetic method with vincristine. In comparison with intact rats, expression levels of ppGHREL, BAX, JUN-B and JUN-C genes were notably higher in regenerating adrenals, and neither GHREL nor OBS infusion affected these levels. Expression levels of the GHS-R, GPR39v2 and FOS genes were affected neither by adrenal enucleation nor GHREL or OBS infusion. Expression of only two studied genes, GPR39v1 and EGR1, was regulated by OBS. In the regenerating adrenal glands, GPR39v1 and EGR1 mRNA levels were higher than the levels in intact animals. GHREL infusion had no effect while OBS infusion notably stimulated GPR39v1 mRNA levels in the regenerating adrenal gland and evoked an opposite effect on EGR1 mRNA. OBS administration resulted in a potent decrease in the mitotic index of the studied cells, an effect found at both days 5 and 8 of the experiment. GHREL exerted a similar effect only at day 5 of adrenocortical regeneration. Neither GHREL nor OBS had an effect on blood aldosterone concentrations. GHREL infusion lowered plasma corticosterone concentration at day 5 but not 8 of the experiment, while OBS administration was ineffective. Thus, this study is the first to demonstrate that, in vivo, both GHREL and OBS inhibit the

  17. Inhibition of proliferation and induction of apoptosis in soft tissue sarcoma cells by interferon-α and retinoids

    PubMed Central

    Brodowicz, T; Wiltschke, C; Kandioler-Eckersberger, D; Grunt, T W; Rudas, M; Schneider, S M; Hejna, M; Budinsky, A; Zielinski, C C

    1999-01-01

    Uncontrolled proliferation and a defect of apoptosis constitute crucial elements in the development and progression of tumours. Among many other biological response modifiers known to influence these mechanisms, the efficacy of retinoids and interferons in the treatment of various malignant entities is currently matter of discussion. In the present study, we have investigated the effects of 9-cis-retinoic acid (9cRA), 13-cis-retinoic acid (13cRA), all-trans-retinoic acid (tRA) and interferon-α on proliferation and apoptosis of human soft tissue sarcoma (STS) cell lines HTB-82 (rhabdomyosarcoma), HTB-91 (fibrosarcoma), HTB-92 (liposarcoma), HTB-93 (synovial sarcoma) and HTB-94 (chondrosarcoma) in relation to p53 genotype as well as p53 expression. HTB-91, HTB-92 and HTB-94 STS cells exhibited mutant p53, whereas wild-type p53 was found in HTB-93 STS cells, and a normal p53 status in HTB-82 STS cells, carrying a silent point mutation only. Interferon-α, irrespective of p53 status, inhibited the proliferation of all five cell lines dose- and time-dependently. Similarly, 9cRA, 13cRA and tRA decreased the proliferation of HTB-82 and HTB-93 STS cells, whereas the proliferation of p53-mutated HTB-91, HTB-92 and HTB-94 STS cells remained unchanged. Furthermore, only 9cRA and tRA were capable of inducing apoptosis in HTB-82 and HTB-93 STS cells, whereas HTB-91, HTB-92 and HTB-94 STS cells did not undergo apoptosis under the influence of 9cRA or tRA. Retinoic acid receptor (RAR)-α and RAR-β mRNA were not detectable by Northern blot analysis in the five STS cell lines, whereas mRNA for the universal retinoic acid receptor, RAR-γ, was expressed in all STS cell lines indicating that retinoid resistance was not associated with a lack of RAR expression. Apoptosis was not induced by interferon-α or 13cRA in any of the five STS cell lines tested. Our results indicate that within the panel of tested STS cell lines, inhibition of proliferation and induction of apoptosis result

  18. [Inhibition of proliferation of H5N1 subtype AIV in CEF by chemosynthetic siRNA].

    PubMed

    Li, Ru-Shu; Yu, Dan; Luo, Bao-Zheng; Bo, Qing-Ru; Xu, Hai-Nie; Sha, Cai-Hua; Liao, Xiu-Yun

    2013-06-01

    In order to study the proliferation inhibition effect of H5N1 subtype avian influenza virus (AIV) with small interfere RNA (siRNA), a total of 4 siRNAs were designed in accordance with the NP and PA genes of H5N1 subtype AIV, the siRNAs were then transfected to chicken embryo fibroblast(CEF), CEF was infected with H5N1 subtype AIV after 6 hrs. Virus titer of cell supernatant was tested at 16-56hrs post infection, and pathological changes of the cells was observed; mRNA levels of NP, PA, HA and p13-actin gene were tested at 36hrs post infection. The results showed that these 4 siRNAs could inhibit the prolif-eration of H5N1 subtype AIV in CEF in varying degrees, and one siRNA targeting PA was best per-formed. The experimental results also showed that the inhibition effect was decreased with the time prolonged. This research provides a basis for further studying RNAi on AIV prevention and control. PMID:23895002

  19. NS-398, a selective COX-2 inhibitor, inhibits proliferation of IL-1{beta}-stimulated vascular smooth muscle cells by induction of {eta}{omicron}-1

    SciTech Connect

    Choi, Hyoung Chul; Kim, Hee Sun; Lee, Kwang Youn; Chang, Ki Churl Kang, Young Jin

    2008-11-28

    We investigated whether NS-398, a selective inhibitor of COX-2, induces HO-1 in IL-1{beta}-stimulated vascular smooth muscle cells (VSMC). NS-398 reduced the production of PGE{sub 2} without modulation of expression of COX-2 in IL-1{beta}-stimulated VSMC. NS-398 increased HO-1 mRNA and protein in a dose-dependent manner, but inhibited proliferation of IL-1{beta}-stimulated VSMC. Furthermore, SnPPIX, a HO-1 inhibitor, reversed the effects of NS-398 on PGE{sub 2} production, suggesting that COX-2 activity can be affected by HO-1. Hemin, a HO-1 inducer, also reduced the production of PGE{sub 2} and proliferation of IL-1{beta}-stimulated VSMC. CORM-2, a CO-releasing molecule, but not bilirubin inhibited proliferation of IL-1{beta}-stimulated VSMC. NS-398 inhibited proliferation of IL-1{beta}-stimulated VSMC in a HbO{sub 2}-sensitive manner. In conclusion, NS-398 inhibits proliferation of IL-1{beta}-stimulated VSMC by HO-1-derived CO. Thus, NS-398 may facilitate the healing process of vessels in vascular inflammatory disorders such as atherosclerosis.

  20. Oxymatrine Downregulates HPV16E7 Expression and Inhibits Cell Proliferation in Laryngeal Squamous Cell Carcinoma Hep-2 Cells In Vitro

    PubMed Central

    Ying, Xin-Jiang; Jin, Bin; Chen, Xin-Wei; Xie, Jin; Xu, Hong-Ming; Dong, Pin

    2015-01-01

    Objective. To investigate the possible mechanisms of oxymatrine's role in anti laryngeal squamous cell carcinoma. Methods. We examined the effects of oxymatrine on the proliferation, cell cycle phase distribution, apoptosis, and the protein and mRNA expression levels of HPV16E7 gene in laryngeal carcinoma Hep-2 cells in vitro. The HPV16E7 siRNA inhibition was also done to confirm the effect of downregulating HPV16E7 on the proliferation in Hep-2 cells. Results. Oxymatrine significantly inhibited the growth and proliferation of Hep-2 cells in a dose-dependence and time-dependence manner. Oxymatrine blocked Hep-2 cells in G0/G1 phase, resulting in an obvious accumulation of G0/G1 phase cells while decreasing S phase cells. Oxymatrine induced apoptosis of Hep-2 cells, whose apoptotic rate amounted to about 42% after treatment with 7 mg/mL oxymatrine for 72 h. Oxymatrine also downregulated the expression of HPV16E7 gene, as determined by the western blotting and reverse transcription-polymerase chain reaction analysis. Knockdown of HPV16E7 effectively inhibited the proliferation of Hep-2 cells. Conclusions. Oxymatrine inhibits the proliferation and induces apoptosis of laryngeal carcinoma Hep-2 cells, which might be mediated by a significant cell cycle arrest in G0/G1 phase and downregulation of HPV16E7 gene. Oxymatrine is considered to be a likely preventive and curative candidate for laryngeal cancer. PMID:25811021

  1. EDNRA variants associate with smooth muscle mRNA levels, cell proliferation rates, and cystic fibrosis pulmonary disease severity

    PubMed Central

    Darrah, Rebecca; McKone, Edward; O'Connor, Clare; Rodgers, Christine; Genatossio, Alan; McNamara, Sharon; Gibson, Ronald; Stuart Elborn, J.; Ennis, Madeleine; Gallagher, Charles G.; Kalsheker, Noor; Aitken, Moira; Wiese, Dawn; Dunn, John; Smith, Paul; Pace, Rhonda; Londono, Douglas; Goddard, Katrina A. B.; Knowles, Michael R.

    2010-01-01

    Airway inflammation and pulmonary disease are heterogeneous phenotypes in cystic fibrosis (CF) patients, even among patients with the same cystic fibrosis transmembrane conductance regulator (CFTR) genotype. Endothelin, a proinflammatory peptide and smooth muscle agonist, is increased in CF airways, potentially contributing to the pulmonary phenotype. Four cohorts of CF patients were screened for variants in endothelin pathway genes to determine whether any of these variants associated with pulmonary function. An initial cohort of 808 CF patients homozygous for the common CF mutation, ΔF508, showed significant association for polymorphisms in the endothelin receptor A gene, EDNRA (P = 0.04), but not in the related endothelin genes (EDN1, EDN2, EDN3, or EDNRB) or NOS1, NOS2A, or NOS3. Variants within EDNRA were examined in three additional cohorts of CF patients, 238 patients from Seattle, WA, 303 from Ireland and the U.K., and 228 from Cleveland, OH, for a total of 1,577 CF patients. The three additional groups each demonstrated a significant association between EDNRA 3′-untranslated region (UTR) variant rs5335 and pulmonary function (P = 0.002). At the molecular level, single nucleotide primer extension assays suggest that the effect of the variants is quantitative. EDNRA mRNA levels from cultured primary tracheal smooth muscle cells are greater for the allele that appears to be deleterious to lung function than for the protective allele, suggesting a mechanism by which increased receptor function is harmful to the CF airway. Finally, cell proliferation studies using human airway smooth muscle cells demonstrated that cells homozygous for the deleterious allele proliferate at a faster rate than those homozygous for the protective allele. PMID:20028935

  2. PPARγ Inhibits VSMC Proliferation and Migration via Attenuating Oxidative Stress through Upregulating UCP2

    PubMed Central

    Zhou, Yi; Zhang, Ming-Jie; Li, Bing-Hu; Chen, Lei; Pi, Yan; Yin, Yan-Wei; Long, Chun-Yan; Wang, Xu; Sun, Meng-Jiao; Chen, Xue; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-01-01

    Increasing evidence showed that abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are common event in the pathophysiology of many vascular diseases, including atherosclerosis and restenosis after angioplasty. Among the underlying mechanisms, oxidative stress is one of the principal contributors to the proliferation and migration of VSMCs. Oxidative stress occurs as a result of persistent production of reactive oxygen species (ROS). Recently, the protective effects of peroxisome proliferator-activated receptor γ (PPARγ) against oxidative stress/ROS in other cell types provide new insights to inhibit the suggests that PPARγ may regulate VSMCs function. However, it remains unclear whether activation of PPARγ can attenuate oxidative stress and further inhibit VSMC proliferation and migration. In this study, we therefore investigated the effect of PPARγ on inhibiting VSMC oxidative stress and the capability of proliferation and migration, and the potential role of mitochondrial uncoupling protein 2 (UCP2) in oxidative stress. It was found that platelet derived growth factor-BB (PDGF-BB) induced VSMC proliferation and migration as well as ROS production; PPARγ inhibited PDGF-BB-induced VSMC proliferation, migration and oxidative stress; PPARγ activation upregulated UCP2 expression in VSMCs; PPARγ inhibited PDGF-BB-induced ROS in VSMCs by upregulating UCP2 expression; PPARγ ameliorated injury-induced oxidative stress and intimal hyperplasia (IH) in UCP2-dependent manner. In conclusion, our study provides evidence that activation of PPARγ can attenuate ROS and VSMC proliferation and migration by upregulating UCP2 expression, and thus inhibit IH following carotid injury. These findings suggest PPARγ may represent a prospective target for the prevention and treatment of IH-associated vascular diseases. PMID:27144886

  3. Gedunin, a novel natural substance, inhibits ovarian cancer cell proliferation.

    PubMed

    Kamath, Siddharth G; Chen, Ning; Xiong, Yin; Wenham, Robert; Apte, Sachin; Humphrey, Marcia; Cragun, Janiel; Lancaster, Johnathan M

    2009-12-01

    The discovery of more active therapeutic compounds is essential if the outcome for patients with advanced-stage epithelial ovarian cancer is to be improved. Gedunin, an extract of the neem tree, has been used as a natural remedy for centuries in Asia. Recently, gedunin has been shown to have potential in vitro antineoplastic properties; however, its effect on ovarian cancer cells is unknown. We evaluated the in vitro effect of gedunin on SKOV3, OVCAR4, and OVCAR8 ovarian cancer cell lines proliferation, alone and in the presence of cisplatin. Furthermore, we analyzed in vitro gedunin sensitivity data, integrated with genome-wide expression data from 54 cancer cell lines in an effort to identify genes and molecular pathways that underlie the mechanism of gedunin action. In vitro treatment of ovarian cancer cell lines with gedunin alone produced up to an 80% decrease in cell proliferation (P < 0.01) and, combining gedunin with cisplatin, demonstrated up to a 47% (P < 0.01) decrease in cell proliferation compared with cisplatin treatment alone. Bioinformatic analysis of integrated gedunin sensitivity and gene expression data identified 52 genes to be associated with gedunin sensitivity. These genes are involved in molecular functions related to cell cycle control, carcinogenesis, lipid metabolism, and molecular transportation. We conclude that gedunin has in vitro activity against ovarian cancer cells and, further, may enhance the antiproliferative effect of cisplatin. The molecular determinants of in vitro gedunin response are complex and may include modulation of cell survival and apoptosis pathways. PMID:19955938

  4. Telmisartan Induced Inhibition of Vascular Cell Proliferation beyond Angiotensin Receptor Blockade and PPARγ Activation

    PubMed Central

    Yamamoto, Koichi; Ohishi, Mitsuru; Ho, Christopher; Kurtz, Theodore W; Rakugi, Hiromi

    2010-01-01

    We investigated the ability of ARBs with PPARγ agonist activity (telmisartan and irbesartan), and ARBs devoid of PPARγ agonist activity (eprosartan and valsartan), to inhibit vascular cell proliferation studied in the absence of angiotensin II stimulation. Telmisartan and to a lesser extent irbesartan, inhibited proliferation of human aortic vascular smooth muscle cells in a dose dependent fashion whereas eprosartan and valsartan did not. To investigate the role of PPARγ in the antiproliferative effects of telmisartan, we studied genetically engineered NIH3T3 cells that express PPARγ. Pioglitazone inhibited proliferation of NIH3T3 cells expressing PPARγ, but had little effect on control NIH3T3 cells that lack PPARγ. In contrast, telmisartan inhibited proliferation equally in NIH3T3 with and without PPARγ. Valsartan failed to inhibit proliferation of either cell line. In addition, telmisartan inhibited proliferation equally in aortic smooth muscle cells derived from mice with targeted knockout of PPARγ in smooth muscle and from control mice whereas valsartan had no effect on cell proliferation. Telmisartan but not valsartan, reduced phosphorylation of AKT but not ERK otherwise induced by exposure to serum of either quiescent human smooth muscle cells, quiescent mice smooth muscle cells lacking PPARγ or quiescent CHO-K1 cells lacking AT1 receptor. In summary, the antiproliferative effect of telmisartan in the absence of exogenously supplemented angiotensin II involve more than just AT1 receptor blockade and do not require activation of PPARγ. It might be postulated that inhibition of AKT activation is a mechanism mediating the antiproliferative effects of telmisartan including in cells lacking AT1 receptors or PPARγ. PMID:19822796

  5. ETOH inhibits embryonic neural stem/precursor cell proliferation via PLD signaling

    SciTech Connect

    Fujita, Yuko; Hiroyama, Masami; Sanbe, Atsushi Yamauchi, Junji; Murase, Shoko; Tanoue, Akito

    2008-05-23

    While a mother's excessive alcohol consumption during pregnancy is known to have adverse effects on fetal neural development, little is known about the underlying mechanism of these effects. In order to investigate these mechanisms, we investigated the toxic effect of ethanol (ETOH) on neural stem/precursor cell (NSC) proliferation. In cultures of NSCs, phospholipase D (PLD) is activated following stimulation with epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2). Exposure of NSCs to ETOH suppresses cell proliferation, while it has no effect on cell death. Phosphatidic acid (PA), which is a signaling messenger produced by PLD, reverses ETOH inhibition of NSC proliferation. Blocking the PLD signal by 1-butanol suppresses the proliferation. ETOH-induced suppression of NSC proliferation and the protective effect of PA for ETOH-induced suppression are mediated through extracellular signal-regulated kinase signaling. These results indicate that exposure to ETOH impairs NSC proliferation by altering the PLD signaling pathway.

  6. Influenza virus NS1 protein inhibits pre-mRNA splicing and blocks mRNA nucleocytoplasmic transport.

    PubMed Central

    Fortes, P; Beloso, A; Ortín, J

    1994-01-01

    The influenza virus RNA segment 8 encodes two proteins, NS1 and NS2, by differential splicing. The collinear transcript acts as mRNA for NS1 protein, while the spliced mRNA encodes NS2 protein. The splicing of NS1 mRNA was studied in cells transfected with a recombinant plasmid that has the cDNA of RNA segment 8 cloned under the SV40 late promoter and polyadenylation signals. As described for influenza virus-infected cells, NS1 mRNA was poorly spliced to yield NS2 mRNA. However, inactivation of the NS1 gene, but not the NS2 gene, led to a substantial increase in the splicing efficiency, as shown by the relative accumulations of NS1 and NS2 mRNAs. This effect was not specific for NS1 mRNA, since the splicing of the endogenous SV40 early transcript was altered in such a way that t-Ag mRNA was almost eliminated. These changes in the splicing pattern coincided with a strong inhibition of the mRNA nucleocytoplasmic transport. Both NS1 and NS2 mRNAs were retained in the nucleus of cells expressing NS1 protein, but no effect was observed when only NS2 protein was expressed. Furthermore, other mRNAs tested, such as T-Ag mRNA and the non-spliceable nucleoprotein transcript, were also retained in the nucleus upon expression of NS1 protein, suggesting that it induced a generalized block of mRNA export from the nucleus. Images PMID:8313914

  7. Cucurbitacin B inhibits proliferation and induces apoptosis via STAT3 pathway inhibition in A549 lung cancer cells

    PubMed Central

    ZHANG, MENG; BIAN, ZHI-GANG; ZHANG, YI; WANG, JIA-HE; KAN, LIANG; WANG, XIN; NIU, HUI-YAN; HE, PING

    2014-01-01

    Natural products are a great source of cancer chemotherapeutic agents. The present study was conducted to investigate whether cucurbitacin B (CuB), one of the most potent and widely used cucurbitacins, inhibits proliferation and induces apoptosis in the A549 lung cancer cell line. Furthermore, CuB induced apoptosis of A549 cells in a concentration-dependent manner, as determined by fluorescence microscopy, flow cytometry and transmission electron microscopy. The present study also demonstrated that CuB dose-dependently inhibited lung cancer cell proliferation, with cell cycle inhibition and cyclin B1 downregulation. Apoptosis induced by CuB was shown to be associated with cytochrome c release, B-cell lymphoma 2 downregulation and signal transducer and activator of transcription 3 pathway inhibition. CuB may prove to be a useful approach for the chemotherapy of lung cancer. PMID:25242136

  8. Cucurbitacin B inhibits proliferation and induces apoptosis via STAT3 pathway inhibition in A549 lung cancer cells.

    PubMed

    Zhang, Meng; Bian, Zhi-Gang; Zhang, Yi; Wang, Jia-He; Kan, Liang; Wang, Xin; Niu, Hui-Yan; He, Ping

    2014-12-01

    Natural products are a great source of cancer chemotherapeutic agents. The present study was conducted to investigate whether cucurbitacin B (CuB), one of the most potent and widely used cucurbitacins, inhibits proliferation and induces apoptosis in the A549 lung cancer cell line. Furthermore, CuB induced apoptosis of A549 cells in a -concentration-dependent manner, as determined by fluorescence microscopy, flow cytometry and transmission electron microscopy. The present study also demonstrated that CuB dose-dependently inhibited lung cancer cell proliferation, with cell cycle inhibition and cyclin B1 downregulation. Apoptosis induced by CuB was shown to be associated with cytochrome c release, B-cell lymphoma 2 downregulation and signal transducer and activator of transcription 3 pathway inhibition. CuB may prove to be a useful approach for the chemotherapy of lung cancer. PMID:25242136

  9. A knock-in mouse model reveals roles for nuclear Apc in cell proliferation, Wnt signal inhibition and tumor suppression.

    PubMed

    Zeineldin, M; Cunningham, J; McGuinness, W; Alltizer, P; Cowley, B; Blanchat, B; Xu, W; Pinson, D; Neufeld, K L

    2012-05-10

    Mutation of the tumor suppressor adenomatous polyposis coli (APC) is considered an initiating step in the genesis of the vast majority of colorectal cancers. APC inhibits the Wnt-signaling pathway by targeting the proto-oncogene β-catenin for destruction by cytoplasmic proteasomes. In the presence of a Wnt signal, or in the absence of functional APC, β-catenin can serve as a transcription cofactor for genes required for cell proliferation such as cyclin-D1 and c-Myc. In cultured cells, APC shuttles between the nucleus and the cytoplasm, with nuclear APC implicated in the inhibition of Wnt target gene expression. Adopting a genetic approach to evaluate the functions of nuclear APC in the context of a whole organism, we generated a mouse model with mutations that inactivate the nuclear localization signals (NLSs) of Apc (Apc(mNLS)). Apc(mNLS/mNLS) mice are viable and fractionation of mouse embryonic fibroblasts (MEFs) isolated from these mice revealed a significant reduction in nuclear Apc as compared with Apc(+/+) MEFs. The levels of Apc and β-catenin protein were not significantly altered in small intestinal epithelia from Apc(mNLS/mNLS) mice. Compared with Apc(+/+) mice, Apc(mNLS/mNLS) mice showed increased proliferation in epithelial cells from the jejunum, ileum and colon. These same tissues from Apc(mNLS/mNLS) mice showed more mRNA from three genes upregulated in response to canonical Wnt signal, c-Myc, axin-2 and cyclin-D1, and less mRNA from Hath-1, which is downregulated in response to Wnt. These observations suggest a role for nuclear Apc in the inhibition of canonical Wnt signaling and the control of epithelial proliferation in intestinal tissue. Furthermore, we found Apc(Min/+) mice, which harbor a mutation that truncates Apc, to have an increased polyp size and multiplicity if they also carry the Apc(mNLS) allele. Taken together, this analysis of the novel Apc(mNLS) mouse model supports a role for nuclear Apc in the control of Wnt target genes

  10. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms

    SciTech Connect

    Rasmusson, Ida . E-mail: Ida.Rasmusson@labmed.ki.se; Ringden, Olle; Sundberg, Berit; Le Blanc, Katarina

    2005-04-15

    Human mesenchymal stem cells (MSCs) have immuno-modulatory properties. They inhibit T-cell proliferation to mitogens and alloantigens in vitro and prolong skin graft survival in vivo. We found that MSCs inhibited the proliferation of peripheral blood lymphocytes (PBLs) to phorbol myristate acetate (PMA), suggesting that MSCs exert an inhibitory effect downstream of the receptor level. We analyzed cytokine profiles of PBLs co-cultured with MSCs. MSCs increased interleukin (IL)-2 and soluble IL-2 receptor in mixed lymphocyte cultures (MLCs), while IL-2 and IL-2R decreased in phytohemagglutinin (PHA)-stimulated PBL cultures. MSCs inhibited IL-2 induced proliferation, without absorbing IL-2. IL-10 levels increased in MLCs co-cultured with 10% MSCs, while the levels were not affected in PHA cultures. In MLCs inhibited by MSCs, antibodies against IL-10 further suppressed proliferation but had no effect in PHA cultures. Addition of indomethacin, an inhibitor of prostaglandin-synthesis, restored part of the inhibition by MSCs in PHA cultures. However, indomethacin did not affect MSC-induced inhibition in MLCs. To conclude, our data indicate that MSC-induced suppression is a complex mechanism affecting IL-2 and IL-10 signaling and may function differently, depending on T-cell stimuli. Prostaglandins are important in the inhibition by MSCs when the T cells were activated by PHA, but not alloantigens.

  11. Inhibition of tumor cell proliferation and motility by fibroblasts is both contact and soluble factor dependent

    PubMed Central

    Alkasalias, Twana; Flaberg, Emilie; Kashuba, Vladimir; Alexeyenko, Andrey; Pavlova, Tatiana; Savchenko, Andrii; Szekely, Laszlo; Klein, George; Guven, Hayrettin

    2014-01-01

    Normal human and murine fibroblasts can inhibit proliferation of tumor cells when cocultured in vitro. The inhibitory capacity varies depending on the donor and the site of origin of the fibroblast. We showed previously that effective inhibition requires formation of a morphologically intact fibroblast monolayer before seeding of the tumor cells. Here we show that inhibition is extended to motility of tumor cells and we dissect the factors responsible for these inhibitory functions. We find that inhibition is due to two different sets of molecules: (i) the extracellular matrix (ECM) and other surface proteins of the fibroblasts, which are responsible for contact-dependent inhibition of tumor cell proliferation; and (ii) soluble factors secreted by fibroblasts when confronted with tumor cells (confronted conditioned media, CCM) contribute to inhibition of tumor cell proliferation and motility. However, conditioned media (CM) obtained from fibroblasts alone (nonconfronted conditioned media, NCM) did not inhibit tumor cell proliferation and motility. In addition, quantitative PCR (Q-PCR) data show up-regulation of proinflammatory genes. Moreover, comparison of CCM and NCM with an antibody array for 507 different soluble human proteins revealed differential expression of growth differentiation factor 15, dickkopf-related protein 1, endothelial-monocyte-activating polypeptide II, ectodysplasin A2, Galectin-3, chemokine (C-X-C motif) ligand 2, Nidogen1, urokinase, and matrix metalloproteinase 3. PMID:25404301

  12. The antiviral drug ganciclovir does not inhibit microglial proliferation and activation.

    PubMed

    Skripuletz, Thomas; Salinas Tejedor, Laura; Prajeeth, Chittappen K; Hansmann, Florian; Chhatbar, Chintan; Kucman, Valeria; Zhang, Ning; Raddatz, Barbara B; Detje, Claudia N; Sühs, Kurt-Wolfram; Pul, Refik; Gudi, Viktoria; Kalinke, Ulrich; Baumgärtner, Wolfgang; Stangel, Martin

    2015-01-01

    Ganciclovir is effective in the treatment of human infections with viruses of the Herpesviridae family. Beside antiviral properties, recently ganciclovir was described to inhibit microglial proliferation and disease severity of experimental autoimmune encephalomyelitis, an inflammatory model of multiple sclerosis. Microglial activation and proliferation are main characteristics of neuroinflammatory CNS diseases and inhibition of microglial functions might be beneficial in autoimmune diseases, or detrimental in infectious diseases. The objective of this study was to determine potential inhibitory effects of ganciclovir in three different murine animal models of CNS neuroinflammation in which microglia play an important role: Theiler´s murine encephalomyelitis, the cuprizone model of de- and remyelination, and the vesicular stomatitis virus encephalitis model. In addition, in vitro experiments with microglial cultures were performed to test the hypothesis that ganciclovir inhibits microglial proliferation. In all three animal models, neither microglial proliferation or recruitment nor disease activity was changed by ganciclovir. In vitro experiments confirmed that microglial proliferation was not affected by ganciclovir. In conclusion, our results show that the antiviral drug ganciclovir does not inhibit microglial activation and proliferation in the murine CNS. PMID:26447351

  13. The antiviral drug ganciclovir does not inhibit microglial proliferation and activation

    PubMed Central

    Skripuletz, Thomas; Salinas Tejedor, Laura; Prajeeth, Chittappen K.; Hansmann, Florian; Chhatbar, Chintan; Kucman, Valeria; Zhang, Ning; Raddatz, Barbara B.; Detje, Claudia N.; Sühs, Kurt-Wolfram; Pul, Refik; Gudi, Viktoria; Kalinke, Ulrich; Baumgärtner, Wolfgang; Stangel, Martin

    2015-01-01

    Ganciclovir is effective in the treatment of human infections with viruses of the Herpesviridae family. Beside antiviral properties, recently ganciclovir was described to inhibit microglial proliferation and disease severity of experimental autoimmune encephalomyelitis, an inflammatory model of multiple sclerosis. Microglial activation and proliferation are main characteristics of neuroinflammatory CNS diseases and inhibition of microglial functions might be beneficial in autoimmune diseases, or detrimental in infectious diseases. The objective of this study was to determine potential inhibitory effects of ganciclovir in three different murine animal models of CNS neuroinflammation in which microglia play an important role: Theiler´s murine encephalomyelitis, the cuprizone model of de- and remyelination, and the vesicular stomatitis virus encephalitis model. In addition, in vitro experiments with microglial cultures were performed to test the hypothesis that ganciclovir inhibits microglial proliferation. In all three animal models, neither microglial proliferation or recruitment nor disease activity was changed by ganciclovir. In vitro experiments confirmed that microglial proliferation was not affected by ganciclovir. In conclusion, our results show that the antiviral drug ganciclovir does not inhibit microglial activation and proliferation in the murine CNS. PMID:26447351

  14. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    SciTech Connect

    Matsui, Takanori; Yamagishi, Sho-ichi; Takeuchi, Masayoshi; Ueda, Seiji; Fukami, Kei; Okuda, Seiya

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression

  15. 5-Azacytidine suppresses the proliferation of pancreatic cancer cells by inhibiting the Wnt/β-catenin signaling pathway.

    PubMed

    Zhang, H; Zhou, W C; Li, X; Meng, W B; Zhang, L; Zhu, X L; Zhu, K X; Bai, Z T; Yan, J; Liu, T; Xu, X C; Li, Y M

    2014-01-01

    5-Azacytidine has been shown to be an effective anti-pancreatic cancer drug, but the mechanism remains unknown. In the current study, we explored the effect of 5-azacytidine on abnormal activation of the Wnt-β-catenin signaling pathway in pancreatic cancer cells. The human pancreatic cancer cell line Bxpc-3 was treated with different concentrations of 5-azacytidine for various times. The proliferation and early apoptosis of the cells were evaluated using the CCK8 method and flow cytometry, respectively. mRNA and protein expression of β-catenin, c-myc, and cyclinD1 were detected using real-time fluorescent quantitative polymerase chain reaction and Western blot analysis, respectively. The proliferation of Bxpc-3 cells was suppressed by 5-azacytidine. The early apoptosis of the cells was significantly enhanced over time and with increasing drug concentrations. The expression of β-catenin, c-myc, and cyclinD1 were down-regulated, showing significant differences between different concentrations and treatment times (P < 0.05). 5-Azacytidine suppressed the proliferation of pancreatic cancer cells by inhibiting the Wnt/β-catenin signaling pathway, particularly the expression of β-catenin, c-myc, and cyclinD1. This study may provide a new potential strategy for diagnosing and treating pancreatic cancer. PMID:25061731

  16. Jia-Shen decoction-medicated serum inhibits angiotensin-II induced cardiac fibroblast proliferation via the TGF-β1/Smad signaling pathway

    PubMed Central

    Cui, Lin; Wang, Youping; Yu, Rui; Li, Bin; Xie, Shiyang; Gao, Yuan; Wang, Xiaoxiao; Zhu, Mingjun

    2016-01-01

    Jia-Shen decoction (JSD) is a traditional Chinese medicine, which is used widely to treat chronic heart failure. However, the underlying mechanism remains to be elucidated. The present study aimed to investigate the mechanism underlying the effects of JSD on cardiac fibroblast (CF) proliferation and differentiation. The CFs were obtained from the hearts of neonatal (1-3-day old) Sprague-Dawley rats and treated with JSD-medicated serum (JSDS) with or without angiotensin II (Ang II). Cell proliferation was assessed using Cell Counting Kit-8 reagent. In addition, the mRNA expression levels of transforming growth factor-β1 (TGF-β1) and phosphorylated small mothers against decapentaplegic (p-Smad)2/3 and their protein expression levels were analyzed. CF proliferation was significantly increased in the Ang II-treated group, compared with the control group (P<0.05). The expression levels of collagen, α-smooth muscle actin, TGF-β1 and p-Smad2/3 were also increased in the Ang II-treated group (P<0.05). Following JSDS treatment, the increased levels of collagen and cell proliferation were inhibited, and the increased expression levels of p-Smad2 and p-Smad3 were also inhibited (P<0.05). These data suggested that JSDS may inhibit CF proliferation via attenuating the TGF-β1/Smad signaling pathway. PMID:27315199

  17. Alternol inhibits the proliferation and induces the differentiation of the mouse melanoma B16F0 cell line.

    PubMed

    Wang, Caixia; Xu, Wenjuan; Hao, Wenjin; Wang, Bingsheng; Zheng, Qiusheng

    2016-08-01

    High malignant potential and low susceptibility to treatment are characteristics of malignant melanoma. Alternol, a novel compound purified from microbial fermentation products obtained from the bark of the yew tree, exhibits a variety of antitumor activities. Based on these findings, the aim of the present study was to extend the knowledge on the antineoplastic effect of alternol in the mouse melanoma B16F0 cell line. Alternol significantly inhibited the proliferation and colony formation of B16F0 cells in a dose-dependent manner as detected by MTT and soft agar colony formation assays. NaOH alkaline lysis and oxidation of Dopa indicated that alternol enhanced the melanin content and tyrosinase activity of the B16F0 cells and results also showed a dose‑response relationship. Morphologic changes accompanied by extended dendrites were discovered in the B16F0 cells after treatment with alternol. Furthermore, the mRNA levels of tyrosinase, Trp1 and Trp2 were increased by alternol. Our results confirmed that alternol possesses marked antineoplastic properties against melanoma cells, indicating that this microbial fermentation product is a promising agent for the differentiation therapy of cancer. The inhibition of cell proliferation and colony formation by alternol was associated with both cytotoxicity and induction of differentiation. PMID:27278753

  18. Substituted oxines inhibit endothelial cell proliferation and angiogenesis†

    PubMed Central

    Bhat, Shridhar; Shim, Joong Sup; Zhang, Feiran; Chong, Curtis Robert; Liu, Jun O.

    2013-01-01

    Two substituted oxines, nitroxoline (5) and 5-chloroquinolin-8-yl phenylcarbamate (22), were identified as hits in a high-throughput screen aimed at finding new anti-angiogenic agents. In a previous study, we have elucidated the molecular mechanism of antiproliferative activity of nitroxoline in endothelial cells, which comprises of a dual inhibition of type 2 human methionine aminopeptidase (MetAP2) and sirtuin 1 (SIRT1). Structure–activity relationship study (SAR) of nitroxoline offered many surprises where minor modifications yielded oxine derivatives with increased potency against human umbilical vein endothelial cells (HUVEC), but with entirely different as yet unknown mechanisms. For example, 5-nitrosoquinolin-8-ol (33) inhibited HUVEC growth with sub-micromolar IC50, but did not affect MetAP2 or MetAP1, and it only showed weak inhibition against SIRT1. Other sub-micromolar inhibitors were derivatives of 5-aminoquinolin-8-ol (34) and 8-sulfonamidoquinoline (32). A sulfamate derivative of nitroxoline (48) was found to be more potent than nitroxoline with the retention of activities against MetAP2 and SIRT1. The bioactivity of the second hit, micromolar HUVEC and MetAP2 inhibitor carbamate 22 was improved further with an SAR study culminating in carbamate 24 which is a nanomolar inhibitor of HUVEC and MetAP2. PMID:22391578

  19. miR-98 targets ITGB3 to inhibit proliferation, migration, and invasion of non-small-cell lung cancer

    PubMed Central

    Ni, Ran; Huang, Yongjie; Wang, Jing

    2015-01-01

    Background Accumulating evidence has emphasized causative links between aberrant microRNA (miR) expression patterns and cancer development. Abnormally expressed miRNA-98 (miR-98) was found in certain types of human cancers. The biological roles of miR-98 in lung cancer, however, remain largely undefined. Methods We evaluated the expression of miR-98 in normal lung tissues, lung cancer tissues, normal human bronchial epithelial cells, and lung cancer cells using quantitative real-time polymerase chain reaction. Effect of miR-98 on proliferation of lung cancer cells was investigated using MTT assay and colony formation assay. Transwell assay was used to assess the effects of miR-98 on migration and invasion of lung cancer cells. Whether miR-98 targets the 3′-untranslated region (3′-UTR) of integrin β3 (ITGB3) coding gene ITGB3 mRNA was ascertained using luciferase reporter assay. Finally, we transplanted miR-98 expressing A549 cells into nude mice to observe the effect of miR-98 on tumor growth in vivo. Results We confirmed that miR-98 was frequently low expressed in lung cancer tissues and human lung cancer cells. Reintroduction of miR-98 into lung cancer cells inhibited cell proliferation, migration, and invasion in vitro and suppressed tumor formation in a nude mouse model. Furthermore, we identified that miR-98 exerted inhibitory roles by directly binding to 3′-UTR of ITGB3 mRNA, thus negatively regulated the expression of ITGB3. Interestingly, upon restoring the expression of ITGB3, the effect of miR-98 on cell proliferation was partially reversed. Conclusion Our findings suggest that miR-98 prevents proliferation, migration, and invasion of lung cancer cells by directly binding to the 3′-UTR of ITGB3 mRNA and could be a promising treatment option in anticancer therapy. PMID:26445551

  20. Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin

    PubMed Central

    TIAN, XUEWEN; LI, YUJIAN; SHEN, YINYU; LI, QIAOQIAO; WANG, QINGLU; FENG, LIANSHI

    2015-01-01

    Cordycepin, a 3-deoxyadenosine, is the predominant functional component of the fungus Cordyceps militaris, a traditional Chinese medicine. Previous studies investigating the inhibition of cancer cells by cordycepin identified that it not only promotes cell apoptosis, but also controls cell proliferation. Furthermore, studies have elucidated the molecular mechanisms of inhibiting cell proliferation by cordycepin binding the A3 adenosine receptor, activating G protein, inhibiting cAMP formation, decreasing glycogen synthase kinase-3β/β-catenin activation and suppressing cyclin D1 and c-myc expression. The most significant signaling pathway in which cell apoptosis is induced by cordycepin is the caspase pathway. Cordycepin induces cell apoptosis via binding the DR3 receptor and consequently activating caspase-8/-3. Taken together, these studies demonstrate that cordycepin may be used as a natural medicine, as it can not only control tumor cell proliferation, but also induce cancer cell apoptosis. PMID:26622539

  1. Astaxanthin Inhibits Proliferation and Induces Apoptosis and Cell Cycle Arrest of Mice H22 Hepatoma Cells

    PubMed Central

    Shao, Yiye; Ni, Yanbo; Yang, Jing; Lin, Xutao; Li, Jun; Zhang, Lixia

    2016-01-01

    Background It is widely recognized that astaxanthin (ASX), a member of the carotenoid family, has strong biological activities including antioxidant, anti-inflammation, and immune-modulation activities. Previous studies have confirmed that ASX can effectively inhibit hepatoma cells in vitro. Material/Methods MTT was used to assay proliferation of mice H22 cells, and flow cytometry was used to determine apoptosis and cell cycle arrest of H22 cells in vitro and in vivo. Moreover, anti-tumor activity of ASX was observed in mice. Results ASX inhibited the proliferation of H22 cells, promoted cell necrosis, and induced cell cycle arrest in G2 phase in vitro and in vivo. Conclusions This study indicated that ASX can inhibit proliferation and induce apoptosis and cell cycle arrest in mice H22 hepatoma cells in vitro and in vivo. PMID:27333866

  2. Astaxanthin Inhibits Proliferation and Induces Apoptosis and Cell Cycle Arrest of Mice H22 Hepatoma Cells.

    PubMed

    Shao, Yiye; Ni, Yanbo; Yang, Jing; Lin, Xutao; Li, Jun; Zhang, Lixia

    2016-01-01

    BACKGROUND It is widely recognized that astaxanthin (ASX), a member of the carotenoid family, has strong biological activities including antioxidant, anti-inflammation, and immune-modulation activities. Previous studies have confirmed that ASX can effectively inhibit hepatoma cells in vitro. MATERIAL AND METHODS MTT was used to assay proliferation of mice H22 cells, and flow cytometry was used to determine apoptosis and cell cycle arrest of H22 cells in vitro and in vivo. Moreover, anti-tumor activity of ASX was observed in mice. RESULTS ASX inhibited the proliferation of H22 cells, promoted cell necrosis, and induced cell cycle arrest in G2 phase in vitro and in vivo. CONCLUSIONS This study indicated that ASX can inhibit proliferation and induce apoptosis and cell cycle arrest in mice H22 hepatoma cells in vitro and in vivo. PMID:27333866

  3. miR-613 inhibits proliferation and invasion of breast cancer cell via VEGFA.

    PubMed

    Wu, Junzhao; Yuan, Peng; Mao, Qixin; Lu, Peng; Xie, Tian; Yang, Hanzhao; Wang, Chengzheng

    2016-09-01

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in breast cancer, has remained elusive. Here, we identified that miR-613 inhibits breast cancer cell proliferation by negatively regulates its target gene VEGFA. In breast cancer cell lines, CCK-8 proliferation assay indicated that the cell proliferation was inhibited by miR-613, while miR-613 inhibitor significantly promoted the cell proliferation. Transwell assay showed that miR-613 mimics significantly inhibited the migration and invasion of breast cancer cells, whereas miR-613 inhibitors significantly increased cell migration and invasion. Luciferase assays confirmed that miR-613 directly bound to the 3' untranslated region of VEGFA, and western blotting showed that miR-613 suppressed the expression of VEGFA at the protein levels. This study indicated that miR-613 negatively regulates VEGFA and inhibits proliferation and invasion of breast cancer cell lines. Thus, miR-613 may represent a potential therapeutic molecule for breast cancer intervention. PMID:27449609

  4. Region-Specific Activation of oskar mRNA Translation by Inhibition of Bruno-Mediated Repression

    PubMed Central

    Kim, Goheun; Pai, Chin-I; Sato, Keiji; Person, Maria D.; Nakamura, Akira; Macdonald, Paul M.

    2015-01-01

    A complex program of translational repression, mRNA localization, and translational activation ensures that Oskar (Osk) protein accumulates only at the posterior pole of the Drosophila oocyte. Inappropriate expression of Osk disrupts embryonic axial patterning, and is lethal. A key factor in translational repression is Bruno (Bru), which binds to regulatory elements in the osk mRNA 3′ UTR. After posterior localization of osk mRNA, repression by Bru must be alleviated. Here we describe an in vivo assay system to monitor the spatial pattern of Bru-dependent repression, separate from the full complexity of osk regulation. This assay reveals a form of translational activation—region-specific activation—which acts regionally in the oocyte, is not mechanistically coupled to mRNA localization, and functions by inhibiting repression by Bru. We also show that Bru dimerizes and identify mutations that disrupt this interaction to test its role in vivo. Loss of dimerization does not disrupt repression, as might have been expected from an existing model for the mechanism of repression. However, loss of dimerization does impair regional activation of translation, suggesting that dimerization may constrain, not promote, repression. Our work provides new insight into the question of how localized mRNAs become translationally active, showing that repression of osk mRNA is locally inactivated by a mechanism acting independent of mRNA localization. PMID:25723530

  5. Piperlongumine inhibits proliferation and survival of Burkitt lymphoma in vitro

    PubMed Central

    Han, Seong-Su; Son, Dong-Ju; Yun, Hwakyung; Kamberos, Natalie L.; Janz, Siegfried

    2013-01-01

    Piperlongumine (PL), a pepper plant alkaloid from Piper longum, kills solid tumor cells in a highly selective, potent fashion. To evaluate whether PL may have similar effects on malignant blood cells, we determined the efficacy with which PL inhibits the B-lymphocyte derived neoplasm, Burkitt lymphoma (BL). Low micromolar concentrations of PL (IC50 = 2.8 × 8.5 μM) curbed growth and survival of two EBV+ BL cell lines (Daudi, Raji) and two EBV− BL cell lines (Ramos, DG-75), but left normal peripheral blood B-lymphocytes unharmed. PL-dependent cytotoxicity was effected in part by reduced NF-κB and MYC activity, with the former being caused by inhibition of IκBα degradation, nuclear translocation of p65, and binding of NF-κB dimers to cognate DNA sequences in gene promoters. In 4 of 4 BL cell lines, the NF-κB/MYC-regulated cellular target genes, E2F1 and MYB, were down regulated, while the stress sensor gene, GADD45B, was up regulated. The EBV-encoded oncogene, LMP-1, was suppressed in Daudi and Raji cells. Considering that NF-κB, MYC and LMP-1 play a crucial role in the biology of many blood cancers including BL, our results provide a strong preclinical rationale for considering PL in new intervention approaches for patients with hematologic malignancies. PMID:23237561

  6. Peroxisome proliferator-activated receptor-gamma ligands inhibit proliferation and induce apoptosis in mantle cell lymphoma.

    PubMed

    Eucker, Jan; Sterz, Jan; Krebbel, Holger; Zavrski, Ivana; Kaiser, Martin; Zang, Chuanbing; Heider, Ulrike; Jakob, Christian; Elstner, Elena; Sezer, Orhan

    2006-08-01

    Peroxisome proliferator-activated receptor-gamma, a nuclear receptor and transcription factor, and its natural and synthetic ligands have become a focus of novel approaches to induction of apoptosis in solid tumors and hematologic malignancies, including malignant B-lineage cells. The effect on mantle cell lymphoma, a subtype with dismal prognosis, has not yet been analyzed. We investigated the effect of 15-deoxy-delta-12,14-prostaglandin J2 (15d-PGJ2), pioglitazone (PGZ) or rosiglitazone (RGZ) on human mantle cell lymphoma cell lines (GRANTA-519, Hbl-2 and JeKo-1). Mantle cell lymphoma cell lines exhibited a high expression of Peroxisome proliferator-activated receptor-gamma protein in Western blot analysis. MTT assays revealed anti-proliferative effects induced by both 15d-PGJ2, the natural activator of Peroxisome proliferator-activated receptor-gamma, and PGZ and RGZ, synthetic Peroxisome proliferator-activated receptor-gamma ligands, in a dose-dependent manner. At a dose of 50 micromol/l, 15d-PGJ2 induced growth inhibition in all cell lines. The anti-proliferative effect of PGZ and RGZ was slightly lower. Induction of apoptosis was indicated by annexin V staining. At a dose of 50 micromol/l, 15d-PGJ2 led to apoptosis in all cell lines (87-99%) after 48 h of incubation. Again, the apoptotic effect with thiazolidinediones was slightly lower at the same dose level. This is the first study evaluating Peroxisome proliferator-activated receptor-gamma expression and its therapeutic implications in human mantle cell lymphoma cells. Thiazolidinediones comprise anti-lymphoma activity in vitro and should be further explored for the treatment of mantle cell lymphoma. PMID:16926626

  7. Inhibition of Cell Proliferation by an Anti-EGFR Aptamer

    PubMed Central

    Li, Na; Nguyen, Hong Hanh; Byrom, Michelle; Ellington, Andrew D.

    2011-01-01

    Aptamers continue to receive interest as potential therapeutic agents for the treatment of diseases, including cancer. In order to determine whether aptamers might eventually prove to be as useful as other clinical biopolymers, such as antibodies, we selected aptamers against an important clinical target, human epidermal growth factor receptor (hEGFR). The initial selection yielded only a single clone that could bind to hEGFR, but further mutation and optimization yielded a family of tight-binding aptamers. One of the selected aptamers, E07, bound tightly to the wild-type receptor (Kd = 2.4 nM). This aptamer can compete with EGF for binding, binds to a novel epitope on EGFR, and also binds a deletion mutant, EGFRvIII, that is commonly found in breast and lung cancers, and especially in grade IV glioblastoma multiforme, a cancer which has for the most part proved unresponsive to current therapies. The aptamer binds to cells expressing EGFR, blocks receptor autophosphorylation, and prevents proliferation of tumor cells in three-dimensional matrices. In short, the aptamer is a promising candidate for further development as an anti-tumor therapeutic. In addition, Aptamer E07 is readily internalized into EGFR-expressing cells, raising the possibility that it might be used to escort other anti-tumor or contrast agents. PMID:21687663

  8. Equol inhibits proliferation of human gastric carcinoma cells via modulating Akt pathway

    PubMed Central

    Yang, Zhi-Ping; Zhao, Yan; Huang, Fang; Chen, Jie; Yao, Ya-Hong; Li, Jun; Wu, Xiao-Nan

    2015-01-01

    AIM: To investigate the anti-tumor effects of equol in gastric cancer cells and the underlying molecular mechanisms. METHODS: MGC-803 cells were employed for in vitro experiments in this study. Cells were treated with control (vehicle, 0.1% DMSO) or equol under specified dose titration or time courses. Cell viability was examined by MTS assay, and the levels of Ki67 were determined by qPCR and immunofluorescent assay. Changes in cell cycle distribution and apoptosis rate were detected by flow cytometry. The mRNA expression of cyclin E1 and P21WAF1 was determined by qPCR. The protein levels of cell cycle regulators, PARP and Caspase-3 cleavage, and the phosphorylation of Akt were examined by Western blot. In addition, to characterize the role of elevated Akt activation in the anti-tumor effect exerted by equol, Ly294002, a PI3K/AKT pathway inhibitor, was used to pretreat MGC-803 cells. RESULTS: Equol (5, 10, 20, 40, or 80 μmol/L) inhibited viability of MGC-803 cells in a dose- and time-dependent manner after treatment for 24, 36, or 48 h (P < 0.05 for all). Equol also decreased the mRNA (P < 0.05 for 12 and 24 h treatment) and protein levels of Ki67. Equol treatment significantly induced G0/G1 cell cycle arrest (P < 0.05), with the percentages of G0/G1 cells of 32.23% ± 3.62%, 36.31% ± 0.24%, 45.58% ± 2.29%, and 65.10% ± 2.04% for equol (0, 10, 20, or 30 μmol/L) treatment, respectively, accompanied by a significant decrease of CDK2/4 (P < 0.05 for 24 and 48 h treatment) and Cyclin D1/Cyclin E1 (P < 0.05), and an increased level of P21WAF1 (P < 0.05). A marked increase of apoptosis was observed, with the percentages of apoptotic cells of 5.01% ± 0.91%, 14.57% ± 0.99%, 37.40% ± 0.58%, and 38.46% ± 2.01% for equol (0, 5, 10, or 20 μmol/L) treatment, respectively, accompanied by increased levels of cleaved PARP and caspase-3. In addition, we found that equol treatment increased P-Akt (Ser473 and Thr308) at 12 and 24 h compared to vehicle-treated control

  9. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation

    PubMed Central

    Williams, Kathryn R.; McAninch, Damian S.; Stefanovic, Snezana; Xing, Lei; Allen, Megan; Li, Wenqi; Feng, Yue; Mihailescu, Mihaela Rita; Bassell, Gary J.

    2016-01-01

    Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development. PMID:26658614

  10. Heparin fragments inhibit human vascular smooth muscle cell proliferation in vitro

    SciTech Connect

    Selden, S.C.; Johnson, W.V.; Maciag, T.

    1986-03-01

    The authors have examined the effect of heparin on human abdominal aortic smooth muscle cell growth. Cell proliferation was inhibited by more than 90% at a concentration of 20 ..mu..g/ml in a 12 day growth assay using heparin from Sigma, Upjohn or Calbiochem. Additionally, 200 ..mu..g/ml Upjohn heparin inhibits /sup 3/H-thymidine incorporation by 50% in short term assays using serum or purified platelet-derived growth factor (25-100ng/ml) to initiate the cell cycle. Homogeneous size classes of heparin fragments were prepared by nitrous acid cleavage and BioGel P-10 filtration chromatography. Deca-, octa-, hexa-, tetra-, and di-saccharides inhibited proliferation by 90% at concentrations of 280, 320, 260, 180 and 100 ..mu..g/ml, respectively, in a 12 day growth assay. These data confirm the work of Castellot et.al. and extend the range of inhibitory fragments down to the tetra- and di-saccharide size. These data suggest, therefore, that di-saccharide subunit of heparin is sufficient to inhibit vascular smooth muscle cell proliferation. The authors are now examining the role of the anhydromannose moiety on the reducing end of the nitrous acid generated fragments as a possible mediator of heparin-induced inhibition of vascular smooth muscle cell proliferation.

  11. Inhibitory effect of reinioside C on vascular smooth muscle cells proliferation induced by angiotensin II via inhibiting NADPH oxidase-ROS-ENK1/2-NF-kappaB-AP-1 pathway.

    PubMed

    Hong, Dan; Bai, Yong-Ping; Shi, Rui-Zheng; Tan, Gui-Shan; Hu, Chang-Ping; Zhang, Guo-Gang

    2014-09-01

    The proliferation of vascular smooth muscle cells (VSMCs) induced by angiotensin II (Ang II) plays a vital role in the pathogenesis of arteriosclerosis and restenosis. In the present study, the effect of reinioside C, a main active ingredient of Polygala fallax Hemsl, on proliferation of VSMCs induced by Ang II was investigated. It was found that Ang II (1 microM) markedly stimulated proliferation of VSMCs. Pretreatment of reinioside C (3, 10 or 30 microM) concentration-dependently inhibited the proliferative effect of Ang II. To determine the possible mechanism, NADPH oxidase subunits (Nox-1, Nox-4) mRNA expression, intracellular ROS level, phosphorylation of ERK1/2, NF-kappaB activity, and mRNA expression of AP-1 subunits (c-fos, c-jun) and c-myc were measured. The results demonstrated that reinioside C attenuated Ang II-induced NADPH oxidase mRNA expression, generation of ROS, ERK1/2 phosphorylation, activation of NF-kappaB, and mRNA expression of AP-1 and c-myc in VSMCs in a concentration-dependent manner. The effects of Ang II were also inhibited by diphenyleneiodonium (DPI, the NADPH oxidase inhibitor), PD98059 (the ERK1/2 inhibitor) and pyrrolidine dithiocarbamate (PDTC, the NF-kappaB inhibitor). These results suggest reinioside C attenuates Ang II-induced proliferation of VSMCs by inhibiting NADPH oxidase-ROS-ERK1/2-NF-kappaB-AP-1 pathway. PMID:25272943

  12. Inhibition of GLI1 Expression by Targeting the CRD-BP-GLI1 mRNA Interaction Using a Specific Oligonucleotide.

    PubMed

    Mehmood, Kashif; Akhtar, Daud; Mackedenski, Sebastian; Wang, Chuyi; Lee, Chow H

    2016-06-01

    The stabilization of glioma-associated oncogene 1 (GLI1) mRNA by coding region determinant binding protein (CRD-BP) through the Wnt/β-catenin signaling pathway is implicated in the proliferation of colorectal cancer and basal cell carcinoma. Here, we set out to characterize the physical interaction between CRD-BP and GLI1 mRNA so as to find inhibitors for such interaction. Studies using CRD-BP variants with a point mutation in the GXXG motif at each KH domain showed that KH1 and KH2 domain are critical for the binding of GLI1 RNA. The smallest region of GLI1 RNA binding to CRD-BP was mapped to nucleotides (nts) 320-380. A 37-nt S1 RNA sense oligonucleotide, containing two distinct stem-loops present in nts 320-380 of GLI1 RNA, was found to be effective in blocking CRD-BP-GLI1 RNA interaction. Studies using various competitor RNAs with modifications to S1 RNA oligonucleotide further displayed that both the sequences and the structure of the two stem-loops are important for CRD-BP-GLI1 RNA binding. The role of the two-stem-loop motif in influencing CRD-BP-RNA interaction was further investigated in cells. The 2'-O-methyl derivative of the S1 RNA oligonucleotide significantly decreased GLI1, c-myc, and CD44 mRNA levels, in a panel of colon and breast cancer cells. The results from this study demonstrate the potential importance of the two-stem-loop motif as a target region for the inhibition of the CRD-BP-GLI1 RNA interaction and Hedgehog signaling pathway. Such results pave the way for the development of novel inhibitors that act by destabilizing the CRD-BP-GLI1 mRNA interaction. PMID:27036131

  13. MiR-181b targets Six2 and inhibits the proliferation of metanephric mesenchymal cells in vitro

    SciTech Connect

    Lyu, Zhongshi; Mao, Zhaomin; Wang, Honglian; Fang, Yin; Chen, Tielin; Wan, Qianya; Wang, Ming; Wang, Nian; Xiao, Jiangming; Wei, Hongyuan; Li, Xun; Liu, Yi; Zhou, Qin

    2013-11-01

    Highlights: •We do bio-informatics websites to analysis of Six2 3′UTR. •MiR181b is a putative miRNA which can targets Six2 3′UTR. •MiR-181b binding site in the 3′UTR of Six2 is functional. •MiR-181b suppresses MK3 cells cell proliferation by targeting Six2. -- Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that down-regulate gene expression by binding to target mRNA for cleavage or translational repression, and play important regulatory roles in renal development. Despite increasing genes have been predicted to be miRNA targets by bioinformatic analysis during kidney development, few of them have been verified by experiment. The objective of our study is to identify the miRNAs targeting Six2, a critical transcription factor that maintains the mesenchymal progenitor pool via self-renewal (proliferation) during renal development. We initially analyzed the 3′UTR of Six2 and found 37 binding sites targeted by 50 putative miRNAs in the 3′UTR of Six2. Among the 50 miRNAs, miR-181b is the miRNAs predicted by the three used websites. In our study, the results of luciferase reporter assay, realtime-PCR and Western blot demonstrated that miR-181b directly targeted on the 3′UTR of Six2 and down-regulate the expression of Six2 at mRNA and protein levels. Furthermore, EdU proliferation assay along with the Six2 rescue strategy showed that miR-181b suppresses the proliferation of metanephric mesenchymal by targeting Six2 in part. In our research, we concluded that by targeting the transcription factor gene Six2, miR-181b inhibits the proliferation of metanephric mesenchymal cells in vitro and might play an important role in the formation of nephrons.

  14. Fermented red ginseng extract inhibits cancer cell proliferation and viability.

    PubMed

    Oh, Jisun; Jeon, Seong Bin; Lee, Yuri; Lee, Hyeji; Kim, Ju; Kwon, Bo Ra; Yu, Kang-Yeol; Cha, Jeong-Dan; Hwang, Seung-Mi; Choi, Kyung-Min; Jeong, Yong-Seob

    2015-04-01

    Red ginseng (Panax ginseng C.A. Meyer) is the most widely recognized medicinal herb due to its remedial effects in various disorders, such as cancers, diabetes, and heart problems. In this study, we investigated the anticancer effect of fermented red ginseng extract (f-RGE; provided by Jeonju Biomaterials Institute, Jeonju, South Korea) in a parallel comparison with the effect of nonfermented red ginseng extract (nf-RGE; control) on several cancer cell lines--MCF-7 breast cancer cells, HepG2 hepatocellular carcinoma cells, and reprogrammed MCF-7 cells (mimicking cancer stem cells). Cells were cultured at various concentrations of RGE (from 0.5 up to 5 mg/mL) and their viabilities and proliferative properties were examined. Our data demonstrate the following: (1) nf-RGE inhibited cell viability at ≥1 mg/mL for MCF-7 cells and ≥2 mg/mL for HepG2 cells, (2) in the presence of a carcinogenic agent, 12-O-tetradecanoylphorbol-13-acetate (TPA), nf-RGE treatment in combination with paclitaxel synergistically decreased MCF-7 as well as HepG2 cell viability, (3) f-RGE (which contained a greater level of Rg3 content) more effectively decreased the viability of MCF-7 and HepG2 cells compared to nf-RGE, and (4) f-RGE appeared more potent for inhibiting cancerous differentiation of reprogrammed MCF-7 cells in a synergistic fashion with paclitaxel, especially in the presence of TPA, compared to nf-RGE. These findings suggest that f-RGE treatment may be more effective for decreasing cancer cell survival by inducing apoptotic cell death and also presumably for preventing cancer stem cell differentiation compared to nf-RGE. PMID:25658580

  15. The Drosophila splicing regulator sex-lethal directly inhibits translation of male-specific-lethal 2 mRNA.

    PubMed Central

    Gebauer, F; Merendino, L; Hentze, M W; Valcárcel, J

    1998-01-01

    Male-specific expression of the protein male-specific-lethal 2 (MSL-2) controls dosage compensation in Drosophila. msl-2 gene expression is inhibited in females by Sex-lethal (SXL), an RNA binding protein known to regulate pre-mRNA splicing. An intron present at the 5' untranslated region (UTR) of msl-2 mRNA contains putative SXL binding sites and is retained in female flies. Here we show that SXL plays a dual role in the inhibition of msl-2 expression. Cotransfection of Drosophila Schneider cells with an SXL expression vector and a reporter containing the 5' UTR of msl-2 mRNA resulted in retention of the 5' UTR intron and efficient accumulation of the unspliced mRNA in the cytoplasm, where its translation was blocked by SXL, but not by the intron per se. Both splicing and translation inhibition by SXL were recapitulated in vitro and found to be dependent upon SXL binding to high-affinity sites within the intron, showing that SXL directly regulates these events. Our data reveal a coordinated mechanism for the regulation of msl-2 expression by the same regulatory factor: SXL enforces intron retention in the nucleus and subsequent translation inhibition in the cytoplasm. PMID:9570314

  16. IFN-α Induces Transcription of Hypoxia-Inducible Factor-1α to Inhibit Proliferation of Human Endothelial Cells1

    PubMed Central

    Gerber, Scott A.; Pober, Jordan S.

    2009-01-01

    Expression of hypoxia-inducible factor (HIF)-1α, a transcription factor subunit increased by protein stabilization in response to hypoxia, is increased in human endothelial cells (ECs) by IFN-α under normoxic conditions. IFN-α increases HIF-1α transcript levels within 2 h by up to 50% and doubles HIF-1α protein expression. Based on pharmacological inhibition studies, the increase in HIF-1α mRNA involves new transcription, is independent of new protein synthesis, and requires JAK signaling. Protein knockdown by small interfering RNA confirms the involvement of JAK1 and TYK2, as well of IFN-stimulated gene factor 3 (ISGF3). IFN-γ does not significantly induce HIF-1α mRNA, but increases the magnitude and duration of the IFN-α effect. IFN-α-induced HIF-1α protein translocates to the nucleus and can bind to hypoxia response elements in DNA. However, IFN-α treatment fails to induce transcription of several prototypic HIF-responsive genes (VEGF-A, PPARγ, and prostacyclin synthase) due to an insufficient increase in HIF-1α protein levels. Although certain other HIF-responsive genes (PHD3 and VEGF-C) are induced following IFN-α and/or IFN-γ treatment, these responses are not inhibited by siRNA knockdown of HIF-1α. Additionally, IFN-α induction of ISGF3-dependent genes involved in innate immunity (viperin, OAS2, and CXCL10) are also unaffected by knockdown of HIF-1α. Interestingly, knockdown of HIF-1α significantly reduces the capacity of IFN-α to inhibit endothelial cell proliferation. We conclude that IFN-α induces the transcription of HIF-1α in human endothelial cells though a JAK-ISGF3 pathway under normoxic conditions, and that this response contributes to the antiproliferative activity of this cytokine. PMID:18606657

  17. Newborn Hypoxia/Anoxia Inhibits Cardiomyocyte Proliferation and Decreases Cardiomyocyte Endowment in the Developing Heart: Role of Endothelin-1

    PubMed Central

    Paradis, Alexandra N.; Gay, Maresha S.; Wilson, Christopher G.; Zhang, Lubo

    2015-01-01

    In the developing heart, cardiomyocytes undergo terminal differentiation during a critical window around birth. Hypoxia is a major stress to preterm infants, yet its effect on the development and maturation of the heart remains unknown. We tested the hypothesis in a rat model that newborn anoxia accelerates cardiomyocyte terminal differentiation and results in reduced cardiomyocyte endowment in the developing heart via an endothelin-1-dependent mechanism. Newborn rats were exposed to anoxia twice daily from postnatal day 1 to 3, and hearts were isolated and studied at postnatal day 4 (P4), 7 (P7), and 14 (P14). Anoxia significantly increased HIF-1α protein expression and pre-proET-1 mRNA abundance in P4 neonatal hearts. Cardiomyocyte proliferation was significantly decreased by anoxia in P4 and P7, resulting in a significant reduction of cardiomyocyte number per heart weight in the P14 neonates. Furthermore, the expression of cyclin D2 was significantly decreased due to anoxia, while p27 expression was increased. Anoxia has no significant effect on cardiomyocyte binucleation or myocyte size. Consistently, prenatal hypoxia significantly decreased cardiomyocyte proliferation but had no effect on binucleation in the fetal heart. Newborn administration of PD156707, an ETA-receptor antagonist, significantly increased cardiomyocyte proliferation at P4 and cell size at P7, resulting in an increase in the heart to body weight ratio in P7 neonates. In addition, PD156707 abrogated the anoxia-mediated effects. The results suggest that hypoxia and anoxia via activation of endothelin-1 at the critical window of heart development inhibits cardiomyocyte proliferation and decreases myocyte endowment in the developing heart, which may negatively impact cardiac function later in life. PMID:25692855

  18. Piperine inhibits platelet-derived growth factor-BB-induced proliferation and migration in vascular smooth muscle cells.

    PubMed

    Lee, Kang Pa; Lee, Kwan; Park, Won-Hwan; Kim, Hyuck; Hong, Heeok

    2015-02-01

    The proliferation and migration of vascular smooth muscle cells (VSMCs) in blood vessels are important in the pathogenesis of vascular disorders such as atherosclerosis and restenosis. Piperine, a major component of black pepper, has antioxidant, anticancer, and anti-inflammatory activity. However, the antiatherosclerotic effects of piperine have not been investigated. In this study, the effects of piperine on platelet-derived growth factor (PDGF)-BB-induced proliferation and migration of VSMCs were investigated. The antiproliferative effects of piperine were determined using MTT assays, cell counting, real-time polymerase chain reaction, and western blots. Our results showed that piperine significantly attenuated the proliferation of VSMCs by increasing the expression of p27(kip1), regulating the mRNA expression of cell cycle enzymes (cyclin D, cyclin E, and PCNA), and decreasing the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 in a noncytotoxic concentration-dependent manner (30-100 μM). Moreover, we examined the effects of piperine on the migration of PDGF-BB-stimulated VSMCs, as determined by the Boyden chamber assay, H2DCFDA staining, and western blots. Our results showed that 100 μM piperine decreased cell migration, the production of reactive oxygen species (ROS), and phosphorylation of the p38 mitogen-activated protein kinase (MAPK). Taken together, our results suggest that piperine inhibits PDGF-BB-induced proliferation and the migration of VSMCs by inducing cell cycle arrest and suppressing MAPK phosphorylation and ROS. These findings suggest that piperine may be beneficial for the treatment of vascular-related disorders and diseases. PMID:25384161

  19. Fatostatin Inhibits Cancer Cell Proliferation by Affecting Mitotic Microtubule Spindle Assembly and Cell Division.

    PubMed

    Gholkar, Ankur A; Cheung, Keith; Williams, Kevin J; Lo, Yu-Chen; Hamideh, Shadia A; Nnebe, Chelsea; Khuu, Cindy; Bensinger, Steven J; Torres, Jorge Z

    2016-08-12

    The sterol regulatory element-binding protein (SREBP) transcription factors have become attractive targets for pharmacological inhibition in the treatment of metabolic diseases and cancer. SREBPs are critical for the production and metabolism of lipids and cholesterol, which are essential for cellular homeostasis and cell proliferation. Fatostatin was recently discovered as a specific inhibitor of SREBP cleavage-activating protein (SCAP), which is required for SREBP activation. Fatostatin possesses antitumor properties including the inhibition of cancer cell proliferation, invasion, and migration, and it arrests cancer cells in G2/M phase. Although Fatostatin has been viewed as an antitumor agent due to its inhibition of SREBP and its effect on lipid metabolism, we show that Fatostatin's anticancer properties can also be attributed to its inhibition of cell division. We analyzed the effect of SREBP activity inhibitors including Fatostatin, PF-429242, and Betulin on the cell cycle and determined that only Fatostatin possessed antimitotic properties. Fatostatin inhibited tubulin polymerization, arrested cells in mitosis, activated the spindle assembly checkpoint, and triggered mitotic catastrophe and reduced cell viability. Thus Fatostatin's ability to inhibit SREBP activity and cell division could prove beneficial in treating aggressive types of cancers such as glioblastomas that have elevated lipid metabolism and fast proliferation rates and often develop resistance to current anticancer therapies. PMID:27378817

  20. Inhibition of cancer cell proliferation by midazolam by targeting transient receptor potential melastatin 7.

    PubMed

    Dou, Yunling; Li, Yuan; Chen, Jingkao; Wu, Sihan; Xiao, Xiao; Xie, Shanshan; Tang, Lipeng; Yan, Min; Wang, Youqiong; Lin, Jun; Zhu, Wenbo; Yan, Guangmei

    2013-03-01

    Transient receptor potential melastatin 7 (TRPM7), a Ca(2+)-permeable channel, has been demonstrated to be present in cancer cells and involved in their growth and proliferation. The present study used midazolam, a benzodiazepine class anesthesic, to pharmacologically intervene in the expression of TRPM7 and to inhibit cancer cell proliferation. Midazolam significantly inhibited the growth and proliferation of FaDu human hypopharyngeal squamous cell carcinoma cells, concurring with the induction of G(0)/G(1) cell cycle arrest and blockage of Rb activation. Central-type and peripheral-type benzodiazepine receptor antagonists did not abrogate proliferation inhibition by midazolam, while the specific TRPM7 agonist bradykinin reversed this effect. In addition, other benzodiazepines, diazepam and clonazepam also exhibited anti-proliferative activities. The inhibitory activity on cancer cell growth and proliferation, combined with the TRPM-dependent mechanism, reveals the anticancer potential of midazolam as a TRPM7 inhibitor and supports the suggestion that TRPM7 is a valuable target for pharmaceutical intervention. PMID:23426784

  1. miR-599 Inhibits Vascular Smooth Muscle Cells Proliferation and Migration by Targeting TGFB2

    PubMed Central

    Xie, Baodong; Zhang, Chunfeng; Kang, Kai; Jiang, Shulin

    2015-01-01

    Aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) play a crucial role in the pathogenesis of cardiovascular diseases including coronary heart disease, restenosis and atherosclerosis. MicroRNAs are a class of small, non-coding and endogenous RNAs that play critical roles in VSMCs function. In this study, we showed that PDGF-bb, as a stimulant, promoted VSMCs proliferation and suppressed the expression of miR-599. Moreover, overexpression of miR-599 inhibited VSMCs proliferation and also suppressed the PCNA and ki-67 expression. In addition, we demonstrated that ectopic expression of miR-599 repressed the VSMCs migration. We also showed that miR-599 inhibited type I collagen, type V collagen and proteoglycan expression. Furthermore, we identified TGFb2 as a direct target gene of miR-599 in VSMCs. Overexpression of TGFb2 reversed miR-599-induced inhibition of VSMCs proliferation and type I collagen, type V collagen and proteoglycan expression. In conclusion, our findings suggest miR-599 plays a crucial role in controlling VSMCs proliferation and matrix gene expression by regulating TGFb2 expression. PMID:26551255

  2. Yi Qi Qing Re Gao-containing serum inhibits lipopolysaccharide-induced rat mesangial cell proliferation by suppressing the Wnt pathway and TGF-β1 expression

    PubMed Central

    YANG, LIPING; SUN, XUEYAN; ZHAN, YONGLI; LIU, HUIJIE; WEN, YUMIN; MAO, HUIMIN; DONG, XI; LI, PING

    2016-01-01

    The aim of the present study was to investigate the effect of Yi Qi Qing Re Gao-containing serum (YQ-S) on rat mesangial cell (MC) proliferation and to investigate the underlying mechanism. MCs were divided into the control, lipopolysaccharide (LPS)-stimulated, YQ-S and fosinopril-containing serum (For-S) groups, and cultured for 48 h. An MTT assay was used to evaluate the proliferation of MCs. In addition, reverse transcription-quantitative polymerase chain reaction and western blot analysis were conducted to detect the expression levels of Wnt4, β-catenin and transforming growth factor (TGF)-β1 in MCs. The results indicated that YQ-S inhibited LPS-induced MC proliferation. The Wnt4 and TGF-β1 mRNA expression levels were reduced in the YQ-S group (P<0.01 or P<0.05). Furthermore, the Wnt4, β-catenin and TGF-β1 protein expression levels were suppressed in the YQ-S group (P<0.01 or P<0.05). Therefore, YQ-S appears to inhibit MC proliferation, and its mechanism may involve the inhibition of the Wnt signaling pathway and downregulation of TGF-β1 expression. PMID:27073458

  3. Fangchinoline inhibits cell proliferation via Akt/GSK-3beta/ cyclin D1 signaling and induces apoptosis in MDA-MB-231 breast cancer cells.

    PubMed

    Wang, Chang-Dong; Yuan, Cheng-Fu; Bu, You-Quan; Wu, Xiang-Mei; Wan, Jin-Yuan; Zhang, Li; Hu, Ning; Liu, Xian-Jun; Zu, Yong; Liu, Ge-Li; Song, Fang-Zhou

    2014-01-01

    Fangchinoline (Fan) inhibits cell proliferation and induces apoptosis in several cancer cell lines. The effects of Fan on cell growth and proliferation in breast cancer cells remain to be elucidated. Here, we show that Fan inhibited cell proliferation in the MDA-MB-231 breast cancer cell line through suppression of the AKT/Gsk- 3beta/cyclin D1 signaling pathway. Furthermore, Fan induced apoptosis by increasing the expression of Bax (relative to Bcl-2), active caspase 3 and cytochrome-c. Fan significantly inhibited cell proliferation of MDA- MB-231 cells in a concentration and time dependent manner as determined by MTT assay. Flow cytometry analysis demonstrated that Fan treatment of MDA-MB-231 cells resulted in cell cycle arrest at the G1 phase, which correlated with apparent downregulation of both mRNA and protein levels of both PCNA and cyclin D1. Further analysis demonstrated that Fan decreased the phosphorylation of AKT and GSK-3beta. In addition, Fan up-regulated active caspase3, cytochrome-c protein levels and the ratio of Bax/Bcl-2, accompanied by apoptosis. Taken together, these results suggest that Fan is a potential natural product for the treatment of breast cancer. PMID:24568493

  4. Dihydroartemisinin inhibits cell proliferation via AKT/GSK3β/cyclinD1 pathway and induces apoptosis in A549 lung cancer cells

    PubMed Central

    Liao, Kui; Li, Juan; Wang, Zhiling

    2014-01-01

    Lung cancer is the most common cause of cancer-related death in the world. The main types of lung cancer are small cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC); non small cell lung carcinoma (NSCLC) includes squamous cell carcinoma (SCC), adenocarcinoma and large cell carcinoma, Non small cell lung carcinoma accounts for about 80% of the total lung cancer cases. Dihydroartemisinin (DHA) inhibits cell proliferation and induces apoptosis in several cancer cell lines. The effects of DHA on cell growth and proliferation in lung cancer cells remain to be elucidated. Here, we demonstrate that DHA inhibited cell proliferation in the A549 lung cancer cell line through suppression of the AKT/Gsk-3β/cyclin D1 signaling pathway. DHA significantly inhibited cell proliferation of A549 cells in a concentration and time dependent manner as determined by MTS assay. Flow cytometry analysis demonstrated that DHA treatment of A549 cells resulted in cell cycle arrest at the G1 phase, which correlated with apparent downregulation of both mRNA and protein levels of both PCNA and cyclin D1. These results suggest that DHA is a potential natural product for the treatment of lung cancer. PMID:25674233

  5. DICHLOROACETIC ACID (DCA) INHIBITS PROLIFERATION AND APOPTOSIS IN NORMAL HEPATOCYTES OF MALE F344 RATS

    EPA Science Inventory

    Dichloroacetic acid (DCA} inhibits proliferation and apoptosis in nonnal hepatocytes of
    male F344 rats.

    Large segments of the population are chronically exposed to dichloroacetic acid (DCA}: DCA is a by product of the chlorine disinfection of drinking water, a metab...

  6. Antioxidant Activities and Inhibition of Cancer Cell Proliferation in Wild Strawberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit extracts from seventeen representatives of three species of strawberries (Fragaria virginiana Mill., F. chiloensis (L.) Mill., and F. x ananassa Duchesne ex Rozier) were tested for activities against free radicals, the activities of antioxidant enzymes and the ability to inhibit proliferation...

  7. Silibinin Inhibits HIV-1 Infection by Reducing Cellular Activation and Proliferation

    PubMed Central

    McClure, Janela; Lovelace, Erica S.; Elahi, Shokrollah; Maurice, Nicholas J.; Wagoner, Jessica; Dragavon, Joan; Mittler, John E.; Kraft, Zane; Stamatatos, Leonidis; Horton, Helen; De Rosa, Stephen C.; Coombs, Robert W.; Polyak, Stephen J.

    2012-01-01

    Purified silymarin-derived natural products from the milk thistle plant (Silybum marianum) block hepatitis C virus (HCV) infection and inhibit T cell proliferation in vitro. An intravenous formulation of silibinin (SIL), a major component of silymarin, displays anti-HCV effects in humans and also inhibits T-cell proliferation in vitro. We show that SIL inhibited replication of HIV-1 in TZM-bl cells, PBMCs, and CEM cells in vitro. SIL suppression of HIV-1 coincided with dose-dependent reductions in actively proliferating CD19+, CD4+, and CD8+ cells, resulting in fewer CD4+ T cells expressing the HIV-1 co-receptors CXCR4 and CCR5. SIL inhibition of T-cell growth was not due to cytotoxicity measured by cell cycle arrest, apoptosis, or necrosis. SIL also blocked induction of the activation markers CD38, HLA-DR, Ki67, and CCR5 on CD4+ T cells. The data suggest that SIL attenuated cellular functions involved in T-cell activation, proliferation, and HIV-1 infection. Silymarin-derived compounds provide cytoprotection by suppressing virus infection, immune activation, and inflammation, and as such may be relevant for both HIV mono-infected and HIV/HCV co-infected subjects. PMID:22848626

  8. Corosolic acid inhibits the proliferation of glomerular mesangial cells and protects against diabetic renal damage

    PubMed Central

    Li, Xiao-Qiang; Tian, Wen; Liu, Xiao-Xiao; Zhang, Kai; Huo, Jun-Cheng; Liu, Wen-Juan; Li, Ping; Xiao, Xiong; Zhao, Ming-Gao; Cao, Wei

    2016-01-01

    Diabetic nephropathy (DN) is one of the major complications of diabetes mellitus (DM). This study aimed to explore the effects of corosolic acid (CA) on the renal damage of DM and the mechanisms behind these effects. The renoprotective effect of CA was investigated in type 1 diabetic rats and db/db mice. The kidneys and glomerular mesangial cells (GMCs) were used to study the proliferation of GMCs by immunostaining and MTT assay. Further immunoblotting, siRNA, qPCR analysis, and detecting of NADPH oxidase activity and reactive oxygen species (ROS) generation were performed to explore relevant molecular mechanisms. In CA-treated diabetic animals, diabetes-induced albuminuria, increased serum creatinine and blood urea nitrogen were significantly attenuated, and glomerular hypertrophy, mesangial expansion and fibrosis were ameliorated. Furthermore, CA significantly inhibited proliferation of GMCs and phosphorylation of ERK1/2 and p38 MAPK in both diabetic animals and high glucose (HG)-induced GMCs. CA also normalized Δψm and inhibited HG-induced NADPH oxidase activity, ROS generation and NOX4, NOX2, p22phox and p47phox expression. More importantly, CA inhibited GMC proliferation mediated by NADPH/ERK1/2 and p38 MAPK signaling pathways. These findings suggest that CA exert the protective effect on DN by anti-proliferation resulted from inhibition of p38 MAPK- and NADPH-mediated inactivation of ERK1/2. PMID:27229751

  9. Inhibition of colonic cancer cell proliferation and COX2 by oats avenanthramides (Avns)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High intake of whole grain foods is associated with reduced risk of colon cancer, but the mechanism underlying this protection has yet to be elucidated. Avns are polyphenols unique to oats. We have reported that Avns inhibited pro-inflammatory cytokines and vascular smooth muscle cell proliferation....

  10. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia.

    PubMed

    Tikka, T; Fiebich, B L; Goldsteins, G; Keinanen, R; Koistinaho, J

    2001-04-15

    Minocycline, a semisynthetic tetracycline derivative, protects brain against global and focal ischemia in rodents. We examined whether minocycline reduces excitotoxicity in primary neuronal cultures. Minocycline (0.02 microm) significantly increased neuronal survival in mixed spinal cord (SC) cultures treated with 500 microm glutamate or 100 microm kainate for 24 hr. Treatment with these excitotoxins induced a dose-dependent proliferation of microglia that was associated with increased release of interleukin-1beta (IL-1beta) and was followed by increased lactate dehydrogenase (LDH) release. The excitotoxicity was enhanced when microglial cells were cultured on top of SC cultures. Minocycline prevented excitotoxin-induced microglial proliferation and the increased release of nitric oxide (NO) metabolites and IL-1beta. Excitotoxins induced microglial proliferation and increased the release of NO metabolites and IL-1beta also in pure microglia cultures, and these responses were inhibited by minocycline. In both SC and pure microglia cultures, excitotoxins activated p38 mitogen-activated protein kinase (p38 MAPK) exclusively in microglia. Minocycline inhibited p38 MAPK activation in SC cultures, and treatment with SB203580, a p38 MAPK inhibitor, but not with PD98059, a p44/42 MAPK inhibitor, increased neuronal survival. In pure microglia cultures, glutamate induced transient activation of p38 MAPK, and this was inhibited by minocycline. These findings indicate that the proliferation and activation of microglia contributes to excitotoxicity, which is inhibited by minocycline, an antibiotic used in severe human infections. PMID:11306611

  11. Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells

    SciTech Connect

    Kim, Hyun-Ju; Yoon, Hye-Jin; Yoon, Kyung-Ae; Gwon, Mi-Ri; Jin Seong, Sook; Suk, Kyoungho; Kim, Shin-Yoon; Yoon, Young-Ran

    2015-06-10

    Lipocalin-2 (LCN2) is a member of the lipocalin superfamily and plays a critical role in the regulation of various physiological processes, such as inflammation and obesity. In this study, we report that LCN2 negatively modulates the proliferation and differentiation of osteoclast precursors, resulting in impaired osteoclast formation. The overexpression of LCN2 in bone marrow-derived macrophages or the addition of recombinant LCN2 protein inhibits the formation of multinuclear osteoclasts. LCN2 suppresses macrophage colony-stimulating factor (M-CSF)-induced proliferation of osteoclast precursor cells without affecting their apoptotic cell death. Interestingly, LCN2 decreases the expression of the M-CSF receptor, c-Fms, and subsequently blocks its downstream signaling cascades. In addition, LCN2 inhibits RANKL-induced osteoclast differentiation and attenuates the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important modulators in osteoclastogenesis. Mechanistically, LCN2 inhibits NF-κB signaling pathways, as demonstrated by the suppression of IκBα phosphorylation, nuclear translocation of p65, and NF-κB transcriptional activity. Thus, LCN2 is an anti-osteoclastogenic molecule that exerts its effects by retarding the proliferation and differentiation of osteoclast lineage cells. - Highlights: • LCN2 expression is regulated during osteoclast development. • LCN2 suppresses M-CSF-mediated osteoclast precursor proliferation. • LCN2 inhibits RANKL-induced osteoclast differentiation.

  12. Expression of K6W-ubiquitin inhibits proliferation of human lens epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway plays an important role in controlling the cell cycle. The purpose of this study was to examine if expression of a dominant negative form of ubiquitin can inhibit the proliferation of lens epithelial cells. Dominant negative K6W-ubiquitin was expressed in cultured hu...

  13. Oxidative stress-mediated inhibition of intestinal epithelial cell proliferation by silver nanoparticles.

    PubMed

    McCracken, Christie; Zane, Andrew; Knight, Deborah A; Hommel, Elizabeth; Dutta, Prabir K; Waldman, W James

    2015-10-01

    Given the increasing use of silver nanoparticles (Ag NP) by the food and food packaging industries, this study investigated potential consequences of Ag NP ingestion in intestinal epithelial C2BBe1 cells. Treatment of proliferating cells (<10,000 cells/cm(2)) with 0.25 μg/cm(2) (1.25 μg/mL) of 23 nm Ag NP for 24 h induced 15% necrotic cell death and an 80% reduction in metabolic activity and decreased the GSH/GSSG ratio, indicating oxidative stress. G2/M phase cell cycle arrest and complete inhibition of cell proliferation was also induced by Ag NP treatment. Simulated in vitro digestion of Ag NP prior to cell exposure required the use of slightly higher doses to induce the same toxicity, likely due to slower Ag dissolution. Treatment of cells with silica, titania, and ZnO NP partially inhibited cell proliferation, but inhibition at low doses was unique to Ag NP. These data suggest that Ag NP induces oxidative stress, cell cycle arrest, and the inhibition of cell proliferation. However, toxicity and induction of oxidative stress were not observed in confluent cells (>100,000 cells/cm(2)) treated with 10 μg/cm(2) (40-50 μg/mL) Ag NP, indicating that these cells are less sensitive to Ag NP. PMID:26196530

  14. Silencing of tripartite motif (TRIM) 29 inhibits proliferation and invasion and increases chemosensitivity to cisplatin in human lung squamous cancer NCI-H520 cells

    PubMed Central

    Liu, Chunxiao; Huang, Xiaoxi; Hou, Shengcai; Hu, Bin; Li, Hui

    2015-01-01

    Background TRIM29 belongs to the tripartite motif (TRIM) protein family. It has been reported to be a tumor suppressor or have oncogenic function in many cancer types. The aim of this study was to investigate whether downregulation of TRIM29 by small interfering ribonucleic acid (siRNA) could inhibit cell proliferation and invasion and increase chemosensitivity to cisplatin in human lung squamous cancer NCI-H520 cells in vitro. Methods We transformed TRIM29 siRNA into NCI-H520 cells. Real time reverse transcriptase polymerase chain reaction and Western blotting assay were employed to determine TRIM29 messenger (m)RNA and protein expressions. MTT assay was used to determine the cell proliferation. Transwell invasion assay was used to determine the cell invasion. An Annexin V-propidium iodide (AnnV/PI) staining apoptosis test was used for detecting apoptosis. Results TRIM29 siRNA could specifically and efficiently suppress TRIM29 expression at both mRNA and protein levels. Silencing of the TRIM29 by siRNA in NCI-H520 cells inhibited cell proliferation and invasion in vitro. TRIM29 knockdown resulted in chemosensitivity enhancement in NCI-H520 cells. Conclusion Downregulation of TRIM29 can lead to potent antitumor activity and chemosensitizing effect in human lung squamous cancer NCI-H520 cells. PMID:26273332

  15. MicroRNA-144 inhibits the proliferation, apoptosis, invasion, and migration of osteosarcoma cell line F5M2.

    PubMed

    Cui, Shao-Qian; Wang, Huan

    2015-09-01

    This study is aimed to investigate the role of microRNA-144 (miR-144) in osteosarcoma cell line F5M2 proliferation, apoptosis, invasion, and metastasis. Between 2007 and 2014, 66 cases of osteosarcoma samples in the corresponding adjacent normal tissue samples were selected from surgical resection or biopsy in the Department of Orthopedics, Shengjing Hospital, China Medical University. MiR-144 levels and Ezrin messenger RNA (mRNA) levels in osteosarcoma and the adjacent bone tissues were detected, and clinical and pathological features were analyzed. Exogenous miR-144 was transfected into human osteosarcoma cell lines at two different concentrations (low and high), and the expression levels of miR-144 and Ezrin protein between highly metastatic osteosarcoma cells and lowly metastatic osteosarcoma cells were compared. Real-time polymerase chain reaction (RT-PCR) and Western blot were used for detecting the expression levels of miR-144 or Ezrin protein, respectively. Cell proliferation was measured by methylthiazol tetrazolium (MTT) assay. Cell invasion and migration was evaluated by Transwell assays. Finally, flow cytometry was employed to determine the cell apoptosis. MiR-144 expression in osteosarcoma tissue was significantly lower than that in the surrounding normal bone tissue (P < 0.001), while Ezrin mRNA expression in osteosarcoma tissue was significantly higher than that in the surrounding normal bone tissue (P < 0.001); correlation analysis showed a significant negative correlation between miR-144 and Ezrin mRNA levels (r = 0.982, P < 0.001). MiR-144 and Ezrin mRNA expressions were significantly related with cell metastasis (P < 0.05) but were not related with other clinical factors such as gender, age, tumor location, tumor size, Enneking staging, and Dahlin's histological classification. The results of RT-PCR showed that the expression level of miR-144 in osteosarcoma cells increased after transfected with exogenous miR-144 mimics, and

  16. TRAIL-receptor costimulation inhibits proximal TCR signaling and suppresses human T cell activation and proliferation.

    PubMed

    Lehnert, Corinna; Weiswange, Maxi; Jeremias, Irmela; Bayer, Carina; Grunert, Michaela; Debatin, Klaus-Michael; Strauss, Gudrun

    2014-10-15

    The TRAIL-receptor/TRAIL system originally described to induce apoptosis preferentially in malignant cells is also known to be involved in T cell homeostasis and the response to viral infections and autoimmune diseases. Whereas the expression of TRAIL on activated NK and T cells increases their cytotoxicity, induction of TRAIL on APCs can turn them into apoptosis inducers but might also change their immunostimulatory capacity. Therefore, we analyzed how TRAIL-receptor (TRAIL-R) costimulation is modulating TCR-mediated activation of human T cells. T cells triggered by rTRAIL in combination with anti-CD3 and -CD28 Abs exhibited a strong decrease in the expression of activation markers and Th1 and Th2 cytokines compared with CD3/CD28-activated T cells. Most importantly, proliferation of TRAIL-R costimulated T cells was strongly impaired, but no apoptosis was induced. Addition of exogenous IL-2 could not rescue T cells silenced by TRAIL-R costimulation, and TRAIL-mediated inhibition of T cell proliferation only prevented TCR-triggered proliferation but was ineffective if T cells were activated downstream of the TCR. Inhibition of T cell proliferation was associated with abrogation of proximal TCR signaling by inhibiting recruitment of TCR-associated signaling molecules to lipid rafts, followed by abrogation of protein tyrosine phosphorylation of ZAP70, phospholipase C-γ1, and protein kinase C-θ, and impaired nuclear translocation of NFAT, AP-1, and NF-κB. Most importantly, TRAIL-R costimulation efficiently inhibited alloantigen-induced T cell proliferation and CD3/28-induced activation and proliferation of autoreactive T cells derived from patients with Omenn syndrome, indicating that coactivation of TRAIL-R and TCR represents a mechanism to downmodulate T cell immune responses. PMID:25217163

  17. Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis

    SciTech Connect

    Moon, Chang Yoon; Ku, Cheol Ryong; Cho, Yoon Hee; Lee, Eun Jig

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Protocatechuic aldehyde (PCA) inhibits ROS production in VSMCs. Black-Right-Pointing-Pointer PCA inhibits proliferation and migration in PDGF-induced VSMCs. Black-Right-Pointing-Pointer PCA has anti-platelet effects in ex vivo rat whole blood. Black-Right-Pointing-Pointer We report the potential therapeutic role of PCA in atherosclerosis. -- Abstract: The migration and proliferation of vascular smooth muscle cells (VSMCs) and formation of intravascular thrombosis play crucial roles in the development of atherosclerotic lesions. This study examined the effects of protocatechuic aldehyde (PCA), a compound isolated from the aqueous extract of the root of Salvia miltiorrhiza, an herb used in traditional Chinese medicine to treat a variety of vascular diseases, on the migration and proliferation of VSMCs and platelets due to platelet-derived growth factor (PDGF). DNA 5-bromo-2 Prime -deoxy-uridine (BrdU) incorporation and wound-healing assays indicated that PCA significantly attenuated PDGF-induced proliferation and migration of VSMCs at a pharmacologically relevant concentration (100 {mu}M). On a molecular level, we observed down-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways, both of which regulate key enzymes associated with migration and proliferation. We also found that PCA induced S-phase arrest of the VSMC cell cycle and suppressed cyclin D2 expression. In addition, PCA inhibited PDGF-BB-stimulated reactive oxygen species production in VSMCs, indicating that PCA's antioxidant properties may contribute to its suppression of PDGF-induced migration and proliferation in VSMCs. Finally, PCA exhibited an anti-thrombotic effect related to its inhibition of platelet aggregation, confirmed with an aggregometer. Together, these findings suggest a potential therapeutic role of PCA in the treatment of atherosclerosis and angioplasty-induced vascular restenosis.

  18. The Matricellular Protein CCN1 Suppresses Hepatocarcinogenesis by Inhibiting Compensatory Proliferation

    PubMed Central

    Chen, Chih-Chiun; Kim, Ki-Hyun; Lau, Lester F.

    2015-01-01

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide, and is on the rise in the United States. Previous studies showed that the matricellular protein CCN1 (CYR61) is induced during hepatic injuries and functions to restrict and resolve liver fibrosis. Here we show that CCN1 suppresses hepatocarcinogenesis by inhibiting carcinogen-induced compensatory hepatocyte proliferation, thus limiting the expansion of damaged and potentially oncogenic hepatocytes. Consistent with tumor suppression, CCN1 expression is down-regulated in human HCC. Ccn1ΔHep mice with hepatocyte-specific deletion of Ccn1 suffer increased HCC tumor multiplicity induced by the hepatocarcinogen diethylnitrosoamine (DEN). Knockin mice (Ccn1dm/dm) that express an integrin α6β1-binding defective CCN1 phenocopied Ccn1ΔHep mice, indicating that CCN1 acts through its α6β1 binding sites in this context. CCN1 effectively inhibits EGFR-dependent hepatocyte proliferation through integrin α6-mediated accumulation of reaction oxygen species (ROS), thereby triggering p53 activation and cell cycle block. Consequently, Ccn1dm/dm mice exhibit diminished p53 activation and elevated compensatory hepatocyte proliferation, resulting in increased HCC. Furthermore, we show that a single dose of the EGFR inhibitor erlotinib delivered prior to DEN-induced injury was sufficient to block compensatory proliferation and annihilate development of HCC nodules observed 8 months later, suggesting potential chemoprevention by targeting CCN1-inhibitable EGFR-dependent hepatocyte proliferation. Together, these results show that CCN1 is an injury response protein that functions not only to restrict fibrosis in the liver, but also to suppress hepatocarcinogenesis by inhibiting EGFR-dependent hepatocyte compensatory proliferation. PMID:26028023

  19. Proliferation and mRNA expression of absorptive villous cell markers and mineral transporters in prolactin-exposed IEC-6 intestinal crypt cells.

    PubMed

    Teerapornpuntakit, Jarinthorn; Wongdee, Kannikar; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2012-06-01

    During pregnancy and lactation, prolactin (PRL) enhances intestinal absorption of calcium and other minerals for fetal development and milk production. Although an enhanced absorptive efficiency is believed to mainly result from the upregulation of mineral transporters in the absorptive villous cells, some other possibilities, such as PRL-enhanced crypt cell proliferation and differentiation to increase the absorptive area, have never been ruled out. Here, we investigated cell proliferation and mRNA expression of mineral absorption-related genes in the PRL-exposed IEC-6 crypt cells. As expected, the cell proliferation was not altered by PRL. Inasmuch as the mRNA expressions of villous cell markers, including dipeptidylpeptidase-4, lactase and glucose transporter-5, were not increased, PRL was not likely to enhance crypt cell differentiation into the absorptive villous cells. In contrast to the previous findings in villous cells, PRL was found to downregulate the expression of calbindin-D(9k), claudin-3 and occludin in IEC-6 crypt cells, while having no effect on transient receptor potential vanilloid family channels-5/6, plasma membrane Ca(2+)-ATPase (PMCA)-1b and Na(+)/Ca(2+) exchanger-1 expression. In conclusion, IEC-6 crypt cells did not respond to PRL by increasing proliferation or differentiation into villous cells. The present results thus supported the previous hypothesis that PRL enhanced mineral absorption predominantly by increasing transporter expression and activity in the absorptive villous cells. PMID:22281785

  20. Inhibition of miR-29c promotes proliferation, and inhibits apoptosis and differentiation in P19 embryonic carcinoma cells

    PubMed Central

    CHEN, BIN; SONG, GUIXIAN; LIU, MING; QIAN, LINGMEI; WANG, LIHUA; GU, HAITAO; SHEN, YAHUI

    2016-01-01

    In our previous study, the upregulation of microRNA (miR)-29c was identified in the mother of a fetus with a congenital heart defect. However, the functional and regulatory mechanisms of miR-29c in the development of the heart remain to be elucidated. In the present study, the role and mechanism of miR-29c inhibition in heart development were investigated in an embryonic carcinoma cell model. Inhibition of miR-29c promoted proliferation, and suppressed the apoptosis and differentiation of P19 cells. It was also demonstrated that Wingless-related MMTV integration site 4 (Wnt4) was a target of miR-29c, determined using bioinformatic analysis combined with luciferase assays. The inhibition of miR-29c stimulated the WNT4/β-catenin pathway, promoting proliferation of the P19 cells, but suppressing their differentiation into cardiomyocytes. Furthermore, the inhibition of miR-29c promoted the expression of B cell lymphoma-2 and inhibited cell apoptosis. These results demonstrate the significance of miR-29c in the process of cardiac development and suggest that miR-29c dysregulation may be associated with the occurrence of CHD. Thus, miR-29c may have therapeutic potential in the future. PMID:26848028

  1. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    SciTech Connect

    Wang, Suna Zhou, Yifu; Andreyev, Oleg; Hoyt, Robert F.; Singh, Avneesh; Hunt, Timothy; Horvath, Keith A.

    2014-04-15

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative {sup RT}PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  2. Baicalin inhibits PDGF-induced proliferation and migration of airway smooth muscle cells

    PubMed Central

    Yang, Guang; Li, Jian-Qiang; Bo, Jian-Ping; Wang, Bei; Tian, Xin-Rui; Liu, Tan-Zhen; Liu, Zhuo-La

    2015-01-01

    Airway smooth muscle (ASM) cell proliferation and migration play important roles in airway remodeling in asthma. In vitro platelet-derived growth factor (PDGF) induced ASM cell proliferation and migration. Baicalin is one of flavonoid extracts from Scutellaria baicalensis, which has an anti-asthma effect. However, little is known about its role in PDGF-induced proliferation and migration in rat ASM (RASM) cells. In this study, we aimed to investigate the effects of baicalin on PDGF-induced RASM cell proliferation and migration. We also identified the signaling pathway by which baicalin influences RASM cell proliferation and migration. In the current study, we demonstrated that baicalin suppressed PDGF-induced RASM cell proliferation, arrested PDGF-induced cell-cycle progression. It also suppressed PDGF-induced RASM cell migration. Furthermore, baicalin suppressed PDGF-induced expression of phosphorylated p38, ERK1/2 and JNK in RASM cells. In summary, our study is the first to show that baicalin pretreatment can significantly inhibit PDGF-induced RASM cell proliferation and migration by suppressing the MAPK signaling pathway, and baicalin may be a useful chemotherapeutic agent for asthma. PMID:26884970

  3. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components

    PubMed Central

    Kim, Nam-Gyun; Koh, Eunjin; Chen, Xiao; Gumbiner, Barry M.

    2011-01-01

    Contact inhibition of cell growth is essential for embryonic development and maintenance of tissue architecture in adult organisms, and the growth of tumors is characterized by a loss of contact inhibition of proliferation. The recently identified Hippo signaling pathway has been implicated in contact inhibition of proliferation as well as organ size control. The modulation of the phosphorylation and nuclear localization of Yes-associated protein (YAP) by the highly conserved kinase cascade of the Hippo signaling pathway has been intensively studied. However, cell-surface receptors regulating the Hippo signaling pathway in mammals are not well understood. In this study, we show that Hippo signaling pathway components are required for E-cadherin–dependent contact inhibition of proliferation. Knockdown of the Hippo signaling components or overexpression of YAP inhibits the decrease in cell proliferation caused by E-cadherin homophilic binding at the cell surface, independent of other cell–cell interactions. We also demonstrate that the E-cadherin/catenin complex functions as an upstream regulator of the Hippo signaling pathway in mammalian cells. Expression of E-cadherin in MDA-MB-231 cells restores the density-dependent regulation of YAP nuclear exclusion. Knockdown of β-catenin in densely cultured MCF10A cells, which mainly depletes E-cadherin–bound β-catenin, induces a decrease in the phosphorylation of S127 residue of YAP and its nuclear accumulation. Moreover, E-cadherin homophilic binding independent of other cell interactions is sufficient to control the subcellular localization of YAP. Therefore, Our results indicate that, in addition to its role in cell–cell adhesion, E-cadherin-mediated cell–cell contact directly regulates the Hippo signaling pathway to control cell proliferation. PMID:21730131

  4. MicroRNA-490-5p inhibits proliferation of bladder cancer by targeting c-Fos

    SciTech Connect

    Li, Shiqi; Xu, Xianglai; Xu, Xin; Hu, Zhenghui; Wu, Jian; Zhu, Yi; Chen, Hong; Mao, Yeqing; Lin, Yiwei; Luo, Jindan; Zheng, Xiangyi; Xie, Liping

    2013-11-29

    Highlights: •We examined the level of miR-490-5p in bladder cancer tissues and three cancer cell lines. •We are the first to show the function of miR-490-5p in bladder cancer. •We demonstrate c-Fos may be a target of miR-490-5p. -- Abstract: MicroRNAs (miRNAs) are non-protein-coding sequences that play a crucial role in tumorigenesis by negatively regulating gene expression. Here, we found that miR-490-5p is down-regulated in human bladder cancer tissue and cell lines compared to normal adjacent tissue and a non-malignant cell line. To better characterize the function of miR-490-5p in bladder cancer, we over-expressed miR-490-5p in bladder cancer cell lines with chemically synthesized mimics. Enforced expression of miR-490-5p in bladder cancer cells significantly inhibited the cell proliferation via G1-phase arrest. Further studies found the decreased c-Fos expression at both mRNA and protein levels and Luciferase reporter assays demonstrated that c-Fos is a direct target of miR-490-5p in bladder cancer. These findings indicate miR-490-5p to be a novel tumor suppressor of bladder cancer cell proliferation through targeting c-Fos.

  5. Inhibition of CXCR4 and CXCR7 for reduction of cell proliferation and invasion in human endometrial cancer.

    PubMed

    Long, Ping; Sun, Fengyi; Ma, Yingying; Huang, Yu

    2016-06-01

    As one of the most common malignant cancers in female reproductive tract, endometrial cancer accounts for 20-30 % of the most frequent gynecological malignancy, which is originated from endometrial epithelial. The molecular mechanisms for the generation of endometrial cancer are up to now unclear, hindering the development of corresponding therapy. CXCR4 and CXCR7 were receptors of CXCL12 chemokine ligand, which could regulate critical procedures of neoplastic transformation, including proliferation, invasion, and apoptosis of the cells. The messenger RNA (mRNA) and protein expression levels of CXCR4 and CXCR7 in human endometrial adenocarcinoma cancer, as well as in Ishikawa and HEC-1-A cell line, were analyzed by using reverse-transcription polymerase chain reaction (RT-PCR) and Western blotting. In order to explore the biological function of CXCR4 and CXCR7 in endometrial tumor, small interference RNAs of CXCR4 and CXCR7 fragments were designed, synthesized, and transfected into Ishikawa and HEC-1-A by using Lipofectamine2000. The influence of RNA interference (RNAi)-mediated silencing CXCR4 and CXCR7 on the cell proliferation was investigated under CCK-8. The invasion assay was performed transwell, and cell apoptosis was tested by FCM. Higher mRNA and protein expression levels of CXCR4 and CXCR7 were investigated in endometrial adenocarcinomas. The expression levels of CXCR4 and CXCR7 could be inhibited by RNA interference, reducing the cell proliferation, invasion in Ishikawa and HEC-1-A cells. In this study, we also observed that treated with CXCR4 and CXCR7 small interfering RNA (siRNA) arrested cells in S phase. CXCL12/CXCR4 and CXCL12/CXCR7 receptor ligand systems affect the invasion of endometrial carcinoma cell line into Ishikawa and HEC-1-A. CXCR4 and CXCR7 were silenced by RNAi, which can inhibit the invasion of Ishikawa and HEC-1-A cell lines. Hence, CXCR4 and CXCR7 are expected to become two target genes for the treatment of endometrial carcinoma

  6. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  7. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation

    PubMed Central

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2016-01-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies. PMID:26587712

  8. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation.

    PubMed

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies. PMID:26587712

  9. Nickel Ions Selectively Inhibit Lipopolysaccharide-Induced Interleukin-6 Production by Decreasing Its mRNA Stability

    PubMed Central

    Asakawa, Sanki; Kishimoto, Yu; Takano, Takayuki; Okita, Kiyuki; Takakuwa, Shiho; Sato, Taiki; Hiratsuka, Masahiro; Takeuchi, Osamu; Hirasawa, Noriyasu

    2015-01-01

    Nickel (Ni) ions easily elute from many alloys and elicit inflammation and allergies. Previous studies have shown that infections due to the implantation of medical devices cause inflammation and enhance the elution of Ni ions (Ni2+). However, cross-talk between infection- and Ni2+-induced signaling pathways has not yet been elucidated in detail. In the present study, we investigated the effects of Ni2+ on the lipopolysaccharide (LPS)-induced production of cytokines in a LPS-induced air pouch-type inflammation model in BALB/c mice and the murine macrophage cell line RAW264. We demonstrated that Ni2+ inhibited the LPS-induced production of interleukin (IL)-6, but not that of tumor necrosis factor (TNF)-α both in vivo and in vitro. This inhibitory effect was also observed with cobalt ion (Co2+), but not with chloride ion (Cl-), zinc ion (Zn2+), or palladium ion (Pd2+), and was highly selective to the production of IL-6. Ni2+ did not inhibit the activation of ERK1/2, p38 MAPK, or JNK. Although Ni2+ decreased IL-6 mRNA levels, it failed to inhibit the LPS-induced activation of the IL-6 promoter. An experiment using actinomycin D, a transcription inhibitor, revealed that Ni2+ decreased the stability of IL-6 mRNA. Moreover, Ni2+ inhibited the LPS-induced expression of Arid5a, but not regnase-1. These results demonstrated that Ni2+ may have selectively inhibited the LPS-induced production of IL-6 by decreasing the Arid5a-dependent stabilization of IL-6 mRNA. PMID:25742007

  10. Nickel ions selectively inhibit lipopolysaccharide-induced interleukin-6 production by decreasing its mRNA stability.

    PubMed

    Asakawa, Sanki; Kishimoto, Yu; Takano, Takayuki; Okita, Kiyuki; Takakuwa, Shiho; Sato, Taiki; Hiratsuka, Masahiro; Takeuchi, Osamu; Hirasawa, Noriyasu

    2015-01-01

    Nickel (Ni) ions easily elute from many alloys and elicit inflammation and allergies. Previous studies have shown that infections due to the implantation of medical devices cause inflammation and enhance the elution of Ni ions (Ni²⁺). However, cross-talk between infection- and Ni²⁺-induced signaling pathways has not yet been elucidated in detail. In the present study, we investigated the effects of Ni2+ on the lipopolysaccharide (LPS)-induced production of cytokines in a LPS-induced air pouch-type inflammation model in BALB/c mice and the murine macrophage cell line RAW264. We demonstrated that Ni²⁺ inhibited the LPS-induced production of interleukin (IL)-6, but not that of tumor necrosis factor (TNF)-α both in vivo and in vitro. This inhibitory effect was also observed with cobalt ion (Co²⁺), but not with chloride ion (Cl⁻), zinc ion (Zn²⁺), or palladium ion (Pd²⁺), and was highly selective to the production of IL-6. Ni²⁺ did not inhibit the activation of ERK1/2, p38 MAPK, or JNK. Although Ni²⁺ decreased IL-6 mRNA levels, it failed to inhibit the LPS-induced activation of the IL-6 promoter. An experiment using actinomycin D, a transcription inhibitor, revealed that Ni²⁺ decreased the stability of IL-6 mRNA. Moreover, Ni²⁺ inhibited the LPS-induced expression of Arid5a, but not regnase-1. These results demonstrated that Ni²⁺ may have selectively inhibited the LPS-induced production of IL-6 by decreasing the Arid5a-dependent stabilization of IL-6 mRNA. PMID:25742007

  11. Vasoactive Intestinal Peptide Inhibits Human Small-Cell Lung Cancer Proliferation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Maruno, Kaname; Absood, Afaf; Said, Sami I.

    1998-11-01

    Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.

  12. Inhibition of Excessive Cell Proliferation by Calcilytics in Idiopathic Pulmonary Arterial Hypertension

    PubMed Central

    Yamamura, Aya; Ohara, Naoki; Tsukamoto, Kikuo

    2015-01-01

    Idiopathic pulmonary arterial hypertension (IPAH) is a rare and progressive disease of unknown pathogenesis. Vascular remodeling due to excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs) is a critical pathogenic event that leads to early morbidity and mortality. The excessive cell proliferation is closely linked to the augmented Ca2+ signaling in PASMCs. More recently, we have shown by an siRNA knockdown method that the Ca2+-sensing receptor (CaSR) is upregulated in PASMCs from IPAH patients, involved in the enhanced Ca2+ response and subsequent excessive cell proliferation. In this study, we examined whether pharmacological blockade of CaSR attenuated the excessive proliferation of PASMCs from IPAH patients by MTT assay. The proliferation rate of PASMCs from IPAH patients was much higher (~1.5-fold) than that of PASMCs from normal subjects and patients with chronic thromboembolic pulmonary hypertension (CTEPH). Treatment with NPS2143, an antagonist of CaSR or calcilytic, clearly suppressed the cell proliferation in a concentration-dependent manner (IC50 = 2.64 μM) in IPAH-PASMCs, but not in normal and CTEPH PASMCs. Another calcilytic, Calhex 231, which is structurally unrelated to NPS2143, also concentration-dependently inhibited the excessive proliferation of IPAH-PASMCs (IC50 = 1.89 μM). In contrast, R568, an activator of CaSR or calcimimetic, significantly facilitated the proliferation of IPAH-PASMCs (EC50 = 0.33 μM). Similar results were obtained by BrdU incorporation assay. These results reveal that the excessive PASMC proliferation was modulated by pharmacological tools of CaSR, showing us that calcilytics are useful for a novel therapeutic approach for pulmonary arterial hypertension. PMID:26375676

  13. Extracellular ATP inhibits Schwann cell dedifferentiation and proliferation in an ex vivo model of Wallerian degeneration

    SciTech Connect

    Shin, Youn Ho; Lee, Seo Jin; Jung, Junyang

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer ATP-treated sciatic explants shows the decreased expression of p75NGFR. Black-Right-Pointing-Pointer Extracellular ATP inhibits the expression of phospho-ERK1/2. Black-Right-Pointing-Pointer Lysosomal exocytosis is involved in Schwann cell dedifferentiation. Black-Right-Pointing-Pointer Extracellular ATP blocks Schwann cell proliferation in sciatic explants. -- Abstract: After nerve injury, Schwann cells proliferate and revert to a phenotype that supports nerve regeneration. This phenotype-changing process can be viewed as Schwann cell dedifferentiation. Here, we investigated the role of extracellular ATP in Schwann cell dedifferentiation and proliferation during Wallerian degeneration. Using several markers of Schwann cell dedifferentiation and proliferation in sciatic explants, we found that extracellular ATP inhibits Schwann cell dedifferentiation and proliferation during Wallerian degeneration. Furthermore, the blockage of lysosomal exocytosis in ATP-treated sciatic explants is sufficient to induce Schwann cell dedifferentiation. Together, these findings suggest that ATP-induced lysosomal exocytosis may be involved in Schwann cell dedifferentiation.

  14. N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation.

    PubMed Central

    Hidaka, H; Sasaki, Y; Tanaka, T; Endo, T; Ohno, S; Fujii, Y; Nagata, T

    1981-01-01

    N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) and its derivatives are putative calmodulin antagonists that bind to calmodulin and inhibit Ca2+/calmodulin-regulated enzyme activities. Autoradiographic studies using tritiated W-7 showed that this compound penetrates the cell membrane, is distributed mainly in the cytoplasm, and inhibits proliferation of Chinese hamster ovary K1 (CHO-K1) cells. Cytoplasmic [3H]W-7 was excluded completely within 6 hr after removal of [3H]W-7 from the culture medium. N-(6-aminohexyl)-1-naphthalenesulfonamide, an analogue of W-7 that interacts only weakly with calmodulin, proved to be a much weaker inhibitor of cell proliferation. CHO-K1 cells were synchronized by shaking during mitosis and then released into the cell cycle in the presence of 25 microM W-7 or 2.5 mM thymidine for 12 hr. Cell division was observed approximately 6 hr later. The results suggest that the effect of W-7 on cell proliferation might be through selective inhibition of the G1/S boundary phase, which is similar to the effect of excess thymidine. This pharmacological demonstration that cytoplasmic calmodulin is involved in cell proliferation is significant; W-7 and its derivatives may be useful tools for research on calmodulin and cell biology-related studies. Images PMID:6945588

  15. Shikonin Inhibits the Proliferation of Human Breast Cancer Cells by Reducing Tumor-Derived Exosomes.

    PubMed

    Wei, Yao; Li, Mingzhen; Cui, Shufang; Wang, Dong; Zhang, Chen-Yu; Zen, Ke; Li, Limin

    2016-01-01

    Shikonin is a naphthoquinone isolated from the traditional Chinese medicine Lithospermum. It has been used in the treatment of various tumors. However, the effects of shikonin on such diseases have not been fully elucidated. In the present study, we detected the exosome release of a breast cancer cell line (MCF-7) with shikonin treatment and found a positive relationship between the level of secreted exosomes and cell proliferation. We next analyzed miRNA profiles in MCF-7 cells and exosomes and found that some miRNAs are specifically sorted and abundant in exosomes. Knockdown of the most abundant miRNAs in exosomes and the MCF-7 proliferation assay showed that miR-128 in exosomes negatively regulates the level of Bax in MCF-7 recipient cells and inhibits cell proliferation. These results show that shikonin inhibits the proliferation of MCF-7 cells through reducing tumor-derived exosomal miR-128. The current study suggests that shikonin suppresses MCF-7 growth by the inhibition of exosome release. PMID:27322220

  16. Troglitazone inhibits endothelial cell proliferation through suppression of casein kinase 2 activity

    SciTech Connect

    Lee, Kuy-Sook; Park, Jin-Hee; Lee, Seahyoung; Lim, Hyun-Joung; Jang, Yangsoo; Park, Hyun-Young . E-mail: hypark65@nih.go.kr

    2006-07-21

    Troglitazone, an agonist of peroxisome proliferator activated receptor{gamma} (PPAR{gamma}), has been reported to inhibit endothelial cell proliferation by suppressing Akt activation. Recently, it has been also proposed that phosphatase and tensin homolog deleted from chromosome 10 (PTEN) plays an important role in such effect of troglitazone. However, the mechanism of how troglitazone regulates PTEN remains to be elucidated. We therefore investigated the effects of troglitazone on casein kinase 2 (CK2), which is known to negatively regulate PTEN activity. Troglitazone significantly inhibited serum-induced proliferation of HUVEC in a concentration dependent manner. Serum-induced Akt and its downstream signaling pathway activation was attenuated by troglitazone (10 {mu}M) pretreatment. The phosphorylation of PTEN, which was directly related to Akt activation, was decreased with troglitazone pretreatment and was inversely proportional to CK2 activity. DRB, a CK2 inhibitor, also showed effects similar to that of troglitazone on Akt and its downstream signaling molecules. In conclusion, our results suggest that troglitazone inhibits proliferation of HUVECs through suppression of CK2 activity rendering PTEN to remain activated, and this effect of troglitazone in HUVECs seems to be PPAR{gamma} independent.

  17. Knockdown of Golgi phosphoprotein 2 inhibits hepatocellular carcinoma cell proliferation and motility

    PubMed Central

    Liu, Yiming; Zhang, Xiaodi; Sun, Ting; Jiang, Junchang; Li, Ying; Chen, Mingliang; Wei, Zhen; Jiang, Weiqin; Zhou, Linfu

    2016-01-01

    Golgi phosphoprotein 2 (GP73) is highly expressed in hepatocellular carcinoma (HCC) cells, where it serves as a biomarker and indicator of disease progression. We used MTS assays, anchorage-independent cell colony formation assays and a xenograft tumor model to show that GP73-specific siRNAs inhibit HCC proliferation in HepG2, SMMC-7721, and Huh7 cell lines and in vivo. Following GP73 silencing, levels of p-Rb, a factor related to metastasis, were reduced, but cell cycle progression was unaffected. Our results suggest that GP73 silencing may not directly suppress proliferation, but may instead inhibit cell motility. Results from proliferation assays suggest GP73 reduces expression of epithelial mesenchymal transition (EMT)-related factors and promotes cell motility, while transwell migration and invasion assays indicated a possible role in metastasis. Immunofluorescence co-localization microscopy and immunoblotting showed that GP73 decreases expression of N-cadherin and E-cadherin, two key factors in EMT, which may in turn decrease intracellular adhesive forces and promote cell motility. This study confirmed that GP73 expression leads to increased expression of EMT-related proteins and that GP73 silencing reduces HCC cell migration in vitro. These findings suggest that GP73 silencing through siRNA delivery may provide a novel low-toxicity therapy for the inhibition of tumor proliferation and metastasis. PMID:26870893

  18. WNT3 Inhibits Cerebellar Granule Neuron Progenitor Proliferation and Medulloblastoma Formation via MAPK Activation

    PubMed Central

    Ayrault, Olivier; Kim, Jee Hae; Zhu, Xiaodong; Murphy, David A.; Van Aelst, Linda; Roussel, Martine F.; Hatten, Mary E.

    2013-01-01

    During normal cerebellar development, the remarkable expansion of granule cell progenitors (GCPs) generates a population of granule neurons that outnumbers the total neuronal population of the cerebral cortex, and provides a model for identifying signaling pathways that may be defective in medulloblastoma. While many studies focus on identifying pathways that promote growth of GCPs, a critical unanswered question concerns the identification of signaling pathways that block mitogenic stimulation and induce early steps in differentiation. Here we identify WNT3 as a novel suppressor of GCP proliferation during cerebellar development and an inhibitor of medulloblastoma growth in mice. WNT3, produced in early postnatal cerebellum, inhibits GCP proliferation by down-regulating pro-proliferative target genes of the mitogen Sonic Hedgehog (SHH) and the bHLH transcription factor Atoh1. WNT3 suppresses GCP growth through a non-canonical Wnt signaling pathway, activating prototypic mitogen-activated protein kinases (MAPKs), the Ras-dependent extracellular-signal-regulated kinases 1/2 (ERK1/2) and ERK5, instead of the classical β-catenin pathway. Inhibition of MAPK activity using a MAPK kinase (MEK) inhibitor reversed the inhibitory effect of WNT3 on GCP proliferation. Importantly, WNT3 inhibits proliferation of medulloblastoma tumor growth in mouse models by a similar mechanism. Thus, the present study suggests a novel role for WNT3 as a regulator of neurogenesis and repressor of neural tumors. PMID:24303070

  19. Serine leucocyte proteinase inhibitor-treated monocyte inhibits human CD4(+) lymphocyte proliferation.

    PubMed

    Guerrieri, Diego; Tateosian, Nancy L; Maffía, Paulo C; Reiteri, Romina M; Amiano, Nicolás O; Costa, María J; Villalonga, Ximena; Sanchez, Mercedes L; Estein, Silvia M; Garcia, Verónica E; Sallenave, Jean-Michel; Chuluyan, Héctor E

    2011-08-01

    Serine leucocyte proteinase inhibitor (SLPI) is the main serine proteinase inhibitor produced by epithelial cells and has been shown to be a pleiotropic molecule with anti-inflammatory and microbicidal activities. However, the role of SLPI on the adaptive immune response is not well established. Therefore, we evaluated the effect of SLPI on lymphocyte proliferation and cytokine production. Human peripheral blood mononuclear cells (PBMC) were treated with mitogens plus SLPI and proliferation was assessed by [(3) H]thymidine uptake. The SLPI decreased the lymphocyte proliferation induced by interleukin-2 (IL-2) or OKT3 monoclonal antibodies in a dose-dependent manner. Inhibition was not observed when depleting monocytes from the PBMC and it was restored by adding monocytes and SLPI. SLPI-treated monocyte slightly decreased MHC II and increased CD18 expression, and secreted greater amounts of IL-4, IL-6 and IL-10 in the cell culture supernatants. SLPI-treated monocyte culture supernatant inhibited the CD4(+) lymphocyte proliferation but did not affect the proliferation of CD8(+) cells. Moreover, IL-2 increased T-bet expression and the presence of SLPI significantly decreased it. Finally, SLPI-treated monocyte culture supernatant dramatically decreased interferon-γ but increased IL-4, IL-6 and IL-10 in the presence of IL-2-treated T cells. Our results demonstrate that SLPI target monocytes, which in turn inhibit CD4 lymphocyte proliferation and T helper type 1 cytokine secretion. Overall, these results suggest that SLPI is an alarm protein that modulates not only the innate immune response but also the adaptive immune response. PMID:21574992

  20. Serine leucocyte proteinase inhibitor-treated monocyte inhibits human CD4+ lymphocyte proliferation

    PubMed Central

    Guerrieri, Diego; Tateosian, Nancy L; Maffía, Paulo C; Reiteri, Romina M; Amiano, Nicolás O; Costa, María J; Villalonga, Ximena; Sanchez, Mercedes L; Estein, Silvia M; Garcia, Verónica E; Sallenave, Jean-Michel; Chuluyan, Héctor E

    2011-01-01

    Serine leucocyte proteinase inhibitor (SLPI) is the main serine proteinase inhibitor produced by epithelial cells and has been shown to be a pleiotropic molecule with anti-inflammatory and microbicidal activities. However, the role of SLPI on the adaptive immune response is not well established. Therefore, we evaluated the effect of SLPI on lymphocyte proliferation and cytokine production. Human peripheral blood mononuclear cells (PBMC) were treated with mitogens plus SLPI and proliferation was assessed by [3H]thymidine uptake. The SLPI decreased the lymphocyte proliferation induced by interleukin-2 (IL-2) or OKT3 monoclonal antibodies in a dose-dependent manner. Inhibition was not observed when depleting monocytes from the PBMC and it was restored by adding monocytes and SLPI. SLPI-treated monocyte slightly decreased MHC II and increased CD18 expression, and secreted greater amounts of IL-4, IL-6 and IL-10 in the cell culture supernatants. SLPI-treated monocyte culture supernatant inhibited the CD4+ lymphocyte proliferation but did not affect the proliferation of CD8+ cells. Moreover, IL-2 increased T-bet expression and the presence of SLPI significantly decreased it. Finally, SLPI-treated monocyte culture supernatant dramatically decreased interferon-γ but increased IL-4, IL-6 and IL-10 in the presence of IL-2-treated T cells. Our results demonstrate that SLPI target monocytes, which in turn inhibit CD4 lymphocyte proliferation and T helper type 1 cytokine secretion. Overall, these results suggest that SLPI is an alarm protein that modulates not only the innate immune response but also the adaptive immune response. PMID:21574992

  1. TGF-{beta}2 inhibits AKT activation and FGF-2-induced corneal endothelial cell proliferation

    SciTech Connect

    Lu Jiawei; Lu Zhenyu; Reinach, Peter

    2006-11-01

    The corneal endothelial cells form a boundary layer between anterior chamber and cornea. This single cell layer is important to maintain cornea transparency by eliciting net fluid transport into the anterior chamber. Injuries of the corneal endothelial layer in humans lead to corneal swelling and translucence. This hindrance is thought to be due to limited proliferative capacity of the endothelial layer. Fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 2 (TGF-{beta}2) are both found in aqueous humor, and these two cytokines promote and inhibit cell growth, respectively. The intracellular signaling mechanisms by which TGF-{beta}2 suppresses the mitogenic response to FGF-2, however, remain unclear. We have addressed this question by investigating potential crosstalk between FGF-2-induced and TGF-{beta}2-regulated intracellular signaling events in cultured bovine corneal endothelial (BCE) cells. We found that TGF-{beta}2 and FGF-2 oppositely affect BCE cell proliferation and TGF-{beta}2 can override the stimulating effects of FGF-2 by increasing COX-2 expression in these cells. Consistent with these findings, overexpression of COX-2 significantly reduced FGF-2-induced cell proliferation whereas a COX-2 specific inhibitor NS398 reversed the effect of TGF-{beta}2 on FGF-2-induced cell proliferation. The COX-2 product prostaglandin E2 (PGE-2) blocks FGF-2-induced cell proliferation. Whereas FGF-2 stimulates cell proliferation by activating the AKT pathway, TGF-{beta}2 and PGE-2 both inhibit this pathway. In accordance with the effect of PGE-2, cAMP also inhibits FGF-2-induced AKT activation. These findings suggest that the mitogenic response to FGF-2 in vivo in the corneal endothelial layer may be inhibited by TGF-{beta}2-induced suppression of the PI3-kinase/AKT signaling pathway.

  2. MiR-506 Over-Expression Inhibits Proliferation and Metastasis of Breast Cancer Cells

    PubMed Central

    Yu, Fei; Lv, Mingli; Li, Dan; Cai, Haidong; Ma, Lishui; Luo, Qiong; Yuan, Xueyu; Lv, Zhongwei

    2015-01-01

    Background This study aimed to investigate the relationship between miR-506 and proliferation and migration of breast cancer cells. Material/Methods MiR-506 mimics, inhibitor, and negative control (NC) were transfected into MDA-MB-231 breast cancer cells. Cell proliferation, cell counting, colony formation assay, and Transwell assay were applied to evaluate the proliferation and migration of breast cancer cells. Data are shown as mean ± standard deviation and the experiment was performed 3 times. Statistical analyses were performed with SPSS version 10.0. Results At 1 day after transfection, cell proliferation detected by CCK-8 assay was significantly promoted in miR-506 inhibitor when compared with the miR-506 mimics group and the NC group (P<0.05). At 3 days or 5 days after transfection, cell proliferation was markedly inhibited in the miR-506 mimics group, and miR-506 inhibitor was still significantly promoted. Cell counting with a hemocytometer showed similar results to cell proliferation. Colony formation assay showed that the number of colonies in the miR-506 mimics group was significantly smaller than that in the miR-506 inhibitor group and NC group. Transwell assay revealed that the number of migrated cells in miR-506 mimics was markedly smaller than that in the miR-506 inhibitor group and NC group. Conclusions MiR-506 over-expression significantly inhibits the proliferation, colony formation, and migration of breast cancer cells. miR-506 over-expression may thus be able to improve the malignant phenotype of breast cancer cells. PMID:26059632

  3. Synergistic Effect of Functionalized Nickel Nanoparticles and Quercetin on Inhibition of the SMMC-7721 Cells Proliferation

    NASA Astrophysics Data System (ADS)

    Guo, Dadong; Wu, Chunhui; Li, Jingyuan; Guo, Airong; Li, Qingning; Jiang, Hui; Chen, Baoan; Wang, Xuemei

    2009-12-01

    The effect of functionalized nickel (Ni) nanoparticles capped with positively charged tetraheptylammonium on cellular uptake of drug quercetin into hepatocellular carcinoma cells (SMMC-7721) has been explored in this study via microscopy and electrochemical characterization as well as MTT assay. Meanwhile, the influence of Ni nanoparticles and/or quercetin on cell proliferation has been further evaluated by the real-time cell electronic sensing (RT-CES) study. Our observations indicate that Ni nanoparticles could efficiently improve the permeability of cancer cell membrane, and remarkably enhance the accumulation of quercetin in SMMC-7721 cells, suggesting that Ni nanoparticles and quercetin would facilitate the synergistic effect on inhibiting proliferation of cancer cells.

  4. Novel roles of TMEM100: inhibition metastasis and proliferation of hepatocellular carcinoma

    PubMed Central

    Hua, Dong; Xiao, Shuai; Yang, Lianyue

    2015-01-01

    Transmembrane protein 100 (TMEM100) was activated by ALK1/TGF-β signaling. We found that TMEM100 was decreased in hepatocellular carcinoma (HCC) tissues and in highly metastatic cell lines. Overexpressed of TMEM100 inhibited invasion, migration and proliferation. Low levels of TMEM100 were associated with cirrhosis, tumor size, Tumor nodule number, TNM stage, BCLC stage, Edmondson-Steiner Stage and vein invasion. Furthermore, TMEM100 was an independent risk factor for overall survival (P = 0.03) and disease-free survival (P = 0.019). The current findings suggest that TMEM100 functions as a tumor suppressor in HCC metastasis and proliferation. PMID:25978032

  5. Imatinib mesylate (Gleevec) downregulates telomerase activity and inhibits proliferation in telomerase-expressing cell lines

    PubMed Central

    Uziel, O; Fenig, E; Nordenberg, J; Beery, E; Reshef, H; Sandbank, J; Birenbaum, M; Bakhanashvili, M; Yerushalmi, R; Luria, D; Lahav, M

    2005-01-01

    Imatinib mesylate (IM) is a tyrosine kinase inhibitor, which inhibits phosphorylation of downstream proteins involved in BCR-ABL signal transduction. It has proved beneficial in treating patients with chronic myeloid leukaemia (CML). In addition, IM demonstrates activity against malignant cells expressing c-kit and platelet-derived growth factor receptor (PDGF-R). The activity of IM in the blastic crisis of CML and against various myeloma cell lines suggests that this drug may also target other cellular components. In the light of the important role of telomerase in malignant transformation, we evaluated the effect of IM on telomerase activity (TA) and regulation in various malignant cell lines. Imatinib mesylate caused a dose-dependent inhibition of TA (up to 90% at a concentration of 15 μM IM) in c-kit-expressing SK-N-MC (Ewing sarcoma), SK-MEL-28 (melanoma), RPMI 8226 (myeloma), MCF-7 (breast cancer) and HSC 536/N (Fanconi anaemia) cells as well as in ba/F3 (murine pro-B cells), which do not express c-kit, BCR-ABL or PDGF-R. Imatinib mesylate did not affect the activity of other DNA polymerases. Inhibition of TA was associated with 50% inhibition of proliferation. The inhibition of proliferation was associated with a decrease in the S-phase of the cell cycle and an accumulation of cells in the G2/M phase. No apoptosis was observed. Inhibition of TA was caused mainly by post-translational modifications: dephosphorylation of AKT and, to a smaller extent, by early downregulation of hTERT (the catalytic subunit of the enzyme) transcription. Other steps of telomerase regulation were not affected by IM. This study demonstrates an additional cellular target of IM, not necessarily mediated via known tyrosine kinases, that causes inhibition of TA and cell proliferation. PMID:15870711

  6. Oridonin upregulates PTEN through activating p38 MAPK and inhibits proliferation in human colon cancer cells.

    PubMed

    Wu, Qiu-Xiang; Yuan, Shuang-Xue; Ren, Chun-Mei; Yu, Yu; Sun, Wen-Juan; He, Bai-Cheng; Wu, Ke

    2016-06-01

    Oridonin (ORI) has been reported as an antiproliferation and apoptosis-inducing natural product in various cancer cells. However, the exact molecular mechanism underlying these effects remains unclear. In the present study, we demonstrated the antiproliferation effect of ORI in HCT116 cells, and analyzed the possible molecular mechanism which mediates this effect. We found that ORI inhibits proliferation, induces cell cycle arrest and apoptosis in HCT116 cells, thus also tumor growth. Mechanically, we found that ORI has no substantial effect on mRNA expression of phosphatase and tensin homologue (PTEN), but increases the total protein level of PTEN and markedly reduces the phosphorylation of PTEN; Exogenous expression of PTEN potentiates the anticancer effect of ORI, while knockdown of PTEN attenuates it. ORI also increases the phosphorylation of p38 MAPK, and p38 MAPK-specific inhibitor reduces the antiproliferation effect ORI in HCT116 cells. Moreover, inhibition of p38 MAPK increases the phosphorylation of PTEN, and reverses ORI-induced decrease of PTEN phosphorylation. Our findings suggested that ORI may be a potential anticancer drug for colon cancer, this effect may be mediated by enhancing the function of PTEN through reducing its phosphorylation, which may be resulted from the ORI-induced activation of p38 MAPK. PMID:27108927

  7. Phenylboronic acid-functionalized polyamidoamine-mediated Bcl-2 siRNA delivery for inhibiting the cell proliferation.

    PubMed

    Wu, Di; Yang, Jiebing; Xing, Zhen; Han, Haobo; Wang, Tingting; Zhang, Aijun; Yang, Yan; Li, Quanshun

    2016-10-01

    In this study, the conjugation of phenylboronic acid (PBA) to amine-terminated polyamidoamine (PAMAM) was successfully conducted to prepare a tumor-targeted gene carrier PBA-functionalized PAMAM (PPP) for Bcl-2 siRNA delivery, using a heterobifunctional crosslinker NHS-PEG5k-Mal. The carrier possessed favorable capacity for siRNA condensation and could protect siRNA from the degradation against RNase and serum. The introduction of PBA could facilitate the cellular uptake and further transfection of Bcl-2 siRNA demonstrated by confocal laser scanning microscopy and flow cytometry. Meanwhile, PPP-mediated transfection of Bcl-2 siRNA could significantly inhibit the expression of Bcl-2 gene at both mRNA and protein levels. Furthermore, owing to the knock-down of Bcl-2, PPP/siRNA could significantly inhibit the cell proliferation by inducing the cell apoptosis, and also enhance the antitumor efficiency of doxorubicin by suppressing the resistance of tumor cells to chemotherapeutics. In conclusion, the PPP-mediated Bcl-2 siRNA delivery could potentially be an effective platform for solving the drug resistance and further achieving the combined chemotherapy and gene therapy in tumor treatment. PMID:27371891

  8. Induction of sister chromatid exchanges and inhibition of cellular proliferation in vitro. I. Caffeine

    SciTech Connect

    Guglielmi, G.E.; Vogt, T.F.; Tice, R.R.

    1982-01-01

    While many agents have been examined for their ability to induce SCE's, complete dose-response information has often been lacking. We have reexamined the ability of one such compound - caffeine - to induce SCEs and also to inhibit cellular proliferation in human peripheral lymphocytes in vitro. An acute exposure to caffeine prior to the DNA synthetic period did not affect either SCE frequency or the rate of cellular proliferation. Chronic exposure to caffeine throughout the culture period lead to both a dose-dependent increase in SCEs (SCE/sub d/ or doubling dose = 2.4 mM; SCE/sub 10/ or the dose capable of inducing 10 SCE = 1.4 mM) and a dose-dependent inhibition of cellular proliferation (IC/sub 50/ or the 50% inhibition concentration = 2.6 mM). The relative proportion of first generation metaphase cells, an assessment of proliferative inhibiton, increased linearly with increasing caffeine concentrations. However, SCE frequency increased nonlinearly over the same range of caffeine concentrations. Examination of the ratio of nonsymmetrical to symmetrical SCEs in third generation metaphase cells indicated that caffeine induced SCEs in equal frequency in each of three successive generations. The dependency of SCE induction and cellular proliferative inhibition on caffeine's presence during the DNA synthetic period suggests that caffeine may act as an antimetabolite in normal human cells.

  9. Methylthioadenosine (MTA) inhibits melanoma cell proliferation and in vivo tumor growth

    PubMed Central

    2010-01-01

    Background Melanoma is the most deadly form of skin cancer without effective treatment. Methylthioadenosine (MTA) is a naturally occurring nucleoside with differential effects on normal and transformed cells. MTA has been widely demonstrated to promote anti-proliferative and pro-apoptotic responses in different cell types. In this study we have assessed the therapeutic potential of MTA in melanoma treatment. Methods To investigate the therapeutic potential of MTA we performed in vitro proliferation and viability assays using six different mouse and human melanoma cell lines wild type for RAS and BRAF or harboring different mutations in RAS pathway. We also have tested its therapeutic capabilities in vivo in a xenograft mouse melanoma model and using variety of molecular techniques and tissue culture we investigated its anti-proliferative and pro-apoptotic properties. Results In vitro experiments showed that MTA treatment inhibited melanoma cell proliferation and viability in a dose dependent manner, where BRAF mutant melanoma cell lines appear to be more sensitive. Importantly, MTA was effective inhibiting in vivo tumor growth. The molecular analysis of tumor samples and in vitro experiments indicated that MTA induces cytostatic rather than pro-apoptotic effects inhibiting the phosphorylation of Akt and S6 ribosomal protein and inducing the down-regulation of cyclin D1. Conclusions MTA inhibits melanoma cell proliferation and in vivo tumor growth particularly in BRAF mutant melanoma cells. These data reveal a naturally occurring drug potentially useful for melanoma treatment. PMID:20529342

  10. Implication of unfolded protein response in resveratrol-induced inhibition of K562 cell proliferation

    SciTech Connect

    Liu, Bao-Qin; Gao, Yan-Yan; Niu, Xiao-Fang; Xie, Ji-Sheng; Meng, Xin; Guan, Yifu; Wang, Hua-Qin

    2010-01-01

    Resveratrol (RES), a natural plant polyphenol, is an effective inducer of cell cycle arrest and apoptosis in a variety of carcinoma cell types. In addition, RES has been reported to inhibit tumorigenesis in several animal models suggesting that it functions as a chemopreventive and anti-tumor agent in vivo. The chemopreventive and chemotherapeutic properties associated with resveratrol offer promise for the design of new chemotherapeutic agents. However, the mechanisms by which RES mediates its effects are not yet fully understood. In this study, we showed that RES caused cell cycle arrest and proliferation inhibition via induction of unfolded protein response (UPR) in human leukemia K562 cell line. Treatment of K562 cells with RES induced a number of signature UPR markers, including transcriptional induction of GRP78 and CHOP, phosphorylation of eukaryotic initiation factor 2{alpha} (eIF2{alpha}), ER stress-specific XBP-1 splicing, suggesting the induction of UPR by RES. RES inhibited proliferation of K562 in a concentration-dependent manner. Flow cytometric analyses revealed that K562 cells were arrested in G1 phase upon RES treatment. Salubrinal, an eIF2{alpha} inhibitor, or overexpression of dominant negative mutants of PERK or eIF2{alpha}, effectively restored RES-induced cell cycle arrest, underscoring the important role of PERK/eIF2{alpha} branch of UPR in RES-induced inhibition of cell proliferation.

  11. Griffipavixanthone, a dimeric xanthone extracted from edible plants, inhibits tumor metastasis and proliferation via downregulation of the RAF pathway in esophageal cancer.

    PubMed

    Ding, Zhijie; Lao, Yuanzhi; Zhang, Hong; Fu, Wenwei; Zhu, Lunlun; Tan, Hongsheng; Xu, Hongxi

    2016-01-12

    Metastasis causes a large number of deaths among esophageal cancer patients. The activation of RAF family proteins elevates tumor metastasis and proliferation. In screen targeting the RAF protein, we identified that Griffipavixanthone (GPX), a dimeric xanthone isolated from Garcinia esculenta, is a B-RAF and C-RAF inhibitor against esophageal cancer cells. Using wound healing, transwell migration and matrigel invasion assays, we confirmed that GPX significantly inhibited cell migration and invasion. Furthermore, exposure to GPX rendered cell proliferation and induced G2/M cell cycle arrest. Our mechanistic study showed that GPX suppressed cancer metastasis and proliferation through downregulation of RAF-MEK-ERK cascades proteins as well as RAF mRNA levels. In a pulmonary metastasis model, the intraperitoneal injection of GPX significantly suppressed esophageal tumor metastasis and ERK protein level in vivo. In conclusion, our present study suggested that GPX could inhibit tumor migration, invasion and proliferation in vitro and in vivo, which indicated the potential of GPX for preventing and treating esophageal cancer. PMID:26646323

  12. Griffipavixanthone, a dimeric xanthone extracted from edible plants, inhibits tumor metastasis and proliferation via downregulation of the RAF pathway in esophageal cancer

    PubMed Central

    Zhang, Hong; Fu, Wenwei; Zhu, Lunlun; Tan, Hongsheng; Xu, Hongxi

    2016-01-01

    Metastasis causes a large number of deaths among esophageal cancer patients. The activation of RAF family proteins elevates tumor metastasis and proliferation. In screen targeting the RAF protein, we identified that Griffipavixanthone (GPX), a dimeric xanthone isolated from Garcinia esculenta, is a B-RAF and C-RAF inhibitor against esophageal cancer cells. Using wound healing, transwell migration and matrigel invasion assays, we confirmed that GPX significantly inhibited cell migration and invasion. Furthermore, exposure to GPX rendered cell proliferation and induced G2/M cell cycle arrest. Our mechanistic study showed that GPX suppressed cancer metastasis and proliferation through downregulation of RAF-MEK-ERK cascades proteins as well as RAF mRNA levels. In a pulmonary metastasis model, the intraperitoneal injection of GPX significantly suppressed esophageal tumor metastasis and ERK protein level in vivo. In conclusion, our present study suggested that GPX could inhibit tumor migration, invasion and proliferation in vitro and in vivo, which indicated the potential of GPX for preventing and treating esophageal cancer. PMID:26646323

  13. Inhibition of DYRK1A Stimulates Human β-Cell Proliferation.

    PubMed

    Dirice, Ercument; Walpita, Deepika; Vetere, Amedeo; Meier, Bennett C; Kahraman, Sevim; Hu, Jiang; Dančík, Vlado; Burns, Sean M; Gilbert, Tamara J; Olson, David E; Clemons, Paul A; Kulkarni, Rohit N; Wagner, Bridget K

    2016-06-01

    Restoring functional β-cell mass is an important therapeutic goal for both type 1 and type 2 diabetes (1). While proliferation of existing β-cells is the primary means of β-cell replacement in rodents (2), it is unclear whether a similar principle applies to humans, as human β-cells are remarkably resistant to stimulation of division (3,4). Here, we show that 5-iodotubercidin (5-IT), an annotated adenosine kinase inhibitor previously reported to increase proliferation in rodent and porcine islets (5), strongly and selectively increases human β-cell proliferation in vitro and in vivo. Remarkably, 5-IT also increased glucose-dependent insulin secretion after prolonged treatment. Kinome profiling revealed 5-IT to be a potent and selective inhibitor of the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) and cell division cycle-like kinase families. Induction of β-cell proliferation by either 5-IT or harmine, another natural product DYRK1A inhibitor, was suppressed by coincubation with the calcineurin inhibitor FK506, suggesting involvement of DYRK1A and nuclear factor of activated T cells signaling. Gene expression profiling in whole islets treated with 5-IT revealed induction of proliferation- and cell cycle-related genes, suggesting that true proliferation is induced by 5-IT. Furthermore, 5-IT promotes β-cell proliferation in human islets grafted under the kidney capsule of NOD-scid IL2Rg(null) mice. These results point to inhibition of DYRK1A as a therapeutic strategy to increase human β-cell proliferation. PMID:26953159

  14. Peroxisome Proliferator Activated Receptors Alpha, Beta, and Gamma mRNA and protein expression in human fetal tissues

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study examine...

  15. FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway

    SciTech Connect

    Ma, Gui-Fen; Chen, Shi-Yao; Sun, Zhi-Rong; Miao, Qing; Liu, Yi-Mei; Zeng, Xiao-Qing; Luo, Tian-Cheng; Ma, Li-Li; Lian, Jing-Jing; Song, Dong-Li

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer The article revealed FoxP3 gene function in gastric cancer firstly. Black-Right-Pointing-Pointer Present the novel roles of FoxP3 in inhibiting proliferation and promoting apoptosis in gastric cancer cells. Black-Right-Pointing-Pointer Overexpression of FoxP3 increased proapoptotic molecules and repressed antiapoptotic molecules. Black-Right-Pointing-Pointer Silencing of FoxP3 reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Black-Right-Pointing-Pointer FoxP3 is sufficient for activating the apoptotic signaling pathway. -- Abstract: Forkhead Box Protein 3 (FoxP3) was identified as a key transcription factor to the occurring and function of the regulatory T cells (Tregs). However, limited evidence indicated its function in tumor cells. To elucidate the precise roles and underlying molecular mechanism of FoxP3 in gastric cancer (GC), we examined the expression of FoxP3 and the consequences of interfering with FoxP3 gene in human GC cell lines, AGS and MKN45, by multiple cellular and molecular approaches, such as immunofluorescence, gene transfection, CCK-8 assay, clone formation assay, TUNEL assay, Flow cytometry, immunoassay and quantities polymerase chain reaction (PCR). As a result, FoxP3 was expressed both in nucleus and cytoplasm of GC cells. Up-regulation of FoxP3 inhibited cell proliferation and promoted cell apoptosis. Overexpression of FoxP3 increased the protein and mRNA levels of proapoptotic molecules, such as poly ADP-ribose polymerase1 (PARP), caspase-3 and caspase-9, and repressed the expression of antiapoptotic molecules, such as cellular inhibitor of apoptosis-1 (c-IAP1) and the long isoform of B cell leukemia/lymphoma-2 (Bcl-2). Furthermore, silencing of FoxP3 by siRNA in GC cells reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Collectively, our findings identify the novel roles of FoxP3 in inhibiting proliferation and inducing apoptosis

  16. Suppression of Akt1 phosphorylation by adenoviral transfer of the PTEN gene inhibits hypoxia-induced proliferation of rat pulmonary arterial smooth muscle cells

    SciTech Connect

    Luo, Chunxia; Yi, Bin; Bai, Li; Xia, Yongzhi; Wang, Guansong; Qian, Guisheng; Feng, Hua

    2010-07-02

    Recent findings identify the role of proliferation of pulmonary artery smooth muscle cells (PASMCs) in pulmonary vascular remodeling. Phosphoinositide 3 kinase (PI3K) and serine/threonine kinase (Akt) proteins are expressed in vascular smooth muscle cells. In addition, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been identified as a negative regulator of cytokine signaling that inhibits the PI3K-Akt pathway. However, little is known about the role of PTEN/Akt signaling in hypoxia-associated vascular remodeling. In this study, we found that hypoxia-induced the expression of Akt1 mRNA and phosphorylated protein by at least twofold in rat PASMCs. Phospho-PTEN significantly decreased in the nuclei of PASMCs after hypoxic stimulation. After forcing over-expression of PTEN by adenovirus-mediated PTEN (Ad-PTEN) transfection, the expression of phospho-Akt1 was significantly suppressed in PASMCs at all time-points measured. Additionally, we showed here that hypoxia increased proliferation of PASMCs by nearly twofold and over-expression of PTEN significantly inhibited hypoxia-induced PASMCs proliferation. These findings suggest that phospho-PTEN loss in the nuclei of PASMCs under hypoxic conditions may be the major cause of aberrant activation of Akt1 and may, therefore, play an important role in hypoxia-associated pulmonary arterial remodeling. Finally, the fact that transfection with Ad-PTEN inhibits the phosphorylation of Akt1 in PASMCs suggests a potential therapeutic effect on hypoxia-associated pulmonary arterial remodeling.

  17. CCRK depletion inhibits glioblastoma cell proliferation in a cilium-dependent manner

    PubMed Central

    Yang, Ying; Roine, Niina; Mäkelä, Tomi P

    2013-01-01

    Loss of primary cilia is frequently observed in tumour cells, including glioblastoma cells, and proposed to benefit tumour growth, but a causal link has not been established. Here, we show that CCRK (cell cycle-related kinase) and its substrate ICK (intestinal cell kinase) inhibit ciliogenesis. Depletion of CCRK leads to accumulation of ICK at ciliary tips, altered ciliary transport and inhibition of cell cycle re-entry in NIH3T3 fibroblasts. In glioblastoma cells with deregulated high levels of CCRK, its depletion restores cilia through ICK and an ICK-related kinase MAK, thereby inhibiting glioblastoma cell proliferation. These results indicate that inhibition of ciliogenesis might be a mechanism used by cancer cells to provide a growth advantage. PMID:23743448

  18. Apigenin inhibits pancreatic cancer cell proliferation through G2/M cell cycle arrest

    PubMed Central

    Ujiki, Michael B; Ding, Xian-Zhong; Salabat, M Reza; Bentrem, David J; Golkar, Laleh; Milam, Ben; Talamonti, Mark S; Bell, Richard H; Iwamura, Takeshi; Adrian, Thomas E

    2006-01-01

    Background Many chemotherapeutic agents have been used to treat pancreatic cancer without success. Apigenin, a naturally occurring flavonoid, has been shown to inhibit growth in some cancer cell lines but has not been studied in pancreatic cancer. We hypothesized that apigenin would inhibit pancreatic cancer cell growth in vitro. Results Apigenin caused both time- and concentration-dependent inhibition of DNA synthesis and cell proliferation in four pancreatic cancer cell lines. Apigenin induced G2/M phase cell cycle arrest. Apigenin reduced levels of cyclin A, cyclin B, phosphorylated forms of cdc2 and cdc25, which are all proteins required for G2/M transition. Conclusion Apigenin inhibits growth of pancreatic cancer cells through suppression of cyclin B-associated cdc2 activity and G2/M arrest, and may be a valuable drug for the treatment or prevention of pancreatic cancer. PMID:17196098

  19. Inhibition of Dopamine Receptor D4 Impedes Autophagic Flux, Proliferation, and Survival of Glioblastoma Stem Cells.

    PubMed

    Dolma, Sonam; Selvadurai, Hayden J; Lan, Xiaoyang; Lee, Lilian; Kushida, Michelle; Voisin, Veronique; Whetstone, Heather; So, Milly; Aviv, Tzvi; Park, Nicole; Zhu, Xueming; Xu, ChangJiang; Head, Renee; Rowland, Katherine J; Bernstein, Mark; Clarke, Ian D; Bader, Gary; Harrington, Lea; Brumell, John H; Tyers, Mike; Dirks, Peter B

    2016-06-13

    Glioblastomas (GBM) grow in a rich neurochemical milieu, but the impact of neurochemicals on GBM growth is largely unexplored. We interrogated 680 neurochemical compounds in patient-derived GBM neural stem cells (GNS) to determine the effects on proliferation and survival. Compounds that modulate dopaminergic, serotonergic, and cholinergic signaling pathways selectively affected GNS growth. In particular, dopamine receptor D4 (DRD4) antagonists selectively inhibited GNS growth and promoted differentiation of normal neural stem cells. DRD4 antagonists inhibited the downstream effectors PDGFRβ, ERK1/2, and mTOR and disrupted the autophagy-lysosomal pathway, leading to accumulation of autophagic vacuoles followed by G0/G1 arrest and apoptosis. These results demonstrate a role for neurochemical pathways in governing GBM stem cell proliferation and suggest therapeutic approaches for GBM. PMID:27300435

  20. Carnosine inhibits KRAS-mediated HCT116 proliferation by affecting ATP and ROS production.

    PubMed

    Iovine, Barbara; Iannella, Maria Luigia; Nocella, Francesca; Pricolo, Maria Rosaria; Bevilacqua, Maria Assunta

    2012-02-28

    Carnosine is a natural dipeptide that has generated particular interest for its antioxidant, anti-aging and especially for its antiproliferative properties. In this study, we demonstrate that carnosine inhibits the proliferation of human HCT116 colon cancer cells. In this cell line, the activating KRAS mutation induces mitochondrial ROS, the signaling molecules for cell proliferation. We observed that 50-100 mM carnosine decreases ATP and ROS concentration and induces cell cycle arrest in G1 phase. In HCT116 cells these effects are related to decreased ERK1/2 phosphorylation and increased p21waf1 protein. Our findings support the concept that carnosine could inhibit HCT116 cell growth via its antioxidant activity and its ability to affect glycolysis. PMID:22137144

  1. Silencing of carboxypeptidase E inhibits cell proliferation, tumorigenicity, and metastasis of osteosarcoma cells

    PubMed Central

    Fan, Shuli; Li, Xu; Li, Leiming; Wang, Liguo; Du, Zhangzhen; Yang, Yan; Zhao, Jiansong; Li, Yan

    2016-01-01

    Carboxypeptidase E (CPE), a prohormone processing enzyme, has been implicated in the progression of multiple malignancies. However, the biological role and molecular mechanisms of CPE in osteosarcoma remain elusive. In this study, we assessed the effects of CPE on cell proliferation, tumorigenicity, migration, and invasion in osteosarcoma. Our results showed that silencing of CPE significantly inhibited cell proliferation, caused cell cycle arrest at G0/G1 phase, decreased the expression levels of cell cycle protein, cyclin D1, and inhibited tumorigenicity in vivo. Additionally, CPE downregulation repressed the migratory and invasive capacities of osteosarcoma cells in vitro. Furthermore, overexpression of CPE-ΔN (a splice variant of CPE) enhanced the cell growth, migration, and invasion of osteosarcoma cells. It is possible that both CPE forms are involved in the tumorigenesis and development of osteosarcoma, and therefore CPE may provide a promising biological target for osteosarcoma therapy. PMID:27274275

  2. Erianin inhibits the proliferation of T47D cells by inhibiting cell cycles, inducing apoptosis and suppressing migration

    PubMed Central

    Sun, Jing; Fu, Xueqi; Wang, Yongsen; Liu, Ye; Zhang, Yu; Hao, Tian; Hu, Xin

    2016-01-01

    Erianin is a natural product extracted from Dendrobiumchrysotoxum. To investigate the antitumor activity of Erianin in estrogen receptor (ER) positive breast cancer, we treated T47D cells with Erianin and evaluated the effects of Erianin treatment on multiple cancer-associated pathways. Erianin inhibited the proliferation of T47D cells effectively. Erianin induced apoptosis in T47D cells through reducing Bcl-2 expression and activating caspase signaling. Furthermore, it also suppressed the expression of CDKs and caused cell cycle arrest. In addition, Erianin treatment suppressed the migration of T47D cells, most likely through regulating the homeostatic expression of MPP and TIMP. Meanwhile, Erianin did not affect the proliferation of normal breast epithelial cell line MCF10A. Together, these results demonstrated that Erianin might have the potential to be an effective drug to treat the ER positive breast cancer. PMID:27508028

  3. Erianin inhibits the proliferation of T47D cells by inhibiting cell cycles, inducing apoptosis and suppressing migration.

    PubMed

    Sun, Jing; Fu, Xueqi; Wang, Yongsen; Liu, Ye; Zhang, Yu; Hao, Tian; Hu, Xin

    2016-01-01

    Erianin is a natural product extracted from Dendrobiumchrysotoxum. To investigate the antitumor activity of Erianin in estrogen receptor (ER) positive breast cancer, we treated T47D cells with Erianin and evaluated the effects of Erianin treatment on multiple cancer-associated pathways. Erianin inhibited the proliferation of T47D cells effectively. Erianin induced apoptosis in T47D cells through reducing Bcl-2 expression and activating caspase signaling. Furthermore, it also suppressed the expression of CDKs and caused cell cycle arrest. In addition, Erianin treatment suppressed the migration of T47D cells, most likely through regulating the homeostatic expression of MPP and TIMP. Meanwhile, Erianin did not affect the proliferation of normal breast epithelial cell line MCF10A. Together, these results demonstrated that Erianin might have the potential to be an effective drug to treat the ER positive breast cancer. PMID:27508028

  4. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    SciTech Connect

    Curtis, Brandon M.; Leix, Kyle Alexander; Ji, Yajing; Glaves, Richard Samuel Elliot; Ash, David E.; Mohanty, Dillip K.

    2014-07-18

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well.

  5. Peroxisome proliferator-activated receptor gamma (PPARγ) in yellow catfish Pelteobagrus fulvidraco: molecular characterization, mRNA expression and transcriptional regulation by insulin in vivo and in vitro.

    PubMed

    Zheng, Jia-Lang; Zhuo, Mei-Qin; Luo, Zhi; Pan, Ya-Xiong; Song, Yu-Feng; Huang, Chao; Zhu, Qing-Ling; Hu, Wei; Chen, Qi-Liang

    2015-02-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is ligand-inducible transcription factor and has important roles in lipid metabolism, cell proliferation and inflammation. In the present study, yellow catfish Pelteobagrus fulvidraco PPARγ cDNA was isolated from liver by RT-PCR and RACE, and its molecular characterization and transcriptional regulation by insulin in vivo and in vitro were determined. The generation of PPARγ1 and PPARγ2 was due to alternative promoter of PPARγ gene. PPARγ1 and PPARγ2 mRNA covered 2426 bp and 2537 bp, respectively, with an open reading frame (ORF) of 1584 bp encoding 527 amino acid residues. Yellow catfish PPARγ gene was organized in a manner similar to that of their mammalian homologs, implying a modular organization of the protein's domains. A comparison between the yellow catfish PPARγ amino acid sequence and the correspondent sequences of several other species revealed the identity of 55-76.2%. Two PPARγ transcripts (PPARγ1 and PPARγ2) mRNAs were expressed in a wide range of tissues, but the abundance of each PPARγ mRNA showed the tissue- and developmental stage-dependent expression patterns. Intraperitoneal injection of insulin in vivo significantly stimulated the mRNA expression of total PPARγ and PPARγ1, but not PPARγ2 in the liver of yellow catfish. In contrast, incubation of hepatocytes with insulin in vitro increased the mRNA levels of PPARγ1, PPARγ2 and total PPARγ. To our knowledge, for the first time, the present study provides evidence that PPARγ1 and PPARγ2 are differentially expressed with and among tissues during different developmental stages and also regulated by insulin both in vivo and in vitro, which serves to increase our understanding on PPARγ physiological function in fish. PMID:25637673

  6. cdk4 Deficiency Inhibits Skin Tumor Development but Does Not Affect Normal Keratinocyte Proliferation

    PubMed Central

    Rodriguez-Puebla, Marcelo L.; Miliani de Marval, Paula L.; LaCava, Margaret; Moons, David S.; Kiyokawa, Hiroaki; Conti, Claudio J.

    2002-01-01

    Most human tumors have mutations that result in deregulation of the cdk4/cyclin-Ink4-Rb pathway. Overexpression of D-type cyclins or cdk4 and inactivation of Ink4 inhibitors are common in human tumors. Conversely, lack of cyclin D1 expression results in significant reduction in mouse skin and mammary tumor development. However, complete elimination of tumor development was not observed in these models, suggesting that other cyclin/cdk complexes play an important role in tumorigenesis. Here we described the effects of cdk4 deficiency on mouse skin proliferation and tumor development. Cdk4 deficiency resulted in a 98% reduction in the number of tumors generated through the two-stage carcinogenesis model. The absence of cdk4 did not affect normal keratinocyte proliferation and both wild-type and cdk4 knockout epidermis are equally affected after topical treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), resulting in epidermal hyperplasia. In similar fashion, cdk4 knockout keratinocytes proliferated well in an in vivo model of wound-induced proliferation. Biochemical studies in mouse epidermis showed that cdk6 activity increased twofold in cdk4-deficient mice compared to wild-type siblings. These results suggest that therapeutic approaches to inhibit cdk4 activity could provide a target to inhibit tumor development with minimal or no effect in normal tissue. PMID:12163365

  7. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation

    SciTech Connect

    Mizuno, Yosuke; Yagi, Ken; Tokuzawa, Yoshimi; Kanesaki-Yatsuka, Yukiko; Suda, Tatsuo; Katagiri, Takenobu; Fukuda, Toru; Maruyama, Masayoshi; Okuda, Akihiko; Amemiya, Tomoyuki; Kondoh, Yasumitsu; Tashiro, Hideo; Okazaki, Yasushi

    2008-04-04

    Although various microRNAs regulate cell differentiation and proliferation, no miRNA has been reported so far to play an important role in the regulation of osteoblast differentiation. Here we describe the role of miR-125b in osteoblastic differentiation in mouse mesenchymal stem cells, ST2, by regulating cell proliferation. The expression of miR-125b was time-dependently increased in ST2 cells, and the increase in miR-125b expression was attenuated in osteoblastic-differentiated ST2 cells induced by BMP-4. The transfection of exogenous miR-125b inhibited proliferation of ST2 cells and caused inhibition of osteoblastic differentiation. In contrast, when the endogenous miR-125b was blocked by transfection of its antisense RNA molecule, alkaline phosphatase activity after BMP-4 treatment was elevated. These results strongly suggest that miR-125b is involved in osteoblastic differentiation through the regulation of cell proliferation.

  8. An ethanolic extract of Angelica gigas improves atherosclerosis by inhibiting vascular smooth muscle cell proliferation

    PubMed Central

    Jang, Ja Young; Kim, Jihyun; Cai, Jingmei; Kim, Youngeun; Shin, Kyungha; Kim, Tae-Su; Lee, Sung-Pyo; Park, Sung Kyeong

    2014-01-01

    The effects of an ethanolic extract of Angelica gigas (EAG) on the vascular smooth muscle cell (VSMC) proliferation and high-cholesterol diet-induced hypercholesterolemia and atherosclerosis were investigated. Rat aortic VSMCs were stimulated with platelet-derived growth factor-BB (25 ng/mL) for the induction of DNA synthesis and cell proliferation. EAG (1-10 µg/mL) significantly inhibited both the thymidine incorporation and cell proliferation in a concentration-dependent manner. Hypercholesterolemia was induced by feeding male New Zealand white rabbits with 0.5% cholesterol in diet for 10 weeks, during which EAG (1% in diet) was given for the final 8 weeks after 2-week induction of hypercholesterolemia. Hypercholesterolemic rabbits exhibited great increases in serum total cholesterol and low-density lipoproteins (LDL) levels, and finally severe atheromatous plaque formation covering 28.4% of the arterial walls. EAG significantly increased high-density lipoproteins (HDL), slightly decreased LDL, and potentially reduced the atheroma area to 16.6%. The results indicate that EAG attenuates atherosclerosis not only by inhibiting VASC proliferation, but also by increasing blood HDL levels. Therefore, it is suggested that EAG could be an alternative or an adjunct therapy for the improvement of hypercholesterolemia and atherosclerosis. PMID:24999363

  9. Dehydroleucodine inhibits vascular smooth muscle cell proliferation in G2 phase.

    PubMed

    Cruzado, M; Castro, C; Fernandez, D; Gomez, L; Roque, M; Giordano, O E; Lopez, L A

    2005-11-01

    Vascular smooth muscle cell (VSMC) proliferation plays an important role in the development of atherosclerosis and in the vascular changes seen in hypertension. Dehydroleucodine (DhL) is a sesquiterpene lactone that inhibits cell proliferation in plant cells. In this paper, we study the effect of DhL in the proliferation of VSMCs stimulated with 10% fetal bovine serum (FBS). Very low concentrations of DhL (2-6 microM) inhibited VSMC proliferation and induced cell accumulation in G2. DhL did not affect the dynamics of 3H-thymidine incorporation, and did not modify either the activity of DNA polymerase or the incorporation of deoxyribonucleotides in an in vitro assay. Moreover, DhL did not induce apoptosis in VSMCs. These results indicate that DhL, in very low concentration, induces a transient arrest of VSMCs in G2. Our data show that VSMCs are especially sensitive to DhL effect, suggesting that DhL could be potentially useful to prevent the vascular pathological changes seen in hypertension and other vascular diseases. PMID:16309576

  10. Polyamine analog TBP inhibits proliferation of human K562 chronic myelogenous leukemia cells by induced apoptosis

    PubMed Central

    WANG, QING; WANG, YAN-LIN; WANG, KAI; YANG, JIAN-LIN; CAO, CHUN-YU

    2015-01-01

    The aim of the present study was to investigate the effects of the novel polyamine analog tetrabutyl propanediamine (TBP) on the growth of K562 chronic myelogenous leukemia (CML) cells and the underlying mechanism of these effects. MTT was used for the analysis of cell proliferation and flow cytometry was performed to analyze cell cycle distribution. DNA fragmentation analysis and Annexin V/propidium iodide double staining were used to identify apoptotic cells. The activity of the key enzymes in polyamine catabolism was detected using chemiluminescence. TBP can induce apoptosis and significantly inhibit K562 cell proliferation in a time- and dose-dependent manner. TBP treatment significantly induced the enzyme activity of spermine oxidase and acetylpolyamine oxidase in K562 cells, and also enhanced the inhibitory effect of the antitumor drug doxorubicin on K562 cell proliferation. As a novel polyamine analog, TBP significantly inhibited proliferation and induced apoptosis in K562 cells by upregulating the activity of the key enzymes in the polyamine catabolic pathways. TBP also increased the sensitivity of the K562 cells to the antitumor drug doxorubicin. These data indicate an important potential value of TBP for clinical therapy of human CML. PMID:25435975

  11. Compound Radix Sophorae Flavescentis exerts antitumor effects by inhibiting the proliferation and inducing the apoptosis of esophageal carcinoma TE-8 cells

    PubMed Central

    YANG, XIAOYU; CAI, WEIMEI; YANG, QINGHUI; LU, ZHIHONG; LI, JINSONG; YU, JIAN

    2015-01-01

    The aim of this study was to examine the effects of compound Radix Sophorae Flavescentis on the proliferation of esophageal carcinoma TE-8 cells and to elucidate the mechanisms involved. For this purpose, we incubated TE-8 cells in medium containing various concentrations (0, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.4 and 0.8 mg/ml) of the compound Radix Sophorae Flavescentis injection and its effects on the proliferation of TE-8 cells were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, we observed the morphological changes and measured the expression levels of apoptosis-related genes (caspase-3, Bcl-2 and Bax) in the cells treated with different doses of the compound (low-dose group, 0.05 mg/ml; medium-dose group, 0.2 mg/ml; and high-dose group, 0.8 ng/ml) by reverse transcription-quantitative PCR (RT-qPCR). The apoptotic index of the cancer cells treated with different doses of the compound was determined by TUNEL assay. Our results revealed that compared with the control group (untreated cells), the proliferation of the cancer cells treated with the compound was significantly inhibited (P≤0.05); the inhibition of the proliferation of the cancer cells occured in a dose-dependent manner. Compared with the control group, the apoptotic rate of the cells in the low-dose, medium-dose and high-dose groups increased significantly (P<0.05) in a dose-dependent manner. In addition, compared with the control group, the mRNA expression of caspase-3 and Bax increased significantly in the cells treated with the compound. However, the mRNA expression of Bcl-2 markedly decreased (P<0.05). With the gradual increase in the drug concentration, the mRNA expression levels of caspase-3, Bcl-2 and Bax in the cancer cells were altered in a dose-dependent manner. In conclusion, our data demonstrate that compound Radix Sophorae Flavescentis injection significantly enhances the expression of pro-apoptotic genes in esophageal carcinoma TE-8

  12. Inhibition of cervical carcinoma cell line proliferation by the introduction of a bovine papillomavirus regulatory gene.

    PubMed Central

    Hwang, E S; Riese, D J; Settleman, J; Nilson, L A; Honig, J; Flynn, S; DiMaio, D

    1993-01-01

    Human papillomavirus (HPV) E6 and E7 oncogenes are expressed in the great majority of human cervical carcinomas, whereas the viral E2 regulatory gene is usually disrupted in these cancers. To investigate the roles of the papillomavirus E2 genes in the development and maintenance of cervical carcinoma, the bovine papillomavirus (BPV) E2 gene was acutely introduced into cervical carcinoma cell lines by infection with high-titer stocks of simian virus 40-based recombinant viruses. Expression of the BPV E2 protein in HeLa, C-4I, and MS751 cells results in specific inhibition of the expression of the resident HPV type 18 (HPV18) E6 and E7 genes and in inhibition of cell growth. HeLa cells, in which HPV gene expression is nearly completely abolished, undergo a dramatic and rapid inhibition of proliferation, which appears to be largely a consequence of a block in progression from the G1 to the S phase of the cell cycle. Loss of HPV18 gene expression in HeLa cells is also accompanied by a marked increase in the level of the cellular p53 tumor suppressor protein, apparently as a consequence of abrogation of HPV18 E6-mediated destabilization of p53. The proliferation of HT-3 cells, a human cervical carcinoma cell line devoid of detectable HPV DNA, is also inhibited by E2 expression, whereas two other epithelial cell lines that do not contain HPV DNA are not inhibited. Thus, a number of cervical carcinoma cell lines are remarkably sensitive to growth inhibition by the E2 protein. Although BPV E2-mediated inhibition of HPV18 E6 and E7 expression may contribute to growth inhibition in some of the cervical carcinoma cell lines, the BPV E2 protein also appears to exert a growth-inhibitory effect that is independent of its effects on HPV gene expression. Images PMID:8389903

  13. Inhibition of T-lymphocyte proliferation by cucurbitacins from Picrorhiza scrophulariaeflora.

    PubMed

    Smit, H F; van den Berg, A J; Kroes, B H; Beukelman, C J; Quarles van Ufford, H C; van Dijk, H; Labadie, R P

    2000-09-01

    Two cucurbitacin aglycons were isolated from the dried rhizomes of Picrorhiza scrophulariaeflora and were identified as 25-acetoxy-2,3, 16,20-tetrahydroxy-9-methyl-19-norlanosta-5,23-dien-22-one (picracin, 1) and 2,3,16,20,25-pentahydroxy-9-methyl-19-norlanosta-5, 23-dien-22-one (deacetylpicracin, 2). Both compounds inhibit mitogen-induced T-lymphocyte proliferation at an IC(50) value of 1 microM. PMID:11000045

  14. β-catenin knockdown inhibits the proliferation of human glioma cells in vitro and in vivo

    PubMed Central

    WANG, ZHONG; CHEN, QIANXUE

    2016-01-01

    β-catenin is a crucial oncogene that is capable of regulating cancer progression. The aim of the present study was to clarify whether β-catenin was associated with the proliferation and progress of glioma. In order to knockdown the expression of β-catenin in human U251 glioma cells, three pairs of small interfering (si)RNA were designed and synthesized and the most effective siRNA was selected and used for silencing the endogenous β-catenin, which was detected by western blot analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Proliferation was subsequently detected using a methylthiazolyl-tetrazolium bromide assay and the results demonstrated that knockdown of β-catenin significantly inhibited the proliferation of U251 cells in a time- and dose-dependent manner (P<0.01). Cell apoptosis rate was analyzed using flow cytometry and Annexin V-fluorescein isothiocyanate/propidium iodide staining demonstrated that β-catenin siRNA significantly increased the apoptosis of U251 cells (P<0.01). Furthermore, the results of an in vitro scratch assay demonstrated that β-catenin silencing suppressed the proliferation of U251 cells, as compared with the control group (P<0.01). In vivo, β-catenin expression levels in U251 cells were significantly inhibited (P<0.01) following β-catenin short hairpin (sh)RNA lentiviral-vector transfection, as detected by western blot analysis and RT-qPCR. Tumorigenicity experiments demonstrated that β-catenin inhibition significantly increased the survival rate of nude mice. The results of the present study demonstrated that knockdown of β-catenin expression significantly inhibited the progression of human glioma cancer cells, in vitro and in vivo; thus suggesting that β-catenin silencing may be a novel therapy for the treatment of human glioma. PMID:26998037

  15. Alpha lipoic acid inhibits proliferation and epithelial mesenchymal transition of thyroid cancer cells.

    PubMed

    Jeon, Min Ji; Kim, Won Gu; Lim, Seonhee; Choi, Hyun-Jeung; Sim, Soyoung; Kim, Tae Yong; Shong, Young Kee; Kim, Won Bae

    2016-01-01

    The naturally occurring short-chain fatty acid, α-lipoic acid (ALA) is a powerful antioxidant which is clinically used for treatment of diabetic neuropathy. Recent studies suggested the possibility of ALA as a potential anti-cancer agent, because it could activate adenosine monophosphate activated protein kinase (AMPK) and inhibit transforming growth factor-β (TGFβ) pathway. In this study, we evaluate the effects of ALA on thyroid cancer cell proliferation, migration and invasion. We performed in vitro cell proliferation analysis using BCPAP, HTH-83, CAL-62 and FTC-133 cells. ALA suppressed thyroid cancer cell proliferation through activation of AMPK and subsequent down-regulation of mammalian target of rapamycin (mTOR)-S6 signaling pathway. Low-dose ALA, which had minimal effects on cell proliferation, also decreased cell migration and invasion of BCPAP, CAL-62 and HTH-83 cells. ALA inhibited epithelial mesenchymal transition (EMT) evidently by increase of E-cadherin and decreases of activated β-catenin, vimentin, snail, and twist in these cells. ALA suppressed TGFβ production and inhibited induction of p-Smad2 and twist by TGFβ1 or TGFβ2. These findings indicate that ALA reduces cancer cell migration and invasion through suppression of TGFβ production and inhibition of TGFβ signaling pathways in thyroid cancer cells. ALA also significantly suppressed tumor growth in mouse xenograft model using BCPAP and FTC-133 cells. This is the first study to show anti-cancer effect of ALA on thyroid cancer cells. ALA could be a potential therapeutic agent for treatment of advanced thyroid cancer, possibly as an adjuvant therapy with other systemic therapeutic agents. PMID:26463583

  16. The sGC activator inhibits the proliferation and migration, promotes the apoptosis of human pulmonary arterial smooth muscle cells via the up regulation of plasminogen activator inhibitor-2

    SciTech Connect

    Zhang, Shuai; Zou, Lihui; Yang, Ting; Yang, Yuanhua; Zhai, Zhenguo; Xiao, Fei; Wang, Chen

    2015-03-15

    Background: Different types of pulmonary hypertension (PH) share the same process of pulmonary vascular remodeling, the molecular mechanism of which is not entirely clarified by far. The abnormal biological behaviors of pulmonary arterial smooth muscle cells (PASMCs) play an important role in this process. Objectives: We investigated the regulation of plasminogen activator inhibitor-2 (PAI-2) by the sGC activator, and explored the effect of PAI-2 on PASMCs proliferation, apoptosis and migration. Methods: After the transfection with PAI-2 overexpression vector and specific siRNAs or treatment with BAY 41-2272 (an activator of sGC), the mRNA and protein levels of PAI-2 in cultured human PASMCs were detected, and the proliferation, apoptosis and migration of PASMCs were investigated. Results: BAY 41-2272 up regulated the endogenous PAI-2 in PASMCs, on the mRNA and protein level. In PAI-2 overexpression group, the proliferation and migration of PASMCs were inhibited significantly, and the apoptosis of PASMCs was increased. In contrast, PAI-2 knockdown with siRNA increased PASMCs proliferation and migration, inhibited the apoptosis. Conclusions: PAI-2 overexpression inhibits the proliferation and migration and promotes the apoptosis of human PASMCs. Therefore, sGC activator might alleviate or reverse vascular remodeling in PH through the up-regulation of PAI-2. - Highlights: • sGC activator BAY41-2272 up regulated PAI-2 in PASMCs, on the mRNA and protein level. • PAI-2 overexpression inhibits the proliferation and migration of human PASMCs. • PAI-2 overexpression promotes the apoptosis of human PASMCs. • sGC activator might alleviate the vascular remodeling in pulmonary hypertension.

  17. Spiruchostatin A Inhibits Proliferation and Differentiation of Fibroblasts from Patients with Pulmonary Fibrosis

    PubMed Central

    Davies, Elizabeth R.; Haitchi, Hans Michael; Thatcher, Thomas H.; Sime, Patricia J.; Kottmann, R. Matthew; Ganesan, Arasu; Packham, Graham; O'Reilly, Katherine M. A.

    2012-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disorder characterized by the proliferation of interstitial fibroblasts and the deposition of extracellular matrix causing impaired gas exchange. Spiruchostatin A (SpA) is a histone deacetylase inhibitor (HDI) with selectivity toward Class I enzymes, which distinguishes it from other nonspecific HDIs that are reported to inhibit (myo)fibroblast proliferation and differentiation. Because the selectivity of HDIs may be important clinically, we postulated that SpA inhibits the proliferation and differentiation of IPF fibroblasts. Primary fibroblasts were grown from lung biopsy explants obtained from patients with IPF or from normal control subjects, using two-dimensional or three-dimensional culture models. The effect of SpA on fibroproliferation in serum-containing medium ± transforming growth factor (TGF)–β1 was quantified by methylene blue binding. The acetylation of histone H3, the expression of the cell-cycle inhibitor p21waf1, and the myofibroblast markers α–smooth muscle actin (α-SMA) and collagens I and III were determined by Western blotting, quantitative RT-PCR, immunofluorescent staining, or colorimetry. SpA inhibited the proliferation of IPF or normal fibroblasts in a time-dependent and concentration-dependent manner (concentration required to achieve 50% inhibition = 3.8 ± 0.4 nM versus 7.8 ± 0.2 nM, respectively; P < 0.05), with little cytotoxicity. Western blot analyses revealed that SpA caused a concentration-dependent increase in histone H3 acetylation, paralleling its antiproliferative effect. SpA also increased p21waf1 expression, suggesting that direct cell-cycle regulation was the mechanism of inhibiting proliferation. Although treatment with TGF-β1 induced myofibroblast differentiation associated with increased expression of α-SMA, collagen I and collagen III and soluble collagen release, these responses were potently inhibited by SpA. These data support the concept that

  18. Lactobacillus helveticus SBT2171 Inhibits Lymphocyte Proliferation by Regulation of the JNK Signaling Pathway

    PubMed Central

    Yamashita, Maya; Shiozaki, Takuya; Endo, Tsutomu; Ukibe, Ken; Uenishi, Hiroshi; Kadooka, Yukio; Moriya, Tomohiro; Nakagawa, Hisako; Nakayama, Yosuke; Miyazaki, Tadaaki

    2014-01-01

    Lactobacillus helveticus SBT2171 (LH2171) is a lactic acid bacterium with high protease activity and used in starter cultures in the manufacture of cheese. We recently reported that consumption of cheese manufactured using LH2171 alleviated symptoms of dextran sodium sulfate (DSS)-induced colitis in mice. In this study, we have examined whether LH2171 itself exerts an inhibitory effect on the excessive proliferation of lymphocytes. We found that LH2171 inhibited the proliferation of LPS-stimulated mouse T and B cells, and the human lymphoma cell lines, Jurkat and BJAB. Cell cycle analysis showed an accumulation of LH2171-treated BJAB cells in the G2/M phase. Further, phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun was reduced by LH2171 in BJAB cells. Subsequently, expression of cell division cycle 2 (CDC2), regulated by the JNK signaling pathway and essential for G2/M phase progression, was inhibited by LH2171. It was also demonstrated that intraperitoneal administration of LH2171 strongly alleviated symptoms of collagen-induced arthritis (CIA) in mice. These findings suggest that LH2171 inhibits the proliferation of lymphocytes through a suppression of the JNK signaling pathway and exerts an immunosuppressive effect in vivo. PMID:25268890

  19. Interleukin 4 inhibits in vitro proliferation of leukemic and normal human B cell precursors.

    PubMed Central

    Pandrau, D; Saeland, S; Duvert, V; Durand, I; Manel, A M; Zabot, M T; Philippe, N; Banchereau, J

    1992-01-01

    In the present study, we have investigated the effects of IL-4 on the proliferation and differentiation of leukemic and normal human B cell precursors (BCP). We have demonstrated that IL-4 significantly inhibited spontaneous [3H]thymidine ([3H]-TdR) incorporation by leukemic blasts from some B lineage acute lymphoblastic leukemia (BCP-ALL) patients (8 of 14). Furthermore, IL-4 was found to suppress the spontaneous and factor-dependent (IL-7 and IL-3) proliferation of normal BCP (CD10+ surface [s] IgM- cells) isolated from fetal bone marrow. Maximum growth inhibition of either leukemic or normal BCP was reached at low IL-4 concentrations (10 U/ml), and the effect was specifically neutralized by anti-IL-4 antibody. IL-4 was further found to induce the expression of CD20 antigen on BCP-ALL cells from a number of the cases examined (5 of 8), but in contrast to leukemic cells, IL-4 failed to induce CD20 antigen on normal BCP. Finally, IL-4 was found to induce neither the expression of cytoplasmic mu chain, nor the appearance of sIgM+ cells in cultures of normal or leukemic BCP. Our data indicate that IL-4 has the potential to inhibit cell proliferation in leukemic and normal human B lymphopoiesis but is unable to drive the transition from BCP to mature B cells. Images PMID:1385474

  20. Heparin inhibits mesangial cell proliferation in habu-venom-induced glomerular injury.

    PubMed Central

    Coffey, A. K.; Karnovsky, M. J.

    1985-01-01

    The authors have investigated the ability of anticoagulant heparin and nonanticoagulant heparin to inhibit mesangial-cell proliferation after the administration of habu (Trimeresurus flavorivids) snake venom to rats. Rats given injected habu venom exhibited glomerular capillary cystic lesions 6 to 24 hours later, and marked mesangial proliferation was noted within the cyst after 3 days. At 7 days 87% of these lesions (nodules) contained primarily mesangial cells embedded in a dense matrix and fibrin. A decrease in the frequency of nodules and the persistence of cysts indicate effective antiproliferative treatment. When anticoagulant heparin treatment extended from 18 hours after venom administration until sacrifice at 7 days, the percentage of nodules was reduced to 40%. Nonanticoagulant heparins resulted in some, but inconsistent, inhibition of mesangial-cell proliferation. The mechanism of the antiproliferative action of heparin on mesangial cells is not known but may be similar to that for vascular smooth muscle growth regulation. The authors suggest that endogenous heparin in the glomerular basement membrane and mesangial matrix may exert an antiproliferative effect under normal conditions. Loss of this inhibition due to glomerular damage might be reversed by the addition of exogenous heparin. Images Figure 1 PMID:3875292

  1. PPARγ inhibits ovarian cancer cells proliferation through upregulation of miR-125b.

    PubMed

    Luo, Shuang; Wang, Jidong; Ma, Ying; Yao, Zhenwei; Pan, Hongjuan

    2015-06-26

    miR-125b has essential roles in coordinating tumor proliferation, angiogenesis, invasiveness, metastasis and chemotherapy recurrence. In ovarian cancer miR-125b has been shown to be downregulated and acts as a tumor suppressor by targeting proto-oncogene BCL3. PPARγ, a multiple functional transcription factor, has been reported to have anti-tumor effects through inhibition of proliferation and induction of differentiation and apoptosis by targeting the tumor related genes. However, it is unclear whether miR-125b is regulated by PPARγ in ovarian cancer. In this study, we demonstrated that the miR-125b downregulated in ovarian cancer tissues and cell lines. Ligands-activated PPARγ suppressed proliferation of ovarian cancer cells and this PPARγ-induced growth inhibition is mediated by the upregulation of miR-125b. PPARγ promoted the expression of miR-125b by directly binding to the responsive element in miR-125b gene promoter region. Thus, our results suggest that PPARγ can induce growth suppression of ovarian cancer by upregulating miR-125b which inhibition of proto-oncogene BCL3. These findings will extend our understanding of the function of PPARγ in tumorigenesis and miR-125b may be a therapeutic intervention of ovarian cancer. PMID:25944662

  2. Bone morphogenetic protein signalling suppresses wound-induced skin repair by inhibiting keratinocyte proliferation and migration

    PubMed Central

    Lewis, Christopher J.; Mardaryev, Andrei N.; Poterlowicz, Krzysztof; Sharova, Tatyana Y.; Aziz, Ahmar; Sharpe, David T.; Botchkareva, Natalia V.; Sharov, Andrey A.

    2013-01-01

    Bone morphogenetic protein (BMP) signalling plays a key role in the control of skin development and postnatal remodelling by regulating keratinocyte proliferation, differentiation and apoptosis. To study the role of BMPs in wound-induced epidermal repair, we used transgenic mice overexpressing the BMP downstream component Smad1 under the control of a K14 promoter as an in vivo model, as well as ex vivo and in vitro assays. K14-caSmad1 mice exhibited retarded wound healing associated with significant inhibition of proliferation and increased apoptosis in healing wound epithelium. Furthermore, microarray and qRT-PCR analyses revealed decreased expression of a number of cytoskeletal/cell motility-associated genes including wound-associated keratins (Krt16, Krt17) and Myo5a, in the epidermis of K14-caSmad1 mice versus wild-type controls during wound healing. BMP treatment significantly inhibited keratinocyte migration ex vivo, and primary keratinocytes of K14-caSmad1 mice showed retarded migration compared to wild-type controls. Finally, siRNA-mediated silencing of Bmpr-1B in primary mouse keratinocytes accelerated cell migration and was associated with increased expression of Krt16, Krt17 and Myo5a compared to controls. Thus, this study demonstrates that BMPs inhibit keratinocyte proliferation, cytoskeletal organization and migration in regenerating skin epithelium during wound healing, and raises a possibility for using BMP antagonists for the management of chronic wounds. PMID:24126843

  3. Interferon-alpha inhibits murine macrophage transforming growth factor-beta mRNA expression.

    PubMed

    Dhanani, S; Huang, M; Wang, J; Dubinett, S M

    1994-06-01

    Transforming growth factor-beta (TGF-beta), a multifunctional polypeptide is produced by a wide variety of cells and regulates a broad array of physiological and pathological functions. TGF-beta appears to play a central role in pulmonary fibrosis and may contribute to tumor-associated immunosuppression. Alveolar macrophages are a rich source of TGF-beta and are intimately involved in lung inflammation. We therefore chose to study TGF-beta regulation in murine alveolar macrophages as well as an immortalized peritoneal macrophage cell line (IC-21). Murine macrophages were incubated with cytokines to evaluate their role in regulating TGF-beta mRNA expression. We conclude that IFN-alpha downregulates TGF-beta mRNA expression in murine macrophages. PMID:8088926

  4. D-Glucosamine inhibits proliferation of human cancer cells through inhibition of p70S6K

    SciTech Connect

    Oh, Hyun-Ji; Lee, Jason S.; Song, Dae-Kyu; Shin, Dong-Hoon; Jang, Byeong-Churl; Suh, Seong-Il; Park, Jong-Wook; Suh, Min-Ho; Baek, Won-Ki . E-mail: wonki@dsmc.or.kr

    2007-09-07

    Although D-glucosamine has been reported as an inhibitor of tumor growth both in vivo and in vitro, the mechanism for the anticancer effect of D-glucosamine is still unclear. Since there are several reports suggesting D-glucosamine inhibits protein synthesis, we examined whether D-glucosamine affects p70S6 K activity, an important signaling molecule involved in protein translation. In the present study, we found D-glucosamine inhibited the activity of p70S6K and the proliferation of DU145 prostate cancer cells and MDA-MB-231 breast cancer cells. D-Glucosamine decreased phosphorylation of p70S6K, and its downstream substrates RPS6, and eIF-4B, but not mTOR and 4EBP1 in DU145 cells, suggesting that D-glucosamine induced inhibition of p70S6K is not through the inhibition of mTOR. In addition, D-glucosamine enhanced the growth inhibitory effects of rapamycin, a specific inhibitor of mTOR. These findings suggest that D-glucosamine can inhibit growth of cancer cells through dephosphorylation of p70S6K.

  5. Tunicamycin-induced inhibition of protein secretion into culture medium of Arabidopsis T87 suspension cells through mRNA degradation on the endoplasmic reticulum.

    PubMed

    Iwata, Yuji; Hayashi, Noriko; Tabara, Kazuki; Mishiba, Kei-Ichiro; Koizumi, Nozomu

    2016-06-01

    The N-glycosylation inhibitor tunicamycin triggers endoplasmic reticulum stress response and inhibits efficient protein secretion in eukaryotes. Using Arabidopsis suspension cells, we showed that the reduced secretion of mannose-binding lectin 1 (MBL1) protein by tunicamycin is accompanied by a significant decrease in MBL1 mRNA, suggesting that mRNA destabilization is the major cause of the inhibition of protein secretion in plants. PMID:26923805

  6. MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ

    SciTech Connect

    Yuan, Jian; Xiao, Gelei; Peng, Gang; Liu, Dingyang; Wang, Zeyou; Liao, Yiwei; Liu, Qing; Wu, Minghua; Yuan, Xianrui

    2015-02-06

    Highlights: • Expression of miR-125a-5p is inversely correlated with that of TAZ in glioma cells. • MiR-125a-5p represses TAZ expression in glioma cells. • MiR-125a-5p directly targets the 3′ UTR of TAZ mRNA and promotes its degradation. • MiR-125a-5p represses CTGF and survivin via TAZ, and inhibits glioma cell growth. • MiR-125a-5p inhibits the stem cell features of HFU-251 MG cells. - Abstract: Glioblastoma (GBM) is the most lethal brain tumor due to the resistance to conventional therapies, such as radiotherapy and chemotherapy. TAZ, an important mediator of the Hippo pathway, was found to be up-regulated in diverse cancers, including in GBM, and plays important roles in tumor initiation and progression. However, little is known about the regulation of TAZ expression in tumors. In this study, we found that miR-125a-5p is an important regulator of TAZ in glioma cells by directly targeting the TAZ 3′ UTR. MiR-125a-5p levels are inversely correlated with that of TAZ in normal astrocytes and a panel of glioma cell lines. MiR-125a-5p represses the expression of TAZ target genes, including CTGF and survivin, and inhibits cell proliferation and induces the differentiation of GBM cells; whereas over-expression of TAZ rescues the effects of miR-125a-5p. This study revealed a mechanism for TAZ deregulation in glioma cells, and also demonstrated a tumor suppressor role of miR-125a-5p in glioblastoma cells.

  7. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    SciTech Connect

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  8. Triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes by down-regulating expression of a viral protein LMP1

    SciTech Connect

    Zhou, Heng; Guo, Wei; Long, Cong; Wang, Huan; Wang, Jingchao; Sun, Xiaoping

    2015-01-16

    Highlights: • Triptolide inhibits proliferation of EBV-positive lymphoma cells in vitro and in vivo. • Triptolide reduces expression of LMP1 by decreasing its transcription level. • Triptolide inhibits ED-L1 promoter activity. - Abstract: Epstein–Barr virus (EBV) infects various types of cells and mainly establishes latent infection in B lymphocytes. The viral latent membrane protein 1 (LMP1) plays important roles in transformation and proliferation of B lymphocytes infected with EBV. Triptolide is a compound of Tripterygium extracts, showing anti-inflammatory, immunosuppressive, and anti-cancer activities. In this study, it is determined whether triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes. The CCK-8 assays were performed to examine cell viabilities of EBV-positive B95-8 and P3HR-1 cells treated by triptolide. The mRNA and protein levels of LMP1 were examined by real time-PCR and Western blotting, respectively. The activities of two LMP1 promoters (ED-L1 and TR-L1) were determined by Dual luciferase reportor assay. The results showed that triptolide inhibited the cell viability of EBV-positive B lymphocytes, and the over-expression of LMP1 attenuated this inhibitory effect. Triptolide decreased the LMP1 expression and transcriptional levels in EBV-positive B cells. The activity of LMP1 promoter ED-L1 in type III latent infection was strongly suppressed by triptolide treatment. In addition, triptolide strongly reduced growth of B95-8 induced B lymphoma in BALB/c nude mice. These results suggest that triptolide decreases proliferation of EBV-induced B lymphocytes possibly by a mechanism related to down-regulation of the LMP1 expression.

  9. Structural determinants of resveratrol for cell proliferation inhibition potency: experimental and docking studies of new analogs.

    PubMed

    Mazué, Frédéric; Colin, Didier; Gobbo, Jessica; Wegner, Maria; Rescifina, Antonio; Spatafora, Carmela; Fasseur, Dominique; Delmas, Dominique; Meunier, Philippe; Tringali, Corrado; Latruffe, Norbert

    2010-07-01

    Resveratrol is the subject of intense research because of the abundance of this compound in the human diet and as one of the most valuable natural chemopreventive agents. Further advances require new resveratrol analogs be used to identify the structural determinants of resveratrol for the inhibition potency of cell proliferation by comparing experimental and docking studies. Therefore, we synthesized new trans/(E)- and cis/(Z)-resveratrol - analogs not reported to date - by modifying the hydroxylation pattern of resveratrol and a double bond geometry. We included them in a larger panel of 14 molecules, including (Z)-3,5,4'-trimethoxystilbene, the most powerful molecule that is used as reference. Using a docking model complementary to experimental studies on the proliferation inhibition of the human colorectal tumor SW480 cell line, we show that methylation is the determinant substitution in inhibition efficacy, but only in molecules bearing a Z configuration. Most of the synthetic methylated derivatives (E or Z) stop mitosis at the M phase and lead to polyploid cells, while (E)-resveratrol inhibits cells at the S phase. Docking studies show that almost all of the docked structures of (Z)-polymethoxy isomers, but not most of the (E)-polymethoxy isomers substantially overlap the docked structure of combretastatin A-4, taken as reference ligand at the colchicine-tubulin binding site. PMID:20395019

  10. Antibiotic drug tigecycline inhibited cell proliferation and induced autophagy in gastric cancer cells

    SciTech Connect

    Tang, Chunling; Yang, Liqun; Jiang, Xiaolan; Xu, Chuan; Wang, Mei; Wang, Qinrui; Zhou, Zhansong; Xiang, Zhonghuai; Cui, Hongjuan

    2014-03-28

    Highlights: • Tigecycline inhibited cell growth and proliferation in human gastric cancer cells. • Tigecycline induced autophagy not apoptosis in human gastric cancer cells. • AMPK/mTOR/p70S6K pathway was activated after tigecycline treatment. • Tigecycline inhibited tumor growth in xenograft model of human gastric cancer cells. - Abstract: Tigecycline acts as a glycylcycline class bacteriostatic agent, and actively resists a series of bacteria, specifically drug fast bacteria. However, accumulating evidence showed that tetracycline and their derivatives such as doxycycline and minocycline have anti-cancer properties, which are out of their broader antimicrobial activity. We found that tigecycline dramatically inhibited gastric cancer cell proliferation and provided an evidence that tigecycline induced autophagy but not apoptosis in human gastric cancer cells. Further experiments demonstrated that AMPK pathway was activated accompanied with the suppression of its downstream targets including mTOR and p70S6K, and ultimately induced cell autophagy and inhibited cell growth. So our data suggested that tigecycline might act as a candidate agent for pre-clinical evaluation in treatment of patients suffering from gastric cancer.

  11. Compound 13, an α1-selective small molecule activator of AMPK, potently inhibits melanoma cell proliferation.

    PubMed

    Hu, Xueqing; Jiang, Fangzhen; Bao, Qi; Qian, Huan; Fang, Quan; Shao, Zheren

    2016-01-01

    It is vital to develop new therapeutic agents for the treatment of melanoma. In the current study, we studied the potential effect of Compound 13 (C13), a novel α1-selective AMP-activated protein kinase (AMPK) activator, in melanoma cells. We showed that C13 exerted mainly cytostatic, but not cytotoxic activities in melanoma cells. C13 potently inhibited proliferation in melanoma cell lines (A375, OCM-1 and B16), but not in B10BR melanocytes. Meanwhile, the AMPK activator inhibited melanoma cell cycle progression by inducing G1-S arrest. Significantly, we failed to detect significant melanoma cell death or apoptosis after the C13 treatment. For the mechanism study, we showed that C13 activated AMPK and inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling in melanoma cells through interaction with the α1 subunit. Short hairpin RNA (shRNA)-mediated knockdown of AMPKα1 not only blocked C13-mediated AMPK activation but also abolished its antiproliferative activity against melanoma cells. Together, these results show that C13 inhibits melanoma cell proliferation through activating AMPK signaling. Our data suggest that C13 along with other small molecular AMPK activators may be beneficial for patients with melanoma. PMID:26271666

  12. Gastrodin inhibits cell proliferation in vascular smooth muscle cells and attenuates neointima formation in vivo

    PubMed Central

    ZHU, LIHUA; GUAN, HONGJING; CUI, CHANGPING; TIAN, SONG; YANG, DA; WANG, XINAN; ZHANG, SHUMING; WANG, LANG; JIANG, HONG

    2012-01-01

    Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the development of vascular diseases. In the present study, we tested the efficacy and the mechanisms of action of gastrodin, a bioactive component of the Chinese herb Gastrodia elata Bl, in relation to platelet-derived growth factor-BB (PDGF-BB)-dependent cell proliferation and neointima formation after acute vascular injury. Cell experiments were performed with VSMCs isolated from rat aortas. WST and BrdU incorporation assays were used to evaluate VSMC proliferation. Eight-week-old C57BL/6 mice were used for the animal experiments. Gastrodin (150 mg/kg/day) was administered in the animal chow for 14 days, and the mice were subjected to wire injury of the left carotid artery. Our data demonstrated that gastrodin attenuated the VSMC proliferation induced by PDGF-BB, as assessed by WST assay and BrdU incorporation. Gastrodin influenced the S-phase entry of VSMCs and stabilised p27Kip1 expression. In addition, pre-incubation with sinomenine prior to PDGF-BB stimulation led to increased smooth muscle-specific gene expression, thereby inhibiting VSMC dedifferentiation. Gastrodin treatment also reduced the intimal area and the number of PCNA-positive cells. Furthermore, PDGF-BB-induced phosphorylation of ERK1/2, p38 MAPK, Akt and GSK3β was suppressed by gastrodin. Our results suggest that gastrodin can inhibit VSMC proliferation and attenuate neointimal hyperplasia in response to vascular injury. Furthermore, the ERK1/2, p38 MAPK and Akt/GSK3β signalling pathways were found to be involved in the effects of gastrodin. PMID:22922870

  13. Functional inhibition of aquaporin-3 with a gold-based compound induces blockage of cell proliferation.

    PubMed

    Serna, Ana; Galán-Cobo, Ana; Rodrigues, Claudia; Sánchez-Gomar, Ismael; Toledo-Aral, Juan José; Moura, Teresa F; Casini, Angela; Soveral, Graça; Echevarría, Miriam

    2014-11-01

    AQP3 has been correlated with higher transport of glycerol, increment of ATP content, and larger proliferation capacity. Recently, we described the gold(III) complex Auphen as a very selective and potent inhibitor of AQP3's glycerol permeability (Pgly ). Here we evaluated Auphen effect on the proliferation of various mammalian cell lines differing in AQP3 expression level: no expression (PC12), moderate (NIH/3T3) or high (A431) endogenous expression, cells stably expressing AQP3 (PC12-AQP3), and human HEK293T cells transiently transfected (HEK-AQP3) for AQP3 expression. Proliferation was evaluated in the absence or presence of Auphen (5 μM) by counting number of viable cells and analyzing 5-bromo-2'-deoxyuridine (BrdU) incorporation. Auphen reduced ≈50% the proliferation in A431 and PC12-AQP3, ≈15% in HEK-AQP3 and had no effect in PC12-wt and NIH/3T3. Strong arrest in the S-G2/M phases of the cell cycle, supported by analysis of cyclins (A, B1, D1, E) levels, was observed in AQP3-expressing cells treated with Auphen. Flow-cytometry of propidium iodide incorporation and measurements of mitochondrial dehydrogenases activity confirmed absence of cytotoxic effect of the drug. Functional studies evidenced ≈50% inhibition of A431 Pgly by Auphen, showing that the compound's antiproliferative effect correlates with its ability to inhibit AQP3 Pgly . Role of Cys-40 on AQP3 permeability blockage by Auphen was confirmed by analyzing the mutated protein (AQP3-Ser-40). Accordingly, cells transfected with mutated AQP3 gained resistance to the antiproliferative effect of Auphen. These results highlight an Auphen inhibitory effect on proliferation of cells expressing AQP3 and suggest a targeted therapeutic effect on carcinomas with large AQP3 expression. PMID:24676973

  14. Transient Inhibition of Cell Proliferation does not Compromise Self-Renewal of Mouse Embryonic Stem Cells

    PubMed Central

    Wang, Ruoxing; Guo, Yan-Lin

    2012-01-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. PMID:22705123

  15. Antisense oligodeoxynucleotide against human telomerase reverse transcriptase inhibits the proliferation of Eca-109 esophageal carcinoma cells

    PubMed Central

    FAN, XIANG-KUI; YAN, RUI-HUA; LI, BAO-JIANG; CHEN, XIANG-MING; WEI, LIN; WANG, ZHOU

    2014-01-01

    Previous studies have demonstrated that the growth of tumor cells may be inhibited by antisense oligonucleotides (ASODNs) targeted against human telomerase (hTR) or human telomerase reverse transcriptase (hTERT), resulting in antitumor activity in a wide variety of tumors. However, few studies have investigated the effect of hTERT gene-targeted ASODNs on telomerase activity and cell proliferation in human esophageal cancer. In the present study, an MTT assay was used to determine the growth inhibition rate of Eca-109 cells treated with a hTERT-targeted phosphorothioate-ASODN (PS-ASODN). An inverted microscope was used to observe the morphologic changes of the cells following treatment with 5 μM PS-ASODN for 10 days. Telomerase activity was detected using the silver staining semi-quantitative telomeric repeat amplification protocol (TRAP) assay. Following treatment with the PS-ASODN (1–5 μmol/l), the proliferation of the Eca-109 cells was inhibited. The differences in inhibition rate between the PS-ASODN and blank control groups were statistically significant (P<0.05) when the concentration of the PS-ASODN was ≥2 μmol/l, whereas no statistically significant difference was identified between the non-specific-ASODN and blank control groups. The inhibition rate increased gradually as the concentration of the PS-ASODN increased and with time, suggesting that the PS-ASODN inhibited the growth of Eca-109 cells in a concentration-dependent, time-dependent and sequence-specific manner. The growth rate of the cells incubated with the PS-ASODN was reduced compared with that of the control cells. Cells treated with the PS-ASODN became round, suspended and reduced in size. The PS-ASODN was also found to inhibit telomerase activity. The ability of the PS-ASODN to inhibit the telomerase activity and cell proliferation of the Eca-109 cell line suggests that ASODNs have the potential to be novel therapeutic agents for the treatment of esophageal cancer. PMID:25187833

  16. LKB1 inhibits the proliferation of gastric cancer cells by suppressing the nuclear translocation of Yap and β-catenin.

    PubMed

    Ma, Lian-Gang; Bian, Shi-Bo; Cui, Jian-Xin; Xi, Hong-Qing; Zhang, Ke-Cheng; Qin, Hong-Zhen; Zhu, Xiao-Ming; Chen, Lin

    2016-04-01

    Liver kinase B1 (LKB1) is known to suppress the proliferation, energy metabolism and mesenchymal transition of various cancer cells, and is involved in the regulation of Hippo-Yes-associated protein (Yap) and the Wnt/β-catenin signaling pathways. However, the role of LKB1 in gastric cancer (GC) was not fully understood. Thus, in the present study, we studied LKB1 and found that protein expression (0.37±0.061 vs. 0.59±0.108, P=0.006) and the protein ratio of p-Yap/Yap (0.179±0.085 vs. 0.8±0.126, P=0.001) were reduced in 54 gastric adenocarcinoma (GAC) tissues compared with the matched adjacent non-cancerous tissues, using western blotting and RT-qPCR assays. LKB1 expression was also observed decreased in 109 GAC tissues compared with 54 adjacent non-cancerous tissues (χ2=4.678, P=0.0306), and negatively correlated with the nuclear expression of Yap (r=-0.6997) and β-catenin (r=-0.3510), using immunohistochemical analysis. In GC patients, LKB1 expression was negatively associated with tumor size, tumor infiltration, lymph node metastasis and the TNM stage. LKB1 expression was determined to be positively correlated with longer overall survival of GC patients using Kaplan-Meier analysis (P=0.001). Subsequently, LKB1 expression in human GAC AGS cells was enhanced with a full‑length LKB1 transfection. In vitro and in vivo proliferation was inhibited in LKB1-overexpressing GC cells compared with the control cells. Yap and β-catenin expression were assessed by western blotting and RT-qPCR, and were found to be increased in the cytoplasm but decreased in the nucleus in LKB1-overexpressing GC cells compared with the control cells. The increase in cytoplasmic β-catenin was reversed by the silencing of LKB1 or Yap with shRNAs in LKB1-overexpressing GC cells. Moreover, Yap and β-catenin mRNA were barely altered by LKB1 overexpression. Thus, we concluded that LKB1 expression was reduced in GAC tissues but that it correlated positively with better

  17. Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance

    SciTech Connect

    Han, Seong-Su; Han, Sangwoo; Kamberos, Natalie L.

    2014-09-26

    Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL on the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL.

  18. Fangchinoline inhibits the proliferation of SPC-A-1 lung cancer cells by blocking cell cycle progression

    PubMed Central

    LUO, XUE; PENG, JIAN-MING; SU, LAN-DI; WANG, DONG-YAN; YU, YOU-JIANG

    2016-01-01

    Fangchinoline (Fan) is a bioactive compound isolated from the Chinese herb Stephania tetrandra S. Moore (Fen Fang Ji). The aim of the present study was to investigate the effect of Fan on the proliferation of SPC-A-1 lung cancer cells, and to define the associated molecular mechanisms. Following treatment with Fan, Cell Counting Kit-8, phase contrast imaging and Giemsa staining assays were used to detect cell viability; flow cytometry was performed to analyze the cell cycle distribution; and reverse transcription-quantitative polymerase chain reaction and western blot assays were used to investigate changes in the expression levels of cell cycle-associated genes and proteins. In the present study, treatment with Fan markedly inhibited the proliferation of SPC-A-1 lung cancer cells and significantly increased the percentage of cells in the G0/G1 phase of the cell cycle in a dose-dependent manner (P<0.05 for 2.5–5 µm; P<0.01 for 10 µm), whereas the percentage of cells in the S and G2/M phases were significantly reduced following treatment (P<0.05 for 5 µm; P<0.01 for 10 µm). Mechanistically, Fan significantly reduced the mRNA expression levels of cyclin D1, cyclin-dependent kinase 4 (CDK4) and CDK6 (P<0.05 for 2.5–5 µm; P<0.01 for 10 µm), which are key genes in the regulation of the G0/G1 phase of the cell cycle. Furthermore, treatment with Fan also decreased the expression of phosphorylated retinoblastoma (Rb) and E2F transcription factor-1 (E2F-1) proteins (P<0.05 for 5 µm; P<0.01 for 10 µm). In summary, the present study demonstrated that Fan inhibited the proliferation of SPC-A-1 lung cancer cells and induced cell cycle arrest at the G0/G1 phase. These effects may be mediated by the downregulation of cellular CDK4, CDK6 and cyclin D1 levels, thus leading to hypophosphorylation of Rb and subsequent suppression of E2F-1 activity. Therefore, the present results suggest that Fan may be a potential drug candidate for the prevention of lung cancer. PMID

  19. Smooth Muscle-Alpha Actin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Inhibiting Rac1 Activity

    PubMed Central

    Chen, Lihua; DeWispelaere, Allison; Dastvan, Frank; Osborne, William R. A.; Blechner, Christine; Windhorst, Sabine; Daum, Guenter

    2016-01-01

    Smooth muscle alpha-actin (SMA) is a marker for the contractile, non-proliferative phenotype of adult smooth muscle cells (SMCs). Upon arterial injury, expression of SMA and other structural proteins decreases and SMCs acquire a pro-migratory and proliferative phenotype. To what extent SMA regulates migration and proliferation of SMCs is unclear and putative signaling pathways involved remain to be elucidated. Here, we used lentiviral-mediated gene transfer and siRNA technology to manipulate expression of SMA in carotid mouse SMCs and studied effects of SMA. Overexpression of SMA results in decreased proliferation and migration and blunts serum-induced activation of the small GTPase Rac, but not RhoA. All inhibitory effects of SMA are rescued by expression of a constitutively active Rac1 mutant (V12rac1). Moreover, reduction of SMA expression by siRNA technology results in an increased activation of Rac. Taken together, this study identifies Rac1 as a downstream target for SMA to inhibit SMC proliferation and migration. PMID:27176050

  20. Cucurbitacin-E inhibits multiple cancer cells proliferation through attenuation of Wnt/β-catenin signaling.

    PubMed

    Feng, Hui; Zang, Li; Zhao, Zhen-Xia; Kan, Quan-Cheng

    2014-06-01

    Recent studies suggest that the use of cucurbitacins could inhibit cancer cell progression. In the current study, the authors analyzed the effect of cucurbitacin-E (CuE) in cancer cells using A549, Hep3B, and SW480 cells. The authors found that CuE inhibited cell proliferation and modulated the expression of cell cycle regulators in these cells. Moreover, the authors found that CuE inhibited Wnt/β-catenin signaling activation through upregulation of tumor suppressor Menin. Indeed, ablation of Menin using small interfering RNA (siRNA) oligos attenuated the antiproliferative roles of CuE. Taken together, the results of this study provide a novel mechanism that may contribute to the antineoplastic effects of CuE in cancer cells. PMID:24885795

  1. Polyamine metabolism-based dual functional gene delivery system to synergistically inhibit the proliferation of cancer.

    PubMed

    Cui, Peng-Fei; Xing, Lei; Qiao, Jian-Bin; Zhang, Jia-Liang; He, Yu-Jing; Zhang, Mei; Lyu, Jin-Yuan; Luo, Cheng-Qiong; Jin, Liang; Jiang, Hu-Lin

    2016-06-15

    Polyamine content, which is associated with tumor growth, can be regulated by ornithine decarboxylase (ODC) and S-adenosyl methionine decarboxylase (SAMDC), two key enzymes in polyamine biosynthesis. Here we aim to develop a pH-responsive cationic poly(agmatine) based on a polyamine analogue-agmatine that can dually function as a gene delivery vector as well as an anticancer agent by inhibiting ODC after intracellular degradation. The core-shell nanoparticles, formed by poly(agmatine)/SAMDC siRNA complex as a core, were coated with bovine serum albumin for better in vivo circulation stability and tumor targeting. When the nanoparticles were taken up by tumor cells via endocytosis and degraded in endosome, the released agmatine and SAMDC siRNA can synergistically inhibit polyamines biosynthesis, inducing inhibition of tumor proliferation. Our study offered a potential way in tumor therapy based on polyamine metabolism. PMID:27102990

  2. Downregulation of Transketolase Activity Is Related to Inhibition of Hippocampal Progenitor Cell Proliferation Induced by Thiamine Deficiency

    PubMed Central

    Zhao, Yanling; Wu, Yiying; Hu, Haolu; Cai, Jinghui; Ning, Min; Ni, Xiushi; Zhong, Chunjiu

    2014-01-01

    In animal experiments, hippocampal neurogenesis and the activity of thiamine-dependent transketolase decrease markedly under conditions of thiamine deficiency. To further investigate the effect of thiamine deficiency on the proliferation of hippocampal progenitor cells (HPCs) and the potential mechanisms involved in this effect, we cultured HPCs in vitro in the absence of thiamine and found that proliferation and transketolase activity were both significantly repressed. Furthermore, specific inhibition of transketolase activity by oxythiamine strongly inhibited HPC proliferation in a dose-dependent manner. However, thiamine deficiency itself inhibited the proliferation to a greater degree than did oxythiamine. Taken together, our results suggest that modulation of transketolase activity might be one of the mechanisms by which thiamine regulates the proliferation of hippocampal progenitor cells. PMID:25028661

  3. G0S2 inhibits the proliferation of K562 cells by interacting with nucleolin in the cytosol.

    PubMed

    Yamada, Takeshi; Park, Chun Shik; Shen, Ye; Rabin, Karen R; Lacorazza, H Daniel

    2014-02-01

    G0/G1 switch gene 2 (G0S2) is a basic protein with ill-defined function that inhibits the proliferation of hematopoietic stem cells. Herein, we show that treatment of K562 cells with 5-azacytidine (5-Aza) resulted in a 24-fold increase in G0S2 expression and a reduction in cell growth. Conversely, gene demethylation in the presence of G0S2-specific shRNA restored proliferation, further supporting an inhibitory role for G0S2 in cell proliferation. Elevated levels of G0S2 inhibited the division of K562 cells by sequestering the nucleolar phosphoprotein nucleolin in the cytosol. G0S2 inhibited the proliferation of leukemia cells in vivo in xenograft models. Collectively, our data identify a new mechanism that controls proliferation in K562 cells, suggesting a possible tumor suppressor function in leukemia cells. PMID:24183236

  4. Inhibition of murine splenic T lymphocyte proliferation by 2-deoxy-D-glucose-induced metabolic stress

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Klinger, J. C.; Akin, C.; Koebel, D. A.; Sonnenfeld, G.

    1994-01-01

    Female Swiss-Webster mice were injected with the glucose analogue 2-deoxy-D-glucose (2-DG), which when administered to rodents induces acute periods of metabolic stress. A single or multiple injections of 2-DG invoked a stress response, as evidenced by increases in serum corticosterone levels. The influence of this metabolic stressor on the blastogenic potential of splenic T lymphocytes was then examined. It was found that one, two, or three injections of 2-DG resulted in depressed T cell proliferative responses, with an attenuation of the effect occurring by the fifth injection. The 2-DG-induced inhibition of T cell proliferation was not attributable to 2-DG-induced cytolysis, as in vitro incubation of naive T cells with varying concentrations of 2-DG did not result in a reduction in cell number or viability, and flow cytometric analysis demonstrated that percentages of CD3, CD4, and CD8 splenic T cells were not altered as a result of 2-DG-induced stress. Incubating naive T cells in varying concentrations of 2-DG resulted in a dose-dependent inhibition of T cell blastogenic potential. Following in vivo exposure to 2-DG, T cell proliferation did not return to normal levels until 3 days after the cessation of 2-DG injections. Administering the beta-adrenergic receptor antagonist propranolol did not reverse the inhibited lymphoproliferation in 2-DG-treated mice. The inhibition in T cell proliferation was not observed, however, in mice that had been adrenalectomized or hypophysectomized and injected with 2-DG.(ABSTRACT TRUNCATED AT 250 WORDS).

  5. Recombinant disintegrin domain of ADAM15 inhibits the proliferation and migration of Bel-7402 cells

    SciTech Connect

    Hou, Y.; Chu, M.; Du, F.F.; Lei, J.Y.; Chen, Y.; Zhu, R.Y.; Gong, X.H.; Ma, X.; Jin, J.

    2013-06-14

    Highlights: •rhddADAM15 inhibited the proliferation and migration of Bel-7402 cells. •rhddADAM15 inhibited growth and metastasis of Bel-7402 cells in zebrafish xenograft. •rhddADAM15 induced apoptosis in Bel-7402 cells and somatic cells of zebrafish. •Cell-cycle in Bel-7402 cells showed a partial G{sub 2}/S arrest. •Activity of caspases 8, 9 and 3 was increased in rhddADAM15-treated Bel-7402 cells. -- Abstract: ADAM15 (A Disintegrin And Metalloproteinase 15), a transmembrane protein containing seven domains, interacts with some integrins via its disintegrin domain and overexpresses in many solid tumors. In this study, the effect of the recombinant human disintegrin domain (rhddADAM15) on the proliferation and migration of Bel-7402 cells was evaluated in vitro and in vivo in zebrafish xenografts. rhddADAM15 (4 μM) severely inhibited the proliferation and migration of Bel-7402 cells, inducing a partial G{sub 2}/S arrest and morphological nucleus changes of apoptosis. Moreover, the activity of caspases 8, 9 and 3 in Bel-7402 cells was increased. In addition, the zebrafish was used as a model for apoptosis-induction and tumor-xenograft. rhddADAM15 (1 pM) inhibited the growth and metastasis of Bel-7402 cell xenografts in zebrafish and a lower concentration (0.1 pM) induced severe apoptosis in the somatic cells of zebrafish. In conclusion, our data identified rhddADAM15 as a potent inhibitor of tumor growth and metastasis, making it a promising tool for use in anticancer treatment.

  6. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells

    SciTech Connect

    Wang, Ruoxing; Guo, Yan-Lin

    2012-10-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remains unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: Black-Right-Pointing-Pointer Inhibition of Cdks slows down mESCs proliferation. Black-Right-Pointing-Pointer mESCs display remarkable recovery capacity from short-term cell cycle interruption. Black-Right-Pointing-Pointer Short-term cell cycle interruption does not compromise mESC self-renewal. Black

  7. Inhibition of Breast Cancer Cell Proliferation and In Vitro Tumorigenesis by a New Red Apple Cultivar

    PubMed Central

    Schiavano, Giuditta Fiorella; De Santi, Mauro; Brandi, Giorgio; Fanelli, Mirco; Bucchini, Anahi; Giamperi, Laura; Giomaro, Giovanna

    2015-01-01

    Purpose The aim of this study was to evaluate the antiproliferative activity in breast cancer cells and the inhibition of tumorigenesis in pre-neoplastic cells of a new apple cultivar with reddish pulp, called the Pelingo apple. Methods The antiproliferative activity was evaluated in MCF-7 and MDA-MB-231 human breast cancer cells. The inhibition of tumorigenesis was performed in JB6 promotion-sensitive (P+) cells. Results Results showed that Pelingo apple juice is characterized by a very high polyphenol content and strongly inhibited breast cancer cell proliferation. Its antiproliferative activity was found to be higher than the other five apple juices tested. Pelingo juice induced cell accumulation in the G2/M phase of the cell cycle and autophagy through overexpression of p21, inhibition of extracellular signal-regulated kinases 1/2 (ERK1/2) activity and an increase in lipidated microtubule-associated protein-1 light chain-3 beta (LC3B). Remarkably, Pelingo juice inhibited the 12-o-tetra-decanoyl-phorbol-13-acetate (TPA)-induced tumorigenesis of JB6 P+ cells, suppressing colony formation in semi-solid medium and TPA-induced ERK1/2 phosphorylation. Conclusions Our data indicate that the Pelingo apple is rich in food components that can markedly inhibit in vitro tumorigenesis and growth of human breast cancer cells and could provide natural bioactive non-nutrient compounds, with potential chemopreventive activity. PMID:26284516

  8. Atheroprotection through SYK inhibition fails in established disease when local macrophage proliferation dominates lesion progression.

    PubMed

    Lindau, Alexandra; Härdtner, Carmen; Hergeth, Sonja P; Blanz, Kelly Daryll; Dufner, Bianca; Hoppe, Natalie; Anto-Michel, Nathaly; Kornemann, Jan; Zou, Jiadai; Gerhardt, Louisa M S; Heidt, Timo; Willecke, Florian; Geis, Serjosha; Stachon, Peter; Wolf, Dennis; Libby, Peter; Swirski, Filip K; Robbins, Clinton S; McPheat, William; Hawley, Shaun; Braddock, Martin; Gilsbach, Ralf; Hein, Lutz; von zur Mühlen, Constantin; Bode, Christoph; Zirlik, Andreas; Hilgendorf, Ingo

    2016-03-01

    Macrophages in the arterial intima sustain chronic inflammation during atherogenesis. Under hypercholesterolemic conditions murine Ly6C(high) monocytes surge in the blood and spleen, infiltrate nascent atherosclerotic plaques, and differentiate into macrophages that proliferate locally as disease progresses. Spleen tyrosine kinase (SYK) may participate in downstream signaling of various receptors that mediate these processes. We tested the effect of the SYK inhibitor fostamatinib on hypercholesterolemia-associated myelopoiesis and plaque formation in Apoe(-/-) mice during early and established atherosclerosis. Mice consuming a high cholesterol diet supplemented with fostamatinib for 8 weeks developed less atherosclerosis. Histologic and flow cytometric analysis of aortic tissue showed that fostamatinib reduced the content of Ly6C(high) monocytes and macrophages. SYK inhibition limited Ly6C(high) monocytosis through interference with GM-CSF/IL-3 stimulated myelopoiesis, attenuated cell adhesion to the intimal surface, and blocked M-CSF stimulated monocyte to macrophage differentiation. In Apoe(-/-) mice with established atherosclerosis, however, fostamatinib treatment did not limit macrophage accumulation or lesion progression despite a significant reduction in blood monocyte counts, as lesional macrophages continued to proliferate. Thus, inhibition of hypercholesterolemia-associated monocytosis, monocyte infiltration, and differentiation by SYK antagonism attenuates early atherogenesis but not established disease when local macrophage proliferation dominates lesion progression. PMID:26891724

  9. Inhibition of AGS Cancer Cell Proliferation following siRNA-Mediated Downregulation of VEGFR2

    PubMed Central

    Zarei Mahmudabadi, Ali; Masoomi Karimi, Masoomeh; Bahabadi, Majid; Bagheri Hoseinabadi, Zahra; JafariSani, Moslem; Ahmadi, Reza

    2016-01-01

    Objective Vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) play important roles in angiogenesis of different developmental mechanisms such as wound healing, embryogenesis and diseases, including different types of cancer. VEGFR2 is associated with cell proliferation, migration, and vascular permeability of endothelial cells. Blocking VEGF and its receptors is suggested as a therapeutic approach to prevent tumor growth. In this study, we aim to block VEGF signaling via small interfering RNA (siRNA) inhibition of VEGFR2. Materials and Methods In this experimental study, we used the RNA interference (RNAi) mechanism to suppress expression of the VEGFR2 gene. We conducted the 3-(4,5-di- methylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay, real-time polymerase chain reaction (PCR), Western blot, and flow cytometry analyses of VEGFR2 expression. Results Real-time PCR and Western blot results showed that VEGFR2 expression significantly downregulated. This suppression was followed by inhibition of cell prolifera- tion, reduction of viability, and induction of apoptosis in the cancer cells. Conclusion These findings suggest that VEGFR2 has a role in cell proliferation and tumor growth. Accordingly, it is suggested that VEGFR2 can be a therapeutic target for controlling tumor growth and proliferation. PMID:27602320

  10. Structural requirements for novel coenzyme-substrate derivatives to inhibit intracellular ornithine decarboxylase and cell proliferation.

    PubMed

    Wu, Fang; Gehring, Heinz

    2009-02-01

    Creating transition-state mimics has proven to be a powerful strategy in developing inhibitors to treat malignant diseases in several cases. In the present study, structurally diverse coenzyme-substrate derivatives mimicking this type for pyridoxal 5'-phosphate-dependent human ornithine decarboxylase (hODC), a potential anticancer target, were designed, synthesized, and tested to elucidate the structural requirements for optimal inhibition of intracellular ODC as well as of tumor cell proliferation. Of 23 conjugates, phosphopyridoxyl- and pyridoxyl-L-tryptophan methyl ester (pPTME, PTME) proved significantly more potent in suppression proliferation (IC(50) up to 25 microM) of glioma cells (LN229) than alpha-DL-difluoromethylornithine (DFMO), a medically used irreversible inhibitor of ODC. In agreement with molecular modeling predictions, the inhibitory action of pPTME and PTME toward intracellular ODC of LN229 cells exceeded that of the previous designed lead compound POB. The inhibitory active compounds feature hydrophobic side chain fragments and a kind of polyamine motif (-NH-(CH(X))(4)-NH-). In addition, they induce, as polyamine analogs often do, the activity of the polyamine catabolic enzymes polyamine oxidase and spermine/spermidine N(1)-acetyltransferase up to 250 and 780%, respectively. The dual-action mode of these compounds in LN229 cells affects the intracellular polyamine metabolism and might underlie the more favorable cell proliferation inhibition in comparison with DFMO. PMID:18922879

  11. Luteolin Ameliorates Hypertensive Vascular Remodeling through Inhibiting the Proliferation and Migration of Vascular Smooth Muscle Cells

    PubMed Central

    Su, Jie; Xu, Han-Ting; Yu, Jing-Jing; Gao, Jian-Li; Lei, Jing; Yin, Qiao-Shan; Li, Bo; Pang, Min-Xia; Su, Min-Xia; Mi, Wen-Jia; Chen, Su-Hong; Lv, Gui-Yuan

    2015-01-01

    Objectives. Preliminary researches showed that luteolin was used to treat hypertension. However, it is still unclear whether luteolin has effect on the hypertensive complication such as vascular remodeling. The present study was designed to investigate the effect of luteolin on the hypertensive vascular remodeling and its molecular mechanism. Method and Results. We evaluated the effect of luteolin on aorta thickening of hypertension in spontaneous hypertensive rats (SHRs) and found that luteolin could significantly decrease the blood pressure and media thickness of aorta in vivo. Luteolin could inhibit angiotensin II- (Ang II-) induced proliferation and migration of vascular smooth muscle cells (VSMCs). Dichlorofluorescein diacetate (DCFH-DA) staining result showed that luteolin reduced Ang II-stimulated ROS production in VSMCs. Furthermore, western blot and gelatin zymography results showed that luteolin treatment leaded to a decrease in ERK1/2, p-ERK1/2, p-p38, MMP2, and proliferating cell nuclear antigen (PCNA) protein level. Conclusion. These data support that luteolin can ameliorate hypertensive vascular remodeling by inhibiting the proliferation and migration of Ang II-induced VSMCs. Its mechanism is mediated by the regulation of MAPK signaling pathway and the production of ROS. PMID:26495010

  12. miR-663a inhibits hepatocellular carcinoma cell proliferation and invasion by targeting HMGA2.

    PubMed

    Huang, Weizhen; Li, Jun; Guo, Xiaohong; Zhao, Yingchu; Yuan, Xia

    2016-07-01

    Hepatocellular carcinoma (HCC) is a highly aggressive solid malignancy throughout the world. Dysregulation of miRNAs play essential roles in HCC progression via aberrant regulation of cell proliferation, apoptosis, as well as metastasis. miR-663a is a poorly investigated miRNA. Whether miR-663a regulates HCC development remains unknown. The aim of the study was to explore the role of miR-663a in HCC development. To determine the expression level of miR-663a in HCC, we analyzed the data from GSE21362 and TCGA. The results showed that miR-663a was significantly down-regulated in HCC tissue compared with adjacent non-tumor tissue. Gain of function and loss of function assays revealed that miR-663a distinctly inhibited cell proliferation, migration and invasion. Mechanistic investigations demonstrated that miR-663a modulated cell functions through targeting and suppressing high mobility group A2 (HMGA2). In addition, overexpression of HMGA2 remarkably attenuated the tumor repressive effect of miR-663a. Taken together, miR-663a inhibits HCC cell proliferation and motility by targeting HMGA2. PMID:27261623

  13. Analgesic-antitumor peptide inhibits proliferation and migration of SHG-44 human malignant glioma cells.

    PubMed

    Zhao, Youlong; Cai, Xueting; Ye, Tingmei; Huo, Jiege; Liu, Chao; Zhang, Shuangquan; Cao, Peng

    2011-09-01

    Malignant gliomas, the most common subtype of primary brain tumors, are characterized by high proliferation, great invasion, and neurological destruction and considered to be the deadliest of human cancers. Analgesic-antitumor peptide (AGAP), one of scorpion toxic polypeptides, has been shown to have antitumor activity. Here, we show that recombinant AGAP (rAGAP) not only inhibits the proliferation of gliomas cell SHG-44 and rat glioma cell C6, but also suppresses the migration of SHG-44 cells during wound healing. To explain these phenomena, we find that rAGAP leads to cell cycle of SHG-44 arrested in G1 phase accompanied by suppressing G1 cell cycle regulatory proteins CDK2, CDK6, and p-RB by means of the down-regulated protein expression of p-AKT. Meanwhile, rAGAP significantly decreases the production of NF-κB, BCL-2, p-p38, p-c-Jun, and p-Erk1/2 and further suppresses the activation of VEGF and MMP-9 in SHG-44 cells. These findings suggest rAGAP inhibit proliferation and migration of SHG-44 cells by arresting cell cycle and interfering p-AKT, NF-κB, BCL-2, and MAPK signaling pathways. PMID:21538480

  14. Suppression of PAX6 promotes cell proliferation and inhibits apoptosis in human retinoblastoma cells.

    PubMed

    Meng, Bo; Wang, Yisong; Li, Bin

    2014-08-01

    The aim of this study was to investigate the role of the transcription factor, PAX6, in the development of retinoblastoma. The expression of endogenous PAX6 was knocked down using PAX6-specific lentivirus in two human retinoblastoma cell lines, SO-Rb50 and Y79. Cell proliferation functional assays and apoptotic assays were performed on the cells in which PAX6 was knocked down. The results revealed that PAX6 knockdown efficiency was significant (P<0.01, n=3) in the SO-Rb50 and Y79 cells. The inhibition of PAX6 reduced tumor cell apoptosis (P<0.05, n=3), but induced cell cycle S phase arrest (SO-Rb50; P<0.05, n=3) and G2/M phase arrest (Y79; P<0.05, n=3). Western blot analysis indicated that the inhibition of PAX6 increased the levels of the anti-apoptotic proteins, Bcl-2, proliferating cell nuclear antigen (PCNA) and CDK1, but reduced the levels of the pro-apoptotic proteins, BAX and p21. In conclusion, our data demonstrate that the suppression of PAX6 increases proliferation and decreases apoptosis in human retinoblastoma cells by regulating several cell cycle and apoptosis biomarkers. PMID:24939714

  15. Suppression of PAX6 promotes cell proliferation and inhibits apoptosis in human retinoblastoma cells

    PubMed Central

    MENG, BO; WANG, YISONG; LI, BIN

    2014-01-01

    The aim of this study was to investigate the role of the transcription factor, PAX6, in the development of retinoblastoma. The expression of endogenous PAX6 was knocked down using PAX6-specific lentivirus in two human retinoblastoma cell lines, SO-Rb50 and Y79. Cell proliferation functional assays and apoptotic assays were performed on the cells in which PAX6 was knocked down. The results revealed that PAX6 knockdown efficiency was significant (P<0.01, n=3) in the SO-Rb50 and Y79 cells. The inhibition of PAX6 reduced tumor cell apoptosis (P<0.05, n=3), but induced cell cycle S phase arrest (SO-Rb50; P<0.05, n=3) and G2/M phase arrest (Y79; P<0.05, n=3). Western blot analysis indicated that the inhibition of PAX6 increased the levels of the anti-apoptotic proteins, Bcl-2, proliferating cell nuclear antigen (PCNA) and CDK1, but reduced the levels of the pro-apoptotic proteins, BAX and p21. In conclusion, our data demonstrate that the suppression of PAX6 increases proliferation and decreases apoptosis in human retinoblastoma cells by regulating several cell cycle and apoptosis biomarkers. PMID:24939714

  16. Yiqihuoxuejiedu Formula Inhibits Vascular Remodeling by Reducing Proliferation and Secretion of Adventitial Fibroblast after Balloon Injury

    PubMed Central

    Zhao, Ming-Jing; Wang, Jie; Gao, Yong-Hong; Liu, Hui-Min; Lv, Xi-Ying; Lei, Huan; Sun, Qing-Qin; Xu, Ying; He, Ying-Kun; Wang, Shuo-Ren

    2014-01-01

    Vascular remodeling occurs in atherosclerosis, hypertension, and restenosis after percutaneous coronary intervention. Adventitial remodeling may be a potential therapeutic target. Yiqihuoxuejiedu formula uses therapeutic principles from Chinese medicine to supplement Qi, activate blood circulation, and resolve toxin and it has been shown to inhibit vascular stenosis. To investigate effects and mechanisms of the formula on inhibiting vascular remodeling, especially adventitial remodeling, rats with a balloon injury to their common carotid artery were used and were treated for 7 or 28 days after injury. The adventitial area and α-SMA expression increased at 7 days after injury, which indicated activation and proliferation of adventitial fibroblasts. Yiqihuoxuejiedu formula reduced the adventitial areas at 7 days, attenuated the neointima and vessel wall area, stenosis percent, and α-SMA expression in the neointima, and reduced collagen content and type I/III collagen ratio in the adventitia at 28 days. Yiqihuoxuejiedu formula had more positive effects than Captopril in reducing intimal proliferation and diminishing stenosis, although Captopril lowered neointimal α-SMA expression and reduced the collagen content at 28 days. Yiqihuoxuejiedu formula has inhibitory effects on positive and negative remodeling by reducing adventitial and neointimal proliferation, reducing content, and elevating adventitial compliance. PMID:24987435

  17. Capecitabine metronomic chemotherapy inhibits the proliferation of gastric cancer cells through anti-angiogenesis.

    PubMed

    Yuan, Fei; Shi, Hailong; Ji, Jun; Cai, Qu; Chen, Xuehua; Yu, Yingyan; Liu, Bingya; Zhu, Zhenggang; Zhang, Jun

    2015-04-01

    To evaluate the inhibitory effect and mechanism of capecitabine metronomic chemotherapy on gastric cancer cells. In vitro, the effects of 5-fluorouracil (Fu) metronomic chemotherapy on proliferation, apoptosis, tube formation ability, and angiogenesis were detected. In vivo, Ki-67, CD34 and VEGF were detected by immunohistochemical staining (IHC). Flow cytometry was used to detect the percentage of circulating endothelial progenitors (CEPs), and VEGF and PDGF were detected by ELISA in the peripheral blood of nude mice. The proliferation of the SGC-7901 and AGS gastric cancer cell lines in the metronomic 5-Fu group was decreased compared with the control group in vitro. The total length of the small tubes and tubular junction numbers were significantly lower in the metronomic group than the control group. The VEGF and PDGF levels in the cell culture supernatants were lower in the metronomic group than the control group. Compared with the control group, the CEP percentage was decreased in the peripheral blood of tumor-bearing nude mice following treatment with metronomic 5-Fu or capecitabine chemotherapy. No significant changes were found in the conventional or control group. In the peripheral blood of tumor-bearing nude mice, the VEGF and PDGF levels were decreased in the metronomic groups. Metronomic 5-Fu inhibited the proliferation of gastric cancer cells in vitro and in vivo, and their antitumor effects were non-inferior to those of conventional dose chemotherapy, with mild side effects. Thus, tumor inhibition may be attributed to anti-angiogenesis. PMID:25634241

  18. Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance.

    PubMed

    Han, Seong-Su; Han, Sangwoo; Kamberos, Natalie L

    2014-09-26

    Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL on the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL. PMID:25193702

  19. MicroRNA-218 inhibits the proliferation and metastasis of esophageal squamous cell carcinoma cells by targeting BMI1

    PubMed Central

    WANG, TING; CHEN, TENGFEI; NIU, HUA; LI, CHANG; XU, CHUN; LI, YUANYUAN; HUANG, RUI; ZHAO, JUN; WU, SHUYAN

    2015-01-01

    MicroRNAs (miRNAs or miRs) play a pivotal role in esophageal carcinogenesis either as oncogenes or as tumor suppressor genes. In the present study, we found that the expression level of miR-218 was significantly reduced in esophageal squamous cell carcinoma (ESCC) tissues and ESCC cell lines. Moreover, its expression was found to correlate with the clinicopathological stage of ESCC; miR-218 expression was lower in the stage III tissue samples than in the stage I and II tissue samples. Furthermore, the decreased expression of miR-218 was found to be associated with an enhanced ESCC cell proliferation and metastasis. Western blot analysis and luciferase reporter assay revealed that miR-218 decreased BMI1 expression by binding to the putative binding sites in its 3′-untranslated region (3′-UTR). The BMI1 mRNA expression levels were markedly increased and negatively correlated with the miR-218 expression level in the ESCC tissues. Functional analyses revealed that the restoration of miR-218 expression inhibited ESCC cell proliferation, migration and invasion and promoted apoptosis. The knockdown of BMI1 by siRNA showed the same phenocopy as the effect of miR-218 on ESCC cells, indicating that BMI1 was a major target of miR-218. In the present study, our findings confirm miR-218 as a tumor suppressor and identify BMI1 as a novel target of miR-218 in ESCC. Therefore, miR-218 may prove to be a useful biomarker for monitoring the initiation and development of ESCC, and may thus be an effective therapeutic target in ESCC. PMID:25999024

  20. MicroRNA-490-3p inhibits proliferation of A549 lung cancer cells by targeting CCND1

    SciTech Connect

    Gu, Haihua; Yang, Tao; Fu, Shaozi; Chen, Xiaofan; Guo, Lei; Ni, Yiming

    2014-01-31

    Highlights: • We examined the level of miR-490-3p in A549 lung cancer cells compared with normal bronchial epithelial cell line. • We are the first to show the function of miR-490-3p in A549 lung cancer cells. • We demonstrate CCND1 may be one of the targets of miR-490-3p. - Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate the translation of messenger RNAs by binding their 3′-untranslated region (3′UTR). In this study, we found that miR-490-3p is significantly down-regulated in A549 lung cancer cells compared with the normal bronchial epithelial cell line. To better characterize the role of miR-490-3p in A549 cells, we performed a gain-of-function analysis by transfecting the A549 cells with chemically synthesized miR-490-3P mimics. Overexpression of miR-490-3P evidently inhibits cell proliferation via G1-phase arrest. We also found that forced expression of miR-490-3P decreased both mRNA and protein levels of CCND1, which plays a key role in G1/S phase transition. In addition, the dual-luciferase reporter assays indicated that miR-490-3P directly targets CCND1 through binding its 3′UTR. These findings indicated miR-490-3P could be a potential suppressor of cellular proliferation.

  1. Peroxisome-proliferator-activated receptor-{gamma} agonists inhibit the release of proinflammatory cytokines from RSV-infected epithelial cells

    SciTech Connect

    Arnold, Ralf . E-mail: ralf.arnold@medizin.uni-magdeburg.de; Koenig, Wolfgang

    2006-03-15

    The epithelial cells of the airways are the target cells for respiratory syncytial virus (RSV) infection and the site of the majority of the inflammation associated with the disease. Recently, peroxisome-proliferator-activated receptor {gamma} (PPAR{gamma}), a member of the nuclear hormone receptor superfamily, has been shown to possess anti-inflammatory properties. Therefore, we investigated the role of PPAR{gamma} agonists (15d-PGJ{sub 2}, ciglitazone and troglitazone) on the synthesis of RSV-induced cytokine release from RSV-infected human lung epithelial cells (A549). We observed that all PPAR{gamma} ligands inhibited dose-dependently the release of TNF-{alpha}, GM-CSF, IL-1{alpha}, IL-6 and the chemokines CXCL8 (IL-8) and CCL5 (RANTES) from RSV-infected A549 cells. Concomitantly, the PPAR{gamma} ligands diminished the cellular amount of mRNA encoding for IL-6, CXCL8 and CCL5 and the RSV-induced binding activity of the transcription factors NF-{kappa}B (p65/p50) and AP-1 (c-fos), respectively. Our data presented herein suggest a potential application of PPAR{gamma} ligands in the anti-inflammatory treatment of RSV infection.

  2. Tanshinone IIA Inhibits Proliferation and Induces Apoptosis Through the Downregulation of Survivin in Keloid Fibroblasts.

    PubMed

    Chen, Gang; Liang, Yimin; Liang, Xiao; Li, Qingfeng; Liu, Dalie

    2016-02-01

    Keloids are considered benign dermal fibroproliferative tumors. Keloid fibroblasts (KFs) persistently proliferate and fail to undergo apoptosis, and no treatment is completely effective against these lesions. Tanshinone IIA induces apoptosis and inhibits the proliferation of various tumor cell types. In this study, we investigated the effect of tanshinone IIA on the regulation of proliferation, cell cycle, and apoptosis in KFs, and investigated potential mechanisms involved in the effects. First, KFs and normal skin fibroblasts (NSFs) were treated with various concentrations of tanshinone IIA. Cell counting kit-8 (CCK-8) was used to assess the proliferative activity of KFs and NSFs, and flow cytometry was used to investigate the cell cycle and apoptosis in KFs. We found that the proliferation of all tanshinone IIA-treated KFs was significantly decreased after treatment for 72 hours (P < 0.001). Also, NSFs treated with tanshinone IIA did not exhibit noticeable effects compared with KFs. In addition, the percentages of G0/G1 cells in all tanshinone IIA-treated KFs were significantly increased after treatment for 72 hours (P < 0.001). And the percentages of cells undergoing early apoptosis in all tanshinone IIA-treated KFs were significantly increased after treatment for 120 hours (P < 0.001). Furthermore, the apoptosis antibody array kit and Western blot analysis revealed that tanshinone IIA decreased survivin expression in KFs (P < 0.001). In conclusion, tanshinone IIA downregulates survivin and deactivates KFs, thus suggesting that tanshinone IIA could serve as a potential clinical keloid treatment. PMID:26101974

  3. Bone morphogenetic protein 2 inhibits the proliferation and growth of human colorectal cancer cells

    PubMed Central

    ZHANG, YUNYUAN; CHEN, XIAN; QIAO, MIN; ZHANG, BING-QIANG; WANG, NING; ZHANG, ZHONGLIN; LIAO, ZHAN; ZENG, LIYI; DENG, YOULIN; DENG, FANG; ZHANG, JUNHUI; YIN, LIANGJUN; LIU, WEI; ZHANG, QIAN; YAN, ZHENGJIAN; YE, JIXING; WANG, ZHONGLIANG; ZHOU, LAN; LUU, HUE H.; HAYDON, REX C.; HE, TONG-CHUAN; ZHANG, HONGYU

    2014-01-01

    Colorectal cancer (CRC) is one of the most deadly cancers worldwide. Significant progress has been made in understanding the molecular pathogenesis of CRC, which has led to successful early diagnosis, surgical intervention and combination chemotherapy. However, limited therapeutic options are available for metastatic and/or drug-resistant CRC. While the aberrantly activated Wnt/β-catenin pathway plays a critical initiating role in CRC development, disruption of the bone morphogenetic protein (BMP) pathway causes juvenile polyposis syndrome, suggesting that BMP signaling may play a role in CRC development. However, conflicting results have been reported concerning the possible roles of BMP signaling in sporadic colon cancer. Here, we investigated the effect of BMP2 on the proliferation, migration, invasiveness and tumor growth capability of human CRC cells. Using an adenovirus vector that overexpresses BMP2 and the piggyBac transposon-mediated stable BMP2 overexpression CRC line, we found that exogenous BMP2 effectively inhibited HCT116 cell proliferation and colony formation. BMP2 was shown to suppress colon cancer cell migration and invasiveness. Under a low serum culture condition, forced expression of BMP2 induced a significantly increased level of apoptosis in HCT116 cells. Using a xenograft tumor model, we found that forced expression of BMP2 in HCT116 cells suppressed tumor growth, accompanied by decreased cell proliferation activity. Taken together, our results strongly suggest that BMP2 plays an important inhibitory role in governing the proliferation and aggressive features of human CRC cells. PMID:24993644

  4. Phospholipase D is a target for inhibition of astroglial proliferation by ethanol.

    PubMed

    Burkhardt, Ute; Wojcik, Bartosch; Zimmermann, Martina; Klein, Jochen

    2014-04-01

    The proliferation of astrocytes during early brain development is driven by growth factors and is accompanied by the activation of phospholipase D (PLD). Ethanol disrupts PLD signaling in astrocytes, a process which may contribute to delayed brain growth of fetuses exposed to alcohol during pregnancy. We here report that insulin-like growth factor 1 (IGF-1) is a strong mitogen for rat astrocytes (EC50 0.2 μg/ml) and a strong stimulator of astroglial PLD activity; both effects are inhibited by ethanol and 1-butanol, but not t-butanol, suggesting participation of PLD. Downregulation of PLD1 and exposure to the PLD1 inhibitor VU0359595 attenuated PLD activity and strongly reduced the mitogenic activity of serum and IGF-1. The PLD2 inhibitor VU0285655-1 also reduced PLD activity but had lesser effects on IGF-1-driven proliferation. PLD2 down-regulation affected serum - but not IGF-1-induced proliferation. In separate experiments, alcohol treatment of murine astrocytes taken from PLD-deficient animals revealed an insensitivity of PLD1(-/-) cells to 1-butanol whereas PLD2(-/-) cells were not affected. We conclude that astroglial proliferation induced by IGF-1 is critically dependent on the PLD signaling pathway, with a stronger contribution from PLD1 than PLD2. The teratogenic effects of ethanol may be explained, at least in part, by disruption of the IGF1-PLD signaling pathway. PMID:24262632

  5. MicroRNA-497 inhibits the proliferation, migration and invasion of human bladder transitional cell carcinoma cells by targeting E2F3.

    PubMed

    Zhang, Yixiao; Zhang, Zhe; Li, Zhenhua; Gong, Daxin; Zhan, Bo; Man, Xiaojun; Kong, Chuize

    2016-09-01

    Accumulating evidence indicates that microRNAs (miRNAs) play critical roles in regulating cellular processes, such as cell growth and apoptosis, as well as cancer progression and metastasis. Low expression of miR-497 has been observed in breast, colorectal and cervical cancers. Human bladder transitional cell carcinoma (BTCC) progression typically follows a complex cascade from primary malignancy to distant metastasis, but whether the aberrant expression of miR-497 in BTCC is associated with malignancy, metastasis or prognosis remains unknown. In the present study, we found that miR-497 was markedly downregulated in BTCC tissue samples when compared with that noted in adjacent normal tissues, and low expression of miR-497 was correlated with poor prognosis in BTCC patients. We also found that overexpression of miR-497 inhibited the proliferation, migration and invasion of bladder cancer cells by downregulating E2F3 (an miR-497 target gene) mRNA and protein and that siRNA against E2F3 inhibited cell proliferation, migration and invasion, which was similar to the effect of miR-497 overexpression in the BTCC cells. Our experimental data indicated that miR-497 mediates the in vitro proliferation, migration and invasion of BTCC cells. Together, these results suggest that miR-497 may represent a novel prognostic indicator, a biomarker for the early detection of metastasis and a target for gene therapy of BTCC. PMID:27430325

  6. Inhibition of DYRK1A and GSK3B induces human β-cell proliferation

    PubMed Central

    Shen, Weijun; Taylor, Brandon; Jin, Qihui; Nguyen-Tran, Van; Meeusen, Shelly; Zhang, You-Qing; Kamireddy, Anwesh; Swafford, Austin; Powers, Andrew F.; Walker, John; Lamb, John; Bursalaya, Badry; DiDonato, Michael; Harb, George; Qiu, Minhua; Filippi, Christophe M.; Deaton, Lisa; Turk, Carolina N.; Suarez-Pinzon, Wilma L.; Liu, Yahu; Hao, Xueshi; Mo, Tingting; Yan, Shanshan; Li, Jing; Herman, Ann E.; Hering, Bernhard J.; Wu, Tom; Martin Seidel, H.; McNamara, Peter; Glynne, Richard; Laffitte, Bryan

    2015-01-01

    Insufficient pancreatic β-cell mass or function results in diabetes mellitus. While significant progress has been made in regulating insulin secretion from β-cells in diabetic patients, no pharmacological agents have been described that increase β-cell replication in humans. Here we report aminopyrazine compounds that stimulate robust β-cell proliferation in adult primary islets, most likely as a result of combined inhibition of DYRK1A and GSK3B. Aminopyrazine-treated human islets retain functionality in vitro and after transplantation into diabetic mice. Oral dosing of these compounds in diabetic mice induces β-cell proliferation, increases β-cell mass and insulin content, and improves glycaemic control. Biochemical, genetic and cell biology data point to Dyrk1a as the key molecular target. This study supports the feasibility of treating diabetes with an oral therapy to restore β-cell mass, and highlights a tractable pathway for future drug discovery efforts. PMID:26496802

  7. Inhibition of DYRK1A and GSK3B induces human β-cell proliferation.

    PubMed

    Shen, Weijun; Taylor, Brandon; Jin, Qihui; Nguyen-Tran, Van; Meeusen, Shelly; Zhang, You-Qing; Kamireddy, Anwesh; Swafford, Austin; Powers, Andrew F; Walker, John; Lamb, John; Bursalaya, Badry; DiDonato, Michael; Harb, George; Qiu, Minhua; Filippi, Christophe M; Deaton, Lisa; Turk, Carolina N; Suarez-Pinzon, Wilma L; Liu, Yahu; Hao, Xueshi; Mo, Tingting; Yan, Shanshan; Li, Jing; Herman, Ann E; Hering, Bernhard J; Wu, Tom; Martin Seidel, H; McNamara, Peter; Glynne, Richard; Laffitte, Bryan

    2015-01-01

    Insufficient pancreatic β-cell mass or function results in diabetes mellitus. While significant progress has been made in regulating insulin secretion from β-cells in diabetic patients, no pharmacological agents have been described that increase β-cell replication in humans. Here we report aminopyrazine compounds that stimulate robust β-cell proliferation in adult primary islets, most likely as a result of combined inhibition of DYRK1A and GSK3B. Aminopyrazine-treated human islets retain functionality in vitro and after transplantation into diabetic mice. Oral dosing of these compounds in diabetic mice induces β-cell proliferation, increases β-cell mass and insulin content, and improves glycaemic control. Biochemical, genetic and cell biology data point to Dyrk1a as the key molecular target. This study supports the feasibility of treating diabetes with an oral therapy to restore β-cell mass, and highlights a tractable pathway for future drug discovery efforts. PMID:26496802

  8. Down regulation of BCL11B expression inhibits proliferation and induces apoptosis in malignant T cells by BCL11B-935-siRNA.

    PubMed

    Huang, Xin; Chen, Si; Shen, Qi; Chen, Shaohua; Yang, Lijian; Grabarczyk, Piotr; Przybylski, Grzegorz K; Schmidt, Christian A; Li, Yangqiu

    2011-07-01

    To screen the highly efficient and specific B-cell chronic lymphocytic leukemia/lymphoma 11B (BCL11B) small interfering RNA (siRNA) which are able to downregulate the BCL11B gene expression in human T-cell acute lymphoblastic leukemia, thereby inhibiting the leukemic T-cell proliferation and inducing apoptosis, four BCL11B-siRNAs and the scrambled non-silencing siRNA control (sc) were designed and obtained by chemosynthesis. After nucleofection, BCL11B expression in the mRNA and the protein levels were measured by qRT-PCR and immunoblotting, respectively. The biological consequences based on the highly efficient and specific BCL11B-siRNA were demonstrated by CCK-8 kit, morphological changes (Hoechst 33258 staining), high-resolution imaging, and flow cytometry. Reduction in the BCL11B mRNA level was observed at 24 or 48 hours in molt-4 T cells with BCL11B-935-siRNA, BCL11B-434-siRNA, or BCL11B-748-siRNA, respectively. BCL11B protein expression levels were reduced by 34·77% and 41·73% in the BCL11B-935-siRNA- and BCL11B-434-siRNA-treated cells, compared with the control level at 72 hours. In comparison with BCL11B-434-siRNA treatment group, the Molt-4 cells transfected with the BCL11B-935-siRNA showed significantly inhibited proliferation and effectively induced apoptosis (P<0·05). When highly efficient and specific BCL11B-935-siRNA was used to analyze the inhibition of BCL11B mRNA level in primary T-cell acute lymphoblastic leukemia (T-ALL) cells, similar result was obtained. In conclusion, siRNAs targeting the different exon domains resulted in different silencing effects and biological consequences. Suppression of BCL11B by RNA interference could inhibit the proliferation and induce the apoptosis effectively in leukemic T cells, which might be considered as a new target therapeutic strategy in T-cell malignancies. PMID:21756541

  9. Telmisartan inhibits advanced glycation end products (AGEs)-elicited endothelial cell injury by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gammaactivation.

    PubMed

    Yamagishi, Sho-ichi; Matsui, Takanori; Nakamura, Kazuo; Takeuchi, Masayoshi; Inoue, Hiroyoshi

    2008-01-01

    Advanced glycation end products (AGEs)-their receptor (RAGE) axis plays a central role in the pathogenesis of diabetic microangiopathy. Since the pathophysiological crosstalk between the AGEs-RAGE system and angiotensin II has also been associated with diabetic microangiopathy, we examined here whether and how telmisartan, a unique angiotensin II type 1 receptor blocker (ARB) with peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-modulating activity, could inhibit the AGEs-elicited endothelial cell injury by suppressing RAGE expression in vitro. Telmisartan suppressed RAGE expression at both mRNA and protein levels in human cultured microvascular endothelial cells (ECs), which were prevented by GW9662, an inhibitor of PPAR-gamma. Further, telmisartan was found to inhibit up-regulation of mRNA levels for monocyte chemoattractant protein-1, intercellular adhesion molecule-1 and vascular endothelial growth factor in AGEs-exposed ECs. These results suggest that telmisartan inhibits the AGEs-elicited EC injury by down-regulating RAGE expression via PPAR-gamma activation. Our present study provides a unique beneficial aspect of telmisartan. Specifically, it could work as an anti-inflammatory agent against AGEs via PPAR-gamma activation and may play a protective role against diabetic microangiopathy. PMID:18855759

  10. Extracts of various species of Epilobium inhibit proliferation of human prostate cells.

    PubMed

    Vitalone, Annabella; Guizzetti, Marina; Costa, Lucio G; Tita, Beatrice

    2003-05-01

    This study examined whether various species of Epilobium, a phytotherapeutic agent used in folk medicine as a treatment for benign prostatic hyperplasia, may have an antiproliferative effect in PZ-HPV-7 human prostatic epithelial cells in-vitro. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) test, [methyl-(3)H]thymidine incorporation into DNA and flow cytometry analysis were used to evaluate cell proliferation. Ethanolic extracts of E. spicatum, E. rosmarinifolium and E. tetragonum inhibited DNA synthesis in PZ-HPV-7 cells. While at high concentrations all extracts were cytotoxic, DNA synthesis was also decreased at levels that caused no or little cytotoxicity. Treatment of cells with Epilobium extracts did not result in a formation of DNA fragments (evaluated by the TUNEL assay) or chromatin condensation (assessed by Hoechst staining). Flow cytometry analysis indicated that Epilobium extracts inhibit the progression of the cell cycle from the G(0)/G(1) phase. These results suggest that extracts of Epilobium inhibit proliferation of human PZ-HPV-7 cells in-vitro by affecting progression of the cell cycle. This study provides some initial biological plausibility for the use of Epilobium extracts in benign prostatic hyperplasia. PMID:12831512

  11. Metformin inhibits prostate cancer cell proliferation, migration, and tumor growth through upregulation of PEDF expression.

    PubMed

    Chen, Xiaowan; Li, Chenli; He, Tiantian; Mao, Jiating; Li, Chunmei; Lyu, Jianxin; Meng, Qing H

    2016-05-01

    Metformin has been reported to inhibit the growth of various types of cancers, including prostate cancer. Yet the mode of anti-cancer action of metformin and the underlying mechanisms remain not fully elucidated. We hypothesized that the antitumorigenic effects of metformin are mediated through upregulation of pigment epithelium-derived factor (PEDF) expression in prostate cancer cells. In this report, metformin treatment significantly inhibited the proliferation and colony formation of prostate cancer cells, in a dose- and time-dependent manner. Meanwhile, Metformin markedly suppressed migration and invasion and induced apoptosis of both LNCaP and PC3 cancer cells. Metformin also reduced PC3 tumor growth in BALB/c nude mice in vivo. Furthermore, metformin treatment was associated with higher PEDF expression in both prostate cancer cells and tumor tissue. Taken together, metformin inhibits prostate cancer cell proliferation, migration, invasion and tumor growth, and these activities are mediated by upregulation of PEDF expression. These findings provide a novel insight into the molecular functions of metformin as an anticancer agent. PMID:26987032

  12. Recombinant adenovirus of human p66Shc inhibits MCF-7 cell proliferation.

    PubMed

    Yang, Xiaoshan; Xu, Rong; Lin, Yajun; Zhen, Yongzhan; Wei, Jie; Hu, Gang; Sun, Hongfan

    2016-01-01

    The aim of this work was to construct a human recombinant p66Shc adenovirus and to investigate the inhibition of recombinant p66Shc adenovirus on MCF-7 cells. The recombinant adenovirus expression vector was constructed using the Adeno-X Adenoviral System 3. Inhibition of MCF-7 cell proliferation was determined by MTT. Intracellular ROS was measured by DCFH-DA fluorescent probes, and 8-OHdG was detected by ELISA. Cell apoptosis and the cell cycle were assayed by flow cytometry. Western blot were used to observe protein expression. p66Shc expression was upregulated in 4 cell lines after infection. The inhibitory effect of p66Shc recombinant adenovirus on MCF-7 cells was accompanied by enhanced ROS and 8-OHdG. However, no significant differences were observed in the cell apoptosis rate. The ratio of the cell cycle G2/M phase showed a significant increase. Follow-up experiments demonstrated that the expressions of p53, p-p53, cyclin B1 and CDK1 were upregulated with the overexpression of p66Shc. The Adeno-X Adenoviral System 3 can be used to efficiently construct recombinant adenovirus containing p66Shc gene, and the Adeno-X can inhibit the proliferation of MCF-7 cells by inducing cell cycle arrest at the G2/M phase. These results suggested that p66Shc may be a key target for clinical cancer therapy. PMID:27530145

  13. Recombinant adenovirus of human p66Shc inhibits MCF-7 cell proliferation

    PubMed Central

    Yang, Xiaoshan; Xu, Rong; Lin, Yajun; Zhen, Yongzhan; Wei, Jie; Hu, Gang; Sun, Hongfan

    2016-01-01

    The aim of this work was to construct a human recombinant p66Shc adenovirus and to investigate the inhibition of recombinant p66Shc adenovirus on MCF-7 cells. The recombinant adenovirus expression vector was constructed using the Adeno-X Adenoviral System 3. Inhibition of MCF-7 cell proliferation was determined by MTT. Intracellular ROS was measured by DCFH-DA fluorescent probes, and 8-OHdG was detected by ELISA. Cell apoptosis and the cell cycle were assayed by flow cytometry. Western blot were used to observe protein expression. p66Shc expression was upregulated in 4 cell lines after infection. The inhibitory effect of p66Shc recombinant adenovirus on MCF-7 cells was accompanied by enhanced ROS and 8-OHdG. However, no significant differences were observed in the cell apoptosis rate. The ratio of the cell cycle G2/M phase showed a significant increase. Follow-up experiments demonstrated that the expressions of p53, p-p53, cyclin B1 and CDK1 were upregulated with the overexpression of p66Shc. The Adeno-X Adenoviral System 3 can be used to efficiently construct recombinant adenovirus containing p66Shc gene, and the Adeno-X can inhibit the proliferation of MCF-7 cells by inducing cell cycle arrest at the G2/M phase. These results suggested that p66Shc may be a key target for clinical cancer therapy. PMID:27530145

  14. Thymus vulgaris (thyme) inhibits proliferation, adhesion, migration, and invasion of human colorectal cancer cells.

    PubMed

    Al-Menhali, Afnan; Al-Rumaihi, Aisha; Al-Mohammed, Hana; Al-Mazrooey, Hana; Al-Shamlan, Maryam; AlJassim, Meaad; Al-Korbi, Noof; Eid, Ali Hussein

    2015-01-01

    Colorectal cancer (CRC) remains one of the most common malignancies and a leading cause of cancer-related deaths. Its prognosis remains poor for patients with several grades of this disease. This underscores the need for alternative modalities, such as herbal medicines, to treat this disease. A commonly used plant that appears to be of high medicinal value is Thymus vulgaris L. However, the effects of this plant on the malignant behavior of human CRC cells remains poorly investigated. This study was undertaken to determine the anticancer efficacy of T. vulgaris extract (TVE) in CRC cells. Our results show that TVE inhibits proliferation in a concentration- and time-dependent fashion. This decreased proliferation was concomitant with increased apoptotic cell death as evidenced by increased caspase3/7 activity. Moreover, TVE also decreased adhesion to fibronectin in a concentration-dependent manner. The migratory and invasive capacities of HCT116 cells were significantly inhibited by TVE. Taken together, these data suggest that the TVE inhibits malignant phenotype of colon cancer cells. Therefore, T. vulgaris could have an anticancer effect and that some of its bioactive compounds may prove to be effective treatment modalities for human CRC. PMID:25379783

  15. Baicalein Inhibits MCF-7 Cell Proliferation In Vitro, Induces Radiosensitivity, and Inhibits Hypoxia Inducible Factor.

    PubMed

    Gade, Shruti; Gandhi, Nitin Motilal

    2015-01-01

    Hypoxia inducible factor (HIF) is a key transcription factor responsible for imparting adaptability to the cancer cells growing in tumors. HIF induces the modulation of glucose metabolism, angiogenesis, and prosurvival signaling. Therefore, HIF is one of the attractive targets to treat solid tumors. Results presented in this study indicate that Baicalein (BA) inhibits HIF stabilization and also reduces its transcription activity in MCF-7 cells in vitro. Furthermore, BA was found to have antiproliferative ability as determined by the MTT assay and clonogenic survival. BA also induces apoptosis in MCF-7 cells at the concentration of 50 µM. We also report the radiosensitization of MCF-7 cells when they are treated with BA, resulting in higher γ-radiation-induced DNA damage. BA is extensively used in Chinese medicine and is known to be nontoxic at pharmacological doses. Our studies indicate that BA is one of the attractive natural compounds suitable for further evaluation as an adjuvant therapy. PMID:26756423

  16. Tetrandrine suppresses proliferation, induces apoptosis, and inhibits migration and invasion in human prostate cancer cells

    PubMed Central

    Liu, Wei; Kou, Bo; Ma, Zhen-Kun; Tang, Xiao-Shuang; Lv, Chuan; Ye, Min; Chen, Jia-Qi; Li, Lei; Wang, Xin-Yang; He, Da-Lin

    2015-01-01

    Tetrandrine (TET), a traditional Chinese medicine, exerts remarkable anticancer activity on various cancer cells. However, little is known about the effect of TET on human prostate cancer cells, and the mechanism of function of TET on prostate cancer has not yet been elucidated. To investigate the effects of TET on the suppression of proliferation, induction of apoptosis, and inhibition of migration and invasion in human prostate cancer cell lines, DU145 and PC-3. Inhibition of growth was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and clone formation assay, and flow cytometry analysis was performed to detect the induction of apoptosis. Activation of poly (ADP-ribose) polymerase, caspase-3, Akt, phospho-Akt, Bcl-2, and Bax was analyzed by Western blotting. Wound healing assay and transwell migration assay were used to evaluate the effect of TET on migration and invasion of cancer cells. TET inhibited the growth of DU145 and PC–3 cells in a dose- and time-dependent manner. Cell cloning was inhibited in the presence of TET in DU145 and PC-3 cells. TET suppressed the migration of DU145 and PC-3 cells. Transwell invasion assay showed that TET significantly weakened invasion capacity of DU145 and PC-3 cells. TET exhibited strong inhibitory effect on proliferation, migration, and invasion of prostate cancer cells. In addition, TET induced apoptosis in a dose-dependent manner by activating the caspase cascade and inhibiting phosphoinositide 3-kinase-Akt signal pathway. The accumulating evidence suggests that TET could be a potential therapeutic candidate against prostate cancer in a clinical setting. PMID:25677131

  17. Tetrandrine suppresses proliferation, induces apoptosis, and inhibits migration and invasion in human prostate cancer cells.

    PubMed

    Liu, Wei; Kou, Bo; Ma, Zhen-Kun; Tang, Xiao-Shuang; Lv, Chuan; Ye, Min; Chen, Jia-Qi; Li, Lei; Wang, Xin-Yang; He, Da-Lin

    2015-01-01

    Tetrandrine (TET), a traditional Chinese medicine, exerts remarkable anticancer activity on various cancer cells. However, little is known about the effect of TET on human prostate cancer cells, and the mechanism of function of TET on prostate cancer has not yet been elucidated. To investigate the effects of TET on the suppression of proliferation, induction of apoptosis, and inhibition of migration and invasion in human prostate cancer cell lines, DU145 and PC-3. Inhibition of growth was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and clone formation assay, and flow cytometry analysis was performed to detect the induction of apoptosis. Activation of poly (ADP-ribose) polymerase, caspase-3, Akt, phospho-Akt, Bcl-2, and Bax was analyzed by Western blotting. Wound healing assay and transwell migration assay were used to evaluate the effect of TET on migration and invasion of cancer cells. TET inhibited the growth of DU145 and PC-3 cells in a dose- and time-dependent manner. Cell cloning was inhibited in the presence of TET in DU145 and PC-3 cells. TET suppressed the migration of DU145 and PC-3 cells. Transwell invasion assay showed that TET significantly weakened invasion capacity of DU145 and PC-3 cells. TET exhibited strong inhibitory effect on proliferation, migration, and invasion of prostate cancer cells. In addition, TET induced apoptosis in a dose-dependent manner by activating the caspase cascade and inhibiting phosphoinositide 3-kinase-Akt signal pathway. The accumulating evidence suggests that TET could be a potential therapeutic candidate against prostate cancer in a clinical setting. PMID:25677131

  18. Antibiotic drug tigecycline reduces neuroblastoma cells proliferation by inhibiting Akt activation in vitro and in vivo.

    PubMed

    Zhong, Xiaoxia; Zhao, Erhu; Tang, Chunling; Zhang, Weibo; Tan, Juan; Dong, Zhen; Ding, Han-Fei; Cui, Hongjuan

    2016-06-01

    As the first member of glycylcycline bacteriostatic agents, tigecycline is approved as a novel expanded-spectrum antibiotic, which is clinically available. However, accumulating evidence indicated that tigecycline was provided with the potential application in cancer therapy. In this paper, tigecycline was shown to exert an anti-proliferative effect on neuroblastoma cell lines. Furthermore, it was found that tigecycline induced G1-phase cell cycle arrest instead of apoptosis by means of Akt pathway inhibition. In neuroblastoma cell lines, the Akt activator insulin-like growth factor-1 (hereafter referred to as IGF-1) reversed tigecycline-induced cell cycle arrest. Besides, tigecycline inhibited colony formation and suppressed neuroblastoma cells xenograft formation and growth. After tigecycline treatment in vivo, the Akt pathway inhibition was confirmed as well. Collectively, our data provided strong evidences that tigecycline inhibited neuroblastoma cells growth and proliferation through the Akt pathway inhibition in vitro and in vivo. In addition, these results were supported by previous studies concerning the application of tigecycline in human tumors treatment, suggesting that tigecycline might act as a potential candidate agent for neuroblastoma treatment. PMID:26687647

  19. Quercetin inhibits the migration and proliferation of astrocytes in wound healing.

    PubMed

    Yuan, Zhaohu; Yao, Fang; Hu, Ziyou; Sun, Shumei; Wu, Bingyi

    2015-05-01

    A previous study showed that quercetin inhibits astrogliosis in a scratch-wound model, but did not identify the underlying mechanisms. Here, we show that quercetin exerts no effect on apoptosis or the viability of astrocytes, but significantly inhibits their proliferation, arresting them in the G1 phase and decreasing the percentage of cells in the S and G2 phase. In addition, we found that quercetin significantly decreased the phosphorylation of ERK1/2 and FAK, a downstream ERK signaling protein. Inhibition of this pathway with U0126, an inhibitor of MAP kinase, retarded wound closure, whereas sustained p-ERK1/2 activation, induced by vanadate, restored astrocyte migration. Our findings thus indicate that quercetin inhibits healing in the scratch-wound model of primary astrocytes in two ways: blockade of the G1 to S phase cell cycle transition and inhibition of the ERK/FAK signaling pathway, which may contribute toward decreasing astroglial scar formation in vivo. PMID:25793633

  20. Proliferation inhibition and apoptosis induction of imatinib-resistant chronic myeloid leukemia cells via PPP2R5C down-regulation.

    PubMed

    Shen, Qi; Liu, Sichu; Chen, Yu; Yang, Lijian; Chen, Shaohua; Wu, Xiuli; Li, Bo; Lu, Yuhong; Zhu, Kanger; Li, Yangqiu

    2013-01-01

    Despite the success of imatinib and other tyrosine kinase inhibitors (TKIs), chronic myeloid leukemia (CML) remains largely incurable, and a number of CML patients die due to Abl mutation-related drug resistance and blast crisis. The aim of this study was to evaluate proliferation inhibition and apoptosis induction by down-regulating PPP2R5C gene expression in the imatinib-sensitive and imatinib-resistant CML cell lines K562, K562R (imatinib resistant without an Abl gene mutation), 32D-Bcr-Abl WT (imatinib-sensitive murine CML cell line with a wild type Abl gene) and 32D-Bcr-Abl T315I (imatinib resistant with a T315I Abl gene mutation) and primary cells from CML patients by RNA interference. PPP2R5C siRNAs numbered 799 and 991 were obtained by chemosynthesis. Non-silencing siRNA scrambled control (SC)-treated, mock-transfected, and untreated cells were used as controls. The PPP2R5C mRNA and protein expression levels in treated CML cells were analyzed by quantitative real-time PCR and Western blotting, and in vitro cell proliferation was assayed with the cell counting kit-8 method. The morphology and percentage of apoptosis were revealed by Hoechst 33258 staining and flow cytometry (FCM). The results demonstrated that both siRNAs had the best silencing results after nucleofection in all four cell lines and primary cells. A reduction in PPP2R5C mRNA and protein levels was observed in the treated cells. The proliferation rate of the PPP2R5C-siRNA-treated CML cell lines was significantly decreased at 72 h, and apoptosis was significantly increased. Significantly higher proliferation inhibition and apoptosis induction were found in K562R cells treated with PPP2R5C-siRNA799 than K562 cells. In conclusion, the suppression of PPP2R5C by RNA interference could inhibit proliferation and effectively induce apoptosis in CML cells that were either imatinib sensitive or resistant. Down-regulating PPP2R5C gene expression might be considered as a new therapeutic target strategy

  1. PPARγ inhibits ovarian cancer cells proliferation through upregulation of miR-125b

    SciTech Connect

    Luo, Shuang; Wang, Jidong; Ma, Ying; Yao, Zhenwei; Pan, Hongjuan

    2015-06-26

    miR-125b has essential roles in coordinating tumor proliferation, angiogenesis, invasiveness, metastasis and chemotherapy recurrence. In ovarian cancer miR-125b has been shown to be downregulated and acts as a tumor suppressor by targeting proto-oncogene BCL3. PPARγ, a multiple functional transcription factor, has been reported to have anti-tumor effects through inhibition of proliferation and induction of differentiation and apoptosis by targeting the tumor related genes. However, it is unclear whether miR-125b is regulated by PPARγ in ovarian cancer. In this study, we demonstrated that the miR-125b downregulated in ovarian cancer tissues and cell lines. Ligands-activated PPARγ suppressed proliferation of ovarian cancer cells and this PPARγ-induced growth inhibition is mediated by the upregulation of miR-125b. PPARγ promoted the expression of miR-125b by directly binding to the responsive element in miR-125b gene promoter region. Thus, our results suggest that PPARγ can induce growth suppression of ovarian cancer by upregulating miR-125b which inhibition of proto-oncogene BCL3. These findings will extend our understanding of the function of PPARγ in tumorigenesis and miR-125b may be a therapeutic intervention of ovarian cancer. - Highlights: • miR-125b is down-regulated in ovarian cancer tissues and cells. • PPARγ upregulates miR-125b and downregulates its target gene BCL3 expression. • Silence of miR-125b attenuates PPARγ-mediated growth suppression of ovarian cancer cells. • PPARγ promotes the transcription of miR-125b via binding to PPARE in miR-125b gene promoter region.

  2. Rho-associated protein kinase inhibition enhances airway epithelial Basal-cell proliferation and lentivirus transduction.

    PubMed

    Horani, Amjad; Nath, Aditya; Wasserman, Mollie G; Huang, Tao; Brody, Steven L

    2013-09-01

    The identification of factors that regulate airway epithelial cell proliferation and differentiation are essential for understanding the pathophysiology of airway diseases. Rho-associated protein kinases (ROCKs) are downstream effector proteins of RhoA GTPase that direct the functions of cell cytoskeletal proteins. ROCK inhibition with Y27632 has been shown to enhance the survival and cloning of human embryonic stem cells and pluripotent cells in other tissues. We hypothesized that Y27632 treatment exerts a similar effect on airway epithelial basal cells, which function as airway epithelial progenitor cells. Treatment with Y27632 enhanced basal-cell proliferation in cultured human tracheobronchial and mouse tracheal epithelial cells. ROCK inhibition accelerated the maturation of basal cells, characterized by a diminution of the cell size associated with cell compaction and the expression of E-cadherin at cell-cell junctions. Transient treatment of cultured basal cells with Y27632 did not affect subsequent ciliated or mucous cell differentiation under air-liquid interface conditions, and allowed for the initial use of lower numbers of human or mouse primary airway epithelial cells than otherwise possible. Moreover, the use of Y27632 during lentivirus-mediated transduction significantly improved posttransduction efficiency and the selection of a transduced cell population, as determined by reporter gene expression. These findings suggest an important role for ROCKs in the regulation of proliferation and maturation of epithelial basal cells, and demonstrate that the inhibition of ROCK pathways using Y27632 provides an adjunctive tool for the in vitro genetic manipulation of airway epithelial cells by lentivirus vectors. PMID:23713995

  3. Prenylated proteins and lymphocyte proliferation: inhibition by d-limonene related monoterpenes.

    PubMed

    Schulz, S; Bühling, F; Ansorge, S

    1994-02-01

    The aim of the present study was to explore the role of post-translational isoprenoid modification of cellular proteins in the proliferation of human lymphocytes. We here report that treatment of phytohemagglutinin-stimulated peripheral blood mononuclear cells with monoterpenes including d-limonene, perillic acid and perillyl alcohol (0.5-5 mM) which selectively inhibit the isoprenylation of 21-26-kDa proteins resulted in a dose-dependent inhibition of DNA synthesis. Cell cycle analysis revealed that perillic acid arrested cells in G1 and prevented cells from entering S phase in a manner similar to that induced by the specific 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor, compactin. However, unlike compactin, the perillic acid-induced effects on lymphocyte proliferation were not prevented by addition of mevalonate. We also examined the incorporation of [3H]mevalonate into proteins in resting and phytohemagglutinin-stimulated lymphocytes during the first 30 h of culture. While in unstimulated lymphocytes radioactivity was predominantly incorporated into a cluster of 21-26-kDa proteins, mitogenic stimulation was associated with a striking increase in [3H]mevalonate incorporation into a protein (approximately 68 kDa) with migration characteristics similar to that of nuclear lamin B. Treatment of phytohemagglutinin-stimulated lymphocytes with 5 mM d-limonene, 2.5 mM perillic acid or 1.25 mM perillyl alcohol strongly suppressed [3H]mevalonate-labeling of proteins to a degree that correlated with the level of DNA synthesis inhibition. These findings suggest that those mevalonate-derived products required for lymphocyte proliferation may include one or more isoprenylated proteins and that the isoprenylation of these proteins is required for cell cycle progression. PMID:8299679

  4. Compounds from Simarouba berteroana which inhibit proliferation of NF1-defective cancer cells.

    PubMed

    Devkota, Krishna P; Wilson, Jennifer A; Henrich, Curtis J; McMahon, James B; Reilly, Karlyne M; Beutler, John A

    2014-02-01

    A neurofibromatosis type 1 (NF1) based bioassay-guided phytochemical investigation on Simarouba berteroana led to the isolation of one new canthin-6-one-9-methoxy-5-O-β-D-glucopyranoside (1), seven known canthine alkaloids (2-8), two known quassinoids (9-10) and a known neo-lignan (11). The structures of all compounds were established by HRMS, 1D- and 2D-NMR analysis and comparison with previously reported data. Most of the compounds inhibited the proliferation of an Nf1- and p53-deficient mouse glioma cell line at non-cytotoxic concentrations. PMID:24443661

  5. Compounds from Simarouba berteroana which inhibit proliferation of NF1-defective cancer cells

    PubMed Central

    Devkota, Krishna P.; Wilson, Jennifer A.; Henrich, Curtis J.; McMahon, James B.; Reilly, Karlyne M.; Beutler, John A.

    2013-01-01

    A neurofibromatosis type 1 (NF1) based bioassay-guided phytochemical investigation on Simarouba berteroana led to the isolation of one new canthin-6-one-9-methoxy-5-O-β-D-glucopyranoside (1), seven known canthine alkaloids (2–8), two known quassinoids (9–10) and a known neo-lignan (11). The structures of all compounds were established by HRMS, 1D- and 2D-NMR analysis and comparison with previously reported data. Most of the compounds inhibited the proliferation of an Nf1- and p53-deficient mouse glioma cell line at non-cytotoxic concentrations. PMID:24443661

  6. β-D-glucan inhibits endocrine-resistant breast cancer cell proliferation and alters gene expression

    PubMed Central

    JAFAAR, ZAINAB M.T.; LITCHFIELD, LACEY M.; IVANOVA, MARGARITA M.; RADDE, BRANDIE N.; AL-RAYYAN, NUMAN; KLINGE, CAROLYN M.

    2014-01-01

    Endocrine therapies have been successfully used for breast cancer patients with estrogen receptor α (ERα) positive tumors, but ∼40% of patients relapse due to endocrine resistance. β-glucans are components of plant cell walls that have immunomodulatory and anticancer activity. The objective of this study was to examine the activity of β-D-glucan, purified from barley, in endocrine-sensitive MCF-7 versus endocrine-resistant LCC9 and LY2 breast cancer cells. β-D-glucan dissolved in DMSO but not water inhibited MCF-7 cell proliferation in a concentration-dependent manner as measured by BrdU incorporation with an IC50 of ∼164±12 μg/ml. β-D-glucan dissolved in DMSO inhibited tamoxifen/endocrine-resistant LCC9 and LY2 cell proliferation with IC50 values of 4.6±0.3 and 24.2±1.4 μg/ml, respectively. MCF-10A normal breast epithelial cells showed a higher IC50 ∼464 μg/ml and the proliferation of MDA-MB-231 triple negative breast cancer cells was not inhibited by β-D-glucan. Concentration-dependent increases in the BAX/BCL2 ratio and cell death with β-D-glucan were observed in MCF-7 and LCC9 cells. PCR array analysis revealed changes in gene expression in response to 24-h treatment with 10 or 50 μg/ml β-D-glucan that were different between MCF-7 and LCC9 cells as well as differences in basal gene expression between the two cell lines. Select results were confirmed by quantitative real-time PCR demonstrating that β-D-glucan increased RASSF1 expression in MCF-7 cells and IGFBP3, CTNNB1 and ERβ transcript expression in LCC9 cells. Our data indicate that β-D-glucan regulates breast cancer-relevant gene expression and may be useful for inhibiting endocrine-resistant breast cancer cell proliferation. PMID:24534923

  7. Inhibition of Cell Proliferation and Growth of Pancreatic Cancer by Silencing of Carbohydrate Sulfotransferase 15 In Vitro and in a Xenograft Model

    PubMed Central

    Shibazaki, Yuichiro; Yoneyama, Hiroyuki; Fujii, Masato; Hashiguchi, Taishi; Ito, Zensho; Kajihara, Mikio; Misawa, Takeyuki; Homma, Sadamu; Ohkusa, Toshifumi

    2015-01-01

    Chondroitin sulfate E (CS-E), a highly sulfated glycosaminoglycan, is known to promote tumor invasion and metastasis. Because the presence of CS-E is detected in both tumor and stromal cells in pancreatic ductal adenocarcinoma (PDAC), multistage involvement of CS-E in the development of PDAC has been considered. However, its involvement in the early stage of PDAC progression is still not fully understood. In this study, to clarify the direct role of CS-E in tumor, but not stromal, cells of PDAC, we focused on carbohydrate sulfotransferase 15 (CHST15), a specific enzyme that biosynthesizes CS-E, and investigated the effects of the CHST15 siRNA on tumor cell proliferation in vitro and growth in vivo. CHST15 mRNA is highly expressed in the human pancreatic cancer cell lines PANC-1, MIA PaCa-2, Capan-1 and Capan-2. CHST15 siRNA significantly inhibited the expression of CHST15 mRNA in these four cells in vitro. Silencing of the CHST15 gene in the cells was associated with significant reduction of proliferation and up-regulation of the cell cycle inhibitor-related gene p21CIP1/WAF1. In a subcutaneous xenograft tumor model of PANC-1 in nude mice, a single intratumoral injection of CHST15 siRNA almost completely suppressed tumor growth. Reduced CHST15 protein signals associated with tumor necrosis were observed with the treatment with CHST15 siRNA. These results provide evidence of the direct action of CHST15 on the proliferation of pancreatic tumor cells partly through the p21CIP1/WAF1 pathway. Thus, CHST15-CS-E axis-mediated tumor cell proliferation could be a novel therapeutic target in the early stage of PDAC progression. PMID:26642349

  8. Epac1 knockdown inhibits the proliferation of ovarian cancer cells by inactivating AKT/Cyclin D1/CDK4 pathway in vitro and in vivo.

    PubMed

    Gao, Meng; Ma, Yanyan; Bast, Robert C; Li, Yue; Wan, Lu; Liu, Yanping; Sun, Yingshuo; Fang, Zhenghui; Zhang, Lining; Wang, Xiaoyan; Wei, Zengtao

    2016-07-01

    Ovarian cancer is the leading cause of death among gynecological malignancies, and high grade serous ovarian carcinoma is the most common and most aggressive subtype. Recently, it was demonstrated that cAMP mediates protein kinase A-independent effects through Epac (exchange protein directly activated by cAMP) proteins. Epac proteins, including Epac1 and Epac2, are implicated in several diverse cellular responses, such as insulin secretion, exocytosis, cellular calcium handling and formation of cell-cell junctions. Several reports document that Epac1 could play vital roles in promoting proliferation, invasion and migration of some cancer cells. However, the expression levels and roles of Epac1 in ovarian cancer have not been investigated. In the present study, we detected the expression levels of Epac1 mRNA and protein in three kinds of ovarian cancer cells SKOV3, OVCAR3 and CAOV3. Furthermore, the effect of Epac1 knockdown on the proliferation and apoptosis of SKOV3 and OVCAR3 cells was evaluated in vitro and in vivo. The results showed that there was higher expression of Epac1 mRNA and protein in SKOV3 and OVCAR3 cells. Epac1 knockdown inhibited the proliferation of SKOV3 and OVCAR3 cells in vitro and in vivo. Decreased proliferation may be due to downregulation of Epac1-induced G1 phase arrest by inactivating the AKT/Cyclin D1/CDK4 pathway, but not to alterations in the MAPK pathway or to apoptosis. Taken together, our data provide new insight into the essential role of Epac1 in regulating growth of ovarian cancer cells and suggest that Epac1 might represent an attractive therapeutic target for treatment of ovarian cancer. PMID:27277757

  9. XPC inhibits NSCLC cell proliferation and migration by enhancing E-Cadherin expression

    PubMed Central

    Cui, Tiantian; Srivastava, Amit Kumar; Han, Chunhua; Yang, Linlin; Zhao, Ran; Zou, Ning; Qu, Meihua; Duan, Wenrui; Zhang, Xiaoli; Wang, Qi-En

    2015-01-01

    Xeroderma pigmentosum complementation group C (XPC) protein is an important DNA damage recognition factor in nucleotide excision repair. Deletion of XPC is associated with early stages of human lung carcinogenesis, and reduced XPC mRNA levels predict poor patient outcome for non-small cell lung cancer (NSCLC). However, the mechanisms linking loss of XPC expression and poor prognosis in lung cancer are still unclear. Here, we report evidence that XPC silencing drives proliferation and migration of NSCLC cells by down-regulating E-Cadherin. XPC knockdown enhanced proliferation and migration while decreasing E-Cadherin expression in NSCLC cells with an epithelial phenotype. Restoration of E-Cadherin in these cells suppressed XPC knockdown-induced cell growth both in vitro and in vivo. Mechanistic studies showed that the loss of XPC repressed E-Cadherin expression by activating the ERK pathway and upregulating Snail expression. Our findings indicate that XPC silencing-induced reduction of E-Cadherin expression contributes, at least in part, to the poor outcome of NSCLC patients with low XPC expression. PMID:25871391

  10. Ursolic acid induced anti-proliferation effects in rat primary vascular smooth muscle cells is associated with inhibition of microRNA-21 and subsequent PTEN/PI3K.

    PubMed

    Jiang, Qixiao; Han, Yantao; Gao, Hui; Tian, Rong; Li, Ping; Wang, Chunbo

    2016-06-15

    This study focused on the anti-proliferation effects of ursolic acid (UA) in rat primary vascular smooth muscle cells (VSMCs) and investigated underlying molecular mechanism of action. Rat primary VSMCs were pretreated with UA (10, 20 or 30μM) or amino guanidine (AG, 50μM) for 12h or with PI3K inhibitor LY294002 for 30min or with Akt inhibitor MK2206 for 24h, then 10% fetal bovine serum was used to induce proliferation. CCK-8 was used to assess cell proliferation. To explore the mechanism, cells were treated with UA (10, 20 or 30μM), LY294002 or MK2206, or transient transfected to inhibit miRNA-21 (miRNA-21) or to overexpress PTEN, then quantitative real-time PCR was used to assess the mRNA levels of miRNA-21 and phosphatase and tensin homolog (PTEN) for cells treated with UA or miRNA-21 inhibitor; western blotting was used to measure the protein levels of PTEN and PI3K. UA exerted significant anti-proliferation effects in rat primary VSMCs. Furthermore, UA inhibited the expression of miRNA-21 and subsequently enhanced the expression of PTEN. PTEN was found to inhibit the expression of PI3K. In conclusion, UA exerts anti-proliferation effects in rat primary VSMCs, which is associated with the inhibition of miRNA-21 expression and modulation of PTEN/PI3K signaling pathway. PMID:27085898

  11. RPS24 knockdown inhibits colorectal cancer cell migration and proliferation in vitro.

    PubMed

    Wang, Yue; Sui, Jinke; Li, Xu; Cao, Fuao; He, Jian; Yang, Bo; Zhu, Xiaoming; Sun, Yongsheng; Pu, Y D

    2015-10-25

    Besides new proteins synthesis, ribosomal protein has a role in extra-ribosomal functions, which are related to many diseases, such as Diamond-Blackfan anemia, hypoplasia, and cell apoptosis. However, the importance of RPS24 in human colon cancer is largely unknown. In this study, RPS24 gene expression was significantly inhibited in human colon cancer HCT116 and HT-29 cells using a lentivirus shRNA approach. Knockdown of RPS24 expression significantly inhibited cell proliferation, colony formation, cell migration and arrested cell in S phase. The results demonstrated for the first time that RPS24 gene had a critical role in human colon cancer. Therefore, our findings indicated that RPS24 gene may be a promising biomarker for therapy in human colon cancer and may have a potential application in the diagnosis or treatment of human colon cancer. PMID:26149657

  12. miR-101 inhibits cell proliferation by targeting Rac1 in papillary thyroid carcinoma

    PubMed Central

    LIN, XIAOJIE; GUAN, HONGYU; LI, HAI; LIU, LIEHUA; LIU, JUAN; WEI, GUOHONG; HUANG, ZHIMIN; LIAO, ZHIHONG; LI, YANBING

    2014-01-01

    Accumulating evidence suggests that some microRNAs (miRNAs) are involved in papillary thyroid carcinoma (PTC) progression. However, it remains necessary to elucidate the underlying molecular mechanisms involved. In the present study, we investigated the role of microRNA-101 (miR-101) in PTC via targeting of Ras-related C3 botulinum toxin substrate 1 (Rac1). The results showed that miR-101 was significantly downregulated in PTC tissues compared with adjacent normal tissues. Restoration of miR-101 expression significantly inhibited cell proliferation in the K1 PTC cell line. Moreover, algorithm-based and experimental strategies verified Rac1 as a direct target of miR-101 in the K1 cell line. Taken together, these findings suggest that miR-101 inhibited PTC growth via the downregulation of Rac1 expression, providing a better understanding of miRNA-modulated signaling networks for future cancer therapeutics. PMID:24649082

  13. siRNA targeting RBP2 inhibits expression, proliferation, tumorigenicity and invasion in thyroid carcinoma cells

    PubMed Central

    KONG, LING-LING; MAN, DONG-MEI; WANG, TIAN; ZHANG, GUO-AN; CUI, WEN

    2015-01-01

    In order to estimate the effects of small interfering RNA (siRNA) targeting retinoblastoma binding protein 2 (RBP2) on the proliferation, expression, invasion, migration and tumorigenicity abilities of papillary thyroid carcinoma K1 cells, siRNA targeting RBP2 (RBP2-siRNA) and negative control siRNA were transfected into K1 cells. The mRNA levels of RBP2 in the transfected cells were estimated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and the protein levels of RBP2 in these cells were evaluated by western blot analysis and immunocytochemical (ICC) analyses. The growth, tumorigenicity, migration and invasion abilities of the transfected cells were measured by Cell Counting Kit-8 (CCK-8), soft agar colony formation and transwell chamber assay, respectively. The ICC results demonstrated that the protein expression levels of RBP2 were lower in the RBP2-siRNA-transfected cells than in the blank and control cells (analysis of variance, F=26.754, P<0.01). RBP2-siRNA downregulated RBP2 at the mRNA (t=8.869) and protein level (F=60.835) (P=0.000 vs. control cells). In addition, the transfection of RBP2-siRNA into K1 cells also suppressed cell proliferation at 24, 48 and 72 h post-transfection (t=7.650, P<0.01; t=2.606, P=0.016; and t=2.377, P=0.027, respectively). Compared with the control group, the number of invasive and migrated cells were significantly reduced in the RBP2-siRNA-transfected group (t=4.774 and t=6.366, respectively; P<0.01). Furthermore, the tumorigenic potential of the cells transfected with RBP2-siRNA was markedly reduced, as indicated by the soft agar formation assay (t=2.749, P=0.014 vs. control cells). In conclusion, the transfection of RBP2-siRNA into papillary thyroid carcinoma K1 cells suppressed the expression of RBP2 in these cells, and reduced their proliferation, invasion, migration and tumorigenic potential. Therefore, targeting RBP2 may be an efficient approach to control thyroid carcinoma. PMID:26788140

  14. Geranylated flavanone tomentodiplacone B inhibits proliferation of human monocytic leukaemia (THP-1) cells

    PubMed Central

    Kollár, Peter; Bárta, Tomáš; Závalová, Veronika; Šmejkal, Karel; Hampl, Aleš

    2011-01-01

    BACKGROUND AND PURPOSE Paulownia tomentosa is a rich source of geranylated flavanones, some of which we have previously shown to have cytotoxic activity. To identify members of this class of compounds with cytostatic effects, we assessed the effects of the geranylated flavanone tomentodiplacone B (TOM B) on cell cycle progression and cell cycle regulatory pathways of THP-1 human monocytic leukaemia cells. EXPERIMENTAL APPROACH Cell viability was measured by dye exclusion and proliferation by WST-1 assays; cell cycle was monitored by flow cytometry. Regulatory proteins were assessed by immunoprecipitation and kinase assays, and Western blotting. KEY RESULTS Tomentodiplacone B had no effect during the first 24 h of cell growth at concentrations between 1 and 2.5 µM, but inhibited cell growth in a dose-dependent manner at concentrations of 5 µM or higher. Growth inhibition during the first 24 h of exposure to TOM B was not accompanied by cytotoxicity as cells were accumulated in G1 phase dose-dependently. This G1 phase accumulation was associated with down-regulation of cyclin-dependent kinase 2 activity and also protein levels of cyclins E1 and A2. However, key stress-related molecules (γ-H2AX, p53 and p21) were not induced, suggesting that TOM B acts by directly inhibiting the cyclin-dependent kinase 2 signalling pathway rather than initiating DNA damage or cellular stress. CONCLUSIONS AND IMPLICATIONS Our study provides the first evidence that TOM B directly inhibits proliferation of human monocytic leukaemia cells, and thus is a potential anticancer agent, preventing leukaemia cells from progressing from G1 phase into DNA synthesis. PMID:21175584

  15. Luteoloside Suppresses Proliferation and Metastasis of Hepatocellular Carcinoma Cells by Inhibition of NLRP3 Inflammasome

    PubMed Central

    Lu, Jun; Zheng, Yuan-lin; Wu, Dong-mei; Li, Meng-qiu; Hu, Bin; Zhang, Zi-feng; Cheng, Wei; Shan, Qun

    2014-01-01

    The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β secretion. Inflammasome activation is mediated by NLR proteins that respond to stimuli. Among NLRs, NLRP3 senses the widest array of stimuli. NLRP3 inflammasome plays an important role in the development of many cancer types. However, Whether NLRP3 inflammasome plays an important role in the process of hepatocellular carcinoma (HCC) is still unknown. Here, the anticancer effect of luteoloside, a naturally occurring flavonoid isolated from the medicinal plant Gentiana macrophylla, against HCC cells and the underlying mechanisms were investigated. Luteoloside significantly inhibited the proliferation of HCC cells in vitro and in vivo. Live-cell imaging and transwell assays showed that the migration and invasive capacities of HCC cells, which were treated with luteoloside, were significantly inhibited compared with the control cells. The inhibitory effect of luteoloside on metastasis was also observed in vivo in male BALB/c-nu/nu mouse lung metastasis model. Further studies showed that luteoloside could significantly reduce the intracellular reactive oxygen species (ROS) accumulation. The decreased levels of ROS induced by luteoloside was accompanied by decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by luteoloside resulted in inhibition of IL-1β. Thus, luteoloside exerts its inhibitory effect on proliferation, invasion and metastasis of HCC cells through inhibition of NLRP3 inflammasome. Our results indicate that luteoloside can be a potential therapeutic agent not only as an adjuvant therapy for HCC, but also, in the control and prevention of metastatic HCC. PMID:24587153

  16. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    SciTech Connect

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie; Zhang, Wei; Lin, Xiaoling; Shi, Jianting; Zhang, Wei; Liang, Ruiyun; Jiang, Shanping

    2015-02-15

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolide significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.

  17. Receptor for advanced glycation end products inhibits proliferation in osteoblast through suppression of Wnt, PI3K and ERK signaling

    SciTech Connect

    Li, Guofeng; Xu, Jingren; Li, Zengchun

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer RAGE overexpression suppresses cell proliferation in MC3T3-E1 cells. Black-Right-Pointing-Pointer RAGE overexpression decreases Wnt/{beta}-catenin signaling. Black-Right-Pointing-Pointer RAGE overexpression decreases ERK and PI3K signaling. Black-Right-Pointing-Pointer Inhibition of Wnt signaling abolishes PI3K signaling restored by RAGE blockade. Black-Right-Pointing-Pointer Inhibition of Wnt signaling abolishes ERK signaling restored by RAGE blockade. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a crucial role in bone metabolism. However, the role of RAGE in the control of osteoblast proliferation is not yet evaluated. In the present study, we demonstrate that RAGE overexpression inhibits osteoblast proliferation in vitro. The negative regulation of RAGE on cell proliferation results from suppression of Wnt, PI3K and ERK signaling, and is restored by RAGE neutralizing antibody. Prevention of Wnt signaling using Sfrp1 or DKK1 rescues RAGE-decreased PI3K and ERK signaling and cell proliferation, indicating that the altered cell growth in RAGE overexpressing cells is in part secondary to alterations in Wnt signaling. Consistently, RAGE overexpression inhibits the expression of Wnt targets cyclin D1 and c-myc, which is partially reversed by RAGE blockade. Overall, these results suggest that RAGE inhibits osteoblast proliferation via suppression of Wnt, PI3K and ERK signaling, which provides novel mechanisms by which RAGE regulates osteoblast growth.

  18. Downregulation of CCR5 inhibits the proliferation and invasion of cervical cancer cells and is regulated by microRNA-107

    PubMed Central

    CHE, LI-FAN; SHAO, SU-FANG; WANG, LI-XIN

    2016-01-01

    Cervical cancer is among the most prevalent forms of cancer worldwide. C-C chemokine receptor type 5 (CCR5) is hypothesized to be a key functional protein involved in tumorigenesis. However, the role of CCR5 in cervical cancer remains unclear. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were used to evaluate the mRNA and protein expression levels of CCR5 in human cervical carcinoma tissues. Furthermore, a small interfering RNA was employed to knockdown CCR5 in HeLa and C33A cells. MTT, colony formation and Transwell assays were performed to determine the effects of this knockdown on cell viability, proliferation and invasion. In addition, micro RNA (miR)-107 was identified as a potential candidate regulator of CCR5 using miR prediction algorithms, and the effects of miR-107 and its antisense miR on CCR5 mRNA expression were determined. The results of the present study indicated that CCR5 is overexpressed in human cervical cancer tissues compared with adjacent normal tissues, and its downregulation inhibits cervical cancer cell growth and proliferation. Furthermore, the downregulation of CCR5 appears to suppress cervical cancer cell invasion. Finally, the tumor suppressor miR-107 was able to directly target CCR5 and inhibit its expression. These results suggest that the upregulation of CCR5, which is inhibited by miR-107, may play a carcinogenic role in cervical cancer and could provide a novel therapeutic target in the future. PMID:26893637

  19. Cyclosporine A inhibits the mRNA expressions of IL-2, IL-4 and IFN-gamma, but not TNF-alpha, in canine mononuclear cells.

    PubMed

    Kobayashi, Tetsuro; Momoi, Yasuyuki; Iwasaki, Toshiroh

    2007-09-01

    The effects of the calcineurin inhibitors cyclosporine A (CsA) and FK506 on the mRNA expressions of various cytokines were evaluated in dogs to determine whether the effects of CsA and FK506 in dogs were similar to those in humans. The mRNA expression levels of the cytokines IL-2, IL-4, IFN-gamma and TNF-alpha were measured in PHA-stimulated canine PBMC using real-time RT-PCR after incubation with CsA or FK506 for 5 hr. Both reagents inhibited IL-2, IL-4 and IFN-gamma mRNA expressions in a dose-dependent manner. However, CsA hardly inhibited the mRNA expression of TNF-alpha. These findings are important for assessing the indications of CsA treatment in dogs. PMID:17917372

  20. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation and invasion in U87 glioma cells

    SciTech Connect

    Park, Mi Hee; Min, Do Sik

    2011-09-09

    Highlights: {yields} Quercetin, a bioactive flavonoid, suppresses expression and enzymatic activity of phospholipase D1. {yields} Quercetin abolishes NFkB-induced phospholipase D1 expression via inhibition of NFkB transactivation. {yields} Quercetin-induced suppression of phospholipase D1 inhibits invasion and proliferation of human glioma cells. -- Abstract: Phospholipase D (PLD) has been recognized as a regulator of cell proliferation and tumorigenesis, but little is known about the molecules regulating PLD expression. Thus, the identification of small molecules inhibiting PLD expression would be an important advance in PLD-mediated physiology. Quercetin, a ubiquitous bioactive flavonoid, is known to inhibit proliferation and induce apoptosis in a variety of cancer cells. In the present study, we examined the effect of quercetin on the expression of PLD in U87 glioma cells. Quercetin significantly suppressed the expression of PLD1 at the transcriptional level. Moreover, quercetin abolished the protein expression of PLD1 in a time and dose-dependent manner, as well as inhibited PLD activity. Quercetin suppressed NF{kappa}B-induced PLD1 expression via inhibition of NFkB transactivation. Furthermore, quercetin inhibited activation and invasion of metalloproteinase-2 (MMP-2), a key modulator of glioma cell invasion, induced by phosphatidic acid (PA), a product of PLD activity. Taken together these data demonstrate that quercetin abolishes PLD1 expression and subsequently inhibits invasion and proliferation of glioma cells.

  1. Inhibition of the Tcf/beta-catenin complex increases apoptosis and impairs adrenocortical tumor cell proliferation and adrenal steroidogenesis

    PubMed Central

    Leal, Letícia F.; Bueno, Ana Carolina; Gomes, Débora C.; Abduch, Rafael; de Castro, Margaret; Antonini, Sonir R.

    2015-01-01

    Background To date, there is no effective therapy for patients with advanced/metastatic adrenocortical cancer (ACC). The activation of the Wnt/beta-catenin signaling is frequent in ACC and this pathway is a promising therapeutic target. Aim To investigate the effects of the inhibition of the Wnt/beta-catenin in ACC cells. Methods Adrenal (NCI-H295 and Y1) and non-adrenal (HeLa) cell lines were treated with PNU-74654 (5–200 μM) for 24–96 h to assess cell viability (MTS-based assay), apoptosis (Annexin V), expression/localization of beta-catenin (qPCR, immunofluorescence, immunocytochemistry and western blot), expression of beta-catenin target genes (qPCR and western blot), and adrenal steroidogenesis (radioimmunoassay, qPCR and western blot). Results In NCI-H295 cells, PNU-74654 significantly decreased cell proliferation 96 h after treatment, increased early and late apoptosis, decreased nuclear beta-catenin accumulation, impaired CTNNB1/beta-catenin expression and increased beta-catenin target genes 48 h after treatment. No effects were observed on HeLa cells. In NCI-H295 cells, PNU-74654 decreased cortisol, testosterone and androstenedione secretion 24 and 48 h after treatment. Additionally, in NCI-H295 cells, PNU-74654 decreased SF1 and CYP21A2 mRNA expression as well as the protein levels of STAR and aldosterone synthase 48 h after treatment. In Y1 cells, PNU-74654 impaired corticosterone secretion 24 h after treatment but did not decrease cell viability. Conclusions Blocking the Tcf/beta-catenin complex inhibits the Wnt/beta-catenin signaling in adrenocortical tumor cells triggering increased apoptosis, decreased cell viability and impairment of adrenal steroidogenesis. These promising findings pave the way for further experiments inhibiting the Wnt/beta-catenin pathway in pre-clinical models of ACC. The inhibition of this pathway may become a promising adjuvant therapy for patients with ACC. PMID:26515592

  2. Inhibition of Phosphatidylcholine-Specific Phospholipase C Interferes with Proliferation and Survival of Tumor Initiating Cells in Squamous Cell Carcinoma

    PubMed Central

    Ferri, Renata; Mercurio, Laura; Canevari, Silvana; Podo, Franca; Miotti, Silvia; Iorio, Egidio

    2015-01-01

    Purpose The role of phosphatidylcholine-specific phospholipase C (PC-PLC), the enzyme involved in cell differentiation and proliferation, has not yet been explored in tumor initiating cells (TICs). We investigated PC-PLC expression and effects of PC-PLC inhibition in two adherent (AD) squamous carcinoma cell lines (A431 and CaSki), with different proliferative and stemness potential, and in TIC-enriched floating spheres (SPH) originated from them. Results Compared with immortalized non-tumoral keratinocytes (HaCaT) A431-AD cells showed 2.5-fold higher PC-PLC activity, nuclear localization of a 66-kDa PC-PLC isoform, but a similar distribution of the enzyme on plasma membrane and in cytoplasmic compartments. Compared with A431-AD, A431-SPH cells showed about 2.8-fold lower PC-PLC protein and activity levels, but similar nuclear content. Exposure of adherent cells to the PC-PLC inhibitor D609 (48h) induced a 50% reduction of cell proliferation at doses comprised between 33 and 50 μg/ml, without inducing any relevant cytotoxic effect (cell viability 95±5%). In A431-SPH and CaSki-SPH D609 induced both cytostatic and cytotoxic effects at about 20 to 30-fold lower doses (IC50 ranging between 1.2 and 1.6 μg/ml). Furthermore, D609 treatment of A431-AD and CaSki-AD cells affected the sphere-forming efficiency, which dropped in both cells, and induced down-modulation of stem-related markers mRNA levels (Oct4, Nestin, Nanog and ALDH1 in A431; Nestin and ALDH1 in CaSki cells). Conclusions These data suggest that the inhibition of PC-PLC activity may represent a new therapeutic approach to selectively target the most aggressive and tumor promoting sub-population of floating spheres originated from squamous cancer cells possessing different proliferative and stemness potential. PMID:26402860

  3. Alveolar macrophages. II. Inhibition of lymphocyte proliferation by purified macrophages from rat lung.

    PubMed Central

    Holt, P G

    1979-01-01

    Macrophages were prepared from the lung, peritoneal cavity and blood of normal, unstimulated rats from a number of strains. The macrophages were purified by adherence, and characterized via surface markers, enzyme activity and phagocytic capacity, and subsequently tested for activity in cultures of mitogen-stimulated syngeneic lymphocytes. Peritoneal macrophages and blood monocytes were mildly stimulatory, or ineffective in modulating mitogen-induced DNA synthesis; peritoneal macrophages reconstituted the blastogenic responses of macrophage-depleted lymph node cell cultures to normal limits. In contrast, alveolar macrophages were markedly inhibitory to lymphocyte proliferation; in some instances inhibitory activity was demonstrable when added alveolar macrophages comprised only 0.04% of the total cells in culture. Lymphocyte proliferation induced by T-cell mitogens was more susceptible to this inhibition than was proliferation induced by the B-cell mitogen LPS. Alveolar macrophages recovered from SPF rats, while less in number, exhibited comparable inhibitory activity. These results form part of an emerging picture picture of the normal alveolar macrophage as a potential 'suppressor' of T-cell activity in the lung. PMID:468308

  4. Immature and Mature Megakaryocytes Enhance Osteoblast Proliferation and Inhibit Osteoclast Formation

    PubMed Central

    Ciovacco, Wendy A.; Cheng, Ying-Hua; Horowitz, Mark C.; Kacena, Melissa A.

    2011-01-01

    Recent data suggests that megakaryocytes (MKs) play a role in skeletal homeostasis. In vitro and in vivo data show that MKs stimulate osteoblast (OB) proliferation and inhibit osteoclast (OC) formation, thus favoring net bone deposition. There are several mouse models with dysregulated megakaryopoiesis and resultant high bone mass phenotypes. One such model that our group has extensively studied is GATA-1 deficient mice. GATA-1 is a transcription factor required for normal megakaryopoiesis, and mice deficient in GATA-1 have increases in immature MK number and a striking increase in bone mass. While the increased bone mass could simply be a result of increased MK number, here we take a more in depth look at the MKs of these mice to see if there is a unique factor inherent to GATA-1 deficient MKs that favors increased bone deposition. We show that increased MK number does correspond with increased OB proliferation and decreased OC proliferation, that stage of maturation does not alter the effect of MKs on bone cell lineages beyond the megakaryoblast stage, and that GATA-1 deficient MKs survive longer than wild-type controls. So while increased MK number in GATA-1 deficient mice likely contributes to the high bone mass phenotype, we propose that the increased longevity of this lineage also plays a role. Since GATA-1 deficient MKs live longer they are able to exert both more proliferative influence on OBs and more inhibitory influence on OCs. PMID:20052670

  5. Emodin and Aloe-Emodin Suppress Breast Cancer Cell Proliferation through ER α Inhibition.

    PubMed

    Huang, Pao-Hsuan; Huang, Chih-Yang; Chen, Mei-Chih; Lee, Yueh-Tsung; Yue, Chia-Herng; Wang, Hsin-Yi; Lin, Ho

    2013-01-01

    The anthraquinones emodin and aloe-emodin are abundant in rhubarb. Several lines of evidence indicate that emodin and aloe-emodin have estrogenic activity as phytoestrogens. However, their effects on estrogen receptor α (ER α ) activation and breast cancer cell growth remain controversial. The goal of this study is to investigate the effects and molecular mechanisms of emodin and aloe-emodin on breast cancer cell proliferation. Our results indicate that both emodin and aloe-emodin are capable of inhibiting breast cancer cell proliferation by downregulating ER α protein levels, thereby suppressing ER α transcriptional activation. Furthermore, aloe-emodin treatment led to the dissociation of heat shock protein 90 (HSP90) and ER α and increased ER α ubiquitination. Although emodin had similar effects to aloe-emodin, it was not capable of promoting HSP90/ER α dissociation and ER α ubiquitination. Protein fractionation results suggest that aloe-emodin tended to induce cytosolic ER α degradation. Although emodin might induce cytosolic ER α degradation, it primarily affected nuclear ER α distribution similar to the action of estrogen when protein degradation was blocked. In conclusion, our data demonstrate that emodin and aloe-emodin specifically suppress breast cancer cell proliferation by targeting ER α protein stability through distinct mechanisms. These findings suggest a possible application of anthraquinones in preventing or treating breast cancer in the future. PMID:23864887

  6. Efficient inhibition of fibroblast proliferation and collagen expression by ERK2 siRNAs

    SciTech Connect

    Li, Fengfeng; Fan, Cunyi; Cheng, Tao; Jiang, Chaoyin; Zeng, Bingfang

    2009-05-01

    Transforming growth factor-{beta}1 and fibroblast growth factor-2 play very important roles in fibroblast proliferation and collagen expression. These processes lead to the formation of joint adhesions through the SMAD and MAPK pathways, in which ERK2 is supposed to be crucial. Based on these assumptions, lentivirus (LV)-mediated small interfering RNAs (siRNAs) targeting ERK2 were used to suppress the proliferation and collagen expression of rat joint adhesion tissue fibroblasts (RJATFs). Among four siRNAs examined, siRNA1 caused an 84% reduction in ERK2 expression (p < 0.01) and was selected as the most efficient siRNA for use in this study. In subsequent experiments, significant downregulation of types I and III collagen were observed by quantitative RT-PCR and Western blot analyses. MTT assays and flow cytometry revealed marked inhibition of RJATF proliferation, but no apoptosis. In conclusion, LV-mediated ERK2 siRNAs may represent novel therapies or drug targets for preventing joint adhesion formation.

  7. Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death

    SciTech Connect

    Apostolou, Andria; Shen Yuxian; Liang Yan; Luo Jun; Fang Shengyun

    2008-08-01

    The accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress that initiates the unfolded protein response (UPR). UPR activates both adaptive and apoptotic pathways, which contribute differently to disease pathogenesis. To further understand the functional mechanisms of UPR, we identified 12 commonly UPR-upregulated genes by expression microarray analysis. Here, we describe characterization of Armet/MANF, one of the 12 genes whose function was not clear. We demonstrated that the Armet/MANF protein was upregulated by various forms of ER stress in several cell lines as well as by cerebral ischemia of rat. Armet/MANF was localized in the ER and Golgi and was also a secreted protein. Silencing Armet/MANF by siRNA oligos in HeLa cells rendered cells more susceptible to ER stress-induced death, but surprisingly increased cell proliferation and reduced cell size. Overexpression of Armet/MANF inhibited cell proliferation and improved cell viability under glucose-free conditions and tunicamycin treatment. Based on its inhibitory properties for both proliferation and cell death we have demonstrated, Armet is, thus, a novel secreted mediator of the adaptive pathway of UPR.

  8. Antidiabetic drug metformin inhibits esophageal adenocarcinoma cell proliferation in vitro and in vivo.

    PubMed

    Fujihara, Shintaro; Kato, Kiyohito; Morishita, Asahiro; Iwama, Hisakazu; Nishioka, Tomoko; Chiyo, Taiga; Nishiyama, Noriko; Miyoshi, Hisaaki; Kobayashi, Mitsuyoshi; Kobara, Hideki; Mori, Hirohito; Okano, Keiichi; Suzuki, Yasuyuki; Masaki, Tsutomu

    2015-05-01

    Esophageal carcinoma is the eighth most common cancer worldwide and the sixth leading cause of cancer-related deaths, with one of the worst prognoses of any form of cancer. Treatment with the anti-diabetic drug metformin has been associated with reduced cancer incidence in patients with type 2 diabetes. This study therefore evaluated the effects of metformin on the proliferation, in vitro and in vivo, of human esophageal adenocarcinoma cells, as well as the microRNAs associated with the antitumor effects of metformin. Metformin inhibited the proliferation of the esophageal adenocarcinoma cell lines OE19, OE33, SK-GT4 and OACM 5.1C, blocking the G0 to G1 transition in the cell cycle. This was accompanied by strong reductions in G1 cyclins, especially cyclin D1, cyclin-dependent kinase (Cdk)4, and Cdk6, and decreases in retinoblastoma protein phosphorylation. In addition, metformin reduced the phosphorylation of epidermal growth factor receptor and insulin-like growth factor and insulin-like growth factor-1 receptor, as well as angiogenesis-related proteins, such as vascular endothelial growth factor, tissue inhibitor of metalloproteinases (TIMP)-1, and TIMP-2. Metformin also markedly altered microRNA expression. Treatment with metformin of athymic nude mice bearing xenograft tumors reduced tumor proliferation. These findings suggest that metformin may have clinical use in the treatment of esophageal adenocarcinoma. PMID:25709052

  9. miR-494 inhibits ovarian cancer cell proliferation and promotes apoptosis by targeting FGFR2

    PubMed Central

    ZHAO, XIAOJUAN; ZHOU, YUN; CHEN, YU; YU, FENG

    2016-01-01

    MicroRNAs (miRs) have been reported to be key regulators in numerous types of cancer. The aim of the present study was to investigate the role of miR-494 in ovarian cancer. Expression of miR-494 was analyzed in ovarian cancer tissues and cell lines by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). miR-494 mimic or negative control was transiently transfected into A2780 and SKOV3 cell lines. A cell counting kit-8 assay was performed to assess the effects of miR-494 on cell proliferation, and flow cytometry was used to evaluate the apoptotic rate. The target gene of miR-494 was detected by luciferase assay. Expression of fibroblast growth factor receptor 2 (FGFR2) was identified using RT-qPCR and western blotting. In the present study, decreased expression of miR-494 was observed in ovarian cancer samples and cell lines. Overexpression of miR-494 inhibited ovarian cancer cell proliferation by inducing apoptosis. Additional investigation indicated that FGFR2 was a direct target of miR-494. Taken together, the results of the present study suggested that miR-494 suppressed ovarian cancer cell proliferation by inducing apoptosis via targeting FGFR2. PMID:27313773

  10. Lentivirus-mediated silencing of MPHOSPH8 inhibits MTC proliferation and enhances apoptosis

    PubMed Central

    LI, PEIYONG; YANG, WEIPING; SHEN, BAIYONG; LI, HONGWEI; YAN, JIQI

    2016-01-01

    Thyroid carcinoma (TC) is the most common malignancy of the endocrine organs, and its incidence rate has steadily increased over the last decade. For medullary thyroid cancer (MTC), a type of TC, a high mortality rate has been reported. In previous studies, M-phase phosphoprotein 8 (MPHOSPH8) displayed an elevated expression in various human carcinoma cells. Thus, MPHOSPH8 may be a sensitive biomarker that could be used for the diagnosis and follow-up of MTC. In the present study, plasmids of RNA interference targeting the MPHOSPH8 gene were constructed. Once these lentiviruses targeting MPHOSPH8 were transfected into the MTC cell line TT, cell viability and proliferation were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Flow cytometry was used to assess the cell cycle distribution and apoptosis. The expression levels of MPHOSPH8 were detected by reverse transcription quantitative-polymerase chain reaction and western blot analyses. Depletion of MPHOSPH8 significantly inhibited cell proliferation. Furthermore, knockdown of MPHOSPH8 in TT cells led to G0/G1 phase cell cycle arrest and apoptosis. The results of the present study suggest that MPHOSPH8 promotes cell proliferation and may be a potential target for anticancer therapy of MTC. PMID:27313751

  11. Inhibition of malignant thyroid carcinoma cell proliferation by Ras and galectin-3 inhibitors

    PubMed Central

    Menachem, A; Bodner, O; Pastor, J; Raz, A; Kloog, Y

    2015-01-01

    Anaplastic Thyroid carcinoma is an extremely aggressive solid tumor that resists most treatments and is almost always fatal. Galectin-3 (Gal-3) is an important marker for thyroid carcinomas and a scaffold of the K-Ras protein. S-trans, transfarnesylthiosalicylic acid (FTS; Salirasib) is a Ras inhibitor that inhibits the active forms of Ras proteins. Modified citrus pectin (MCP) is a water-soluble citrus-fruit-derived polysaccharide fiber that specifically inhibits Gal-3. The aim of this study was to develop a novel drug combination designed to treat aggressive anaplastic thyroid carcinoma. Combined treatment with FTS and MCP inhibited anaplastic thyroid cells proliferation in vitro by inducing cell cycle arrest and increasing apoptosis rate. Immunoblot analysis revealed a significant decrease in Pan-Ras, K-Ras, Ras-GTP, p-ERK, p53, and Gal-3 expression levels and significant increase in p21 expression levels. In nude mice, treatment with FTS and MCP inhibited tumor growth. Levels of Gal-3, K-Ras-GTP, and p-ERK were significantly decreased. To conclude, our results suggest K-Ras and Gal-3 as potential targets in anaplastic thyroid tumors and herald a novel treatment for highly aggressive anaplastic thyroid carcinoma. PMID:27551476

  12. ESAT6 inhibits autophagy flux and promotes BCG proliferation through MTOR.

    PubMed

    Dong, Hu; Jing, Wu; Runpeng, Zhao; Xuewei, Xu; Min, Mu; Ru, Cai; Yingru, Xing; Shengfa, Ni; Rongbo, Zhang

    2016-08-19

    In recent years, increasing studies have found that pathogenic Mycobacterium tuberculosis (Mtb) inhibits autophagy, which mediates the anti-mycobacterial response, but the mechanism is not clear. We previously reported that secretory acid phosphatase (SapM) of Mtb can negatively regulate autophagy flux. Recently, another virulence factor of Mtb, early secretory antigenic target 6 (ESAT6), has been found to be involved in inhibiting autophagy, but the mechanism remains unclear. In this study, we show that ESAT6 hampers autophagy flux to boost bacillus Calmette-Guerin (BCG) proliferation and reveals a mechanism by which ESAT6 blocks autophagosome-lysosome fusion in a mammalian target of rapamycin (MTOR)-dependent manner. In both Raw264.7 cells and primary macrophages derived from the murine abdominal cavity (ACM), ESAT6 repressed autophagy flux by interfering with the autophagosome-lysosome fusion, which resulted in an increased load of BCG. Impaired degradation of LC3Ⅱ and SQSTM1 by ESAT6 was related to the upregulated activity of MTOR. Contrarily, inhibiting MTOR with Torin1 removed the ESAT6-induced autophagy block and lysosome dysfunction. Furthermore, in both Raw264.7 and ACM cells, MTOR inhibition significantly suppressed the survival of BCG. In conclusion, our study highlights how ESAT6 blocks autophagy and promotes BCG survival in a way that activates MTOR. PMID:27317487

  13. Studies on Inhibition of Proliferation of Enterovirus-71 by Compound YZ-LY-0

    PubMed Central

    Yang, Qingzhan; Jie, Qing; Shaw, Neil; Li, Lei; Rao, Zihe; Yin, Zheng; Lou, Zhiyong

    2015-01-01

    In recent years, hand-foot-and-mouth disease (HFMD), which is caused by Enteroviruses, has emerged as a serious illness. It affects mainly children under the age of five and results in high fatality rates. Enterovirus 71 (EV71) is the main causative agent of HFMD in China and currently there are no effective anti-viral drugs available to treat HFMD. In the present study, we screened compounds for inhibition of proliferation of EV71. Compound YZ-LY-0 stalled the life cycle of EV71. The inhibitor exhibited EC50 value of 0.29 μm against SK-EV006 strain of EV71. Notably, YZ-LY-0 had low cytotoxicity (CC50 > 100 μM) and a high selectivity index (over 300) in Vero and RD cells. YZ-LY-0 in combination with an EV71 RdRp inhibitor or an entry inhibitor showed an antagonistic effect at very low concentrations. However, at higher concentrations the inhibitors exhibited a synergistic effect in inhibiting viral replication. Preliminary results on investigation of the mechanism of inhibition indicate that YZ-LY-0 does not block the entry of the virus in the host cell, but instead inhibits an early stage of EV71 replication. Our studies provide a potential clinical therapeutic option against EV71 infections and suggest that a combined application of YZ-LY-0 with other inhibitors could be more effective in the treatment of HFMD. PMID:26640412

  14. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling

    PubMed Central

    Son, Dong Ju; Kim, Soo Yeon; Han, Seong Su; Kim, Chan Woo; Kumar, Sandeep; Park, Byeoung Soo; Lee, Sung Eun; Yun, Yeo Pyo; Jo, Hanjoong; Park, Young Hyun

    2012-01-01

    Piperlongumine (piplartine, PL) is an alkaloid found in the long pepper (Piper longum L.) and has well-documented anti-platelet aggregation, anti-inflammatory, and anti-cancer properties; however, the role of PL in prevention of atherosclerosis is unknown. We evaluated the anti-atherosclerotic potential of PL in an in vivo murine model of accelerated atherosclerosis and defined its mechanism of action in aortic vascular smooth muscle cells (VSMCs) in vitro. Local treatment with PL significantly reduced atherosclerotic plaque formation as well as proliferation and nuclear factor-kappa B (NF-κB) activation in an in vivo setting. PL treatment in VSMCs in vitro showed inhibition of migration and platelet-derived growth factor BB (PDGF-BB)-induced proliferation to the in vivo findings. We further identified that PL inhibited PDGF-BB-induced PDGF receptor beta activation and suppressed downstream signaling molecules such as phospholipase C1, extracellular signal-regulated kinases 1 and 2 and Akt. Lastly, PL significantly attenuated activation of NF-κB—a downstream transcriptional regulator in PDGF receptor signaling, in response to PDGF-BB stimulation. In conclusion, our findings demonstrate a novel, therapeutic mechanism by which PL suppresses atherosclerosis plaque formation in vivo. PMID:22995306

  15. Cyclo-oxygenase 2 inhibitor, nabumetone, inhibits proliferation in chronic myeloid leukemia cell lines.

    PubMed

    Vural, Filiz; Ozcan, Mehmet Ali; Ozsan, Güner Hayri; Ateş, Halil; Demirkan, Fatih; Pişkin, Ozden; Undar, Bülent

    2005-05-01

    The anti-tumor effect of cyclo-oxygenase (COX) inhibitors has been documented in several studies. COX2 inhibitors have attracted more attention because of the fewer side-effects and the more prominent anti-tumor effects. However, experience with these drugs in hematological malignancies is limited. In our study, a potent COX2 inhibitor, nabumetone (NBT), was investigated for its anti-proliferative and apoptotic effects in K-562 and Meg-01 chronic myeloid leukemia blastic cell lines as a single agent or in combination with adriamycin (ADR) and interferon alpha (IFN-a). In these cell lines, a dose-dependent inhibition of proliferation was observed with NBT. We observed no significant apoptotic effect of NBT. However, NBT potentiated the apoptotic effect of ADR in the K-562 cell line. Bcl-2 expression was reduced by NBT (11% vs. 2%). The combination of NBT with IFN did not have any significant effect on the K-562 cell line. We suggest that NBT inhibits proliferation and potentiates the apoptotic effect of ADR in chronic myeloid leukemia cell lines. PMID:16019514

  16. Inhibition of autophagy ameliorates pulmonary microvascular dilation and PMVECs excessive proliferation in rat experimental hepatopulmonary syndrome

    PubMed Central

    Xu, Duo; Chen, Bing; Gu, Jianteng; Chen, Lin; Belguise, Karine; Wang, Xiaobo; Yi, Bin; Lu, Kaizhi

    2016-01-01

    Hepatopulmonary syndrome (HPS) is a defective liver-induced pulmonary vascular disorder with massive pulmonary microvascular dilation and excessive proliferation of pulmonary microvascular endothelial cells (PMVECs). Growing evidence suggests that autophagy is involved in pulmonary diseases, protectively or detrimentally. Thus, it is interesting and important to explore whether autophagy might be involved in and critical in HPS. In the present study, we report that autophagy was activated in common bile duct ligation (CBDL) rats and cultured pulmonary PMVECs induced by CBDL rat serum, two accepted in vivo and in vitro experimental models of HPS. Furthermore, pharmacological inhibition of autophagy with 3-methyladenine (3-MA) significantly alleviated pathological alterations and typical symptom of HPS in CBDL rats in vivo, and consistently 3-MA significantly attenuated the CBDL rat serum-induced excessive proliferation of PMVECs in vitro. All these changes mediated by 3-MA might explain the observed prominent improvement of pulmonary appearance, edema, microvascular dilatation and arterial oxygenation in vivo. Collectively, these results suggest that autophagy activation may play a critical role in the pathogenesis of HPS, and autophagy inhibition may have a therapeutic potential for this disease. PMID:27480323

  17. Silencing Aurora-A with siRNA inhibits cell proliferation in human lung adenocarcinoma cells.

    PubMed

    Zhong, Ning; Shi, Shunbin; Wang, Hongzhen; Wu, Guangzhou; Wang, Yunliang; Ma, Qiang; Wang, Hongwei; Liu, Yuanhua; Wang, Jinzhi

    2016-09-01

    Aurora kinase A (AURKA) is an oncogenic serine/threonine kinase, it plays important roles in tumorigenesis and chemoresistance. In this study, we investigated the expression of AURKA in lung adenocarcinoma tissues, the role of small interference RNA targeting AURKA on growth, cell cycle, and apoptosis of lung adenocarcinoma cell lines in vitro. The AURKA is highly expressed in lung adenocarcinoma tissues and human lung adenocarcinoma cell lines. Lentivirus-mediated short hairpin RNA (shRNA) was used to knock down AURKA expression in human lung adenocarcinoma cell lines H1299 and A549. The results indicated that depletion of AURKA could inhibit cell growth, cause cell cycle arrest and apoptosis. The potential mechanisms of AURKA inhibition induced cell cycle arrest and apoptosis are associated with downregulated RAF-1, CCND2, CCND3, CDK4, PAK4, EGFR and upregulated WEE1 expression. Furthermore, AURKA knockdown cooperated with vincristine (VCR) to repress A549 cell proliferation. Therefore, AURKA plays important roles in the proliferation of human lung adenocarcinoma cells, which suggests that AURKA could be a promising tool for lung adenocarcinoma therapy. PMID:27571708

  18. Tenascin-W inhibits proliferation and differentiation of preosteoblasts during endochondral bone formation

    SciTech Connect

    Kimura, Hiroaki; Akiyama, Haruhiko . E-mail: hakiyama@kuhp.kyoto-u.ac.jp; Nakamura, Takashi; Crombrugghe, Benoit de

    2007-05-18

    We identified a cDNA encoding mouse Tenascin-W (TN-W) upregulated by bone morphogenetic protein (Bmp)2 in ATDC5 osteo-chondroprogenitors. In adult mice, TN-W was markedly expressed in bone. In mouse embryos, during endochondral bone formation TN-W was localized in perichondrium/periosteum, but not in trabecular and cortical bones. During bone fracture repair, cells in the newly formed perichondrium/periosteum surrounding the cartilaginous callus expressed TN-W. Furthermore, TN-W was detectable in perichondrium/periosteum of Runx2-null and Osterix-null embryos, indicating that TN-W is expressed in preosteoblasts. In CFU-F and -O cells, TN-W had no effect on initiation of osteogenesis of bone marrow cells, and in MC3T3-E1 osteoblastic cells TN-W inhibited cell proliferation and Col1a1 expression. In addition, TN-W suppressed canonical Wnt signaling which stimulates osteoblastic differentiation. Our results indicate that TN-W is a novel marker of preosteoblasts in early stage of osteogenesis, and that TN-W inhibits cell proliferation and differentiation of preosteoblasts mediated by canonical Wnt signaling.

  19. MicroRNA-217 inhibits cell proliferation and invasion by targeting Runx2 in human glioma

    PubMed Central

    Zhu, Yonggang; Zhao, Hongguang; Feng, Li; Xu, Songbai

    2016-01-01

    MircroRNA-217 (miR-217) has been showed to involve in the initiation and development of human cancers, and is recognize as a tumor suppressor miRNA in several tumors. However, the clinical significance and its underlying role in human glioma remain unclear. Herein, we found that the expression of miR-217 was significantly down-regulated in glioma tissues as compared with adjacent normal brain tissues. Clinical association analysis disclosed that low-expression of miR-217 was evidently negative associated with advanced tumor stage (grade III + IV) in glioma. Further function assays showed that miR-217 inhibited proliferation, colony formation, invasion and migration of glioma cells. Notably, runt-related transcription factors 2 (Runx2) was identified as a functional target of miR-217 in glioma. Furthermore, an inverse correlation between miR-217 and Runx2 expression was observed in glioma tissues. Downregulation of Runx2 has similar with inhibition effect of overexpression of miR-217, and upregulation of Runx2 reversed the effects of overexpressing of miR-217. Taken together, these results suggest a critical role of miR-217 in suppressing proliferation, migration, and invasion of glioma by targeting Runx2. PMID:27186274

  20. Raddeanoside R13 inhibits breast cancer cell proliferation, invasion, and metastasis.

    PubMed

    Liang, Yingchun; Xu, Xiaojie; Yu, Haiming; Li, Ling; Hong, Tian; Ji, Quanbo; Feng, Yulin; Jin, Shuai; Song, Yeqiong; Guo, Jing; Zheng, Zhibing; Ye, Qinong; Yang, Shilin

    2016-07-01

    Pulsatilla chinensis is one of the 50 famous fundamental herbs used in traditional Chinese medicine. Saponins are the main components of P. chinensis. Although the anti-proliferative function of saponins has been established in plenty types of cancer, the role of saponins on tumor invasion and metastasis has not been reported, and the mechanisms of how saponins exert the anti-tumor functions are still poorly characterized. Here, we demonstrate that, in breast cancer (BC) cells, raddeanoside R13, a component of saponins extracted from P. chinensis, exhibits strong anti-proliferative and anti-metastasis ability, accompanied by cell cycle arrest, apoptosis, autophagy, and reversion of epithelial-mesenchymal transition (EMT). Raddeanoside R13 (R13) inhibits BC cell proliferation via the activation of G1/S checkpoint transitions, concomitant with a marked decrease of the positive cell cycle regulators, including cyclin D1, cyclin A, and cyclin B1. R13 induces BC cell apoptosis accompanied by the increased levels of cleaved PARP and caspase-3. R13 inhibits BC cell migration and invasion and regulates the expression of the markers of EMT, which plays a critical role in cancer cell migration and invasion. Moreover, R13 suppresses BC tumor growth and metastasis in nude mice. These data highlight the important role of R13 in BC cell proliferation and progression and suggest that R13 may be a useful drug for BC therapy. PMID:26810189

  1. RIG-I inhibits pancreatic β cell proliferation through competitive binding of activated Src

    PubMed Central

    Pan, Yi; Li, GuangMing; Zhong, HengGao; Chen, MeiJuan; Chen, TingTing; Gao, LiLi; Wu, HuiWen; Guo, Jun

    2016-01-01

    Nutrition is a necessary condition for cell proliferation, including pancreatic β cells; however, over-nutrition, and the resulting obesity and glucolipotoxicity, is a risk factor for the development of Type 2 diabetes mellitus (DM), and causes inhibition of pancreatic β-cells proliferation and their loss of compensation for insulin resistance. Here, we showed that Retinoic acid (RA)-inducible gene I (RIG-I) responds to nutrient signals and induces loss of β cell mass through G1 cell cycle arrest. Risk factors for type 2 diabetes (e.g., glucolipotoxicity, TNF-α and LPS) activate Src in pancreatic β cells. Elevated RIG-I modulated the interaction of activated Src and STAT3 by competitive binding to STAT3. Elevated RIG-I downregulated the transcription of SKP2, and increased the stability and abundance of P27 protein in a STAT3-dependent manner, which was associated with inhibition of β cell growth elicited by Src. These results supported a role for RIG-I in β cell mass loss under conditions of metabolic surplus and suggested that RIG-I-induced blocking of Src/STAT3 signalling might be involved in G1 phase cycle arrest through the Skp2/P27 pathway in pancreatic β cells. PMID:27349479

  2. RIG-I inhibits pancreatic β cell proliferation through competitive binding of activated Src.

    PubMed

    Pan, Yi; Li, GuangMing; Zhong, HengGao; Chen, MeiJuan; Chen, TingTing; Gao, LiLi; Wu, HuiWen; Guo, Jun

    2016-01-01

    Nutrition is a necessary condition for cell proliferation, including pancreatic β cells; however, over-nutrition, and the resulting obesity and glucolipotoxicity, is a risk factor for the development of Type 2 diabetes mellitus (DM), and causes inhibition of pancreatic β-cells proliferation and their loss of compensation for insulin resistance. Here, we showed that Retinoic acid (RA)-inducible gene I (RIG-I) responds to nutrient signals and induces loss of β cell mass through G1 cell cycle arrest. Risk factors for type 2 diabetes (e.g., glucolipotoxicity, TNF-α and LPS) activate Src in pancreatic β cells. Elevated RIG-I modulated the interaction of activated Src and STAT3 by competitive binding to STAT3. Elevated RIG-I downregulated the transcription of SKP2, and increased the stability and abundance of P27 protein in a STAT3-dependent manner, which was associated with inhibition of β cell growth elicited by Src. These results supported a role for RIG-I in β cell mass loss under conditions of metabolic surplus and suggested that RIG-I-induced blocking of Src/STAT3 signalling might be involved in G1 phase cycle arrest through the Skp2/P27 pathway in pancreatic β cells. PMID:27349479

  3. Astaxanthin Inhibits Proliferation of Human Gastric Cancer Cell Lines by Interrupting Cell Cycle Progression

    PubMed Central

    Kim, Jung Ha; Park, Jong-Jae; Lee, Beom Jae; Joo, Moon Kyung; Chun, Hoon Jai; Lee, Sang Woo; Bak, Young-Tae

    2016-01-01

    Background/Aims Astaxanthin is a carotenoid pigment that has antioxidant, antitumoral, and anti-inflammatory properties. In this in vitro study, we investigated the mechanism of anticancer effects of astaxanthin in gastric carcinoma cell lines. Methods The human gastric adenocarcinoma cell lines AGS, KATO-III, MKN-45, and SNU-1 were treated with various concentrations of astaxanthin. A cell viability test, cell cycle analysis, and immunoblotting were performed. Results The viability of each cancer cell line was suppressed by astaxanthin in a dose-dependent manner with significantly decreased proliferation in KATO-III and SNU-1 cells. Astaxanthin increased the number of cells in the G0/G1 phase but reduced the proportion of S phase KATO-III and SNU-1 cells. Phosphorylated extracellular signal-regulated kinase (ERK) was decreased in an inverse dose-dependent correlation with astaxanthin concentration, and the expression of p27kip-1 increased the KATO-III and SNU-1 cell lines in an astaxanthin dose-dependent manner. Conclusions Astaxanthin inhibits proliferation by interrupting cell cycle progression in KATO-III and SNU-1 gastric cancer cells. This may be caused by the inhibition of the phosphorylation of ERK and the enhanced expression of p27kip-1. PMID:26470770

  4. Topoisomerase II inhibition suppresses the proliferation of telomerase-negative cancers.

    PubMed

    Hsieh, Meng-Hsun; Tsai, Cheng-Hui; Lin, Chuan-Chuan; Li, Tsai-Kun; Hung, Ting-Wei; Chang, Li-Te; Hsin, Ling-Wei; Teng, Shu-Chun

    2015-05-01

    Telomere maintenance is required for chromosome stability, and telomeres are typically elongated by telomerase following DNA replication. In both tumor and yeast cells that lack telomerase, telomeres are maintained via an alternative recombination mechanism. Previous studies have indicated that yeast Sgs1 and Top3 may work together to remove highly negative supercoils that are generated from recombination. However, the mechanism by which cells eradicate highly positive supercoils during recombination remains unclear. In the present study, we demonstrate that TOP2 is involved in telomere-telomere recombination. Disturbance of telomeric structure by RIF1 or RIF2 deletion alleviates the requirement for TOP2 in telomere-telomere recombination. In human telomerase-negative alternative lengthening of telomere (ALT) cells, TOP2α or TOP2β knockdown decreases ALT-associated PML bodies, increases telomere dysfunction-induced foci and triggers telomere shortening. Similar results were observed when ALT cells were treated with ICRF-193, a TOP2 inhibitor. Importantly, ICRF-193 treatment blocks ALT-associated phenotypes in vitro, causes telomere shortening, and inhibits ALT cell proliferation in mice. Taken together, these findings imply that TOP2 is involved in the ALT pathway, perhaps by resolving the highly positive supercoil structure at the front of the helicase. Inhibition of topoisomerase II may be a promising therapeutic approach that can be used to prevent cell proliferation in ALT-type cancer cells. PMID:25430478

  5. Inhibition of cyclooxygenase-1 lowers proliferation and induces macroautophagy in colon cancer cells

    SciTech Connect

    Wu, William Ka Kei; Wu, Ya Chun; Li, Hai To

    2009-04-24

    Evolving evidence supports that cyclooxygenase-1 (COX-1) takes part in colon carcinogenesis. The effects of COX-1 inhibition on colon cancer cells, however, remains obscured. In this study, we demonstrate that COX-1 inhibitor sc-560 inhibited colon cancer cell proliferation with concomitant G{sub 0}/G{sub 1}-phase cell cycle arrest. The anti-proliferative effect was associated with down-regulation of c-Fos, cyclin E{sub 2} and E{sub 2}F-1 and up-regulation of p21{sup Waf1/Cip1} and p27{sup Kip1}. In addition, sc-560 induced macroautophagy, an emerging mechanism of tumor suppression, as evidenced by the formation of LC3{sup +} autophagic vacuoles, enhanced LC3 processing, and the accumulation of acidic vesicular organelles and autolysosomes. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3{sup +} autophagic vacuoles and the processing of LC3 induced by sc-560. To conclude, this study reveals the unreported relationship between COX-1 and proliferation/macroautophagy of colon cancer cells.

  6. Aloe-emodin suppresses esophageal cancer cell TE1 proliferation by inhibiting AKT and ERK phosphorylation

    PubMed Central

    Chang, Xiaobin; Zhao, Jimin; Tian, Fang; Jiang, Yanan; Lu, Jing; Ma, Junfen; Zhang, Xiaoyan; Jin, Guoguo; Huang, Youtian; Dong, Zigang; Liu, Kangdong; Dong, Ziming

    2016-01-01

    Aberrant AKT and extracellular signal-regulated kinase (ERK) activation is often observed in various human cancers. Both AKT and ERK are important in the phosphoinositide 3-kinase/AKT and mitogen-activated protein kinase kinase/ERK signaling pathways, which play vital roles in cell proliferation, differentiation and survival. Compounds that are able to block these pathways have therefore a promising use in cancer treatment and prevention. The present study revealed that AKT and ERK are activated in esophageal cancer TE1 cells. Aloe-emodin, an anthraquinone present in aloe latex, can suppress TE1 cell proliferation and anchor-independent cell growth. Aloe-emodin can also reduce the number of TE1 cells in S phase. Protein analysis indicated that aloe-emodin inhibits the phosphorylation of AKT and ERK in a dose-dependent manner. Overall, the present data indicate that aloe-emodin can suppress TE1 cell growth by inhibiting AKT and ERK phosphorylation, and suggest its clinical use for cancer therapy. PMID:27602169

  7. TCP10L acts as a tumor suppressor by inhibiting cell proliferation in hepatocellular carcinoma

    SciTech Connect

    Zuo, Jie; Cai, Hao; Wu, Yanhua; Ma, Haijie; Jiang, Wei; Liu, Chao; Han, Dingding; Ji, Guoqing; Yu, Long

    2014-03-28

    Highlights: • TCP10L was down-regulated in clinical hepatocellular carcinoma (HCC). • Expression of TCP10L correlated significantly with tumor size and Milan criteria. • Overexpression of TCP10L attenuated growth of HCC cells both in vitro and in vivo. • Knocking down TCP10L promoted cell proliferation and tumorigenesis of HCC cells. - Abstract: TCP10L (T-complex 10 (mouse)-like) has been identified as a liver and testis-specific gene. Although a potential transcriptional suppression function of TCP10L has been reported previously, biological function of this gene still remains largely elusive. In this study, we reported for the first time that TCP10L was significantly down-regulated in clinical hepatocellular carcinoma (HCC) samples when compared to the corresponding non-tumorous liver tissues. Furthermore, TCP10L expression was highly correlated with advanced cases exceeding the Milan criteria. Overexpression of TCP10L in HCC cells suppressed colony formation, inhibited cell cycle progression through G0/G1 phase, and attenuated cell growth in vivo. Consistently, silencing of TCP10L promoted cell cycle progression and cell growth. Therefore, our study has revealed a novel suppressor role of TCP10L in HCC, by inhibiting proliferation of HCC cells, which may facilitate the diagnosis and molecular therapy in HCC.

  8. Human hepatitis B viral e antigen and its precursor P20 inhibit T lymphocyte proliferation

    SciTech Connect

    Purvina, Maija; Hoste, Astrid; Rossignol, Jean-Michel; Lagaudriere-Gesbert, Cecile

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer P20, precursor of the HBeAg, interacts with the cellular protein gC1qR. Black-Right-Pointing-Pointer HBeAg and P20 bind to T cell surface and inhibit mitogen-induced T cell division. Black-Right-Pointing-Pointer HBeAg and P20 inhibition of T cell proliferation is gC1qR and IL-1RAcP-independent. -- Abstract: The hepatitis B virus (HBV) Precore protein is processed through the secretory pathway directly as HBeAg or with the generation of an intermediate (P20). Precore gene has been shown to be implicated in viral persistence, but the functions of HBeAg and its precursors have not been fully elucidated. We show that the secreted proteins HBeAg and P20 interact with T cell surface and alter Kit-225 and primary T cells proliferation, a process which may facilitate the establishment of HBV persistence. Our data indicate that the N-terminal end of Precore is important for these inhibitory effects and exclude that they are dependent on the association of HBeAg and P20 with two characterized cell surface ligands, the Interleukin-1 Receptor Accessory Protein and gC1qR (present study).

  9. Overexpression of heme oxygenase-1 protects smooth muscle cells against oxidative injury and inhibits cell proliferation.

    PubMed

    Zhang, Min; Zhang, Bao Hui; Chen, Li; An, Wei

    2002-06-01

    To investigate whether the expression of exogenous heme oxygenase-1 (HO-1) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation, we established an in vitro transfection of human HO-1 gene into rat VSMC mediated by a retroviral vector. The results showed that the profound expression of HO-1 protein as well as HO activity was 1.8- and 2.0-fold increased respectively in the transfected cells compared to the non-transfected ones. The treatment of VSMC with different concentrations of H2O2 led to the remarkable cell damage as indicated by survival rate and LDH leakage. However, the resistance of the HO-1 transfected VSMC against H2O2 was significantly raised. This protective effect was dramatically diminished when the transfected VSMC were pretreated with ZnPP-IX, a specific inhibitor of HO, for 24 h. In addition, we found that the growth potential of the transfected cells was significantly inhibited directly by increased activity of HO-1, and this effect might be related to decreased phosphorylation of MAPK. These results suggest that the overexpression of introduced hHO-1 is potentially able to reduce the risk factors of atherosclerosis, partially due to its cellular protection against oxidative injury and to its inhibitory effect on cellular proliferation. PMID:12118938

  10. Silencing of Kv4.1 potassium channels inhibits cell proliferation of tumorigenic human mammary epithelial cells

    SciTech Connect

    Jang, Soo Hwa; Choi, Changsun; Hong, Seong-Geun; Yarishkin, Oleg V.; Bae, Young Min; Kim, Jae Gon; O'Grady, Scott M.; Kang, Kyung-Sun; Ryu, Pan Dong; Lee, So Yeong

    2009-06-26

    Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a role in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.

  11. Englerin A Agonizes the TRPC4/C5 Cation Channels to Inhibit Tumor Cell Line Proliferation

    PubMed Central

    Carson, Cheryl; Raman, Pichai; Tullai, Jennifer; Xu, Lei; Henault, Martin; Thomas, Emily; Yeola, Sarita; Lao, Jianmin; McPate, Mark; Verkuyl, J. Martin; Marsh, George; Sarber, Jason; Amaral, Adam; Bailey, Scott; Lubicka, Danuta; Pham, Helen; Miranda, Nicolette; Ding, Jian; Tang, Hai-Ming; Ju, Haisong; Tranter, Pamela; Ji, Nan; Krastel, Philipp; Jain, Rishi K.; Schumacher, Andrew M.; Loureiro, Joseph J.; George, Elizabeth; Berellini, Giuliano; Ross, Nathan T.; Bushell, Simon M.; Erdemli, Gül; Solomon, Jonathan M.

    2015-01-01

    Englerin A is a structurally unique natural product reported to selectively inhibit growth of renal cell carcinoma cell lines. A large scale phenotypic cell profiling experiment (CLiP) of englerin A on ¬over 500 well characterized cancer cell lines showed that englerin A inhibits growth of a subset of tumor cell lines from many lineages, not just renal cell carcinomas. Expression of the TRPC4 cation channel was the cell line feature that best correlated with sensitivity to englerin A, suggesting the hypothesis that TRPC4 is the efficacy target for englerin A. Genetic experiments demonstrate that TRPC4 expression is both necessary and sufficient for englerin A induced growth inhibition. Englerin A induces calcium influx and membrane depolarization in cells expressing high levels of TRPC4 or its close ortholog TRPC5. Electrophysiology experiments confirmed that englerin A is a TRPC4 agonist. Both the englerin A induced current and the englerin A induced growth inhibition can be blocked by the TRPC4/C5 inhibitor ML204. These experiments confirm that activation of TRPC4/C5 channels inhibits tumor cell line proliferation and confirms the TRPC4 target hypothesis generated by the cell line profiling. In selectivity assays englerin A weakly inhibits TRPA1, TRPV3/V4, and TRPM8 which suggests that englerin A may bind a common feature of TRP ion channels. In vivo experiments show that englerin A is lethal in rodents near doses needed to activate the TRPC4 channel. This toxicity suggests that englerin A itself is probably unsuitable for further drug development. However, since englerin A can be synthesized in the laboratory, it may be a useful chemical starting point to identify novel modulators of other TRP family channels. PMID:26098886

  12. Modulators of estrogen receptor inhibit proliferation and migration of prostate cancer cells.

    PubMed

    Piccolella, Margherita; Crippa, Valeria; Messi, Elio; Tetel, Marc J; Poletti, Angelo

    2014-01-01

    In the initial stages, human prostate cancer (PC) is an androgen-sensitive disease, which can be pharmacologically controlled by androgen blockade. This therapy often induces selection of androgen-independent PC cells with increased invasiveness. We recently demonstrated, both in cells and mice, that a testosterone metabolite locally synthetized in prostate, the 5α-androstane-3β, 17β-diol (3β-Adiol), inhibits PC cell proliferation, migration and invasion, acting as an anti-proliferative/anti-metastatic agent. 3β-Adiol is unable to bind androgen receptor (AR), but exerts its protection against PC by specifically interacting with estrogen receptor beta (ERβ). Because of its potential retro-conversion to androgenic steroids, 3β-Adiol cannot be used "in vivo", thus, the aims of this study were to investigate the capability of four ligands of ERβ (raloxifen, tamoxifen, genistein and curcumin) to counteract PC progression by mimicking the 3β-Adiol activity. Our results demonstrated that raloxifen, tamoxifen, genistein and curcumin decreased DU145 and PC3 cell proliferation in a dose-dependent manner; in addition, all four compounds significantly decreased the detachment of cells seeded on laminin or fibronectin. Moreover, raloxifen, tamoxifen, genistein and curcumin-treated DU145 and PC3 cells showed a significant decrease in cell migration. Notably, all these effects were reversed by the anti-estrogen, ICI 182,780, suggesting that their actions are mediated by the estrogenic pathway, via the ERβ, the only isoform present in these PCs. In conclusion, these data demonstrate that by selectively activating the ERβ, raloxifen, tamoxifen, genistein and curcumin inhibit human PC cells proliferation and migration favoring cell adesion. These synthetic and natural modulators of ER action may exert a potent protective activity against the progression of PC even in its androgen-independent status. PMID:24184124

  13. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling

    SciTech Connect

    Son, Dong Ju; Kim, Soo Yeon; Han, Seong Su; Kim, Chan Woo; Kumar, Sandeep; Park, Byeoung Soo; Lee, Sung Eun; Yun, Yeo Pyo; Jo, Hanjoong; Park, Young Hyun

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Anti-atherogenic effect of PL was examined using partial carotid ligation model in ApoE KO mice. Black-Right-Pointing-Pointer PL prevented atherosclerotic plaque development, VSMCs proliferation, and NF-{kappa}B activation. Black-Right-Pointing-Pointer Piperlongumine reduced vascular smooth muscle cell activation through PDGF-R{beta} and NF-{kappa}B-signaling. Black-Right-Pointing-Pointer PL may serve as a new therapeutic molecule for atherosclerosis treatment. -- Abstract: Piperlongumine (piplartine, PL) is an alkaloid found in the long pepper (Piper longum L.) and has well-documented anti-platelet aggregation, anti-inflammatory, and anti-cancer properties; however, the role of PL in prevention of atherosclerosis is unknown. We evaluated the anti-atherosclerotic potential of PL in an in vivo murine model of accelerated atherosclerosis and defined its mechanism of action in aortic vascular smooth muscle cells (VSMCs) in vitro. Local treatment with PL significantly reduced atherosclerotic plaque formation as well as proliferation and nuclear factor-kappa B (NF-{kappa}B) activation in an in vivo setting. PL treatment in VSMCs in vitro showed inhibition of migration and platelet-derived growth factor BB (PDGF-BB)-induced proliferation to the in vivo findings. We further identified that PL inhibited PDGF-BB-induced PDGF receptor beta activation and suppressed downstream signaling molecules such as phospholipase C{gamma}1, extracellular signal-regulated kinases 1 and 2 and Akt. Lastly, PL significantly attenuated activation of NF-{kappa}B-a downstream transcriptional regulator in PDGF receptor signaling, in response to PDGF-BB stimulation. In conclusion, our findings demonstrate a novel, therapeutic mechanism by which PL suppresses atherosclerosis plaque formation in vivo.

  14. External Guide Sequences Targeting the aac(6′)-Ib mRNA Induce Inhibition of Amikacin Resistance▿

    PubMed Central

    Bistué, Alfonso J. C. Soler; Ha, Hongphuc; Sarno, Renee; Don, Michelle; Zorreguieta, Angeles; Tolmasky, Marcelo E.

    2007-01-01

    The dissemination of AAC(6′)-I-type acetyltransferases have rendered amikacin and other aminoglycosides all but useless in some parts of the world. Antisense technologies could be an alternative to extend the life of these antibiotics. External guide sequences are short antisense oligoribonucleotides that induce RNase P-mediated cleavage of a target RNA by forming a precursor tRNA-like complex. Thirteen-nucleotide external guide sequences complementary to locations within five regions accessible for interaction with antisense oligonucleotides in the mRNA that encodes AAC(6′)-Ib were analyzed. While small variations in the location targeted by different external guide sequences resulted in big changes in efficiency of binding to native aac(6′)-Ib mRNA, most of them induced high levels of RNase P-mediated cleavage in vitro. Recombinant plasmids coding for selected external guide sequences were introduced into Escherichia coli harboring aac(6′)-Ib, and the transformant strains were tested to determine their resistance to amikacin. The two external guide sequences that showed the strongest binding efficiency to the mRNA in vitro, EGSC3 and EGSA2, interfered with expression of the resistance phenotype at different degrees. Growth curve experiments showed that E. coli cells harboring a plasmid coding for EGSC3, the external guide sequence with the highest mRNA binding affinity in vitro, did not grow for at least 300 min in the presence of 15 μg of amikacin/ml. EGSA2, which had a lower mRNA-binding affinity in vitro than EGSC3, inhibited the expression of amikacin resistance at a lesser level; growth of E. coli harboring a plasmid coding for EGSA2, in the presence of 15 μg of amikacin/ml was undetectable for 200 min but reached an optical density at 600 nm of 0.5 after 5 h of incubation. Our results indicate that the use of external guide sequences could be a viable strategy to preserve the efficacy of amikacin. PMID:17387154

  15. Protein kinase C delta inhibits Caco-2 cell proliferation by selective changes in cell cycle and cell death regulators.

    PubMed

    Cerda, S R; Mustafi, R; Little, H; Cohen, G; Khare, S; Moore, C; Majumder, P; Bissonnette, M

    2006-05-25

    PKC-delta is a serine/threonine kinase that mediates diverse signal transduction pathways. We previously demonstrated that overexpression of PKC-delta slowed the G1 progression of Caco-2 colon cancer cells, accelerated apoptosis, and induced cellular differentiation. In this study, we further characterized the PKC-delta dependent signaling pathways involved in these tumor suppressor actions in Caco-2 cells overexpressing PKC-delta using a Zn2+ inducible expression vector. Consistent with a G1 arrest, increased expression of PKC-delta caused rapid and significant downregulation of cyclin D1 and cyclin E proteins (50% decreases, P<0.05), while mRNA levels remained unchanged. The PKC agonist, phorbol 12-myristate 13-acetate (TPA, 100 nM, 4 h), induced two-fold higher protein and mRNA levels of p21(Waf1), a cyclin-dependent kinase (cdk) inhibitor in PKC-delta transfectants compared with empty vector (EV) transfected cells, whereas the PKC-delta specific inhibitor rottlerin (3 microM) or knockdown of this isoenzyme with specific siRNA oligonucleotides blocked p21(Waf1) expression. Concomitantly, compared to EV control cells, PKC-delta upregulation decreased cyclin D1 and cyclin E proteins co-immunoprecipitating with cdk6 and cdk2, respectively. In addition, overexpression of PKC-delta increased binding of cdk inhibitor p27(Kip1) to cdk4. These alterations in cyclin-cdks and their inhibitors are predicted to decrease G1 cyclin kinase activity. As an independent confirmation of the direct role PKC-delta plays in cell growth and cell cycle regulation, we knocked down PKC-delta using specific siRNA oligonucleotides. PKC-delta specific siRNA oligonucleotides, but not irrelevant control oligonucleotides, inhibited PKC-delta protein by more than 80% in Caco-2 cells. Moreover, PKC-delta knockdown enhanced cell proliferation ( approximately 1.4-2-fold, P<0.05) and concomitantly increased cyclin D1 and cyclin E expression ( approximately 1.7-fold, P<0.05). This was a specific

  16. Silver nanoparticles inhibit fish gill cell proliferation in protein-free culture medium.

    PubMed

    Yue, Yang; Behra, Renata; Sigg, Laura; Schirmer, Kristin

    2016-10-01

    While short-term exposures of vertebrate cells, such as from fish, can be performed in defined, serum-free media, long-term cultures generally require addition of growth factors and proteins, normally supplied with a serum supplement. However, proteins are known to alter nanoparticle properties by binding to nanoparticles. Therefore, in order to be able to study nanoparticle-cell interactions for extended periods, the rainbow trout (Oncorhynchus mykiss) gill cell line, RTgill-W1, was adapted to proliferate in a commercial, serum-free medium, InVitrus VP-6. The newly adapted cell strain was named RTgill-W1-pf (protein free). These cells proliferate at a speed similar to the RTgill-W1 cells cultured in a fully supplemented medium containing 5% fetal bovine serum. As well, they were successfully cryopreserved in liquid nitrogen and fully recovered after thawing. Yet, senescence set in after about 10 passages in InVitrus VP-6 medium, revealing that this medium cannot fully support long-term culture of the RTgill-W1 strain. The RTgill-W1-pf cell line was subsequently applied to investigate the effect of silver nanoparticles (AgNP) on cell proliferation over a period of 12 days. Indeed, cell proliferation was inhibited by 10 μM AgNP. This effect correlated with high levels of silver being associated with the cells. The new cell line, RTgill-W1-pf, can serve as a unique representation of the gill cell-environment interface, offering novel opportunities to study nanoparticle-cell interactions without serum protein interference. PMID:27030289

  17. MicroRNA-520a attenuates proliferation of Raji cells through inhibition of AKT1/NF-κB and PERK/eIF2α signaling pathway.

    PubMed

    Wang, Xiaojuan; Wang, Pei; Zhu, Yan; Zhang, Zhi; Zhang, Jinqian; Wang, Hongwei

    2016-09-01

    Burkitt's lymphoma (BL) is a fast growing cancer of the human lymphatic system, and an extremely invasive B-cell non-Hodgkin's lymphoma. We explored the mechanism of apoptosis in Raji cells associated with the post-transcriptional regulation factors. To confirm that the predicted microRNA-520a (miR-520a) is matched with AKT1, 3' untranslated region (UTR) luciferase activity of AKT1 was used in the assessment. In the presence of the mimics or inhibitors of miR-520a, cell function of Raji, such as proliferation, growth and apoptosis were analyzed. The expression of endoplasmic reticulum (ER) stress‑related proteins were examined. Luciferase reporter analysis showed that miR‑520a leads to decreased activity of luciferase gene fused with AKT1 3'UTR. Therefore, AKT1 is a direct target of miR‑520a. Our data indicated that the mimics of miR‑520a inhibited growth, proliferation of Raji cells and promoted its apoptosis, which was related to downregulation of AKT1, NF‑κB and ER stress response mediated by PERK/eIF2α pathway. On the contrary, the inhibitors of miR‑520a promoted growth, proliferation of Raji cells and inhibited its apoptosis, which was related to AKT1/NF‑κB and PERK/eIF2α pathway. We identified miR‑520a, which specifically binds to AKT1 mRNA 3'UTR. miR‑520a is a crucial mediator for proliferation and ER stress in Raji cells through regulating the AKT1/NF‑κB or PERK/eIF2α signaling pathway. Our findings suggest that targeting miR‑520a is a promising therapeutic strategy in BL. PMID:27461820

  18. Tetrandrine suppresses human glioma growth by inhibiting cell survival, proliferation and tumour angiogenesis through attenuating STAT3 phosphorylation.

    PubMed

    Ma, Ji-wei; Zhang, Yong; Li, Ru; Ye, Jie-cheng; Li, Hai-ying; Zhang, Yi-kai; Ma, Zheng-lai; Li, Jin-ying; Zhong, Xue-yun; Yang, Xuesong

    2015-10-01

    Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, has been reported to possess anti-tumour activity. However, its effects on human glioma remain unknown. In this study, we demonstrated that Tet inhibited human glioma cell growth in vitro and in vivo. It has been hypothesised that Tet inhibits glioma growth by affecting glioma cell survival, proliferation and vasculature in and around the xenograft tumour in the chick CAM model and signal transducer and activator of transcription 3 (STAT3) mediated these activities. Therefore, we conducted a detailed analysis of the inhibitory effects of Tet on cell survival using a TUNEL assay and flow cytometric analysis; on cell proliferation based on the expression of proliferating cell nuclear antigen; and on angiogenesis using a CAM anti-angiogenesis assay. We used western blotting to investigate the role of STAT3 on the anti-glioma activities of Tet. The results revealed that Tet inhibited survival and proliferation in human glioma cells, impaired tumour angiogenesis and decreased the expression of phosphorylated STAT3 and its downstream proteins. In sum, our data indicate that STAT3 is involved in Tet-induced the regression of glioma growth by activating tumour cell apoptosis, inhibiting glioma cell proliferation and inhibiting angiogenesis. PMID:26086859

  19. The imperatorin derivative OW1, a new vasoactive compound, inhibits VSMC proliferation and extracellular matrix hyperplasia

    SciTech Connect

    Zhou, Nan; Zhang, Yu; Wang, Tao; He, Jianyu; He, Huaizhen; He, Langchong

    2015-04-15

    Chronic hypertension induces vascular remodeling. The most important factor for hypertension treatment is reducing the risk of cardiovascular disease. OW1 is a novel imperatorin derivative that exhibits vasodilative activity and antihypertensive effects in two-kidney one-clip (2K1C) renovascular hypertensive rats. It also inhibited vascular remodeling of the thoracic aorta in a previous study. Here, the inhibitory effects and mechanisms of OW1 on arterial vascular remodeling were investigated in vitro and in 2K1C hypertensive rats in vivo. OW1 (20 μM, 10 μM, 5 μM) inhibited Ang II-induced vascular smooth muscle cells (VSMCs) proliferation and ROS generation in vitro. OW1 also reversed the Ang II-mediated inhibition of α-SMA levels and stimulation of OPN levels. Histology results showed that treatment of 2K1C hypertensive rats with OW1 (20, 40, and 80 mg/kg per day, respectively for 5 weeks) in vivo significantly decreased the number of VSMCs, the aortic cross-sectional area (CSA), the media to lumen (M/L) ratio, and the content of collagen I and III in the mesenteric artery. Western blot results also revealed that OW1 stimulated the expression of α-SMA and inhibited the expression of collagen I and III on the thoracic aorta of 2K1C hypertensive rats. In mechanistic studies, OW1 acted as an ACE inhibitor and affected calcium channels. The suppression of MMP expression and the MAPK pathway may account for the effects of OW1 on vascular remodeling. OW1 attenuated vascular remodeling in vitro and in vivo. It could be a novel candidate for hypertension intervention. - Highlights: • OW1, an imperatorin derivative, attenuates vascular remodeling caused by hypertension. • OW1 inhibits VSMC proliferation and media layer hypertrophy. • OW1 acts as an ACE inhibitor and affects calcium channels. • Suppression of MMPs expression and MAPK pathway may account for the effects of OW1 on vascular remodeling.

  20. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene.

    PubMed

    Chu, Weiwei; Wei, Wei; Yu, Shigang; Han, Haiyin; Shi, Xiaoli; Sun, Wenxing; Gao, Ying; Zhang, Lifan; Chen, Jie

    2016-03-25

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes. PMID:26896766

  1. Piperine from black pepper inhibits activation-induced proliferation and effector function of T lymphocytes.

    PubMed

    Doucette, Carolyn D; Rodgers, Gemma; Liwski, Robert S; Hoskin, David W

    2015-11-01

    Piperine is a major alkaloid component of black pepper (Piper nigrum Linn), which is a widely consumed spice. Here, we investigated the effect of piperine on mouse T lymphocyte activation. Piperine inhibited polyclonal and antigen-specific T lymphocyte proliferation without affecting cell viability. Piperine also suppressed T lymphocyte entry into the S and G2 /M phases of the cell cycle, and decreased expression of G1 -associated cyclin D3, CDK4, and CDK6. In addition, piperine inhibited CD25 expression, synthesis of interferon-γ, interleukin (IL)-2, IL-4, and IL-17A, and the generation of cytotoxic effector cells. The inhibitory effect of piperine on T lymphocytes was associated with hypophosphorylation of Akt, extracellular signal-regulated kinase, and inhibitor of κBα, but not ZAP-70. The ability of piperine to inhibit several key signaling pathways involved in T lymphocyte activation and the acquisition of effector function suggests that piperine might be useful in the management of T lymphocyte-mediated autoimmune and chronic inflammatory disorders. PMID:25900378

  2. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis.

    PubMed

    Hyde, C A C; Missailidis, S

    2009-06-01

    Arachidonic acid (AA) and its metabolites have recently generated a heightened interest due to growing evidence of their significant role in cancer biology. Thus, inhibitors of the AA cascade, first and foremost COX inhibitors, which have originally been of interest in the treatment of inflammatory conditions and certain types of cardiovascular disease, are now attracting attention as an arsenal against cancer. An increasing number of investigations support their role in cancer chemoprevention, although the precise molecular mechanisms that link levels of AA, and its metabolites, with cancer progression have still to be elucidated. This article provides an overview of the AA cascade and focuses on the roles of its inhibitors and their implication in cancer treatment. In particular, emphasis is placed on the inhibition of cell proliferation and neo-angiogenesis through inhibition of the enzymes COX-2, 5-LOX and CYP450. Downstream effects of inhibition of AA metabolites are analysed and the molecular mechanisms of action of a selected number of inhibitors of catalytic pathways reviewed. Lastly, the benefits of dietary omega-3 fatty acids and their mechanisms of action leading to reduced cancer risk and impeded cancer cell growth are mentioned. Finally, a proposal is put forward, suggesting a novel and integrated approach in viewing the molecular mechanisms and complex interactions responsible for the involvement of AA metabolites in carcinogenesis and the protective effects of omega-3 fatty acids in inflammation and tumour prevention. PMID:19239926

  3. Knockdown of EHF inhibited the proliferation, invasion and tumorigenesis of ovarian cancer cells.

    PubMed

    Cheng, Zhongping; Guo, Jing; Chen, Li; Luo, Ning; Yang, Weihong; Qu, Xiaoyan

    2016-06-01

    Ovarian cancer is the most lethal gynecologic malignancy worldwide. ETS homologous factor (EHF), a member of E26 transformation specific (ETS) transcription factors, has been reported overexpressed in ovarian cancer. However, the molecular mechanism underlying the biological function of EHF in ovarian cancer is still unclear. Here, we found that EHF was elevated in ovarian cancer tissues compared with non-tumorous tissues. Moreover, high EHF expression level was correlated with short survival time of patients with ovarian cancer. Knockdown of EHF in ovarian cancer cells, SKOV3 and OVCAR3, significantly inhibited cell proliferation and increased cells population in G1 phase. The proteins promoting cell cycles (Cyclin B1, Cyclin D1, and PCNA) were down-regulated and the protein negatively regulating cell cycle progression (P21) was up-regulated after EHF knockdown. Moreover, inhibition of EHF in ovarian cancer cells dramatically induced cell apoptosis, but impaired cell adhesion and cell invasion. Furthermore, phosphorylation levels of ERK and AKT were notably reduced in EHF knockdown cells. Finally, in vivo data showed that knockdown of EHF inhibited tumor growth in nude mice. Our data indicates that EHF could be a potential prognosis marker for ovarian cancer and work as an oncogene by targeting ERK and AKT signaling, which can serve as a new target for ovarian cancer treatment. © 2015 Wiley Periodicals, Inc. PMID:26258986

  4. 20(S)-ginsenoside Rh2 inhibits the proliferation and induces the apoptosis of KG-1a cells through the Wnt/β-catenin signaling pathway.

    PubMed

    Chen, Yi; Liu, Ze-Hong; Xia, Jing; Li, Xiao-Peng; Li, Ke-Qiong; Xiong, Wei; Li, Jing; Chen, Di-Long

    2016-07-01

    Previous research has shown that total saponins of Panax ginseng (TSPG) and other ginsenoside monomers inhibit the proliferation of leukemia cells. However, the effect has not been compared among them. Cell viability was determined by Cell Counting Kit-8 assay, and ultra-structural characteristics were observed under transmission electron microscopy. Cell cycle distribution and apoptosis were determined by flow cytometry (FCM). Real-time fluorescence quantitative‑PCR, western blotting and immunofluorescence were used to measure the expression of β-catenin, TCF4, cyclin D1 and NF-κBp65. β-catenin/TCF4 target gene transcription were observed by ChIP-PCR assay. We found that 20(S)-ginsenoside Rh2 [(S)Rh2] inhibited the proliferation of KG-1a cells more efficiently than the other monomers. Moreover, (S)Rh2 arrested KG-1a cells in the G0/G1 phase and induced apoptosis. In addition, the levels of β-catenin, TCF4, cyclin D1 mRNA and protein were decreased. The ChIP-PCR showed that (S)Rh2 downregulated the transcription of β-catenin/TCF4 target genes, such as cyclin D1 and c-myc. These results indicated that (S)Rh2 induced cell cycle arrest and apoptosis through the Wnt/β-catenin signaling pathway, demonstrating its potential as a chemotherapeutic agent for leukemia therapy. PMID:27121661

  5. Epigallocatechin-3-gallate inhibits proliferation and migration of human colon cancer SW620 cells in vitro

    PubMed Central

    Zhou, Fang; Zhou, Hong; Wang, Ting; Mu, Yuan; Wu, Biao; Guo, Dong-lin; Zhang, Xian-mei; Wu, Ying

    2012-01-01

    Aim: Epigallocatechin-3-gallate (EGCG) is the major polyphenolic constituent in green tea. The aim of this study is to investigate the effects of EGCG on proliferation and migration of the human colon cancer SW620 cells. Methods: Proliferation and migration of SW620 cells were induced by the protease-activated receptor 2-agonist peptide (PAR2-AP, 100 μmol/L) or factor VIIa (10 nmol/L), and analyzed using MTT and Transwell assays, respectively. The cellular cytoskeleton was stained with rhodamine-conjugated phalloidin and examined with a laser scanning confocal fluorescence microscope. The expression of caspase-7, tissue factor (TF) and matrix metalloproteinase (MMP)-9 in the cells was examined using QT-PCR, ELISA and Western blot assays. The activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and nuclear factor-kappa B (NF-κB) signaling pathways was analyzed with Western blot. Results: Both PAR2-AP and factor VIIa promoted SW620 cell proliferation and migration, and caused cytoskeleton reorganization (increased filopodia and pseudopodia). Pretreatment with EGCG (25, 50, 75, and 100 μg/mL) dose-dependently blocked the cell proliferation and migration induced by PAR2-AP or factor VIIa. EGCG (100 μg/mL) prevented the cytoskeleton changes induced by PAR2-AP or factor VIIa. EGCG (100 μg/mL) counteracted the down-regulation of caspase-7 expression and up-regulation of TF and MMP-9 expression in the cells treated with PAR2-AP or factor VIIa. Furthermore, it blocked the activation of ERK1/2 and NF-κB (p65/RelA) induced by PAR2-AP or factor VIIa. Conclusion: EGCG blocks the proliferation and migration of SW620 cells induced by PAR2-AP and factor VIIa via inhibition of the ERK1/2 and NF-κB pathways. The compound may serve as a preventive and therapeutic agent for colon cancers. PMID:22101170

  6. Ursolic acid inhibits the proliferation of human ovarian cancer stem-like cells through epithelial-mesenchymal transition.

    PubMed

    Zhang, Jie; Wang, Wenjing; Qian, Lin; Zhang, Qiuwan; Lai, Dongmei; Qi, Cong

    2015-11-01

    Ovarian cancer is the most frequent cause of cancer-related death among all gynecological cancers. Increasing evidence suggests that human ovarian cancer stem-like cells could be enriched under serum-free culture conditions. In the present study, SKOV3 ovarian epithelial cancer cells were cultured for sphere cells. Ursolic acid (UA) with triterpenoid compounds exist widely in food, medicinal herbs and other plants. Evidence shows that UA has anticancer activities in human ovarian cancer cells, but he role of UA in ovarian cancer stem cells (CSCs) remains unknown. The aim of the present study was to investigate the anticancer effects of UA in combination with cisplatin in ovarian CSCs (in vitro and in vivo), along with the molecular mechanism of action. Treatment with UA at various concentrations was examined in combination with cisplatin in human ovarian CSCs. MTT assay and flow cytometry were used for cell viability and apoptosis analysis, and qRT-PCR for stem cell markers and epithelial-mesenchymal transition (EMT) markers for mRNA expression. Transwell assay was employed to observe the migration and invasion of SKOV3 cells and SKOV3 sphere cells after treatment. Moreover, athymic BALB/c-nu nude mice were injected with SKOV3 sphere cells to obtain a xenograft model for in vivo studies. The results showed that CSCs possessed mesenchymal characteristics and EMT ability, and the growth of SKOV3 and sphere cells was significantly inhibited by UA. Transplanted tumors were significantly reduced after injection of UA and UA plus cisplatin. Furthermore, we found that UA could play a role in enhancing the sensitivity of CSCs to cisplatin resistance. Our findings suggested that UA is involved in EMT mechanism to affect the proliferation and apoptosis of human ovarian cancer stem-like cells and it is a potent anti-ovarian cancer agent. PMID:26323892

  7. Overexpression of neogenin inhibits cell proliferation and induces apoptosis in human MDA-MB-231 breast carcinoma cells.

    PubMed

    Zhang, Qingsong; Liang, Fang; Ke, Yang; Huo, Yanping; Li, Mingchuang; Li, Yanyan; Yue, Junmin

    2015-07-01

    Neogenin has been documented as playing an important role in cancer development. Although an elevated expression of neogenin has been detected in human breast cancer, the role of neogenin in breast cancer cells is not clearly understood. In the present study, we investigated neogenin in breast cancer cell proliferation, migration and apoptosis. We found that neogenin overexpression markedly reduced the proliferation and migration of breast cancer cells (P<0.05). Neogenin overexpression resulted in a reduction in the apoptosis rate. Inhibition of neogenin expression by neogenin siRNA dramatically promoted the proliferation and migration of breast cancer cells, whereas it inhibited cell apoptosis. Furthermore, we found that BMP-2-induced phosphorylation of Smad1/5/8 which was inhibited by neogenin overexpression. The present study demonstrates that neogenin may be a tumor suppressor in breast cancer. Neogenin may serve as a potential diagnostic marker and therapeutic target for breast cancer. PMID:25998984

  8. Growth-dependent inhibition of CCAAT enhancer-binding protein (C/EBP alpha) gene expression during hepatocyte proliferation in the regenerating liver and in culture.

    PubMed Central

    Mischoulon, D; Rana, B; Bucher, N L; Farmer, S R

    1992-01-01

    As an approach to understanding physiological mechanisms that control the proliferation of highly differentiated cells, we are addressing whether certain hepatic transcription factors participate in mechanisms that control the growth of hepatocytes. We have focused on CCAAT enhancer-binding protein (C/EBP alpha), a transcription factor which is highly abundant in normal liver and is considered to regulate expression of many genes, including some involved in energy metabolism (S. L. McKnight, M. D. Lane, and S. Gluecksohn-Walsh. Genes Dev. 3:2021-2024, 1989). Using Northern (RNA) blot analysis, we have examined the expression of C/EBP alpha mRNA during liver regeneration and in primary cultures of hepatocytes. C/EBP alpha mRNA levels decrease 60 to 80% within 1 to 3 h after partial hepatectomy as the cells move from G0 to G1 and decrease further when cells progress into S phase. Run-on transcription analysis is in agreement with the Northern blot data, thus suggesting that C/EBP alpha is transcriptionally regulated in regenerating liver. C/EBP alpha mRNA expression also decreases dramatically during the growth of freshly isolated normal hepatocytes cultured under conventional conditions (on dried rat tail collagen; stimulated to proliferate by epidermal growth factor [EGF] and insulin). Cultures of hepatocytes on rat tail collagen in the presence or absence of EGF clearly show that within 3 h, EGF depresses C/EBP alpha mRNA expression and that this effect is substantially greater by 4 h. Inhibition of protein synthesis in the liver by cycloheximide or in cultured hepatocytes by puromycin or cycloheximide effectively blocks the down-regulation of C/EBP alpha gene expression, apparently by stabilizing the normal rapid turnover of the C/EBP alpha mRNA (half-life of <2 h). This drop in C/EBP alpha gene expression in response to activation of hepatocyte growth is consistent with the proposal that C/EBP alpha has an antiproliferative role to play in highly differentiated

  9. Silencing of survivin using YM155 inhibits invasion and suppresses proliferation in glioma cells.

    PubMed

    Guo, Hua; Wang, Yuexun; Song, Tao; Xin, Tao; Zheng, Zhiming; Zhong, Peng; Zhang, Xiaoli

    2015-03-01

    Survivin has multiple functions in the progression of cancer. The aim of the present study was to investigate the influence of YM155, a specific survivin inhibitor, on the biological behavior of U87 glioblastoma cells. The proliferative activity and growth rate of U87 cells were determined by colony formation assay and mononuclear cell direct cytotoxicity assay (MTT assay). The reconstituted basement membrane penetrating capacity was determined by cell invasion assay. The cell movement and migratory capacity were detected by wound-healing repair assay. We found that inhibition of survivin by YM155 dramatically decreased the invasive and metastatic capacities of the cells, suppressed the proliferation, decelerated the rate of growth, and reduced the number of clones on soft agar. In conclusion, YM155 has the potential to be used in the clinical treatment of GBM. PMID:25201484

  10. Lentivirus-Mediated knockdown of tectonic family member 1 inhibits medulloblastoma cell proliferation

    PubMed Central

    Jing, Junjie; Wang, Chengfeng; Liang, Qinchuan; Zhao, Yang; Zhao, Qingshuang; Wang, Shousen; Ma, Jie

    2015-01-01

    Tectonic family member 1 (TCTN1) encodes a member of the tectonic family which are evolutionarily conserved secreted and transmembrane proteins, involving in a diverse variety of developmental processes. It has been demonstrated that tectonics expressed in regions that participate in Hedgehog (Hh) signaling during mouse embryonic development and was imperative for Hh-mediated patterning of the ventral neural tube. However, the expression and regulation of tectonics in human tumor is still not clear. In this study, shRNA-expressing lentivirus was constructed to knockdown TCTN1 in medulloblastoma cell line Daoy. The results showed that knockdown of TCTN1 inhibited cell proliferation and colony formation in Daoy cell line, also caused cell cycle arrest at the G2/M boundary. Taken all together, our data suggest that TCTN1 might play an important role in the progression of medulloblastoma. PMID:26550235

  11. Citral inhibits cell proliferation and induces apoptosis and cell cycle arrest in MCF-7 cells.

    PubMed

    Chaouki, Wahid; Leger, David Y; Liagre, Bertrand; Beneytout, Jean-Louis; Hmamouchi, Mohamed

    2009-10-01

    Many natural components of plants extract are studied for their beneficial effects on health and particularly on carcinogenesis chemoprevention. In this study, we investigated the effect of citral (3,7-dimethyl-2,6-octadienal), a key component of essential oils extracted from several herbal plants, on the proliferation rate, cell cycle distribution, and apoptosis of the human breast cancer cell line MCF-7. The effects of this compound were also tested on cyclo-oxygenase activity. Citral treatment caused inhibition of MCF-7 cell growth (IC(50)-48 h: 18 x 10(-5)m), with a cycle arrest in G(2)/M phase and apoptosis induction. Moreover, we observed a decrease in prostaglandin E(2) synthesis 48 h after citral treatment. These findings suggest that citral has a potential chemopreventive effect. PMID:19656204

  12. Upregulated KLK10 inhibits esophageal cancer proliferation and enhances cisplatin sensitivity in vitro.

    PubMed

    Li, Lei; Xu, Nan; Fan, Ning; Meng, Qingchun; Luo, Wenchao; Lv, Lijia; Ma, Wei; Liu, Xiaoyu; Liu, Lu; Xu, Fei; Wang, Huaxin; Mao, Weifeng; Li, Yan

    2015-11-01

    The kallikrein-related peptidase 10 (KLK10) gene has tumor-suppressive function in various types of human cancer. However, previous studies showed that KLK10 also acts as an oncogene and is upregulated in gastrointestinal tumors. The role of KLK10 in human esophageal cancer (EC) remains unclear. In the present study, the expression of KLK10 in human esophageal and non-esophageal cancer tissues was investigated by immunohistochemistry. Quantitative RT-PCR and western blot analysis were utilized to detect KLK10 mRNA and protein expression in human esophageal cancer cell lines (TE-1 and Eca-109). Small interference RNA was utilized to specifically knockdown KLK10 expression in Eca-109 and TE-1 cells. Cell proliferation, cell cycle analysis as well as CDDP-dependent apoptosis were determined using a CCK-8 assay and flow cytometry. The results showed that, KLK10 was positive in 67 out of 83 (80.72%) human EC and positive in 3 out of 11 (27.27%) normal tissues (P=0.001). The present study indicated that KLK10 potentially plays a crucial role in Eca-109 cell growth. Additionally, the downregulation of KLK10 induced S-phase arrest and promoted cisplatin-induced apoptosis. The resutls of the present study suggested that KLK10 is a promising novel marker for the diagnostic and therapeutic target of esophageal cancer. PMID:26479703

  13. H4 histamine receptors inhibit steroidogenesis and proliferation in Leydig cells.

    PubMed

    Abiuso, Adriana María Belén; Berensztein, Esperanza; Pagotto, Romina María; Pereyra, Elba Nora; Medina, Vanina; Martinel Lamas, Diego José; Besio Moreno, Marcos; Pignataro, Omar Pedro; Mondillo, Carolina

    2014-12-01

    The histamine H4 receptor (HRH4), discovered only 13 years ago, is considered a promising drug target for allergy, inflammation, autoimmune disorders and cancer, as reflected by a steadily growing number of scientific publications and patent applications. Although the presence of HRH4 has been evidenced in the testis, its specific localization or its role has not been established. Herein, we sought to identify the possible involvement of HRH4 in the regulation of Leydig cell function. We first evaluated its expression in MA-10 Leydig tumor cells and then assessed the effects of two HRH4 agonists on steroidogenesis and proliferation. We found that HRH4 is functionally expressed in MA-10 cells, and that its activation leads to the inhibition of LH/human chorionic gonadotropin-induced cAMP production and StAR protein expression. Furthermore, we observed decreased cell proliferation after a 24-h HRH4 agonist treatment. We then detected for the sites of HRH4 expression in the normal rat testis, and detected HRH4 immunostaining in the Leydig cells of rats aged 7-240 days, while 21-day-old rats also presented HRH4 expression in male gametes. Finally, we evaluated the effect of HRH4 activation on the proliferation of normal progenitor and immature rat Leydig cell culture, and both proved to be susceptible to the anti-proliferative effect of HRH4 agonists. Given the importance of histamine (2-(1H-imidazol-4-yl)ethanamine) in human (patho)physiology, continued efforts are directed at elucidating the emerging properties of HRH4 and its ligands. This study reveals new sites of HRH4 expression, and should be considered in the design of selective HRH4 agonists for therapeutic purposes. PMID:25253872

  14. Knockdown of DDX46 inhibits proliferation and induces apoptosis in esophageal squamous cell carcinoma cells.

    PubMed

    Li, Bin; Li, Yu-Min; He, Wen-Ting; Chen, Hao; Zhu, Hong-Wen; Liu, Tao; Zhang, Jian-Hua; Song, Tie-Niu; Zhou, Ya-Li

    2016-07-01

    Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal carcinoma and remains the leading cause of cancer-related death worldwide. DEAD-box RNA helicases play critical roles in cellular metabolism and in many cases have been implicated in cellular proliferation and neoplastic transformation. DDX46 belongs to DEAD-box helicase family, the expression pattern of DDX46 in ESCC tissues and the biologic role in ESCC progression have not been implicated previously. In this study, DDX46 expression in human ESCC and adjacent normal tissues were explored using immunohistochemistry, and ESCC cell lines compared with normal esophageal epithelium cell were quantified using real‑time PCR. Next, lentivirus-mediated RNA interference was applied to silence DDX46 in TE-1 and Eca-109 cells. Cell growth was monitored using high content screening. Cell viability was measured by MTT assay. Cell colony-forming capacity was measured by colony formation assay. Cell cycle progression and apoptosis were determined by flow cytometry. Further, the stress and apoptosis signaling antibody array kit was used to detect the changes of signaling molecules in TE-1 cells after DDX46 knockdown. We found that DDX46 was significantly upregulated in ESCC tissues and cells compared with normal tissues and cells. DDX46 knockdown led to decreased proliferation and increased apoptosis in TE-1 and Eca-109 cells. Moreover, DDX46 silencing resulted in apoptotic induction via decreased phosphorylation of Akt and IκBα, as well as negative regulation of NF-κB signaling. In conclusion, these results demonstrate that DDX46 knockdown inhibited cell growth, and induced apoptosis, suggest that DDX46 is critical for ESCC cells proliferation. In addition, this study provides a foundation for further study into the clinical potential diagnosis and novel therapeutic target for ESCC. PMID:27176873

  15. SB-RA-2001 Inhibits Bacterial Proliferation by Targeting FtsZ Assembly

    PubMed Central

    2015-01-01

    FtsZ has been recognized as a promising antimicrobial drug target because of its vital role in bacterial cell division. In this work, we found that a taxane SB-RA-2001 inhibited the proliferation of Bacillus subtilis 168 and Mycobacterium smegmatis cells with minimal inhibitory concentrations of 38 and 60 μM, respectively. Cell lengths of these microorganisms increased remarkably in the presence of SB-RA-2001, indicating that it inhibits bacterial cytokinesis. SB-RA-2001 perturbed the formation of the FtsZ ring in B. subtilis 168 cells and also affected the localization of the late cell division protein, DivIVA, at the midcell position. Flow cytometric analysis of the SB-RA-2001-treated cells indicated that the compound did not affect the duplication of DNA in B. subtilis 168 cells. Further, SB-RA-2001 treatment did not affect the localization of the chromosomal partitioning protein, Spo0J, along the two ends of the nucleoids and also had no discernible effect on the nucleoid segregation in B. subtilis 168 cells. The agent also did not appear to perturb the membrane potential of B. subtilis 168 cells. In vitro, SB-RA-2001 bound to FtsZ with modest affinity, promoted the assembly and bundling of FtsZ protofilaments, and reduced the GTPase activity of FtsZ. GTP did not inhibit the binding of SB-RA-2001 to FtsZ, suggesting that it does not bind to the GTP binding site on FtsZ. A computational analysis indicated that SB-RA-2001 binds to FtsZ in the cleft region between the C-terminal domain and helix H7, and the binding site of SB-RA-2001 on FtsZ resembled that of PC190723, a well-characterized inhibitor of FtsZ. The findings collectively suggested that SB-RA-2001 inhibits bacterial proliferation by targeting the assembly dynamics of FtsZ, and this can be exploited further to develop potent FtsZ-targeted antimicrobials. PMID:24749867

  16. Lentivirus-mediated silencing of SCIN inhibits proliferation of human lung carcinoma cells.

    PubMed

    Liu, Hongxu; Shi, Daiwang; Liu, Tieqin; Yu, Zhanwu; Zhou, Chuanjiang

    2015-01-01

    SCIN (scinderin) is a calcium-dependent actin severing and capping protein. Homologue in zebrafish has been found to be related with cell death. In the present study, we found that SCIN is highly expressed in human lung cancer specimens. However, the role of SCIN in lung cancer has not yet been determined. To investigate the function of SCIN in lung carcinoma cells, we took advantage of lentivirus-mediated RNA interference (RNAi) to knockdown SCIN expression in two lung carcinoma cell lines A549 and H1299. Silencing of SCIN significantly inhibited the proliferation and colony formation ability of both cell lines in vitro. Moreover, flow cytometry analysis showed that knockdown of SCIN led to G0/G1 phase cell cycle arrest as well as an excess accumulation of cells in the sub-G1 phase. Furthermore, depletion of SCIN resulted in a significant increase in Cyclin B1, p21 and PARP expression, and a little decrease in Cyclin D1 expression. These results suggest that SCIN plays an important role in lung carcinoma cell proliferation, and lentivirus-mediated silencing of SCIN might be a potential therapeutic approach for the treatment of lung cancer. PMID:25303873

  17. A splicing isoform of TEAD4 attenuates the Hippo–YAP signalling to inhibit tumour proliferation

    PubMed Central

    Qi, Yangfan; Yu, Jing; Han, Wei; Fan, Xiaojuan; Qian, Haili; Wei, Huanhuan; Tsai, Yi-hsuan S.; Zhao, Jinyao; Zhang, Wenjing; Liu, Quentin; Meng, Songshu; Wang, Yang; Wang, Zefeng

    2016-01-01

    Aberrant splicing is frequently found in cancer, yet the biological consequences of such alterations are mostly undefined. Here we report that the Hippo–YAP signalling, a key pathway that regulates cell proliferation and organ size, is under control of a splicing switch. We show that TEAD4, the transcription factor that mediates Hippo–YAP signalling, undergoes alternative splicing facilitated by the tumour suppressor RBM4, producing a truncated isoform, TEAD4-S, which lacks an N-terminal DNA-binding domain, but maintains YAP interaction domain. TEAD4-S is located in both the nucleus and cytoplasm, acting as a dominant negative isoform to YAP activity. Consistently, TEAD4-S is reduced in cancer cells, and its re-expression suppresses cancer cell proliferation and migration, inhibiting tumour growth in xenograft mouse models. Furthermore, TEAD4-S is reduced in human cancers, and patients with elevated TEAD4-S levels have improved survival. Altogether, these data reveal a splicing switch that serves to fine tune the Hippo–YAP pathway. PMID:27291620

  18. Inhibition of pentraxin 3 in glioma cells impairs proliferation and invasion in vitro and in vivo.

    PubMed

    Tung, Jai-Nien; Ko, Chung-Po; Yang, Shun-Fa; Cheng, Chun-Wen; Chen, Pei-Ni; Chang, Chia-Yu; Lin, Chia-Liang; Yang, Te-Fang; Hsieh, Yi-Hsien; Chen, Kun-Chung

    2016-09-01

    Pentraxin 3 (PTX3) is an inflammatory molecule that is involved in immune responses, inflammation, and cancer. Recent evidence suggests that PTX3 plays a critical role in tumor progression; however, its impact on the biological function of gliomas remains unknown. In the present study, immunohistochemical staining showed that patients with high-grade gliomas exhibited increased expression levels of PTX3 compared to those with low-grade gliomas (P < 0.001). Furthermore, knockdown of PTX3 in GBM8401 cells inhibits proliferation, increases p21 protein levels, and decreases cyclin D1 protein levels, resulting in cell cycle arrest at the G0/G1 phase. In addition, knockdown of PTX3 significantly decreases GBM8401 cell migration and invasion through the downregulation of matrix metalloproteinase-1 and -2 (MMP-1 and MMP-2) expression. In a GBM8401 xenograft animal model, PTX3 knockdown decreases tumor growth in vivo. In conclusion, PTX3 plays an important role in glioma cell proliferation and invasion, and may thus serve as a novel potential therapeutic target in the treatment of gliomas. PMID:27278519

  19. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid

    SciTech Connect

    Eitsuka, Takahiro; Tatewaki, Naoto; Nishida, Hiroshi; Kurata, Tadao; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2014-10-24

    Highlights: • δ-Tocotrienol (δ-T3) and ferulic acid (FA) synergistically inhibit cancer cell growth. • The combination of δ-T3 and FA induces G1 arrest by up-regulating p21. • The synergy is attributed to an increase in the cellular concentration of δ-T3 by FA. - Abstract: Rice bran consists of many functional compounds and thus much attention has been focused on the health benefits of its components. Here, we investigated the synergistic inhibitory effects of its components, particularly δ-tocotrienol (δ-T3) and ferulic acid (FA), against the proliferation of an array of cancer cells, including DU-145 (prostate cancer), MCF-7 (breast cancer), and PANC-1 (pancreatic cancer) cells. The combination of δ-T3 and FA markedly reduced cell proliferation relative to δ-T3 alone, and FA had no effect when used alone. Although δ-T3 induced G1 arrest by up-regulating p21 in PANC-1 cells, more cells accumulated in G1 phase with the combination of δ-T3 and FA. This synergistic effect was attributed to an increase in the cellular concentration of δ-T3 by FA. Our results suggest that the combination of δ-T3 and FA may present a new strategy for cancer prevention and therapy.

  20. WNT5A inhibits human dental papilla cell proliferation and migration

    SciTech Connect

    Peng, L.; Ye, L.; Dong, G.; Ren, L.B.; Wang, C.L.; Xu, P.; Zhou, X.D.

    2009-12-18

    WNT proteins are a large family of cysteine-rich secreted molecules that are linked to both canonical and non-canonical signal pathways, and have been implicated in oncogenesis and tissue development. Canonical WNT proteins have been proven to play critical roles in tooth development, while little is known about the role of non-canonical WNT proteins such as WNT5A. In this study, WNT5A was localized to human dental papilla tissue and human dental papilla cells (HDPCs) cultured in vitro, using immunochemistry and RT-PCR. Recombinant adenovirus encoding full-length Wnt5a cDNA was constructed to investigate the biological role of WNT5A on HDPCs. The BrdU incorporation assay, the MTT assay and flow cytometric analysis showed that over-expression of Wnt5a strongly inhibited the proliferation of HDPCs in vitro. Wound healing and transwell migration assays indicated that over-expression of WNT5A reduced migration of HDPCs. In conclusion, our results showed that WNT5A negatively regulates both proliferation and migration of HDPCs, suggesting its important role in odontogenesis via controlling the HDPCs.

  1. Fibulin-5 downregulates Ki-67 and inhibits proliferation and invasion of breast cancer cells.

    PubMed

    Mohamedi, Yamina; Fontanil, Tania; Solares, Laura; Garcia-Suárez, Olivia; García-Piqueras, Jorge; Vega, Jose A; Cal, Santiago; Obaya, Alvaro J

    2016-04-01

    Fibulins not only function as molecular bridges within the cellular microenvironment but also influence cell behavior. Thus, fibulins may contribute to create a permissive microenvironment for tumor growth but can also stimulate different mechanisms that may impede tumor progression. This is the case with Fibulin-5, which has been shown to display both tumor-promoting and tumor-protective functions by mechanisms that are not totally defined. We show new evidence on the tumor-protective functions displayed by Fibulin-5 in MCF-7, T47D and MDA-MB-231 breast cancer cells including the inhibition of invasion and proliferation capacity and hampering the ability to form mammospheres. Reduction in the level of phosphorylation of Ser residues involved in the nuclear translocation of β-catenin may underlie these antitumor effects. We also found that Fibulin-5 reduces the level of expression of Ki-67, a nuclear protein associated with cell proliferation. Moreover, reduction in Fibulin-5 expression corresponds to an increase of Ki-67 detection in breast tissue samples. Overall, our data provide new insights into the influence of Fibulin-5 to modify breast cancer cell behavior and contribute to better understand the connections between fibulins and cancer. PMID:26891749

  2. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells.

    PubMed

    Fan, Kai; Li, Xiaolei; Cao, Yonggang; Qi, Hanping; Li, Lei; Zhang, Qianhui; Sun, Hongli

    2015-09-01

    Colon cancer is one of the most common malignancies worldwide and has a high mortality rate. Carvacrol is a major component of oregano and thyme essential oils and shows antitumor properties. Here, we investigated the effects of carvacrol on the proliferation and apoptosis of two human colon cancer cell lines, HCT116 and LoVo, and studied the molecular mechanisms of its antitumor properties. We found that carvacrol inhibited the proliferation and migration of the two colon cancer cell lines in a concentration-dependent manner. Cell invasion was suppressed after carvacrol treatment by decreasing the expression of matrix metalloprotease-2 (MMP-2) and MMP-9. Carvacrol treatment also caused cell cycle arrest in the G2/M phase and decreased cyclin B1 expression. Finally, carvacrol induced cell apoptosis in a dose-dependent manner. At the molecular level, carvacrol downregulated the expression of Bcl-2 and induced the phosphorylation of the extracellular-regulated protein kinase and protein kinase B (p-Akt). In parallel, carvacrol upregulated the expression of Bax and c-Jun N-terminal kinase. These results indicate that carvacrol might induce apoptosis in colon cancer cells through the mitochondrial apoptotic pathway and the MAPK and PI3K/Akt signaling pathways. Together, our results suggest that carvacrol may have therapeutic potential for the prevention and treatment of colon cancer. PMID:26214321

  3. Cerium oxide nanoparticles inhibit the migration and proliferation of gastric cancer by increasing DHX15 expression

    PubMed Central

    Xiao, Yu-Feng; Li, Jian-Mei; Wang, Su-Min; Yong, Xin; Tang, Bo; Jie, Meng-Meng; Dong, Hui; Yang, Xiao-Chao; Yang, Shi-Ming

    2016-01-01

    Gastric cancer is one of the leading causes of tumor-related deaths in the world. Current treatment options do not satisfy doctors and patients, and new therapies are therefore needed. Cerium oxide nanoparticles (CNPs) have been studied as a potential therapeutic approach for treating many diseases. However, their effects on human gastric cancer are currently unknown. Therefore, in this study, we aimed to characterize the effects of CNPs on human gastric cancer cell lines (MKN28 and BGC823). Gastric cancer cells were cocultured with different concentrations of CNPs, and proliferation and migration were measured both in vitro and in vivo. We found that CNPs inhibited the migration of gastric cancer cells when applied at different concentrations, but only a relatively high concentration (10 µg/mL) of CNPs suppressed proliferation. Furthermore, we found that CNPs increased the expression of DHX15 and its downstream signaling pathways. We therefore provide evidence showing that CNPs may be a promising approach to suppress malignant activity of gastric cancer by increasing the expression of DHX15. PMID:27486320

  4. miR-449a inhibits proliferation and invasion by regulating ADAM10 in hepatocellular carcinoma

    PubMed Central

    Liu, Songyang; Liu, Kai; Zhang, Wei; Wang, Yingchao; Jin, Zhe; Jia, Baoxing; Liu, Yahui

    2016-01-01

    MicroRNAs (miRNAs) are a class of small, non-coding RNAs that play a crucial role in tumor procession. It has been demonstrated that miR-449a expression was downregulated and served as tumor suppressor in many types of tumor. However, the biological function and molecular mechanism of miR-449a in hepatocellular carcinoma (HCC) still remains largely unknown. Therefore, the aims of this study were to investigate biological role and molecular mechanism of miR-449a in HCC by a serial of molecular experiments. Here, we demonstrated that miR-449a expression was downregulated in HCC tissues and cell lines compared with the adjacent nontumor tissues and normal hepatic cell line. Ectopic expression of miR-449a suppressed HCC cell proliferation, colony formation, migration and invasion. Moreover, A Disintegrin And Metalloproteinases 10 (ADAM10) was identified as a direct target gene of miR-449a in HCC cell. ADAM10 expression was upregulated in HCC tissues and cell lines, and was negatively correlated with the expression level of miR-449a in HCC tissues. Interesting, overexpression of ADAM10 attenuated the inhibition effect of miR-449a-mediated HCC cell proliferation, colony formation, migration and invasion. These results suggested that miR-449a might function as a tumor suppressor miRNA, at least in part, through regulating ADAM10 expression in HCC.

  5. MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation.

    PubMed

    Aucher, Anne; Rudnicka, Dominika; Davis, Daniel M

    2013-12-15

    Recent research has indicated a new mode of intercellular communication facilitated by the movement of RNA between cells. There is evidence that RNA can transfer between cells in a multitude of ways, including in complex with proteins or lipids or in vesicles, including apoptotic bodies and exosomes. However, there remains little understanding of the function of nucleic acid transfer between human cells. In this article, we report that human macrophages transfer microRNAs (miRNAs) to hepato-carcinoma cells (HCCs) in a manner that required intercellular contact and involved gap junctions. Two specific miRNAs transferred efficiently between these cells--miR-142 and miR-223--and both were endogenously expressed in macrophages and not in HCCs. Transfer of these miRNAs influenced posttranscriptional regulation of proteins in HCCs, including decreased expression of reporter proteins and endogenously expressed stathmin-1 and insulin-like growth factor-1 receptor. Importantly, transfer of miRNAs from macrophages functionally inhibited proliferation of these cancerous cells. Thus, these data led us to propose that intercellular transfer of miRNA from immune cells could serve as a new defense against unwanted cell proliferation or tumor growth. PMID:24227773

  6. Disruption of insulin receptor function inhibits proliferation in endocrine resistant breast cancer cells

    PubMed Central

    Chan, Jie Ying; LaPara, Kelly; Yee, Douglas

    2015-01-01

    The insulin-like growth factor (IGF) system is a well-studied growth regulatory pathway implicated in breast cancer biology. Clinical trials testing monoclonal antibodies directed against the type I IGF receptor (IGF1R) in combination with estrogen receptor-α (ER) targeting have been completed, but failed to show benefits in patients with endocrine resistant tumors compared to ER targeting alone. We have previously shown that the closely related insulin receptor (InsR) is expressed in tamoxifen resistant breast cancer cells. Here we examined if inhibition of InsR affected tamoxifen-resistant (TamR) breast cancer cells. InsR function was inhibited by three different mechanisms: InsR shRNA, a small InsR blocking peptide, S961 and an InsR monoclonal antibody (mAb). Suppression of InsR function by these methods in TamR cells successfully blocked insulin-mediated signaling, monolayer proliferation, cell cycle progression and anchorage-independent growth. This strategy was not effective in parental cells likely due to the presence of IGFR/InsR hybrid receptors. Down-regulation of IGF1R in conjunction with InsR inhibition was more effective in blocking IGF- and insulin-mediated signaling and growth in parental cells compared to single receptor targeting alone. Our findings show TamR cells were stimulated by InsR and were not sensitive to IGF1R inhibition, whereas in tamoxifen-sensitive parental cancer cells, the presence of both receptors, especially hybrid receptors, allowed cross-reactivity of ligand-mediated activation and growth. To suppress the IGF system, targeting of both IGF1R and InsR is optimal in endocrine sensitive and resistant breast cancer. PMID:26876199

  7. Disruption of insulin receptor function inhibits proliferation in endocrine-resistant breast cancer cells.

    PubMed

    Chan, J Y; LaPara, K; Yee, D

    2016-08-11

    The insulin-like growth factor (IGF) system is a well-studied growth regulatory pathway implicated in breast cancer biology. Clinical trials testing monoclonal antibodies directed against the type I IGF receptor (IGF1R) in combination with estrogen receptor-α (ER) targeting have been completed, but failed to show benefits in patients with endocrine-resistant tumors compared to ER targeting alone. We have previously shown that the closely related insulin receptor (InsR) is expressed in tamoxifen-resistant (TamR) breast cancer cells. Here we examined if inhibition of InsR affected TamR breast cancer cells. InsR function was inhibited by three different mechanisms: InsR short hairpin RNA, a small InsR-blocking peptide, S961 and an InsR monoclonal antibody (mAb). Suppression of InsR function by these methods in TamR cells successfully blocked insulin-mediated signaling, monolayer proliferation, cell cycle progression and anchorage-independent growth. This strategy was not effective in parental cells likely because of the presence of IGFR /InsR hybrid receptors. Downregulation of IGF1R in conjunction with InsR inhibition was more effective in blocking IGF- and insulin-mediated signaling and growth in parental cells compared with single-receptor targeting alone. Our findings show TamR cells were stimulated by InsR and were not sensitive to IGF1R inhibition, whereas in tamoxifen-sensitive parental cancer cells, the presence of both receptors, especially hybrid receptors, allowed cross-reactivity of ligand-mediated activation and growth. To suppress the IGF system, targeting of both IGF1R and InsR is optimal in endocrine-sensitive and -resistant breast cancer. PMID:26876199

  8. Triethylenetetramine modulates polyamine and energy metabolism and inhibits cancer cell proliferation.

    PubMed

    Hyvönen, Mervi T; Ucal, Sebahat; Pasanen, Markku; Peräniemi, Sirpa; Weisell, Janne; Khomutov, Maxim; Khomutov, Alex R; Vepsäläinen, Jouko; Alhonen, Leena; Keinänen, Tuomo A

    2016-05-15

    Polyamine metabolism is an attractive anticancer drug target, since polyamines are absolutely required for cellular proliferation, and increased levels of polyamines and their biosynthetic enzyme ornithine decarboxylase (ODC) are associated with cancer. Triethylenetetramine (TETA) is a charge-deficient isosteric analogue of the polyamine spermidine (Spd) and a Cu(II)-chelating compound used for the treatment of Wilson's disease, and it has been implicated as a potential anticancer therapeutic drug. In the present study, we studied the effects of TETA in comparison with two other Cu(II)-chelators, D-penicillamine (PA) and tetrathiomolybdate (TTM), on polyamine metabolism in DU145 prostate carcinoma, MCF-7 breast carcinoma and JEG-3 choriocarcinoma cells. TETA induced antizyme, down-regulated ODC and inhibited [(14)C] Spd uptake. Moreover, it completely prevented α-difluoromethylornithine (DFMO)-induced increase in [(14)C] Spd uptake, and inhibited [(14)C] putrescine (Put) uptake and ODC activity in vivo Seven-day treatment of DU145 cells with TETA caused growth cessation by reducing intracellular polyamine levels and suppressing the formation of hypusinated eukaryotic translation initiation factor 5A (eIF5A). TETA or its N-acetylated metabolites also inhibited spermine (Spm), diamine and semicarbazide-sensitive amine oxidases and decreased the level of intracellular reactive oxygen species. Moreover, TETA inhibited the utilization of Put as energy source via the tricarboxylic acid (TCA) cycle, as indicated by decreased production of (14)CO2 from [(14)C] Put. These results indicate that TETA attacks multiple proven anticancer drug targets not attributed to copper chelation, which warrants further studies to reveal its potential in cancer chemoprevention and cure. PMID:27001865

  9. Stromal inhibition of prostatic epithelial cell proliferation not mediated by transforming growth factor beta.

    PubMed Central

    Kooistra, A.; van den Eijnden-van Raaij, A. J.; Klaij, I. A.; Romijn, J. C.; Schröder, F. H.

    1995-01-01

    The paracrine influence of prostatic stroma on the proliferation of prostatic epithelial cells was investigated. Stromal cells from the human prostate have previously been shown to inhibit anchorage-dependent as well as anchorage-independent growth of the prostatic tumour epithelial cell lines PC-3 and LNCaP. Antiproliferative activity, mediated by a diffusible factor in the stromal cell conditioned medium, was found to be produced specifically by prostatic stromal cells. In the present study the characteristics of this factor were examined. It is demonstrated that prostate stroma-derived inhibiting factor is an acid- and heat-labile, dithiothreitol-sensitive protein. Although some similarities with type beta transforming growth factor (TGF-beta)-like inhibitors are apparent, evidence is presented that the factor is not identical to TGF-beta or to the TGF-beta-like factors activin and inhibin. Absence of TGF-beta activity was shown by the lack of inhibitory response of the TGF-beta-sensitive mink lung cell line CCL-64 to prostate stromal cell conditioned medium and to concentrated, partially purified preparations of the inhibitor. Furthermore, neutralising antibodies against TGF-beta 1 or TGF-beta 2 did not cause a decline in the level of PC-3 growth inhibition caused by partially purified inhibitor. Using Northern blot analyses, we excluded the involvement of inhibin or activin. It is concluded that the prostate stroma-derived factor may be a novel growth inhibitor different from any of the currently described inhibiting factors. Images Figure 5 PMID:7543773

  10. Porf-2 Inhibits Neural Stem Cell Proliferation Through Wnt/β-Catenin Pathway by Its GAP Domain

    PubMed Central

    Huang, Guo-Hui; Yang, Xi-Tao; Chen, Kui; Xing, Jin; Guo, Lin; Zhu, Liang; Li, Hong-Jiang; Li, Xin-Cai; Zhang, Sheng-Yi; Feng, Dong-Fu

    2016-01-01

    Neural stem cell (NSC) proliferation and differentiation play a pivotal role in the development of brain, the plasticity of the brain network, and the repair for brain function in CNS diseases. The mechanisms regulating NSC behavior are not well elucidated. Previous studies showed porf-2 functions as a modulator in central nerve system development. We here show that porf-2, a conserved family of RhoGAPs, is highly and specifically expressed in NSCs. We also demonstrate that porf-2 inhibits the proliferation of NSCs in vivo and in vitro, but has no effect on NSC differentiation. We investigated which domain is required for the role of porf-2 on NSC proliferation. By using neurosphere formation and Edu assay we confirmed the GAP domain is necessary for its function. In addition, we surveyed a few classical pathways on NSC proliferation and found that porf-2 inhibits NSC proliferation by suppressing the β-catenin nuclear translocation. Taken together, we show for the first time that porf-2 inhibits NSC proliferation through Wnt/β-catenin pathway by its GAP domain. PMID:27064446

  11. Nitidine chloride inhibits proliferation and induces apoptosis in colorectal cancer cells by suppressing the ERK signaling pathway

    PubMed Central

    ZHAI, HUIYUAN; HU, SANYUAN; LIU, TONGXIANG; WANG, FENG; WANG, XIXUN; WU, GUOCHANG; ZHANG, YIFEI; SUI, MINGHUA; LIU, HUANTAO; JIANG, LIXIN

    2016-01-01

    Nitidine chloride (NC) is a natural bioactive phytochemical alkaloid that has displayed anticancer activity in various types of cancer. However, no evidence has been reported for the direct effect of NC on CRC cell proliferation and apoptosis, and the underling mechanisms to be fully elucidated. The present study aimed to investigate the influence of NC on the apoptosis and proliferation of CRC cells. The viability and proliferation of CRC cells was measured by MTT assay and a [3H] thymidine uptake assay. Apoptosis was measured using a flow cytometric apoptosis assay and TUNEL staining. The expression levels of apoptotic-regulated proteins in addition to extracellular signal-regulated kinase (ERK) were measured by western blot analysis following stimulation with NC. The results indicated that NC inhibited the proliferation of HCT116 cells in a dose- and time-dependent manner. Additionally, apoptotic induction by NC treatment was confirmed. Furthermore, NC was demonstrated to significantly upregulate the expression of Bax, p53, cleaved caspase-3 and -9 and downregulate the expression of Bcl-2. Treatment with NC reduced the phosphorylation of ERK and by using an ERK inhibitor, U0126, the roles of NC in apoptotic induction and the inhibition of proliferation were further demonstrated. These results demonstrated that NC inhibited the proliferation and induced the apoptosis of CRC cells via the ERK signaling pathway. PMID:26847477

  12. Inhibition of STAT3 reduces proliferation and invasion in salivary gland adenoid cystic carcinoma

    PubMed Central

    Bu, Lin-Lin; Deng, Wei-Wei; Huang, Cong-Fa; Liu, Bing; Zhang, Wen-Feng; Sun, Zhi-Jun

    2015-01-01

    In this study, we accessed the expression and correlation of p-STAT3 with Survivin, Cyclin D1, CD147, Slug and Ki67 by immunohistochemical staining of human tissue microarray which contains 72 adenoid cystic carcinoma (AdCC), 12 pleomorphic adenoma (PMA) and 18 normal salivary gland (NSG) using digital pathological scanner and scoring system. We found that the expression of p-STAT3, Survivin, Slug, Cyclin D1 and CD147 was significantly increased in AdCC as compared with PMA and (or) NSG (p<0.05). While, the level of p-STAT3 and expression of Cyclin D1 and CD147 was not associated with pathological type of human AdCC (p>0.05). Correlation analysis of these proteins revealed that p-STAT3 up-regulates the expression of Survivin, Slug, Cyclin D1 and CD147 (p<0.05). Moreover, the activation of STAT3 was associated with proliferation marker Ki-67 (p<0.05). Selective inhibition of STAT3 by a small molecule S3I-201 significantly reduced human SACC-83 and SACC-LM cells proliferation, migration and invasion with the corresponding decrease in expression of Survivin, Slug, Cyclin D1 and CD147. These findings indicate that high phosphorylation level of STAT3 in AdCC is related to Survivin, Slug, Cyclin D1 and CD147. We suggest that the inhibition of STAT3 may be a novel strategy for neoadjuvant chemotherapeutic treatment of AdCC. PMID:26175943

  13. Safflower polysaccharide inhibits the proliferation and metastasis of MCF-7 breast cancer cell.

    PubMed

    Luo, Zhongbing; Zeng, Hongxie; Ye, Yongqiang; Liu, Lianbin; Li, Shaojin; Zhang, Junyi; Luo, Rongcheng

    2015-06-01

    Breast cancer accounts for 22.9% of all types of cancer in females worldwide. Safflower polysaccharide (SPS) is an active fraction purified from safflower petals (Carthamus tinctorius L). The present study investigated the effects of safflower polysaccharide on the proliferation and metastasis of breast cancer cells. Cell viability was analyzed using an MTT assay following treatment of the MCF‑7 cells with increasing concentrations of SPS. The results demonstrated that the SPS compound significantly inhibited the proliferation of the MCF‑7 human breast cancer cell line and these inhibitory effects increased in a dose‑ and time‑dependent manner. The half maximal inhibitory concentration (IC50) value of SPS on breast cancer cells, following treatment for 72 h, was detected using an MTT assay and was calculated as 0.12 mg/ml. The apoptotic rate was detected using flow cytometry in the MCF‑7 human breast cancer cell line and the results revealed that SPS induced cell apoptosis. The apoptotic rate of the MCF‑7 cells treated with SPS was significantly higher compared with that of the untreated cells and increased in a dose‑dependent manner. The expression of B‑cell lymphoma 2 (Bcl‑2) was downregulated and the expression of Bcl‑2‑associated X protein was upregulated in the MCF‑7 cells treated with SPS in a time‑dependent manner. Additionally, the expression of matrix metalloproteinase‑9 was significantly reduced and the expression of tissue inhibitor of metalloproteinase‑1 was increased in the MCF‑7 human breast cancer cell treated with SPS. These results demonstrated that SPS inhibited the metastasis of MCF‑7 breast cancer cells and understanding the underlying mechanisms may provide novel strategies in breast cancer therapy. PMID:25673029

  14. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil).

    PubMed

    Sávio, André Luiz Ventura; da Silva, Glenda Nicioli; Salvadori, Daisy Maria Fávero

    2015-01-01

    Natural compounds hold great promise for combating antibiotic resistance, the failure to control some diseases, the emergence of new diseases and the toxicity of some contemporary medical products. Allyl isothiocyanate (AITC), which is abundant in cruciferous vegetables and mustard seeds and is commonly referred to as mustard essential oil, exhibits promising antineoplastic activity against bladder cancer, although its mechanism of action is not fully understood. Therefore, the aim of this study was to investigate the effects of AITC activity on bladder cancer cell lines carrying a wild type (wt; RT4) or mutated (T24) TP53 gene. Morphological changes, cell cycle kinetics and CDK1, SMAD4, BAX, BCL2, ANLN and S100P gene expression were evaluated. In both cell lines, treatment with AITC inhibited cell proliferation (at 62.5, 72.5, 82.5 and 92.5μM AITC) and induced morphological changes, including scattered and elongated cells and cellular debris. Gene expression profiles revealed increased S100P and BAX and decreased BCL2 expression in RT4 cells following AITC treatment. T24 cells displayed increased BCL2, BAX and ANLN and decreased S100P expression. No changes in SMAD4 and CDK1 expression were observed in either cell line. In conclusion, AITC inhibits cell proliferation independent of TP53 status. However, the mechanism of action of AITC differed in the two cell lines; in RT4 cells, it mainly acted via the classical BAX/BCL2 pathway, while in T24 cells, AITC modulated the activities of ANLN (related to cytokinesis) and S100P. These data confirm the role of AITC as a potential antiproliferative compound that modulates gene expression according to the tumor cell TP53 genotype. PMID:25771977

  15. Kalanchoe tubiflora extract inhibits cell proliferation by affecting the mitotic apparatus

    PubMed Central

    2012-01-01

    Background Kalanchoe tubiflora (KT) is a succulent plant native to Madagascar, and is commonly used as a medicinal agent in Southern Brazil. The underlying mechanisms of tumor suppression are largely unexplored. Methods Cell viability and wound-healing were analyzed by MTT assay and scratch assay respectively. Cell cycle profiles were analyzed by FACS. Mitotic defects were analyzed by indirect immunofluoresence images. Results An n-Butanol-soluble fraction of KT (KT-NB) was able to inhibit cell proliferation. After a 48 h treatment with 6.75 μg/ml of KT, the cell viability was less than 50% of controls, and was further reduced to less than 10% at higher concentrations. KT-NB also induced an accumulation of cells in the G2/M phase of the cell cycle as well as an increased level of cells in the subG1 phase. Instead of disrupting the microtubule network of interphase cells, KT-NB reduced cell viability by inducing multipolar spindles and defects in chromosome alignment. KT-NB inhibits cell proliferation and reduces cell viability by two mechanisms that are exclusively involved with cell division: first by inducing multipolarity; second by disrupting chromosome alignment during metaphase. Conclusion KT-NB reduced cell viability by exclusively affecting formation of the proper structure of the mitotic apparatus. This is the main idea of the new generation of anti-mitotic agents. All together, KT-NB has sufficient potential to warrant further investigation as a potential new anticancer agent candidate. PMID:22963191

  16. PKC{eta} is a negative regulator of AKT inhibiting the IGF-I induced proliferation

    SciTech Connect

    Shahaf, Galit; Rotem-Dai, Noa; Koifman, Gabriela; Raveh-Amit, Hadas; Frost, Sigal A.; Livneh, Etta

    2012-04-15

    The PI3K-AKT pathway is frequently activated in human cancers, including breast cancer, and its activation appears to be critical for tumor maintenance. Some malignant cells are dependent on activated AKT for their survival; tumors exhibiting elevated AKT activity show sensitivity to its inhibition, providing an Achilles heel for their treatment. Here we show that the PKC{eta} isoform is a negative regulator of the AKT signaling pathway. The IGF-I induced phosphorylation on Ser473 of AKT was inhibited by the PKC{eta}-induced expression in MCF-7 breast adenocarcinoma cancer cells. This was further confirmed in shRNA PKC{eta}-knocked-down MCF-7 cells, demonstrating elevated phosphorylation on AKT Ser473. While PKC{eta} exhibited negative regulation on AKT phosphorylation it did not alter the IGF-I induced ERK phosphorylation. However, it enhanced ERK phosphorylation when stimulated by PDGF. Moreover, its effects on IGF-I/AKT and PDGF/ERK pathways were in correlation with cell proliferation. We further show that both PKC{eta} and IGF-I confer protection against UV-induced apoptosis and cell death having additive effects. Although the protective effect of IGF-I involved activation of AKT, it was not affected by PKC{eta} expression, suggesting that PKC{eta} acts through a different route to increase cell survival. Hence, our studies show that PKC{eta} provides negative control on AKT pathway leading to reduced cell proliferation, and further suggest that its presence/absence in breast cancer cells will affect cell death, which could be of therapeutic value.

  17. Inhibition of STAT3 reduces proliferation and invasion in salivary gland adenoid cystic carcinoma.

    PubMed

    Bu, Lin-Lin; Deng, Wei-Wei; Huang, Cong-Fa; Liu, Bing; Zhang, Wen-Feng; Sun, Zhi-Jun

    2015-01-01

    In this study, we accessed the expression and correlation of p-STAT3 with Survivin, Cyclin D1, CD147, Slug and Ki67 by immunohistochemical staining of human tissue microarray which contains 72 adenoid cystic carcinoma (AdCC), 12 pleomorphic adenoma (PMA) and 18 normal salivary gland (NSG) using digital pathological scanner and scoring system. We found that the expression of p-STAT3, Survivin, Slug, Cyclin D1 and CD147 was significantly increased in AdCC as compared with PMA and (or) NSG (p<0.05). While, the level of p-STAT3 and expression of Cyclin D1 and CD147 was not associated with pathological type of human AdCC (p>0.05). Correlation analysis of these proteins revealed that p-STAT3 up-regulates the expression of Survivin, Slug, Cyclin D1 and CD147 (p<0.05). Moreover, the activation of STAT3 was associated with proliferation marker Ki-67 (p<0.05). Selective inhibition of STAT3 by a small molecule S3I-201 significantly reduced human SACC-83 and SACC-LM cells proliferation, migration and invasion with the corresponding decrease in expression of Survivin, Slug, Cyclin D1 and CD147. These findings indicate that high phosphorylation level of STAT3 in AdCC is related to Survivin, Slug, Cyclin D1 and CD147. We suggest that the inhibition of STAT3 may be a novel strategy for neoadjuvant chemotherapeutic treatment of AdCC. PMID:26175943

  18. Short hairpin RNA targeting Notch2 inhibits U87 human glioma cell proliferation by inducing cell cycle arrest and apoptosis in vitro and in vivo

    PubMed Central

    LI, XUEZHEN; HE, XIN; TIAN, WEI; WANG, JIANZHEN

    2014-01-01

    Notch signaling has been reported to be oncogenic or tumor suppressive, depending on the tissue context. To investigate the effects of Notch2 knockdown on U87 human glioma cell proliferation in vitro and in vivo, and the associated mechanisms, U87 cells were stably transfected with p green fluorescent protein (GFP)-V-RS Notch2 short hairpin (sh) RNA plasmid and pGFP-V-RS scramble-shRNA plasmid. The former was referred to as the Notch2-shRNA group and the latter as the negative-shRNA group. mRNA and protein expression, cell proliferation, cell cycle and apoptosis were measured by reverse transcription-polymerase chain reaction, western blot analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and flow cytometry using propidium iodide, respectively. Tumor volume, tumor weight and cumulative survival rate were determined in a nude mouse xenograft tumor model. Notch2 mRNA and protein expression in the Notch2-shRNA group were reduced by 87.6 and 94.5% compared with the negative-shRNA group (P<0.001). Notch2 knockdown significantly inhibited U87 cell proliferation after three days of culture (P<0.05). Notch2 silencing induced cell cycle arrest at G0/G1 phase by upregulation of p21 protein expression and downregulation of mini chromosome maintenance complex 2 and cyclin-D1 protein expression. Furthermore, knockdown of Notch2 also induced U87 cell apoptosis. On day 50 after inoculation, tumor weight in the Notch2-shRNA group was significantly lower than that in the negative-shRNA group (0.55±0.10 vs. 1.23±0.52 g; P<0.01). The cumulative survival rate was significantly longer in the Notch2-shRNA group compared with the negative-shRNA group (log rank test P=0.01). In conclusion, Notch2 silencing inhibited U87 glioma cell proliferation by inducing cell cycle arrest and apoptosis in vitro and in vivo. Thus, Notch2 may be a key therapeutic target for the treatment of glioma. PMID:25323114

  19. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells

    SciTech Connect

    Tang, Yiting; Liu, Lan; Sheng, Ming; Xiong, Kai; Huang, Lei; Gao, Qian; Wei, Jingliang; Wu, Tianwen; Yang, Shulin; Liu, Honglin; Mu, Yulian; Li, Kui

    2015-06-10

    Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1{sup −/−} MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1{sup −/−} MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1{sup −/−} MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1{sup −/−} MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1

  20. microRNA-26a and -584 inhibit the colorectal cancer progression through inhibition of the binding of hnRNP A1-CDK6 mRNA.

    PubMed

    Konishi, Hiroaki; Fujiya, Mikihiro; Ueno, Nobuhiro; Moriichi, Kentaro; Sasajima, Junpei; Ikuta, Katsuya; Tanabe, Hiroki; Tanaka, Hiroki; Kohgo, Yutaka

    2015-11-27

    While the progress of chemotherapy and molecular targeted therapy has improved the outcome of colorectal cancer patients, the mortality of colon cancer remains high, indicating the need to develop novel therapeutic targets for improving the outcome of colon cancer. Heterogeneous ribonucleoprotein A1 (hnRNP A1) is highly expressed in colorectal cancer and its expression correlates with malignant transformation. In this study, we performed a microarray analysis with the RNA immunoprecipitation (RNA-IP) method and identified hnRNP A1-interacting miRs, including miR-26a and -584, in a colorectal cancer cell line, SW620. A SRB assay revealed the tumor suppressive effect of miR-26a and -584, and the tumor suppressive effect of these miRs was diminished by the downregulation of hnRNP A1. The combined method of a transcriptome analysis and RNA-IP revealed hnRNP A1-interacting mRNAs, including cyclin dependent kinase 6 (CDK6). A Western blot analysis revealed the downregulation of CDK6 in miR-26a and -584 overexpression cells, as well as hnRNP A1 knockdown cells. The binding assay indicated that the binding of hnRNP A1-CDK6 mRNA was reduced by transfection of miR-26a and -584. The expression of cleaved caspase-3 was induced in miR-26a and -584 overexpression cells. These data indicate that miR-26a and -584 inhibit the binding of hnRNP A1-CDK6 mRNA and induce colorectal cancer cell apoptosis. PMID:26494299

  1. Chicken biliary exosomes enhance CD4(+)T proliferation and inhibit ALV-J replication in liver.

    PubMed

    Wang, Yue; Wang, Guihua; Wang, Zhenzhen; Zhang, Huangge; Zhang, Li; Cheng, Ziqiang

    2014-04-01

    Exosomes, which are small membrane vesicles of endocytic origin, carry lipids, RNA/miRNAs, and proteins and have immune modulatory functions. In this study, we isolated exosomes from the bile of specific pathogen-free chickens, 42-43 days of age, by using an ultracentrifugation and filtration method. The density of the exosomes, isolated by sucrose gradient fractionation, was between 1.13 and 1.19 g/mL. Electron microscopic observation of the liver showed that exosomes were present in the space of Disse and bile canaliculus. Chicken biliary exosomes displayed typical saucer-shaped, rounded morphology. Using liquid chromatography mass spectrum methodology, 196 proteins, including exosomal markers and several unique proteins, were identified and compared with mouse biliary exosomes. Noteworthy, CCCH type zinc finger antiviral protein was found on chicken biliary exosomes never described before. Furthermore, our data show that chicken biliary exosomes promote the proliferation of CD4(+) and CD8(+) T cells and monocytes from liver. In addition, chicken biliary exosomes significantly inhibit avian leukosis virus subgroup J, which is an oncogenic retrovirus, from replicating in the DF-1 cell line. These data indicate that chicken biliary exosomes possess the capacity to influence the immune responses of lymphocytes and inhibit avian leukosis virus subgroup J (ALV-J). PMID:24697699

  2. Tumorigenic Poxviruses Up-Regulate Intracellular Superoxide To Inhibit Apoptosis and Promote Cell Proliferation

    PubMed Central

    Teoh, Melissa L. T.; Turner, Patricia V.; Evans, David H.

    2005-01-01

    Tumorigenic leporipoxviruses encode catalytically inactive homologs of cellular Cu-Zn superoxide dismutase (SOD1). The function of the orthologous myxoma virus M131R and Shope fibroma virus S131R gene products is uncertain, but they inhibit SOD1 activity by a process linked to binding its copper chaperone. Using a superoxide-sensitive dye (hydroethidine), we observed that virus infection increased intracellular superoxide levels in an M/S131R-dependent manner. To see whether this effect promotes infection, we deleted the Shope fibroma virus S131R gene and compared the clinical manifestations of wild-type and mutant virus infections in rabbits. S131RΔ virus produced significantly smaller fibroxanthosarcoma-like growths in vivo and, at a point where these growths were already receding, wild-type infections still showed extensive leukocyte infiltration, necrosis, and fibromatous cell proliferation. Coincidentally, whereas Jurkat cells are protected from mitochondria- and Fas-mediated apoptosis by wild-type myxoma virus in vitro, M131RΔ virus could not block Fas-initiated apoptosis as judged by DNA laddering, terminal deoxynucleotidyltransferase-mediated dUTP-fluorescein nick end labeling, and caspase 3 cleavage assays. These data suggest that tumorigenic poxviruses can modulate intracellular redox status to their advantage to stimulate infected cell growth and inhibit programmed cell death. PMID:15827194

  3. MicroRNA-26a inhibits osteosarcoma cell proliferation by targeting IGF-1

    PubMed Central

    Tan, Xinyu; Fan, Shicai; Wu, Wen; Zhang, Yin

    2015-01-01

    There are still controversies about the roles of microRNA-26a (miR-26a) in human malignancies, as it is a tumor suppressor in breast cancer, gastric cancer, and hepatocellular carcinoma, but is an oncogene in glioma and cholangiocarcinoma. Until now, the function of miR-26a in osteosarcoma remains largely elusive. Here, we found that miR-26a was downregualted in osteosarcoma tissues. Using in vitro and in vivo assays, we confirmed that miR-26a could inhibit the abilities of in vitro proliferation and suppress in vivo tumor growth in mouse model. Furthermore, we identified insulin-like growth factor 1 (IGF-1) as a novel and direct target of miR-26a and revealed that miR-26a exerted its tumor-suppressor function, at least in part, by inhibiting IGF-1 expression. These findings contribute to our understanding of the functions of miR-26a in osteosarcoma. PMID:27468358

  4. Shikonin Derivative DMAKO-05 Inhibits Akt Signal Activation and Melanoma Proliferation.

    PubMed

    Yang, Yao-Yao; He, Hui-Qiong; Cui, Jia-Hua; Nie, Yun-Juan; Wu, Ya-Xian; Wang, Rui; Wang, Gang; Zheng, Jun-Nian; Ye, Richard D; Wu, Qiong; Li, Shao-Shun; Qian, Feng

    2016-06-01

    DMAKO-05((S)-1-((5E,8E)-5,8-bis(hydroxyimino)-1,4-dimethoxy-5,8-dihydronaphthalen-2-yl)-4-methylpent-3-enyl 3-methylbutanoate) is a novel oxime derivative of shikonin, the major component extracted from Chinese herb Lithospermun erythrorhizon. Here, we report that DMAKO-05 had an antitumor activity against mouse melanoma cell line B16F0. Our studies indicated that DMAKO-05 not only inhibited B16F0 proliferation and migration but also led to cell cycle arrest at G1 phase and cell apoptosis, in which DMAKO-05 triggered mitochondrial-mediated apoptosis signal including caspase-9/3 and PARP. In response to DMAKO-05 treatment, the Akt-mediated survival signals were remarkably attenuated in B16F0 cells. Collectively, DMAKO-05 has a strong cytotoxicity in B16F0 cells via inhibiting Akt activation, inducing G1 arrest, and promoting B16F0 cell apoptosis. DMAKO-05 might serve as a potential candidate lead compound for melanoma. PMID:26804061

  5. miR-506 inhibits cell proliferation and invasion by targeting TET family in colorectal cancer

    PubMed Central

    Wu, Minghao; Zhang, Yu; Tang, Anliu; Tian, Li

    2016-01-01

    Objective(s): Ten-eleven translocation (TET) family members have been shown to be involved in the development of many tumors. However, the biological role of the TET family and its mechanism of action in colorectal carcinogenesis and progression remain poorly understood. Materials and Methods: We measured the expression levels of TET family members in colorectal cancer (CRC) specimens, in the corresponding normal tissues and in cell lines using quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH). Both the protein function and the protein-independent role of TETs were investigated by cell viability assays and cell invasion assays using in vitro and in vivo models. Results: We found that all three TET genes were strongly up-regulated at the transcript level in CRC samples compared to matched normal tissues. The same results were observed in colorectal cancer cell lines. Knockdown of TETs by shTET1/2/3 showed that TET family members inhibited CRC growth and metastasis. We showed that TET family member degradation by miR-506 inhibits cell proliferation and invasion in colorectal cancer. Conclusion: Through this study, we advance our understanding of the expression levels TETs and miR-506 in CRC and further clarify the internal regulatory mechanism of miR-506 by targeting TET during CRC processes. These findings may contribute to a novel avenue for researching and developing targeted therapies for CRC. PMID:27114802

  6. RASSF4 is downregulated in nonsmall cell lung cancer and inhibits cancer cell proliferation and invasion.

    PubMed

    Han, Yong; Dong, Qianze; Hao, Jie; Fu, Lin; Han, Xu; Zheng, Xiaoying; Wang, Enhua

    2016-04-01

    RASSF4 has been implicated as a tumor suppressor in several human cancers. Its clinical significance and biological characteristics in human nonsmall cell lung cancer (NSCLC) have not been explored yet. In this study, we explored expression pattern of RASSF4 in 89 NSCLC specimens. The results showed that RASSF4 was downregulated in 36/89 NSCLC tissues compared with normal tissue. RASSF4 downregulation significantly associated with advanced TNM stage, positive nodal status, and poor prognosis. We examined RASSF4 protein expression in normal lung epithelial cell line and lung cancer lines. We found that RASSF4 expression was downregulated in four of seven lung cancer cell lines compared with normal bronchial epithelial cells. RASSF4 plasmid transfection was performed in H460 and A549 cell lines. RASSF4 overexpression inhibited proliferation, colony formation, and invading ability. In addition, we identified that RASSF4 could inhibit cell cycle progression with downregulation of cyclin D1. Expression of invasion-related protein MMP2, MMP9 was also decreased. In conclusion, the present study suggested that RASSF4 serves as an important tumor suppressor in NSCLC. PMID:26526576

  7. Quercetin inhibits human breast cancer cell proliferation and induces apoptosis via Bcl-2 and Bax regulation.

    PubMed

    Duo, Jian; Ying, Guo-Guang; Wang, Guo-Wen; Zhang, Li

    2012-06-01

    Breast cancer is a disease in which cancer cells form in the tissues of the breast. The present study aimed to explore the effect of the flavonoid compound quercetin on the growth and apoptosis of human breast cancer cells. Varying concentrations (12.5, 25, 50, 100, 200 µM) of quercetin were applied to cultured MCF-7 human breast cancer cells for defined lengths of time. At 50 to 200 µM doses, quercetin significantly inhibited the proliferation of MCF-7 cells assessed by MTT colorimetry, in both dose- and time-dependent manners (P<0.05). The compound also increased apoptosis after 48 h of exposure (P<0.05). Furthermore, following quercetin treatment Bcl-2 expression decreased significantly while Bax expression increased significantly (P<0.05). In brief, quercetin inhibits cell growth and induces apoptosis in MCF-7 human breast cancer cells. The mechanisms behind these effects may stem from the downregulation of Bcl-2 protein expression and upregulation of Bax expression. PMID:22447039

  8. Hyperoside, a flavonoid compound, inhibits proliferation and stimulates osteogenic differentiation of human osteosarcoma cells.

    PubMed

    Zhang, Ning; Ying, Mei-Dan; Wu, Yong-Ping; Zhou, Zhi-Hong; Ye, Zhao-Ming; Li, Hang; Lin, Ding-Sheng

    2014-01-01

    Osteosarcoma, one of the most common malignant bone tumours, is generally considered a differentiation disease caused by genetic and epigenetic disruptions in the terminal differentiation of osteoblasts. Novel therapies based on the non-cytotoxic induction of cell differentiation-responsive pathways could represent a significant advance in treating osteosarcoma; however, effective pharmaceuticals to induce differentiation are lacking. In the present study, we investigated the effect of hyperoside, a flavonoid compound, on the osteoblastic differentiation of U2OS and MG63 osteosarcoma cells in vitro. Our results demonstrated that hyperoside inhibits the proliferation of osteosarcoma cells by inducing G0/G1 arrest in the cell cycle, without causing obvious cell death. Cell migration assay further suggested that hyperoside could inhibit the invasion potential of osteosarcoma cells. Additionally, osteopontin and runt-related transcription factor 2 protein levels and osteocalcin activation were upregulated dramatically in hyperoside-treated osteosarcoma cells, suggesting that hyperoside may stimulates osteoblastic differentiation in osteosarcoma cells. This differentiation was accompanied by the activation of transforming growth factor (TGF)-β and bone morphogenetic protein-2, suggesting that the hyperoside-induced differentiation involves the TGF-β signalling pathway. To our knowledge, this study is the first to evaluate the differentiation effect of hyperoside in osteosarcoma cells and assess the possible potential for hyperoside treatment as a future therapeutic approach for osteosarcoma differentiation therapy. PMID:24983940

  9. Novel dihydropyrazole-chromen: Design and modulates hTERT inhibition proliferation of MGC-803.

    PubMed

    Chen, Yan Yan; Wu, Xiao Qin; Tang, Wen Jian; Shi, Jing Bo; Li, Jun; Liu, Xin Hua

    2016-03-01

    Dominant-negative mutant of telomerase hTERT was demonstrated to show selective anticancer effects in tumor cells. But, an effective hTERT inhibitor with high selectivity has not been developed so far. Focused on hTERT, a novel dihydropyrazole-chromen (13k) controlling hTERT was designed. Title compound 13k occupied high antiproliferative activity against MGC-803 cells with IC50 value 1.41 μM, but it manifested obvious un-toxic effect on human normal gastric mucosa cells with the IC50 2.3 mM. Treated with compound 13k, the further inhibition mechanisms by modulating hTERT was explored, the results showed that expression of hTERT was clearly modulated, and then β-catenin activation was decreased, thereby the expression of downstream signaling molecules including c-myc and cyclin D1 was modulated, leading to inhibition MGC-803 cells proliferation. PMID:26807545

  10. Phenethyl isothiocyanate induces apoptosis and inhibits cell proliferation and invasion in Hep-2 laryngeal cancer cells.

    PubMed

    Dai, Meng-Yuan; Wang, Yan; Chen, Chen; Li, Fen; Xiao, Bo-Kui; Chen, Shi-Ming; Tao, Ze-Zhang

    2016-05-01

    The dietary compound phenethyl isothiocyanate (PEITC), an important tumoricidal component found in cruciferous vegetables, exhibits strong anticancer and chemopreventive effects in a variety of tumors. However, its role in human laryngeal cancer is unclear. The aim of the present study was to investigate whether PEITC exhibits anticancer properties in human laryngeal carcinoma Hep-2 cells in vitro and to identify the potential molecular mechanisms. The results showed that treatment of Hep-2 cells with PEITC significantly inhibited cell proliferation in a dose- and time-dependent manner, promoted apoptosis with concurrent G2/M cell cycle arrest and inhibited cell invasion in a dose-dependent manner. These effects were accompanied by significant alterations in the expression levels of key proteins associated with pro-survival signaling pathways, including PI3K, Akt, ERK, NF-κB, Bcl, Bax, cyclin B, CDK4 and CDK6. Importantly, these effects were not reflected in 16HBE normal human bronchial epithelial cells, suggesting a safe range of treatment concentrations between 0 and 10 µM PEITC. In summary, PEITC exhibited significant anticancer effects against human laryngeal cancer cells in vitro with low toxicological impact on normal bronchial epithelial cells. This was achieved through dysregulation of key proteins involved in the occurrence and development of tumors, thereby offering a valuable contribution to future strategies for the treatment and screening of patients with laryngocarcinoma. PMID:26986926

  11. Role and mechanism of Sophoridine on proliferation inhibition in human glioma U87MG cell line

    PubMed Central

    Wang, Wen-Xin; Sun, Zheng-Hui; Chen, Han-Men; Xu, Bai-Nan; Wang, Fu-Yu

    2015-01-01

    Sophoridine, a natural product obtained from medicinal plants, which has a variety of pharmacological effects, including anti-cancer effects, and selectively induces apoptotic cell death in a variety of human cancer cells in vitro and in vivo; however, its mechanism of action needs to be further elaborated. In this study, we investigated the effects of Sophoridine on the induction of apoptosis in human Glioma U87MG cells. Here, we found that Sophoridine can significantly inhibited cell proliferation, G2/M phase arrest, induced cell apoptosis and caused reactive oxygen species (ROS) generation and GSH content reduction. Sophoridine also triggered significant down-regulated the expression of p27, CDK2, Survivin, Livin, Bcl-2, E2F1 and the transcriptional activity of FoxM1, NF-κb and AP-1, meanwhile, up-regulated the expression of caspase-3/8, p53, Smac, c-JNK and p38-MAPK. Moreover, we found that Sophoridine significantly inhibited ubiquitin-proteasome in tumor cells. In conclusion, Sophoridine shows obvious anti-cancer activity on glioma cells by inducing cell apoptosis, inducing ROS accumulation, and activating mitochondrial signal pathways. Eventually, we believe Sophoridine could be used as a new drug for the treatment of glioma. PMID:25785018

  12. MiR-103 inhibits osteoblast proliferation mainly through suppressing Cav1.2 expression in simulated microgravity.

    PubMed

    Sun, Zhongyang; Cao, Xinsheng; Hu, Zebing; Zhang, Lianchang; Wang, Han; Zhou, Hua; Li, Dongtao; Zhang, Shu; Xie, Manjiang

    2015-07-01

    Emerging evidence indicates that microRNAs (miRNAs) play important roles in modulating osteoblast function and bone formation. However, the influence of miRNA on osteoblast proliferation and the possible mechanisms underlying remain to be defined. In this study, we aimed to investigate whether miR-103 regulates osteoblast proliferation under simulated microgravity condition through regulating Cav1.2, the primary subunit of L-type voltage sensitive calcium channels (LTCCs). We first investigated the effect of simulated microgravity on osteoblast proliferation and the outcomes clearly demonstrated that the mechanical unloading inhibits MC3T3-E1 osteoblast-like cell proliferation. Using quantitative Real-Time PCR (qRT-PCR), we provided data showing that miR-103 was up-regulated in response to simulated microgravity. In addition, we observed that up-regulation of miR-103 inhibited and down-regulation of miR-103 promoted osteoblast proliferation under simulated microgravity condition. Furthermore, knocking-down or over-expressing miR-103, respectively, up- or down-regulated the level of Cav1.2 expression and LTCC currents, suggesting that miR-103 acts as an endogenous attenuator of Cav1.2 in osteoblasts under simulated microgravity condition. More importantly, we showed that the effect of miR-103 on osteoblast proliferation was diminished in simulated microgravity, when co-transfecting miR-103 mimic or inhibitor with Cav1.2 siRNA. Taken together, our data suggest that miR-103 inhibits osteoblast proliferation mainly through suppression of Cav1.2 expression under simulated microgravity condition. This work may provide a novel mechanism of microgravity-induced detrimental effects on osteoblast proliferation, identifying miR-103 as a novel possible therapeutic target in bone remodeling disorders in this mechanical unloading. PMID:25868801

  13. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    SciTech Connect

    Wang, Feng; Yang, Yong

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  14. Inhibition of Cancer Cell Proliferation by PPARγ is Mediated by a Metabolic Switch that Increases Reactive Oxygen Species Levels

    PubMed Central

    Srivastava, Nishi; Kollipara, Rahul K.; Singh, Dinesh K.; Sudderth, Jessica; Hu, Zeping; Nguyen, Hien; Wang, Shan; Humphries, Caroline G.; Carstens, Ryan; Huffman, Kenneth E.; DeBerardinis, Ralph J.; Kittler, Ralf

    2014-01-01

    SUMMARY The nuclear receptor peroxisome-proliferation activated receptor gamma (PPARγ), a transcriptional master regulator of glucose and lipid metabolism, inhibits the growth of several common cancers including lung cancer. In this study, we show that the mechanism by which activation of PPARγ inhibits proliferation of lung cancer cells is based on metabolic changes. We found that treatment with the PPARγ agonist pioglitazone triggers a metabolic switch that inhibits pyruvate oxidation and reduces glutathione levels. These PPARγ-induced metabolic changes result in a marked increase of reactive oxygen species (ROS) levels that lead to rapid hypophosphorylation of retinoblastoma protein (RB) and cell cycle arrest. The antiproliferative effect of PPARγ activation can be prevented by suppressing pyruvate dehydrogenase kinase 4 (PDK4) or β-oxidation of fatty acids in vitro and in vivo. Our proposed mechanism also suggests that metabolic changes can rapidly and directly inhibit cell cycle progression of cancer cells by altering ROS levels. PMID:25264247

  15. Inhibition of cancer cell proliferation by PPARγ is mediated by a metabolic switch that increases reactive oxygen species levels.

    PubMed

    Srivastava, Nishi; Kollipara, Rahul K; Singh, Dinesh K; Sudderth, Jessica; Hu, Zeping; Nguyen, Hien; Wang, Shan; Humphries, Caroline G; Carstens, Ryan; Huffman, Kenneth E; DeBerardinis, Ralph J; Kittler, Ralf

    2014-10-01

    The nuclear receptor peroxisome-proliferation-activated receptor gamma (PPARγ), a transcriptional master regulator of glucose and lipid metabolism, inhibits the growth of several common cancers, including lung cancer. In this study, we show that the mechanism by which activation of PPARγ inhibits proliferation of lung cancer cells is based on metabolic changes. We found that treatment with the PPARγ agonist pioglitazone triggers a metabolic switch that inhibits pyruvate oxidation and reduces glutathione levels. These PPARγ-induced metabolic changes result in a marked increase of reactive oxygen species (ROS) levels that lead to rapid hypophosphorylation of retinoblastoma protein (RB) and cell-cycle arrest. The antiproliferative effect of PPARγ activation can be prevented by suppressing pyruvate dehydrogenase kinase 4 (PDK4) or β-oxidation of fatty acids in vitro and in vivo. Our proposed mechanism also suggests that metabolic changes can rapidly and directly inhibit cell-cycle progression of cancer cells by altering ROS levels. PMID:25264247

  16. MiR-122 Inhibits Cell Proliferation and Tumorigenesis of Breast Cancer by Targeting IGF1R

    PubMed Central

    Yang, Ziang

    2012-01-01

    miRNAs are emerging as critical regulators in carcinogenesis and tumor progression. Recently, microRNA-122 (miR-122) has been proved to play an important role in hepatocellular carcinoma, but its functions in the context of breast cancer (BC) remain unknown. In this study, we report that miR-122 is commonly downregulated in BC specimens and BC cell lines with important functional consequences. Overexpression of miR-122 not only dramatically suppressed cell proliferation, colony formation by inducing G1-phase cell-cycle arrest in vitro, but also reduced tumorigenicity in vivo. We then screened and identified a novel miR-122 target, insulin-like growth factor 1 receptor (IGF1R), and it was further confirmed by luciferase assay. Overexpression of miR-122 would specifically and markedly reduce its expression. Similar to the restoring miR-122 expression, IGF1R downregulation suppressed cell growth and cell-cycle progression, whereas IGF1R overexpression rescued the suppressive effect of miR-122. To identify the mechanisms, we investigated the Akt/mTOR/p70S6K pathway and found that the expression of Akt, mTOR and p70S6K were suppressed, whereas re-expression of IGF1R which did not contain the 3′UTR totally reversed the inhibition of Akt/mTOR/p70S6K signal pathway profile. We also identified a novel, putative miR-122 target gene, PI3CG, a member of PI3K family, which further suggests miR-122 may be a key regulator of the PI3K/Akt pathway. In clinical specimens, IGF1R was widely overexpressed and its mRNA levels were inversely correlated with miR-122 expression. Taken together, our results demonstrate that miR-122 functions as a tumor suppressor and plays an important role in inhibiting the tumorigenesis through targeting IGF1R and regulating PI3K/Akt/mTOR/p70S6K pathway. Given these, miR-122 may serve as a novel therapeutic or diagnostic/prognostic-target for treating BC. PMID:23056576

  17. Secretory clusterin inhibits osteoclastogenesis by attenuating M-CSF-dependent osteoclast precursor cell proliferation

    SciTech Connect

    Choi, Bongkun; Kang, Soon-Suk; Kang, Sang-Wook; Min, Bon-Hong; Lee, Eun-Jin; Song, Da-Hyun; Kim, Sang-Min; Song, Youngsup; Yoon, Seung-Yong; Chang, Eun-Ju

    2014-07-18

    Highlights: • We describe the expression and secretion of clusterin in osteoclasts. • Endogenous clusterin deficiency does not affect osteoclast formation. • Exogenous treatment with secretory clusterin decreases osteoclast differentiation. • Secretory clusterin attenuates osteoclast precursor cell proliferation by inhibiting M-CSF-mediated ERK activation. - Abstract: Secretory clusterin (sCLU)/apolipoprotein J is a multifunctional glycoprotein that is ubiquitously expressed in various tissues. Reduced sCLU in the joints of patients with bone erosive disease is associated with disease activity; however, its exact role has yet to be elucidated. Here, we report that CLU is expressed and secreted during osteoclastogenesis in mouse bone marrow-derived macrophages (BMMs) that are treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). CLU-deficient BMMs obtained from CLU{sup −/−} mice exhibited no significant alterations in OC differentiation in comparison with BMMs obtained from wild-type mice. In contrast, exogenous sCLU treatment significantly inhibited OC formation in both BMMs and OC precursor cultures. The inhibitory effect of sCLU was more prominent in BMMs than OC precursor cultures. Interestingly, treating BMMs with sCLU decreased the proliferative effects elicited by M-CSF and suppressed M-CSF-induced ERK activation of OC precursor cells without causing apoptotic cell death. This study provides the first evidence that sCLU reduces OC formation by inhibiting the actions of M-CSF, thereby suggesting its protective role in bone erosion.

  18. Peroxisome proliferator-activated receptor-{gamma} agonists inhibit the replication of respiratory syncytial virus (RSV) in human lung epithelial cells

    SciTech Connect

    Arnold, Ralf . E-mail: ralf.arnold@medizin.uni-magdeburg.de; Koenig, Wolfgang

    2006-07-05

    We have previously shown that peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) agonists inhibited the inflammatory response of RSV-infected human lung epithelial cells. In this study, we supply evidence that specific PPAR{gamma} agonists (15d-PGJ{sub 2}, ciglitazone, troglitazone, Fmoc-Leu) efficiently blocked the RSV-induced cytotoxicity and development of syncytia in tissue culture (A549, HEp-2). All PPAR{gamma} agonists under study markedly inhibited the cell surface expression of the viral G and F protein on RSV-infected A549 cells. This was paralleled by a reduced cellular amount of N protein-encoding mRNA determined by real-time RT-PCR. Concomitantly, a reduced release of infectious progeny virus into the cell supernatants of human lung epithelial cells (A549, normal human bronchial epithelial cells (NHBE)) was observed. Similar results were obtained regardless whether PPAR{gamma} agonists were added prior to RSV infection or thereafter, suggesting that the agonists inhibited viral gene expression and not the primary adhesion or fusion process.

  19. Astaxanthin Inhibits JAK/STAT-3 Signaling to Abrogate Cell Proliferation, Invasion and Angiogenesis in a Hamster Model of Oral Cancer

    PubMed Central

    Kowshik, J.; Baba, Abdul Basit; Giri, Hemant; Deepak Reddy, G.; Dixit, Madhulika; Nagini, Siddavaram

    2014-01-01

    Identifying agents that inhibit STAT-3, a cytosolic transcription factor involved in the activation of various genes implicated in tumour progression is a promising strategy for cancer chemoprevention. In the present study, we investigated the effect of dietary astaxanthin on JAK-2/STAT-3 signaling in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model by examining the mRNA and protein expression of JAK/STAT-3 and its target genes. Quantitative RT-PCR, immunoblotting and immunohistochemical analyses revealed that astaxanthin supplementation inhibits key events in JAK/STAT signaling especially STAT-3 phosphorylation and subsequent nuclear translocation of STAT-3. Furthermore, astaxanthin downregulated the expression of STAT-3 target genes involved in cell proliferation, invasion and angiogenesis, and reduced microvascular density, thereby preventing tumour progression. Molecular docking analysis confirmed inhibitory effects of astaxanthin on STAT signaling and angiogenesis. Cell culture experiments with the endothelial cell line ECV304 substantiated the role of astaxanthin in suppressing angiogenesis. Taken together, our data provide substantial evidence that dietary astaxanthin prevents the development and progression of HBP carcinomas through the inhibition of JAK-2/STAT-3 signaling and its downstream events. Thus, astaxanthin that functions as a potent inhibitor of tumour development and progression by targeting JAK/STAT signaling may be an ideal candidate for cancer chemoprevention. PMID:25296162

  20. Astaxanthin inhibits JAK/STAT-3 signaling to abrogate cell proliferation, invasion and angiogenesis in a hamster model of oral cancer.

    PubMed

    Kowshik, J; Baba, Abdul Basit; Giri, Hemant; Deepak Reddy, G; Dixit, Madhulika; Nagini, Siddavaram

    2014-01-01

    Identifying agents that inhibit STAT-3, a cytosolic transcription factor involved in the activation of various genes implicated in tumour progression is a promising strategy for cancer chemoprevention. In the present study, we investigated the effect of dietary astaxanthin on JAK-2/STAT-3 signaling in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model by examining the mRNA and protein expression of JAK/STAT-3 and its target genes. Quantitative RT-PCR, immunoblotting and immunohistochemical analyses revealed that astaxanthin supplementation inhibits key events in JAK/STAT signaling especially STAT-3 phosphorylation and subsequent nuclear translocation of STAT-3. Furthermore, astaxanthin downregulated the expression of STAT-3 target genes involved in cell proliferation, invasion and angiogenesis, and reduced microvascular density, thereby preventing tumour progression. Molecular docking analysis confirmed inhibitory effects of astaxanthin on STAT signaling and angiogenesis. Cell culture experiments with the endothelial cell line ECV304 substantiated the role of astaxanthin in suppressing angiogenesis. Taken together, our data provide substantial evidence that dietary astaxanthin prevents the development and progression of HBP carcinomas through the inhibition of JAK-2/STAT-3 signaling and its downstream events. Thus, astaxanthin that functions as a potent inhibitor of tumour development and progression by targeting JAK/STAT signaling may be an ideal candidate for cancer chemoprevention. PMID:25296162

  1. Inhibition of U-87 human glioblastoma cell proliferation and formyl peptide receptor function by oligomer procyanidins (F2) isolated from grape seeds.

    PubMed

    Zhang, Feng-Jiao; Yang, Jing-Yu; Mou, Yan-Hua; Sun, Bao-Shan; Ping, Yi-Fang; Wang, Ji-Ming; Bian, Xiu-Wu; Wu, Chun-Fu

    2009-05-15

    Gliomas are the most common and lethal tumor type in the brain. The present study investigated the effect of oligomer procyanidins (F2) (F2, degree of polymerization 2-15), a natural fraction isolated from grape seeds on the biological behavior of glioblastoma cells. We found that F2 significantly inhibited the glioblastoma growth, with little cytotoxicity on normal cells, induced G2/M arrest and decreased mitochondrial membrane potential in U-87 cells. It also induced a non-apoptotic cell death phenotype resembling paraptosis in U-87 cells. In addition, it was found for the first time that F2 in non-cytotoxic concentrations selectively inhibited U-87 cell chemotaxis mediated by a G-protein coupled receptor formyl peptide receptor FPR, which is implicated in tumor cell invasion and metastasis. Further experiments indicated that F2 inhibited fMLF-induced U-87 cell calcium mobilization and MAP kinases ERK1/2 phosphorylation. Moreover, F2 attenuated the glioblastoma FPR expression, a new molecular target for glioma therapeutics, which has been shown to play important roles in glioma cells chemotaxis, proliferation and angiogenesis in addition to its promotion to tumor progression, but did not affect FPR mRNA expression in U-87 cells. Taken together, our results suggest that F2 may be a promising candidate for the development of novel anti-tumor therapeutics. PMID:19167369

  2. Statins Inhibit the Proliferation and Induce Cell Death of Human Papilloma Virus Positive and Negative Cervical Cancer Cells

    PubMed Central

    Crescencio, María Elena; Rodríguez, Emma; Páez, Araceli; Masso, Felipe A.; Montaño, Luis F.; López-Marure, Rebeca

    2009-01-01

    Statins, competitive inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, have anti-tumoral effects on multiple cancer types; however, little is known about their effect on cervical cancer. We evaluated the effect on proliferation, cell cycle, oxidative stress and cell death of three statins on CaSki, HeLa (HPV+) and ViBo (HPV−) cervical cancer cell lines. Cell proliferation was assayed by crystal violet staining, cell cycle by flow cytometry and cell death by annexin-V staining. Reactive oxygen species (ROS) production was evaluated by the oxidation of 2,7-dichlorofluorescein diacetate and nitrite concentration (an indirect measure of nitric oxide (NO) production), by the Griess reaction. Inhibition of cell proliferation by atorvastatin, fluvastatin and simvastatin was dose-dependent. ViBo cells were the most responsive. Statins did not affect the cell cycle, instead they induced cell death. The antiproliferative effect in ViBo cells was completely inhibited with mevalonate, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) treatments. In contrast, cell proliferation of CaSki and HeLa cells was partially (33%) rescued with these intermediates. The three statins increased ROS and nitrite production, mainly in the ViBo cell line. These results suggest that statins exert anti-tumoral effects on cervical cancer through inhibition of cell proliferation and induction of cell death and oxidative stress. Statins could be an aid in the treatment of cervical cancer, especially in HPV− tumors. PMID:23675166

  3. Si Shen Wan Inhibits mRNA Expression of Apoptosis-Related Molecules in p38 MAPK Signal Pathway in Mice with Colitis

    PubMed Central

    Zhao, Hai-Mei; Huang, Xiao-Ying; Zhou, Feng; Tong, Wen-Ting; Wan, Pan-Ting; Huang, Min-Fang; Ye, Qing; Liu, Duan-Yong

    2013-01-01

    Si Shen Wan (SSW) is used to effectively treat ulcerative colitis (UC) as a formula of traditional Chinese medicine. To explore the mechanism of SSW-inhibited apoptosis of colonic epithelial cell, the study observed mRNA expression of apoptosis-related molecules in p38 MAPK signal pathway in colonic mucosa in colitis mice treated with SSW. Experimental colitis was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in mice; meanwhile, the mice were administrated daily either SSW (5 g/kg) or p38 MAPK inhibitor (2 mg/kg) or vehicle (physiological saline) for 10 days. While microscopical evaluation was observed, apoptosis rate of colonic epithelial cell and mRNA expression of apoptosis-related molecules were tested. Compared with colitis mice without treatment, SSW alleviated colonic mucosal injuries and decreased apoptosis rate of colonic epithelial cell, while the mRNA expressions of p38 MAPK, p53, caspase-3, c-jun, c-fos, Bax, and TNF-α were decreased in the colonic mucosa in colitis mice treated with SSW, and Bcl-2 mRNA and the ratio of Bcl-2/Bax were increased. The present study demonstrated that SSW inhibited mRNA expression of apoptosis-related molecules in p38 MAPK signal pathway to downregulate colonic epithelial cells apoptosis in colonic mucosa in mice with colitis. PMID:24223057

  4. Vanadate and selenium inhibit the triiodothyronine induced enzyme activity and mRNA level for both fatty acid synthase and malic enzyme

    SciTech Connect

    Zhu, Y.; Mirmiran, R.; Goodridge, A.G.; Stapleton, S.R. Western Michigan Univ., Kalamazoo )

    1991-03-15

    In chick-embryo hepatocytes in culture, triiodothyronine stimulates enzyme activity, mRNA level and transcription rate for both fatty acid synthase (FAS) and malic enzyme (ME). Insulin alone has no effect but amplifies the induction by T3. Recent evidence has demonstrated the insulin-mimicking action of vanadate and selenium on various physiological processes. Little information, however, is available on the affects of vanadate and selenium on the expression of genes that are regulated by insulin. These studies were initiated to test the potential of vanadate and selenium to mimic the amplification affect of insulin on the T3 induction of FAS and ME. In chick-embryo hepatocytes incubated in a chemically defined medium, addition of T3 for 48h causes an increase in the enzyme activity and mRNA level for both FAS and ME. Addition of sodium vanadate or sodium selenate (20 {mu}M) coincident with the T3 almost completely inhibited the stimulation of FAS and ME activity and accumulation of their respective mRNA's. Fifty percent maximal inhibition occurred at about 3-40{mu}M vanadate or 5-10{mu}M selenium. Vanadate and selenium similarity inhibited FAS and ME enzyme activity and mRNA level when the cells were incubated in the presence of insulin and T3. The effect of these metals was selective; isocitrate dehydrogenase activity as well as the level of glyceraldehyde 3-phosphate mRNA were not affected by any of the additions made to the cells in culture. This effect by vanadate and selenium also does not appear to be a generalized effect of metals on lipogenic enzymes as molydate under similar experimental conditions has no effect on either the enzyme activity or mRNA level of FAS or ME. Studies are continuing to determine the mechanism of action of these agents on the regulation of lipogenic enzymes.

  5. Dexamethasone inhibits inducible nitric-oxide synthase expression and nitric oxide production by destabilizing mRNA in lipopolysaccharide-treated macrophages.

    PubMed

    Korhonen, Riku; Lahti, Aleksi; Hämäläinen, Mari; Kankaanranta, Hannu; Moilanen, Eeva

    2002-09-01

    Nitric oxide (NO) production through the inducible nitric-oxide synthase (iNOS) pathway is increased in inflammatory diseases and leads to cellular injury. Anti-inflammatory steroids inhibit the expression of various inflammatory genes, including iNOS. In the present study, we investigated the mechanism how dexamethasone decreased NO production in murine J774 macrophages. Dexamethasone (0.1-10 microM) inhibited the production of NO and iNOS protein in a dose-dependent manner in cells stimulated with lipopolysaccharides (LPS). In contrast, in cells treated with a combination of LPS and interferon-gamma (IFN-gamma), dexamethasone did not reduce iNOS expression and NO formation. Dissociated glucocorticoid RU24858 inhibited iNOS expression and NO production to levels comparable with that of dexamethasone, suggesting that the reduced iNOS expression by dexamethasone is not a GRE-mediated event. In further studies, the effect of dexamethasone on iNOS mRNA levels was tested by actinomycin assay. The half-life of iNOS mRNA after LPS treatment was 5 h 40 min, and dexamethasone reduced it to 3 h. The increased degradation of iNOS mRNA was reversed by a protein synthesis inhibitor cycloheximide. iNOS mRNA was more stabile in cells treated with a combination of LPS plus IFN-gamma (half-life = 8 h 20 min), and dexamethasone had a minor effect in these conditions. In conclusion, dexamethasone decreases iNOS-dependent NO production by destabilizing iNOS mRNA in LPS-treated cells by a mechanism that requires de novo protein synthesis. Also, decreased iNOS mRNA and protein expression and NO formation by dexamethasone was not found in cells treated with a combination of LPS plus IFN-gamma, suggesting that the effect of dexamethasone is stimulus-dependent. PMID:12181447

  6. Cell Proliferation and Motility Are Inhibited by G1 Phase Arrest in 15-kDa Selenoprotein-Deficient Chang Liver Cells

    PubMed Central

    Bang, Jeyoung; Huh, Jang Hoe; Na, Ji-Woon; Lu, Qiao; Carlson, Bradley A.; Tobe, Ryuta; Tsuji, Petra A.; Gladyshev, Vadim N.; Hatfield, Dolph L.; Lee, Byeong Jae

    2015-01-01

    The 15-kDa selenoprotein (Sep15) is a selenoprotein residing in the lumen of the endoplasmic reticulum (ER) and implicated in quality control of protein folding. Herein, we established an inducible RNAi cell line that targets Sep15 mRNA in Chang liver cells. RNAi-induced Sep15 deficiency led to inhibition of cell proliferation, whereas cell growth was resumed after removal of the knockdown inducer. Sep15-deficient cells were arrested at the G1 phase by upregulating p21 and p27, and these cells were also characterized by ER stress. In addition, Sep15 deficiency led to the relocation of focal adhesions to the periphery of the cell basement and to the decrease of the migratory and invasive ability. All these changes were reversible depending on Sep15 status. Rescuing the knockdown state by expressing a silent mutant Sep15 mRNA that is resistant to siRNA also reversed the phenotypic changes. Our results suggest that SEP15 plays important roles in the regulation of the G1 phase during the cell cycle as well as in cell motility in Chang liver cells, and that this selenoprotein offers a novel functional link between the cell cycle and cell motility. PMID:25728752

  7. Differential Inhibition of T Lymphocyte Proliferation and Cytokine Synthesis by [6]-Gingerol, [8]-Gingerol, and [10]-Gingerol.

    PubMed

    Bernard, Megan; Furlong, Suzanne J; Power Coombs, Melanie R; Hoskin, David W

    2015-11-01

    [6]-Gingerol, [8]-gingerol, and [10]-gingerol are pungent components of fresh ginger, extracts of which inhibit various components of the inflammatory response. Because little is known regarding the effect of gingerols with different unbranched alkyl side chain lengths on the activation and effector function of T lymphocytes, we compared the effects of [6]-gingerol, [8]-gingerol, and [10]-gingerol on murine T lymphocyte proliferation, expression of CD25 and CD69 activation markers, cytokine synthesis, and interleukin (IL)-2 receptor signaling. All three gingerols inhibited DNA synthesis by T lymphocytes, as well as interferon-γ synthesis. In contrast, only [8]-gingerol and [10]-gingerol inhibited CD25 and CD69 expression, and IL-2 synthesis. None of the gingerols affected IL-4 synthesis. Exogenous IL-2 enhanced T lymphocyte proliferation in the presence of [6]-gingerol but did not significantly increase T lymphocyte proliferation in the presence of [8]-gingerol or [10]-gingerol. In line with this finding, [8]-gingerol and [10]-gingerol impaired IL-2-induced proliferation of CTLL-2 cells, but constitutive CD25 expression was unaffected, indicating inhibition of IL-2 receptor signaling. In general, [10]-gingerol and [8]-gingerol were more potent inhibitors of T lymphocytes than [6]-gingerol. Suppression of T lymphocyte responses by gingerols suggests that these phytochemicals may be beneficial in chronic inflammatory conditions associated with excessive or inappropriate T lymphocyte activation. PMID:26178781

  8. Genetic deletion and pharmacological inhibition of Akt1 isoform attenuates bladder cancer cell proliferation, motility and invasion.

    PubMed

    Sabbineni, Harika; Alwhaibi, Abdulrahman; Goc, Anna; Gao, Fei; Pruitt, Alanna; Somanath, Payaningal R

    2015-10-01

    Isoform specific expression, intracellular localization and function of Akt in bladder cancer are not known. In the current study, we identified Akt1, followed by Akt2 and Akt3 as the predominant Akt isoform in human T24 and UM-UC-3 metastatic bladder cancer cells. Whereas Akt1 is localized at the membrane, cytoplasm and nucleus, Akt2 is solely cytoplasmic and Akt3 is mostly localized in the nucleus in T24 cells. ShRNA-mediated Akt1 knockdown resulted in impaired T24 cell survival, proliferation, colony formation, migration and microinvasion. Whereas pharmacological inhibition of Akt1 resulted in impaired T24 and UM-UC-3 cell motility, viability and proliferation, effect of pharmacological inhibition by Akt2 inhibitor was limited to proliferation in T24, but not UM-UC-3 cells. Our data provide important clues on the therapeutic benefits of targeting Akt1 for bladder cancer therapy. PMID:26148825

  9. EPAC activation inhibits acetaldehyde-induced activation and proliferation of hepatic stellate cell via Rap1.

    PubMed

    Yang, Yan; Yang, Feng; Wu, Xiaojuan; Lv, Xiongwen; Li, Jun

    2016-05-01

    Hepatic stellate cells (HSCs) activation represents an essential event during alcoholic liver fibrosis (ALF). Previous studies have demonstrated that the rat HSCs could be significantly activated after exposure to 200 μmol/L acetaldehyde for 48 h, and the cAMP/PKA signaling pathways were also dramatically upregulated in activated HSCs isolated from alcoholic fibrotic rat liver. Exchange protein activated by cAMP (EPAC) is a family of guanine nucleotide exchange factors (GEFs) for the small Ras-like GTPases Rap, and is being considered as a vital mediator of cAMP signaling in parallel with the principal cAMP target protein kinase A (PKA). Our data showed that both cAMP/PKA and cAMP/EPAC signaling pathways were involved in acetaldehyde-induced HSCs. Acetaldehyde could reduce the expression of EPAC1 while enhancing the expression of EPAC2. The cAMP analog Me-cAMP, which stimulates the EPAC/Rap1 pathway, could significantly decrease the proliferation and collagen synthesis of acetaldehyde-induced HSCs. Furthermore, depletion of EPAC2, but not EPAC1, prevented the activation of HSC measured as the production of α-SMA and collagen type I and III, indicating that EPAC1 appears to have protective effects on acetaldehyde-induced HSCs. Curiously, activation of PKA or EPAC perhaps has opposite effects on the synthesis of collagen and α-SMA: EPAC activation by Me-cAMP increased the levels of GTP-bound (activated) Rap1 while PKA activation by Phe-cAMP had no significant effects on such binding. These results suggested that EPAC activation could inhibit the activation and proliferation of acetaldehyde-induced HSCs via Rap1. PMID:26854595

  10. Thymoquinone inhibits proliferation in gastric cancer via the STAT3 pathway in vivo and in vitro

    PubMed Central

    Zhu, Wen-Qian; Wang, Jun; Guo, Xu-Feng; Liu, Zhou; Dong, Wei-Guo

    2016-01-01

    AIM: To elucidate the mechanism of thymoquinone (TQ)-induced apoptosis in human gastric cancer cells in vitro and in vivo. METHODS: HGC27, BGC823, and SGC7901 cells were cultured in vitro and treated with TQ (0, 10, 25, 50, 75, 100, 125 μmol/L) for 12 h, 24 h, and 36 h, and then the proliferation inhibitory rates were detected by methylthiazole tetrazolium assay. Apoptosis was observed after Hoechst staining. The protein expressions of signal transducer and activator of transcription (STAT)3, p-STAT3, STAT5, p-STAT5, phospho-janus-activated kinase 2 (JAK2), JAK2, p-Src, Src, glyceraldehyde-3-phosphate dehydrogenase, lamin-A, survivin, Cyclin D, Bcl-2, Bax, peroxisome proliferator activated receptor, and caspase-3,7,9 were detected by western blot. Cell cycle and apoptosis were determined with flow cytometry. TQ induced dose-dependent apoptotic cell death in HGC27 cells was measured by Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) analysis and Hoechst 33258. RESULTS: TQ inhibited the phosphorylation of STAT3 but not STAT5. TQ-induced downregulation of STAT3 activation was associated with a reduction in JAK2 and c-Src activity. TQ also downregulated the expression of STAT3-regulated genes, such as Bcl-2, cyclin D, survivin, and vascular endothelial growth factor, and activated caspase-3,7,9. Consistent with the in vitro results, TQ was significantly effective as an antitumor agent in a xenograft tumor mouse model. CONCLUSION: This study provides strong evidence that downregulation of the STAT3 signaling pathway mediates TQ-induced apoptosis in gastric cancer. PMID:27122665

  11. The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo.

    PubMed

    Kato, Kiyohito; Gong, Jian; Iwama, Hisakazu; Kitanaka, Akira; Tani, Joji; Miyoshi, Hisaaki; Nomura, Kei; Mimura, Shima; Kobayashi, Mitsuyoshi; Aritomo, Yuuichi; Kobara, Hideyuki; Mori, Hirohito; Himoto, Takashi; Okano, Keiichi; Suzuki, Yasuyuki; Murao, Koji; Masaki, Tsutomu

    2012-03-01

    Recent studies suggest that metformin, which is commonly used as an oral anti-hyperglycemic agent of the biguanide family, may reduce cancer risk and improve prognosis, but the mechanisms by which metformin affects various cancers, including gastric cancer, remains unknown. The goal of the present study was to evaluate the effects of metformin on human gastric cancer cell proliferation in vitro and in vivo and to study microRNAs (miRNA) associated with antitumor effect of metformin. We used MKN1, MKN45, and MKN74 human gastric cancer cell lines to study the effects of metformin on human gastric cancer cells. Athymic nude mice bearing xenograft tumors were treated with or without metformin. Tumor growth was recorded after 4 weeks, and the expression of cell-cycle-related proteins was determined. In addition, we used miRNA array tips to explore the differences among miRNAs in MKN74 cells bearing xenograft tumors treated with or without metformin in vitro and in vivo. Metformin inhibited the proliferation of MKN1, MKN45, and MKN74 in vitro. Metformin blocked the cell cycle in G(0)-G(1)in vitro and in vivo. This blockade was accompanied by a strong decrease of G(1) cyclins, especially in cyclin D1, cyclin-dependent kinase (Cdk) 4, Cdk6 and by a decrease in retinoblastoma protein (Rb) phosphorylation. In addition, metformin reduced the phosphorylation of epidermal growth factor receptor and insulin-like growth factor-1 receptor in vitro and in vivo. The miRNA expression was markedly altered with the treatment of metformin in vitro and in vivo. Various miRNAs altered by metformin also may contribute to tumor growth in vitro and in vivo. PMID:22222629

  12. 6-Gingerol inhibits osteosarcoma cell proliferation through apoptosis and AMPK activation.

    PubMed

    Fan, Jingzhang; Yang, Xin; Bi, Zhenggang

    2015-02-01

    6-Gingerol, a major component of ginger, is demonstrated to possess a variety of pharmacological activities. Despite demonstration of its anti-cancer activity, the exact mechanism underlying the effects of 6-gingerol against sarcoma remains sketchy. In the present study, we investigated the anti-cancer effects of 6-gingerol on osteosarcoma cells. MTT assay was performed to determine cell viability. Phosphorylation and protein levels were determined by immunoblotting. Cell cycle was determined using flow cytometry. Quantitative polymerase chain reaction was employed to determine the changes in the messenger RNA (mRNA) expression of genes. Treatment with 6-gingerol resulted in a significant decrease in the viability of osteosarcoma cells in a dose-dependent fashion. In parallel, the number of cells arrested at the sub-G1 cell cycle phase was significantly increased. The results showed that 6-gingerol induced activation of caspase cascades and regulated cellular levels of Bcl2 and Bax. Moreover, 6-gingerol activated AMP-activated protein kinase (AMPK) signaling associated with the apoptotic pathways. Our findings suggest that 6-gingerol suppresses the growth of osteosarcoma cells. The anti-cancer activity is attributed to the activation of apoptotic signaling and the inhibition of anti-apoptotic signaling incorporating with 6-gingerol-induced AMPK activation. The study identifies a new molecular mechanism by which AMPK is involved in anti-cancer effects of 6-gingerol. PMID:25330949

  13. Nesfatin-1 inhibits proliferation and enhances apoptosis of human adrenocortical H295R cells.

    PubMed

    Ramanjaneya, Manjunath; Tan, Bee K; Rucinski, Marcin; Kawan, Mohamed; Hu, Jiamiao; Kaur, Jaspreet; Patel, Vanlata H; Malendowicz, Ludwik K; Komarowska, Hanna; Lehnert, Hendrik; Randeva, Harpal S

    2015-07-01

    NUCB2/nesfatin and its proteolytically cleaved product nesfatin-1 are recently discovered anorexigenic hypothalamic neuroproteins involved in energy homeostasis. It is expressed both centrally and in peripheral tissues, and appears to have potent metabolic actions. NUCB2/nesfatin neurons are activated in response to stress. Central nesfatin-1 administration elevates circulating ACTH and corticosterone levels. Bilateral adrenalectomy increased NUCB2/nesfatin mRNA levels in rat paraventricular nuclei. To date, studies have not assessed the effects of nesfatin-1 stimulation on human adrenocortical cells. Therefore, we investigated the expression and effects of nesfatin-1 in a human adrenocortical cell model (H295R). Our findings demonstrate that NUCB2 and nesfatin-1 are expressed in human adrenal gland and human adrenocortical cells (H295R). Stimulation with nesfatin-1 inhibits the growth of H295R cells and promotes apoptosis, potentially via the involvement of Bax, BCL-XL and BCL-2 genes as well as ERK1/2, p38 and JNK1/2 signalling cascades. This has implications for understanding the role of NUCB2/nesfatin in adrenal zonal development. NUCB2/nesfatin may also be a therapeutic target for adrenal cancer. However, further studies using in vivo models are needed to clarify these concepts. PMID:25869615

  14. Ectopic Expression of MiR-125a Inhibits the Proliferation and Metastasis of Hepatocellular Carcinoma by Targeting MMP11 and VEGF

    PubMed Central

    Du, Rui; Fan, Rui; Gao, Liucun; Jin, Jiang; Liang, Shuhui; Chen, Zheng; Xu, Guanghui; Nie, Yongzhan; Wu, Kaichun; Liu, Jie; Shi, Yongquan; Ding, Jie; Fan, Daiming

    2012-01-01

    Background Studies have been shown that miR-125a plays an important role in carcinogenesis, however, the role of miR-125a in hepatocellular carcinoma (HCC) remains elusive. Methodology/Principal Real time-PCR (qRT-PCR) was performed to test the significance of miR-125a in HCC. Ectopic expression of miR-125a was used to test the influences of miR-125a on proliferation and metastasis of HCC cells in vitro and in vivo. Predicted target genes of miR-125a were determined by dual-luciferase reporting, qRT-PCR, and western blot (WB) analyses. Then immunohistochemical staining (IHC) was used to detect the expression of target genes, and the correlations and prognostic values of miR-125a and its target genes were also investigated. Conclusions/Significance Decreased miR-125a was observed in both HCC tissues and cell lines, and associated with patients’ aggressive pathologic features. Up-regulating miR-125a significantly inhibited the malignant phenotypes by repressing the expression of matrix metalloproteinase 11 (MMP11) and vascular endothelial growth factor A (VEGF-A) both in vitro and in vivo. Furthermore, miR-125a expression was inversely correlated with both MMP11 and VEGF-A expression in HCC tissues. Inhibiting miR-125a could increase both MMP11 and VEGF-A expression, and RNA interference targeting MMP11 or VEGF-A mRNA could rescue the loss of miR-125a functions. MiR-125a inhibits the proliferation and metastasis of HCC by targeting MMP11 and VEGF-A. Up-regulation of miR-125a might be a promising approach and a prognostic marker for HCC. PMID:22768249

  15. Simulated microgravity inhibits the proliferation of K562 erythroleukemia cells but does not result in apoptosis

    NASA Astrophysics Data System (ADS)

    Yi, Zong-Chun; Xia, Bing; Xue, Ming; Zhang, Guang-Yao; Wang, Hong; Zhou, Hui-Min; Sun, Yan; Zhuang, Feng-Yuan

    2009-07-01

    Astronauts and experimental animals in space develop the anemia of space flight, but the underlying mechanisms are still unclear. In this study, the impact of simulated microgravity on proliferation, cell death, cell cycle progress and cytoskeleton of erythroid progenitor-like K562 leukemia cells was observed. K562 cells were cultured in NASA Rotary Cell Culture System (RCCS) that was used to simulate microgravity (at 15 rpm). After culture for 24 h, 48 h, 72 h, and 96 h, the cell densities cultured in RCCS were only 55.5%, 54.3%, 67.2% and 66.4% of the flask-cultured control cells, respectively. The percentages of trypan blue-stained dead cells and the percentages of apoptotic cells demonstrated no difference between RCCS-cultured cells and flask-cultured cells at every time points (from 12 h to 96 h). Compared with flask-cultured cells, RCCS culture induced an accumulation of cell number at S phase concomitant with a decrease at G0/G1 and G2/M phases at 12 h. But 12 h later (from 24 h to 60 h), the distribution of cell cycle phases in RCCS-cultured cells became no difference compared to flask-cultured cells. Consistent with the changes of cell cycle distribution, the levels of intercellular cyclins in RCCS-cultured cells changed at 12 h, including a decrease in cyclin A, and the increasing in cyclin B, D1 and E, and then (from 24 h to 36 h) began to restore to control levels. After RCCS culture for 12-36 h, the microfilaments showed uneven and clustered distribution, and the microtubules were highly disorganized. These results indicated that RCCS-simulated microgravity could induce a transient inhibition of proliferation, but not result in apoptosis, which could involve in the development of space flight anemia. K562 cells could be a useful model to research the effects of microgravity on differentiation and proliferation of hematopoietic cells.

  16. CytoregR inhibits growth and proliferation of human adenocarcinoma cells via induction of apoptosis

    PubMed Central

    Kumi-Diaka, J; Hassanhi, M; Brown, J; Merchant, K; Garcia, C; Jimenez, W

    2006-01-01

    Background Cancer is one of the devastating neovascular diseases that incapacitate so many people the world over. Recent reports from the National Cancer Institute indicate some significant gain therapy and cancer management as seen in the increase in the 5-year survival rate over the past two decades. Although near-perfect cure rate have been reported in the early-stage disease, these data reveal high recurrence rate and serious side effects including second malignancies and fatalities. Most of the currently used anticancer agents are only effective against proliferating cancer cells. Thus attention has been focused on potential anti-cancer agents capable of killing cancer cells independent of the cell cycle state, to ensure effective elimination of most cancer cells. The objective of this study was to test the chemosensitivity and potential mechanism of action of a novel cancer drug, CytoregR, in a panel of human cancer cells. Methods the study was performed using a series of bioassays including Trypan blue exclusion, MTS Growth inhibition, LDH-cytotoxicity, TUNEL-Terminal DNA fragmentation Apoptosis Assay, and the Caspase protease CPP32 activity assays. Results CytoregR induced significant dose- and time-dependent inhibition of growth in all the cells; with significant differences in chemosensitivity (P < 0.05) between the target cells becoming more apparent at 48 hr exposure. CytoregR showed no significant effect on normal cells relative to the tumor cells. Growth inhibition in all the cells was due to induction of apoptosis at lower concentrations of cytoregR (> 1:300). CytoregR-induced caspase protease-3 (CPP32) activation significantly and positively correlated with apoptosis induction and growth inhibition; thus implicating CPP32 as the principal death pathway in cytoregR-induced apoptosis. Conclusion CytoregR exerted a dose-and time-dependent growth inhibitory effect in all the target cells through induction of apoptosis via the CPP32 death pathway

  17. Noninvasive imaging of cell proliferation following mitogenic extracellular kinase inhibition by PD0325901.

    PubMed

    Leyton, Julius; Smith, Graham; Lees, Mark; Perumal, Meg; Nguyen, Quang-de; Aigbirhio, Franklin I; Golovko, Oksana; He, Quimin; Workman, Paul; Aboagye, Eric O

    2008-09-01

    The mitogenic extracellular kinase 1/2 (MEK1/2) inhibitor, PD0325901, has potent activity in a number of cancer cell types in vitro. In SKMEL-28 human melanoma cells (BRAF mutant), the drug rapidly decreased phosphorylated extracellular signal-regulated kinase 1/2, cyclin D1, and thymidine kinase 1 protein levels. We investigated if 3'-deoxy-3'-[18F]fluorothymidine-positron emission tomography ([18F]FLT-PET) could be used to image changes in cell proliferation following MEK1/2 inhibition in vivo. Mice bearing SKMEL-28 and human colon cancer HCT116 (K-RAS mutant) xenografts were treated daily with PD0325901 at 25 mg/kg and imaged by dynamic [18F]FLT-PET after 1 and 10 days of initiating treatment. The drug decreased tumor [18F]FLT uptake after 1 and 10 days of treatment compared with control animals. The normalized (maximal) [18F]FLT uptake in SKMEL-28 xenografts (at 60 minutes; NUVmax) after 1 day of vehicle or PD0325901 therapy was 1.81 +/- 0.18 versus 1.23 +/- 0.10, respectively (P = 0.03). In this model, NUVmax after 10 days was 2.07 +/- 0.40 versus 1.08 +/- 0.14, respectively (P = 0.03). The corresponding values for HCT116 tumors were 2.30 +/- 0.84 versus 1.88 +/- 0.36 (P = 0.045) after 1 day, and 1.97 +/- 0.13 versus 1.00 +/- 0.03 (P = 0.03) after 10 days. Similar changes were found for other [18F]FLT retention variables. The drug decreased phosphorylated extracellular signal-regulated kinase 1/2, cyclin D1, and thymidine kinase 1 protein. Tumor [18F]FLT-PET variables correlated with proliferation as measured by Ki67 labeling index (r > or = 0.6; P > or = 0.003). In summary, [18F]FLT-PET is a sensitive imaging biomarker for detecting the antiproliferative effect of MEK1/2 inhibition by PD0325901. PMID:18790789

  18. Camptothecin inhibits platelet-derived growth factor-BB-induced proliferation of rat aortic vascular smooth muscle cells through inhibition of PI3K/Akt signaling pathway

    SciTech Connect

    Park, Eun-Seok; Kang, Shin-il; Yoo, Kyu-dong; Lee, Mi-Yea; Yoo, Hwan-Soo; Hong, Jin-Tae; Shin, Hwa-Sup; Kim, Bokyung; Yun, Yeo-Pyo

    2013-04-15

    The abnormal proliferation of vascular smooth muscle cells (VSMCs) in arterial wall is a major cause of vascular disorders such as atherosclerosis and restenosis after angioplasty. In this study, we investigated not only the inhibitory effects of camptothecin (CPT) on PDGF-BB-induced VSMC proliferation, but also its molecular mechanism of this inhibition. CPT significantly inhibited proliferation with IC50 value of 0.58 μM and the DNA synthesis of PDGF-BB-stimulated VSMCs in a dose-dependent manner (0.5–2 μM ) without any cytotoxicity. CPT induced the cell cycle arrest at G0/G1 phase. Also, CPT decreased the expressions of G0/G1-specific regulatory proteins including cyclin-dependent kinase (CDK)2, cyclin D1 and PCNA in PDGF-BB-stimulated VSMCs. Pre-incubation of VSMCs with CPT significantly inhibited PDGF-BB-induced Akt activation, whereas CPT did not affect PDGF-receptor beta phosphorylation, extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and phospholipase C (PLC)-γ1 phosphorylation in PDGF-BB signaling pathway. Our data showed that CPT pre-treatment inhibited VSMC proliferation, and that the inhibitory effect of CPT was enhanced by LY294002, a PI3K inhibitor, on PDGF-BB-induced VSMC proliferation. In addition, inhibiting the PI3K/Akt pathway by LY294002 significantly enhanced the suppression of PCNA expression and Akt activation by CPT. These results suggest that the anti-proliferative activity of CPT is mediated in part by downregulating the PI3K/Akt signaling pathway. - Highlights: ► CPT inhibits proliferation of PDGF-BB-induced VSMC without cytotoxicity. ► CPT arrests the cell cycle in G0/G1 phase by downregulation of cyclin D1 and CDK2. ► CPT significantly attenuates Akt phosphorylation in PDGF-BB signaling pathway. ► LY294002 enhanced the inhibitory effect of CPT on VSMC proliferation. ► Thus, CPT is mediated by downregulating the PI3K/Akt signaling pathway.

  19. Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling

    PubMed Central

    Carreira, Bruno P.; Morte, Maria I.; Santos, Ana I.; Lourenço, Ana S.; Ambrósio, António F.; Carvalho, Caetana M.; Araújo, Inês M.

    2014-01-01

    Neuroinflammation is characterized by activation of microglial cells, followed by production of nitric oxide (NO), which may have different outcomes on neurogenesis, favoring or inhibiting this process. In the present study, we investigated how the inflammatory mediator NO can affect proliferation of neural stem cells (NSCs), and explored possible mechanisms underlying this effect. We investigated which mechanisms are involved in the regulation of NSC proliferation following treatment with an inflammatory stimulus (lipopolysaccharide plus IFN-γ), using a culture system of subventricular zone (SVZ)-derived NSCs mixed with microglia cells obtained from wild-type mice (iNOS+/+) or from iNOS knockout mice (iNOS-/-). We found an impairment of NSC cell proliferation in iNOS+/+ mixed cultures, which was not observed in iNOS-/- mixed cultures. Furthermore, the increased release of NO by activated iNOS+/+ microglial cells decreased the activation of the ERK/MAPK signaling pathway, which was concomitant with an enhanced nitration of the EGF receptor. Preventing nitrogen reactive species formation with MnTBAP, a scavenger of peroxynitrite (ONOO-), or using the ONOO- degradation catalyst FeTMPyP, cell proliferation and ERK signaling were restored to basal levels in iNOS+/+ mixed cultures. Moreover, exposure to the NO donor NOC-18 (100 μM), for 48 h, inhibited SVZ-derived NSC proliferation. Regarding the antiproliferative effect of NO, we found that NOC-18 caused the impairment of signaling through the ERK/MAPK pathway, which may be related to increased nitration of the EGF receptor in NSC. Using MnTBAP nitration was prevented, maintaining ERK signaling, rescuing NSC proliferation. We show that NO from inflammatory origin leads to a decreased function of the EGF receptor, which compromised proliferation of NSC. We also demonstrated that NO-mediated nitration of the EGF receptor caused a decrease in its phosphorylation, thus preventing regular proliferation signaling through

  20. Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling.

    PubMed

    Carreira, Bruno P; Morte, Maria I; Santos, Ana I; Lourenço, Ana S; Ambrósio, António F; Carvalho, Caetana M; Araújo, Inês M

    2014-01-01

    Neuroinflammation is characterized by activation of microglial cells, followed by production of nitric oxide (NO), which may have different outcomes on neurogenesis, favoring or inhibiting this process. In the present study, we investigated how the inflammatory mediator NO can affect proliferation of neural stem cells (NSCs), and explored possible mechanisms underlying this effect. We investigated which mechanisms are involved in the regulation of NSC proliferation following treatment with an inflammatory stimulus (lipopolysaccharide plus IFN-γ), using a culture system of subventricular zone (SVZ)-derived NSCs mixed with microglia cells obtained from wild-type mice (iNOS(+/+)) or from iNOS knockout mice (iNOS(-/-)). We found an impairment of NSC cell proliferation in iNOS(+/+) mixed cultures, which was not observed in iNOS(-/-) mixed cultures. Furthermore, the increased release of NO by activated iNOS(+/+) microglial cells decreased the activation of the ERK/MAPK signaling pathway, which was concomitant with an enhanced nitration of the EGF receptor. Preventing nitrogen reactive species formation with MnTBAP, a scavenger of peroxynitrite (ONOO(-)), or using the ONOO(-) degradation catalyst FeTMPyP, cell proliferation and ERK signaling were restored to basal levels in iNOS(+/+) mixed cultures. Moreover, exposure to the NO donor NOC-18 (100 μM), for 48 h, inhibited SVZ-derived NSC proliferation. Regarding the antiproliferative effect of NO, we found that NOC-18 caused the impairment of signaling through the ERK/MAPK pathway, which may be related to increased nitration of the EGF receptor in NSC. Using MnTBAP nitration was prevented, maintaining ERK signaling, rescuing NSC proliferation. We show that NO from inflammatory origin leads to a decreased function of the EGF receptor, which compromised proliferation of NSC. We also demonstrated that NO-mediated nitration of the EGF receptor caused a decrease in its phosphorylation, thus preventing regular proliferation

  1. Proliferation inhibition and the underlying molecular mechanisms of microRNA-30d in renal carcinoma cells

    PubMed Central

    YU, HONGSHENG; LIN, XIALU; WANG, FANG; ZHANG, BURONG; WANG, WEIHUA; SHI, HONGBO; ZOU, BAOBO; ZHAO, JINSHUN

    2014-01-01

    To investigate the inhibitory effects of microRNA-30d (miR-30d) on renal carcinoma cell proliferation and the underlying molecular mechanisms, miR-30d expression in renal cell carcinoma (RCC) specimens was analyzed by quantitative polymerase chain reaction (qPCR). The inhibition of the proliferation of miR-30d on renal carcinoma cells (ACHN cell line) was analyzed by MTT and colony formation assays. The effects of miR-30d on cyclin E2 expression were detected by the luciferase activity of the reporter gene. In addition, the effects of miR-30d on endogenous cyclin E2 expression at the RNA and protein levels were investigated by qPCR and western blot analysis, respectively. Cell cycles were analyzed by flow cytometry. The results showed the following: i) Expression of miR-30d was significantly downregulated in renal carcinoma tissues compared with paraneoplastic tissues; ii) overexpression of miR-30d inhibited renal carcinoma cell proliferation and colony formation; iii) miR-30d inhibited cyclin E2 3′ untranslated region-mediated reporter gene expression; and iv) overexpression of miR-30d downregulated endogenous cyclin E2 expression and blocked the cell cycle at the G1 phase. In conclusion, miR-30d functions as a tumor suppressor gene in RCC and inhibits renal carcinoma cell proliferation. Cell cycle regulatory factor cyclin E2 is a target gene of miR-30d. miR-30d inhibits renal carcinoma cell proliferation via the regulation of cyclin E2 expression at the post-transcriptional level. PMID:24520297

  2. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    SciTech Connect

    Wang, Hongtao; Gao, Peng; Zheng, Jie

    2014-09-05

    Highlights: • As{sub 2}O{sub 3} inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As{sub 2}O{sub 3} is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As{sub 2}O{sub 3}) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As{sub 2}O{sub 3} induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As{sub 2}O{sub 3} on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As{sub 2}O{sub 3} than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As{sub 2}O{sub 3} than HPV 16-positive CaSki and SiHa cells. After As{sub 2}O{sub 3} treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As{sub 2}O{sub 3} is a potential anticancer drug for cervical cancer.

  3. Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation through activating the NR2B subunits of NMDA receptors

    SciTech Connect

    Shi, Wen-Zhu; Miao, Yu-Liang; Guo, Wen-Zhi; Wu, Wei; Li, Bao-Wei; An, Li-Na; Fang, Wei-Wu; Mi, Wei-Dong

    2014-04-25

    Highlights: • Leptin promotes the proliferation of neural stem cells isolated from embryonic mouse hippocampus. • Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation. • The effects of leptin are partially mediated by upregulating NR2B subunits. - Abstract: Corticosterone inhibits the proliferation of hippocampal neural stem cells (NSCs). The removal of corticosterone-induced inhibition of NSCs proliferation has been reported to contribute to neural regeneration. Leptin has been shown to regulate brain development, improve angiogenesis, and promote neural regeneration; however, its effects on corticosterone-induced inhibition of NSCs proliferation remain unclear. Here we reported that leptin significantly promoted the proliferation of hippocampal NSCs in a concentration-dependent pattern. Also, leptin efficiently reversed the inhibition of NSCs proliferation induced by corticosterone. Interestingly, pre-treatment wi