Science.gov

Sample records for mrna secondary structure

  1. Secondary Structure across the Bacterial Transcriptome Reveals Versatile Roles in mRNA Regulation and Function.

    PubMed

    Del Campo, Cristian; Bartholomäus, Alexander; Fedyunin, Ivan; Ignatova, Zoya

    2015-10-01

    Messenger RNA acts as an informational molecule between DNA and translating ribosomes. Emerging evidence places mRNA in central cellular processes beyond its major function as informational entity. Although individual examples show that specific structural features of mRNA regulate translation and transcript stability, their role and function throughout the bacterial transcriptome remains unknown. Combining three sequencing approaches to provide a high resolution view of global mRNA secondary structure, translation efficiency and mRNA abundance, we unraveled structural features in E. coli mRNA with implications in translation and mRNA degradation. A poorly structured site upstream of the coding sequence serves as an additional unspecific binding site of the ribosomes and the degree of its secondary structure propensity negatively correlates with gene expression. Secondary structures within coding sequences are highly dynamic and influence translation only within a very small subset of positions. A secondary structure upstream of the stop codon is enriched in genes terminated by UAA codon with likely implications in translation termination. The global analysis further substantiates a common recognition signature of RNase E to initiate endonucleolytic cleavage. This work determines for the first time the E. coli RNA structurome, highlighting the contribution of mRNA secondary structure as a direct effector of a variety of processes, including translation and mRNA degradation. PMID:26495981

  2. Secondary Structure across the Bacterial Transcriptome Reveals Versatile Roles in mRNA Regulation and Function

    PubMed Central

    Fedyunin, Ivan; Ignatova, Zoya

    2015-01-01

    Messenger RNA acts as an informational molecule between DNA and translating ribosomes. Emerging evidence places mRNA in central cellular processes beyond its major function as informational entity. Although individual examples show that specific structural features of mRNA regulate translation and transcript stability, their role and function throughout the bacterial transcriptome remains unknown. Combining three sequencing approaches to provide a high resolution view of global mRNA secondary structure, translation efficiency and mRNA abundance, we unraveled structural features in E. coli mRNA with implications in translation and mRNA degradation. A poorly structured site upstream of the coding sequence serves as an additional unspecific binding site of the ribosomes and the degree of its secondary structure propensity negatively correlates with gene expression. Secondary structures within coding sequences are highly dynamic and influence translation only within a very small subset of positions. A secondary structure upstream of the stop codon is enriched in genes terminated by UAA codon with likely implications in translation termination. The global analysis further substantiates a common recognition signature of RNase E to initiate endonucleolytic cleavage. This work determines for the first time the E. coli RNA structurome, highlighting the contribution of mRNA secondary structure as a direct effector of a variety of processes, including translation and mRNA degradation. PMID:26495981

  3. Leader length and secondary structure modulate mRNA function under conditions of stress

    SciTech Connect

    Kozak, M.

    1988-07-01

    Simina virus 40-based plasmids that direct the synthesis of preproinsulin in cultured monkey cells were used to study the effects of mRNA structure on translational efficiency. Lengthening the leader sequence enhanced translation in this system. The enhancement was most obvious when an unstructured sequence (two, four, or eight copies of the oligonculeotide AGCTAAGTAAGTAAGTA) was inserted upstream from a region of deliberate secondary structure; the degree of enhancement was proportional to the number of copies of the inserted oligonucleotide. Lengthening the leader sequence on the 3' side of a stem-and-loop structure, in contrast, did not offset the potentially inhibitory effect of the hairpin structure. Both the facilitating effect of length and the inhibitory effect of secondary structure were demonstrated most easily under conditions of mRNA competition, which was brought about by an abrupt shift in the tonicity of the culture medium. These experiments suggest a simple structural basis for the long-recognized differential response of viral and cellular mRNAs to hypertonic stress. The fact that the translatability of structure-prone mRNAs varies with changes in the environment may also have general implications for gene expression in eucaryotic cells.

  4. A MYLK variant regulates asthmatic inflammation via alterations in mRNA secondary structure.

    PubMed

    Wang, Ting; Zhou, Tong; Saadat, Laleh; Garcia, Joe G N

    2015-06-01

    Myosin light-chain kinase (MYLK) is a gene known to be significantly associated with severe asthma in African Americans. Here we further examine the molecular function of a single-nucleotide polymorphism (SNP), located in the non-muscle myosin light-chain kinase isoform (nmMLCK), in asthma susceptibility and pathobiology. We identified nmMLCK variant (reference SNP: rs9840993, NM_053025: 721C>T, c.439C>T) with a distinct mRNA secondary structure from the other variants. The nmMLCK variant (721C) secondary structure exhibits increased stability with an elongated half-life in the human endothelial cell, and greater efficiency in protein translation initiation owing to an increased accessibility to translation start site. Finally, nmMLCK expression of 721C- and 721T-containing MYLK transgenes were compared in nmMLCK(-/-) mice and confirmed deleterious effects of nmMLCK expression on asthmatic indices and implicated the augmented influence of MYLK 721C>T (c.439C>T) SNP on asthma severity. The confirmation of the novel mechanism of the regulation of asthmatic inflammation by a MYLK advances knowledge of the genetic basis for asthma disparities, and further suggests the potential of nmMLCK as a therapeutic target. Our study suggests that in addition to altering protein structure and function, non-synonymous SNPs may also lead to phenotypic disparity by altering protein expression. PMID:25271083

  5. A MYLK variant regulates asthmatic inflammation via alterations in mRNA secondary structure

    PubMed Central

    Wang, Ting; Zhou, Tong; Saadat, Laleh; Garcia, Joe GN

    2015-01-01

    Myosin light-chain kinase (MYLK) is a gene known to be significantly associated with severe asthma in African Americans. Here we further examine the molecular function of a single-nucleotide polymorphism (SNP), located in the non-muscle myosin light-chain kinase isoform (nmMLCK), in asthma susceptibility and pathobiology. We identified nmMLCK variant (reference SNP: rs9840993, NM_053025: 721C>T, c.439C>T) with a distinct mRNA secondary structure from the other variants. The nmMLCK variant (721C) secondary structure exhibits increased stability with an elongated half-life in the human endothelial cell, and greater efficiency in protein translation initiation owing to an increased accessibility to translation start site. Finally, nmMLCK expression of 721C- and 721T-containing MYLK transgenes were compared in nmMLCK−/− mice and confirmed deleterious effects of nmMLCK expression on asthmatic indices and implicated the augmented influence of MYLK 721C>T (c.439C>T) SNP on asthma severity. The confirmation of the novel mechanism of the regulation of asthmatic inflammation by a MYLK advances knowledge of the genetic basis for asthma disparities, and further suggests the potential of nmMLCK as a therapeutic target. Our study suggests that in addition to altering protein structure and function, non-synonymous SNPs may also lead to phenotypic disparity by altering protein expression. PMID:25271083

  6. hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1

    PubMed Central

    Sugimoto, Yoichiro; Vigilante, Alessandra; Darbo, Elodie; Zirra, Alexandra; Militti, Cristina; D’Ambrogio, Andrea; Luscombe, Nicholas M; Ule, Jernej

    2015-01-01

    mRNA structure is important for post-transcriptional regulation, largely because it affects binding of trans-acting factors1. However, little is known about the in vivo structure of full-length mRNAs. Here we present hiCLIP, a high-throughput technique to identify RNA secondary structures interacting with RNA-binding proteins (RBPs) in vivo. Using this technique to investigate RNA structures bound by Staufen 1 (STAU1), we uncover a dominance of intra-molecular RNA duplexes, a depletion of duplexes from coding regions of highly translated mRNAs, an unforeseen prevalence of long-range duplexes in 3′ untranslated regions (UTRs), and a decreased incidence of SNPs in duplex-forming regions. We also discover a duplex spanning 858nts in the 3′ UTR of the X-box binding Protein 1 (XBP1) mRNA that regulates its cytoplasmic splicing and stability. Our study reveals the fundamental role of mRNA secondary structures in gene regulation and introduces hiCLIP as a widely applicable method for discovering novel, especially long-range, RNA duplexes. PMID:25799984

  7. mRNA secondary structure engineering of Thermobifida fusca endoglucanase (Cel6A) for enhanced expression in Escherichia coli.

    PubMed

    Ali, Imran; Asghar, Rehana; Ahmed, Sajjad; Sajjad, Muhammad; Tariq, Muhammad; Waheed Akhtar, M

    2015-03-01

    The sequence and structure of mRNA plays an important role in solubility and expression of the translated protein. To divulge the role of mRNA secondary structure and its thermodynamics in the expression level of the recombinant endoglucanase in Escherichia coli, 5'-end of the mRNA was thermodynamically optimized. Molecular engineering was done by introducing two silent synonymous mutations at positions +5 (UCU with UCC) and +7 (UUC with UUU) of the 5'-end of mRNA to relieve hybridization with ribosomal binding site. Two variants of glycoside hydrolase family six endoglucanase, wild type (cel6A.wt) and mutant (cel6A.mut) from Thermobifida fusca were expressed and characterized in E. coli using T7 promoter-based expression vector; pET22b(+). Enhanced expression level of engineered construct (Cel6A.mut) with ∆G = -2.7 kcal mol(-1)was observed. It showed up to ~45 % higher expression as compared to the wild type construct (Cel6A.wt) having ∆G = -7.8 kcal mol(-1) and ~25 % expression to the total cell proteins. Heterologous protein was purified by heating the recombinant E. coli BL21 (DE3) CodonPlus at 60 °C. The optimum pH for enzyme activity was six and optimum temperature was 60 °C. Maximum activity was observed 4.5 Umg(-1) on CMC. Hydrolytic activity was also observed on insoluble substrates, i.e. RAC (2.8 Umg(-1)), alkali treated bagass (1.7 Umg(-1)), filter paper (1.2 Umg(-1)) and BMCC (0.3 Umg(-1)). Metal ions affect endoglucanase activity in different ways. Only Fe(2+) exhibited 20.8 % stimulatory effects on enzyme activity. Enzyme activity was profoundly inhibited by Hg2(+) (91.8 %). PMID:25617066

  8. Secondary structure of a conserved domain in an intron of influenza A M1 mRNA.

    PubMed

    Jiang, Tian; Kennedy, Scott D; Moss, Walter N; Kierzek, Elzbieta; Turner, Douglas H

    2014-08-19

    Influenza A virus utilizes RNA throughout infection. Little is known, however, about the roles of RNA structures. A previous bioinformatics survey predicted multiple regions of influenza A virus that are likely to generate evolutionarily conserved and stable RNA structures. One predicted conserved structure is in the pre-mRNA coding for essential proteins, M1 and M2. This structure starts 79 nucleotides downstream of the M2 mRNA 5' splice site. Here, a combination of biochemical structural mapping, mutagenesis, and NMR confirms the predicted three-way multibranch structure of this RNA. Imino proton NMR spectra reveal no change in secondary structure when 80 mM KCl is supplemented with 4 mM MgCl2. Optical melting curves in 1 M NaCl and in 100 mM KCl with 10 mM MgCl2 are very similar, with melting temperatures ∼14 °C higher than that for 100 mM KCl alone. These results provide a firm basis for designing experiments and potential therapeutics to test for function in cell culture. PMID:25026548

  9. Secondary Structure of a Conserved Domain in an Intron of Influenza A M1 mRNA

    PubMed Central

    2014-01-01

    Influenza A virus utilizes RNA throughout infection. Little is known, however, about the roles of RNA structures. A previous bioinformatics survey predicted multiple regions of influenza A virus that are likely to generate evolutionarily conserved and stable RNA structures. One predicted conserved structure is in the pre-mRNA coding for essential proteins, M1 and M2. This structure starts 79 nucleotides downstream of the M2 mRNA 5′ splice site. Here, a combination of biochemical structural mapping, mutagenesis, and NMR confirms the predicted three-way multibranch structure of this RNA. Imino proton NMR spectra reveal no change in secondary structure when 80 mM KCl is supplemented with 4 mM MgCl2. Optical melting curves in 1 M NaCl and in 100 mM KCl with 10 mM MgCl2 are very similar, with melting temperatures ∼14 °C higher than that for 100 mM KCl alone. These results provide a firm basis for designing experiments and potential therapeutics to test for function in cell culture. PMID:25026548

  10. The relationship between third-codon position nucleotide content, codon bias, mRNA secondary structure and gene expression in the drosophilid alcohol dehydrogenase genes Adh and Adhr.

    PubMed Central

    Carlini, D B; Chen, Y; Stephan, W

    2001-01-01

    To gain insights into the relationship between codon bias, mRNA secondary structure, third-codon position nucleotide distribution, and gene expression, we predicted secondary structures in two related drosophilid genes, Adh and Adhr, which differ in degree of codon bias and level of gene expression. Individual structural elements (helices) were inferred using the comparative method. For each gene, four types of randomization simulations were performed to maintain/remove codon bias and/or to maintain or alter third-codon position nucleotide composition (N3). In the weakly expressed, weakly biased gene Adhr, the potential for secondary structure formation was found to be much stronger than in the highly expressed, highly biased gene Adh. This is consistent with the observation of approximately equal G and C percentages in Adhr ( approximately 31% across species), whereas in Adh the N3 distribution is shifted toward C (42% across species). Perturbing the N3 distribution to approximately equal amounts of A, G, C, and T increases the potential for secondary structure formation in Adh, but decreases it in Adhr. On the other hand, simulations that reduce codon bias without changing N3 content indicate that codon bias per se has only a weak effect on the formation of secondary structures. These results suggest that, for these two drosophilid genes, secondary structure is a relatively independent, negative regulator of gene expression. Whereas the degree of codon bias is positively correlated with level of gene expression, strong individual secondary structural elements may be selected for to retard mRNA translation and to decrease gene expression. PMID:11606539

  11. Specific temperature-induced perturbations of secondary mRNA structures are associated with the cold-adapted temperature-sensitive phenotype of influenza A virus

    PubMed Central

    Chursov, Andrey; Kopetzky, Sebastian J.; Leshchiner, Ignaty; Kondofersky, Ivan; Theis, Fabian J.; Frishman, Dmitrij; Shneider, Alexander

    2012-01-01

    For decades, cold-adapted, temperature-sensitive (ca/ts) strains of influenza A virus have been used as live attenuated vaccines. Due to their great public health importance it is crucial to understand the molecular mechanism(s) of cold adaptation and temperature sensitivity that are currently unknown. For instance, secondary RNA structures play important roles in influenza biology. Thus, we hypothesized that a relatively minor change in temperature (32–39°C) can lead to perturbations in influenza RNA structures and, that these structural perturbations may be different for mRNAs of the wild type (wt) and ca/ts strains. To test this hypothesis, we developed a novel in silico method that enables assessing whether two related RNA molecules would undergo (dis)similar structural perturbations upon temperature change. The proposed method allows identifying those areas within an RNA chain where dissimilarities of RNA secondary structures at two different temperatures are particularly pronounced, without knowing particular RNA shapes at either temperature. We identified such areas in the NS2, PA, PB2 and NP mRNAs. However, these areas are not identical for the wt and ca/ts mutants. Differences in temperature-induced structural changes of wt and ca/ts mRNA structures may constitute a yet unappreciated molecular mechanism of the cold adaptation/temperature sensitivity phenomena. PMID:22995831

  12. Effect of 3′UTR RET Variants on RET mRNA Secondary Structure and Disease Presentation in Medullary Thyroid Carcinoma

    PubMed Central

    Ceolin, Lucieli; Romitti, Mirian; Rodrigues Siqueira, Débora; Vaz Ferreira, Carla; Oliboni Scapineli, Jessica; Assis-Brazil, Beatriz; Vieira Maximiano, Rodolfo; Dias Amarante, Tauanne; de Souza Nunes, Miriam Celi; Weber, Gerald; Maia, Ana Luiza

    2016-01-01

    Background The RET S836S variant has been associated with early onset and increased risk for metastatic disease in medullary thyroid carcinoma (MTC). However, the mechanism by which this variant modulates MTC pathogenesis is still open to discuss. Of interest, strong linkage disequilibrium (LD) between RET S836S and 3'UTR variants has been reported in Hirschsprung's disease patients. Objective To evaluate the frequency of the RET 3’UTR variants (rs76759170 and rs3026785) in MTC patients and to determine whether these variants are in LD with S836S polymorphism. Methods Our sample comprised 152 patients with sporadic MTC. The RET S836S and 3’UTR (rs76759170 and rs3026785) variants were genotyped using Custom TaqMan Genotyping Assays. Haplotypes were inferred using the phase 2.1 program. RET mRNA structure was assessed by Vienna Package. Results The mean age of MTC diagnosis was 48.5±15.5 years and 57.9% were women. The minor allele frequencies of RET polymorphisms were as follows: S836S, 5.6%; rs76759170, 5.6%; rs3026785, 6.2%. We observed a strong LD among S836S and 3’UTR variants (|D’| = -1, r2 = 1 and |D’| = -1, r2 = 0,967). Patients harboring the S836S/3’UTR variants presented a higher percentage of lymph node and distant metastasis (P = 0.013 and P<0.001, respectively). Accordingly, RNA folding analyses demonstrated different RNA secondary structure predictions for WT(TCCGT), S836S(TTCGT) or 3’UTR(GTCAC) haplotypes. The S836S/3’UTR haplotype presented a greater number of double helices sections and lower levels of minimal free energy when compared to the wild-type haplotype, suggesting that these variants provides the most thermodynamically stable mRNA structure, which may have functional consequences on the rate of mRNA degradation. Conclusion The RET S836S polymorphism is in LD with 3’UTR variants. In silico analysis indicate that the 3’UTR variants may affect the secondary structure of RET mRNA, suggesting that these variants might play a role in posttranscriptional control of the RET transcripts. PMID:26829565

  13. A Conserved Secondary Structural Element in the Coding Region of the Influenza A Virus Nucleoprotein (NP) mRNA Is Important for the Regulation of Viral Proliferation.

    PubMed

    Soszynska-Jozwiak, Marta; Michalak, Paula; Moss, Walter N; Kierzek, Ryszard; Kierzek, Elzbieta

    2015-01-01

    Influenza A virus is a threat to humans due to seasonal epidemics and infrequent, but dangerous, pandemics that lead to widespread infection and death. Eight segments of RNA constitute the genome of this virus and they encode greater than eight proteins via alternative splicing of coding (+)RNAs generated from the genomic (-)RNA template strand. RNA is essential in its life cycle. A bioinformatics analysis of segment 5, which encodes nucleoprotein, revealed a conserved structural motif in the (+)RNA. The secondary structure proposed by energy minimization and comparative analysis agrees with structure predicted based on experimental data using a 121 nucleotide in vitro RNA construct comprising an influenza A virus consensus sequence and also an entire segment 5 (+)RNA (strain A/VietNam/1203/2004 (H5N1)). The conserved motif consists of three hairpins with one being especially thermodynamically stable. The biological importance of this conserved secondary structure is supported in experiments using antisense oligonucleotides in cell line, which found that disruption of this motif led to inhibition of viral fitness. These results suggest that this conserved motif in the segment 5 (+)RNA might be a candidate for oligonucleotide-based antiviral therapy. PMID:26488402

  14. A Conserved Secondary Structural Element in the Coding Region of the Influenza A Virus Nucleoprotein (NP) mRNA Is Important for the Regulation of Viral Proliferation

    PubMed Central

    Soszynska-Jozwiak, Marta; Michalak, Paula; Moss, Walter N.; Kierzek, Ryszard; Kierzek, Elzbieta

    2015-01-01

    Influenza A virus is a threat to humans due to seasonal epidemics and infrequent, but dangerous, pandemics that lead to widespread infection and death. Eight segments of RNA constitute the genome of this virus and they encode greater than eight proteins via alternative splicing of coding (+)RNAs generated from the genomic (-)RNA template strand. RNA is essential in its life cycle. A bioinformatics analysis of segment 5, which encodes nucleoprotein, revealed a conserved structural motif in the (+)RNA. The secondary structure proposed by energy minimization and comparative analysis agrees with structure predicted based on experimental data using a 121 nucleotide in vitro RNA construct comprising an influenza A virus consensus sequence and also an entire segment 5 (+)RNA (strain A/VietNam/1203/2004 (H5N1)). The conserved motif consists of three hairpins with one being especially thermodynamically stable. The biological importance of this conserved secondary structure is supported in experiments using antisense oligonucleotides in cell line, which found that disruption of this motif led to inhibition of viral fitness. These results suggest that this conserved motif in the segment 5 (+)RNA might be a candidate for oligonucleotide-based antiviral therapy. PMID:26488402

  15. Exon B of human surfactant protein A2 mRNA, alone or within its surrounding sequences, interacts with 14-3-3; role of cis-elements and secondary structure

    PubMed Central

    Noutsios, Georgios T.; Silveyra, Patricia; Bhatti, Faizah

    2013-01-01

    Human surfactant protein A, an innate immunity molecule, is encoded by two genes: SFTPA1 (SP-A1) and SFTPA2 (SP-A2). The 5′ untranslated (5′UTR) splice variant of SP-A2 (ABD), but not of SP-A1 (AD), contains exon B (eB), which is an enhancer for transcription and translation. We investigated whether eB contains cis-regulatory elements that bind trans-acting factors in a sequence-specific manner as well as the role of the eB mRNA secondary structure. Binding of cytoplasmic NCI-H441 proteins to wild-type eB, eB mutant, AD, and ABD 5′UTR mRNAs were studied by RNA electromobility shift assays (REMSAs). The bound proteins were identified by mass spectroscopy and specific antibodies (Abs). We found that 1) proteins bind eB mRNA in a sequence-specific manner, with two cis-elements identified within eB to be important; 2) eB secondary structure is necessary for binding; 3) mass spectroscopy and specific Abs in REMSAs identified 14-3-3 proteins to bind (directly or indirectly) eB and the natural SP-A2 (ABD) splice variant but not the SP-A1 (AD) splice variant; 4) other ribosomal and cytoskeletal proteins, and translation factors, are also present in the eB mRNA-protein complex; 5) knockdown of 14-3-3 β/α isoform resulted in a downregulation of SP-A2 expression. In conclusion, proteins including the 14-3-3 family bind two cis-elements within eB of hSP-A2 mRNA in a sequence- and secondary structure-specific manner. Differential regulation of SP-A1 and SP-A2 is mediated by the 14-3-3 protein family as well as by a number of other proteins that bind UTRs with or without eB mRNA. PMID:23525782

  16. A cis-encoded sRNA, Hfq and mRNA secondary structure act independently to suppress IS200 transposition.

    PubMed

    Ellis, Michael J; Trussler, Ryan S; Haniford, David B

    2015-07-27

    IS200 is found throughout Enterobacteriaceae and transposes at a notoriously low frequency. In addition to the transposase protein (TnpA), IS200 encodes an uncharacterized Hfq-binding sRNA that is encoded opposite to the tnpA 5'UTR. In the current work we asked if this sRNA represses tnpA expression. We show here that the IS200 sRNA (named art200 for antisense regulator of transposase IS200) basepairs with tnpA to inhibit translation initiation. Unexpectedly, art200-tnpA pairing is limited to 40 bp, despite 90 nt of perfect complementarity. Additionally, we show that Hfq and RNA secondary structure in the tnpA 5'UTR each repress tnpA expression in an art200-independent manner. Finally, we show that disrupting translational control of tnpA expression leads to increased IS200 transposition in E. coli. The current work provides new mechanistic insight into why IS200 transposition is so strongly suppressed. The possibility of art200 acting in trans to regulate a yet-unidentified target is discussed as well as potential applications of the IS200 system for designing novel riboregulators. PMID:26044710

  17. A cis-encoded sRNA, Hfq and mRNA secondary structure act independently to suppress IS200 transposition

    PubMed Central

    Ellis, Michael J.; Trussler, Ryan S.; Haniford, David B.

    2015-01-01

    IS200 is found throughout Enterobacteriaceae and transposes at a notoriously low frequency. In addition to the transposase protein (TnpA), IS200 encodes an uncharacterized Hfq-binding sRNA that is encoded opposite to the tnpA 5'UTR. In the current work we asked if this sRNA represses tnpA expression. We show here that the IS200 sRNA (named art200 for antisense regulator of transposase IS200) basepairs with tnpA to inhibit translation initiation. Unexpectedly, art200-tnpA pairing is limited to 40 bp, despite 90 nt of perfect complementarity. Additionally, we show that Hfq and RNA secondary structure in the tnpA 5'UTR each repress tnpA expression in an art200-independent manner. Finally, we show that disrupting translational control of tnpA expression leads to increased IS200 transposition in E. coli. The current work provides new mechanistic insight into why IS200 transposition is so strongly suppressed. The possibility of art200 acting in trans to regulate a yet-unidentified target is discussed as well as potential applications of the IS200 system for designing novel riboregulators. PMID:26044710

  18. CFTR mRNA expression is regulated by an upstream open reading frame and RNA secondary structure in its 5' untranslated region.

    PubMed

    Lukowski, Samuel W; Rothnagel, Joseph A; Trezise, Ann E O

    2015-02-15

    Post-transcriptional regulation of gene expression through 5' untranslated region (5'UTR)-encoded cis-acting elements is an important mechanism for the control of protein expression levels. Through controlling specific aspects of translation initiation, expression can be tightly regulated while remaining responsive to cellular requirements. With respect to cystic fibrosis (CF), the overexpression of cystic fibrosis transmembrane conductance regulator (CFTR) protein trafficking mutants, such as delta-F508, is of great biological and clinical interest. By understanding the post-transcriptional mechanisms that regulate CFTR expression, new procedures can be developed to enhance CFTR expression in homozygous delta-F508 CF patients. We have identified the key elements of a complex negative regulatory mechanism that is encoded within the human CFTR 5'UTR and show how these elements act in combination to restrict CFTR gene expression to a consistently low level in a transcript-specific manner. This study shows, for the first time, that endogenous human CFTR expression is post-transcriptionally regulated through a 5'UTR-mediated mechanism. We show that the very low levels of endogenous CFTR expression, compared with other low expression genes, are maintained through the co-operative inhibitory effects of an upstream open reading frame and a thermodynamically stable RNA secondary structure. PMID:25274779

  19. The Conservation and Function of RNA Secondary Structure in Plants.

    PubMed

    Vandivier, Lee E; Anderson, Stephen J; Foley, Shawn W; Gregory, Brian D

    2016-04-29

    RNA transcripts fold into secondary structures via intricate patterns of base pairing. These secondary structures impart catalytic, ligand binding, and scaffolding functions to a wide array of RNAs, forming a critical node of biological regulation. Among their many functions, RNA structural elements modulate epigenetic marks, alter mRNA stability and translation, regulate alternative splicing, transduce signals, and scaffold large macromolecular complexes. Thus, the study of RNA secondary structure is critical to understanding the function and regulation of RNA transcripts. Here, we review the origins, form, and function of RNA secondary structure, focusing on plants. We then provide an overview of methods for probing secondary structure, from physical methods such as X-ray crystallography and nuclear magnetic resonance (NMR) imaging to chemical and nuclease probing methods. Combining these latter methods with high-throughput sequencing has enabled them to scale across whole transcriptomes, yielding tremendous new insights into the form and function of RNA secondary structure. PMID:26865341

  20. Secondary Structure Switch

    ERIC Educational Resources Information Center

    King, Angela G.

    2006-01-01

    Neurogenerative diseases like Alzheimer's disease and Parkinson's disease involve a transformation between two peptide and protein structures of alpha-helices and beta-sheets, where the peptide backbone can also participate in metal ion binding in addition to histidine residues. However, the complete absence of change in conformation of Coiled…

  1. Secondary Structure Switch

    ERIC Educational Resources Information Center

    King, Angela G.

    2006-01-01

    Neurogenerative diseases like Alzheimer's disease and Parkinson's disease involve a transformation between two peptide and protein structures of alpha-helices and beta-sheets, where the peptide backbone can also participate in metal ion binding in addition to histidine residues. However, the complete absence of change in conformation of Coiled

  2. Flexibility of Protein Secondary Structures

    NASA Astrophysics Data System (ADS)

    Emberly, Eldon; Mukhopadhyay, Ranjan; Tang, Chao; Wingreen, Ned

    2004-03-01

    Proteins consist of compact packings of secondary structural elements: helices and sheets comprised of strands. The deformations of these structures often play an important role in determining the final shape of the protein (i.e. coiled coils or beta-barrels). We have performed a principal component analysis on secondary structural elements extracted from the protein structure database to determine their flexible modes. For helices we find only two dominant internal modes: bend and twist. Sheets also only display two dominant modes: in-sheet bend and a spiral twist. We report on the scaling of these modes with secondary element size. For helices, the dynamic normal modes of a simple spring model are able to recapitulate the modes and scalings found. For sheets, we find different scaling behaviors for parallel and anti-parallel sheets and these differences can not be accounted for using a simple spring model.

  3. The genetic code as expressed through relationships between mRNA structure and protein function

    PubMed Central

    Weeks, Kevin M.

    2014-01-01

    Structured RNA elements within messenger RNA often direct or modulate the cellular production of active proteins. As reviewed here, RNA structures have been discovered that govern nearly every step in protein production: mRNA production and stability; translation initiation, elongation, and termination; protein folding; and cellular localization. Regulatory RNA elements are common within RNAs from every domain of life. This growing body of RNA-mediated mechanisms continues to reveal new ways in which mRNA structure regulates translation. We integrate examples from several different classes of RNA structure-mediated regulation to present a global perspective that suggests that the secondary and tertiary structure of RNA ultimately constitutes an additional level of the genetic code that both guides and regulates protein biosynthesis. PMID:23499436

  4. Gene regulation by structured mRNA elements.

    PubMed

    Wachter, Andreas

    2014-05-01

    The precise temporal and spatial coordination of gene activity, based on the integration of internal and external signals, is crucial for the accurate functioning of all biological processes. Although the basic principles of gene expression were established some 60 years ago, recent research has revealed a surprising complexity in the control of gene activity. Many of these gene regulatory mechanisms occur at the level of the mRNA, including sophisticated gene control tasks mediated by structured mRNA elements. We now know that mRNA folds can serve as highly specific receptors for various types of molecules, as exemplified by metabolite-binding riboswitches, and interfere with pro- and eukaryotic gene expression at the level of transcription, translation, and RNA processing. Gene regulation by structured mRNA elements comprises versatile strategies including self-cleaving ribozymes, RNA-folding-mediated occlusion or presentation of cis-regulatory sequences, and sequestration of trans-acting factors including other RNAs and proteins. PMID:24780087

  5. Structure of an RNA dimer of a regulatory element from human thymidylate synthase mRNA

    SciTech Connect

    Dibrov, Sergey; McLean, Jaime; Hermann, Thomas

    2011-09-27

    A sequence around the start codon of the mRNA of human thymidylate synthase (TS) folds into a secondary-structure motif in which the initiation site is sequestered in a metastable hairpin. Binding of the protein to its own mRNA at the hairpin prevents the production of TS through a translation-repression feedback mechanism. Stabilization of the mRNA hairpin by other ligands has been proposed as a strategy to reduce TS levels in anticancer therapy. Rapidly proliferating cells require high TS activity to maintain the production of thymidine as a building block for DNA synthesis. The crystal structure of a model oligonucleotide (TS1) that represents the TS-binding site of the mRNA has been determined. While fluorescence studies showed that the TS1 RNA preferentially adopts a hairpin structure in solution, even at high RNA concentrations, an asymmetric dimer of two hybridized TS1 strands was obtained in the crystal. The TS1 dimer contains an unusual S-turn motif that also occurs in the 'off' state of the human ribosomal decoding site RNA.

  6. Influence of mRNA self-structure on hybridization: computational tools for antisense sequence selection.

    PubMed

    Toschi, N

    2000-11-01

    Antisense targeting, an innovative technology based on preventing biosynthesis through sequence-specific hybridization of mRNA to synthetic oligodeoxynucleotides (ODNs), is used to selectively and transiently downregulate the expression of any gene product. Its potential applications are both investigative (neurobiology and related disciplines) and therapeutic (oncology, virology, genetic diseases), and several antisense-based drugs are currently undergoing clinical trials. However, the reported efficiencies vary and there is still a lack of clarity in the underlying mechanisms of action. A critical factor of antisense efficiency is the issue of target site selection, as both mRNA and ODN molecules exhibit a significant amount of highly heterogeneous self-structure and the region selected for targeting may well be sterically or energetically inaccessible. Because of the prohibitively large chain length, mRNA structural information is not accessible by X-ray crystallography or NMR, making a modeling approach indispensable. I outline how the latest molecular modeling techniques can be employed to establish the secondary (2D) and tertiary (3D) structures into which a given mRNA folds during and after transcription. The aim should be to integrate 2D prediction results achieved by (a) free-energy minimization, (b) kinetic folding simulations, (c) iterative population breeding by genetic algorithms, and (d) phylogenetic comparison techniques. These results can form the input of a 3D structure prediction paradigm based on constraint-satisfying programming, governed by experimental molecular mechanical constraints, and refined by molecular dynamics simulations. Finally, the automated docking (by simulated annealing) of ODN molecules to the mRNA structure can provide information about the accessibility of target mRNA regions for hybridization. To date, the great majority of studies that employ antisense as a tool select their target sequences more or less randomly. Although the wealth of molecular interactions that take place within a cell makes complete predictability unrealistic, the kind of information that can be extracted from such techniques is of relevance to every application of antisense technology, both investigative and therapeutic. PMID:11071822

  7. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo.

    PubMed

    Rouskin, Silvi; Zubradt, Meghan; Washietl, Stefan; Kellis, Manolis; Weissman, Jonathan S

    2014-01-30

    RNA has a dual role as an informational molecule and a direct effector of biological tasks. The latter function is enabled by RNA's ability to adopt complex secondary and tertiary folds and thus has motivated extensive computational and experimental efforts for determining RNA structures. Existing approaches for evaluating RNA structure have been largely limited to in vitro systems, yet the thermodynamic forces which drive RNA folding in vitro may not be sufficient to predict stable RNA structures in vivo. Indeed, the presence of RNA-binding proteins and ATP-dependent helicases can influence which structures are present inside cells. Here we present an approach for globally monitoring RNA structure in native conditions in vivo with single-nucleotide precision. This method is based on in vivo modification with dimethyl sulphate (DMS), which reacts with unpaired adenine and cytosine residues, followed by deep sequencing to monitor modifications. Our data from yeast and mammalian cells are in excellent agreement with known messenger RNA structures and with the high-resolution crystal structure of the Saccharomyces cerevisiae ribosome. Comparison between in vivo and in vitro data reveals that in rapidly dividing cells there are vastly fewer structured mRNA regions in vivo than in vitro. Even thermostable RNA structures are often denatured in cells, highlighting the importance of cellular processes in regulating RNA structure. Indeed, analysis of mRNA structure under ATP-depleted conditions in yeast shows that energy-dependent processes strongly contribute to the predominantly unfolded state of mRNAs inside cells. Our studies broadly enable the functional analysis of physiological RNA structures and reveal that, in contrast to the Anfinsen view of protein folding whereby the structure formed is the most thermodynamically favourable, thermodynamics have an incomplete role in determining mRNA structure in vivo. PMID:24336214

  8. Genetic analysis of bacteriophage lambda cIII gene: mRNA structural requirements for translation initiation.

    PubMed Central

    Kornitzer, D; Teff, D; Altuvia, S; Oppenheim, A B

    1989-01-01

    The bacteriophage lambda cIII gene product regulates the lysogenic pathway. The cIII gene is located in the leftward operon, which is transcribed from the pL promoter. We have previously shown (S. Altuvia and A. B. Oppenheim, J. Bacteriol. 167:415-419, 1986) that mutations that show elevated expression lie within the cIII coding sequence. We isolated mutants that show decreased CIII activity. All the mutations were found to cause a drastic reduction in the rate of initiation of cIII translation. Several mutations were found to be scattered within the first 40 nucleotides of the cIII coding region. Additional mutations affected the AUG initiation codon, the Shine-Dalgarno sequence, and the upstream RNaseIII processing site. Computer folding of the cIII mRNA suggested the presence of two alternative RNA structures. All the mutations within the coding region that reduce expression reduce the stability of one specific mRNA structure (structure B). Mutations that increase expression lie in the loops of this structure and may in fact stabilize it by interfering with the formation of the alternative structure (structure A). Thus, it appears that a specific mRNA secondary structure at the beginning of the cIII coding region is essential for efficient translation, suggesting that changes in mRNA structure regulate cIII expression. Images PMID:2523380

  9. A statistical sampling algorithm for RNA secondary structure prediction.

    PubMed

    Ding, Ye; Lawrence, Charles E

    2003-12-15

    An RNA molecule, particularly a long-chain mRNA, may exist as a population of structures. Further more, multiple structures have been demonstrated to play important functional roles. Thus, a representation of the ensemble of probable structures is of interest. We present a statistical algorithm to sample rigorously and exactly from the Boltzmann ensemble of secondary structures. The forward step of the algorithm computes the equilibrium partition functions of RNA secondary structures with recent thermodynamic parameters. Using conditional probabilities computed with the partition functions in a recursive sampling process, the backward step of the algorithm quickly generates a statistically representative sample of structures. With cubic run time for the forward step, quadratic run time in the worst case for the sampling step, and quadratic storage, the algorithm is efficient for broad applicability. We demonstrate that, by classifying sampled structures, the algorithm enables a statistical delineation and representation of the Boltzmann ensemble. Applications of the algorithm show that alternative biological structures are revealed through sampling. Statistical sampling provides a means to estimate the probability of any structural motif, with or without constraints. For example, the algorithm enables probability profiling of single-stranded regions in RNA secondary structure. Probability profiling for specific loop types is also illustrated. By overlaying probability profiles, a mutual accessibility plot can be displayed for predicting RNA:RNA interactions. Boltzmann probability-weighted density of states and free energy distributions of sampled structures can be readily computed. We show that a sample of moderate size from the ensemble of an enormous number of possible structures is sufficient to guarantee statistical reproducibility in the estimates of typical sampling statistics. Our applications suggest that the sampling algorithm may be well suited to prediction of mRNA structure and target accessibility. The algorithm is applicable to the rational design of small interfering RNAs (siRNAs), antisense oligonucleotides, and trans-cleaving ribozymes in gene knock-down studies. PMID:14654704

  10. A balanced secondary structure predictor.

    PubMed

    Nasrul Islam, Md; Iqbal, Sumaiya; Katebi, Ataur R; Tamjidul Hoque, Md

    2016-01-21

    Secondary structure (SS) refers to the local spatial organization of a polypeptide backbone atoms of a protein. Accurate prediction of SS can provide crucial features to form the next higher level of 3D structure of a protein accurately. SS has three different major components, helix (H), beta (E) and coil (C). Most of the SS predictors express imbalanced accuracies by claiming higher prediction performances in predicting H and C, and on the contrary having low accuracy in E predictions. E component being in low count, a predictor may show very good overall performance by over-predicting H and C and under predicting E, which can make such predictors biologically inapplicable. In this work we are motivated to develop a balanced SS predictor by incorporating 33 physicochemical properties into 15-tuble peptides via Chou׳s general PseAAC, which allowed obtaining higher accuracies in predicting all three SS components. Our approach uses three different support vector machines for binary classification of the major classes and then form optimized multiclass predictor using genetic algorithm (GA). The trained three binary SVMs are E versus non-E (i.e., E/¬E), C/¬C and H/¬H. This GA based optimized and combined three class predictor, called cSVM, is further combined with SPINE X to form the proposed final balanced predictor, called MetaSSPred. This novel paradigm assists us in optimizing the precision and recall. We prepared two independent test datasets (CB471 and N295) to compare the performance of our predictors with SPINE X. MetaSSPred significantly increases beta accuracy (QE) for both the datasets. QE score of MetaSSPred on CB471 and N295 were 71.7% and 74.4% respectively. These scores are 20.9% and 19.0% improvement over the QE scores given by SPINE X alone on CB471 and N295 datasets respectively. Standard deviations of the accuracies across three SS classes of MetaSSPred on CB471 and N295 datasets were 4.2% and 2.3% respectively. On the other hand, for SPINE X, these values are 12.9% and 10.9% respectively. These findings suggest that the proposed MetaSSPred is a well-balanced SS predictor compared to the state-of-the-art SPINE X predictor. PMID:26549467

  11. Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome.

    PubMed

    Li, Fan; Zheng, Qi; Vandivier, Lee E; Willmann, Matthew R; Chen, Ying; Gregory, Brian D

    2012-11-01

    The secondary structure of an RNA molecule plays an integral role in its maturation, regulation, and function. However, the global influence of this feature on plant gene expression is still largely unclear. Here, we use a high-throughput, sequencing-based, structure-mapping approach in conjunction with transcriptome-wide sequencing of rRNA-depleted (RNA sequencing), small RNA, and ribosome-bound RNA populations to investigate the impact of RNA secondary structure on gene expression regulation in Arabidopsis thaliana. From this analysis, we find that highly unpaired and paired RNAs are strongly correlated with euchromatic and heterochromatic epigenetic histone modifications, respectively, providing evidence that secondary structure is necessary for these RNA-mediated posttranscriptional regulatory pathways. Additionally, we uncover key structural patterns across protein-coding transcripts that indicate RNA folding demarcates regions of protein translation and likely affects microRNA-mediated regulation of mRNAs in this model plant. We further reveal that RNA folding is significantly anticorrelated with overall transcript abundance, which is often due to the increased propensity of highly structured mRNAs to be degraded and/or processed into small RNAs. Finally, we find that secondary structure affects mRNA translation, suggesting that this feature regulates plant gene expression at multiple levels. These findings provide a global assessment of RNA folding and its significant regulatory effects in a plant transcriptome. PMID:23150631

  12. Secondary structures for splice junctions in eukaryotic and viral messenger RNA precursors.

    PubMed Central

    Trapnell, B C; Tolstoshev, P; Crystal, R G

    1980-01-01

    Thermodynamically stable secondary structures have been found for adjacent splice junctions of 17 introns from 10 eukaryotic and viral mRNA precursors. Complementary regions in these structures position the exons to be ligated in a favourable orientation for splicing. The possible role of these structures in a general splicing mechanism in described. PMID:6253906

  13. Flexible Structures and Secondary Schools.

    ERIC Educational Resources Information Center

    Dennison, W. F.

    1985-01-01

    Considers the problems inherent in British secondary school organization, the resistance to change built into the organizational systems, and possible organizational concepts that could serve the same general purposes (curricular oversight and student services) while adapting more successfully to changing needs and conditions. (PGD)

  14. Pairwise amino acid secondary structural propensities

    NASA Astrophysics Data System (ADS)

    Chemmama, Ilan E.; Chapagain, Prem P.; Gerstman, Bernard S.

    2015-04-01

    We investigate the propensities for amino acids to form a specific secondary structure when they are paired with other amino acids. Our investigations use molecular dynamics (MD) computer simulations, and we compare the results to those from the Protein Data Bank (PDB). Proper comparison requires weighting of the MD results in a manner consistent with the relative frequency of appearance in the PDB of each possible pair of amino acids. We find that the propensity for an amino acid to assume a secondary structure varies dramatically depending on the amino acid that is before or after it in the primary sequence. This cooperative effect means that when selecting amino acids to facilitate the formation of a secondary structure in peptide engineering experiments, the adjacent amino acids must be considered. We also examine the preference for a secondary structure in bacterial proteins and compare the results to those of human proteins.

  15. Nucleolin promotes secondary structure in ribosomal RNA.

    PubMed

    Sipos, K; Olson, M O

    1991-06-14

    The effect of nucleolin on the secondary structure of RNA was studied using circular dichroism (CD). Nucleolin caused decreases in the main positive bands and shifts to higher wavelengths in the CD spectra of synthetic polynucleotides such as poly(G) and poly(A) indicating helix destabilizing activity. In contrast, nucleolin effected increases in signal and shifts to lower wavelengths of the peaks of CD spectra of ribosomal RNA, suggesting enhancement of secondary structure. Another major nucleolar RNA binding protein, B23, had helix destabilizing activity but did not enhance RNA secondary structure. It is proposed that nucleolin promotes formation of secondary structure in preribosomal RNA during the early stages of ribosome biogenesis. PMID:2049089

  16. Current perspectives on RNA secondary structure probing

    PubMed Central

    Kenyon, Julia; Prestwood, Liam; Lever, Andrew

    2014-01-01

    The range of roles played by structured RNAs in biological systems is vast. At the same time as we are learning more about the importance of RNA structure, recent advances in reagents, methods and technology mean that RNA secondary structural probing has become faster and more accurate. As a result, the capabilities of laboratories that already perform this typeof structural analysis have increased greatly, and it has also become more widely accessible. The present review summarizes established and recently developed techniques. The information we can derive from secondary structural analysis is assessed, together with the areas in which we are likely to see exciting developments in the near future. PMID:25110033

  17. Widespread Selection for Local RNA Secondary Structure in Coding Regions of Bacterial Genes

    PubMed Central

    Katz, Luba; Burge, Christopher B.

    2003-01-01

    Redundancy of the genetic code dictates that a given protein can be encoded by a large collection of distinct mRNA species, potentially allowing mRNAs to simultaneously optimize desirable RNA structural features in addition to their protein-coding function. To determine whether natural mRNAs exhibit biases related to local RNA secondary structure, a new randomization procedure was developed, DicodonShuffle, which randomizes mRNA sequences while preserving the same encoded protein sequence, the same codon usage, and the same dinucleotide composition as the native message. Genes from 10 of 14 eubacterial species studied and one eukaryote, the yeast Saccharomyces cerevisiae, exhibited statistically significant biases in favor of local RNA structure as measured by folding free energy. Several significant associations suggest functional roles for mRNA structure, including stronger secondary structure bias in the coding regions of intron-containing yeast genes than in intronless genes, and significantly higher folding potential in polycistronic messages than in monocistronic messages in Escherichia coli. Potential secondary structure generally increased in genes from the 5′ to the 3′ end of E. coli operons, and secondary structure potential was conserved in homologous Salmonella typhi operons. These results are interpreted in terms of possible roles of RNA structures in RNA processing, regulation of mRNA stability, and translational control. PMID:12952875

  18. Pairwise amino acid secondary structural propensities.

    PubMed

    Chemmama, Ilan E; Chapagain, Prem P; Gerstman, Bernard S

    2015-04-01

    We investigate the propensities for amino acids to form a specific secondary structure when they are paired with other amino acids. Our investigations use molecular dynamics (MD) computer simulations, and we compare the results to those from the Protein Data Bank (PDB). Proper comparison requires weighting of the MD results in a manner consistent with the relative frequency of appearance in the PDB of each possible pair of amino acids. We find that the propensity for an amino acid to assume a secondary structure varies dramatically depending on the amino acid that is before or after it in the primary sequence. This cooperative effect means that when selecting amino acids to facilitate the formation of a secondary structure in peptide engineering experiments, the adjacent amino acids must be considered. PMID:25974529

  19. PEGylated nanoparticles: protein corona and secondary structure

    NASA Astrophysics Data System (ADS)

    Runa, Sabiha; Hill, Alexandra; Cochran, Victoria L.; Payne, Christine K.

    2014-09-01

    Nanoparticles have important biological and biomedical applications ranging from drug and gene delivery to biosensing. In the presence of extracellular proteins, a "corona" of proteins adsorbs on the surface of the nanoparticles, altering their interaction with cells, including immune cells. Nanoparticles are often functionalized with polyethylene glycol (PEG) to reduce this non-specific adsorption of proteins. To understand the change in protein corona that occurs following PEGylation, we first quantified the adsorption of blood serum proteins on bare and PEGylated gold nanoparticles using gel electrophoresis. We find a threefold decrease in the amount of protein adsorbed on PEGylated gold nanoparticles compared to the bare gold nanoparticles, showing that PEG reduces, but does not prevent, corona formation. To determine if the secondary structure of corona proteins was altered upon adsorption onto the bare and PEGylated gold nanoparticles, we use CD spectroscopy to characterize the secondary structure of bovine serum albumin following incubation with the nanoparticles. Our results show no significant change in protein secondary structure following incubation with bare or PEGylated nanoparticles. Further examination of the secondary structure of bovine serum albumin, ?2-macroglobulin, and transferrin in the presence of free PEG showed similar results. These findings provide important insights for the use of PEGylated gold nanoparticles under physiological conditions.

  20. Folding and Finding RNA Secondary Structure

    PubMed Central

    Mathews, David H.; Moss, Walter N.; Turner, Douglas H.

    2010-01-01

    SUMMARY Optimal exploitation of the expanding database of sequences requires rapid finding and folding of RNAs. Methods are reviewed that automate folding and discovery of RNAs with algorithms that couple thermodynamics with chemical mapping, NMR, and/or sequence comparison. New functional noncoding RNAs in genome sequences can be found by combining sequence comparison with the assumption that functional noncoding RNAs will have more favorable folding free energies than other RNAs. When a new RNA is discovered, experiments and sequence comparison can restrict folding space so that secondary structure can be rapidly determined with the help of predicted free energies. In turn, secondary structure restricts folding in three dimensions, which allows modeling of three-dimensional structure. An example from a domain of a retrotransposon is described. Discovery of new RNAs and their structures will provide insights into evolution, biology, and design of therapeutics. Applications to studies of evolution are also reviewed. PMID:20685845

  1. Secondary structure formation in peptide amphiphile micelles

    NASA Astrophysics Data System (ADS)

    Tirrell, Matthew

    2012-02-01

    Peptide amphiphiles (PAs) are capable of self-assembly into micelles for use in the targeted delivery of peptide therapeutics and diagnostics. PA micelles exhibit a structural resemblance to proteins by having folded bioactive peptides displayed on the exterior of a hydrophobic core. We have studied two factors that influence PA secondary structure in micellar assemblies: the length of the peptide headgroup and amino acids closest to the micelle core. Peptide length was systematically varied using a heptad repeat PA. For all PAs the addition of a C12 tail induced micellization and secondary structure. PAs with 9 amino acids formed beta-sheet interactions upon aggregation, whereas the 23 and 30 residue peptides were displayed in an apha-helical conformation. The 16 amino acid PA experienced a structural transition from helix to sheet, indicating that kinetics play a role in secondary structure formation. A p53 peptide was conjugated to a C16 tail via various linkers to study the effect of linker chemistry on PA headgroup conformation. With no linker the p53 headgroup was predominantly alpha helix and a four alanine linker drastically changed the structure of the peptide headgroup to beta-sheet, highlighting the importance of hydrogen boding potential near the micelle core.

  2. Structure-function analysis of the triphosphatase component of vaccinia virus mRNA capping enzyme.

    PubMed Central

    Yu, L; Martins, A; Deng, L; Shuman, S

    1997-01-01

    The N-terminal 60 kDa (amino acids 1 to 545) of the D1 subunit of vaccinia virus mRNA capping enzyme is an autonomous bifunctional domain with triphosphatase and guanylyltransferase activities. We previously described two alanine cluster mutations, R77 to A (R77A)-K79A and E192A-E194A, which selectively inactivated the triphosphatase component. Here, we characterize the activities of 11 single alanine mutants-E37A, E39A, Q60A, E61A, T67A, T69A, K75A, R77A, K79A, E192A, and E194A-and a quadruple mutant in which four residues (R77, K79, E192, and E194) were replaced by alanine. We report that Glu-37, Glu-39, Arg-77, Glu-192, and Glu-194 are essential for gamma-phosphate cleavage. The five essential residues are conserved in the capping enzymes of Shope fibroma virus, molluscum contagiosum virus, and African swine fever virus. Probing the structure of D1(1-545) by limited V8 proteolysis suggested a bipartite subdomain structure. The essential residue Glu-192 is the principal site of V8 cleavage. Secondary cleavage by V8 occurs at the essential residue Glu-39. The triphosphatase-defective quadruple mutant transferred GMP to the triphosphate end of poly(A) to form a tetraphosphate cap structure, GppppA. We report that GppppA-capped RNA is a poor substrate for cap methylation by the vaccinia virus and Saccharomyces cerevisiae RNA (guanine-7) methyltransferases. The transcription termination factor activity of the D1-D12 capping enzyme heterodimer was not affected by mutations that abrogated ATPase activity. Thus, the capping enzyme is not responsible for the requirement for ATP hydrolysis during transcription termination. PMID:9371657

  3. The structure of the SOLE element of oskar mRNA

    PubMed Central

    Simon, Bernd; Masiewicz, Pawel; Ephrussi, Anne; Carlomagno, Teresa

    2015-01-01

    mRNA localization by active transport is a regulated process that requires association of mRNPs with protein motors for transport along either the microtubule or the actin cytoskeleton. oskar mRNA localization at the posterior pole of the Drosophila oocyte requires a specific mRNA sequence, termed the SOLE, which comprises nucleotides of both exon 1 and exon 2 and is assembled upon splicing. The SOLE folds into a stem–loop structure. Both SOLE RNA and the exon junction complex (EJC) are required for oskar mRNA transport along the microtubules by kinesin. The SOLE RNA likely constitutes a recognition element for a yet unknown protein, which either belongs to the EJC or functions as a bridge between the EJC and the mRNA. Here, we determine the solution structure of the SOLE RNA by Nuclear Magnetic Resonance spectroscopy. We show that the SOLE forms a continuous helical structure, including a few noncanonical base pairs, capped by a pentanucleotide loop. The helix displays a widened major groove, which could accommodate a protein partner. In addition, the apical helical segment undergoes complex dynamics, with potential functional significance. PMID:26089324

  4. Sequence and structure analysis of a mirror tRNA located upstream of the cytochrome oxidase I mRNA in mouse mitochondria.

    PubMed

    Okui, Saya; Ushida, Chisato; Kiyosawa, Hidenori; Kawai, Gota

    2016-03-01

    RNA fragments corresponding to the mirror tRNA that is located upstream of the cytochrome oxidase I (COXI) gene in the mouse mitochondrial genome were found in the sequences obtained from the mouse brain by the next generation sequencing. RNA fragments corresponding to the 5' terminal of COXI mRNA were also found and it was suggested that the precursor of the COXI mRNA is processed at three residues upstream of the first AUG codon. The mirror tRNA fragment has poly(A) in its 3' terminal and variable 5' terminal, suggesting that this RNA is produced during the 5' processing of COXI mRNA. Secondary structure prediction and NMR analysis indicated that the mirror tRNA is folded into a tRNA-like secondary structure, suggesting that the tRNA-like conformation of the 5' adjacent sequence of COXI mRNA is involved in the COXI mRNA maturation in the mouse mitochondria. PMID:26519737

  5. RNA secondary structure prediction using soft computing.

    PubMed

    Ray, Shubhra Sankar; Pal, Sankar K

    2013-01-01

    Prediction of RNA structure is invaluable in creating new drugs and understanding genetic diseases. Several deterministic algorithms and soft computing-based techniques have been developed for more than a decade to determine the structure from a known RNA sequence. Soft computing gained importance with the need to get approximate solutions for RNA sequences by considering the issues related with kinetic effects, cotranscriptional folding, and estimation of certain energy parameters. A brief description of some of the soft computing-based techniques, developed for RNA secondary structure prediction, is presented along with their relevance. The basic concepts of RNA and its different structural elements like helix, bulge, hairpin loop, internal loop, and multiloop are described. These are followed by different methodologies, employing genetic algorithms, artificial neural networks, and fuzzy logic. The role of various metaheuristics, like simulated annealing, particle swarm optimization, ant colony optimization, and tabu search is also discussed. A relative comparison among different techniques, in predicting 12 known RNA secondary structures, is presented, as an example. Future challenging issues are then mentioned. PMID:23702539

  6. The mRNA of the translationally controlled tumor protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKR.

    PubMed Central

    Bommer, Ulrich-Axel; Borovjagin, Anton V; Greagg, Martin A; Jeffrey, Ian W; Russell, Paul; Laing, Kenneth G; Lee, Melanie; Clemens, Michael J

    2002-01-01

    The dsRNA-activated protein kinase PKR is involved in signal transduction pathways that mediate cellular processes as diverse as cell growth and differentiation, the stress response, and apoptosis. PKR was originally described as an interferon-inducible elF2alpha kinase involved in the antiviral defense mechanism of the cell. The interaction of the kinase with specific viral RNAs has been studied in much detail, but information about cellular mRNAs, which are able to bind and activate PKR, is scarce. In search for such cellular mRNAs, we developed a cloning strategy to identify individual mRNA species from the dsRNA-rich fraction of Daudi cell poly(A)+ RNA. Two out of five cDNA clones we obtained contained sequences derived from the mRNA of the translationally controlled tumor protein P23/TCTP, indicating that this mRNA is present in the dsRNA-rich fraction. Secondary structure predictions and gel electrophoretic mobility investigations on P23/TCTP transcripts confirmed the potential of this mRNA to form extensive secondary structure. A full-length P23 transcript, but not a truncated version thereof, was able to bind to PKR in vitro and in vivo. Transient transfection experiments in human 293 cells showed that coexpression of full-length P23 mRNA leads to partial inhibition of the expression of a beta-galactosidase reporter gene in trans. Additional coexpression of a dominant negative mutant of PKR or of adenovirus VA1 RNA suppressed this inhibition, indicating that it is mediated by PKR. Studies on P23/TCTP expression in cells from PKR-knockout mice suggest that P23/TCTP mRNA translation is regulated by PKR. Hence, our results demonstrate that the mRNA of P23/TCTP may both activate PKR and be subject to translational regulation by this kinase. PMID:11991642

  7. Expected degree for RNA secondary structure networks.

    PubMed

    Clote, Peter

    2015-01-15

    Consider the network of all secondary structures of a given RNA sequence, where nodes are connected when the corresponding structures have base pair distance one. The expected degree of the network is the average number of neighbors, where average may be computed with respect to the either the uniform or Boltzmann probability. Here, we describe the first algorithm, RNAexpNumNbors, that can compute the expected number of neighbors, or expected network degree, of an input sequence. For RNA sequences from the Rfam database, the expected degree is significantly less than the constrained minimum free energy structure, defined to have minimum free energy (MFE) over all structures consistent with the Rfam consensus structure. The expected degree of structural RNAs, such as purine riboswitches, paradoxically appears to be smaller than that of random RNA, yet the difference between the degree of the MFE structure and the expected degree is larger than that of random RNA. Expected degree does not seem to correlate with standard structural diversity measures of RNA, such as positional entropy and ensemble defect. The program RNAexpNumNbors is written in C, runs in cubic time and quadratic space, and is publicly available at http://bioinformatics.bc.edu/clotelab/RNAexpNumNbors. PMID:25382310

  8. Secondary flow structures in large rivers

    NASA Astrophysics Data System (ADS)

    Chauvet, H.; Devauchelle, O.; Metivier, F.; Limare, A.; Lajeunesse, E.

    2012-04-01

    Measuring the velocity field in large rivers remains a challenge, even with recent measurement techniques such as Acoustic Doppler Current Profiler (ADCP). Indeed, due to the diverging angle between its ultrasonic beams, an ADCP cannot detect small-scale flow structures. However, when the measurements are limited to a single location for a sufficient period of time, averaging can reveal large, stationary flow structures. Here we present velocity measurements in a straight reach of the Seine river in Paris, France, where the cross-section is close to rectangular. The transverse modulation of the streamwise velocity indicates secondary flow cells, which seem to occupy the entire width of the river. This observation is reminiscent of the longitudinal vortices observed in laboratory experiments (e.g. Blanckaert et al., Advances in Water Resources, 2010, 33, 1062-1074). Although the physical origin of these secondary structures remains unclear, their measured velocity is sufficient to significantly impact the distribution of streamwise momentum. We propose a model for the transverse profile of the depth-averaged velocity based on a crude representation of the longitudinal vortices, with a single free parameter. Preliminary results are in good agreement with field measurements. This model also provides an estimate for the bank shear stress, which controls bank erosion.

  9. Capped mRNAs with reduced secondary structure can function in extracts from poliovirus-infected cells

    SciTech Connect

    Sonenberg, N.; Guertin, D.; Lee, K.A.W.

    1982-12-01

    Extracts form poliovirus-infected HeLa cells were used to study ribosome binding of native and denatured reovirus mRNAs and translation of capped mRNAs with different degrees of secondary structure. Here, the authors demonstrate that ribosomes in extracts from poliovirus-infected cells could form initiation complexes with denatured reovirus mRNA, in contrast to their inability to bind native reovirus mRNA. Furthermore, the capped alfalfa mosiac virus 4 RNA, which is most probable devoid of stable secondary structure at its 5' end, could be translated at much higher efficiency than could other capped mRNAs in extracts from poliovirus-infected cells.

  10. Computing folding pathways between RNA secondary structures

    PubMed Central

    Dotu, Ivan; Lorenz, William A.; Van Hentenryck, Pascal; Clote, Peter

    2010-01-01

    Given an RNA sequence and two designated secondary structures A, B, we describe a new algorithm that computes a nearly optimal folding pathway from A to B. The algorithm, RNAtabupath, employs a tabu semi-greedy heuristic, known to be an effective search strategy in combinatorial optimization. Folding pathways, sometimes called routes or trajectories, are computed by RNAtabupath in a fraction of the time required by the barriers program of Vienna RNA Package. We benchmark RNAtabupath with other algorithms to compute low energy folding pathways between experimentally known structures of several conformational switches. The RNApathfinder web server, source code for algorithms to compute and analyze pathways and supplementary data are available at http://bioinformatics.bc.edu/clotelab/RNApathfinder. PMID:20044352

  11. Computing folding pathways between RNA secondary structures.

    PubMed

    Dotu, Ivan; Lorenz, William A; Van Hentenryck, Pascal; Clote, Peter

    2010-03-01

    Given an RNA sequence and two designated secondary structures A, B, we describe a new algorithm that computes a nearly optimal folding pathway from A to B. The algorithm, RNAtabupath, employs a tabu semi-greedy heuristic, known to be an effective search strategy in combinatorial optimization. Folding pathways, sometimes called routes or trajectories, are computed by RNAtabupath in a fraction of the time required by the barriers program of Vienna RNA Package. We benchmark RNAtabupath with other algorithms to compute low energy folding pathways between experimentally known structures of several conformational switches. The RNApathfinder web server, source code for algorithms to compute and analyze pathways and supplementary data are available at http://bioinformatics.bc.edu/clotelab/RNApathfinder. PMID:20044352

  12. Maximum expected accuracy structural neighbors of an RNA secondary structure

    PubMed Central

    2012-01-01

    Background Since RNA molecules regulate genes and control alternative splicing by allostery, it is important to develop algorithms to predict RNA conformational switches. Some tools, such as paRNAss, RNAshapes and RNAbor, can be used to predict potential conformational switches; nevertheless, no existent tool can detect general (i.e., not family specific) entire riboswitches (both aptamer and expression platform) with accuracy. Thus, the development of additional algorithms to detect conformational switches seems important, especially since the difference in free energy between the two metastable secondary structures may be as large as 15-20 kcal/mol. It has recently emerged that RNA secondary structure can be more accurately predicted by computing the maximum expected accuracy (MEA) structure, rather than the minimum free energy (MFE) structure. Results Given an arbitrary RNA secondary structure S0 for an RNA nucleotide sequence a = a1,..., an, we say that another secondary structure S of a is a k-neighbor of S0, if the base pair distance between S0 and S is k. In this paper, we prove that the Boltzmann probability of all k-neighbors of the minimum free energy structure S0 can be approximated with accuracy ε and confidence 1 - p, simultaneously for all 0 ≤ k < K, by a relative frequency count over N sampled structures, provided that N>N(ε,p,K)=Φ-1p2K24ε2, where Φ(z) is the cumulative distribution function (CDF) for the standard normal distribution. We go on to describe the algorithm RNAborMEA, which for an arbitrary initial structure S0 and for all values 0 ≤ k < K, computes the secondary structure MEA(k), having maximum expected accuracy over all k-neighbors of S0. Computation time is O(n3 · K2), and memory requirements are O(n2 · K). We analyze a sample TPP riboswitch, and apply our algorithm to the class of purine riboswitches. Conclusions The approximation of RNAbor by sampling, with rigorous bound on accuracy, together with the computation of maximum expected accuracy k-neighbors by RNAborMEA, provide additional tools toward conformational switch detection. Results from RNAborMEA are quite distinct from other tools, such as RNAbor, RNAshapes and paRNAss, hence may provide orthogonal information when looking for suboptimal structures or conformational switches. Source code for RNAborMEA can be downloaded from http://sourceforge.net/projects/rnabormea/ or http://bioinformatics.bc.edu/clotelab/RNAborMEA/. PMID:22537010

  13. A folding algorithm for extended RNA secondary structures

    PubMed Central

    zu Siederdissen, Christian Höner; Bernhart, Stephan H.; Stadler, Peter F.; Hofacker, Ivo L.

    2011-01-01

    Motivation: RNA secondary structure contains many non-canonical base pairs of different pair families. Successful prediction of these structural features leads to improved secondary structures with applications in tertiary structure prediction and simultaneous folding and alignment. Results: We present a theoretical model capturing both RNA pair families and extended secondary structure motifs with shared nucleotides using 2-diagrams. We accompany this model with a number of programs for parameter optimization and structure prediction. Availability: All sources (optimization routines, RNA folding, RNA evaluation, extended secondary structure visualization) are published under the GPLv3 and available at www.tbi.univie.ac.at/software/rnawolf/. Contact: choener@tbi.univie.ac.at PMID:21685061

  14. RNA-SSPT: RNA Secondary Structure Prediction Tools.

    PubMed

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes. PMID:24250115

  15. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1.

    PubMed

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem-loop structure containing the branch site near its apical loop and the 3' splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing. PMID:26546116

  16. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1

    PubMed Central

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem–loop structure containing the branch site near its apical loop and the 3′ splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing. PMID:26546116

  17. RNA STRAND: The RNA Secondary Structure and Statistical Analysis Database

    PubMed Central

    Andronescu, Mirela; Bereg, Vera; Hoos, Holger H; Condon, Anne

    2008-01-01

    Background The ability to access, search and analyse secondary structures of a large set of known RNA molecules is very important for deriving improved RNA energy models, for evaluating computational predictions of RNA secondary structures and for a better understanding of RNA folding. Currently there is no database that can easily provide these capabilities for almost all RNA molecules with known secondary structures. Results In this paper we describe RNA STRAND – the RNA secondary STRucture and statistical ANalysis Database, a curated database containing known secondary structures of any type and organism. Our new database provides a wide collection of known RNA secondary structures drawn from public databases, searchable and downloadable in a common format. Comprehensive statistical information on the secondary structures in our database is provided using the RNA Secondary Structure Analyser, a new tool we have developed to analyse RNA secondary structures. The information thus obtained is valuable for understanding to which extent and with which probability certain structural motifs can appear. We outline several ways in which the data provided in RNA STRAND can facilitate research on RNA structure, including the improvement of RNA energy models and evaluation of secondary structure prediction programs. In order to keep up-to-date with new RNA secondary structure experiments, we offer the necessary tools to add solved RNA secondary structures to our database and invite researchers to contribute to RNA STRAND. Conclusion RNA STRAND is a carefully assembled database of trusted RNA secondary structures, with easy on-line tools for searching, analyzing and downloading user selected entries, and is publicly available at . PMID:18700982

  18. Co-evolution of Bacterial Ribosomal Protein S15 with Diverse mRNA Regulatory Structures

    PubMed Central

    Slinger, Betty L.; Newman, Hunter; Lee, Younghan; Pei, Shermin; Meyer, Michelle M.

    2015-01-01

    RNA-protein interactions are critical in many biological processes, yet how such interactions affect the evolution of both partners is still unknown. RNA and protein structures are impacted very differently by mechanisms of genomic change. While most protein families are identifiable at the nucleotide level across large phylogenetic distances, RNA families display far less nucleotide similarity and are often only shared by closely related bacterial species. Ribosomal protein S15 has two RNA binding functions. First, it is a ribosomal protein responsible for organizing the rRNA during ribosome assembly. Second, in many bacterial species S15 also interacts with a structured portion of its own transcript to negatively regulate gene expression. While the first interaction is conserved in most bacteria, the second is not. Four distinct mRNA structures interact with S15 to enable regulation, each of which appears to be independently derived in different groups of bacteria. With the goal of understanding how protein-binding specificity may influence the evolution of such RNA regulatory structures, we examine whether examples of these mRNA structures are able to interact with, and regulate in response to, S15 homologs from organisms containing distinct mRNA structures. We find that despite their shared RNA binding function in the rRNA, S15 homologs have distinct RNA recognition profiles. We present a model to explain the specificity patterns observed, and support this model by with further mutagenesis. After analyzing the patterns of conservation for the S15 protein coding sequences, we also identified amino acid changes that alter the binding specificity of an S15 homolog. In this work we demonstrate that homologous RNA-binding proteins have different specificity profiles, and minor changes to amino acid sequences, or to RNA structural motifs, can have large impacts on RNA-protein recognition. PMID:26675164

  19. Prediction of protein folding rates from simplified secondary structure alphabet.

    PubMed

    Huang, Jitao T; Wang, Titi; Huang, Shanran R; Li, Xin

    2015-10-21

    Protein folding is a very complicated and highly cooperative dynamic process. However, the folding kinetics is likely to depend more on a few key structural features. Here we find that secondary structures can determine folding rates of only large, multi-state folding proteins and fails to predict those for small, two-state proteins. The importance of secondary structures for protein folding is ordered as: extended β strand > α helix > bend > turn > undefined secondary structure>310 helix > isolated β strand > π helix. Only the first three secondary structures, extended β strand, α helix and bend, can achieve a good correlation with folding rates. This suggests that the rate-limiting step of protein folding would depend upon the formation of regular secondary structures and the buckling of chain. The reduced secondary structure alphabet provides a simplified description for the machine learning applications in protein design. PMID:26247139

  20. Enumeration of Secondary Structure Element Bundles

    Energy Science and Technology Software Center (ESTSC)

    2004-10-26

    A deterministic algorithm for enumeration of transmembrane protein folds is implemented. Using a set of sparse pairwise atomic distance constraints (such as those obtained from chemical cross-linking, FRET, or dipolar EPR experiments), the algorithm performs an exhaustive search of secondary structure element packing conformations distributed throughout the entire conformational space. The end result is a set of distinct protein conformations which can be scored and refined as part of a process designed for computational elucidationmore » of transmembrane protein structures. Algorithm Overview: The ESSEB algorithm works by dividing the conforrnational space of each secondary structure element (SSE) into a set of cells. For each cell there is a representative conformation and for each atom in the SSE for which a distance restraint is available, there is an associated internal error, The internal error for a distance restraint is the maximum distance that the atom, when positioned in any conformation within a cell, can be from the atom in the representative conformation. The algorithm works recursively by positioning one representative conformation of an SSE. AdI distance restraints are checked with a tolerance that includes both the experimental and internal error. If all restraints are satisfied, every representative conformation of the next SSE is checked, otherwise, the program moves on to the next representative conformation of the current SSE. In addition to the distance restraints, other constraints on protein conformation can be enforced. These include the distance of closest approach between SSE axes, a restraint which prevents the crossover of loops connecting adjacent SSEs, and a restriction on the minimum and maximum distances between axis end-points. Any protein conformation satisfying all of the restraints is enumerated for later scoring and possible refinement. Additionally, in order to make run-times feasible, a divide-and-conquer approach is used in which the cells of each SSE in an accepted protein conformation can be further divided such that the internal errors are reduced and the new representative conformations can be evaluated.« less

  1. Secondary structure adventures with Carl Woese.

    PubMed

    Noller, Harry F

    2014-01-01

    Not long after my arrival at UCSC as an assistant professor, I came across Carl Woese's paper "Molecular Mechanics of Translation: A Reciprocating Ratchet Mechanism." (1) In the days before the crystal structure of tRNA was known, Fuller and Hodgson (2) had proposed two alternative conformations for its anticodon loop; one was stacked on the 3' side (as later found in the crystal structure) and the other on the 5' side. In an ingenious and elegant model, Woese proposed that the conformation of the loop flips between Fuller and Hodgson's 5'- and 3'-stacked forms during protein synthesis, changing the local direction of the mRNA such that the identities of the tRNA binding sites alternated between binding aminoacyl-tRNA and peptidyl-tRNA. The model predicted that there are no A and P sites, only two binding sites whose identities changed following translation of each codon, and that there would be no translocation of tRNAs in the usual sense--only binding and release. I met Carl in person the following year when he presented a seminar on his ratchet model in Santa Cruz. He was chatting in my colleague Ralph Hinegardner's office in what Carl termed a "Little Jack Horner appointment" (the visitor sits and listens to his host describing "What a good boy am I"). He was of compact stature, and bore a striking resemblance to Oskar Werner in Truffaut's film "Jules and Jim." He projected the impression of a New-Age guru--a shiny black amulet suspended over the front of his black turtleneck sweater and a crown of prematurely white hair. Ralph asked me to explain to Carl what we were doing with ribosomes. I quickly summarized our early experiments that were pointing to a functional role for 16S rRNA. Carl regarded me silently, with a penetrating stare. He then turned to Ralph and said, in an ominous low voice, "I'm going to have some more tanks made as soon as I get back." Carl's beautiful model was, unfortunately, wrong--it was simpler and more elegant than the complex mechanism that Nature actually uses. Unyielding, Carl railed against the A-site-P-site model at every opportunity, and although we ended up enjoying a long, intense, and fruitful collaboration, and became close, life-long friends, I finally gave up trying to describe to him our biochemical and crystallographic results on the A, P, and E sites. PMID:24637459

  2. Secondary structure adventures with Carl Woese

    PubMed Central

    Noller, Harry F

    2014-01-01

    Not long after my arrival at UCSC as an assistant professor, I came across Carl Woese's paper “Molecular Mechanics of Translation: A Reciprocating Ratchet Mechanism.”1 In the days before the crystal structure of tRNA was known, Fuller and Hodgson2 had proposed two alternative conformations for its anticodon loop; one was stacked on the 3′ side (as later found in the crystal structure) and the other on the 5′ side. In an ingenious and elegant model, Woese proposed that the conformation of the loop flips between Fuller and Hodgson's 5′- and 3′-stacked forms during protein synthesis, changing the local direction of the mRNA such that the identities of the tRNA binding sites alternated between binding aminoacyl-tRNA and peptidyl-tRNA. The model predicted that there are no A and P sites, only two binding sites whose identities changed following translation of each codon, and that there would be no translocation of tRNAs in the usual sense—only binding and release. I met Carl in person the following year when he presented a seminar on his ratchet model in Santa Cruz. He was chatting in my colleague Ralph Hinegardner's office in what Carl termed a “Little Jack Horner appointment” (the visitor sits and listens to his host describing “What a good boy am I”). He was of compact stature, and bore a striking resemblance to Oskar Werner in Truffaut's film “Jules and Jim.” He projected the impression of a New-Age guru—a shiny black amulet suspended over the front of his black turtleneck sweater and a crown of prematurely white hair. Ralph asked me to explain to Carl what we were doing with ribosomes. I quickly summarized our early experiments that were pointing to a functional role for 16S rRNA. Carl regarded me silently, with a penetrating stare. He then turned to Ralph and said, in an ominous low voice, “I'm going to have some more tanks made as soon as I get back.” Carl's beautiful model was, unfortunately, wrong—it was simpler and more elegant than the complex mechanism that Nature actually uses. Unyielding, Carl railed against the A-site-P-site model at every opportunity,3,4 and although we ended up enjoying a long, intense, and fruitful collaboration, and became close, life-long friends, I finally gave up trying to describe to him our biochemical and crystallographic results on the A, P, and E sites. PMID:24637459

  3. Regulation of cytochrome P450 mRNA expression in primary porcine hepatocytes by selected secondary plant metabolites from chicory (Cichorium intybus L.).

    PubMed

    Rasmussen, Martin Krøyer; Klausen, Christina Lindgaard; Ekstrand, Bo

    2014-03-01

    Chicory (Cichorium intybus) has been shown to induce enzymes of pharmacokinetic relevance (cytochrome P450; CYP). The aim of this study was to investigate the effects of selected secondary plant metabolites with a global extract of chicory root, on the expression of hepatic CYP mRNA (1A2, 2A19, 2C33, 2D25, 2E1 and 3A29), using primary porcine hepatocytes. Of the tested secondary plant metabolites, artemisinin, scoparone, lactucin and esculetin all induced increased expression of specific CYPs, while esculin showed no effect. In contrast, a global extract of chicory root decreased the expression of CYP1A2, 2C33, 2D25 and 3A29 at high concentrations. The results suggest that purified secondary metabolites from chicory affect CYP expression and thereby might affect detoxification in general, and that global extracts of plants can have effects different from individual components. PMID:24176340

  4. Neural network definitions of highly predictable protein secondary structure classes

    SciTech Connect

    Lapedes, A. |; Steeg, E.; Farber, R.

    1994-02-01

    We use two co-evolving neural networks to determine new classes of protein secondary structure which are significantly more predictable from local amino sequence than the conventional secondary structure classification. Accurate prediction of the conventional secondary structure classes: alpha helix, beta strand, and coil, from primary sequence has long been an important problem in computational molecular biology. Neural networks have been a popular method to attempt to predict these conventional secondary structure classes. Accuracy has been disappointingly low. The algorithm presented here uses neural networks to similtaneously examine both sequence and structure data, and to evolve new classes of secondary structure that can be predicted from sequence with significantly higher accuracy than the conventional classes. These new classes have both similarities to, and differences with the conventional alpha helix, beta strand and coil.

  5. RNA Secondary Structure Prediction by Using Discrete Mathematics: An Interdisciplinary Research Experience for Undergraduate Students

    PubMed Central

    Ellington, Roni; Wachira, James

    2010-01-01

    The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses discrete mathematical techniques and identifies specified base pairs as parameters. The goal of the REU was to introduce upper-level undergraduate students to the principles and challenges of interdisciplinary research in molecular biology and discrete mathematics. At the beginning of the project, students from the biology and mathematics departments of a mid-sized university received instruction on the role of secondary structure in the function of eukaryotic RNAs and RNA viruses, RNA related to combinatorics, and the National Center for Biotechnology Information resources. The student research projects focused on RNA secondary structure prediction on a regulatory region of the yellow fever virus RNA genome and on an untranslated region of an mRNA of a gene associated with the neurological disorder epilepsy. At the end of the project, the REU students gave poster and oral presentations, and they submitted written final project reports to the program director. The outcome of the REU was that the students gained transferable knowledge and skills in bioinformatics and an awareness of the applications of discrete mathematics to biological research problems. PMID:20810968

  6. RNA secondary structure prediction by using discrete mathematics: an interdisciplinary research experience for undergraduate students.

    PubMed

    Ellington, Roni; Wachira, James; Nkwanta, Asamoah

    2010-01-01

    The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses discrete mathematical techniques and identifies specified base pairs as parameters. The goal of the REU was to introduce upper-level undergraduate students to the principles and challenges of interdisciplinary research in molecular biology and discrete mathematics. At the beginning of the project, students from the biology and mathematics departments of a mid-sized university received instruction on the role of secondary structure in the function of eukaryotic RNAs and RNA viruses, RNA related to combinatorics, and the National Center for Biotechnology Information resources. The student research projects focused on RNA secondary structure prediction on a regulatory region of the yellow fever virus RNA genome and on an untranslated region of an mRNA of a gene associated with the neurological disorder epilepsy. At the end of the project, the REU students gave poster and oral presentations, and they submitted written final project reports to the program director. The outcome of the REU was that the students gained transferable knowledge and skills in bioinformatics and an awareness of the applications of discrete mathematics to biological research problems. PMID:20810968

  7. Widespread signatures of local mRNA folding structure selection in four Dengue virus serotypes

    PubMed Central

    2015-01-01

    Background It is known that mRNA folding can affect and regulate various gene expression steps both in living organisms and in viruses. Previous studies have recognized functional RNA structures in the genome of the Dengue virus. However, these studies usually focused either on the viral untranslated regions or on very specific and limited regions at the beginning of the coding sequences, in a limited number of strains, and without considering evolutionary selection. Results Here we performed the first large scale comprehensive genomics analysis of selection for local mRNA folding strength in the Dengue virus coding sequences, based on a total of 1,670 genomes and 4 serotypes. Our analysis identified clusters of positions along the coding regions that may undergo a conserved evolutionary selection for strong or weak local folding maintained across different viral variants. Specifically, 53-66 clusters for strong folding and 49-73 clusters for weak folding (depending on serotype) aggregated of positions with a significant conservation of folding energy signals (related to partially overlapping local genomic regions) were recognized. In addition, up to 7% of these positions were found to be conserved in more than 90% of the viral genomes. Although some of the identified positions undergo frequent synonymous / non-synonymous substitutions, the selection for folding strength therein is preserved, and thus cannot be trivially explained based on sequence conservation alone. Conclusions The fact that many of the positions with significant folding related signals are conserved among different Dengue variants suggests that a better understanding of the mRNA structures in the corresponding regions may promote the development of prospective anti- Dengue vaccination strategies. The comparative genomics approach described here can be employed in the future for detecting functional regions in other pathogens with very high mutations rates. PMID:26449467

  8. A novel approach to represent and compare RNA secondary structures

    PubMed Central

    Mattei, Eugenio; Ausiello, Gabriele; Ferrè, Fabrizio; Helmer-Citterich, Manuela

    2014-01-01

    Structural information is crucial in ribonucleic acid (RNA) analysis and functional annotation; nevertheless, how to include such structural data is still a debated problem. Dot-bracket notation is the most common and simple representation for RNA secondary structures but its simplicity leads also to ambiguity requiring further processing steps to dissolve. Here we present BEAR (Brand nEw Alphabet for RNA), a new context-aware structural encoding represented by a string of characters. Each character in BEAR encodes for a specific secondary structure element (loop, stem, bulge and internal loop) with specific length. Furthermore, exploiting this informative and yet simple encoding in multiple alignments of related RNAs, we captured how much structural variation is tolerated in RNA families and convert it into transition rates among secondary structure elements. This allowed us to compute a substitution matrix for secondary structure elements called MBR (Matrix of BEAR-encoded RNA secondary structures), of which we tested the ability in aligning RNA secondary structures. We propose BEAR and the MBR as powerful resources for the RNA secondary structure analysis, comparison and classification, motif finding and phylogeny. PMID:24753415

  9. Structural model of an mRNA in complex with the bacterial chaperone Hfq

    PubMed Central

    Peng, Yi; Curtis, Joseph E.; Fang, Xianyang; Woodson, Sarah A.

    2014-01-01

    The Sm-like protein Hfq (host factor Q-beta phage) facilitates regulation by bacterial small noncoding RNAs (sRNAs) in response to stress and other environmental signals. Here, we present a low-resolution model of Escherichia coli Hfq bound to the rpoS mRNA, a bacterial stress response gene that is targeted by three different sRNAs. Selective 2?-hydroxyl acylation and primer extension, small-angle X-ray scattering, and Monte Carlo molecular dynamics simulations show that the distal face and lateral rim of Hfq interact with three sites in the rpoS leader, folding the RNA into a compact tertiary structure. These interactions are needed for sRNA regulation of rpoS translation and position the sRNA target adjacent to an sRNA binding region on the proximal face of Hfq. Our results show how Hfq specifically distorts the structure of the rpoS mRNA to enable sRNA base pairing and translational control. PMID:25404287

  10. Characterising RNA secondary structure space using information entropy

    PubMed Central

    2013-01-01

    Comparative methods for RNA secondary structure prediction use evolutionary information from RNA alignments to increase prediction accuracy. The model is often described in terms of stochastic context-free grammars (SCFGs), which generate a probability distribution over secondary structures. It is, however, unclear how this probability distribution changes as a function of the input alignment. As prediction programs typically only return a single secondary structure, better characterisation of the underlying probability space of RNA secondary structures is of great interest. In this work, we show how to efficiently compute the information entropy of the probability distribution over RNA secondary structures produced for RNA alignments by a phylo-SCFG, and implement it for the PPfold model. We also discuss interpretations and applications of this quantity, including how it can clarify reasons for low prediction reliability scores. PPfold and its source code are available from http://birc.au.dk/software/ppfold/. PMID:23368905

  11. FMRP interacts with G-quadruplex structures in the 3'-UTR of its dendritic target Shank1 mRNA.

    PubMed

    Zhang, Yang; Gaetano, Christian M; Williams, Kathryn R; Bassell, Gary J; Mihailescu, Mihaela Rita

    2014-01-01

    Fragile X syndrome (FXS), the most common cause of inherited intellectual disability, is caused by the loss of expression of the fragile X mental retardation protein (FMRP). FMRP, which regulates the transport and translation of specific mRNAs, uses its RGG box domain to bind mRNA targets that form G-quadruplex structures. One of the FMRP in vivo targets, Shank1 mRNA, encodes the master scaffold proteins of the postsynaptic density (PSD) which regulate the size and shape of dendritic spines because of their capacity to interact with many different PSD components. Due to their effect on spine morphology, altered translational regulation of Shank1 transcripts may contribute to the FXS pathology. We hypothesized that the FMRP interactions with Shank1 mRNA are mediated by the recognition of the G quadruplex structure, which has not been previously demonstrated. In this study we used biophysical techniques to analyze the Shank1 mRNA 3'-UTR and its interactions with FMRP and its phosphorylated mimic FMRP S500D. We found that the Shank1 mRNA 3 ' -UTR adopts two very stable intramolecular G-quadruplexes which are bound specifically and with high affinity by FMRP both in vitro and in vivo. These results suggest a role of G-quadruplex RNA motif as a structural element in the common mechanism of FMRP regulation of its dendritic mRNA targets. PMID:25692235

  12. Secondary Education in the European Union: Structures, Organisation and Administration.

    ERIC Educational Resources Information Center

    EURYDICE European Unit, Brussels (Belgium).

    This study examines the existing secondary education structures of the European Union member nations, the organization of education, teacher training, and the way in which secondary education is managed in Europe today. The three European Free Trade Association/European Economic Area (EFTA/EEC) countries (Iceland, Liechtenstein, and Norway) also…

  13. Bayesian model of protein primary sequence for secondary structure prediction.

    PubMed

    Li, Qiwei; Dahl, David B; Vannucci, Marina; Hyun Joo; Tsai, Jerry W

    2014-01-01

    Determining the primary structure (i.e., amino acid sequence) of a protein has become cheaper, faster, and more accurate. Higher order protein structure provides insight into a protein's function in the cell. Understanding a protein's secondary structure is a first step towards this goal. Therefore, a number of computational prediction methods have been developed to predict secondary structure from just the primary amino acid sequence. The most successful methods use machine learning approaches that are quite accurate, but do not directly incorporate structural information. As a step towards improving secondary structure reduction given the primary structure, we propose a Bayesian model based on the knob-socket model of protein packing in secondary structure. The method considers the packing influence of residues on the secondary structure determination, including those packed close in space but distant in sequence. By performing an assessment of our method on 2 test sets we show how incorporation of multiple sequence alignment data, similarly to PSIPRED, provides balance and improves the accuracy of the predictions. Software implementing the methods is provided as a web application and a stand-alone implementation. PMID:25314659

  14. Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein

    SciTech Connect

    Wang, Yeming; Opperman, Laura; Wickens, Marvin; Tanaka Hall, Traci M.

    2010-08-19

    Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1-3 and 7-8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4-6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short region of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so.

  15. Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein

    SciTech Connect

    Wang, Yeming; Opperman, Laura; Wickens, Marvin; Tanaka Hall, Traci M.

    2011-11-02

    Caenorhabditis elegans fem-3 binding factor (FBF) is a founding member of the PUMILIO/FBF (PUF) family of mRNA regulatory proteins. It regulates multiple mRNAs critical for stem cell maintenance and germline development. Here, we report crystal structures of FBF in complex with 6 different 9-nt RNA sequences, including elements from 4 natural mRNAs. These structures reveal that FBF binds to conserved bases at positions 1-3 and 7-8. The key specificity determinant of FBF vs. other PUF proteins lies in positions 4-6. In FBF/RNA complexes, these bases stack directly with one another and turn away from the RNA-binding surface. A short region of FBF is sufficient to impart its unique specificity and lies directly opposite the flipped bases. We suggest that this region imposes a flattened curvature on the protein; hence, the requirement for the additional nucleotide. The principles of FBF/RNA recognition suggest a general mechanism by which PUF proteins recognize distinct families of RNAs yet exploit very nearly identical atomic contacts in doing so.

  16. Computing the Partition Function for Kinetically Trapped RNA Secondary Structures

    PubMed Central

    Lorenz, William A.; Clote, Peter

    2011-01-01

    An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in time and space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1) the number of locally optimal structures is far fewer than the total number of structures – indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2) the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3) the (modified) maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model) can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected accuracy. Web server and source code available at http://bioinformatics.bc.edu/clotelab/RNAlocopt/. PMID:21297972

  17. Characterization of the effects on ovalbumin mRNA of aminomethyl-trimethylpsoralen photoreaction with hen oviduct mRNA.

    PubMed Central

    Liarakos, C D; Reinhart, G; Kopper, R A; Maddox, R P

    1987-01-01

    We have described the reaction of 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT) with hen oviduct mRNA and have investigated the specific effects of AMT photoaddition on ovalbumin mRNA which constitutes 60-70% of oviduct mRNA. The photoreaction of AMT with hen oviduct mRNA appeared to occur in two phases - a rapid monoaddition followed by a slower conversion of monoadducts to diadducts (i.e. crosslinking). Both nondenaturing and denaturing gel electrophoresis revealed a photoreaction time dependent increase in ovalbumin mRNA electrophoretic mobility indicating the formation of a progressively more compact molecular structure. Identical analysis of photoreacted rabbit globin mRNA revealed no change in electrophoretic mobility suggesting that AMT was stabilizing the AU rich secondary structure of ovalbumin mRNA but having no similar effect on the relatively GC rich secondary structure of globin mRNA. Ovalbumin-specific DNA primer extension was used to demonstrate the selective and secondary structure specific photoaddition of AMT to uracil bases at the 5' end of ovalbumin mRNA. Images PMID:3671087

  18. Principles for Predicting RNA Secondary Structure Design Difficulty.

    PubMed

    Anderson-Lee, Jeff; Fisker, Eli; Kosaraju, Vineet; Wu, Michelle; Kong, Justin; Lee, Jeehyung; Lee, Minjae; Zada, Mathew; Treuille, Adrien; Das, Rhiju

    2016-02-27

    Designing RNAs that form specific secondary structures is enabling better understanding and control of living systems through RNA-guided silencing, genome editing and protein organization. Little is known, however, about which RNA secondary structures might be tractable for downstream sequence design, increasing the time and expense of design efforts due to inefficient secondary structure choices. Here, we present insights into specific structural features that increase the difficulty of finding sequences that fold into a target RNA secondary structure, summarizing the design efforts of tens of thousands of human participants and three automated algorithms (RNAInverse, INFO-RNA and RNA-SSD) in the Eterna massive open laboratory. Subsequent tests through three independent RNA design algorithms (NUPACK, DSS-Opt and MODENA) confirmed the hypothesized importance of several features in determining design difficulty, including sequence length, mean stem length, symmetry and specific difficult-to-design motifs such as zigzags. Based on these results, we have compiled an Eterna100 benchmark of 100 secondary structure design challenges that span a large range in design difficulty to help test future efforts. Our in silico results suggest new routes for improving computational RNA design methods and for extending these insights to assess "designability" of single RNA structures, as well as of switches for in vitro and in vivo applications. PMID:26902426

  19. Structure-function Studies of Nucleocytoplasmic Transport of Retroviral Genomic RNA by mRNA Export Factor TAP

    SciTech Connect

    M Teplova; L Wohlbold; N Khin; E Izaurralde; D Patel

    2011-12-31

    mRNA export is mediated by the TAP-p15 heterodimer, which belongs to the family of NTF2-like export receptors. TAP-p15 heterodimers also bind to the constitutive transport element (CTE) present in simian type D retroviral RNAs, and they mediate the export of viral unspliced RNAs to the host cytoplasm. We have solved the crystal structure of the RNA recognition and leucine-rich repeat motifs of TAP bound to one symmetrical half of the CTE RNA. L-shaped conformations of protein and RNA are involved in a mutual molecular embrace on complex formation. We have monitored the impact of structure-guided mutations on binding affinities in vitro and transport assays in vivo. Our studies define the principles by which CTE RNA subverts the mRNA export receptor TAP, thereby facilitating the nuclear export of viral genomic RNAs, and, more generally, provide insights on cargo RNA recognition by mRNA export receptors.

  20. Drosophila germ granules are structured and contain homotypic mRNA clusters.

    PubMed

    Trcek, Tatjana; Grosch, Markus; York, Andrew; Shroff, Hari; Lionnet, Timothe; Lehmann, Ruth

    2015-01-01

    Germ granules, specialized ribonucleoprotein particles, are a hallmark of all germ cells. In Drosophila, an estimated 200 mRNAs are enriched in the germ plasm, and some of these have important, often conserved roles in germ cell formation, specification, survival and migration. How mRNAs are spatially distributed within a germ granule and whether their position defines functional properties is unclear. Here we show, using single-molecule FISH and structured illumination microscopy, a super-resolution approach, that mRNAs are spatially organized within the granule whereas core germ plasm proteins are distributed evenly throughout the granule. Multiple copies of single mRNAs organize into 'homotypic clusters' that occupy defined positions within the center or periphery of the granule. This organization, which is maintained during embryogenesis and independent of the translational or degradation activity of mRNAs, reveals new regulatory mechanisms for germ plasm mRNAs that may be applicable to other mRNA granules. PMID:26242323

  1. Probing dimensionality beyond the linear sequence of mRNA.

    PubMed

    Del Campo, Cristian; Ignatova, Zoya

    2016-05-01

    mRNA is a nexus entity between DNA and translating ribosomes. Recent developments in deep sequencing technologies coupled with structural probing have revealed new insights beyond the classic role of mRNA and place it more centrally as a direct effector of a variety of processes, including translation, cellular localization, and mRNA degradation. Here, we highlight emerging approaches to probe mRNA secondary structure on a global transcriptome-wide level and compare their potential and resolution. Combined approaches deliver a richer and more complex picture. While our understanding on the effect of secondary structure for various cellular processes is quite advanced, the next challenge is to unravel more complex mRNA architectures and tertiary interactions. PMID:26650615

  2. A New Secondary Structure Assignment Algorithm Using Cα Backbone Fragments.

    PubMed

    Cao, Chen; Wang, Guishen; Liu, An; Xu, Shutan; Wang, Lincong; Zou, Shuxue

    2016-01-01

    The assignment of secondary structure elements in proteins is a key step in the analysis of their structures and functions. We have developed an algorithm, SACF (secondary structure assignment based on Cα fragments), for secondary structure element (SSE) assignment based on the alignment of Cα backbone fragments with central poses derived by clustering known SSE fragments. The assignment algorithm consists of three steps: First, the outlier fragments on known SSEs are detected. Next, the remaining fragments are clustered to obtain the central fragments for each cluster. Finally, the central fragments are used as a template to make assignments. Following a large-scale comparison of 11 secondary structure assignment methods, SACF, KAKSI and PROSS are found to have similar agreement with DSSP, while PCASSO agrees with DSSP best. SACF and PCASSO show preference to reducing residues in N and C cap regions, whereas KAKSI, P-SEA and SEGNO tend to add residues to the terminals when DSSP assignment is taken as standard. Moreover, our algorithm is able to assign subtle helices (310-helix, π-helix and left-handed helix) and make uniform assignments, as well as to detect rare SSEs in β-sheets or long helices as outlier fragments from other programs. The structural uniformity should be useful for protein structure classification and prediction, while outlier fragments underlie the structure-function relationship. PMID:26978354

  3. Rabbit milk protein genes: from mRNA identification to chromatin structure.

    PubMed

    Jolivet, G; Daniel-Carlier, N; Thépot, D; Rival-Gervier, S; Houdebine, L M

    2008-03-01

    Milk protein genes are among the most intensively expressed and they are active only in epithelial mammary cells of lactating animals. They code for proteins which represent 30% of the proteins consumed by humans in developed countries. Mammary gland development occurs essentially during each pregnancy. This offers experimenters attractive models to study the expression mechanisms of genes controlled by known hormones and factors (prolactin, glucocorticoids, progesterone, insulin-like growth factor-1 and others) as well as extracellular matrix. In the mid-1970s, it became possible to identify and quantify mRNAs from higher living organisms using translation in reticulocyte lysate. A few years later, the use of radioactive cDNAs as probes made it possible for the quantification of mRNA in various physiological situations using hybridisation in the liquid phase. Gene cloning offered additional tools to measure milk protein mRNAs and also to identify transcription factors. Gene transfer in cultured mammary cells and in animals contributed greatly to these studies. It is now well established that most if not all genes of higher eukaryotes are under the control of multiple distal regulatory elements and that local modifications of the chromatin structure play an essential role in the mechanisms of differentiation from embryos to adults. The technique, known as ChIP (chromatin immunoprecipitation), is being implemented to identify the factors that modify chromatin structure at the milk protein gene level during embryo development, mammogenesis and lactogenesis, including the action of hormones and extracellular matrix. Transgenesis is not just a tool to study gene regulation and function, it is also currently used for various biotechnological applications including the preparation of pharmaceutical proteins in milk. This implies the design of efficient vectors capable of directing the secretion of recombinant proteins in milk at a high concentration. Milk protein gene promoters and long genomic-DNA fragments containing essentially all the regulatory elements of milk protein genes are used to optimise recombinant protein production in milk. PMID:22445034

  4. A stem–loop structure directs oskar mRNA to microtubule minus ends

    PubMed Central

    Jambor, Helena; Mueller, Sandra; Bullock, Simon L.; Ephrussi, Anne

    2014-01-01

    mRNA transport coupled with translational control underlies the intracellular localization of many proteins in eukaryotic cells. This is exemplified in Drosophila, where oskar mRNA transport and translation at the posterior pole of the oocyte direct posterior patterning of the embryo. oskar localization is a multistep process. Within the oocyte, a spliced oskar localization element (SOLE) targets oskar mRNA for plus end-directed transport by kinesin-1 to the posterior pole. However, the signals mediating the initial minus end-directed, dynein-dependent transport of the mRNA from nurse cells into the oocyte have remained unknown. Here, we show that a 67-nt stem–loop in the oskar 3′ UTR promotes oskar mRNA delivery to the developing oocyte and that it shares functional features with the fs(1)K10 oocyte localization signal. Thus, two independent cis-acting signals, the oocyte entry signal (OES) and the SOLE, mediate sequential dynein- and kinesin-dependent phases of oskar mRNA transport during oogenesis. The OES also promotes apical localization of injected RNAs in blastoderm stage embryos, another dynein-mediated process. Similarly, when ectopically expressed in polarized cells of the follicular epithelium or salivary glands, reporter RNAs bearing the oskar OES are apically enriched, demonstrating that this element promotes mRNA localization independently of cell type. Our work sheds new light on how oskar mRNA is trafficked during oogenesis and the RNA features that mediate minus end-directed transport. PMID:24572808

  5. A stem-loop structure directs oskar mRNA to microtubule minus ends.

    PubMed

    Jambor, Helena; Mueller, Sandra; Bullock, Simon L; Ephrussi, Anne

    2014-04-01

    mRNA transport coupled with translational control underlies the intracellular localization of many proteins in eukaryotic cells. This is exemplified in Drosophila, where oskar mRNA transport and translation at the posterior pole of the oocyte direct posterior patterning of the embryo. oskar localization is a multistep process. Within the oocyte, a spliced oskar localization element (SOLE) targets oskar mRNA for plus end-directed transport by kinesin-1 to the posterior pole. However, the signals mediating the initial minus end-directed, dynein-dependent transport of the mRNA from nurse cells into the oocyte have remained unknown. Here, we show that a 67-nt stem-loop in the oskar 3' UTR promotes oskar mRNA delivery to the developing oocyte and that it shares functional features with the fs(1)K10 oocyte localization signal. Thus, two independent cis-acting signals, the oocyte entry signal (OES) and the SOLE, mediate sequential dynein- and kinesin-dependent phases of oskar mRNA transport during oogenesis. The OES also promotes apical localization of injected RNAs in blastoderm stage embryos, another dynein-mediated process. Similarly, when ectopically expressed in polarized cells of the follicular epithelium or salivary glands, reporter RNAs bearing the oskar OES are apically enriched, demonstrating that this element promotes mRNA localization independently of cell type. Our work sheds new light on how oskar mRNA is trafficked during oogenesis and the RNA features that mediate minus end-directed transport. PMID:24572808

  6. Functional and Structural Analysis of the Internal Ribosome Entry Site Present in the mRNA of Natural Variants of the HIV-1

    PubMed Central

    Vallejos, Maricarmen; Carvajal, Felipe; Pino, Karla; Navarrete, Camilo; Ferres, Marcela; Huidobro-Toro, Juan Pablo; Sargueil, Bruno; López-Lastra, Marcelo

    2012-01-01

    The 5′untranslated regions (UTR) of the full length mRNA of the HIV-1 proviral clones pNL4.3 and pLAI, harbor an internal ribosomal entry site (IRES). In this study we extend this finding by demonstrating that the mRNA 5′UTRs of natural variants of HIV-1 also exhibit IRES-activity. Cap-independent translational activity was demonstrated using bicistronic mRNAs in HeLa cells and in Xenopus laevis oocytes. The possibility that expression of the downstream cistron in these constructs was due to alternative splicing or to cryptic promoter activity was ruled out. The HIV-1 variants exhibited significant 5′UTR nucleotide diversity with respect to the control sequence recovered from pNL4.3. Interestingly, translational activity from the 5′UTR of some of the HIV-1 variants was enhanced relative to that observed for the 5′UTR of pNL4.3. In an attempt to explain these findings we probed the secondary structure of the variant HIV-1 5′UTRs using enzymatic and chemical approaches. Yet subsequent structural analyses did not reveal significant variations when compared to the pNL4.3-5′UTR. Thus, the increased IRES-activity observed for some of the HIV-1 variants cannot be ascribed to a specific structural modification. A model to explain these findings is proposed. PMID:22496887

  7. A New Secondary Structure Assignment Algorithm Using Cα Backbone Fragments

    PubMed Central

    Cao, Chen; Wang, Guishen; Liu, An; Xu, Shutan; Wang, Lincong; Zou, Shuxue

    2016-01-01

    The assignment of secondary structure elements in proteins is a key step in the analysis of their structures and functions. We have developed an algorithm, SACF (secondary structure assignment based on Cα fragments), for secondary structure element (SSE) assignment based on the alignment of Cα backbone fragments with central poses derived by clustering known SSE fragments. The assignment algorithm consists of three steps: First, the outlier fragments on known SSEs are detected. Next, the remaining fragments are clustered to obtain the central fragments for each cluster. Finally, the central fragments are used as a template to make assignments. Following a large-scale comparison of 11 secondary structure assignment methods, SACF, KAKSI and PROSS are found to have similar agreement with DSSP, while PCASSO agrees with DSSP best. SACF and PCASSO show preference to reducing residues in N and C cap regions, whereas KAKSI, P-SEA and SEGNO tend to add residues to the terminals when DSSP assignment is taken as standard. Moreover, our algorithm is able to assign subtle helices (310-helix, π-helix and left-handed helix) and make uniform assignments, as well as to detect rare SSEs in β-sheets or long helices as outlier fragments from other programs. The structural uniformity should be useful for protein structure classification and prediction, while outlier fragments underlie the structure–function relationship. PMID:26978354

  8. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features.

    PubMed

    Ding, Yiliang; Tang, Yin; Kwok, Chun Kit; Zhang, Yu; Bevilacqua, Philip C; Assmann, Sarah M

    2014-01-30

    RNA structure has critical roles in processes ranging from ligand sensing to the regulation of translation, polyadenylation and splicing. However, a lack of genome-wide in vivo RNA structural data has limited our understanding of how RNA structure regulates gene expression in living cells. Here we present a high-throughput, genome-wide in vivo RNA structure probing method, structure-seq, in which dimethyl sulphate methylation of unprotected adenines and cytosines is identified by next-generation sequencing. Application of this method to Arabidopsis thaliana seedlings yielded the first in vivo genome-wide RNA structure map at nucleotide resolution for any organism, with quantitative structural information across more than 10,000 transcripts. Our analysis reveals a three-nucleotide periodic repeat pattern in the structure of coding regions, as well as a less-structured region immediately upstream of the start codon, and shows that these features are strongly correlated with translation efficiency. We also find patterns of strong and weak secondary structure at sites of alternative polyadenylation, as well as strong secondary structure at 5' splice sites that correlates with unspliced events. Notably, in vivo structures of messenger RNAs annotated for stress responses are poorly predicted in silico, whereas mRNA structures of genes related to cell function maintenance are well predicted. Global comparison of several structural features between these two categories shows that the mRNAs associated with stress responses tend to have more single-strandedness, longer maximal loop length and higher free energy per nucleotide, features that may allow these RNAs to undergo conformational changes in response to environmental conditions. Structure-seq allows the RNA structurome and its biological roles to be interrogated on a genome-wide scale and should be applicable to any organism. PMID:24270811

  9. Quantifying variances in comparative RNA secondary structure prediction

    PubMed Central

    2013-01-01

    Background With the advancement of next-generation sequencing and transcriptomics technologies, regulatory effects involving RNA, in particular RNA structural changes are being detected. These results often rely on RNA secondary structure predictions. However, current approaches to RNA secondary structure modelling produce predictions with a high variance in predictive accuracy, and we have little quantifiable knowledge about the reasons for these variances. Results In this paper we explore a number of factors which can contribute to poor RNA secondary structure prediction quality. We establish a quantified relationship between alignment quality and loss of accuracy. Furthermore, we define two new measures to quantify uncertainty in alignment-based structure predictions. One of the measures improves on the “reliability score” reported by PPfold, and considers alignment uncertainty as well as base-pair probabilities. The other measure considers the information entropy for SCFGs over a space of input alignments. Conclusions Our predictive accuracy improves on the PPfold reliability score. We can successfully characterize many of the underlying reasons for and variances in poor prediction. However, there is still variability unaccounted for, which we therefore suggest comes from the RNA secondary structure predictive model itself. PMID:23634662

  10. Mechanical tuning of elastomers via peptide secondary structure

    NASA Astrophysics Data System (ADS)

    Wanasekara, Nandula; Johnson, J. Casey; Korley, Lashanda T. J.

    2014-03-01

    Nature utilizes an array of design tools for engineering materials with multiple functions and tunable mechanical properties. The precise control of hierarchical structure, self-assembly, and secondary structure is essential to achieve the desired properties in bio-inspired materials design. We have developed a series of peptidic-poyurea hybrids to determine the effects of peptide secondary structure and hydrogen bonding arrangement on morphology, thermal and mechanical properties. These materials were fabricated by incorporating peptide segments containing either poly(β-benzyl-L-aspartate) or poly(ɛ-carbobenzyloxy-L-lysine) into non-chain extended polyureas to form either β-sheets or α-helix conformations based on peptide length. Infrared analysis proved the retention of peptide secondary structure when incorporated into peptidic-polyureas. The polymers containing β-sheet forming peptide blocks exhibited higher modulus and toughness due to intermolecular H-bonding. Additionally, higher peptide weight fractions lead to higher plateau moduli due to a transition of continuous domain morphology from a soft segment continuous to a fibrous and interconnected stiffer peptide domain. All the polymers exhibited microphase separated morphology with nanofibrous or ribbon-like structures. It is observed that fiber aspect ratio and percolation were influenced by the peptide secondary structure and the weight fraction.

  11. Statistical mechanics of secondary structures formed by random RNA sequences

    NASA Astrophysics Data System (ADS)

    Bundschuh, Ralf

    2003-03-01

    In addition to its importance for the biological function of RNA molecules RNA secondary structure formation is an interesting system from the statistical physics point of view. The ensemble of secondary structures of random RNA sequences shows a rich phase diagram with distinct native, denatured, molten, and glassy phases separated by thermodynamical phase transitions. These phase transitions are driven by the competition between thermal fluctuations, the disorder frozen into the specific sequence of a given RNA molecule, and the evolutionary bias towards the formation of some biologically relevant structure. Yet, in contrast to the protein folding problem which is driven by very similar principles and shows a similar phase diagram RNA secondary structure formation can be represented by a simple diagrammatic language which allows the application of various analytical and numerical methods. This makes RNA secondary structure formation an ideal model system for heteropolymer folding. In the talk, I will characterize and explain the complex behaviour of RNA folding using several simple models and discuss possible implications to biological processes.

  12. The secondary structure of milk proteins and their biological function.

    PubMed

    Sawyer, L; Holt, C

    1993-10-01

    A brief overview is given of the methods of determining and predicting secondary structure in proteins. The secondary structures of the milk serum proteins, lactoferrin, alpha-lactalbumin, lysozyme, and beta-lactoglobulin, as determined by x-ray crystallography, are compared with the results of a joint prediction method. This comparison evaluates critically the degree of success achieved and helps define what can reasonably be expected from a prediction in the absence of a known structure. The value of supplementary information from spectroscopic methods and the use of templates and sequence information from related proteins in improving the confidence of predictions are illustrated. One point that emerges is the general overprediction of helix content by the joint prediction method such that, for an all-beta protein such as beta-lactoglobulin, the method of Garnier, Osguthorpe, and Robson, applied with the correctly selected decision constants, provides a somewhat better approach. Secondary structure of the caseins can be predicted with less confidence than for globular proteins, and the results should be interpreted as evidence of a propensity to form transient secondary structures of the indicated type in view of the generally open and flexible conformation of caseins in solution. PMID:8227631

  13. Synthetic Polyamines to Regulate mRNA Translation through the Preservative Binding of Eukaryotic Initiation Factor 4E to the Cap Structure.

    PubMed

    Uchida, Hirokuni; Itaka, Keiji; Uchida, Satoshi; Ishii, Takehiko; Suma, Tomoya; Miyata, Kanjiro; Oba, Makoto; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2016-02-10

    Polyion complexes (PICs) of mRNA with synthetic polyamines are receiving increasing attention as mRNA delivery vehicles, and the search for polyamine structure maximizing the translational efficiency of complexed mRNA becomes a critical research topic. Herein, we discovered that fine-tuning of the protonation status of synthetic polyamines can regulate mRNA translation through the preservative binding of eukaryotic initiation factor 4E to m(7)GpppN (cap structure) on the 5' end of mRNA. A series of polyamines with varied numbers of aminoethylene repeats in their side chains were prepared by an aminolysis reaction of poly(β-benzyl-l-aspartate) and paired with mRNA to form PICs. PICs formed from polyamines with higher numbers of aminoethylene repeats preserved the original translational efficiency to naked mRNA, whereas the efficiency significantly dropped by decreasing the number of aminoethylene repeats in the polyamines. Immunoprecipitation assays using anti-eIF4E antibodies revealed that the binding affinity of eIF4E to the cap structure of mRNA in the PIC was sensitive to the number of charged aminoethylene repeats in the polyamine side chain and was strongly correlated with their translational efficiency. These results indicate that the fine-tuning of the polyamine structure plays a critical role in maximizing the translational efficiency of mRNA in the PICs having potential utility as mRNA delivery vehicles. PMID:26811205

  14. JPred4: a protein secondary structure prediction server.

    PubMed

    Drozdetskiy, Alexey; Cole, Christian; Procter, James; Barton, Geoffrey J

    2015-07-01

    JPred4 (http://www.compbio.dundee.ac.uk/jpred4) is the latest version of the popular JPred protein secondary structure prediction server which provides predictions by the JNet algorithm, one of the most accurate methods for secondary structure prediction. In addition to protein secondary structure, JPred also makes predictions of solvent accessibility and coiled-coil regions. The JPred service runs up to 94 000 jobs per month and has carried out over 1.5 million predictions in total for users in 179 countries. The JPred4 web server has been re-implemented in the Bootstrap framework and JavaScript to improve its design, usability and accessibility from mobile devices. JPred4 features higher accuracy, with a blind three-state (α-helix, β-strand and coil) secondary structure prediction accuracy of 82.0% while solvent accessibility prediction accuracy has been raised to 90% for residues <5% accessible. Reporting of results is enhanced both on the website and through the optional email summaries and batch submission results. Predictions are now presented in SVG format with options to view full multiple sequence alignments with and without gaps and insertions. Finally, the help-pages have been updated and tool-tips added as well as step-by-step tutorials. PMID:25883141

  15. Statistics of noncoding RNAs: alignment and secondary structure prediction

    NASA Astrophysics Data System (ADS)

    Nechaev, S. K.; Tamm, M. V.; Valba, O. V.

    2011-05-01

    A new statistical approach to alignment (finding the longest common subsequence) of two random RNA-type sequences is proposed. We have constructed a generalized 'dynamic programming' algorithm for finding the extreme value of the free energy of two noncoding RNAs. In our procedure, we take into account the binding free energy of two random heteropolymer chains which are capable of forming the cloverleaf-like spatial structures typical for RNA molecules. The algorithm is based on two observations: (i) the standard alignment problem can be considered as a zero-temperature limit of a more general statistical problem of binding of two associating heteropolymer chains; (ii) this last problem can be generalized naturally to consider sequences with hierarchical cloverleaf-like structures (i.e. of RNA type). The approach also permits us to perform a 'secondary structure recovery'. Namely, we can predict the optimal secondary structures of interacting RNAs in a zero-temperature limit knowing only their primary sequences.

  16. RNA Movies 2: sequential animation of RNA secondary structures.

    PubMed

    Kaiser, Alexander; Krüger, Jan; Evers, Dirk J

    2007-07-01

    RNA Movies is a simple, yet powerful visualization tool in likeness to a media player application, which enables to browse sequential paths through RNA secondary structure landscapes. It can be used to visualize structural rearrangement processes of RNA, such as folding pathways and conformational switches, or to browse lists of alternative structure candidates. Besides extending the feature set, retaining and improving usability and availability in the web is the main aim of this new version. RNA Movies now supports the DCSE and RNAStructML input formats besides its own RNM format. Pseudoknots and 'entangled helices' can be superimposed on the RNA secondary structure layout. Publication quality output is provided through the Scalable Vector Graphics output format understood by most current drawing programs. The software has been completely re-implemented in Java to enable pure client-side operation as applet and web-start application available at the Bielefeld Bioinformatics Server http://bibiserv.techfak.uni-bielefeld.de/rnamovies. PMID:17567618

  17. PCI-SS: MISO dynamic nonlinear protein secondary structure prediction

    PubMed Central

    Green, James R; Korenberg, Michael J; Aboul-Magd, Mohammed O

    2009-01-01

    Background Since the function of a protein is largely dictated by its three dimensional configuration, determining a protein's structure is of fundamental importance to biology. Here we report on a novel approach to determining the one dimensional secondary structure of proteins (distinguishing α-helices, β-strands, and non-regular structures) from primary sequence data which makes use of Parallel Cascade Identification (PCI), a powerful technique from the field of nonlinear system identification. Results Using PSI-BLAST divergent evolutionary profiles as input data, dynamic nonlinear systems are built through a black-box approach to model the process of protein folding. Genetic algorithms (GAs) are applied in order to optimize the architectural parameters of the PCI models. The three-state prediction problem is broken down into a combination of three binary sub-problems and protein structure classifiers are built using 2 layers of PCI classifiers. Careful construction of the optimization, training, and test datasets ensures that no homology exists between any training and testing data. A detailed comparison between PCI and 9 contemporary methods is provided over a set of 125 new protein chains guaranteed to be dissimilar to all training data. Unlike other secondary structure prediction methods, here a web service is developed to provide both human- and machine-readable interfaces to PCI-based protein secondary structure prediction. This server, called PCI-SS, is available at . In addition to a dynamic PHP-generated web interface for humans, a Simple Object Access Protocol (SOAP) interface is added to permit invocation of the PCI-SS service remotely. This machine-readable interface facilitates incorporation of PCI-SS into multi-faceted systems biology analysis pipelines requiring protein secondary structure information, and greatly simplifies high-throughput analyses. XML is used to represent the input protein sequence data and also to encode the resulting structure prediction in a machine-readable format. To our knowledge, this represents the only publicly available SOAP-interface for a protein secondary structure prediction service with published WSDL interface definition. Conclusion Relative to the 9 contemporary methods included in the comparison cascaded PCI classifiers perform well, however PCI finds greatest application as a consensus classifier. When PCI is used to combine a sequence-to-structure PCI-based classifier with the current leading ANN-based method, PSIPRED, the overall error rate (Q3) is maintained while the rate of occurrence of a particularly detrimental error is reduced by up to 25%. This improvement in BAD score, combined with the machine-readable SOAP web service interface makes PCI-SS particularly useful for inclusion in a tertiary structure prediction pipeline. PMID:19615046

  18. Improved Chou-Fasman method for protein secondary structure prediction

    PubMed Central

    Chen, Hang; Gu, Fei; Huang, Zhengge

    2006-01-01

    Background Protein secondary structure prediction is a fundamental and important component in the analytical study of protein structure and functions. The prediction technique has been developed for several decades. The Chou-Fasman algorithm, one of the earliest methods, has been successfully applied to the prediction. However, this method has its limitations due to low accuracy, unreliable parameters, and over prediction. Thanks to the recent development in protein folding type-specific structure propensities and wavelet transformation, the shortcomings in Chou-Fasman method are able to be overcome. Results We improved Chou-Fasman method in three aspects. (a) Replace the nucleation regions with extreme values of coefficients calculated by the continuous wavelet transform. (b) Substitute the original secondary structure conformational parameters with folding type-specific secondary structure propensities. (c) Modify Chou-Fasman rules. The CB396 data set was tested by using improved Chou-Fasman method and three indices: Q3, Qpre, SOV were used to measure this method. We compared the indices with those obtained from the original Chou-Fasman method and other four popular methods. The results showed that our improved Chou-Fasman method performs better than the original one in all indices, about 10–18% improvement. It is also comparable to other currently popular methods considering all the indices. Conclusion Our method has greatly improved Chou-Fasman method. It is able to predict protein secondary structure as good as current popular methods. By locating nucleation regions with refined wavelet transform technology and by calculating propensity factors with larger size data set, it is likely to get a better result. PMID:17217506

  19. Computation of statistical secondary structure of nucleic acids.

    PubMed Central

    Yamamoto, K; Kitamura, Y; Yoshikura, H

    1984-01-01

    This paper presents a computer analysis of statistical secondary structure of nucleic acids. For a given single stranded nucleic acid, we generated "structure map" which included all the annealing structures in the sequence. The map was transformed into "energy map" by rough approximation; here, the energy level of every pairing structure consisting of more than 2 successive nucleic acid pairs was calculated. By using the "energy map", the probability of occurrence of each annealed structure was computed, i.e., the structure was computed statistically. The basis of computation was the 8-queen problem in the chess game. The validity of our computer programme was checked by computing tRNA structure which has been well established. Successful application of this programme to small nuclear RNAs of various origins is demonstrated. PMID:6198622

  20. Computation of statistical secondary structure of nucleic acids.

    PubMed

    Yamamoto, K; Kitamura, Y; Yoshikura, H

    1984-01-11

    This paper presents a computer analysis of statistical secondary structure of nucleic acids. For a given single stranded nucleic acid, we generated "structure map" which included all the annealing structures in the sequence. The map was transformed into "energy map" by rough approximation; here, the energy level of every pairing structure consisting of more than 2 successive nucleic acid pairs was calculated. By using the "energy map", the probability of occurrence of each annealed structure was computed, i.e., the structure was computed statistically. The basis of computation was the 8-queen problem in the chess game. The validity of our computer programme was checked by computing tRNA structure which has been well established. Successful application of this programme to small nuclear RNAs of various origins is demonstrated. PMID:6198622

  1. Structural basis for Pan3 binding to Pan2 and its function in mRNA recruitment and deadenylation

    PubMed Central

    Wolf, Jana; Valkov, Eugene; Allen, Mark D; Meineke, Birthe; Gordiyenko, Yuliya; McLaughlin, Stephen H; Olsen, Tayla M; Robinson, Carol V; Bycroft, Mark; Stewart, Murray; Passmore, Lori A

    2014-01-01

    The conserved eukaryotic Pan2–Pan3 deadenylation complex shortens cytoplasmic mRNA 3′ polyA tails to regulate mRNA stability. Although the exonuclease activity resides in Pan2, efficient deadenylation requires Pan3. The mechanistic role of Pan3 is unclear. Here, we show that Pan3 binds RNA directly both through its pseudokinase/C-terminal domain and via an N-terminal zinc finger that binds polyA RNA specifically. In contrast, isolated Pan2 is unable to bind RNA. Pan3 binds to the region of Pan2 that links its N-terminal WD40 domain to the C-terminal part that contains the exonuclease, with a 2:1 stoichiometry. The crystal structure of the Pan2 linker region bound to a Pan3 homodimer shows how the unusual structural asymmetry of the Pan3 dimer is used to form an extensive high-affinity interaction. This binding allows Pan3 to supply Pan2 with substrate polyA RNA, facilitating efficient mRNA deadenylation by the intact Pan2–Pan3 complex. PMID:24872509

  2. Structure of the histone mRNA hairpin required for cell cycle regulation of histone gene expression.

    PubMed Central

    Zanier, Katia; Luyten, Ingrid; Crombie, Catriona; Muller, Berndt; Schümperli, Daniel; Linge, Jens P; Nilges, Michael; Sattler, Michael

    2002-01-01

    Expression of replication-dependent histone genes requires a conserved hairpin RNA element in the 3' untranslated regions of poly(A)-less histone mRNAs. The 3' hairpin element is recognized by the hairpin-binding protein or stem-loop-binding protein (HBP/SLBP). This protein-RNA interaction is important for the endonucleolytic cleavage generating the mature mRNA 3' end. The 3' hairpin and presumably HBP/SLBP are also required for nucleocytoplasmic transport, translation, and stability of histone mRNAs. RNA 3' processing and mRNA stability are both regulated during the cell cycle. Here, we have determined the three-dimensional structure of a 24-mer RNA comprising a mammalian histone RNA hairpin using heteronuclear multidimensional NMR spectroscopy. The hairpin adopts a novel UUUC tetraloop conformation that is stabilized by base stacking involving the first and third loop uridines and a closing U-A base pair, and by hydrogen bonding between the first and third uridines in the tetraloop. The HBP interaction of hairpin RNA variants was analyzed in band shift experiments. Particularly important interactions for HBP recognition are mediated by the closing U-A base pair and the first and third loop uridines, whose Watson-Crick functional groups are exposed towards the major groove of the RNA hairpin. The results obtained provide novel structural insight into the interaction of the histone 3' hairpin with HBP, and thus the regulation of histone mRNA metabolism. PMID:11871659

  3. Protein secondary structure controlled with light and photoresponsive surfactants.

    PubMed

    Wang, Shao-Chun; Lee, C Ted

    2006-08-17

    The interaction of a light-responsive azobenzene surfactant with bovine serum albumin (BSA) has been investigated as a means to examine photoreversible changes in protein secondary structure. The cationic azobenzene surfactant undergoes a reversible photoisomeriztion upon exposure to the appropriate wavelength of light, with the visible-light (trans) form being more hydrophobic and, thus, inducing a greater degree of protein unfolding than the UV-light (cis) form. Fourier transform infrared (FT-IR) spectroscopy is used to provide quantitative information on the secondary structure elements in the protein (alpha-helices, beta-strands, beta-turns, and unordered domains). Comparing the secondary structure changes induced by light illumination in the presence of the photoresponsive surfactant with previous measurements of the tertiary structure of BSA obtained from small-angle neutron scattering (SANS) allows the three discrete conformation changes in BSA to be fully characterized. At low surfactant concentrations, an alpha-helix --> beta-structure rearrangement is observed as the tertiary structure of BSA changes from a heart-shaped to a distorted heart-shaped conformation. Intermediate surfactant concentrations lead to a dramatic decrease in the alpha-helix fraction in favor of unordered structures, which is accompanied by an unfolding of the C-terminal portion of the protein as evidenced from SANS. Further increases in photosurfactant concentration lead to a beta --> unordered transition with the protein adopting a highly elongated conformation in solution. Each of these protein conformational changes can be precisely and reversibly controlled with light illumination, as revealed through FT-IR spectra collected during repeated visible-light <--> UV-light cycles. PMID:16898769

  4. The antiviral drug ribavirin does not mimic the 7-methylguanosine moiety of the mRNA cap structure in vitro

    PubMed Central

    WESTMAN, BELINDA; BEEREN, LISA; GRUDZIEN, EWA; STEPINSKI, JANUSZ; WORCH, REMIGIUSZ; ZUBEREK, JOANNA; JEMIELITY, JACEK; STOLARSKI, RYSZARD; DARZYNKIEWICZ, EDWARD; RHOADS, ROBERT E.; PREISS, THOMAS

    2005-01-01

    The eukaryotic initiation factor eIF4E binds the mRNA 5′ cap structure and has a central role during translational initiation. eIF4E and the mechanisms to control its activity have oncogenic properties and thus have become targets for anticancer drug development. A recent study (Kentsis et al. 2004) presented evidence that the antiviral nucleoside ribavirin and its phosphorylated derivatives were structural mimics of the mRNA cap, high-affinity ligands for eIF4E, and potent repressors of eIF4E-mediated cell transformation and tumor growth. Based on these findings, we tested ribavirin, ribavirin triphosphate (RTP), and the dinucleotide RpppG for their ability to inhibit translation in vitro. Surprisingly, the ribavirin-based compounds did not affect translation at concentrations where canonical cap analogs efficiently block cap-dependent translation. Using a set of reporter mRNAs that are translated via either cap-dependent or viral internal ribosome entry sites (IRES)-dependent initiation, we found that these ribavirin-containing compounds did inhibit translation at high (millimolar) concentrations, but there was no correlation of this inhibition with an eIF4E requirement for translation. The addition of a ribavirin-containing cap to mRNA did not stimulate translation. Fluorescence titration experiments with eIF4E and the nuclear cap-binding complex CBC indicated affinities for RTP and RpppG that were two to four orders of magnitude lower than those of m7GTP and m7GpppG. We conclude that, at least with respect to translation, ribavirin does not act in vitro as a functional mimic of the mRNA cap. PMID:16131589

  5. Coating concrete secondary containment structures exposed to agrichemicals

    SciTech Connect

    Broder, M.F.; Nguyen, D.T.

    1995-06-01

    Concrete has traditionally been the material of choice for building secondary containment structures because it is relatively inexpensive and has structural properties which make it ideal for supporting the loads of vehicles and large tanks. However, concrete`s chemical properties make it susceptible to corrosion by some common fertilizers. Though fairly impervious to water movement, concrete is easily penetrated by vapors and solvents. It is also prone to cracking. For these reasons, the Environmental Protection Agency (EPA) believes that concrete alone may not provide an effective barrier to pesticide movement and has proposed that concrete in pesticide secondary containment structures be sealed or coated to reduce its permeability. Some state secondary containment regulations require that concrete exposed to fertilizers and pesticides be sealed or protected with a coating. Lacking guidelines, some retailers have used penetrating sealants to satisfy the law, even though these products provide little protection from chemical attack nor do they prevent pesticide egress. Other retailers who have applied thick film coatings which were properly selected have had disastrous results because the application was poorly done. Consequently, much skepticism exists regarding the performance and benefit of protective coatings.

  6. Improving the accuracy of protein secondary structure prediction using structural alignment

    PubMed Central

    Montgomerie, Scott; Sundararaj, Shan; Gallin, Warren J; Wishart, David S

    2006-01-01

    Background The accuracy of protein secondary structure prediction has steadily improved over the past 30 years. Now many secondary structure prediction methods routinely achieve an accuracy (Q3) of about 75%. We believe this accuracy could be further improved by including structure (as opposed to sequence) database comparisons as part of the prediction process. Indeed, given the large size of the Protein Data Bank (>35,000 sequences), the probability of a newly identified sequence having a structural homologue is actually quite high. Results We have developed a method that performs structure-based sequence alignments as part of the secondary structure prediction process. By mapping the structure of a known homologue (sequence ID >25%) onto the query protein's sequence, it is possible to predict at least a portion of that query protein's secondary structure. By integrating this structural alignment approach with conventional (sequence-based) secondary structure methods and then combining it with a "jury-of-experts" system to generate a consensus result, it is possible to attain very high prediction accuracy. Using a sequence-unique test set of 1644 proteins from EVA, this new method achieves an average Q3 score of 81.3%. Extensive testing indicates this is approximately 4–5% better than any other method currently available. Assessments using non sequence-unique test sets (typical of those used in proteome annotation or structural genomics) indicate that this new method can achieve a Q3 score approaching 88%. Conclusion By using both sequence and structure databases and by exploiting the latest techniques in machine learning it is possible to routinely predict protein secondary structure with an accuracy well above 80%. A program and web server, called PROTEUS, that performs these secondary structure predictions is accessible at . For high throughput or batch sequence analyses, the PROTEUS programs, databases (and server) can be downloaded and run locally. PMID:16774686

  7. Identification of local variations within secondary structures of proteins.

    PubMed

    Kumar, Prasun; Bansal, Manju

    2015-05-01

    Secondary-structure elements (SSEs) play an important role in the folding of proteins. Identification of SSEs in proteins is a common problem in structural biology. A new method, ASSP (Assignment of Secondary Structure in Proteins), using only the path traversed by the C(α) atoms has been developed. The algorithm is based on the premise that the protein structure can be divided into continuous or uniform stretches, which can be defined in terms of helical parameters, and depending on their values the stretches can be classified into different SSEs, namely α-helices, 310-helices, π-helices, extended β-strands and polyproline II (PPII) and other left-handed helices. The methodology was validated using an unbiased clustering of these parameters for a protein data set consisting of 1008 protein chains, which suggested that there are seven well defined clusters associated with different SSEs. Apart from α-helices and extended β-strands, 310-helices and π-helices were also found to occur in substantial numbers. ASSP was able to discriminate non-α-helical segments from flanking α-helices, which were often identified as part of α-helices by other algorithms. ASSP can also lead to the identification of novel SSEs. It is believed that ASSP could provide a better understanding of the finer nuances of protein secondary structure and could make an important contribution to the better understanding of comparatively less frequently occurring structural motifs. At the same time, it can contribute to the identification of novel SSEs. A standalone version of the program for the Linux as well as the Windows operating systems is freely downloadable and a web-server version is also available at http://nucleix.mbu.iisc.ernet.in/assp/index.php. PMID:25945573

  8. Deduced primary structure of rat hepatocyte growth factor and expression of the mRNA in rat tissues.

    PubMed Central

    Tashiro, K; Hagiya, M; Nishizawa, T; Seki, T; Shimonishi, M; Shimizu, S; Nakamura, T

    1990-01-01

    The primary structure of rat hepatocyte growth factor (HGF) was elucidated by determining the base sequence of the complementary DNA (cDNA) of HGF. The cDNA for rat HGF was isolated by screening a liver cDNA library with oligonucleotides based on the partial N-terminal amino acid sequence of the beta subunit of purified rat HGF. HGF is encoded in an mRNA of about 6 kilobases. Both alpha and beta subunits of HGF are specified in a single open reading frame for a 728-amino acid protein with a calculated molecular weight of 82,904. The N-terminal part of HGF has a signal sequence and a prosequence with 30 and 25 amino acid residues, respectively. The mature heterodimer structure is derived proteolytically from this single pre-pro precursor polypeptide. The calculated molecular weights of the alpha and beta subunits are 50,664 and 25,883, respectively, and each subunit has two potential N-linked glycosylation sites. The amino acid sequence of HGF is 38% identical with that of plasminogen. The alpha subunit of HGF contains four "kringle" structures, and the beta subunit has 37% amino acid identity with the serine protease domain of plasmin. Northern blot analysis revealed that HGF mRNA was expressed in rat various tissues, including the liver, kidney, lung, and brain. Images PMID:2139229

  9. RNA secondary structures of the bacteriophage phi6 packaging regions.

    PubMed Central

    Pirttimaa, M J; Bamford, D H

    2000-01-01

    Bacteriophage phi6 genome consists of three segments of double-stranded RNA. During maturation, single-stranded copies of these segments are packaged into preformed polymerase complex particles. Only phi6 RNA is packaged, and each particle contains only one copy of each segment. An in vitro packaging and replication assay has been developed for phi6, and the packaging signals (pac sites) have been mapped to the 5' ends of the RNA segments. In this study, we propose secondary structure models for the pac sites of phi6 single-stranded RNA segments. Our models accommodate data from structure-specific chemical modifications, free energy minimizations, and phylogenetic comparisons. Previously reported pac site deletion studies are also discussed. Each pac site possesses a unique architecture, that, however, contains common structural elements. PMID:10864045

  10. Secondary Structure of Rat and Human Amylin across Force Fields

    PubMed Central

    Hoffmann, Kyle Quynn; McGovern, Michael; Chiu, Chi-cheng; de Pablo, Juan J.

    2015-01-01

    The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin was determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient states enable dynamic pathways that facilitate the formation of aggregates and, eventually, amyloid fibrils. PMID:26221949

  11. Secondary structure of rat and human amylin across force fields

    SciTech Connect

    Hoffmann, Kyle Quynn; McGovern, Michael; Chiu, Chi -cheng; de Pablo, Juan J.; Paci, Emanuele

    2015-07-29

    The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin was determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient states enable dynamic pathways that facilitate the formation of aggregates and, eventually, amyloid fibrils.

  12. Secondary structure of rat and human amylin across force fields

    DOE PAGESBeta

    Hoffmann, Kyle Quynn; McGovern, Michael; Chiu, Chi -cheng; de Pablo, Juan J.; Paci, Emanuele

    2015-07-29

    The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin wasmore » determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient states enable dynamic pathways that facilitate the formation of aggregates and, eventually, amyloid fibrils.« less

  13. RNA Secondary Structure Prediction by Using Discrete Mathematics: An Interdisciplinary Research Experience for Undergraduate Students

    ERIC Educational Resources Information Center

    Ellington, Roni; Wachira, James; Nkwanta, Asamoah

    2010-01-01

    The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses

  14. RNA Secondary Structure Prediction by Using Discrete Mathematics: An Interdisciplinary Research Experience for Undergraduate Students

    ERIC Educational Resources Information Center

    Ellington, Roni; Wachira, James; Nkwanta, Asamoah

    2010-01-01

    The focus of this Research Experience for Undergraduates (REU) project was on RNA secondary structure prediction by using a lattice walk approach. The lattice walk approach is a combinatorial and computational biology method used to enumerate possible secondary structures and predict RNA secondary structure from RNA sequences. The method uses…

  15. Primary structure of the human melanoma-associated antigen p97 (melanotransferrin) deduced from the mRNA sequence.

    PubMed Central

    Rose, T M; Plowman, G D; Teplow, D B; Dreyer, W J; Hellström, K E; Brown, J P

    1986-01-01

    p97 is a cell-surface glycoprotein that is present in most human melanomas but only in trace amounts in normal adult tissues. To determine the structure of this tumor-associated antigen and to identify its functional domains, we have purified and cloned p97 mRNA and determined its nucleotide sequence. The mRNA encodes a 738-residue precursor, which contains the previously determined N-terminal amino acid sequence of p97. After removal of a 19-residue signal peptide, the mature p97 molecule comprises extracellular domains of 342 and 352 residues and a C-terminal 25-residue stretch of predominantly uncharged and hydrophobic amino acids, which we believe acts as a membrane anchor. Each extracellular domain contains 14 cysteine residues, which form seven intradomain disulfide bridges, and one or two potential N-glycosylation sites. Protease digestion studies show that the three major antigenic determinants of p97 are present on the N-terminal domain. The domains are strikingly homologous to each other (46% amino acid sequence homology) and to the corresponding domains of human serum transferrin (39% homology). Conservation of disulfide bridges and of amino acids thought to compose the iron binding pockets suggests that p97 is also related to transferrin in tertiary structure and function. We propose that p97 be renamed melanotransferrin to denote its original identification in melanoma cells and its evolutionary relationship to serotransferrin and lactotransferrin, the other members of the transferrin superfamily. Images PMID:2419904

  16. Quantitation of secondary structure in ATR infrared spectroscopy

    PubMed Central

    Marsh, D

    1999-01-01

    Polarized attenuated total reflection infrared spectroscopy of aligned membranes provides essential information on the secondary structure content and orientation of the associated membrane proteins. Quantitation of the relative content of different secondary structures, however, requires allowance for geometric relations of the electric field components (E(x), E(y), E(z)) of the evanescent wave, and of the components of the infrared transition moments, in combining absorbances (A() and A( perpendicular)) measured with radiation polarized parallel with and perpendicular to, respectively, the plane of incidence. This has hitherto not been done. The appropriate combination for exact evaluation of relative integrated absorbances is A() + (2E(z)(2)/E(y)(2) - E(x)(2)/E(y)(2))A( perpendicular), where z is the axis of ordering that is normal to the membrane plane, and the x-axis lies in the membrane plane within the plane of incidence. This combination can take values in the range approximately from A() - 0.4A( perpendicular) to A() + 2.7A( perpendicular), depending on experimental conditions and the attenuated total reflection crystal used. With unpolarized radiation, this correction is not possible. Similar considerations apply to the dichroic ratios of multicomponent bands, which are also treated. PMID:10545362

  17. Mining overrepresented 3D patterns of secondary structures in proteins.

    PubMed

    Comin, Matteo; Guerra, Concettina; Zanotti, Giuseppe

    2008-12-01

    We consider the problem of finding overrepresented arrangements of secondary structure elements (SSEs) in a given dataset of representative protein structures. While most papers in the literature study the distribution of geometrical properties, in particular angles and distances, between pairs of interacting SSEs, in this paper we focus on the distribution of angles of all quartets of SSEs and on the extraction of overrepresented angular patterns. We propose a variant of the Apriori method that obtains overrepresented arrangements of quartets of SSEs by combining arrangements of triplets of SSEs. This specific case will pose the basis for a natural extension of the problem to any given number of SSEs. We analyze the results of our method on a dataset of 300 nonredundant proteins. Supplementary material is available at (http://www.dei.unipd.it/nciompin/papers/CGZ-jbcb-suppl.pdf/). PMID:19090018

  18. An object programming based environment for protein secondary structure prediction.

    PubMed

    Giacomini, M; Ruggiero, C; Sacile, R

    1996-01-01

    The most frequently used methods for protein secondary structure prediction are empirical statistical methods and rule based methods. A consensus system based on object-oriented programming is presented, which integrates the two approaches with the aim of improving the prediction quality. This system uses an object-oriented knowledge representation based on the concepts of conformation, residue and protein, where the conformation class is the basis, the residue class derives from it and the protein class derives from the residue class. The system has been tested with satisfactory results on several proteins of the Brookhaven Protein Data Bank. Its results have been compared with the results of the most widely used prediction methods, and they show a higher prediction capability and greater stability. Moreover, the system itself provides an index of the reliability of its current prediction. This system can also be regarded as a basis structure for programs of this kind. PMID:8803560

  19. Peptoid nanosheets exhibit a new secondary-structure motif

    NASA Astrophysics Data System (ADS)

    Mannige, Ranjan V.; Haxton, Thomas K.; Proulx, Caroline; Robertson, Ellen J.; Battigelli, Alessia; Butterfoss, Glenn L.; Zuckermann, Ronald N.; Whitelam, Stephen

    2015-10-01

    A promising route to the synthesis of protein-mimetic materials that are capable of complex functions, such as molecular recognition and catalysis, is provided by sequence-defined peptoid polymers--structural relatives of biologically occurring polypeptides. Peptoids, which are relatively non-toxic and resistant to degradation, can fold into defined structures through a combination of sequence-dependent interactions. However, the range of possible structures that are accessible to peptoids and other biological mimetics is unknown, and our ability to design protein-like architectures from these polymer classes is limited. Here we use molecular-dynamics simulations, together with scattering and microscopy data, to determine the atomic-resolution structure of the recently discovered peptoid nanosheet, an ordered supramolecular assembly that extends macroscopically in only two dimensions. Our simulations show that nanosheets are structurally and dynamically heterogeneous, can be formed only from peptoids of certain lengths, and are potentially porous to water and ions. Moreover, their formation is enabled by the peptoids' adoption of a secondary structure that is not seen in the natural world. This structure, a zigzag pattern that we call a Σ(`sigma')-strand, results from the ability of adjacent backbone monomers to adopt opposed rotational states, thereby allowing the backbone to remain linear and untwisted. Linear backbones tiled in a brick-like way form an extended two-dimensional nanostructure, the Σ-sheet. The binary rotational-state motif of the Σ-strand is not seen in regular protein structures, which are usually built from one type of rotational state. We also show that the concept of building regular structures from multiple rotational states can be generalized beyond the peptoid nanosheet system.

  20. Peptoid nanosheets exhibit a new secondary-structure motif.

    PubMed

    Mannige, Ranjan V; Haxton, Thomas K; Proulx, Caroline; Robertson, Ellen J; Battigelli, Alessia; Butterfoss, Glenn L; Zuckermann, Ronald N; Whitelam, Stephen

    2015-10-15

    A promising route to the synthesis of protein-mimetic materials that are capable of complex functions, such as molecular recognition and catalysis, is provided by sequence-defined peptoid polymers--structural relatives of biologically occurring polypeptides. Peptoids, which are relatively non-toxic and resistant to degradation, can fold into defined structures through a combination of sequence-dependent interactions. However, the range of possible structures that are accessible to peptoids and other biological mimetics is unknown, and our ability to design protein-like architectures from these polymer classes is limited. Here we use molecular-dynamics simulations, together with scattering and microscopy data, to determine the atomic-resolution structure of the recently discovered peptoid nanosheet, an ordered supramolecular assembly that extends macroscopically in only two dimensions. Our simulations show that nanosheets are structurally and dynamically heterogeneous, can be formed only from peptoids of certain lengths, and are potentially porous to water and ions. Moreover, their formation is enabled by the peptoids' adoption of a secondary structure that is not seen in the natural world. This structure, a zigzag pattern that we call a Σ('sigma')-strand, results from the ability of adjacent backbone monomers to adopt opposed rotational states, thereby allowing the backbone to remain linear and untwisted. Linear backbones tiled in a brick-like way form an extended two-dimensional nanostructure, the Σ-sheet. The binary rotational-state motif of the Σ-strand is not seen in regular protein structures, which are usually built from one type of rotational state. We also show that the concept of building regular structures from multiple rotational states can be generalized beyond the peptoid nanosheet system. PMID:26444241

  1. Genomic structure and characterization of mRNA expression pattern of porcine interferon gamma receptor 1 gene.

    PubMed

    Xing, F; Jiang, C; Liang, S; Kang, L; Jiang, Y

    2010-12-01

    Interferon gamma receptor (IFNGR) plays an important role in the biological effects of IFN-γ. In this study, porcine IFNGR1 cDNA was cloned and two transcripts both having a coding region of 1413 bp were identified. Porcine IFNGR1 cDNA shares 62.95%, 63.73%, 72.90% and 81.10% identity in nucleotide sequence; and 45.64%, 46.69%, 58.04% and 72.55% homology in amino acid sequence to those of rat, mouse, human and cattle, respectively. The porcine IFNGR1 genomic structure consists of seven exons and six introns and is located on porcine chromosome 1. The mRNA expression of porcine IFNGR1 gene is detected in all tissues examined, with strong expression in spleen and liver tissues and weak expression in cerebrum, cerebellum and uterus tissues, respectively. A different developmental pattern in IFNGR1 mRNA expression between Laiwu and Duroc breeds was revealed by real-time quantitative RT-PCR: in Duroc pigs, a significantly higher expression was found in the tissues of heart (P<0.05), liver (P<0.01), kidney (P<0.01) and skeletal muscle (P<0.05) of adult pigs compared to piglets. In porcine reproductive and respiratory syndrome virus (PRRSV)-infected Dapulian pigs, compared to the uninfected ones, the expression level of IFNGR1 mRNA in spleen was significantly up-regulated (P<0.05), whereas its expression in the lymph node was significantly down-regulated (P<0.05); in PRRSV-infected Duroc × Yorkshire × Landrace commercial pigs, however, the differences both in spleen and lymph node tissues were not significant. PMID:20637044

  2. Formation and stability of secondary structures in globular proteins

    NASA Astrophysics Data System (ADS)

    Bascle, J.; Garel, T.; Orland, H.

    1993-02-01

    We study two models for the formation and packing of helices and sheets in globular (compact) proteins. These models, based on weighted Hamiltonian paths on a regular lattice both exhibit a first order transition between a compact high temperature phase, with no extended secondary structures, and a quasi-frozen compact phase, with secondary structures invading the whole lattice. The quasi-frozen phase with very weak temperature dependence, is identified as the native phase of proteins, whereas the high-temperature phase may be relevant to the so-called molten globule state of proteins. Nous étudions deux modèles pour la formation et l'empilement d'hélices ou de feuillets dans la phase globulaire (compacte) des protéines. ces modèles, fondés sur des chemins hamiltoniens pondérés sur réseau, possèdent une transition de phase du premier ordre, entre (i) une phase haute température compacte, avec structures secondaires non étendues, et (ii) une phase compacte quasi-gelée, où les structures secondaires envahissent tout le réseau. La phase quasi-gelée, qui a une dépendance en température très faible, est identifiée à la phase native des protéines; la phase haute température est peut-être reliée à la phase native “globule fondu” (molten globule) des protéines.

  3. Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent.

    PubMed Central

    Baudin, F; Bach, C; Cusack, S; Ruigrok, R W

    1994-01-01

    The influenza virus genome consists of eight segments of negative-sense RNA, i.e. the viral (v) RNA forms the template for the mRNA. Each segment is encapsidated by the viral nucleoprotein to form a ribonucleoprotein (RNP) particle and each RNP carries its own polymerase complex. We studied the interaction of purified nucleoprotein with RNA in vitro, by using a variety of enzymatic and chemical probes for RNA conformation. Our results suggest that the nucleoprotein binds to the vRNA backbone without apparent sequence specificity, exposing the bases to the outside and melting all secondary structure. In this way, the viral polymerase may transcribe the RNA without the need for dissociating the nucleoprotein and without being stopped by RNA secondary structure, and the viral RNPs are ready to start transcription as soon as they enter the host cell. Images PMID:8039508

  4. Methylation of vesicular stomatitis virus (VSV) mRNA 5'-cap structures in vitro

    SciTech Connect

    Hammond, D.C.; Lesnaw, J.A.

    1987-05-01

    Monocistronic VSV mRNAs synthesized by subviral particles in vitro display the methylated 5'-cap structure m'G(5')ppp(5')Am. The authors have detected both monomethylated cap structures, m/sup 7/G(5')ppp(5')A and G(5')Am, in reactions containing suboptimal concentrations of AdoMet. To assess the putative precursor roles of these cap structures the authors devised dual label pulse-chase analyses employing S-(CH/sub 3/-/sup 3/H)-AdoMet and (..beta..-/sup 32/P)GTP. The labeled cap structures were analyzed by HPLC. The simultaneous chasing of both radiolabeled substrates allowed 1) the isolation of a specific set of caps labeled as (..beta..-/sup 32/P)-R/sup 7/G(5')ppp(5')AR (R=H or CH/sub 3/) and 2) the determination of the transcriptive fate of each intermediate cap structure within the set. The results demonstrated that both monomethylated cap structures serve as intermediates for the dimethylated cap and that the order of cap methylation is non-compulsory. These data, coupled with previous observations of hypomethylated cap structures in polyadenylated RNAs, have suggested that methylation occurs in a chain length dependent window.

  5. Hot spot of structural ambivalence in prion protein revealed by secondary structure principal component analysis.

    PubMed

    Yamamoto, Norifumi

    2014-08-21

    The conformational conversion of proteins into an aggregation-prone form is a common feature of various neurodegenerative disorders including Alzheimer's, Huntington's, Parkinson's, and prion diseases. In the early stage of prion diseases, secondary structure conversion in prion protein (PrP) causing ?-sheet expansion facilitates the formation of a pathogenic isoform with a high content of ?-sheets and strong aggregation tendency to form amyloid fibrils. Herein, we propose a straightforward method to extract essential information regarding the secondary structure conversion of proteins from molecular simulations, named secondary structure principal component analysis (SSPCA). The definite existence of a PrP isoform with an increased ?-sheet structure was confirmed in a free-energy landscape constructed by mapping protein structural data into a reduced space according to the principal components determined by the SSPCA. We suggest a "spot" of structural ambivalence in PrP-the C-terminal part of helix 2-that lacks a strong intrinsic secondary structure, thus promoting a partial ?-helix-to-?-sheet conversion. This result is important to understand how the pathogenic conformational conversion of PrP is initiated in prion diseases. The SSPCA has great potential to solve various challenges in studying highly flexible molecular systems, such as intrinsically disordered proteins, structurally ambivalent peptides, and chameleon sequences. PMID:25101991

  6. p53 mRNA and p53 Protein Structures Have Evolved Independently to Interact with MDM2.

    PubMed

    Karakostis, Konstantinos; Ponnuswamy, Anand; Fusée, Leïla T S; Bailly, Xavier; Laguerre, Laurent; Worall, Erin; Vojtesek, Borek; Nylander, Karin; Fåhraeus, Robin

    2016-05-01

    The p53 tumor suppressor and its key regulator MDM2 play essential roles in development, ageing, cancer, and cellular stress responses in mammals. Following DNA damage, MDM2 interacts with p53 mRNA in an ATM kinase-dependent fashion and stimulates p53 synthesis, whereas under normal conditions, MDM2 targets the p53 protein for degradation. The peptide- and RNA motifs that interact with MDM2 are encoded by the same conserved BOX-I sequence, but how these interactions have evolved is unknown. Here, we show that a temperature-sensitive structure in the invertebrate Ciona intestinalis (Ci) p53 mRNA controls its interaction with MDM2. We also show that a nonconserved flanking region of Ci-BOX-I domain prevents the p53-MDM2 protein-protein interaction. These results indicate that the temperature-regulated p53 mRNA-MDM2 interaction evolved to become kinase regulated in the mammalian DNA damage response. The data also suggest that the negative regulation of p53 by MDM2 via protein-protein interaction evolved in vertebrates following changes in the BOX-I flanking sequence. PMID:26823446

  7. Gene structure, chromosomal location, and basis for alternative mRNA splicing of the human VCAM1 gene

    SciTech Connect

    Cybulsky, M.I.; Fries, J.W.U.; Williams, A.J.; Sultan, P.; Gimbrone, M.A. Jr.; Collins, T. ); Eddy, R.; Byers, M.; Shows, T. )

    1991-09-01

    Vascular cell adhesion molecule 1 (VCAM-1) is a cell surface glycoprotein adhesive for certain blood leukocytes and tumor cells, which is expressed by activated endothelium in a variety of pathologic conditions including atherosclerosis. Genomic clones encoding the VCAM1 gene were isolated and the organization of the gene was determined. The gene, which is present in a single copy in the human genome, contains 9 exons spanning {approx}25 kilobases of DNA. Exons 2-8 contain C2 or H-type immunoglobulin domains. At least two different VCAM-1 precursors can be generated from the human gene as a result of alternative mRNA splicing events, which include or exclude exon 5. A consensus TATAA element is located upstream of the transcriptional start site. The VCAM1 promoter contains consensus binding sites for NF-{kappa}B, the GATA family of transcription factors, as well as an AP1 site. The VCAM1 gene was assigned to the 1p31-32 region of chromosome 1 based on the analysis of human-mouse hybrid cell lines and in situ hybridization. Structural analysis of the human VCAM1 gene provides the basis for alternative mRNA splicing and an initial approach to elucidating the regulation of VCAM-1 expression.

  8. Platelet-derived growth factor A chain: gene structure, chromosomal location, and basis for alternative mRNA splicing.

    PubMed

    Bonthron, D T; Morton, C C; Orkin, S H; Collins, T

    1988-03-01

    Genomic clones encoding the A chain of platelet-derived growth factor (PDGF) have been isolated. The gene contains seven exons spanning about 24 kilobases of DNA. The positions of intervening sequences closely match those of the related B-chain (c-sis) gene on chromosome 22. In situ hybridization was used to localize the PDGF A-chain gene to the distal portion of the short arm of chromosome 7 (7p21-p22). Within the (G + C)-rich 5' region, a single transcriptional start site was identified approximately equal to 36 base pairs downstream of a TATAA consensus promoter element. The three size classes of A-chain mRNA probably arise by selection of alternative poly(A) sites in exon 7, but only a single consensus AATAAA signal was identified in this region. Two functionally different A-chain precursors, which differ by the presence or absence of a basic C terminus, are generated as a result of alternative mRNA splicing events, which include or exclude exon 6. This and other structural features of the A-chain gene suggest that PDGF expression may be modulated at transcriptional and post-transcriptional levels. PMID:3422746

  9. Gene structure, chromosomal location, and basis for alternative mRNA splicing of the human VCAM1 gene.

    PubMed

    Cybulsky, M I; Fries, J W; Williams, A J; Sultan, P; Eddy, R; Byers, M; Shows, T; Gimbrone, M A; Collins, T

    1991-09-01

    Vascular cell adhesion molecule 1 (VCAM-1) is a cell surface glycoprotein adhesive for certain blood leukocytes and tumor cells, which is expressed by activated endothelium in a variety of pathologic conditions including atherosclerosis. Genomic clones encoding the VCAM1 gene were isolated and the organization of the gene was determined. The gene, which is present in a single copy in the human genome, contains 9 exons spanning approximately 25 kilobases of DNA. Exons 2-8 contain C2 or H-type immunoglobulin domains. At least two different VCAM-1 precursors can be generated from the human gene as a result of alternative mRNA splicing events, which include or exclude exon 5. A consensus TATAA element is located upstream of the transcriptional start site. The VCAM1 promoter contains consensus binding sites for NF-kappa B, the GATA family of transcription factors, as well as an AP1 site. The VCAM1 gene was assigned to the 1p31-32 region of chromosome 1 based on the analysis of human-mouse hybrid cell lines and in situ hybridization. Structural analysis of the human VCAM1 gene provides the basis for alternative mRNA splicing and an initial approach to elucidating the regulation of VCAM-1 expression. PMID:1715583

  10. [Primary structure of mRNA and translation strategy of eukaryotes].

    PubMed

    Ugarova, T Iu

    1987-01-01

    The diversity of primary structures of cellular and virus mRNAs was considered from the standpoint of their functioning at the initial stops of translation. The number and reciprocal localization of the open translational frames along the mRNAs, and also the number, localization and nucleotides surroundings the initiation codons were analysed. The structural organizations of the polycistronic and other non-canonical forms of native mRNAs, translated in eukaryotic cells, were considered and classified. The possible mechanisms of translation initiation by different forms of mRNAs are discussed. PMID:3309622

  11. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields

    PubMed Central

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-01

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility. PMID:26752681

  12. Secondary Structure of Huntingtin Amino-Terminal Region

    SciTech Connect

    Kim, Mee Whi; Chelliah, Yogarany; Kim, Sang Woo; Otwinowski, Zbyszek; Bezprozvanny, Ilya

    2010-09-21

    Huntington's disease is a genetic neurodegenerative disorder resulting from polyglutamine (polyQ) expansion (>36Q) within the first exon of Huntingtin (Htt) protein. We applied X-ray crystallography to determine the secondary structure of the first exon (EX1) of Htt17Q. The structure of Htt17Q-EX1 consists of an amino-terminal {alpha} helix, poly17Q region, and polyproline helix formed by the proline-rich region. The poly17Q region adopts multiple conformations in the structure, including {alpha} helix, random coil, and extended loop. The conformation of the poly17Q region is influenced by the conformation of neighboring protein regions, demonstrating the importance of the native protein context. We propose that the conformational flexibility of the polyQ region observed in our structure is a common characteristic of many amyloidogenic proteins. We further propose that the pathogenic polyQ expansion in the Htt protein increases the length of the random coil, which promotes aggregation and facilitates abnormal interactions with other proteins in cells.

  13. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-01

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

  14. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.

    PubMed

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-01

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility. PMID:26752681

  15. Mature MiRNAs Form Secondary Structure, which Suggests Their Function beyond RISC

    PubMed Central

    Belter, Agnieszka; Gudanis, Dorota; Rolle, Katarzyna; Piwecka, Monika; Gdaniec, Zofia; Naskręt-Barciszewska, Mirosława Z.; Barciszewski, Jan

    2014-01-01

    The generally accepted model of the miRNA-guided RNA down-regulation suggests that mature miRNA targets mRNA in a nucleotide sequence-specific manner. However, we have shown that the nucleotide sequence of miRNA is not the only determinant of miRNA specificity. Using specific nucleases, T1, V1 and S1 as well as NMR, UV/Vis and CD spectroscopies, we found that miR-21, miR-93 and miR-296 can adopt hairpin and/or homoduplex structures. The secondary structure of those miRNAs in solution is a function of RNA concentration and ionic conditions. Additionally, we have shown that a formation of miRNA hairpin is facilitated by cellular environment.Looking for functional consequences of this observation, we have perceived that structure of these miRNAs resemble RNA aptamers, short oligonucleotides forming a stable 3D structures with a high affinity and specificity for their targets. We compared structures of anti-tenascin C (anti-Tn-C) aptamers, which inhibit brain tumor glioblastoma multiforme (GBM, WHO IV) and selected miRNA. A strong overexpression of miR-21, miR-93 as well Tn-C in GBM may imply some connections between them. The structural similarity of these miRNA hairpins and anti-Tn-C aptamers indicates that miRNAs may function also beyond RISC and are even more sophisticated regulators, that it was previously expected. We think that the knowledge of the miRNA structure may give a new insight into miRNA-dependent gene regulation mechanism and be a step forward in the understanding their function and involvement in cancerogenesis. This may improve design process of anti-miRNA therapeutics. PMID:25423301

  16. A Structural Data Mining Approach for the Classification of Secondary RNA structure.

    PubMed

    M Lam, Winnie; C Chan, Keith

    2005-01-01

    There exist many methods for classifying genomic data by aligning, comparing, and analyzing primary nucleotide sequences using such algorithms as dynamic programming and kinetic folding, etc.. These methods are, however, not always effective as motifs are more conserved in structures than in sequences. Instead of performing classification based on primary sequences, we therefore propose to perform the task from structure, exploiting the phenomenon in which molecules form from a sequence of nucleotides, beginning with a primary sequence that can fold back onto itself to form a secondary structure and then a tertiary structure. The algorithm we propose is able to perform data mining in structural data and is called the Random Multi-Level Attributed (RMLA) graph algorithm for mining and representing secondary genomic structure from such biomolecule as tRNA. The identification of structural similarity is implemented with information measure concept to characterize the resultant class. Experiments are based on known tRNA structural data from database of compilation of tRNA genes. The results show that our approach is able to effectively classify different class of tRNA secondary structure. We also compare our result with other classification algorithms to prove the effectiveness. Our approach shows a better way to classify structural data. In fact, RMLA graph is not suitable only for the classification of genomic data, wherever graphs are used to model data, it is useful for discovering patterns in the databases. PMID:17281305

  17. The global structures of a wild-type and poorly functional plant luteoviral mRNA pseudoknot are essentially identical.

    PubMed

    Cornish, Peter V; Stammler, Suzanne N; Giedroc, David P

    2006-11-01

    The helical junction region of a -1 frameshift stimulating hairpin-type mRNA pseudoknot from sugarcane yellow leaf virus (ScYLV) is characterized by a novel C27.(G7-C14) loop 2-stem 1 minor groove base triple, which is stacked on a C8+.(G12-C28) loop 1-stem 2 major groove base triple. Substitution of C27 with adenosine reduces frameshifting efficiency to a level just twofold above the slip-site alone. Here, we show that the global structure of the C27A ScYLV RNA is nearly indistinguishable from the wild-type counterpart, despite the fact that the helical junction region is altered and incorporates the anticipated isostructural A27.(G7-C14) minor groove base triple. This interaction mediates a 2.3-A displacement of C8+ driven by an A27 N6-C8+ O2 hydrogen bond as part of an A(n-1).C+.G-Cn base quadruple. The helical junction regions of the C27A ScYLV and the beet western yellows virus (BWYV) pseudoknots are essentially superimposable, the latter of which contains an analogous A25.(G7-C14) minor groove base triple. These results reveal that the global ground-state structure is not strongly correlated with frameshift stimulation and point to a reduced thermodynamic stability and/or enhanced kinetic lability that derives from an altered helical junction architecture in the C27A ScYLV RNA as a significant determinant for setting frameshifting efficiencies in plant luteoviral mRNA pseudoknots. PMID:17000902

  18. FMRP interacts with G-quadruplex structures in the 3’-UTR of its dendritic target Shank1 mRNA

    PubMed Central

    Zhang, Yang; Gaetano, Christian M; Williams, Kathryn R; Bassell, Gary J; Mihailescu, Mihaela Rita

    2014-01-01

    ABSTRACT Fragile X syndrome (FXS), the most common cause of inherited intellectual disability, is caused by the loss of expression of the fragile X mental retardation protein (FMRP). FMRP, which regulates the transport and translation of specific mRNAs, uses its RGG box domain to bind mRNA targets that form G-quadruplex structures. One of the FMRP in vivo targets, Shank1 mRNA, encodes the master scaffold proteins of the postsynaptic density (PSD) which regulate the size and shape of dendritic spines because of their capacity to interact with many different PSD components. Due to their effect on spine morphology, altered translational regulation of Shank1 transcripts may contribute to the FXS pathology. We hypothesized that the FMRP interactions with Shank1 mRNA are mediated by the recognition of the G quadruplex structure, which has not been previously demonstrated. In this study we used biophysical techniques to analyze the Shank1 mRNA 3’-UTR and its interactions with FMRP and its phosphorylated mimic FMRP S500D. We found that the Shank1 mRNA 3 ′ -UTR adopts two very stable intramolecular G-quadruplexes which are bound specifically and with high affinity by FMRP both in vitro and in vivo. These results suggest a role of G-quadruplex RNA motif as a structural element in the common mechanism of FMRP regulation of its dendritic mRNA targets. PMID:25692235

  19. S6:S18 ribosomal protein complex interacts with a structural motif present in its own mRNA

    PubMed Central

    Matelska, Dorota; Purta, Elzbieta; Panek, Sylwia; Boniecki, Michal J.; Bujnicki, Janusz M.; Dunin-Horkawicz, Stanislaw

    2013-01-01

    Prokaryotic ribosomal protein genes are typically grouped within highly conserved operons. In many cases, one or more of the encoded proteins not only bind to a specific site in the ribosomal RNA, but also to a motif localized within their own mRNA, and thereby regulate expression of the operon. In this study, we computationally predicted an RNA motif present in many bacterial phyla within the 5′ untranslated region of operons encoding ribosomal proteins S6 and S18. We demonstrated that the S6:S18 complex binds to this motif, which we hereafter refer to as the S6:S18 complex-binding motif (S6S18CBM). This motif is a conserved CCG sequence presented in a bulge flanked by a stem and a hairpin structure. A similar structure containing a CCG trinucleotide forms the S6:S18 complex binding site in 16S ribosomal RNA. We have constructed a 3D structural model of a S6:S18 complex with S6S18CBM, which suggests that the CCG trinucleotide in a specific structural context may be specifically recognized by the S18 protein. This prediction was supported by site-directed mutagenesis of both RNA and protein components. These results provide a molecular basis for understanding protein-RNA recognition and suggest that the S6S18CBM is involved in an auto-regulatory mechanism. PMID:23980204

  20. Toward a better understanding of structural divergences in proteins using different secondary structure assignment methods

    NASA Astrophysics Data System (ADS)

    Rocha, L. F. O.

    2014-04-01

    Structural disagreements on the location and quantity of secondary structure segments comprise a current challenging problem leading to several limitations for theoretical and applied research. This paper presents 116 structural evaluations by steric and hydrophobic interactions in secondary structures within a specific template group; determines simple prediction rules that calculate 88 occurrence frequencies of large and hydrophobic residues into target intra- and inter-subgroups with structure disagreements; and utilizes 42 comparisons between the methods PROMOTIF, DSSP and STRIDE. In the stereochemical predictions inside the subgroups there are predominantly excellent and/or good success amounts with their expected values, and the disclosure of a triple molecular mechanism by residue volumetric and hydrophobic ingredients. The method comparisons show high compatibility scores between them, therefore validating their seemingly incompatible assignments. Thus, the nonconsensual ascriptions are better understood and appreciated. Furthermore, such results suggest a broad utility of our assignment method for other benchmark datasets and known methods.

  1. Structure of the Saccharomyces cerevisiae Cet1-Ceg1 mRNA Capping Apparatus

    SciTech Connect

    Gu, Meigang; Rajashankar, Kanagalaghatta R.; Lima, Christopher D.

    2010-05-04

    The 5{prime} guanine-N7 cap is the first cotranscriptional modification of messenger RNA. In Saccharomyces cerevisiae, the first two steps in capping are catalyzed by the RNA triphosphatase Cet1 and RNA guanylyltransferase Ceg1, which form a complex that is directly recruited to phosphorylated RNA polymerase II (RNAP IIo), primarily via contacts between RNAP IIo and Ceg1. A 3.0 {angstrom} crystal structure of Cet1-Ceg1 revealed a 176 kDa heterotetrameric complex composed of one Cet1 homodimer that associates with two Ceg1 molecules via interactions between the Ceg1 oligonucleotide binding domain and an extended Cet1 WAQKW amino acid motif. The WAQKW motif is followed by a flexible linker that would allow Ceg1 to achieve conformational changes required for capping while maintaining interactions with both Cet1 and RNAP IIo. The impact of mutations as assessed through genetic analysis in S. cerevisiae is consonant with contacts observed in the Cet1-Ceg1 structure.

  2. Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation

    PubMed Central

    Pop, Cristina; Rouskin, Silvi; Ingolia, Nicholas T; Han, Lu; Phizicky, Eric M; Weissman, Jonathan S; Koller, Daphne

    2014-01-01

    Ribosome profiling data report on the distribution of translating ribosomes, at steady-state, with codon-level resolution. We present a robust method to extract codon translation rates and protein synthesis rates from these data, and identify causal features associated with elongation and translation efficiency in physiological conditions in yeast. We show that neither elongation rate nor translational efficiency is improved by experimental manipulation of the abundance or body sequence of the rare AGG tRNA. Deletion of three of the four copies of the heavily used ACA tRNA shows a modest efficiency decrease that could be explained by other rate-reducing signals at gene start. This suggests that correlation between codon bias and efficiency arises as selection for codons to utilize translation machinery efficiently in highly translated genes. We also show a correlation between efficiency and RNA structure calculated both computationally and from recent structure probing data, as well as the Kozak initiation motif, which may comprise a mechanism to regulate initiation. PMID:25538139

  3. Structural Basis for the Function of the Saccharomyces cerevisiae Gfd1 Protein in mRNA Nuclear Export*♦

    PubMed Central

    Zheng, Chao; Fasken, Milo B.; Marshall, Neil J.; Brockmann, Christoph; Rubinson, Max E.; Wente, Susan R.; Corbett, Anita H.; Stewart, Murray

    2010-01-01

    Following transcription, mRNA is processed, packaged into messenger ribonucleoprotein (mRNP) particles, and transported through nuclear pores (NPCs) to the cytoplasm. At the NPC cytoplasmic face, Dbp5 mediates mRNP remodeling and mRNA export factor dissociation, releasing transcripts for translation. In Saccharomyces cerevisiae, the conserved poly(A) RNA-binding protein, Nab2, facilitates NPC targeting of transcripts and also modulates poly(A) tail length. Dbp5 removes Nab2 from mRNPs at the cytoplasmic face of the pore and, importantly, a Nab2 RNA-binding mutant suppresses the thermosensitive rat8-2 (dbp5) mutant. GFD1 is a multicopy suppressor of rat8-2 (dbp5), and Gfd1 interacts physically with both Dbp5 and the Nab2 N-terminal domain (Nab2-N). Here, we present a structural and functional analysis of the Gfd1/Nab2-N interaction. Crystallography, supported by solution NMR, shows that Gfd1 residues 126–150 form an α-helix when bound to Nab2-N. Engineered Nab2-N and Gfd1 mutants that inhibit this interaction in vitro were used to probe its function in vivo using the genetic interaction between GFD1 and NAB2. Although GFD1 is not essential for viability, its deletion severely impairs growth of rat8-2 (dbp5) cells. Moreover, although Gfd1 overexpression suppresses rat8-2 (dbp5), Gfd1 mutants that do not bind Nab2 only partially suppress rat8-2 (dbp5). Furthermore, rat8-2 (dbp5) cells that express nab2-Y34A, in which binding to Gfd1 is impaired, show a synthetic growth phenotype and nuclear accumulation of poly(A) RNA. These data support the importance of the Gfd1/Nab2 interaction for Dbp5 activity and provide further molecular details of the interactions that facilitate Dbp5-mediated mRNP remodeling in the terminal step of mRNA export. PMID:20463024

  4. Secondary use of structured patient data: interim results of a systematic review.

    PubMed

    Vuokko, Riikka; Mäkelä-Bengs, Päivi; Hyppönen, Hannele; Doupi, Persephone

    2015-01-01

    In addition to patient care, EHR data are increasingly in demand for secondary purposes, e.g. administration, research and enterprise resource planning. We conducted a systematic literature review and subsequent analysis of 85 articles focusing on the secondary use of structured patient records. We grounded the analysis on how patient records have been structured, how these structures have been evaluated and what are the main results achieved from the secondary use viewpoint. We conclude that secondary use requires complete and interoperable patient records, which in turn depend on better alignment of primary and secondary users' needs and benefits. PMID:25991152

  5. Changes in secondary structure of gluten proteins due to emulsifiers

    NASA Astrophysics Data System (ADS)

    Gómez, Analía V.; Ferrer, Evelina G.; Añón, María C.; Puppo, María C.

    2013-02-01

    Changes in the secondary structure of gluten proteins due to emulsifiers were analyzed by Raman Spectroscopy. The protein folding induced by 0.25% SSL (Sodium Stearoyl Lactylate) (GS0.25, Gluten + 0.25% SSL) included an increase in α-helix conformation and a decrease in β-sheet, turns and random coil. The same behavior, although in a less degree, was observed for 0.5% gluten-DATEM (Diacetyl Tartaric Acid Esters of Monoglycerides) system. The low burial of Tryptophan residues to a more hydrophobic environment and the low percentage area of the C-H stretching band for GS0.25 (Gluten + 0.25% SSL), could be related to the increased in α-helix conformation. This behavior was also confirmed by changes in stretching vibrational modes of disulfide bridges (S-S) and the low exposure of Tyrosine residues. High levels of SSL (0.5% and 1.0%) and DATEM (1.0%) led to more disordered protein structures, with different gluten networks. SSL (1.0%) formed a more disordered and opened gluten matrix than DATEM, the last one being laminar and homogeneous.

  6. Control of cerium oxidation state through metal complex secondary structures

    DOE PAGESBeta

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observedmore » when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.« less

  7. Control of cerium oxidation state through metal complex secondary structures

    SciTech Connect

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observed when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.

  8. Protein 8-class secondary structure prediction using conditional neural fields.

    PubMed

    Wang, Zhiyong; Zhao, Feng; Peng, Jian; Xu, Jinbo

    2011-10-01

    Compared with the protein 3-class secondary structure (SS) prediction, the 8-class prediction gains less attention and is also much more challenging, especially for proteins with few sequence homologs. This paper presents a new probabilistic method for 8-class SS prediction using conditional neural fields (CNFs), a recently invented probabilistic graphical model. This CNF method not only models the complex relationship between sequence features and SS, but also exploits the interdependency among SS types of adjacent residues. In addition to sequence profiles, our method also makes use of non-evolutionary information for SS prediction. Tested on the CB513 and RS126 data sets, our method achieves Q8 accuracy of 64.9 and 64.7%, respectively, which are much better than the SSpro8 web server (51.0 and 48.0%, respectively). Our method can also be used to predict other structure properties (e.g. solvent accessibility) of a protein or the SS of RNA. PMID:21805636

  9. Interaction of Bacillus subtilis Polynucleotide Phosphorylase and RNase Y: STRUCTURAL MAPPING AND EFFECT ON mRNA TURNOVER.

    PubMed

    Salvo, Elizabeth; Alabi, Shanique; Liu, Bo; Schlessinger, Avner; Bechhofer, David H

    2016-03-25

    Polynucleotide phosphorylase (PNPase), a 3'-to-5' phosphorolytic exoribonuclease, is thought to be the primary enzyme responsible for turnover ofBacillus subtilismRNA. The role of PNPase inB. subtilismRNA decay has been analyzed previously by comparison of mRNA profiles in a wild-type strainversusa strain that is deleted forpnpA, the gene encoding PNPase. Recent studies have provided evidence for a degradosome-like complex inB. subtilisthat is built around the major decay-initiating endonuclease, RNase Y, and there is ample evidence for a strong interaction between PNPase and RNase Y. The role of the PNPase-RNase Y interaction in the exonucleolytic function of PNPase needs to be clarified. We sought to construct aB. subtilisstrain containing a catalytically active PNPase that could not interact with RNase Y. Mapping studies of the PNPase-RNase Y interaction were guided by a homology model ofB. subtilisPNPase based on the known structure of theEscherichia coliPNPase in complex with an RNase E peptide. Mutations inB. subtilisresidues predicted to be involved in RNase Y binding showed a loss of PNPase-RNase Y interaction. Two mRNAs whose decay is dependent on RNase Y and PNPase were examined in strains containing full-length PNPase that was either catalytically active but unable to interact with RNase Y, or catalytically inactive but able to interact with RNase Y. At least for these two mRNAs, disruption of the PNPase-RNase Y interaction did not appear to affect mRNA turnover. PMID:26797123

  10. Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition.

    PubMed

    Sauer, Evelyn; Schmidt, Steffen; Weichenrieder, Oliver

    2012-06-12

    The bacterial Sm-like protein Hfq is a central player in the control of bacterial gene expression. Hfq forms complexes with small regulatory RNAs (sRNAs) that use complementary "seed" sequences to target specific mRNAs. Hfq forms hexameric rings, which preferably bind uridine-rich RNA 3' ends on their proximal surface and adenine-rich sequences on their distal surface. However, many reported properties of Hfq/sRNA complexes could not be explained by these RNA binding modes. Here, we use the RybB sRNA to identify the lateral surface of Hfq as a third, independent RNA binding surface. A systematic mutational analysis and competition experiments demonstrate that the lateral sites have a preference for and are sufficient to bind the sRNA "body," including the seed sequence. Furthermore, we detect significant structural rearrangements of the Hfq/sRNA complex upon mRNA target recognition that lead to a release of the seed sequence, or of the entire sRNA molecule in case of an unfavorable 3' end. Consequently, we propose a molecular model for the Hfq/sRNA complex, where the sRNA 3' end is anchored in the proximal site of Hfq, whereas the sRNA body, including the seed sequence, is bound by up to six of the lateral sites. In contrast to previously proposed arrangements, the presented model explains how Hfq can protect large parts of the sRNA body while still allowing a rapid recycling of sRNAs. Furthermore, our model suggests molecular mechanisms for the function of Hfq as an RNA chaperone and for the molecular events that are initiated upon mRNA target recognition. PMID:22645344

  11. Using reliability information to annotate RNA secondary structures.

    PubMed Central

    Zuker, M; Jacobson, A B

    1998-01-01

    A number of heuristic descriptors have been developed previously in conjunction with the mfold package that describe the propensity of individual bases to participate in base pairs and whether or not a predicted helix is "well-determined." They were developed for the "energy dot plot" output of mfold. Two descriptors, P-num and H-num, are used to measure the level of promiscuity in the association of any given nucleotide or helix with alternative complementary pairs. The third descriptor, S-num, measures the propensity of bases to be single-stranded. In the current work, we describe a series of programs that were developed in order to annotate individual structures with "well-definedness" information. We use color annotation to present the information. The programs can annotate PostScript files that are created by the mfold package or the PostScript secondary structure plots produced by the Weiser and Noller program XRNA (Weiser B, Noller HF, 1995, XRNA: Auto-interactive program for modeling RNA, The Center for Molecular Biology of RNA, Santa Cruz, California: University of California; Internet: ftp://fangio.ucsc.edu/pub/XRNA). In addition, these programs can annotate ss files that serve as input to XRNA. The annotation package can also handle structure comparison with a reference structure. This feature can be used to compare predicted structure with a phylogenetically deduced model, to compare two different predicted foldings, and to identify conformational changes that are predicted between wild-type and mutant RNAs. We provide several examples of application. Predicted structures of two RNase P RNAs were colored with P-num information and further annotated with comparative information. The comparative model of a 16S rRNA was annotated with P-num information from mfold and with base pair probabilities obtained from the Vienna RNA folding package. Further annotation adds comparisons with the optimal foldings obtained from mfold and the Vienna package, respectively. The results of all of these analyses are discussed in the context of the reliability of structure prediction. PMID:9622126

  12. Boundary Layer Dynamical Structure During Secondary Eyewall Formation

    NASA Astrophysics Data System (ADS)

    Abarca, S. F.; Montgomery, M. T.; McWilliams, J. C.

    2014-12-01

    Secondary eyewall formation (SEF) is widely recognized as an important research problem in the dynamics of mature tropical cyclones. It has been shown that the development of the wind maxima in SEF occurs within the boundary layer and that it follows a chain of events initiated by a substantial radial expansion of the tangential wind field. In this context, there is not yet a consensus on the phenomenon's essential physics. It has been proposed that the boundary-layer dynamics of a maturing hurricane vortex is an important controlling element in SEF. However, recent literature also argues that hurricane boundary layers and the related coupling with the interior flow can be described through an Ekman-like balance and that shock-like structures are relevant in the swirling boundary layer of the inner core of mature storms. We analyze the radial and vertical structure of the specific forces and accelerations in in the boundary layer in a mature hurricane that includes a canonical eyewall replacement cycle. The case occurred in a mesoscale, convection-permitting numerical simulation of a tropical cyclone, integrated from an initial weak mesoscale vortex in an idealized quiescent environment. The simulation has been studied extensively in the literature. We find that momentum advection is almost everywhere important (some of it is associated with asymmetric eddies). We discuss the implication of our findings on the proposed importance of Ekman-like balance dynamics during SEF. Finally, our analysis does not support the recently proposed idea that the radial advection of radial momentum, and shock-like structures, are closely related to the supergradient wind phenomena observed during SEF.

  13. Characterization of a Trifunctional Mimivirus mRNA Capping Enzyme and Crystal Structure of the RNA Triphosphatase Domain

    SciTech Connect

    Benarroch,D.; Smith, P.; Shuman, S.

    2008-01-01

    The RNA triphosphatase (RTPase) components of the mRNA capping apparatus are a bellwether of eukaryal taxonomy. Fungal and protozoal RTPases belong to the triphosphate tunnel metalloenzyme (TTM) family, exemplified by yeast Cet1. Several large DNA viruses encode metal-dependent RTPases unrelated to the cysteinyl-phosphatase RTPases of their metazoan host organisms. The origins of DNA virus RTPases are unclear because they are structurally uncharacterized. Mimivirus, a giant virus of amoeba, resembles poxviruses in having a trifunctional capping enzyme composed of a metal-dependent RTPase module fused to guanylyltransferase (GTase) and guanine-N7 methyltransferase domains. The crystal structure of mimivirus RTPase reveals a minimized tunnel fold and an active site strikingly similar to that of Cet1. Unlike homodimeric fungal RTPases, mimivirus RTPase is a monomer. The mimivirus TTM-type RTPase-GTase fusion resembles the capping enzymes of amoebae, providing evidence that the ancestral large DNA virus acquired its capping enzyme from a unicellular host.

  14. Ground state and glass transition of the RNA secondary structure

    NASA Astrophysics Data System (ADS)

    Hui, S.; Tang, L.-H.

    2006-09-01

    RNA molecules form a sequence-specific self-pairing pattern at low temperatures. We analyze this problem using a random pairing energy model as well as a random sequence model that includes a base stacking energy in favor of helix propagation. The free energy cost for separating a chain into two equal halves offers a quantitative measure of sequence specific pairing. In the low temperature glass phase, this quantity grows quadratically with the logarithm of the chain length, but it switches to a linear behavior of entropic origin in the high temperature molten phase. Transition between the two phases is continuous, with characteristics that resemble those of a disordered elastic manifold in two dimensions. For designed sequences, however, a power-law distribution of pairing energies on a coarse-grained level may be more appropriate. Extreme value statistics arguments then predict a power-law growth of the free energy cost to break a chain, in agreement with numerical simulations. Interestingly, the distribution of pairing distances in the ground state secondary structure follows a remarkable power-law with an exponent -4/3, independent of the specific assumptions for the base pairing energies.

  15. Human recombinant thiamine triphosphatase: purification, secondary structure and catalytic properties.

    PubMed

    Lakaye, Bernard; Makarchikov, Alexander F; Wins, Pierre; Margineanu, Ilca; Roland, Séverine; Lins, Laurence; Aichour, Ridha; Lebeau, Luc; El Moualij, Benaïssa; Zorzi, Willy; Coumans, Bernard; Grisar, Thierry; Bettendorff, Lucien

    2004-07-01

    Thiamine triphosphate (ThTP) is found in most living organisms and it may act as a phosphate donor for protein phosphorylation. We have recently cloned the cDNA coding for a highly specific mammalian 25 kDa thiamine triphosphatase (ThTPase; EC 3.6.1.28). As the enzyme has a high catalytic efficiency and no sequence homology with known phosphohydrolases, it was worth investigating its structure and catalytic properties. For this purpose, we expressed the untagged recombinant human ThTPase (hThTPase) in E. coli, produced the protein on a large scale and purified it to homogeneity. Its kinetic properties were similar to those of the genuine human enzyme, indicating that the recombinant hThTPase is completely functional. Mg2+ ions were required for activity and Ca2+ inhibited the enzyme by competition with Mg2+. With ATP as substrate, the catalytic efficiency was 10(-4)-fold lower than with ThTP, confirming the nearly absolute specificity of the 25 kDa ThTPase for ThTP. The activity was maximum at pH 8.5 and very low at pH 6.0. Zn2+ ions were inhibitory at micromolar concentrations at pH 8.0 but activated at pH 6.0. Kinetic analysis suggests an activator site for Mg2+ and a separate regulatory site for Zn2+. The effects of group-specific reagents such as Woodward's reagent K and diethylpyrocarbonate suggest that at least one carboxyl group in the active site is essential for catalysis, while a positively charged amino group may be involved in substrate binding. The secondary structure of the enzyme, as determined by Fourier-transform infrared spectroscopy, was predominantly beta-sheet and alpha-helix. PMID:15109578

  16. Structurally Coloured Secondary Particles Composed of Black and White Colloidal Particles

    PubMed Central

    Takeoka, Yukikazu; Yoshioka, Shinya; Teshima, Midori; Takano, Atsushi; Harun-Ur-Rashid, Mohammad; Seki, Takahiro

    2013-01-01

    This study investigated the colourful secondary particles formed by controlling the aggregation states of colloidal silica particles and the enhancement of the structural colouration of the secondary particles caused by adding black particles. We obtained glossy, partially structurally coloured secondary particles in the absence of NaCl, but matte, whitish secondary particles were obtained in the presence of NaCl. When a small amount of carbon black was incorporated into both types of secondary particles, the incoherent multiple scattering of light from the amorphous region was considerably reduced. However, the peak intensities in the reflection spectra, caused by Bragg reflection and by coherent single wavelength scattering, were only slightly decreased. Consequently, a brighter structural colour of these secondary particles was observed with the naked eye. Furthermore, when magnetite was added as a black particle, the coloured secondary particles could be moved and collected by applying an external magnetic field. PMID:23917891

  17. IFNL3 mRNA structure is remodeled by a functional non-coding polymorphism associated with hepatitis C virus clearance

    PubMed Central

    Lu, Yi-Fan; Mauger, David M.; Goldstein, David B.; Urban, Thomas J.; Weeks, Kevin M.; Bradrick, Shelton S.

    2015-01-01

    Polymorphisms near the interferon lambda 3 (IFNL3) gene strongly predict clearance of hepatitis C virus (HCV) infection. We analyzed a variant (rs4803217 G/T) located within the IFNL3 mRNA 3′ untranslated region (UTR); the G allele (protective allele) is associated with elevated therapeutic HCV clearance. We show that the IFNL3 3′ UTR represses mRNA translation and the rs4803217 allele modulates the extent of translational regulation. We analyzed the structures of IFNL3 variant mRNAs at nucleotide resolution by SHAPE-MaP. The rs4803217 G allele mRNA forms well-defined 3′ UTR structure while the T allele mRNA is more dynamic. The observed differences between alleles are among the largest possible RNA structural alterations that can be induced by a single nucleotide change and transform the UTR from a single well-defined conformation to one with multiple dynamic interconverting structures. These data illustrate that non-coding genetic variants can have significant functional effects by impacting RNA structure. PMID:26531896

  18. Tertiary structure prediction of RNA-RNA complexes using a secondary structure and fragment-based method.

    PubMed

    Yamasaki, Satoshi; Hirokawa, Takatsugu; Asai, Kiyoshi; Fukui, Kazuhiko

    2014-02-24

    A method has been developed for predicting the tertiary structures of RNA-RNA complex structures using secondary structure information and a fragment assembly algorithm. The linker base pair and secondary structure potential derived from the secondary structure information are particularly useful for prediction. Application of this method to several kinds of RNA-RNA complex structures, including kissing loops, hammerhead ribozymes, and other functional RNAs, produced promising results. Use of the secondary structure potential effectively restrained the conformational search space, leading to successful prediction of kissing loop structures, which mainly consist of common structural elements. The failure to predict more difficult targets had various causes but should be overcome through such measures as tuning the balance of the energy contributions from the Watson-Crick and non- Watson-Crick base pairs, by obtaining knowledge about a wider variety of RNA structures. PMID:24479711

  19. Ire1-mediated decay in mammalian cells relies on mRNA sequence, structure, and translational status

    PubMed Central

    Moore, Kristin; Hollien, Julie

    2015-01-01

    Endoplasmic reticulum (ER) stress occurs when misfolded proteins overwhelm the capacity of the ER, resulting in activation of the unfolded protein response (UPR). Ire1, an ER transmembrane nuclease and conserved transducer of the UPR, cleaves the mRNA encoding the transcription factor Xbp1 at a dual stem-loop (SL) structure, leading to Xbp1 splicing and activation. Ire1 also cleaves other mRNAs localized to the ER membrane through regulated Ire1-dependent decay (RIDD). We find that during acute ER stress in mammalian cells, Xbp1-like SLs within the target mRNAs are necessary for RIDD. Furthermore, depletion of Perk, a UPR transducer that attenuates translation during ER stress, inhibits RIDD in a substrate-specific manner. Artificially blocking translation of the SL region of target mRNAs fully restores RIDD in cells depleted of Perk, suggesting that ribosomes disrupt SL formation and/or Ire1 binding. This coordination between Perk and Ire1 may serve to spatially and temporally regulate RIDD. PMID:26108623

  20. Structural analysis of human 2'-O-ribose methyltransferases involved in mRNA cap structure formation

    NASA Astrophysics Data System (ADS)

    Smietanski, Miroslaw; Werner, Maria; Purta, Elzbieta; Kaminska, Katarzyna H.; Stepinski, Janusz; Darzynkiewicz, Edward; Nowotny, Marcin; Bujnicki, Janusz M.

    2014-01-01

    The 5' cap of human messenger RNA contains 2'-O-methylation of the first and often second transcribed nucleotide that is important for its processing, translation and stability. Human enzymes that methylate these nucleotides, termed CMTr1 and CMTr2, respectively, have recently been identified. However, the structures of these enzymes and their mechanisms of action remain unknown. In the present study, we solve the crystal structures of the active CMTr1 catalytic domain in complex with a methyl group donor and a capped oligoribonucleotide, thereby revealing the mechanism of specific recognition of capped RNA. This mechanism differs significantly from viral enzymes, thus providing a framework for their specific targeting. Based on the crystal structure of CMTr1, a comparative model of the CMTr2 catalytic domain is generated. This model, together with mutational analysis, leads to the identification of residues involved in RNA and methyl group donor binding.

  1. SVM-based method for protein structural class prediction using secondary structural content and structural information of amino acids.

    PubMed

    Mohammad, Tabrez Anwar Shamim; Nagarajaram, Hampapathalu Adimurthy

    2011-08-01

    The knowledge collated from the known protein structures has revealed that the proteins are usually folded into the four structural classes: all-α, all-β, α/β and α + β. A number of methods have been proposed to predict the protein's structural class from its primary structure; however, it has been observed that these methods fail or perform poorly in the cases of distantly related sequences. In this paper, we propose a new method for protein structural class prediction using low homology (twilight-zone) protein sequences dataset. Since protein structural class prediction is a typical classification problem, we have developed a Support Vector Machine (SVM)-based method for protein structural class prediction that uses features derived from the predicted secondary structure and predicted burial information of amino acid residues. The examination of different individual as well as feature combinations revealed that the combination of secondary structural content, secondary structural and solvent accessibility state frequencies of amino acids gave rise to the best leave-one-out cross-validation accuracy of ~81% which is comparable to the best accuracy reported in the literature so far. PMID:21776605

  2. Secondary Impacts on Structures on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric; Walker, James D.; Grosch, Donald J.

    2010-01-01

    The Altair Lunar Lander is being designed for the planned return to the Moon by 2020. Since it is hoped that lander components will be re-used by later missions, studies are underway to examine the exposure threat to the lander sitting on the Lunar surface for extended periods. These threats involve both direct strikes of meteoroids on the vehicle as well as strikes from Lunar regolith and rock thrown by nearby meteorite strikes. Currently, the lander design is comprised of up to 10 different types of pressure vessels. These vessels included the manned habitation module, fuel, cryogenic fuel and gas storage containers, and instrument bays. These pressure vessels have various wall designs, including various aluminum alloys, honeycomb, and carbon-fiber composite materials. For some of the vessels, shielding is being considered. This program involved the test and analysis of six pressure vessel designs, one of which included a Whipple bumper shield. In addition to the pressure vessel walls, all the pressure vessels are wrapped in multi-layer insulation (MLI). Two variants were tested without the MLI to better understand the role of the MLI in the impact performance. The tests of performed were to examine the secondary impacts on these structures as they rested on the Lunar surface. If a hypervelocity meteor were to strike the surface nearby, it would throw regolith and rock debris into the structure at a much lower velocity. Also, when the manned module departs for the return to Earth, its rocket engines throw up debris that can impact the remaining lander components and cause damage. Glass spheres were used as a stimulant for the regolith material. Impact tests were performed with a gas gun to find the V50 of various sized spheres striking the pressure vessels. The impacts were then modeled and a fast-running approximate model for the V50 data was developed. This model was for performing risk analysis to assist in the vessel design and in the identification of ideal long-term mission sites. This paper reviews the impact tests and analysis and modeling examining the impact threat to various components in the lander design.

  3. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts

    PubMed Central

    Hafsa, Noor E.; Arndt, David; Wishart, David S.

    2015-01-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I′, II′ and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. PMID:25979265

  4. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.

    PubMed

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. PMID:25979265

  5. Visualizing the global secondary structure of a viral RNA genome with cryo-electron microscopy

    PubMed Central

    Garmann, Rees F.; Gopal, Ajaykumar; Athavale, Shreyas S.; Knobler, Charles M.; Gelbart, William M.; Harvey, Stephen C.

    2015-01-01

    The lifecycle, and therefore the virulence, of single-stranded (ss)-RNA viruses is regulated not only by their particular protein gene products, but also by the secondary and tertiary structure of their genomes. The secondary structure of the entire genomic RNA of satellite tobacco mosaic virus (STMV) was recently determined by selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE). The SHAPE analysis suggested a single highly extended secondary structure with much less branching than occurs in the ensemble of structures predicted by purely thermodynamic algorithms. Here we examine the solution-equilibrated STMV genome by direct visualization with cryo-electron microscopy (cryo-EM), using an RNA of similar length transcribed from the yeast genome as a control. The cryo-EM data reveal an ensemble of branching patterns that are collectively consistent with the SHAPE-derived secondary structure model. Thus, our results both elucidate the statistical nature of the secondary structure of large ss-RNAs and give visual support for modern RNA structure determination methods. Additionally, this work introduces cryo-EM as a means to distinguish between competing secondary structure models if the models differ significantly in terms of the number and/or length of branches. Furthermore, with the latest advances in cryo-EM technology, we suggest the possibility of developing methods that incorporate restraints from cryo-EM into the next generation of algorithms for the determination of RNA secondary and tertiary structures. PMID:25752599

  6. A survey of machine learning methods for secondary and supersecondary protein structure prediction.

    PubMed

    Ho, Hui Kian; Zhang, Lei; Ramamohanarao, Kotagiri; Martin, Shawn

    2013-01-01

    In this chapter we provide a survey of protein secondary and supersecondary structure prediction using methods from machine learning. Our focus is on machine learning methods applicable to β-hairpin and β-sheet prediction, but we also discuss methods for more general supersecondary structure prediction. We provide background on the secondary and supersecondary structures that we discuss, the features used to describe them, and the basic theory behind the machine learning methods used. We survey the machine learning methods available for secondary and supersecondary structure prediction and compare them where possible. PMID:22987348

  7. Structure-Based Alignment and Consensus Secondary Structures for Three HIV-Related RNA Genomes

    PubMed Central

    Lavender, Christopher A.; Gorelick, Robert J.; Weeks, Kevin M.

    2015-01-01

    HIV and related primate lentiviruses possess single-stranded RNA genomes. Multiple regions of these genomes participate in critical steps in the viral replication cycle, and the functions of many RNA elements are dependent on the formation of defined structures. The structures of these elements are still not fully understood, and additional functional elements likely exist that have not been identified. In this work, we compared three full-length HIV-related viral genomes: HIV-1NL4-3, SIVcpz, and SIVmac (the latter two strains are progenitors for all HIV-1 and HIV-2 strains, respectively). Model-free RNA structure comparisons were performed using whole-genome structure information experimentally derived from nucleotide-resolution SHAPE reactivities. Consensus secondary structures were constructed for strongly correlated regions by taking into account both SHAPE probing structural data and nucleotide covariation information from structure-based alignments. In these consensus models, all known functional RNA elements were recapitulated with high accuracy. In addition, we identified multiple previously unannotated structural elements in the HIV-1 genome likely to function in translation, splicing and other replication cycle processes; these are compelling targets for future functional analyses. The structure-informed alignment strategy developed here will be broadly useful for efficient RNA motif discovery. PMID:25992893

  8. A probabilistic model for secondary structure prediction from protein chemical shifts.

    PubMed

    Mechelke, Martin; Habeck, Michael

    2013-06-01

    Protein chemical shifts encode detailed structural information that is difficult and computationally costly to describe at a fundamental level. Statistical and machine learning approaches have been used to infer correlations between chemical shifts and secondary structure from experimental chemical shifts. These methods range from simple statistics such as the chemical shift index to complex methods using neural networks. Notwithstanding their higher accuracy, more complex approaches tend to obscure the relationship between secondary structure and chemical shift and often involve many parameters that need to be trained. We present hidden Markov models (HMMs) with Gaussian emission probabilities to model the dependence between protein chemical shifts and secondary structure. The continuous emission probabilities are modeled as conditional probabilities for a given amino acid and secondary structure type. Using these distributions as outputs of first- and second-order HMMs, we achieve a prediction accuracy of 82.3%, which is competitive with existing methods for predicting secondary structure from protein chemical shifts. Incorporation of sequence-based secondary structure prediction into our HMM improves the prediction accuracy to 84.0%. Our findings suggest that an HMM with correlated Gaussian distributions conditioned on the secondary structure provides an adequate generative model of chemical shifts. PMID:23292699

  9. Situational Interest: Its Multifaceted Structure in the Secondary Mathematics Classroom.

    ERIC Educational Resources Information Center

    Mitchell, Mathew

    Classroom boredom in the secondary mathematics classroom is a problem that can be addressed from knowledge of the intrinsic motivational variable of "interestingness." The lack of a theoretical model of interest is an obstacle in research that investigates this variable. This paper describes the three stages in the development of a model of…

  10. Importance of cis Determinants and Nitrogenase Activity in Regulated Stability of the Klebsiella pneumoniae Nitrogenase Structural Gene mRNA

    PubMed Central

    Simon, Holly M.; Gosink, Mark M.; Roberts, Gary P.

    1999-01-01

    The Klebsiella pneumoniae nitrogen fixation (nif) mRNAs are unusually stable, with half-lives of 20 to 30 min under conditions favorable to nitrogen fixation (limiting nitrogen, anaerobiosis, temperatures of 30°C). Addition of O2 or fixed nitrogen or temperature increases to 37°C or more result in the dramatic destabilization of the nif mRNAs, decreasing the half-lives by a factor of 3 to 5. A plasmid expression system, independent of nif transcriptional regulation, was used to define cis determinants required for the regulated stability of the 5.2-kb nifHDKTY mRNA and to test the model suggested by earlier work that NifA is required in trans to stabilize nif mRNA under nif-derepressing conditions. O2 regulation of nifHDKTY mRNA stability is impaired in a plasmid containing a deletion of a 499-bp region of nifH, indicating that a site(s) required for the O2-regulated stability of the mRNA is located within this region. The simple model suggested from earlier work that NifA is required for stabilizing nif mRNA under conditions favorable for nitrogen fixation was disproved, and in its place, a more complicated model involving the sensing of nitrogenase activity as a component of the system regulating mRNA stability is proposed. Analysis of nifY mutants and overexpression suggests a possible involvement of the protein in this sensing process. PMID:10368150

  11. The Globular State of the Single-Stranded RNA: Effect of the Secondary Structure Rearrangements

    PubMed Central

    Grigoryan, Zareh A.; Karapetian, Armen T.

    2015-01-01

    The mutual influence of the slow rearrangements of secondary structure and fast collapse of the long single-stranded RNA (ssRNA) in approximation of coarse-grained model is studied with analytic calculations. It is assumed that the characteristic time of the secondary structure rearrangement is much longer than that for the formation of the tertiary structure. A nonequilibrium phase transition of the 2nd order has been observed. PMID:26345143

  12. STITCHER: Dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions.

    PubMed

    Bryan, Allen W; O'Donnell, Charles W; Menke, Matthew; Cowen, Lenore J; Lindquist, Susan; Berger, Bonnie

    2012-02-01

    The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively 'stitches' strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer's amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies. PMID:22095906

  13. STITCHER: Dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions

    PubMed Central

    Bryan, Allen W; O’Donnell, Charles W; Menke, Matthew; Cowen, Lenore J; Lindquist, Susan; Berger, Bonnie

    2012-01-01

    The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively ‘stitches’ strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer’s amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies. Proteins 2012. © 2011 Wiley Periodicals, Inc. PMID:22095906

  14. The Structure of Secondary School Teacher Job Satisfaction and Its Relationship with Attrition and Work Enthusiasm

    ERIC Educational Resources Information Center

    Weiqi, Chen

    2007-01-01

    This study used the results of a questionnaire survey of 230 secondary school teachers to analyze the factors constituting job satisfaction and its effects on teacher attrition and work enthusiasm. The results show that (a) the structure of secondary school teacher job satisfaction is made up of ten components and is consistent with the model put…

  15. The Structure of Secondary School Teacher Job Satisfaction and Its Relationship with Attrition and Work Enthusiasm

    ERIC Educational Resources Information Center

    Weiqi, Chen

    2007-01-01

    This study used the results of a questionnaire survey of 230 secondary school teachers to analyze the factors constituting job satisfaction and its effects on teacher attrition and work enthusiasm. The results show that (a) the structure of secondary school teacher job satisfaction is made up of ten components and is consistent with the model put

  16. Determination of Secondary School Students' Cognitive Structure, and Misconception in Ecological Concepts through Word Association Test

    ERIC Educational Resources Information Center

    Ycel, Elif zata; zkan, Mulis

    2015-01-01

    In this study, we determined cognitive structures and misconceptions about basic ecological concepts by using "word association" tests on secondary school students, age between 12-14 years. Eighty-nine students participated in this study. Before WAT was generated, basic ecological concepts that take place in the secondary science

  17. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    ERIC Educational Resources Information Center

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  18. Determination of Secondary School Students' Cognitive Structure, and Misconception in Ecological Concepts through Word Association Test

    ERIC Educational Resources Information Center

    Yücel, Elif Özata; Özkan, Mulis

    2015-01-01

    In this study, we determined cognitive structures and misconceptions about basic ecological concepts by using "word association" tests on secondary school students, age between 12-14 years. Eighty-nine students participated in this study. Before WAT was generated, basic ecological concepts that take place in the secondary science…

  19. Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams

    PubMed Central

    Kerpedjiev, Peter; Hammer, Stefan; Hofacker, Ivo L.

    2015-01-01

    Motivation: The secondary structure of RNA is integral to the variety of functions it carries out in the cell and its depiction allows researchers to develop hypotheses about which nucleotides and base pairs are functionally relevant. Current approaches to visualizing secondary structure provide an adequate platform for the conversion of static text-based representations to 2D images, but are limited in their offer of interactivity as well as their ability to display larger structures, multiple structures and pseudoknotted structures. Results: In this article, we present forna, a web-based tool for displaying RNA secondary structure which allows users to easily convert sequences and secondary structures to clean, concise and customizable visualizations. It supports, among other features, the simultaneous visualization of multiple structures, the display of pseudoknotted structures, the interactive editing of the displayed structures, and the automatic generation of secondary structure diagrams from PDB files. It requires no software installation apart from a modern web browser. Availability and implementation: The web interface of forna is available at http://rna.tbi.univie.ac.at/forna while the source code is available on github at www.github.com/pkerpedjiev/forna. Contact: pkerp@tbi.univie.ac.at Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26099263

  20. A Non-parametric Bayesian Approach for Predicting RNA Secondary Structures

    NASA Astrophysics Data System (ADS)

    Sato, Kengo; Hamada, Michiaki; Mituyama, Toutai; Asai, Kiyoshi; Sakakibara, Yasubumi

    Since many functional RNAs form stable secondary structures which are related to their functions, RNA secondary structure prediction is a crucial problem in bioinformatics. We propose a novel model for generating RNA secondary structures based on a non-parametric Bayesian approach, called hierarchical Dirichlet processes for stochastic context-free grammars (HDP-SCFGs). Here non-parametric means that some meta-parameters, such as the number of non-terminal symbols and production rules, do not have to be fixed. Instead their distributions are inferred in order to be adapted (in the Bayesian sense) to the training sequences provided. The results of our RNA secondary structure predictions show that HDP-SCFGs are more accurate than the MFE-based and other generative models.

  1. Sheath structure transition controlled by secondary electron emission

    NASA Astrophysics Data System (ADS)

    Schweigert, I. V.; Langendorf, S. J.; Walker, M. L. R.; Keidar, M.

    2015-04-01

    In particle-in-cell Monte Carlo collision (PIC MCC) simulations and in an experiment we study sheath formation over an emissive floating Al2O3 plate in a direct current discharge plasma at argon gas pressure 10-4 Torr. The discharge glow is maintained by the beam electrons emitted from a negatively biased hot cathode. We observe three types of sheaths near the floating emissive plate and the transition between them is driven by changing the negative bias. The Debye sheath appears at lower voltages, when secondary electron emission is negligible. With increasing applied voltage, secondary electron emission switches on and a first transition to a new sheath type, beam electron emission (BEE), takes place. For the first time we find this specific regime of sheath operation near the floating emissive surface. In this regime, the potential drop over the plate sheath is about four times larger than the temperature of plasma electrons. The virtual cathode appears near the emissive plate and its modification helps to maintain the BEE regime within some voltage range. Further increase of the applied voltage U initiates the second smooth transition to the plasma electron emission sheath regime and the ratio Δφs/Te tends to unity with increasing U. The oscillatory behavior of the emissive sheath is analyzed in PIC MCC simulations. A plasmoid of slow electrons is formed near the plate and transported to the bulk plasma periodically with a frequency of about 25 kHz.

  2. A secondary copulatory structure in a female insect: a clasp for a nuptial meal?

    NASA Astrophysics Data System (ADS)

    Gwynne, Darryl T.

    2002-03-01

    Secondary copulatory structures are well-known in male dragonflies and spiders. Here I report a secondary copulatory organ in female ground weta, Hemiandrus pallitarsis (Ensifera, Orthoptera - crickets and allies). The organ, located on the underside of the abdomen, appears to secure the male's genitalia during the transfer of a spermatophylax nuptial meal to this location, an area quite separate from the female's primary copulatory structures, where the sperm ampulla is attached.

  3. Multiple structurally distinct ERα mRNA variants in zebrafish are differentially expressed by tissue type, stage of development and estrogen exposure.

    PubMed

    Cotter, Kellie A; Yershov, Anya; Novillo, Apolonia; Callard, Gloria V

    2013-12-01

    It is well established that estrogen-like environmental chemicals interact with the ligand-binding site of estrogen receptors (ERs) to disrupt transcriptional control of estrogen responsive targets. Here we investigate the possibility that estrogens also impact splicing decisions on estrogen responsive genes, such as that encoding ERα itself. Targeted PCR cloning was applied to identify six ERα mRNA variants in zebrafish. Sequencing revealed alternate use of transcription and translation start sites, multiple exon deletions, intron retention and alternate polyadenylation. As determined by quantitative (q)PCR, N-terminal mRNA variants predicting long (ERαA(L)) and short (ERα(S)) isoforms were differentially expressed by tissue-type, sex, stage of development and estrogen exposure. Whereas ERα(L) mRNA was diffusely distributed in liver, brain, heart, eye, and gonads, ERα(S) mRNA was preferentially expressed in liver (female>male) and ovary. Neither ERα(L) nor ERα(S) transcripts varied significantly during development, but 17β-estradiol selectively increased accumulation of ERα(S) mRNA (∼170-fold by 120 hpf), an effect mimicked by bisphenol-A and diethylstilbestrol. Significantly, a C-truncated variant (ERα(S)-Cx) lacking most of the ligand binding and AF-2 domains was transcribed exclusively from the short isoform promoter and was similar to ERα(S) in its tissue-, stage- and estrogen inducible expression. These results support the idea that promoter choice and alternative splicing of the esr1 gene of zebrafish are part of the autoregulatory mechanism by which estrogen modulates subsequent ERα expression, and further suggest that environmental estrogens could exert some of their toxic effects by altering the relative abundance of structurally and functionally distinct ERα isoforms. PMID:24090614

  4. Multiple Structurally Distinct ERα mRNA Variants in Zebrafish are Differentially Expressed by Tissue Type, Stage of Development and Estrogen Exposure

    PubMed Central

    Cotter, Kellie A.; Yershov, Anya; Novillo, Apolonia; Callard, Gloria V.

    2013-01-01

    It is well established that estrogen-like environmental chemicals interact with the ligand-binding site of estrogen receptors (ER) to disrupt transcriptional control of estrogen responsive targets. Here we investigate the possibility that estrogens also impact splicing decisions on estrogen responsive genes, such as that encoding ERα itself. Targeted PCR cloning was applied to identify six ERα mRNA variants in zebrafish. Sequencing revealed alternate use of transcription and translation start sites, multiple exon deletions, intron retention and alternate polyadenylation. As determined by quantitative (q)PCR, N-terminal mRNA variants predicting long (ERαL) and short (ERαS) isoforms were differentially expressed by tissue-type, sex, stage of development and estrogen exposure. Whereas ERαL mRNA was diffusely distributed in liver, brain, heart, eye, and gonads, ERαS mRNA was preferentially expressed in liver (female > male) and ovary. Neither ERαL nor ERαS transcripts varied significantly during development, but 17β-estradiol selectively increased accumulation of ERαS mRNA (~170-fold by 120 hpf), an effect mimicked by bisphenol-A and diethylstilbestrol. Significantly, a C-truncated variant (ERαS-Cx) lacking most of the ligand binding and AF-2 domains was transcribed exclusively from the short isoform promoter and was similar to ERαS in its tissue-, stage- and estrogen inducible expression. These results support the idea that promoter choice and alternative splicing of the esr1 gene of zebrafish are part of the autoregulatory mechanism by which estrogen modulates subsequent ERα expression, and further suggest that environmental estrogens could exert some of their toxic effects by altering the relative abundance of structurally and functionally distinct ERα isoforms. PMID:24090614

  5. Role of Adducin-like (hu-li tai shao) mRNA and protein localization in regulating cytoskeletal structure and function during Drosophila Oogenesis and early embryogenesis.

    PubMed

    Zaccai, M; Lipshitz, H D

    1996-01-01

    Adducin is a cytoskeletal protein that can function in vitro to bundle F-actin and to control the assembly of the F-actin/spectrin cytoskeletal network. We previously reported cloning of the Drosophila Adducin-like (Add) locus [Ding et al., 1993] also referred to as hu-li tai shao (hts) [Yue and Spradling, 1992], and identification of two adducin-related protein isoforms: a 95 x 10(3) Mr form (ADD-95) and an 87 x 10(3) Mr form (ADD-87) [Zaccai and Lipshitz, 1996]. ADD-87 protein is present throughout the oocyte cortex at stages 9 and 10 of oogenesis but is restricted to its anterior pole from stage 11 onward. This ADD-87 protein localization is preceded by localization of Add-hts mRNA first to the cortex and then to the anterior pole of the oocyte. Mutation of the swallow gene results in delocalization of Add-hts mRNA and ADD-87 protein from the cortex of stage 9 and 10 oocytes, and from the anterior pole of later stage oocytes. Early embryos produced by swallow or Add-hts mutant females have severe defects in the distribution of F-actin and spectrin as well as abnormalities in nuclear division, nuclear migration, and cellularization. In addition to their cytoskeletal defects, embryos produced by swallow females have an abnormal anterior pattern because bicoid mRNA is delocalized from the anterior pole. In contrast, bicoid mRNA is still found at the anterior of embryos produced by Add-hts mothers. Thus swallow functions to restrict bicoid mRNA and Add-hts mRNA to the cortex of the oocyte. Cortical restriction of Add-hts mRNA and protein is required for the normal structure and function of the early embryonic F-actin/spectrin cytoskeleton. A defective embryonic cytoskeleton can be induced in either of two ways: (1) by delocalization of functional ADD from the oocyte cortex (as in swallow mutants), or (2) by reduction of ADD function while retaining its normal cortical localization during oogenesis (as in Add-hts mutants). PMID:8952067

  6. 4SALE A tool for synchronous RNA sequence and secondary structure alignment and editing

    PubMed Central

    Seibel, Philipp N; Mller, Tobias; Dandekar, Thomas; Schultz, Jrg; Wolf, Matthias

    2006-01-01

    Background In sequence analysis the multiple alignment builds the fundament of all proceeding analyses. Errors in an alignment could strongly influence all succeeding analyses and therefore could lead to wrong predictions. Hand-crafted and hand-improved alignments are necessary and meanwhile good common practice. For RNA sequences often the primary sequence as well as a secondary structure consensus is well known, e.g., the cloverleaf structure of the t-RNA. Recently, some alignment editors are proposed that are able to include and model both kinds of information. However, with the advent of a large amount of reliable RNA sequences together with their solved secondary structures (available from e.g. the ITS2 Database), we are faced with the problem to handle sequences and their associated secondary structures synchronously. Results 4SALE fills this gap. The application allows a fast sequence and synchronous secondary structure alignment for large data sets and for the first time synchronous manual editing of aligned sequences and their secondary structures. This study describes an algorithm for the synchronous alignment of sequences and their associated secondary structures as well as the main features of 4SALE used for further analyses and editing. 4SALE builds an optimal and unique starting point for every RNA sequence and structure analysis. Conclusion 4SALE, which provides an user-friendly and intuitive interface, is a comprehensive toolbox for RNA analysis based on sequence and secondary structure information. The program connects sequence and structure databases like the ITS2 Database to phylogeny programs as for example the CBCAnalyzer. 4SALE is written in JAVA and therefore platform independent. The software is freely available and distributed from the website at PMID:17101042

  7. RNACluster: An integrated tool for RNA secondary structure comparison and clustering.

    PubMed

    Liu, Qi; Olman, V; Liu, Huiqing; Ye, Xiuzi; Qiu, Shilun; Xu, Ying

    2008-07-15

    RNA structure comparison is a fundamental problem in structural biology, structural chemistry, and bioinformatics. It can be used for analysis of RNA energy landscapes, conformational switches, and facilitating RNA structure prediction. The purpose of our integrated tool RNACluster is twofold: to provide a platform for computing and comparison of different distances between RNA secondary structures, and to perform cluster identification to derive useful information of RNA structure ensembles, using a minimum spanning tree (MST) based clustering algorithm. RNACluster employs a cluster identification approach based on a MST representation of the RNA ensemble data and currently supports six distance measures between RNA secondary structures. RNACluster provides a user-friendly graphical interface to allow a user to compare different structural distances, analyze the structure ensembles, and visualize predicted structural clusters. PMID:18271070

  8. Mechanism of mRNA binding to bovine mitochondrial ribosomes.

    PubMed

    Denslow, N D; Michaels, G S; Montoya, J; Attardi, G; O'Brien, T W

    1989-05-15

    The binding of mRNA to bovine mitochondrial ribosomes was investigated using triplet codons, homopolymers and heteropolymers of various lengths, and human mitochondrial mRNAs. In the absence of initiation factors and initiator tRNA, mitochondrial ribosomes do not bind triplet codons (AUG and UUU) or homopolymers (oligo(U] shorter than about 10 nucleotides. The RNA binding domain on the 28 S mitoribosomal subunit spans approximately 80 nucleotides of the mRNA, judging from the size of the fragments of poly(U,G) and natural mRNAs protected from RNase T1 digestion by this subunit, but the major binding interaction with the ribosome appears to occur over a 30-nucleotide stretch. Human mitochondrial mRNAs coding for subunits II and III of cytochrome c oxidase and subunit 1 of the NADH-ubiquinone oxidoreductase (complex I) were used in studying in detail the binding of mRNA to the small subunit of bovine mitochondrial ribosomes. We have determined that these mRNAs have considerable secondary structure in their 5'-terminal regions and that the initiation codon of each mRNA is sequestered in a stem structure. Little mRNA was bound to ribosomes in a manner conferring protection of the 5' termini from RNase T1 digestion, under standard conditions supporting the binding of artificial templates, but such binding was greatly stimulated by the addition of a mitochondrial extract. Initiation factors and tRNAs from Escherichia coli were unable to stimulate the 5' terminus protected binding of these mRNA molecules, demonstrating a requirement for homologous factors. Our results strongly suggest that mitochondrial initiation factors are required for the proper recognition and melting of the secondary structure in the 5'-terminal region of mitochondrial mRNAs, as a prerequisite for initiation of protein synthesis in mammalian mitochondria. PMID:2542274

  9. A unique secondary folding pattern for 5S RNA corresponds to the lowest energy homologous secondary structure in 17 different prokaryotes.

    PubMed Central

    Studnicka, G M; Eiserling, F A; Lake, J A

    1981-01-01

    A general secondary structure is proposed for the 5S RNA of prokaryotic ribosomes, based on helical energy filtering calculations. We have considered all secondary structures that are common to 17 different prokaryotic 5S RNAs and for each 5S sequence calculated the (global) minimum energy secondary structure (300,000 common structures are possible for each sequence). The 17 different minimum energy secondary structures all correspond, with minor differences, to a single, secondary structure model. This is strong evidence that this general 5S folding pattern corresponds to the secondary structure of the functional 5S rRNA. The general 5S secondary structure is forked and in analogy with the cloverleaf of tRNA is named the "wishbone" model. It constant 8 double helical regions; one in the stem, four in the first, or constant arm, and three in the second arm. Four of these double helical regions are present in a model earlier proposed (1) and four additional regions not proposed by them are presented here. In the minimum energy general structure, the four helices in the constant arm are exactly 15 nucleotide pairs long. These helices are stacked in the sequences from gram-positive bacteria and probably stacked in gram-negative sequences as well. In sequences from gram-positive bacteria the length of the constant arm is maintained at 15 stacked pairs by an unusual minimum energy interaction involving a C26-G57 base pair intercalated between two adjacent helical regions. PMID:6165963

  10. Structural Requirement in Clostridium perfringens Collagenase mRNA 5′ Leader Sequence for Translational Induction through Small RNA-mRNA Base Pairing

    PubMed Central

    Nomura, Nobuhiko; Nakamura, Kouji

    2013-01-01

    The Gram-positive anaerobic bacterium Clostridium perfringens is pathogenic to humans and animals, and the production of its toxins is strictly regulated during the exponential phase. We recently found that the 5′ leader sequence of the colA transcript encoding collagenase, which is a major toxin of this organism, is processed and stabilized in the presence of the small RNA VR-RNA. The primary colA 5′-untranslated region (5′UTR) forms a long stem-loop structure containing an internal bulge and masks its own ribosomal binding site. Here we found that VR-RNA directly regulates colA expression through base pairing with colA mRNA in vivo. However, when the internal bulge structure was closed by point mutations in colA mRNA, translation ceased despite the presence of VR-RNA. In addition, a mutation disrupting the colA stem-loop structure induced mRNA processing and ColA-FLAG translational activation in the absence of VR-RNA, indicating that the stem-loop and internal bulge structure of the colA 5′ leader sequence is important for regulation by VR-RNA. On the other hand, processing was required for maximal ColA expression but was not essential for VR-RNA-dependent colA regulation. Finally, colA processing and translational activation were induced at a high temperature without VR-RNA. These results suggest that inhibition of the colA 5′ leader structure through base pairing is the primary role of VR-RNA in colA regulation and that the colA 5′ leader structure is a possible thermosensor. PMID:23585542

  11. Atomic model of a cypovirus built from cryo-EM structure provides insight into the mechanism of mRNA capping

    PubMed Central

    Cheng, Lingpeng; Sun, Jingchen; Zhang, Kai; Mou, Zongjun; Huang, Xiaoxing; Ji, Gang; Sun, Fei; Zhang, Jingqiang; Zhu, Ping

    2011-01-01

    The cytoplasmic polyhedrosis virus (CPV) from the family Reoviridae belongs to a subgroup of “turreted” reoviruses, in which the mRNA capping activity occurs in a pentameric turret. We report a full atomic model of CPV built from a 3D density map obtained using cryoelectron microscopy. The image data for the 3D reconstruction were acquired exclusively from a CCD camera. Our structure shows that the enzymatic domains of the pentameric turret of CPV are topologically conserved and that there are five unique channels connecting the guanylyltransferase and methyltransferase regions. This structural organization reveals how the channels guide nascent mRNA sequentially to guanylyltransferase, 7-N-methyltransferase, and 2′-O-methyltransferase in the turret, undergoing the highly coordinated mRNA capping activity. Furthermore, by fitting the deduced amino acid sequence of the protein VP5 to 120 large protrusion proteins on the CPV capsid shell, we confirmed that this protrusion protein is encoded by CPV RNA segment 7. PMID:21220303

  12. The Role of Structural Elements of the 5'-Terminal Region of p53 mRNA in Translation under Stress Conditions Assayed by the Antisense Oligonucleotide Approach

    PubMed Central

    Swiatkowska, Agata; Zydowicz, Paulina; Gorska, Agnieszka; Suchacka, Julia; Dutkiewicz, Mariola; Ciesiołka, Jerzy

    2015-01-01

    The p53 protein is one of the major factors responsible for cell cycle regulation and stress response. In the 5’-terminal region of p53 mRNA, an IRES element has been found which takes part in the translational regulation of p53 expression. Two characteristic hairpin motifs are present in this mRNA region: G56-C169, with the first AUG codon, and U180-A218, which interacts with the Hdm2 protein (human homolog of mouse double minute 2 protein). 2′-OMe modified antisense oligomers hybridizing to the 5'-terminal region of p53 mRNA were applied to assess the role of these structural elements in translation initiation under conditions of cellular stress. Structural changes in the RNA target occurring upon oligomers’ binding were monitored by the Pb2+-induced cleavage method. The impact of antisense oligomers on the synthesis of two proteins, the full-length p53 and its isoform Δ40p53, was analysed in HT-29, MCF-7 and HepG2 cells, under normal conditions and under stress, as well as in vitro conditions. The results revealed that the hairpin U180-A218 and adjacent single-stranded region A219-A228 were predominantly responsible for high efficacy of IRES-mediated translation in the presence of stress factors. These motifs play a role of cis-acting elements which are able to modulate IRES activity, likely via interactions with protein factors. PMID:26513723

  13. Insights into mRNA export-linked molecular mechanisms of human disease through a Gle1 structure-function analysis

    PubMed Central

    Folkmann, Andrew W.; Dawson, T. Renee; Wente, Susan R.

    2013-01-01

    A critical step during gene expression is the directional export of nuclear messenger (m)RNA through nuclear pore complexes (NPCs) to the cytoplasm. During export, Gle1 in conjunction with inositol hexakisphosphate (IP6) spatially regulates the activity of the DEAD-box protein Dbp5 at the NPC cytoplasmic face. GLE1 mutations are causally linked to the human diseases lethal congenital contracture syndrome 1 (LCCS1) and lethal arthrogryposis with anterior horn cell disease (LAAHD). Here, structure prediction and functional analysis provide strong evidence to suggest that the LCCS1 and LAAHD disease mutations disrupt the function of Gle1 in mRNA export. Strikingly, direct fluorescence microscopy in living cells reveals a dramatic loss of steady-state NPC localization for GFP-gle1 proteins expressed from human gle1 genes harboring LAAHD and LCCS1 mutations. The potential significance of these residues is further clarified by analyses of sequence and predicted structural conservation. This work offers insights into the perturbed mechanisms underlying human LCCS-1 and LAAHD disease states and emphasizes the potential impact of altered mRNA transport and gene expression in human disease. PMID:24275432

  14. Cloning, structure and mRNA expression of human Cctg, which encodes the chaperonin subunit CCT gamma.

    PubMed

    Walkley, N A; Demaine, A G; Malik, A N

    1996-01-15

    We describe the cloning, DNA sequence analysis and mRNA expression analysis of human Cctg (HsCctg), a gene that encodes the gamma-subunit of the eukaryotic cytosolic 'chaperonin-containing TCP-1' (CCT). Partial clones representing the 3' region of HsCctg cDNA were isolated from a human kidney cDNA library, and the missing 5' region was amplified directly from human kidney cDNA. The Cctg mRNA transcript is expressed in numerous human and mouse tissues and, like Tcp-1/Ccta, Cctg mRNA is expressed at higher levels in mouse testis when compared with kidney and brain. Southern-blot analysis has also revealed the Cctg gene to be highly conserved in mouse, rat, sheep and frog. The 1901 bp HsCctg cDNA has a coding region of 1635 bp and encodes a predicted 60 kDa protein (544 amino acids). The predicted HsCCT gamma amino acid sequence shares a high degree of sequence similarity with gamma-subunits from the mouse Mus musculus (98% similarity), the yeast Saccharomyces cerevisiae (75% similarity) and the protozoan Tetrahymena pyriformis (76% similarity) as well as with other members of the TF55/TCP-1 family, such as human TCP-1/CCT alpha (55% similarity) and TCP-20/CCT zeta (54% similarity). HsCCT gamma also shares conserved domains previously identified in the TF55/TCP-1 family of chaperonins and more distantly related chaperonins such as GroEL and Hsp60. PMID:8573069

  15. Structural organization of the 16S ribosomal RNA from E. coli. Topography and secondary structure.

    PubMed

    Stiegler, P; Carbon, P; Zuker, M; Ebel, J P; Ehresmann, C

    1981-05-11

    Extensive studies in our laboratory using different ribonucleases resulted in valuable data on the topography of the E.coli 16S ribosomal RNA within the native 30S subunit, within partially unfolded 30S subunits, in the free state, and in association with individual ribosomal proteins. Such studies have precise details on the accessibility of certain residues and delineated highly accessible RNA regions. Furthermore, they provided evidence that the 16S rRNA is organized in its subunit into four distinct domains. A secondary structure model of the E.coli 16S rRNA has been derived from these topographical data. Additional information from comparative sequence analyses of the small ribosomal subunit RNAs from other species sequenced so far has been used. PMID:6170942

  16. A Comparative Taxonomy of Parallel Algorithms for RNA Secondary Structure Prediction

    PubMed Central

    Al-Khatib, Ra’ed M.; Abdullah, Rosni; Rashid, Nur’Aini Abdul

    2010-01-01

    RNA molecules have been discovered playing crucial roles in numerous biological and medical procedures and processes. RNA structures determination have become a major problem in the biology context. Recently, computer scientists have empowered the biologists with RNA secondary structures that ease an understanding of the RNA functions and roles. Detecting RNA secondary structure is an NP-hard problem, especially in pseudoknotted RNA structures. The detection process is also time-consuming; as a result, an alternative approach such as using parallel architectures is a desirable option. The main goal in this paper is to do an intensive investigation of parallel methods used in the literature to solve the demanding issues, related to the RNA secondary structure prediction methods. Then, we introduce a new taxonomy for the parallel RNA folding methods. Based on this proposed taxonomy, a systematic and scientific comparison is performed among these existing methods. PMID:20458364

  17. Structure of the coding region and mRNA variants of the apyrase gene from pea (Pisum sativum)

    NASA Technical Reports Server (NTRS)

    Shibata, K.; Abe, S.; Davies, E.

    2001-01-01

    Partial amino acid sequences of a 49 kDa apyrase (ATP diphosphohydrolase, EC 3.6.1.5) from the cytoskeletal fraction of etiolated pea stems were used to derive oligonucleotide DNA primers to generate a cDNA fragment of pea apyrase mRNA by RT-PCR and these primers were used to screen a pea stem cDNA library. Two almost identical cDNAs differing in just 6 nucleotides within the coding regions were found, and these cDNA sequences were used to clone genomic fragments by PCR. Two nearly identical gene fragments containing 8 exons and 7 introns were obtained. One of them (H-type) encoded the mRNA sequence described by Hsieh et al. (1996) (DDBJ/EMBL/GenBank Z32743), while the other (S-type) differed by the same 6 nucleotides as the mRNAs, suggesting that these genes may be alleles. The six nucleotide differences between these two alleles were found solely in the first exon, and these mutation sites had two types of consensus sequences. These mRNAs were found with varying lengths of 3' untranslated regions (3'-UTR). There are some similarities between the 3'-UTR of these mRNAs and those of actin and actin binding proteins in plants. The putative roles of the 3'-UTR and alternative polyadenylation sites are discussed in relation to their possible role in targeting the mRNAs to different subcellular compartments.

  18. Argumentation in Secondary School Students' Structured and Unstructured Chat Discussions

    ERIC Educational Resources Information Center

    Salminen, Timo; Marttunen, Miika; Laurinen, Leena

    2012-01-01

    Joint construction of new knowledge demands that persons can express their statements in a convincing way and explore other people's arguments constructively. For this reason, more knowledge on different means to support collaborative argumentation is needed. This study clarifies whether structured interaction supports students' critical and

  19. Inhibition of polyadenylation by stable RNA secondary structure.

    PubMed Central

    Klasens, B I; Das, A T; Berkhout, B

    1998-01-01

    The presence of a polyadenylation signal in the repeat (R) region of the HIV-1 genome, which is located at both the 5' and 3' ends of the viral transcripts, requires differential regulation of polyadenylation. The HIV-1 poly(A) site can fold in a stable stem-loop structure that is well-conserved among different human and simian immunodeficiency viruses. In this study, we tested the effect of this hairpin on polyadenylation by introducing mutations that either stabilize or destabilize the RNA structure. The HIV-1 sequences were inserted into the pSV2CAT reporter plasmid upstream of the SV40 early poly(A) site. These constructs were transfected into COS cells and transcripts were analyzed for the usage of the HIV-1 versus SV40 poly(A) site. The wild-type HIV-1 poly(A) site was used efficiently in this context and destabilization of the poly(A) hairpin did not affect the polyadenylation efficiency. In contrast, further stabilization of the hairpin severely inhibited HIV-1 polyadenylation. Additional mutations that repair the thermodynamic stability of this mutant hairpin restored the polyadenylation activity. These results indicate that the mechanism of polyadenylation can be repressed by stable RNA structure encompassing the poly(A) signal. Experiments performed at reduced temperatures also suggest an inverse correlation between the stability of the RNA structure and the efficiency of polyadenylation. PMID:9518478

  20. Cotranscriptional folding kinetics of ribonucleic acid secondary structures

    NASA Astrophysics Data System (ADS)

    Zhao, Peinan; Zhang, Wenbing; Chen, Shi-Jie

    2011-12-01

    We develop a systematic helix-based computational method to predict RNA folding kinetics during transcription. In our method, the transcription is modeled as stepwise process, where each step is the transcription of a nucleotide. For each step, the kinetics algorithm predicts the population kinetics, transition pathways, folding intermediates, and the transcriptional folding products. The folding pathways, rate constants, and the conformational populations for cotranscription folding show contrastingly different features than the refolding kinetics for a fully transcribed chain. The competition between the transcription speed and rate constants for the transitions between the different nascent structures determines the RNA folding pathway and the end product of folding. For example, fast transcription favors the formation of branch-like structures than rod-like structures and chain elongation in the folding process may reduce the probability of the formation of misfolded structures. Furthermore, good theory-experiment agreements suggest that our method may provide a reliable tool for quantitative prediction for cotranscriptional RNA folding, including the kinetics for the population distribution for the whole conformational ensemble.

  1. Argumentation in Secondary School Students' Structured and Unstructured Chat Discussions

    ERIC Educational Resources Information Center

    Salminen, Timo; Marttunen, Miika; Laurinen, Leena

    2012-01-01

    Joint construction of new knowledge demands that persons can express their statements in a convincing way and explore other people's arguments constructively. For this reason, more knowledge on different means to support collaborative argumentation is needed. This study clarifies whether structured interaction supports students' critical and…

  2. Membrane protein fragments reveal both secondary and tertiary structure of membrane proteins.

    PubMed

    Yeagle, Philip L; Albert, Arlene D

    2010-01-01

    Structural data on membrane proteins, while crucial to understanding cellular function, are scarce due to difficulties in applying to membrane proteins the common techniques of structural biology. Fragments of membrane proteins have been shown to reflect, in many cases, the secondary structure of the parent protein with fidelity and are more amenable to study. This chapter provides many examples of how the study of membrane protein fragments has provided new insight into the structure of the parent membrane protein. PMID:20665272

  3. Charge-Induced Unzipping of Isolated Proteins to a Defined Secondary Structure.

    PubMed

    González Flórez, Ana Isabel; Mucha, Eike; Ahn, Doo-Sik; Gewinner, Sandy; Schöllkopf, Wieland; Pagel, Kevin; von Helden, Gert

    2016-03-01

    Here we present a combined experimental and theoretical study on the secondary structure of isolated proteins as a function of charge state. In infrared spectra of the proteins ubiquitin and cytochrome c, amide I (C=O stretch) and amide II (N-H bend) bands can be found at positions that are typical for condensed-phase proteins. For high charge states a new band appears, substantially red-shifted from the amide II band observed at lower charge states. The observations are interpreted in terms of Coulomb-driven transitions in secondary structures from mostly helical to extended C5 -type hydrogen-bonded structures. Support for this interpretation comes from simple energy considerations as well as from quantum chemical calculations on model peptides. This transition in secondary structure is most likely universal for isolated proteins that occur in mass spectrometric experiments. PMID:26847383

  4. Charge‐Induced Unzipping of Isolated Proteins to a Defined Secondary Structure

    PubMed Central

    González Flórez, Ana Isabel; Mucha, Eike; Ahn, Doo‐Sik; Gewinner, Sandy; Schöllkopf, Wieland; Pagel, Kevin

    2016-01-01

    Abstract Here we present a combined experimental and theoretical study on the secondary structure of isolated proteins as a function of charge state. In infrared spectra of the proteins ubiquitin and cytochrome c, amide I (C=O stretch) and amide II (N–H bend) bands can be found at positions that are typical for condensed‐phase proteins. For high charge states a new band appears, substantially red‐shifted from the amide II band observed at lower charge states. The observations are interpreted in terms of Coulomb‐driven transitions in secondary structures from mostly helical to extended C5‐type hydrogen‐bonded structures. Support for this interpretation comes from simple energy considerations as well as from quantum chemical calculations on model peptides. This transition in secondary structure is most likely universal for isolated proteins that occur in mass spectrometric experiments. PMID:26847383

  5. FTIR analysis of protein secondary structure in cheddar cheese during ripening.

    PubMed

    Wang, Fang; Liu, Ai-ping; Ren, Fa-zheng; Zhang, Xiao-ying; Stephanie, Clark; Zhang, Lu-da; Guo, Hui-yuan

    2011-07-01

    Proteolysis is one of the most important biochemical reactions during cheese ripening. Studies on the secondary structure of proteins during ripening would be helpful for characterizing protein changes for assessing cheese quality. Fourier transform infrared spectroscopy (FTIR), with self-deconvolution, second derivative analysis and band curve-fitting, was used to characterize the secondary structure of proteins in Cheddar cheese during ripening. The spectra of the amide I region showed great similarity, while the relative contents of the secondary structures underwent a series of changes. As ripening progressed, the alpha-helix content decreased and the beta-sheet content increased. This structural shift was attributed to the strengthening of hydrogen bonds that resulted from hydrolysis of caseins. In summary, FTIR could provide the basis for rapid characterization of cheese that is undergoing ripening. PMID:21942024

  6. Scoring a Semi-Structured Interview for Assessment of Beginning Secondary Mathematics Teachers.

    ERIC Educational Resources Information Center

    Grover, Barbara W.; And Others

    The semi-structured interview was investigated as a content-based assessment designed to take into account the complexity of teaching. A semi-structured interview licensing assessment for secondary mathematics teachers was developed and tested by the Connecticut State Department of Education. The scoring system converted the open-ended verbal

  7. Macromolecular ab initio phasing enforcing secondary and tertiary structure

    PubMed Central

    Millán, Claudia; Sammito, Massimo; Usón, Isabel

    2015-01-01

    Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors’ approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a ‘still-life’, but some are correct enough for density modification and main-chain tracing to reveal the protein’s true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases. PMID:25610631

  8. A method for discovering common patterns from two RNA secondary structures and its application to structural repeat detection.

    PubMed

    Hua, Lei; Wang, Jason T L; Ji, Xiang; Malhotra, Ankur; Khaladkar, Mugdha; Shapiro, Bruce A; Zhang, Kaizhong

    2012-08-01

    We propose an ab initio method, named DiscoverR, for finding common patterns from two RNA secondary structures. The method works by representing RNA secondary structures as ordered labeled trees and performs tree pattern discovery using an efficient dynamic programming algorithm. DiscoverR is able to identify and extract the largest common substructures from two RNA molecules having different sizes without prior knowledge of the locations and topologies of these substructures. We also extend DiscoverR to find repeated regions in an RNA secondary structure, and apply this extended method to detect structural repeats in the 3'-untranslated region of a protein kinase gene. We describe the biological significance of a repeated hairpin found by our method, demonstrating the usefulness of the method. DiscoverR is implemented in Java; a jar file including the source code of the program is available for download at http://bioinformatics.njit.edu/DiscoverR. PMID:22809414

  9. Structuring Free-text Microbiology Culture Reports For Secondary Use.

    PubMed

    Yim, Wen-Wai; Evans, Heather L; Yetisgen, Meliha

    2015-01-01

    Microbiology lab culture reports are a frequently used diagnostic tool for clinical providers. However, their incorporation into clinical surveillance applications and evidence-based medicine can be severely hindered by the free-text nature of these reports. In this work, we (1) created a microbiology culture template to structure free-text microbiology reports, (2) generated an annotated microbiology report corpus, and (3) built a microbiology information extraction system. Specifically, we combined rule-based, hybrid, and statistical techniques to extract microbiology entities and fill templates for structuring data. System performances were favorable, with entity f1-score 0.889 and relation f1-score 0.795. We plan to incorporate these extractions as features for our ongoing ventilator-associated pneumonia surveillance project, though this tool can be used as an upstream process in other applications. Our newly created corpus includes 1442 unique gram stain and culture microbiology reports generated from a cohort of 715 patients at the University of Washington Medical Facilities. PMID:26306288

  10. Thermodynamic and phylogenetic prediction of RNA secondary structures in the coding region of hepatitis C virus.

    PubMed Central

    Tuplin, Andrew; Wood, Jonny; Evans, David J; Patel, Arvind H; Simmonds, Peter

    2002-01-01

    The existence and functional importance of RNA secondary structure in the replication of positive-stranded RNA viruses is increasingly recognized. We applied several computational methods to detect RNA secondary structure in the coding region of hepatitis C virus (HCV), including thermodynamic prediction, calculation of free energy on folding, and a newly developed method to scan sequences for covariant sites and associated secondary structures using a parsimony-based algorithm. Each of the prediction methods provided evidence for complex RNA folding in the core- and NS5B-encoding regions of the genome. The positioning of covariant sites and associated predicted stem-loop structures coincided with thermodynamic predictions of RNA base pairing, and localized precisely in parts of the genome with marked suppression of variability at synonymous sites. Combined, there was evidence for a total of six evolutionarily conserved stem-loop structures in the NS5B-encoding region and two in the core gene. The virus most closely related to HCV, GB virus-B (GBV-B) also showed evidence for similar internal base pairing in its coding region, although predictions of secondary structures were limited by the absence of comparative sequence data for this virus. While the role(s) of stem-loops in the coding region of HCV and GBV-B are currently unknown, the structure predictions in this study could provide the starting point for functional investigations using recently developed self-replicating clones of HCV. PMID:12088154

  11. Parity-Violation Energy of Biomolecules - IV: Protein Secondary Structure

    NASA Astrophysics Data System (ADS)

    Faglioni, Francesco; Cuesta, Inmaculada García

    2011-06-01

    The parity-violation energy difference between enantiomeric forms of the same amino acid sequence, from the amyloid β-peptide involved in Alzheimer's desease, in both α-helix and β-sheet configurations, is investigated with ab-initio techniques. To this end, we develop an extension of the N2 computational scheme that selectively includes neighboring amino acids to preserve the relevant H-bonds. In agreement with previous speculations, it is found that the helical α structure is associated with larger parity-violation energy differences than the corresponding β form. Implications for the evolution of biological homochirality are discussed as well as the relative importance of various effects in determining the parity-violation energy.

  12. Structural class prediction of protein using novel feature extraction method from chaos game representation of predicted secondary structure.

    PubMed

    Zhang, Lichao; Kong, Liang; Han, Xiaodong; Lv, Jinfeng

    2016-07-01

    Protein structural class prediction plays an important role in protein structure and function analysis, drug design and many other biological applications. Extracting good representation from protein sequence is fundamental for this prediction task. In recent years, although several secondary structure based feature extraction strategies have been specially proposed for low-similarity protein sequences, the prediction accuracy still remains limited. To explore the potential of secondary structure information, this study proposed a novel feature extraction method from the chaos game representation of predicted secondary structure to mainly capture sequence order information and secondary structure segments distribution information in a given protein sequence. Several kinds of prediction accuracies obtained by the jackknife test are reported on three widely used low-similarity benchmark datasets (25PDB, 1189 and 640). Compared with the state-of-the-art prediction methods, the proposed method achieves the highest overall accuracies on all the three datasets. The experimental results confirm that the proposed feature extraction method is effective for accurate prediction of protein structural class. Moreover, it is anticipated that the proposed method could be extended to other graphical representations of protein sequence and be helpful in future research. PMID:27084358

  13. Regulation of tyrosine hydroxylase transcription by hnRNP K and DNA secondary structure

    PubMed Central

    Banerjee, Kasturi; Wang, Meng; Cai, Elizabeth; Fujiwara, Nana; Baker, Harriet; Cave, John W.

    2014-01-01

    Regulation of tyrosine hydroxylase gene (Th) transcription is critical for specifying and maintaining the dopaminergic neuronal phenotype. Here we define a molecular regulatory mechanism for Th transcription conserved in tetrapod vertebrates. We show that heterogeneous nuclear ribonucleoprotein (hnRNP) K is a transactivator of Th transcription. It binds to previously unreported and evolutionarily conserved G:C-rich regions in the Th proximal promoter. hnRNP K directly binds C-rich single DNA strands within these conserved regions and also associates with double-stranded sequences when proteins, such as CREB, are bound to an adjacent cis-regulatory element. The single DNA strands within the conserved G:C-rich regions adopt either G-quadruplex or i-motif secondary structures. We also show that small molecule-mediated stabilization of these secondary structures represses Th promoter activity. These data suggest that these secondary structures are targets for pharmacological modulation of the dopaminergic phenotype. PMID:25493445

  14. A method for WD40 repeat detection and secondary structure prediction.

    PubMed

    Wang, Yang; Jiang, Fan; Zhuo, Zhu; Wu, Xian-Hui; Wu, Yun-Dong

    2013-01-01

    WD40-repeat proteins (WD40s), as one of the largest protein families in eukaryotes, play vital roles in assembling protein-protein/DNA/RNA complexes. WD40s fold into similar β-propeller structures despite diversified sequences. A program WDSP (WD40 repeat protein Structure Predictor) has been developed to accurately identify WD40 repeats and predict their secondary structures. The method is designed specifically for WD40 proteins by incorporating both local residue information and non-local family-specific structural features. It overcomes the problem of highly diversified protein sequences and variable loops. In addition, WDSP achieves a better prediction in identifying multiple WD40-domain proteins by taking the global combination of repeats into consideration. In secondary structure prediction, the average Q3 accuracy of WDSP in jack-knife test reaches 93.7%. A disease related protein LRRK2 was used as a representive example to demonstrate the structure prediction. PMID:23776530

  15. Fabrication of experimental three-meter space telescope primary and secondary mirror support structure

    NASA Technical Reports Server (NTRS)

    Mishler, H. W.

    1974-01-01

    The fabrication of prototype titanium alloy primary and secondary mirror support structures for a proposed experimental three-meter space telescope is discussed. The structure was fabricated entirely of Ti-6Al-4V tubing and plate. Fabrication included the development of procedures including welding, forming, and machining. Most of the structures was fabricated by gas-shielding tungsten-arc (GTA) welding with several major components fabricated by high frequency resistance (HFR) welding.

  16. New charge-bearing amino acid residues that promote β-sheet secondary structure.

    PubMed

    Maynard, Stacy J; Almeida, Aaron M; Yoshimi, Yasuharu; Gellman, Samuel H

    2014-11-26

    Proteinogenic amino acid residues that promote β-sheet secondary structure are hydrophobic (e.g., Ile or Val) or only moderately polar (e.g., Thr). The design of peptides intended to display β-sheet secondary structure in water typically requires one set of residues to ensure conformational stability and an orthogonal set, with charged side chains, to ensure aqueous solubility and discourage self-association. Here we describe new amino acids that manifest substantial β-sheet propensity, by virtue of β-branching, and also bear an ionizable group in the side chain. PMID:25393077

  17. Artificial Intelligence in Prediction of Secondary Protein Structure Using CB513 Database.

    PubMed

    Avdagic, Zikrija; Purisevic, Elvir; Omanovic, Samir; Coralic, Zlatan

    2009-01-01

    In this paper we describe CB513 a non-redundant dataset, suitable for development of algorithms for prediction of secondary protein structure. A program was made in Borland Delphi for transforming data from our dataset to make it suitable for learning of neural network for prediction of secondary protein structure implemented in MATLAB Neural-Network Toolbox. Learning (training and testing) of neural network is researched with different sizes of windows, different number of neurons in the hidden layer and different number of training epochs, while using dataset CB513. PMID:21347158

  18. Lyophilization-induced reversible changes in the secondary structure of proteins.

    PubMed Central

    Griebenow, K; Klibanov, A M

    1995-01-01

    Changes in the secondary structure of some dozen different proteins upon lyophilization of their aqueous solutions have been investigated by means of Fourier-transform infrared spectroscopy in the amide III band region. Dehydration markedly (but reversibly) alters the secondary structure of all the proteins studied, as revealed by both the quantitative analysis of the second derivative spectra and the Gaussian curve fitting of the original infrared spectra. Lyophilization substantially increases the beta-sheet content and lowers the alpha-helix content of all proteins. In all but one case, proteins become more ordered upon lyophilization. PMID:7479920

  19. Artificial Intelligence in Prediction of Secondary Protein Structure Using CB513 Database

    PubMed Central

    Avdagic, Zikrija; Purisevic, Elvir; Omanovic, Samir; Coralic, Zlatan

    2009-01-01

    In this paper we describe CB513 a non-redundant dataset, suitable for development of algorithms for prediction of secondary protein structure. A program was made in Borland Delphi for transforming data from our dataset to make it suitable for learning of neural network for prediction of secondary protein structure implemented in MATLAB Neural-Network Toolbox. Learning (training and testing) of neural network is researched with different sizes of windows, different number of neurons in the hidden layer and different number of training epochs, while using dataset CB513. PMID:21347158

  20. FASTR: A novel data format for concomitant representation of RNA sequence and secondary structure information.

    PubMed

    Bose, Tungadri; Dutta, Anirban; Mh, Mohammed; Gandhi, Hemang; Mande, Sharmila S

    2015-09-01

    Given the importance of RNA secondary structures in defining their biological role, it would be convenient for researchers seeking RNA data if both sequence and structural information pertaining to RNA molecules are made available together. Current nucleotide data repositories archive only RNA sequence data. Furthermore, storage formats which can frugally represent RNA sequence as well as structure data in a single file, are currently unavailable. This article proposes a novel storage format, 'FASTR', for concomitant representation of RNA sequence and structure. The storage efficiency of the proposed FASTR format has been evaluated using RNA data from various microorganisms. Results indicate that the size of FASTR formatted files (containing both RNA sequence as well as structure information) are equivalent to that of FASTA-format files, which contain only RNA sequence information. RNA secondary structure is typically represented using a combination of a string of nucleotide characters along with the corresponding dot-bracket notation indicating structural attributes. 'FASTR' - the novel storage format proposed in the present study enables a frugal representation of both RNA sequence and structural information in the form of a single string. In spite of having a relatively smaller storage footprint, the resultant 'fastr' string(s) retain all sequence as well as secondary structural information that could be stored using a dot-bracket notation. An implementation of the 'FASTR' methodology is available for download at http://metagenomics.atc.tcs.com/compression/fastr. PMID:26333403

  1. Web-Beagle: a web server for the alignment of RNA secondary structures

    PubMed Central

    Mattei, Eugenio; Pietrosanto, Marco; Ferrè, Fabrizio; Helmer-Citterich, Manuela

    2015-01-01

    Web-Beagle (http://beagle.bio.uniroma2.it) is a web server for the pairwise global or local alignment of RNA secondary structures. The server exploits a new encoding for RNA secondary structure and a substitution matrix of RNA structural elements to perform RNA structural alignments. The web server allows the user to compute up to 10 000 alignments in a single run, taking as input sets of RNA sequences and structures or primary sequences alone. In the latter case, the server computes the secondary structure prediction for the RNAs on-the-fly using RNAfold (free energy minimization). The user can also compare a set of input RNAs to one of five pre-compiled RNA datasets including lncRNAs and 3′ UTRs. All types of comparison produce in output the pairwise alignments along with structural similarity and statistical significance measures for each resulting alignment. A graphical color-coded representation of the alignments allows the user to easily identify structural similarities between RNAs. Web-Beagle can be used for finding structurally related regions in two or more RNAs, for the identification of homologous regions or for functional annotation. Benchmark tests show that Web-Beagle has lower computational complexity, running time and better performances than other available methods. PMID:25977293

  2. Secondary structure assignment for conformationally irregular peptides: comparison between DSSP, STRIDE and KAKSI.

    PubMed

    Zhang, Yuan; Sagui, Celeste

    2015-02-01

    Secondary structure assignment codes were built to explore the regularities associated with the periodic motifs of proteins, such as those in backbone dihedral angles or in hydrogen bonds between backbone atoms. Precise structure assignment is challenging because real-life secondary structures are susceptible to bending, twist, fraying and other deformations that can distance them from their geometrical prototypes. Although results from codes such as DSSP and STRIDE converge in well-ordered structures, the agreement between the secondary structure assignments is known to deteriorate as the conformations become more distorted. Conformationally irregular peptides therefore offer a great opportunity to explore the differences between these codes. This is especially important for unfolded proteins and intrinsically disordered proteins, which are known to exhibit residual and/or transient secondary structure whose characterization is challenging. In this work, we have carried out Molecular Dynamics simulations of (relatively) disordered peptides, specifically gp41659-671 (ELLELDKWASLWN), the homopeptide polyasparagine (N18), and polyasparagine dimers. We have analyzed the resulting conformations with DSSP and STRIDE, based on hydrogen-bond patterns (and dihedral angles for STRIDE), and KAKSI, based on α-Carbon distances; and carefully characterized the differences in structural assignments. The full-sequence Segment Overlap (SOV) scores, that quantify the agreement between two secondary structure assignments, vary from 70% for gp41659-671 (STRIDE as reference) to 49% for N18 (DSSP as reference). Major differences are observed in turns, in the distinction between α and 310 helices, and in short parallel-sheet segments. PMID:25424660

  3. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy

    PubMed Central

    Micsonai, András; Wien, Frank; Kernya, Linda; Lee, Young-Ho; Goto, Yuji; Réfrégiers, Matthieu; Kardos, József

    2015-01-01

    Circular dichroism (CD) spectroscopy is a widely used technique for the study of protein structure. Numerous algorithms have been developed for the estimation of the secondary structure composition from the CD spectra. These methods often fail to provide acceptable results on α/β-mixed or β-structure–rich proteins. The problem arises from the spectral diversity of β-structures, which has hitherto been considered as an intrinsic limitation of the technique. The predictions are less reliable for proteins of unusual β-structures such as membrane proteins, protein aggregates, and amyloid fibrils. Here, we show that the parallel/antiparallel orientation and the twisting of the β-sheets account for the observed spectral diversity. We have developed a method called β-structure selection (BeStSel) for the secondary structure estimation that takes into account the twist of β-structures. This method can reliably distinguish parallel and antiparallel β-sheets and accurately estimates the secondary structure for a broad range of proteins. Moreover, the secondary structure components applied by the method are characteristic to the protein fold, and thus the fold can be predicted to the level of topology in the CATH classification from a single CD spectrum. By constructing a web server, we offer a general tool for a quick and reliable structure analysis using conventional CD or synchrotron radiation CD (SRCD) spectroscopy for the protein science research community. The method is especially useful when X-ray or NMR techniques fail. Using BeStSel on data collected by SRCD spectroscopy, we investigated the structure of amyloid fibrils of various disease-related proteins and peptides. PMID:26038575

  4. Application of PRV-1 mRNA expression level and JAK2V617F mutation for the differentiating between polycytemia vera and secondary erythrocytosis and assessment of treatment by interferon or hydroxyurea.

    PubMed

    Tutaeva, V; Misurin, A V; Michiels, J J; Rozenberg, J M; Sokolova, M A; Ivanova, V L; Kolosheinova, T I; Manakova, T E; Levina, A A; Semenova, E A; Khoroshko, N D

    2007-12-01

    Increased PRV-1 mRNA expression and the presence of Jak2(V617F) mutation in peripheral blood granulocytes are specific markers for chronic myeloproliferative disorders (MPD), which facilitate the differential diagnosis between polycythemia vera (PV) and secondary erythrocytosis (SE) and may be helpful for monitoring treatment efficacy in MPD patients. We evaluated the presence of the Jak2V617F mutation and increased PRV-1 mRNA expression along with previously established markers - erythropoietin (EPO) independent colony formation (EEC) and erythropoietin level for diagnosis of PV and assessment of treatment efficiency. Increased PRV-1 expression was found in 37 out of 46 patients diagnosed with PV (80%), in 4 out of 15 patients diagnosed with essential thrombocythemia (ET) (27%) and in 4 out of 8 patients with chronic idiopathic myelofibrosis (CIMF) (50%), and increased PRV-1 expression plus EEC formation was observed in 19 of 36 examined MPD patients indicating the superiority of PVSG and WHO bone marrow criteria for the diagnosis of ET, PV and CIMF. We could confirm a very high sensitivity, specificity and utility of the Jak2(V617F) mutation for differential diagnosis between PV and SE. Spontaneous EEC, serum EPO levels, PRV-1 expression was evaluated in 22 PV patients who carried the Jak2(V617F) mutation. A concordance of increased PRV-1 expression and presence of Jak2(V617F) mutation in 19/22 (85%); of increased PRV-1/Jak2/EEC in 14/22 (63%); and of Jak2/PRV-1/EEC/low Epo level in 10/22 (45%) patients was found indicating the superiority of the presence of Jak2(V617F) mutation for the diagnosis of PV. IFN-alpha therapy in patients with PV was more effective then hydroxyurea treatment and significantly reduced increased PRV-1 expression together with higher levels of Jak2(V617F) mutation (50-100%) in PV patients treated with hydroxy urea (HU) and lower levels of Jak2(V617F) mutation (35-90%) in PV patients treated with IFN-alpha. Normal PRV-1 expression level was observed in 44% of PV patients who achieved clinical remission and only in 3% of patient who did not. These preliminary observations indicate that the Jak2(V617F) mutation in particular and PRV-1 overexpression appear to be suitable markers for monitoring treatment efficiency in prospective randomised clinical studies comparing pegylated interferon and hydroxyurea in well defined PV patients with a clear indication for cytoreductive therapy. PMID:17852451

  5. Secondary structure of the leader transcript from the Escherichia coli S10 ribosomal protein operon.

    PubMed Central

    Shen, P; Zengel, J M; Lindahl, L

    1988-01-01

    Genetic analysis of the autogenous control of the S10 ribosomal protein operon of Escherichia coli has suggested that the secondary or tertiary structure of the leader transcript is important for this regulation. We have therefore determined the secondary structure of the leader by enzyme digestion and chemical modification. Our results suggest that the 172 base leader exists in two forms, differing only immediately upstream of the Shine-Dalgarno sequence of the first gene. We discuss the possibility that the equilibrium between these alternate structures is important for the L4-mediated regulation of translation of the S10 operon. We have also determined the structure of several mutant transcripts. Correlation of these structures with the regulatory phenotypes suggest that a hairpin about 50 bases upstream of the first gene is essential for the control of translation of the operon. Finally, our results show that a two base substitution in an eight base loop destabilizes the attached stem. Images PMID:3050893

  6. Direct-Coupling Analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure prediction

    PubMed Central

    De Leonardis, Eleonora; Lutz, Benjamin; Ratz, Sebastian; Cocco, Simona; Monasson, Rémi; Schug, Alexander; Weigt, Martin

    2015-01-01

    Despite the biological importance of non-coding RNA, their structural characterization remains challenging. Making use of the rapidly growing sequence databases, we analyze nucleotide coevolution across homologous sequences via Direct-Coupling Analysis to detect nucleotide-nucleotide contacts. For a representative set of riboswitches, we show that the results of Direct-Coupling Analysis in combination with a generalized Nussinov algorithm systematically improve the results of RNA secondary structure prediction beyond traditional covariance approaches based on mutual information. Even more importantly, we show that the results of Direct-Coupling Analysis are enriched in tertiary structure contacts. By integrating these predictions into molecular modeling tools, systematically improved tertiary structure predictions can be obtained, as compared to using secondary structure information alone. PMID:26420827

  7. The four ingredients of single-sequence RNA secondary structure prediction. A unifying perspective

    PubMed Central

    Rivas, Elena

    2013-01-01

    Any method for RNA secondary structure prediction is determined by four ingredients. The architecture is the choice of features implemented by the model (such as stacked basepairs, loop length distributions, etc.). The architecture determines the number of parameters in the model. The scoring scheme is the nature of those parameters (whether thermodynamic, probabilistic, or weights). The parameterization stands for the specific values assigned to the parameters. These three ingredients are referred to as “the model.” The fourth ingredient is the folding algorithms used to predict plausible secondary structures given the model and the sequence of a structural RNA. Here, I make several unifying observations drawn from looking at more than 40 years of methods for RNA secondary structure prediction in the light of this classification. As a final observation, there seems to be a performance ceiling that affects all methods with complex architectures, a ceiling that impacts all scoring schemes with remarkable similarity. This suggests that modeling RNA secondary structure by using intrinsic sequence-based plausible “foldability” will require the incorporation of other forms of information in order to constrain the folding space and to improve prediction accuracy. This could give an advantage to probabilistic scoring systems since a probabilistic framework is a natural platform to incorporate different sources of information into one single inference problem. PMID:23695796

  8. New insights from cluster analysis methods for RNA secondary structure prediction.

    PubMed

    Rogers, Emily; Heitsch, Christine

    2016-05-01

    A widening gap exists between the best practices for RNA secondary structure prediction developed by computational researchers and the methods used in practice by experimentalists. Minimum free energy predictions, although broadly used, are outperformed by methods which sample from the Boltzmann distribution and data mine the results. In particular, moving beyond the single structure prediction paradigm yields substantial gains in accuracy. Furthermore, the largest improvements in accuracy and precision come from viewing secondary structures not at the base pair level but at lower granularity/higher abstraction. This suggests that random errors affecting precision and systematic ones affecting accuracy are both reduced by this 'fuzzier' view of secondary structures. Thus experimentalists who are willing to adopt a more rigorous, multilayered approach to secondary structure prediction by iterating through these levels of granularity will be much better able to capture fundamental aspects of RNA base pairing. WIREs RNA 2016, 7:278-294. doi: 10.1002/wrna.1334 For further resources related to this article, please visit the WIREs website. PMID:26971529

  9. The Pekin duck programmed death-ligand 1: cDNA cloning, genomic structure, molecular characterization and mRNA expression analysis.

    PubMed

    Yao, Q; Fischer, K P; Tyrrell, D L; Gutfreund, K S

    2015-04-01

    Programmed death ligand-1 (PD-L1) plays an important role in the attenuation of adaptive immune responses in higher vertebrates. Here, we describe the identification of the Pekin duck PD-L1 orthologue (duPD-L1) and its gene structure. The duPD-L1 cDNA encodes a 311-amino acid protein that has an amino acid identity of 78% and 42% with chicken and human PD-L1, respectively. Mapping of the duPD-L1 cDNA with duck genomic sequences revealed an exonic structure of its coding sequence similar to those of other vertebrates but lacked a noncoding exon 1. Homology modelling of the duPD-L1 extracellular domain was compatible with the tandem IgV-like and IgC-like IgSF domain structure of human PD-L1 (PDB ID: 3BIS). Residues known to be important for receptor binding of human PD-L1 were mostly conserved in duPD-L1 within the N-terminus and the G sheet, and partially conserved within the F sheet but not within sheets C and C'. DuPD-L1 mRNA was constitutively expressed in all tissues examined with highest expression levels in lung and spleen and very low levels of expression in muscle, kidney and brain. Mitogen stimulation of duck peripheral blood mononuclear cells transiently increased duPD-L1 mRNA expression. Our observations demonstrate evolutionary conservation of the exonic structure of its coding sequence, the extracellular domain structure and residues implicated in receptor binding, but the role of the longer cytoplasmic tail in avian PD-L1 proteins remains to be determined. PMID:25556810

  10. [Establishment of industry promotion technology system in Chinese medicine secondary exploitation based on "component structure theory"].

    PubMed

    Cheng, Xu-Dong; Feng, Liang; Zhang, Ming-Hua; Gu, Jun-Fei; Jia, Xiao-Bin

    2014-10-01

    The purpose of the secondary exploitation of Chinese medicine is to improve the quality of Chinese medicine products, enhance core competitiveness, for better use in clinical practice, and more effectively solve the patient suffering. Herbs, extraction, separation, refreshing, preparation and quality control are all involved in the industry promotion of Chinese medicine secondary exploitation of industrial production. The Chinese medicine quality improvement and industry promotion could be realized with the whole process of process optimization, quality control, overall processes improvement. Based on the "component structure theory", "multi-dimensional structure & process dynamic quality control system" and systematic and holistic character of Chinese medicine, impacts of whole process were discussed. Technology systems of Chinese medicine industry promotion was built to provide theoretical basis for improving the quality and efficacy of the secondary development of traditional Chinese medicine products. PMID:25751964

  11. Flow structure in submarine meandering channels, a continuous discussion on secondary flow

    NASA Astrophysics Data System (ADS)

    Abad, J. D.; Parker, G.; Sequeiros, O.; Spinewine, B.; Garcia, M. H.; Pirmez, C.

    2011-12-01

    The understanding of the flow structure in deep-sea turbidity currents is important for the formation of submarine meandering channels. Similarly to the case of subaerial channels, several types of secondary flows include turbulence-, curvature- and bed morphodynamic-driven flow structures that modulate sediment transport and channel bed morphodynamics. This study focuses on [1] a review of long-time research effort (Abad et al., 2011) that tackles the description of the secondary flow associated with a subaqueous bottom current (saline) in a high-curvature meandering channel and [2] ongoing numerical simulations of similar settings as the experiments to describe the entire flow structure. In the case of subaerial channels, the classical Rozovskiian paradigm is often invoked which indicates that the near-bottom secondary flow in a bend is directed inward. It has recently been suggested based on experimental and theoretical considerations, however, that this pattern is reversed (near-bottom secondary flow is directed outward) in the case of submarine meandering channels. Experimental results presented here, on the other hand, indicate near-bottom secondary flows that have the same direction as observed in a river (normal secondary flow). The implication is an apparent contradiction between experimental results. This study combines theory, experiments, reconstructions of field flows and ongoing simulations to resolve this apparent contradiction based on the flow densimetric Froude number. Three ranges of densimetric Froude number are found, such that a) in an upper regime, secondary flow is reversed, b) in a middle regime, it is normal and c) in a lower regime, it is reversed. These results are applied to field scale channel-forming turbidity currents in the Amazon submarine canyon-fan system (Amazon Channel) and the Monterey canyon and a saline underflow in the Black Sea flowing from the Bosphorus. Our analysis indicates that secondary flow should be normal throughout most of the Amazon submarine fan reach, lower-regime reversed in the case of the Black Sea underflow, and upper-regime reversed in the case of the Monterey canyon. The analysis predicts both normal and reversed regimes in the Amazon submarine canyon reach. This research presents insights on the importance of flow structure not only to describe subaqueous bed morphodynamics, but also to understand evolution of submarine meandering channels, therefore its importance for developing accurate morphodynamic models. Reference: Abad, J. D., Sequeiros, O. E., Spinewine, B., Pirmez, C., Garcia, M. H., Parker, G. (2011). SECONDARY CURRENT OF SALINE UNDERFLOW IN A HIGHLY MEANDERING CHANNEL: EXPERIMENTS AND THEORY. In press, Journal of Sedimentary Research

  12. The solution structure of REF2-I reveals interdomain interactions and regions involved in binding mRNA export factors and RNA

    PubMed Central

    Golovanov, Alexander P.; Hautbergue, Guillaume M.; Tintaru, Aura M.; Lian, Lu-Yun; Wilson, Stuart A.

    2006-01-01

    The RNA binding and export factor (REF) family of mRNA export adaptors are found in several nuclear protein complexes including the spliceosome, TREX, and exon junction complexes. They bind RNA, interact with the helicase UAP56/DDX39, and are thought to bridge the interaction between the export factor TAP/NXF1 and mRNA. REF2-I consists of three domains, with the RNA recognition motif (RRM) domain positioned in the middle. Here we dissect the interdomain interactions of REF2-I and present the solution structure of a functionally competent double domain (NM; residues 1–155). The N-terminal domain comprises a transient helix (N-helix) linked to the RRM by a flexible arm that includes an Arg-rich region. The N-helix, which is required for REF2-I function in vivo, overlaps the highly conserved REF-N motif and, together with the adjacent Arg-rich region, interacts transiently with the RRM. RNA interacts with REF2-I through arginine-rich regions in its N- and C-terminal domains, but we show that it also interacts weakly with the RRM. The mode of interaction is unusual for an RRM since it involves loops L1 and L5. NMR signal mapping and biochemical analysis with NM indicate that DDX39 and TAP interact with both the N and RRM domains of REF2-I and show that binding of these proteins and RNA will favor an open conformation for the two domains. The proximity of the RNA, TAP, and DDX39 binding sites on REF2-I suggests their binding may be mutually exclusive, which would lead to successive ligand binding events in the course of mRNA export. PMID:17000901

  13. Correlation of RNA Secondary Structure Statistics with Thermodynamic Stability and Applications to Folding

    PubMed Central

    Wu, Johnny C.; Gardner, David P.; Ozer, Stuart; Gutell, Robin R.; Ren, Pengyu

    2009-01-01

    The accurate prediction of the secondary and tertiary structure of an RNA with different folding algorithms are dependent on several factors, including the energy functions. However, an RNA higher-order structure cannot be accurately predicted from its sequence based on a limited set of energy parameters. The inter- and intra-molecular forces between this RNA and other small molecules and macromolecules, in addition to other factors in the cell such as pH, ionic strength, and temperature influence the complex dynamics associated with a single stranded RNA's transitioning to its secondary and tertiary structure. Since all of the factors that affect the formation of an RNAs three-dimensional structure cannot be determined experimentally, statistically derived potential energy has been used in the prediction of protein structure. In the current work, we evaluate the statistical free energy of various secondary structure motifs, including base-pair stacks, hairpin loops, and internal loops, using their statistical frequencies obtained from the comparative analysis of more than 50 000 RNA sequences stored in the RNA Comparative Analysis Database (rCAD) at the Comparative RNA Web (CRW) Site. Statistical energies were computed from the structural statistics for several datasets. While the statistical energies for base-pair stacks correlate with experimentally derived free energy values, suggesting a Boltzmann-like distribution, variation is observed between different molecules and their location on the phylogenetic tree of life. Our statistical energies for several structural elements were utilized in the Mfold RNA folding algorithm. The combined statistical energies for base-pair stacks, hairpins and internal loop flanks results in a significant improvement in the accuracy of secondary structure prediction; however, the hairpin flanks contribute the most. PMID:19540243

  14. A statistical learning approach to the modeling of chromatographic retention of oligonucleotides incorporating sequence and secondary structure data

    PubMed Central

    Sturm, Marc; Quinten, Sascha; Huber, Christian G.; Kohlbacher, Oliver

    2007-01-01

    We propose a new model for predicting the retention time of oligonucleotides. The model is based on ν support vector regression using features derived from base sequence and predicted secondary structure of oligonucleotides. Because of the secondary structure information, the model is applicable even at relatively low temperatures where the secondary structure is not suppressed by thermal denaturing. This makes the prediction of oligonucleotide retention time for arbitrary temperatures possible, provided that the target temperature lies within the temperature range of the training data. We describe different possibilities of feature calculation from base sequence and secondary structure, present the results and compare our model to existing models. PMID:17567619

  15. The Turn of the Screw: An Exercise in Protein Secondary Structure

    ERIC Educational Resources Information Center

    Pikaart, Michael

    2011-01-01

    An exercise using simple paper strips to illustrate protein helical and sheet secondary structures is presented. Drawing on the rich historical context of the use of physical models in protein biochemistry by early practitioners, in particular Linus Pauling, the purpose of this activity is to cultivate in students a hands-on, intuitive sense of

  16. Classroom Structure and Teacher Efficacy in Serving Students with Disabilities: Differences in Elementary and Secondary Teachers

    ERIC Educational Resources Information Center

    Shippen, Margaret E.; Flores, Margaret M.; Crites, Steven A.; Patterson, DaShaunda; Ramsey, Michelle L.; Houchins, David E.; Jolivette, Kristine

    2011-01-01

    The purpose of this study was to investigate the differential classroom structure and efficacy reported by general and special educators at the elementary and secondary level. General and special educators (n = 774, return rate of 37%) from a large school district in the southeast US participated in the study. The participants completed a modified…

  17. The Turn of the Screw: An Exercise in Protein Secondary Structure

    ERIC Educational Resources Information Center

    Pikaart, Michael

    2011-01-01

    An exercise using simple paper strips to illustrate protein helical and sheet secondary structures is presented. Drawing on the rich historical context of the use of physical models in protein biochemistry by early practitioners, in particular Linus Pauling, the purpose of this activity is to cultivate in students a hands-on, intuitive sense of…

  18. conSSert: Consensus SVM Model for Accurate Prediction of Ordered Secondary Structure.

    PubMed

    Kieslich, Chris A; Smadbeck, James; Khoury, George A; Floudas, Christodoulos A

    2016-03-28

    Accurate prediction of protein secondary structure remains a crucial step in most approaches to the protein-folding problem, yet the prediction of ordered secondary structure, specifically beta-strands, remains a challenge. We developed a consensus secondary structure prediction method, conSSert, which is based on support vector machines (SVM) and provides exceptional accuracy for the prediction of beta-strands with QE accuracy of over 0.82 and a Q2-EH of 0.86. conSSert uses as input probabilities for the three types of secondary structure (helix, strand, and coil) that are predicted by four top performing methods: PSSpred, PSIPRED, SPINE-X, and RAPTOR. conSSert was trained/tested using 4261 protein chains from PDBSelect25, and 8632 chains from PISCES. Further validation was performed using targets from CASP9, CASP10, and CASP11. Our data suggest that poor performance in strand prediction is likely a result of training bias and not solely due to the nonlocal nature of beta-sheet contacts. conSSert is freely available for noncommercial use as a webservice: http://ares.tamu.edu/conSSert/ . PMID:26928531

  19. Secondary School Students' Understanding of Mathematical Induction: Structural Characteristics and the Process of Proof Construction

    ERIC Educational Resources Information Center

    Palla, Marina; Potari, Despina; Spyrou, Panagiotis

    2012-01-01

    In this study, we investigate the meaning students attribute to the structure of mathematical induction (MI) and the process of proof construction using mathematical induction in the context of a geometric recursion problem. Two hundred and thirteen 17-year-old students of an upper secondary school in Greece participated in the study. Students'…

  20. [Conserved motifs in the primary and secondary ITS1 structures in bryophytes].

    PubMed

    Milyutina, I A; Ignatov, M S

    2015-01-01

    A study of the ITS1 nucleotide sequences of 1000 moss species of 62 families, 11 liverwort species from five orders, and one hornwort Anthoceros agrestis identified five highly conserved motifs (CM1-CM5), which are presumably involved in pre-rRNA processing. Although the ITS1 sequences substantially differ in length and the extent of divergence, the conserved motifs are found in all of them. ITS1 secondary structures were constructed for 76 mosses, and main regularities at conserved motif positioning were observed. The positions of processing sites in the ITS1 secondary structure of the yeast Saccharomyces cerevisiae were found to be similar to the positions of the conserved motifs in the ITS1 secondary structures of mosses and liverworts. In addition, a potential hairpin formation in the putative secondary structure of a pre-rRNA fragment was considered for the region between ITS1 CM4-CM5 and a highly conserved region between hairpins 49 and 50 (H49 and H50) of the 18S rRNA. PMID:26107892

  1. Effects and mechanisms of the secondary structure on the antimicrobial activity and specificity of antimicrobial peptides.

    PubMed

    Mai, Xuan-thanh; Huang, Jinfeng; Tan, Juanjuan; Huang, Yibing; Chen, Yuxin

    2015-07-01

    A 15-mer cationic α-helical antimicrobial peptide HPRP-A1 was used as the parent peptide to study the effects of peptide secondary structure on the biophysical properties and biological activities. Without changing the amino acid composition of HPRP-A1, we designed two α-helical peptides with either higher or lower helicity compared with the parent peptide, a β-sheet peptide and a random coiled peptide using de novo design approach. The secondary structures were confirmed by circular dichroism spectroscopy. The three α-helical peptides exhibited comparable antibacterial activities, but their hemolytic activity varied from extreme hemolysis to no hemolysis, which is correlated with their helicity. The β-sheet peptide shows poor antibacterial and strong hemolytic activities. More interestingly, the random coil peptide shows no antibacterial activity against Gram-negative bacteria, weak antibacterial activity against Gram-positive bacteria, and extremely weak hemolytic activity. Bacterial membrane permeabilization was also testified on peptides with different secondary structures. Tryptophan fluorescence experiment revealed that the peptide binding preference to the lipid vesicles for mimicking the prokaryotic or eukaryotic membranes was consistent with their biological activities. With the de novo design approach, we proved that it is important to maintain certain contents of amphipathic secondary structure for a desirable biological activity. We believe that the de novo design approach of relocation of the amino acids within a template sequence could be an effective approach in optimizing the specificity of an antimicrobial peptide. PMID:25826179

  2. Secondary flow structure in a model curved artery: 3D morphology and circulation budget analysis

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Plesniak, Michael W.

    2015-11-01

    In this study, we examined the rate of change of circulation within control regions encompassing the large-scale vortical structures associated with secondary flows, i.e. deformed Dean-, Lyne- and Wall-type (D-L-W) vortices at planar cross-sections in a 180° curved artery model (curvature ratio, 1/7). Magnetic resonance velocimetry (MRV) and particle image velocimetry (PIV) experiments were performed independently, under the same physiological inflow conditions (Womersley number, 4.2) and using Newtonian blood-analog fluids. The MRV-technique performed at Stanford University produced phase-averaged, three-dimensional velocity fields. Secondary flow field comparisons of MRV-data to PIV-data at various cross-sectional planes and inflow phases were made. A wavelet-decomposition-based approach was implemented to characterize various secondary flow morphologies. We hypothesize that the persistence and decay of arterial secondary flow vortices is intrinsically related to the influence of the out-of-plane flow, tilting, in-plane convection and diffusion-related factors within the control regions. Evaluation of these factors will elucidate secondary flow structures in arterial hemodynamics. Supported by the National Science Foundation under Grant Number CBET-0828903, and GW Center for Biomimetics and Bioinspired Engineering (COBRE). The MRV data were acquired at Stanford University in collaboration with Christopher Elkins and John Eaton.

  3. Secondary structure of the 3' untranslated region of flaviviruses: similarities and differences.

    PubMed

    Proutski, V; Gould, E A; Holmes, E C

    1997-03-15

    Genetic algorithm-based RNA secondary structure prediction was used in combination with comparative sequence analysis to construct models of folding for the distal part of the 3'-untranslated region of flaviviruses belonging to four serological groups. Elements of RNA secondary structure that are preserved among all the flaviviruses studied were revealed, despite the high degree of sequence divergence between them. At the same time, structural elements were observed that distinguish members of different serological groups and, in particular, a region of remarkable structural divergence between the tick-borne and mosquito-borne flaviviruses was found. Application of the genetic algorithm also revealed that the 3'-terminus of flaviviral genomic RNA may take on alternative conformations, which are not observed in the 3'-terminus of complementary minus strand RNA. These alternative folding patterns may have roles in the regulation of transcription and translation initiation and in the switch between them. PMID:9092629

  4. PolyprOnline: polyproline helix II and secondary structure assignment database

    PubMed Central

    Chebrek, Romain; Leonard, Sylvain; de Brevern, Alexandre G.; Gelly, Jean-Christophe

    2014-01-01

    The polyproline helix type II (PPII) is a regular protein secondary structure with remarkable features. Many studies have highlighted different crucial biological roles supported by this local conformation, e.g. in the interactions between biological macromolecules. Although PPII is less frequently present than regular secondary structures such as canonical alpha helices and beta strands, it corresponds to 3–10% of residues. Up to now, PPII is not assigned by most popular assignment tools, and therefore, remains insufficiently studied. PolyprOnline database is, therefore, dedicated to PPII structure assignment and analysis to facilitate the study of PPII structure and functional roles. This database is freely accessible from www.dsimb.inserm.fr/dsimb_tools/polyproline. PMID:25380779

  5. RNA secondary structures in a polymer-zeta model how foldings should be shaped for sparsification to establish a linear speedup.

    PubMed

    Jin, Emma Yu; Nebel, Markus E

    2016-02-01

    Various tools used to predict the secondary structure for a given RNA sequence are based on dynamic programming used to compute a conformation of minimum free energy. For structures without pseudoknots, a worst-case runtime proportional to [Formula: see text], with [Formula: see text] being the length of the sequence, results since a table of dimension [Formula: see text] has to be filled in while a single entry gives rise to a linear computational effort. However, it was recently observed that reformulating the corresponding dynamic programming recursion together with the bookkeeping of potential folding alternatives (a technique called sparsification) may reduce the runtime to [Formula: see text] on average, assuming that nucleotides of distance [Formula: see text] form a hydrogen bond (i.e. are paired) with probability [Formula: see text] for some constants [Formula: see text]. The latter is called the polymer-zeta model and plays a crucial role in speeding up the above mentioned algorithm. In this paper we discuss the application of the polymer-zeta property for the analysis of sparsification, showing that it must be applied conditionally on first and last positions to pair. Afterwards, we will investigate the combinatorics of RNA secondary structures assuming that the corresponding conditional probabilities behave according to a polymer-zeta probability model. We show that even if some of the structural parameters exhibit an almost realistic behavior on average, the expected shape of a folding in that model must be assumed to highly differ from those observed in nature. More precisely, we prove our polymer-zeta model to be appropriate for mRNA molecules but to fail in connection with almost every other family of RNA. Those findings explain the huge speedup of the dynamic programming algorithm observed empirically by Wexler et al. when applying sparsification in connection with mRNA data. PMID:26001743

  6. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage

    SciTech Connect

    Yuan,Y.; Pei, Y.; Ma, J.; Kuryavyi, V.; Zhadina, M.; Meister, G.; Chen, H.; Dauter, Z.; Tuschi, T.; Patel, D.

    2005-01-01

    Argonaute (Ago) proteins constitute a key component of the RNA-induced silencing complex (RISC). We report the crystal structure of Aquifex aeolicus Ago (Aa-Ago) together with binding and cleavage studies, which establish this eubacterial Ago as a bona fide guide DNA strand-mediated site-specific RNA endonuclease. We have generated a stereochemically robust model of the complex, where the guide DNA-mRNA duplex is positioned within a basic channel spanning the bilobal interface, such that the 5' phosphate of the guide strand can be anchored in a basic pocket, and the mRNA can be positioned for site-specific cleavage by RNase H-type divalent cation-coordinated catalytic Asp residues of the PIWI domain. Domain swap experiments involving chimeras of human Ago (hAgo1) and cleavage-competent hAgo2 reinforce the role of the PIWI domain in 'slicer' activity. We propose a four-step Ago-mediated catalytic cleavage cycle model, which provides distinct perspectives into the mechanism of guide strand-mediated mRNA cleavage within the RISC.

  7. Structural and Functional Analysis of the Interaction Between the Nucleoporin Nup98 and the mRNA Export Facto Rae1

    SciTech Connect

    Y Ren; H Seo; G Blobel; A Hoelz

    2011-12-31

    The export of mRNAs is a multistep process, involving the packaging of mRNAs into messenger ribonucleoprotein particles (mRNPs), their transport through nuclear pore complexes, and mRNP remodeling events prior to translation. Ribonucleic acid export 1 (Rae1) and Nup98 are evolutionarily conserved mRNA export factors that are targeted by the vesicular stomatitis virus matrix protein to inhibit host cell nuclear export. Here, we present the crystal structure of human Rae1 in complex with the Gle2-binding sequence (GLEBS) of Nup98 at 1.65 {angstrom} resolution. Rae1 forms a seven-bladed {beta}-propeller with several extensive surface loops. The Nup98 GLEBS motif forms an {approx}50-{angstrom}-long hairpin that binds with its C-terminal arm to an essentially invariant hydrophobic surface that extends over the entire top face of the Rae1 {beta}-propeller. The C-terminal arm of the GLEBS hairpin is necessary and sufficient for Rae1 binding, and we identify a tandem glutamate element in this arm as critical for complex formation. The Rae1 {center_dot} Nup98{sup GLEBS} surface features an additional conserved patch with a positive electrostatic potential, and we demonstrate that the complex possesses single-stranded RNA-binding capability. Together, these data suggest that the Rae1 {center_dot} Nup98 complex directly binds to the mRNP at several stages of the mRNA export pathway.

  8. Structural and functional analysis of the interaction between the nucleoporin Nup98 and the mRNA export factor Rae1

    SciTech Connect

    Ren, Yi; Seo, Hyuk-Soo; Blobel, Günter; Hoelz, André

    2010-07-23

    The export of mRNAs is a multistep process, involving the packaging of mRNAs into messenger ribonucleoprotein particles (mRNPs), their transport through nuclear pore complexes, and mRNP remodeling events prior to translation. Ribonucleic acid export 1 (Rae1) and Nup98 are evolutionarily conserved mRNA export factors that are targeted by the vesicular stomatitis virus matrix protein to inhibit host cell nuclear export. Here, we present the crystal structure of human Rae1 in complex with the Gle2-binding sequence (GLEBS) of Nup98 at 1.65 {angstrom} resolution. Rae1 forms a seven-bladed {beta}-propeller with several extensive surface loops. The Nup98 GLEBS motif forms an {approx} 50-{angstrom}-long hairpin that binds with its C-terminal arm to an essentially invariant hydrophobic surface that extends over the entire top face of the Rae1 {beta}-propeller. The C-terminal arm of the GLEBS hairpin is necessary and sufficient for Rae1 binding, and we identify a tandem glutamate element in this arm as critical for complex formation. The Rae1 {center_dot} Nup98{sup GLEBS} surface features an additional conserved patch with a positive electrostatic potential, and we demonstrate that the complex possesses single-stranded RNA-binding capability. Together, these data suggest that the Rae1 {center_dot} Nup98 complex directly binds to the mRNP at several stages of the mRNA export pathway.

  9. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage.

    PubMed

    Yuan, Yu-Ren; Pei, Yi; Ma, Jin-Biao; Kuryavyi, Vitaly; Zhadina, Maria; Meister, Gunter; Chen, Hong-Ying; Dauter, Zbigniew; Tuschl, Thomas; Patel, Dinshaw J

    2005-08-01

    Argonaute (Ago) proteins constitute a key component of the RNA-induced silencing complex (RISC). We report the crystal structure of Aquifex aeolicus Ago (Aa-Ago) together with binding and cleavage studies, which establish this eubacterial Ago as a bona fide guide DNA strand-mediated site-specific RNA endonuclease. We have generated a stereochemically robust model of the complex, where the guide DNA-mRNA duplex is positioned within a basic channel spanning the bilobal interface, such that the 5' phosphate of the guide strand can be anchored in a basic pocket, and the mRNA can be positioned for site-specific cleavage by RNase H-type divalent cation-coordinated catalytic Asp residues of the PIWI domain. Domain swap experiments involving chimeras of human Ago (hAgo1) and cleavage-competent hAgo2 reinforce the role of the PIWI domain in "slicer" activity. We propose a four-step Ago-mediated catalytic cleavage cycle model, which provides distinct perspectives into the mechanism of guide strand-mediated mRNA cleavage within the RISC. PMID:16061186

  10. Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction

    PubMed Central

    Dowell, Robin D; Eddy, Sean R

    2004-01-01

    Background RNA secondary structure prediction methods based on probabilistic modeling can be developed using stochastic context-free grammars (SCFGs). Such methods can readily combine different sources of information that can be expressed probabilistically, such as an evolutionary model of comparative RNA sequence analysis and a biophysical model of structure plausibility. However, the number of free parameters in an integrated model for consensus RNA structure prediction can become untenable if the underlying SCFG design is too complex. Thus a key question is, what small, simple SCFG designs perform best for RNA secondary structure prediction? Results Nine different small SCFGs were implemented to explore the tradeoffs between model complexity and prediction accuracy. Each model was tested for single sequence structure prediction accuracy on a benchmark set of RNA secondary structures. Conclusions Four SCFG designs had prediction accuracies near the performance of current energy minimization programs. One of these designs, introduced by Knudsen and Hein in their PFOLD algorithm, has only 21 free parameters and is significantly simpler than the others. PMID:15180907

  11. A permutation based simulated annealing algorithm to predict pseudoknotted RNA secondary structures.

    PubMed

    Tsang, Herbert H; Wiese, Kay C

    2015-01-01

    Pseudoknots are RNA tertiary structures which perform essential biological functions. This paper discusses SARNA-Predict-pk, a RNA pseudoknotted secondary structure prediction algorithm based on Simulated Annealing (SA). The research presented here extends previous work of SARNA-Predict and further examines the effect of the new algorithm to include prediction of RNA secondary structure with pseudoknots. An evaluation of the performance of SARNA-Predict-pk in terms of prediction accuracy is made via comparison with several state-of-the-art prediction algorithms using 20 individual known structures from seven RNA classes. We measured the sensitivity and specificity of nine prediction algorithms. Three of these are dynamic programming algorithms: Pseudoknot (pknotsRE), NUPACK, and pknotsRG-mfe. One is using the statistical clustering approach: Sfold and the other five are heuristic algorithms: SARNA-Predict-pk, ILM, STAR, IPknot and HotKnots algorithms. The results presented in this paper demonstrate that SARNA-Predict-pk can out-perform other state-of-the-art algorithms in terms of prediction accuracy. This supports the use of the proposed method on pseudoknotted RNA secondary structure prediction of other known structures. PMID:26558299

  12. Protein secondary-structure description with a coarse-grained model.

    PubMed

    Kneller, Gerald R; Hinsen, Konrad

    2015-07-01

    A coarse-grained geometrical model for protein secondary-structure description and analysis is presented which uses only the positions of the C(α) atoms. A space curve connecting these positions by piecewise polynomial interpolation is constructed and the folding of the protein backbone is described by a succession of screw motions linking the Frenet frames at consecutive C(α) positions. Using the ASTRAL subset of the SCOPe database of protein structures, thresholds are derived for the screw parameters of secondary-structure elements and demonstrate that the latter can be reliably assigned on the basis of a C(α) model. For this purpose, a comparative study with the widely used DSSP (Define Secondary Structure of Proteins) algorithm was performed and it was shown that the parameter distribution corresponding to the ensemble of all pure C(α) structures in the RCSB Protein Data Bank matches that of the ASTRAL database. It is expected that this approach will be useful in the development of structure-refinement techniques for low-resolution data. PMID:26143913

  13. Secondary Structure Transition and Critical Stress for a Model of Spider Silk Assembly.

    PubMed

    Giesa, Tristan; Perry, Carole C; Buehler, Markus J

    2016-02-01

    Spiders spin their silk from an aqueous solution to a solid fiber in ambient conditions. However, to date, the assembly mechanism in the spider silk gland has not been satisfactorily explained. In this paper, we use molecular dynamics simulations to model Nephila clavipes MaSp1 dragline silk formation under shear flow and determine the secondary structure transitions leading to the experimentally observed fiber structures. While no experiments are performed on the silk fiber itself, insights from this polypeptide model can be transferred to the fiber scale. The novelty of this study lies in the calculation of the shear stress (300-700 MPa) required for fiber formation and identification of the amino acid residues involved in the transition. This is the first time that the shear stress has been quantified in connection with a secondary structure transition. By study of molecules containing varying numbers of contiguous MaSp1 repeats, we determine that the smallest molecule size giving rise to a "silk-like" structure contains six polyalanine repeats. Through a probability analysis of the secondary structure, we identify specific amino acids that transition from α-helix to β-sheet. In addition to portions of the polyalanine section, these amino acids include glycine, leucine, and glutamine. The stability of β-sheet structures appears to arise from a close proximity in space of helices in the initial spidroin state. Our results are in agreement with the forces exerted by spiders in the silking process and the experimentally determined global secondary structure of spidroin and pulled MaSp1 silk. Our study emphasizes the role of shear in the assembly process of silk and can guide the design of microfluidic devices that attempt to mimic the natural spinning process and predict molecular requirements for the next generation of silk-based functional materials. PMID:26669270

  14. BioShell Threader: protein homology detection based on sequence profiles and secondary structure profiles

    PubMed Central

    Gront, Dominik; Blaszczyk, Maciej; Wojciechowski, Piotr; Kolinski, Andrzej

    2012-01-01

    The BioShell package has recently been extended with a web server for protein homology detection based on profile-to-profile alignment (known as 1D threading). Its aim is to assign structural templates to each domain of the query. The server uses sequence profiles that describe observed sequence variability and secondary structure profiles providing expected probability for a certain secondary structure type at a given position in a protein. Three independent predictors are used to increase the rate of successful predictions. Careful evaluation shows that there is nearly 80% chance that the query sequence belongs to the same SCOP family as the top scoring template. The Bioshell Threader server is freely available at: http://www.bioshell.pl/threader/. PMID:22693216

  15. Male secondary sexual structures and the systematics of the Thereus oppia species group (Lepidoptera, Lycaenidae, Eumaeini)

    PubMed Central

    Robbins, Robert K.; Heredia, María Dolores; Busby, Robert C.

    2015-01-01

    Abstract The Thereus oppia species group includes species with and without a scent pad, which is a histologically and morphologically characterized male secondary sexual structure on the dorsal surface of the forewing. To assess the hypothesis that these structures are lost evolutionarily, but not regained (Dollo’s Law), the taxonomy of this species group is revised. Thereus lomalarga sp. n., and Thereus brocki sp. n., are described. Diagnostic traits, especially male secondary structures, within the Thereus oppia species group are illustrated. Distributional and biological information is summarized for each species. Three species have been reared, and the caterpillars eat Loranthaceae. An inferred phylogeny is consistent with the hypothesis that scent pads in the Thereus oppia species group have been lost evolutionarily twice (in allopatry), and not re-gained. PMID:26448715

  16. HotKnots: Heuristic prediction of RNA secondary structures including pseudoknots

    PubMed Central

    REN, JIHONG; RASTEGARI, BAHARAK; CONDON, ANNE; HOOS, HOLGER H.

    2005-01-01

    We present HotKnots, a new heuristic algorithm for the prediction of RNA secondary structures including pseudoknots. Based on the simple idea of iteratively forming stable stems, our algorithm explores many alternative secondary structures, using a free energy minimization algorithm for pseudoknot free secondary structures to identify promising candidate stems. In an empirical evaluation of the algorithm with 43 sequences taken from the Pseudobase database and from the literature on pseudoknotted structures, we found that overall, in terms of the sensitivity and specificity of predictions, HotKnots outperforms the well-known Pseudoknots algorithm of Rivas and Eddy and the NUPACK algorithm of Dirks and Pierce, both based on dynamic programming approaches for limited classes of pseudoknotted structures. It also outperforms the heuristic Iterated Loop Matching algorithm of Ruan and colleagues, and in many cases gives better results than the genetic algorithm from the STAR package of van Batenburg and colleagues and the recent pknotsRG-mfe algorithm of Reeder and Giegerich. The HotKnots algorithm has been implemented in C/C++ and is available from http://www.cs.ubc.ca/labs/beta/Software/HotKnots. PMID:16199760

  17. Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein.

    PubMed

    Handa, N; Nureki, O; Kurimoto, K; Kim, I; Sakamoto, H; Shimura, Y; Muto, Y; Yokoyama, S

    1999-04-15

    The Sex-lethal (Sxl) protein of Drosophila melanogaster regulates alternative splicing of the transformer (tra) messenger RNA precursor by binding to the tra polypyrimidine tract during the sex-determination process. The crystal structure has now been determined at 2.6 A resolution of the complex formed between two tandemly arranged RNA-binding domains of the Sxl protein and a 12-nucleotide, single-stranded RNA derived from the tra polypyrimidine tract. The two RNA-binding domains have their beta-sheet platforms facing each other to form a V-shaped cleft. The RNA is characteristically extended and bound in this cleft, where the UGUUUUUUU sequence is specifically recognized by the protein. This structure offers the first insight, to our knowledge, into how a protein binds specifically to a cognate RNA without any intramolecular base-pairing. PMID:10217141

  18. Structures of RNA complexes with the Escherichia coli RNA pyrophosphohydrolase RppH unveil the basis for specific 5'-end-dependent mRNA decay.

    PubMed

    Vasilyev, Nikita; Serganov, Alexander

    2015-04-10

    5'-End-dependent RNA degradation impacts virulence, stress responses, and DNA repair in bacteria by controlling the decay of hundreds of mRNAs. The RNA pyrophosphohydrolase RppH, a member of the Nudix hydrolase superfamily, triggers this degradation pathway by removing pyrophosphate from the triphosphorylated RNA 5' terminus. Here, we report the x-ray structures of Escherichia coli RppH (EcRppH) in apo- and RNA-bound forms. These structures show distinct conformations of EcRppHRNA complexes on the catalytic pathway and suggest a common catalytic mechanism for Nudix hydrolases. EcRppH interacts with RNA by a bipartite mechanism involving specific recognition of the 5'-terminal triphosphate and the second nucleotide, thus enabling discrimination against mononucleotides as substrates. The structures also reveal the molecular basis for the preference of the enzyme for RNA substrates bearing guanine in the second position by identifying a protein cleft in which guanine interacts with EcRppH side chains via cation-? contacts and hydrogen bonds. These interactions explain the modest specificity of EcRppH at the 5' terminus and distinguish the enzyme from the highly selective RppH present in Bacillus subtilis. The divergent means by which RNA is recognized by these two functionally and structurally analogous enzymes have important implications for mRNA decay and the regulation of protein biosynthesis in bacteria. PMID:25657011

  19. Resonance assignments, secondary structure and topology of leukaemia inhibitory factor in solution.

    PubMed

    Hinds, M G; Maurer, T; Zhang, J G; Nicola, N A; Norton, R S

    1997-02-01

    The chemical shift assignments and secondary structure of a murine-human chimera, MH35, of leukaemia inhibitory factor (LIF), a 180-residue protein of molecular mass 20 kDa, have been determined from multidimensional heteronuclear NMR spectra acquired on a uniformly 13C, 15N-labelled sample. Secondary structure elements were defined on the basis of chemical shifts, NH-C alpha H coupling constants; medium-range NOEs and the location of slowly exchanging amide protons. The protein contains four alpha-helices, the relative orientations of which were determined on the basis of long-range, interhelical NOEs. The four helices are arranged in an up-up-down-down orientation, as found in other four-helical bundle cytokines. The overall topology of MH35-LIF is similar to that of the X-ray crystallographic structure for murine LIF [Robinson et al. (1994) Cell, 77, 1101-1116]. Differences between the X-ray structure and the solution structure are evident in the N-terminal tail, where the solution structure has a trans-Pro17 compared with the cis-Pro17 found in the crystal structure and the small antiparallel beta-sheet encompassing residues in the N-terminus and CD loop in the crystal structure is less stable. PMID:9090127

  20. Assessing the influence of electrostatic schemes on molecular dynamics simulations of secondary structure forming peptides

    NASA Astrophysics Data System (ADS)

    Monticelli, Luca; Simões, Carlos; Belvisi, Laura; Colombo, Giorgio

    2006-04-01

    Electrostatic interactions play a fundamental role in determining the structure and dynamics of biomolecules in solution. However the accurate representation of electrostatics in classical mechanics based simulation approaches such as molecular dynamics (MD) is a challenging task. Given the growing importance that MD simulation methods are taking on in the study of protein folding, protein stability and dynamics, and in structure prediction and design projects, it is important to evaluate the influence that different electrostatic schemes have on the results of MD simulations. In this paper we performed long timescale simulations (500 ns) of two peptides, beta3 and RN24 forming different secondary structures, using for each peptide four different electrostatic schemes (namely PME, reaction field correction, and cut-off schemes with and without neutralizing counterions) for a total of eight 500 ns long MD runs. The structural and conformational features of each peptide under the different conditions were evaluated in terms of the time dependence of the flexibility, secondary structure evolution, hydrogen-bonding patterns, and several other structural parameters. The degree of sampling for each simulation as a function of the electrostatic scheme was also critically evaluated. Our results suggest that, while in the case of the short peptide RN24 the performances of the four methods are comparable, PME and RF schemes perform better in maintaining the structure close to the native one for the β-sheet peptide beta3, in which long range contacts are mostly responsible for the definition of the native structure.

  1. A secondary mirror adjustment system with hexapod structure for optical telescope application

    NASA Astrophysics Data System (ADS)

    Zhou, Nan; Li, Chuang; Gao, Wei; Song, ZongXi; Zhao, Chao; Ren, GuoRui; Jing, Nan

    2014-09-01

    Benefiting from low cost, light weight and reduced volume in launch, deployable optical telescopes will be extensively applied in microsatellites. As a result of manufactured tolerance and external disturbance, the secondary mirror can't arrive at designed position precisely after a deployable telescope is unfolded. We investigate an adjustment system with six degrees of freedom based on hexapod structure to solve this problem. There are mainly four parts in this paper. Firstly, the adjustment methods of deployable telescopes for microsatellites are introduced. Generally several kinds of optical components can be adjusted to align a deployed telescope: primary mirror, tip/tilt mirror and secondary mirror. Due to its high sensitivity and convenience, the secondary mirror is chosen to collimate the optical system of the telescope. Secondly, an adjustment system with hexapod structure is designed for a secondary mirror with 85 mm diameter. After comparing the characteristics of step motors, piezo actuators and voice coil motors (VCMs), VCMs are selected as the linear actuators. By using optical gratings as displacement sensors in the system, we can make closed-loop control come true. The hexapod structure mainly consists of 6 VCMs, 6 optical gratings and 6 oblique legs with flexible hinges. The secondary mirror adjustment system is 83 mm in diameter and 55 mm high. It has tip/tilt rotational ranges of +/-2.205° with resolution of better than +/-0.007°, and translational ranges of +/-1.545 mm with resolution of better than +/-0.966 μm. Thirdly, the maximum stress and the maximum deformation in the adjustment system are computed with finite element method. At last, the kinematics problems of the adjustment system are discussed.

  2. Protein secondary structure prediction based on an improved support vector machines approach.

    PubMed

    Kim, Hyunsoo; Park, Haesun

    2003-08-01

    The prediction of protein secondary structure is an important step in the prediction of protein tertiary structure. A new protein secondary structure prediction method, SVMpsi, was developed to improve the current level of prediction by incorporating new tertiary classifiers and their jury decision system, and the PSI-BLAST PSSM profiles. Additionally, efficient methods to handle unbalanced data and a new optimization strategy for maximizing the Q(3) measure were developed. The SVMpsi produces the highest published Q(3) and SOV94 scores on both the RS126 and CB513 data sets to date. For a new KP480 set, the prediction accuracy of SVMpsi was Q(3) = 78.5% and SOV94 = 82.8%. Moreover, the blind test results for 136 non-redundant protein sequences which do not contain homologues of training data sets were Q(3) = 77.2% and SOV94 = 81.8%. The SVMpsi results in CASP5 illustrate that it is another competitive method to predict protein secondary structure. PMID:12968073

  3. Two-photon circular dichroism of molecular structures simulating L-tryptophan residues in proteins with secondary structures

    NASA Astrophysics Data System (ADS)

    Vesga, Yuly; Diaz, Carlos; Higgs, Mary; Hernandez, Florencio E.

    2014-05-01

    Herein, we report on the calculation and the comparative analysis of the theoretical two-photon circular dichroism (TPCD) spectra of L-tryptophan (Trp) residues in proteins with secondary structures (α-helix, β-strand and random coil) conformation, down to the far-UV region (FUV). The examination of the TPCD spectra of the different conformers in each configuration reveals distinctive fingerprints in the FUV, a dark spectral region for electronic circular dichroism (ECD). Our results show the potential of FUV-TPCD to identify and study protein structures in a region never assessed before but filled with important structural information.

  4. Secondary structure of antifreeze proteins from overwintering larvae of the beetle Dendroides canadensis.

    PubMed

    Li, N; Kendrick, B S; Manning, M C; Carpenter, J F; Duman, J G

    1998-12-01

    Antifreeze proteins from overwintering larvae of the beetle Dendroides canadensis are among the most active antifreeze proteins known. The Dendroides AFPs (DAFPs) consist of 6 or 7, 12- or 13-mer repeat units with a consensus sequence of -C-T-X3-S-X5-X6-C-X8-X9-A-X11-T-X13-. Nearly all of the Cys residues are in internal disulfide bridges between positions 1 and 7 within the repeats. The study presented here identified the secondary structure of the DAFPs using infrared and circular dichroism (CD) spectroscopies. The eight disulfide bridges impose significant constraints on potential secondary structural features (i.e., a number of three-residue gamma-turns) which may lead to unusual infrared and CD spectra that require special interpretation. At 25 degreesC the DAFPs contain approximately 46% beta-sheet, 39% turn, 2% helix, and 13% random structure. In the presence of ice there is a slight increase in helix and beta-sheet structures and a decrease in both turn and especially random structures. This change in the presence of ice may reflect a certain amount of flexibility in the DAFP structure. These structural changes may permit an improved lattice match between the DAFPs and ice, a requisite for the noncolligative freezing-point-depressing activity of the DAFPs. PMID:9826425

  5. Small-angle X-ray scattering: a bridge between RNA secondary structures and three-dimensional topological structures

    SciTech Connect

    Fang, Xianyang; Stagno, Jason R.; Bhandari, Yuba R.; Zuo, Xiaobing; Wang, Yun-Xing

    2015-02-01

    Whereas the structures of small to medium-sized well folded RNA molecules often can be determined by either X-ray crystallography or NMR spectroscopy, obtaining structural information for large RNAs using experimental, computational, or combined approaches remains a major interest and challenge. RNA is very sensitive to small-angle X-ray scattering (SAXS) due to high electron density along phosphate-sugar backbones, whose scattering contribution dominates SAXS intensity. For this reason, SAXS is particularly useful in obtaining global RNA structural information that outlines backbone topologies and, therefore, molecular envelopes. Such information is extremely valuable in bridging the gap between the secondary structures and three-dimensional topological structures of RNAmolecules, particularly those that have proven difficult to study using other structuredetermination methods. Here we review published results of RNA topological structures derived from SAXS data or in combination with other experimental data, as well as details on RNA sample preparation for SAXS experiments.

  6. Analysis of the secondary structure of a protein's N-terminal

    NASA Astrophysics Data System (ADS)

    Floare, C. G.; Bogdan, M.; Horovitz, O.; Mocanu, A.; Tomoaia-Cotisel, M.

    2009-08-01

    The major protein component from aleurone cells of barley (Hordeum vulgare L.), PACB, is related to 7S globulins present in other cereals and to the vicilin-type 7S globulins of legumes and cotton seed. It contains 4 subunits of about 20, 25, 40 and 50 kDa molecular weights. The N-terminal sequence of 16 amino acids (over 260 atoms) in the protein was previously determined, and our aim is the prediction of its secondary structure. The empirical Chou-Fasman method was applied in an improved version as well as the empirical DSC method (discrimination of protein secondary structure class) with quite similar results. A molecular dynamics simulation was also performed, using the FF99SB forcefield within AMBER version 9.0. Solvation effects were incorporated using the Born model. The results are compared and a 3D model is proposed.

  7. Solution secondary structure of calcium-saturated troponin C monomer determined by multidimensional heteronuclear NMR spectroscopy.

    PubMed Central

    Slupsky, C. M.; Reinach, F. C.; Smillie, L. B.; Sykes, B. D.

    1995-01-01

    The solution secondary structure of calcium-saturated skeletal troponin C (TnC) in the presence of 15% (v/v) trifluoroethanol (TFE), which has been shown to exist predominantly as a monomer (Slupsky CM, Kay CM, Reinach FC, Smillie LB, Sykes BD, 1995, Biochemistry 34, forthcoming), has been investigated using multidimensional heteronuclear nuclear magnetic resonance spectroscopy. The 1H, 15N, and 13C NMR chemical shift values for TnC in the presence of TFE are very similar to values obtained for calcium-saturated NTnC (residues 1-90 of skeletal TnC), calmodulin, and synthetic peptide homodimers. Moreover, the secondary structure elements of TnC are virtually identical to those obtained for calcium-saturated NTnC, calmodulin, and the synthetic peptide homodimers, suggesting that 15% (v/v) TFE minimally perturbs the secondary and tertiary structure of this stably folded protein. Comparison of the solution structure of calcium-saturated TnC with the X-ray crystal structure of half-saturated TnC reveals differences in the phi/psi angles of residue Glu 41 and in the linker between the two domains. Glu 41 has irregular phi/psi angles in the crystal structure, producing a kink in the B helix, whereas in calcium-saturated TnC, Glu 41 has helical phi/psi angles, resulting in a straight B helix. The linker between the N and C domains of calcium-saturated TnC is flexible in the solution structure. PMID:7670371

  8. Chicken growth-associated protein (GAP)-43: primary structure and regulated expression of mRNA during embryogenesis.

    PubMed

    Baizer, L; Alkan, S; Stocker, K; Ciment, G

    1990-01-01

    Growth-associated protein (GAP)-43 is a neuron-specific phosphoprotein whose expression is associated with axonal outgrowth during neuronal development and regeneration. In order to investigate the expression of this gene product in the early developing nervous system we have isolated and sequenced a cDNA for chicken GAP-43. The predicted amino acid sequence for chicken GAP-43 displays extensive similarity to that of the mammalian protein, particularly in the amino-terminal region, to which functional domains of the protein have been assigned. The cDNA hybridizes with two RNAs of differing molecular weights on Northern blots; both appear to be regulated similarly. These RNAs first appear in the brain on embryonic day 3 (E3), suggesting that GAP-43 begins to be expressed when neuroblasts become post-mitotic. In situ hybridization analysis reveals that GAP-43 RNA is expressed by several neural structures in the chick embryo, including derivatives of the neural tube, neural crest, and neuroectodermal placodes. PMID:2153895

  9. Extremely Slow Dynamics of an Abiotic Helical Assembly: Unusual Relevance to the Secondary Structure of Proteins.

    PubMed

    Avinash, M B; Govindaraju, T

    2013-02-21

    Serendipitously, we found that isoleucine methylester functionalized perylenediimide 1 undergoes an extremely slow supramolecular helical assembly over a day's time. Surprisingly, heating led to irreversible chiral denaturation. However, reversible helical assembly could be achieved only in the presence of nondenatured aggregates of 1, which act as seeds. The intriguing functional relevance deduced from 1 was employed to draw parallels with the secondary structure of proteins, envisaging its plausible implications. PMID:26281870

  10. Secondary circulation cells in river channel confluences: measurement artefacts or coherent flow structures?

    NASA Astrophysics Data System (ADS)

    Lane, S. N.; Bradbrook, K. F.; Richards, K. S.; Biron, P. M.; Roy, A. G.

    2000-07-01

    This paper is concerned with the representation of secondary circulation in river channel confluences. Recent research has emphasized the complex three-dimensional flow fields that exist where two river channels join. Field and laboratory measurements have been developed to describe time-averaged flow fields in terms of primary and secondary circulation, and to interpret these in terms of key generating processes. Central to this research is the need to understand the effect that flow structures have upon both mixing processes and confluence geomorphology, notably the development of scour-holes within the junction zone. One of the common problems faced by this research is the dependence of observed secondary flow structures upon the rotation plane for which they are determined. Different researchers have used different rotation planes, such that intercomparison of results from different field sites is difficult. Problems also arise when only two-dimensional measurements (e.g. downstream and cross-stream) are available, and vertical velocities need to be inferred from analysis of secondary circulation patterns. If different analytical methods produce different patterns, so different inferences could be reached. This paper uses a numerical model to show: (i) that different analytical methods do result in very different estimates of the strength of secondary circulation; (ii) that there are problems in inferring vertical velocities from secondary circulation cells identified using these methods in confluences, most notably as a result of the effects of planform acceleration and deceleration; and (iii) that field and laboratory measurements suffer from being unable to measure the three-dimensional flow field instantaneously, and hence allow understanding of the evolution of flow structures through time. A three-dimensional solution of the Navier-Stokes equations for open channel flow, combined with a free surface approximation and an unsteady turbulence model, allows representation of the three-dimensional time-averaged flow field, and some aspects of the unsteady evolution of these flow structures. Hence, the researcher can be freed from the dependence of results obtained upon the analytical method chosen. This emphasizes the downstream transport of mass in the form of a helix, which will be central in zones of flow convergence or divergence, rather than the more traditional recognition of closed helical circulation cells.

  11. Secondary structure encodes a cooperative tertiary folding funnel in the Azoarcus ribozyme.

    PubMed

    Mustoe, Anthony M; Al-Hashimi, Hashim M; Brooks, Charles L

    2016-01-01

    A requirement for specific RNA folding is that the free-energy landscape discriminate against non-native folds. While tertiary interactions are critical for stabilizing the native fold, they are relatively non-specific, suggesting additional mechanisms contribute to tertiary folding specificity. In this study, we use coarse-grained molecular dynamics simulations to explore how secondary structure shapes the tertiary free-energy landscape of the Azoarcus ribozyme. We show that steric and connectivity constraints posed by secondary structure strongly limit the accessible conformational space of the ribozyme, and that these so-called topological constraints in turn pose strong free-energy penalties on forming different tertiary contacts. Notably, native A-minor and base-triple interactions form with low conformational free energy, while non-native tetraloop/tetraloop-receptor interactions are penalized by high conformational free energies. Topological constraints also give rise to strong cooperativity between distal tertiary interactions, quantitatively matching prior experimental measurements. The specificity of the folding landscape is further enhanced as tertiary contacts place additional constraints on the conformational space, progressively funneling the molecule to the native state. These results indicate that secondary structure assists the ribozyme in navigating the otherwise rugged tertiary folding landscape, and further emphasize topological constraints as a key force in RNA folding. PMID:26481360

  12. Secondary structure encodes a cooperative tertiary folding funnel in the Azoarcus ribozyme

    PubMed Central

    Mustoe, Anthony M.; Al-Hashimi, Hashim M.; Brooks, Charles L.

    2016-01-01

    A requirement for specific RNA folding is that the free-energy landscape discriminate against non-native folds. While tertiary interactions are critical for stabilizing the native fold, they are relatively non-specific, suggesting additional mechanisms contribute to tertiary folding specificity. In this study, we use coarse-grained molecular dynamics simulations to explore how secondary structure shapes the tertiary free-energy landscape of the Azoarcus ribozyme. We show that steric and connectivity constraints posed by secondary structure strongly limit the accessible conformational space of the ribozyme, and that these so-called topological constraints in turn pose strong free-energy penalties on forming different tertiary contacts. Notably, native A-minor and base-triple interactions form with low conformational free energy, while non-native tetraloop/tetraloop–receptor interactions are penalized by high conformational free energies. Topological constraints also give rise to strong cooperativity between distal tertiary interactions, quantitatively matching prior experimental measurements. The specificity of the folding landscape is further enhanced as tertiary contacts place additional constraints on the conformational space, progressively funneling the molecule to the native state. These results indicate that secondary structure assists the ribozyme in navigating the otherwise rugged tertiary folding landscape, and further emphasize topological constraints as a key force in RNA folding. PMID:26481360

  13. Nucleotide sequence and secondary structure of citrus exocortis and chrysanthemum stunt viroid.

    PubMed

    Gross, H J; Krupp, G; Domdey, H; Raba, M; Jank, P; Lossow, C; Alberty, H; Ramm, K; Sänger, H L

    1982-01-01

    The complete nucleotide sequence of citrus exocortis viroid (CEV, propagated in Gymura) and chrysanthemum stunt viroid (CSV, propagated in Cineraria) has been established, using labelling in vitro and direct RNA sequencing methods and a new screening procedure for the rapid selection of suitable RNA fragments from limited digests. The covalently closed circular single-stranded viroid RNAs consist of 371 (CEV) and 354 (CSV) nucleotides, respectively. As previously shown for potato spindle tuber viroid (PSTV, 359 nucleotides), CEV and CSV also contain a long polypurine sequence. Maximal base-pairing of the established CEV and CSV sequences results in an extended rod-like secondary structure similar to that previously established for PSTV and as predicted from detailed physicochemical studies of all these viroids. Although the three viroid species sequenced to date differ in size and nucleotide sequence, there is 60--73% homology between them. As PSTV, CEV and CSV also contain conserved complementary sequences which are separated from each other in the native secondary structure. We postulate that the resulting 'secondary' hairpins, being formed and observed in vitro during the complex process of thermal denaturation of viroid RNA, must have a vital, although yet unknown, function in vivo. The possible origin and function of viroids are discussed on the basis of the characteristic structural features and of a considerable homology with U1a RNA found for a region highly conserved in the three viroids. PMID:7060550

  14. Xenopus laevis 28S ribosomal RNA: a secondary structure model and its evolutionary and functional implications.

    PubMed Central

    Clark, C G; Tague, B W; Ware, V C; Gerbi, S A

    1984-01-01

    Based upon the three experimentally derived models of E. coli 23S rRNA (1-3) and the partial model for yeast 26S rRNA (4), which was deduced by homology to E. coli, we derived a secondary structure model for Xenopus laevis 28S rRNA. This is the first complete model presented for eukaryotic 28S rRNA. Compensatory base changes support the general validity of our model and offer help to resolve which of the three E. coli models is correct in regions where they are different from one another. Eukaryotic rDNA is longer than prokaryotic rDNA by virtue of introns, expansion segments and transcribed spacers, all of which are discussed relative to our secondary structure model. Comments are made on the evolutionary origins of these three categories and the processing fates of their transcripts. Functionally important sites on our 28S rRNA secondary structure model are suggested by analogy for ribosomal protein binding, the GTPase center, the peptidyl transferase center, and for rRNA interaction with tRNA and 5S RNA. We discuss how RNA-RNA interactions may play a vital role in translocation. PMID:6147812

  15. CPU-GPU hybrid accelerating the Zuker algorithm for RNA secondary structure prediction applications

    PubMed Central

    2012-01-01

    Background Prediction of ribonucleic acid (RNA) secondary structure remains one of the most important research areas in bioinformatics. The Zuker algorithm is one of the most popular methods of free energy minimization for RNA secondary structure prediction. Thus far, few studies have been reported on the acceleration of the Zuker algorithm on general-purpose processors or on extra accelerators such as Field Programmable Gate-Array (FPGA) and Graphics Processing Units (GPU). To the best of our knowledge, no implementation combines both CPU and extra accelerators, such as GPUs, to accelerate the Zuker algorithm applications. Results In this paper, a CPU-GPU hybrid computing system that accelerates Zuker algorithm applications for RNA secondary structure prediction is proposed. The computing tasks are allocated between CPU and GPU for parallel cooperate execution. Performance differences between the CPU and the GPU in the task-allocation scheme are considered to obtain workload balance. To improve the hybrid system performance, the Zuker algorithm is optimally implemented with special methods for CPU and GPU architecture. Conclusions Speedup of 15.93× over optimized multi-core SIMD CPU implementation and performance advantage of 16% over optimized GPU implementation are shown in the experimental results. More than 14% of the sequences are executed on CPU in the hybrid system. The system combining CPU and GPU to accelerate the Zuker algorithm is proven to be promising and can be applied to other bioinformatics applications. PMID:22369626

  16. Prediction of complex super-secondary structure ??? motifs based on combined features

    PubMed Central

    Sun, Lixia; Hu, Xiuzhen; Li, Shaobo; Jiang, Zhuo; Li, Kun

    2015-01-01

    Prediction of a complex super-secondary structure is a key step in the study of tertiary structures of proteins. The strand-loop-helix-loop-strand (???) motif is an important complex super-secondary structure in proteins. Many functional sites and active sites often occur in polypeptides of ??? motifs. Therefore, the accurate prediction of ??? motifs is very important to recognizing protein tertiary structure and the study of protein function. In this study, the ??? motif dataset was first constructed using the DSSP package. A statistical analysis was then performed on ??? motifs and non-??? motifs. The target motif was selected, and the length of the loop-?-loop varies from 10 to 26 amino acids. The ideal fixed-length pattern comprised 32 amino acids. A Support Vector Machine algorithm was developed for predicting ??? motifs by using the sequence information, the predicted structure and function information to express the sequence feature. The overall predictive accuracy of 5-fold cross-validation and independent test was 81.7% and 76.7%, respectively. The Matthews correlation coefficient of the 5-fold cross-validation and independent test are 0.63 and 0.53, respectively. Results demonstrate that the proposed method is an effective approach for predicting ??? motifs and can be used for structure and function studies of proteins. PMID:26858540

  17. Correlation between protein secondary structure, backbone bond angles, and side-chain orientations

    NASA Astrophysics Data System (ADS)

    Lundgren, Martin; Niemi, Antti J.

    2012-08-01

    We investigate the fine structure of the sp3 hybridized covalent bond geometry that governs the tetrahedral architecture around the central Cα carbon of a protein backbone, and for this we develop new visualization techniques to analyze high-resolution x-ray structures in the Protein Data Bank. We observe that there is a correlation between the deformations of the ideal tetrahedral symmetry and the local secondary structure of the protein. We propose a universal coarse-grained energy function to describe the ensuing side-chain geometry in terms of the Cβ carbon orientations. The energy function can model the side-chain geometry with a subatomic precision. As an example we construct the Cα-Cβ structure of HP35 chicken villin headpiece. We obtain a configuration that deviates less than 0.4 Å in root-mean-square distance from the experimental x-ray structure.

  18. A novel representation of RNA secondary structure based on element-contact graphs

    PubMed Central

    Shu, Wenjie; Bo, Xiaochen; Zheng, Zhiqiang; Wang, Shengqi

    2008-01-01

    Background Depending on their specific structures, noncoding RNAs (ncRNAs) play important roles in many biological processes. Interest in developing new topological indices based on RNA graphs has been revived in recent years, as such indices can be used to compare, identify and classify RNAs. Although the topological indices presented before characterize the main topological features of RNA secondary structures, information on RNA structural details is ignored to some degree. Therefore, it is necessity to identify topological features with low degeneracy based on complete and fine-grained RNA graphical representations. Results In this study, we present a complete and fine scheme for RNA graph representation as a new basis for constructing RNA topological indices. We propose a combination of three vertex-weighted element-contact graphs (ECGs) to describe the RNA element details and their adjacent patterns in RNA secondary structure. Both the stem and loop topologies are encoded completely in the ECGs. The relationship among the three typical topological index families defined by their ECGs and RNA secondary structures was investigated from a dataset of 6,305 ncRNAs. The applicability of topological indices is illustrated by three application case studies. Based on the applied small dataset, we find that the topological indices can distinguish true pre-miRNAs from pseudo pre-miRNAs with about 96% accuracy, and can cluster known types of ncRNAs with about 98% accuracy, respectively. Conclusion The results indicate that the topological indices can characterize the details of RNA structures and may have a potential role in identifying and classifying ncRNAs. Moreover, these indices may lead to a new approach for discovering novel ncRNAs. However, further research is needed to fully resolve the challenging problem of predicting and classifying noncoding RNAs. PMID:18402706

  19. Sheath structure in plasma with two species of positive ions and secondary electrons

    NASA Astrophysics Data System (ADS)

    Xiao-Yun, Zhao; Nong, Xiang; Jing, Ou; De-Hui, Li; Bin-Bin, Lin

    2016-02-01

    The properties of a collisionless plasma sheath are investigated by using a fluid model in which two species of positive ions and secondary electrons are taken into account. It is shown that the positive ion speeds at the sheath edge increase with secondary electron emission (SEE) coefficient, and the sheath structure is affected by the interplay between the two species of positive ions and secondary electrons. The critical SEE coefficients and the sheath widths depend strongly on the positive ion charge number, mass and concentration in the cases with and without SEE. In addition, ion kinetic energy flux to the wall and the impact of positive ion species on secondary electron density at the sheath edge are also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11475220 and 11405208), the Program of Fusion Reactor Physics and Digital Tokamak with the CAS “One-Three-Five” Strategic Planning, the National ITER Program of China (Grant No. 2015GB101003), and the Higher Education Natural Science Research Project of Anhui Province, China (Grant No. 2015KJ009).

  20. New method for protein secondary structure assignment based on a simple topological descriptor.

    PubMed

    Taylor, Todd; Rivera, Margarita; Wilson, Glenda; Vaisman, Iosif I

    2005-08-15

    A simple, five-element descriptor, derived from the Delaunay tessellation of a protein structure in a single point per residue representation, can be assigned to each residue in the protein. The descriptor characterizes main-chain topology and connectivity in the neighborhood of the residue and does not explicitly depend on putative hydrogen bonds or any geometric parameter, including bond length, angles, and areas. Rules based on this descriptor can be used for accurate, robust, and computationally efficient secondary structure assignment that correlates well with the existing methods. PMID:15887224

  1. The influence of the secondary relaxation processes on the structural relaxation in glass-forming materials

    NASA Astrophysics Data System (ADS)

    Khamzin, A. A.; Popov, I. I.; Nigmatullin, R. R.

    2013-06-01

    In the frame of fractional-kinetic approach, the model of the structural α-relaxation in the presence of the secondary β-relaxation processes is suggested. The model is based on the rigorous bond between β-processes with α-process and leads to the generalized and justified expression for the complex dielectric permittivity (CDP). It allows to form a new sight on the problem of the fitting of multi-peak structure of the dielectric loss spectra in glass-forming materials. The consistency of the CDP expressions obtained is based on a good fit of experimental data for binary methanol-water mixtures.

  2. The influence of the secondary relaxation processes on the structural relaxation in glass-forming materials.

    PubMed

    Khamzin, A A; Popov, I I; Nigmatullin, R R

    2013-06-28

    In the frame of fractional-kinetic approach, the model of the structural α-relaxation in the presence of the secondary β-relaxation processes is suggested. The model is based on the rigorous bond between β-processes with α-process and leads to the generalized and justified expression for the complex dielectric permittivity (CDP). It allows to form a new sight on the problem of the fitting of multi-peak structure of the dielectric loss spectra in glass-forming materials. The consistency of the CDP expressions obtained is based on a good fit of experimental data for binary methanol-water mixtures. PMID:23822251

  3. Structural basis of UGUA recognition by the Nudix protein CFIm25 and implications for a regulatory role in mRNA 3′ processing

    PubMed Central

    Yang, Qin; Gilmartin, Gregory M.; Doublié, Sylvie

    2010-01-01

    Human Cleavage Factor Im (CFIm) is an essential component of the pre-mRNA 3′ processing complex that functions in the regulation of poly(A) site selection through the recognition of UGUA sequences upstream of the poly(A) site. Although the highly conserved 25 kDa subunit (CFIm25) of the CFIm complex possesses a characteristic α/β/α Nudix fold, CFIm25 has no detectable hydrolase activity. Here we report the crystal structures of the human CFIm25 homodimer in complex with UGUAAA and UUGUAU RNA sequences. CFIm25 is the first Nudix protein to be reported to bind RNA in a sequence-specific manner. The UGUA sequence contributes to binding specificity through an intramolecular G:A Watson–Crick/sugar-edge base interaction, an unusual pairing previously found to be involved in the binding specificity of the SAM-III riboswitch. The structures, together with mutational data, suggest a novel mechanism for the simultaneous sequence-specific recognition of two UGUA elements within the pre-mRNA. Furthermore, the mutually exclusive binding of RNA and the signaling molecule Ap4A (diadenosine tetraphosphate) by CFIm25 suggests a potential role for small molecules in the regulation of mRNA 3′ processing. PMID:20479262

  4. Formation of C-terminally truncated version of the Taz1 protein employs cleavage-box structure in mRNA

    SciTech Connect

    Gunisova, Stanislava; Bartosova, Zdenka; Kramara, Juraj; Nosek, Jozef; Tomaska, Lubomir

    2010-02-12

    When expressed in various hosts the taz1{sup +} gene encoding the fission yeast telomere-binding protein produces two forms of polypeptides: full-length (Taz1p) and truncated (Taz1p{Delta}C) version lacking almost entire Myb-domain. Whereas Taz1p binds telomeric DNA in vitro, Taz1p{Delta}C forms long filaments unable of DNA binding. The formation of Taz1p{Delta}C is a result of neither site-specific proteolysis, nor premature termination of transcription. In silico analysis of the taz1{sup +} RNA transcript revealed a stem-loop structure at the site of cleavage (cleavage box; CB). In order to explore whether it possesses inherent destabilizing effects, we cloned CB sequence into the open reading frame (ORF) of glutathione-S-transferase (GST) and observed that when expressed in Escherichia coli the engineered gene produced two forms of the reporter protein. The formation of the truncated version of GST was abolished, when CB was replaced with recoded sequence containing synonymous codons thus indicating that the truncation is based on structural properties of taz1{sup +} mRNA.

  5. Prediction of Spontaneous Protein Deamidation from Sequence-Derived Secondary Structure and Intrinsic Disorder

    PubMed Central

    Lorenzo, J. Ramiro; Alonso, Leonardo G.; Sánchez, Ignacio E.

    2015-01-01

    Asparagine residues in proteins undergo spontaneous deamidation, a post-translational modification that may act as a molecular clock for the regulation of protein function and turnover. Asparagine deamidation is modulated by protein local sequence, secondary structure and hydrogen bonding. We present NGOME, an algorithm able to predict non-enzymatic deamidation of internal asparagine residues in proteins in the absence of structural data, using sequence-based predictions of secondary structure and intrinsic disorder. Compared to previous algorithms, NGOME does not require three-dimensional structures yet yields better predictions than available sequence-only methods. Four case studies of specific proteins show how NGOME may help the user identify deamidation-prone asparagine residues, often related to protein gain of function, protein degradation or protein misfolding in pathological processes. A fifth case study applies NGOME at a proteomic scale and unveils a correlation between asparagine deamidation and protein degradation in yeast. NGOME is freely available as a webserver at the National EMBnet node Argentina, URL: http://www.embnet.qb.fcen.uba.ar/ in the subpage “Protein and nucleic acid structure and sequence analysis”. PMID:26674530

  6. Coupling of Zinc-Binding and Secondary Structure in Nonfibrillar Aβ40 Peptide Oligomerization.

    PubMed

    Xu, Liang; Shan, Shengsheng; Chen, Yonggang; Wang, Xiaojuan; Nussinov, Ruth; Ma, Buyong

    2015-06-22

    Nonfibrillar neurotoxic amyloid β (Aβ) oligomer structures are typically rich in β-sheets, which could be promoted by metal ions like Zn(2+). Here, using molecular dynamics (MD) simulations, we systematically examined combinations of Aβ40 peptide conformations and Zn(2+) binding modes to probe the effects of secondary structure on Aβ dimerization energies and kinetics. We found that random conformations do not contribute to dimerization either thermodynamically or kinetically. Zn(2+) couples with preformed secondary structures (α-helix and β-hairpin) to speed dimerization and stabilize the resulting dimer. Partial α-helices increase the dimerization speed, and dimers with α-helix rich conformations have the lowest energy. When Zn(2+) coordinates with residues D1, H6, H13, and H14, Aβ40 β-hairpin monomers have the fastest dimerization speed. Dimers with experimentally observed zinc coordination (E11, H6, H13, and H14) form with slower rate but have lower energy. Zn(2+) cannot stabilize fibril-like β-arch dimers. However, Zn(2+)-bound β-arch tetramers have the lowest energy. Collectively, zinc-stabilized β-hairpin oligomers could be important in the nucleation-polymerization of cross-β structures. Our results are consistent with experimental findings that α-helix to β-structural transition should accompany Aβ aggregation in the presence of zinc ions and that Zn(2+) stabilizes nonfibrillar Aβ oligomers and, thus, inhibits formation of less toxic Aβ fibrils. PMID:26017140

  7. PURE mRNA display for in vitro selection of single-chain antibodies.

    PubMed

    Nagumo, Yu; Fujiwara, Kei; Horisawa, Kenichi; Yanagawa, Hiroshi; Doi, Nobuhide

    2016-05-01

    mRNA display is a method to form a covalent linkage between a cell-free synthesized protein (phenotype) and its encoding mRNA (genotype) through puromycin for in vitro selection of proteins. Although a wheat germ cell-free translation system has been previously used in our mRNA display system, a protein synthesis using recombinant elements (PURE) system is a more attractive approach because it contains no endogenous nucleases and proteases and is optimized for folding of antibodies with disulphide bonds. However, when we used the PURE system for mRNA display of single-chain Fv (scFv) antibodies, the formation efficiency of the mRNA-protein conjugates was quite low. To establish an efficient platform for the PURE mRNA display of scFv, we performed affinity selection of a library of scFv antibodies with a C-terminal random sequence and obtained C-terminal sequences that increased the formation of mRNA-protein conjugates. We also identified unexpected common substitution mutations around the start codon of scFv antibodies, which were inferred to destabilize the mRNA secondary structure. This destabilization causes an increase in protein expression and the efficiency of the formation of mRNA-protein conjugates. We believe these improvements should make the PURE mRNA display more efficient for selecting antibodies for diagnostic and therapeutic applications. PMID:26711234

  8. Secondary structure and domain architecture of the 23S and 5S rRNAs

    PubMed Central

    Petrov, Anton S.; Bernier, Chad R.; Hershkovits, Eli; Xue, Yuzhen; Waterbury, Chris C.; Hsiao, Chiaolong; Stepanov, Victor G.; Gaucher, Eric A.; Grover, Martha A.; Harvey, Stephen C.; Hud, Nicholas V.; Wartell, Roger M.; Fox, George E.; Williams, Loren Dean

    2013-01-01

    We present a de novo re-determination of the secondary (2°) structure and domain architecture of the 23S and 5S rRNAs, using 3D structures, determined by X-ray diffraction, as input. In the traditional 2° structure, the center of the 23S rRNA is an extended single strand, which in 3D is seen to be compact and double helical. Accurately assigning nucleotides to helices compels a revision of the 23S rRNA 2° structure. Unlike the traditional 2° structure, the revised 2° structure of the 23S rRNA shows architectural similarity with the 16S rRNA. The revised 2° structure also reveals a clear relationship with the 3D structure and is generalizable to rRNAs of other species from all three domains of life. The 2° structure revision required us to reconsider the domain architecture. We partitioned the 23S rRNA into domains through analysis of molecular interactions, calculations of 2D folding propensities and compactness. The best domain model for the 23S rRNA contains seven domains, not six as previously ascribed. Domain 0 forms the core of the 23S rRNA, to which the other six domains are rooted. Editable 2° structures mapped with various data are provided (http://apollo.chemistry.gatech.edu/RibosomeGallery). PMID:23771137

  9. Secondary structure and domain architecture of the 23S and 5S rRNAs.

    PubMed

    Petrov, Anton S; Bernier, Chad R; Hershkovits, Eli; Xue, Yuzhen; Waterbury, Chris C; Hsiao, Chiaolong; Stepanov, Victor G; Gaucher, Eric A; Grover, Martha A; Harvey, Stephen C; Hud, Nicholas V; Wartell, Roger M; Fox, George E; Williams, Loren Dean

    2013-08-01

    We present a de novo re-determination of the secondary (2°) structure and domain architecture of the 23S and 5S rRNAs, using 3D structures, determined by X-ray diffraction, as input. In the traditional 2° structure, the center of the 23S rRNA is an extended single strand, which in 3D is seen to be compact and double helical. Accurately assigning nucleotides to helices compels a revision of the 23S rRNA 2° structure. Unlike the traditional 2° structure, the revised 2° structure of the 23S rRNA shows architectural similarity with the 16S rRNA. The revised 2° structure also reveals a clear relationship with the 3D structure and is generalizable to rRNAs of other species from all three domains of life. The 2° structure revision required us to reconsider the domain architecture. We partitioned the 23S rRNA into domains through analysis of molecular interactions, calculations of 2D folding propensities and compactness. The best domain model for the 23S rRNA contains seven domains, not six as previously ascribed. Domain 0 forms the core of the 23S rRNA, to which the other six domains are rooted. Editable 2° structures mapped with various data are provided (http://apollo.chemistry.gatech.edu/RibosomeGallery). PMID:23771137

  10. Subcellular structure containing mRNA for beta subunit of mitochondrial H+-ATP synthase in rat hepatocytes is translationally active.

    PubMed Central

    Ricart, J; Egea, G; Izquierdo, J M; San Martn, C; Cuezva, J M

    1997-01-01

    We have recently reported that the nuclear-encoded mRNA for the beta subunit of mitochondrial H+-ATP synthase (beta-mRNA) is localized in rounded, electron-dense clusters in the cytoplasm of rat hepatocytes. Clusters of beta-mRNA are often found in close proximity to mitochondria. These findings suggested a role for these structures in controlling the cytoplasmic expression and sorting of the encoded mitochondrial precursor. Here we have addressed the question of whether the structures containing beta-mRNA are translationally active. For this purpose a combination of high-resolution in situ hybridization and immunocytochemical procedures was used. Three different co-localization criteria showed that beta-mRNA-containing structures always revealed positive immunoreactive signals for mitochondrial H+-ATP synthase (F1-ATPase), ribosomal and hsc70 proteins. Furthermore, clusters show evidence in situ of developmental changes in the translational efficiency of the beta-mRNA. These findings suggest that structures containing beta-mRNA are translationally active irrespective of their cytoplasmic location. The immunocytochemical quantification of the cytoplasmic presentation of hsc70 in the hepatocyte reveals that approx. 86% of the protein has a dispersed distribution pattern. However, the remaining hsc70 is presented in clusters of which only half reveal positive hybridization for beta-mRNA. The interaction of hsc70 with the beta-F1-ATPase precursor protein is documented by the co-localization of F1-ATPase immunoreactive material within cytoplasmic clusters of hsc70 and by the co-immunoprecipitation of hsc70 with the beta-subunit precursor from liver post-mitochondrial supernatants. Taken together, these results suggest a role for hsc70 in the translation/sorting pathway of the mammalian precursor of the beta-F1-ATPase protein. PMID:9182728

  11. Perturbation-induced secondary flow structures due to fractured stents in arterial curvatures

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Popma, Christopher; Penna, Leanne; Plesniak, Michael W.

    2012-11-01

    An in vitro experimental investigation of secondary flow structures was performed downstream of a model stent that embodied a ``Type-IV'' stent fracture, i.e. complete transverse fracture of elements and element displacement (of 3 diameters). One part of the fractured stent was located in the curved region of a test section comprised of a 180-degree bent tube, and the velocity field measured with PIV. Secondary flow morphologies downstream of the stent were identified with a continuous wavelet transform (CWT) algorithm (PIVlet 1.2) using a 2D Ricker wavelet. A comparison of wavelet transformed vorticity fields of fractured and unfractured model stents is presented under physiological inflow conditions. During systolic deceleration, a breakdown in symmetry of vortical structures occurred with the unfractured stent, but not with the fractured model stent. Potential mechanisms to explain the differences in secondary flow morphologies include redirection of vorticity from the meridional plane of the bend to the normal plane and diffusion of vorticity. Supported by the National Science Foundation, Grant No. CBET-0828903 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  12. Representation of the secondary and tertiary structure of group I introns.

    PubMed

    Cech, T R; Damberger, S H; Gutell, R R

    1994-05-01

    Group I introns, which are widespread in nature, carry out RNA self-splicing. The secondary structure common to these introns was for the most part established a decade ago. Information about their higher order structure has been derived from a range of experimental approaches, comparative sequence analysis, and molecular modelling. This information now provides the basis for a new two-dimensional structural diagram that more accurately represents the domain organization and orientation of helices within the intron, the coaxial stacking of certain helices, and the proximity of key nucleotides in three-dimensional space. It is hoped that this format will facilitate the detailed comparison of group I intron structures. PMID:7545072

  13. Combining secondary-structure and protein solvent-accessibility predictions in methionine substitution for anomalous dispersion

    PubMed Central

    Wu, Hsin-Yi; Cheng, Yi-Sheng

    2014-01-01

    In X-ray crystallographic analysis, the single-wavelength and multi-wavelength anomalous diffraction (SAD and MAD) methods have been widely used in order to solve the phase problem. Selenium-labelled methionine has been shown to be very effective for anomalous dispersion phasing, and at least one selenomethionine is required for every 100 amino acids. Some proteins, such as the Arabidopsis thaliana thylakoid lumen protein AtTLP18.3, can be overexpressed in an Escherichia coli system and high-quality protein crystals can be obtained. However, AtTLP18.3 contains no methionine residues, and site-directed mutagenesis was required in order to introduce methionine residues into the protein. A criterion for the mutated residues is that they should avoid affecting the structure and function. In this study, several leucine and isoleucine residues were selected for methionine substitution by combining secondary-structure and solvent-accessibility predictions. From the secondary-structure prediction, mutated residues were first determined in the coil or loop regions at the junction of two secondary structures. Since leucine and isoleucine residues are hydrophobic and are normally buried within the protein core, these residues should have a higher solvent-accessibility prediction so that they would be partially buried or exposed in the protein. In addition, five residues (Leu107, Leu202, Ile133, Leu128 and Ile159) of AtTLP18.3 were mutated to methionine residues. After overexpression and purification, only two single-mutant lines, L128M and I159M, could be crystallized. Finally, a double-mutation line of truncated AtTLP18.3 with L128M and I159M mutations was constructed. The structure of the double mutant AtTLP18.3 protein was resolved using the single-wavelength anomalous diffraction method at 2.6? resolution. The results indicated that a combination of secondary-structure and solvent-accessibility prediction for methionine substitution is a useful method in SAD and MAD phasing. PMID:24598932

  14. Structural effects of liana presence in secondary tropical dry forests using ground LiDAR

    NASA Astrophysics Data System (ADS)

    Sánchez-Azofeifa, A.; Portillo-Quintero, C.; Durán, S. M.

    2015-10-01

    Lianas, woody vines, are a key component of tropical forest because they may reduce carbon storage potential. Lianas are increasing in density and biomass in tropical forests, but it is unknown what the potential consequences of these increases are for forest dynamics. Lianas may proliferate in disturbed areas, such as regenerating forests, but little is known about the role of lianas in secondary succession. In this study, we evaluated the potential of the ground LiDAR to detect differences in the vertical structure of stands of different ages with and without lianas in tropical dry forests. Specifically, we used a terrestrial laser scanner called VEGNET to assess whether liana presence influences the vertical signature of stands of different ages, and whether successional trajectories as detected by the VEGNET could be altered by liana presence. We deployed the VEGNET ground LiDAR system in 15 secondary forests of different ages early (21 years old since land abandonment), intermediate (32-35 years old) and late stages (> 80 years old) with and without lianas. We compared laser-derived vegetation components such as Plant Area Index (PAI), plant area volume density (PAVD), and the radius of gyration (RG) across forest stands between liana and no-liana treatments. In general forest stands without lianas show a clearer distinction of vertical strata and the vertical height of accumulated PAVD. A significant increase of PAI was found from intermediate to late stages in stands without lianas, but in stands where lianas were present there was not a significant trend. This suggests that lianas may be influencing successional trajectories in secondary forests, and these effects can be captured by terrestrial laser scanners such as the VEGNET. This research contributes to estimate the potential effects of lianas in secondary dry forests and highlight the role of ground LiDAR to monitor structural changes in tropical forests due to liana presence.

  15. In situ protein secondary structure determination in ice: Raman spectroscopy-based process analytical tool for frozen storage of biopharmaceuticals.

    PubMed

    Roessl, Ulrich; Leitgeb, Stefan; Pieters, Sigrid; De Beer, Thomas; Nidetzky, Bernd

    2014-08-01

    A Raman spectroscopy-based method for in situ monitoring of secondary structural composition of proteins during frozen and thawed storage was developed. A set of reference proteins with different α-helix and β-sheet compositions was used for calibration and validation in a chemometric approach. Reference secondary structures were quantified with circular dichroism spectroscopy in the liquid state. Partial least squares regression models were established that enable estimation of secondary structure content from Raman spectra. Quantitative secondary structure determination in ice was accomplished for the first time and correlation with existing (qualitative) protein structural data from the frozen state was achieved. The method can be used in the presence of common stabilizing agents and is applicable in an industrial freezer setup. Raman spectroscopy represents a powerful, noninvasive, and flexibly applicable tool for protein stability monitoring during frozen storage. PMID:24985932

  16. Unit-cell intergrowth of pyrochlore and hexagonal tungsten bronze structures in secondary tungsten minerals

    SciTech Connect

    Grey, Ian E. . E-mail: ian.grey@csiro.au; Birch, William D.; Bougerol, Catherine

    2006-12-15

    Structural relations between secondary tungsten minerals with general composition A{sub x}[(W,Fe)(O,OH){sub 3}]{sub .y}H{sub 2}O are described. Phyllotungstite (A=predominantly Ca) is hexagonal, a=7.31(3)A, c=19.55(1)A, space group P6{sub 3}/mmc. Pittongite, a new secondary tungsten mineral from a wolframite deposit near Pittong in Victoria, southeastern Australia (A=predominantly Na) is hexagonal, a=7.286(1)A, c=50.49(1)A, space group P-6m2. The structures of both minerals can be described as unit-cell scale intergrowths of (111){sub py} pyrochlore slabs with pairs of hexagonal tungsten bronze (HTB) layers. In phyllotungstite, the (111){sub py} blocks have the same thickness, 6A, whereas pittongite contains pyrochlore blocks of two different thicknesses, 6 and 12A. The structures can alternatively be described in terms of chemical twinning of the pyrochlore structure on (111){sub py} oxygen planes. At the chemical twin planes, pairs of HTB layers are corner connected as in hexagonal WO{sub 3}.

  17. Quantification of protein secondary structure by (13)C solid-state NMR.

    PubMed

    Andrade, Fabiana Diuk; Forato, Lucimara Aparecida; Bernardes Filho, Rubens; Colnago, Luiz Alberto

    2016-05-01

    High-resolution (13)C solid-state NMR stands out as one of the most promising techniques to solve the structure of insoluble proteins featuring biological and technological importance. The simplest nuclear magnetic resonance (NMR) spectroscopy method to quantify the secondary structure of proteins uses the areas of carbonyl and alpha carbon peaks. The quantification obtained by fitting procedures depends on the assignment of the peaks to the structure, type of line shape, number of peaks to be used, and other parameters that are set by the operator. In this paper, we demonstrate that the analysis of (13)C NMR spectra by a pattern recognition method-based on the singular value decomposition (SVD) regression, which does not depend on the operator-shows higher correlation coefficients for α-helix and β-sheet (0.96 and 0.91, respectively) than Fourier transform infrared spectroscopy (FTIR) method. Therefore, the use of (13)C solid-state NMR spectra and SVD is a simple and reliable method for quantifying the secondary structures of insoluble proteins in solid-state. PMID:27068694

  18. The Interplay between Adolescent Needs and Secondary School Structures: Fostering Developmentally Responsive Middle and High School Environments across the Transition

    ERIC Educational Resources Information Center

    Ellerbrock, Cheryl R.; Kiefer, Sarah M.

    2013-01-01

    Understanding the developmental responsiveness of secondary school environments may be an important factor in supporting students as they make the transition from one school to the next. Students' needs may or may not be met depending on the nature of the fit between their basic and developmental needs and secondary school structures at the…

  19. Prediction of RNA secondary structures: from theory to models and real molecules

    NASA Astrophysics Data System (ADS)

    Schuster, Peter

    2006-05-01

    RNA secondary structures are derived from RNA sequences, which are strings built form the natural four letter nucleotide alphabet, {AUGC}. These coarse-grained structures, in turn, are tantamount to constrained strings over a three letter alphabet. Hence, the secondary structures are discrete objects and the number of sequences always exceeds the number of structures. The sequences built from two letter alphabets form perfect structures when the nucleotides can form a base pair, as is the case with {GC} or {AU}, but the relation between the sequences and structures differs strongly from the four letter alphabet. A comprehensive theory of RNA structure is presented, which is based on the concepts of sequence space and shape space, being a space of structures. It sets the stage for modelling processes in ensembles of RNA molecules like evolutionary optimization or kinetic folding as dynamical phenomena guided by mappings between the two spaces. The number of minimum free energy (mfe) structures is always smaller than the number of sequences, even for two letter alphabets. Folding of RNA molecules into mfe energy structures constitutes a non-invertible mapping from sequence space onto shape space. The preimage of a structure in sequence space is defined as its neutral network. Similarly the set of suboptimal structures is the preimage of a sequence in shape space. This set represents the conformation space of a given sequence. The evolutionary optimization of structures in populations is a process taking place in sequence space, whereas kinetic folding occurs in molecular ensembles that optimize free energy in conformation space. Efficient folding algorithms based on dynamic programming are available for the prediction of secondary structures for given sequences. The inverse problem, the computation of sequences for predefined structures, is an important tool for the design of RNA molecules with tailored properties. Simultaneous folding or cofolding of two or more RNA molecules can be modelled readily at the secondary structure level and allows prediction of the most stable (mfe) conformations of complexes together with suboptimal states. Cofolding algorithms are important tools for efficient and highly specific primer design in the polymerase chain reaction (PCR) and help to explain the mechanisms of small interference RNA (si-RNA) molecules in gene regulation. The evolutionary optimization of RNA structures is illustrated by the search for a target structure and mimics aptamer selection in evolutionary biotechnology. It occurs typically in steps consisting of short adaptive phases interrupted by long epochs of little or no obvious progress in optimization. During these quasi-stationary epochs the populations are essentially confined to neutral networks where they search for sequences that allow a continuation of the adaptive process. Modelling RNA evolution as a simultaneous process in sequence and shape space provides answers to questions of the optimal population size and mutation rates. Kinetic folding is a stochastic process in conformation space. Exact solutions are derived by direct simulation in the form of trajectory sampling or by solving the master equation. The exact solutions can be approximated straightforwardly by Arrhenius kinetics on barrier trees, which represent simplified versions of conformational energy landscapes. The existence of at least one sequence forming any arbitrarily chosen pair of structures is granted by the intersection theorem. Folding kinetics is the key to understanding and designing multistable RNA molecules or RNA switches. These RNAs form two or more long lived conformations, and conformational changes occur either spontaneously or are induced through binding of small molecules or other biopolymers. RNA switches are found in nature where they act as elements in genetic and metabolic regulation. The reliability of RNA secondary structure prediction is limited by the accuracy with which the empirical parameters can be determined and by principal deficiencies, for example by the lack of energy contributions resulting from tertiary interactions. In addition, native structures may be determined by folding kinetics rather than by thermodynamics. We address the first problem by considering base pair probabilities or base pairing entropies, which are derived from the partition function of conformations. A high base pair probability corresponding to a low pairing entropy is taken as an indicator of a high reliability of prediction. Pseudoknots are discussed as an example of a tertiary interaction that is highly important for RNA function. Moreover, pseudoknot formation is readily incorporated into structure prediction algorithms. Some examples of experimental data on RNA secondary structures that are readily explained using the landscape concept are presented. They deal with (i) properties of RNA molecules with random sequences, (ii) RNA molecules from restricted alphabets, (iii) existence of neutral networks, (iv) shape space covering, (v) riboswitches and (vi) evolution of non-coding RNAs as an example of evolution restricted to neutral networks.

  20. Structural basis for inhibition of the MDM2:p53 interaction by an optimized MDM2-binding peptide selected with mRNA display.

    PubMed

    Nagata, Takashi; Shirakawa, Kie; Kobayashi, Naohiro; Shiheido, Hirokazu; Tabata, Noriko; Sakuma-Yonemura, Yuko; Horisawa, Kenichi; Katahira, Masato; Doi, Nobuhide; Yanagawa, Hiroshi

    2014-01-01

    The oncoprotein MDM2 binds to tumor suppressor protein p53 and inhibits its anticancer activity, which leads to promotion of tumor cell growth and tumor survival. Abrogation of the p53:MDM2 interaction reportedly results in reactivation of the p53 pathway and inhibition of tumor cell proliferation. We recently performed rigorous selection of MDM2-binding peptides by means of mRNA display and identified an optimal 12-mer peptide (PRFWEYWLRLME), named MDM2 Inhibitory Peptide (MIP), which shows higher affinity for MDM2 (and also its homolog, MDMX) and higher tumor cell proliferation suppression activity than known peptides. Here we determined the NMR solution structure of a MIP-MDM2 fusion protein to elucidate the structural basis of the tight binding of MIP to MDM2. A region spanning from Phe3 to Met11 of MIP forms a single α-helix, which is longer than those of the other MDM2-binding peptides. MIP shares a conserved Phe3-Trp7-Leu10 triad, whose side chains are oriented towards and fit into the hydrophobic pockets of MDM2. Additionally, hydrophobic surface patches that surround the hydrophobic pockets of MDM2 are covered by solvent-exposed MIP residues, Trp4, Tyr6, and Met11. Their hydrophobic interactions extend the interface of the two molecules and contribute to the strong binding. The potential MDM2 inhibition activity observed for MIP turned out to originate from its enlarged binding interface. The structural information obtained in the present study provides a road map for the rational design of strong inhibitors of MDM2:p53 binding. PMID:25275651

  1. Rubella virus 40S genome RNA specifies a 24S subgenomic mRNA that codes for a precursor to structural proteins.

    PubMed Central

    Oker-Blom, C; Ulmanen, I; Kääriäinen, L; Pettersson, R F

    1984-01-01

    We have analyzed the structure of the rubella virus genome RNA and the virus-specific RNA species synthesized in B-Vero cells infected with rubella virus. A single-stranded, capped, and polyadenylated RNA species sedimenting at 40S in a sucrose gradient was released from purified virions treated with sodium dodecyl sulfate. This RNA species migrated with an Mr of about 3.8 X 10(6) in an agarose gel after denaturation with glyoxal and dimethyl sulfoxide. Infected cells labeled with [3H]uridine in the presence of actinomycin D contained, in addition to the 40S RNA, a single-stranded polyadenylated 24S RNA species as shown by sucrose gradient analysis. In a Northern blot analysis, this RNA hybridized to a cDNA probe derived from the 3' portion of the genomic 40S RNA. In vitro translation of the 24S RNA species yielded a 110,000-dalton polypeptide, in addition to some smaller products which were immunoprecipitated with an antiserum prepared against the structural proteins E1, E2a, E2b, and C. Since the sum of the molecular weights of the nonglycosylated envelope proteins and the capsid protein has been estimated to be about 116,000 (C. Oker-Blom et al., J. Virol. 46:964-973, 1983), these results suggest that the 24S RNA species represents a subgenomic mRNA coding for a precursor (p110) to the structural proteins of rubella virus. Thus, the strategy of gene expression of rubella virus appears to be similar to that of the alphaviruses. Images PMID:6694262

  2. Structural Basis for Inhibition of the MDM2:p53 Interaction by an Optimized MDM2-Binding Peptide Selected with mRNA Display

    PubMed Central

    Kobayashi, Naohiro; Shiheido, Hirokazu; Tabata, Noriko; Sakuma-Yonemura, Yuko; Horisawa, Kenichi; Katahira, Masato; Doi, Nobuhide; Yanagawa, Hiroshi

    2014-01-01

    The oncoprotein MDM2 binds to tumor suppressor protein p53 and inhibits its anticancer activity, which leads to promotion of tumor cell growth and tumor survival. Abrogation of the p53:MDM2 interaction reportedly results in reactivation of the p53 pathway and inhibition of tumor cell proliferation. We recently performed rigorous selection of MDM2-binding peptides by means of mRNA display and identified an optimal 12-mer peptide (PRFWEYWLRLME), named MDM2 Inhibitory Peptide (MIP), which shows higher affinity for MDM2 (and also its homolog, MDMX) and higher tumor cell proliferation suppression activity than known peptides. Here we determined the NMR solution structure of a MIP-MDM2 fusion protein to elucidate the structural basis of the tight binding of MIP to MDM2. A region spanning from Phe3 to Met11 of MIP forms a single α-helix, which is longer than those of the other MDM2-binding peptides. MIP shares a conserved Phe3-Trp7-Leu10 triad, whose side chains are oriented towards and fit into the hydrophobic pockets of MDM2. Additionally, hydrophobic surface patches that surround the hydrophobic pockets of MDM2 are covered by solvent-exposed MIP residues, Trp4, Tyr6, and Met11. Their hydrophobic interactions extend the interface of the two molecules and contribute to the strong binding. The potential MDM2 inhibition activity observed for MIP turned out to originate from its enlarged binding interface. The structural information obtained in the present study provides a road map for the rational design of strong inhibitors of MDM2:p53 binding. PMID:25275651

  3. Use of tiling array data and RNA secondary structure predictions to identify noncoding RNA genes

    PubMed Central

    Weile, Christian; Gardner, Paul P; Hedegaard, Mads M; Vinther, Jeppe

    2007-01-01

    Background Within the last decade a large number of noncoding RNA genes have been identified, but this may only be the tip of the iceberg. Using comparative genomics a large number of sequences that have signals concordant with conserved RNA secondary structures have been discovered in the human genome. Moreover, genome wide transcription profiling with tiling arrays indicate that the majority of the genome is transcribed. Results We have combined tiling array data with genome wide structural RNA predictions to search for novel noncoding and structural RNA genes that are expressed in the human neuroblastoma cell line SK-N-AS. Using this strategy, we identify thousands of human candidate RNA genes. To further verify the expression of these genes, we focused on candidate genes that had a stable hairpin structures or a high level of covariance. Using northern blotting, we verify the expression of 2 out of 3 of the hairpin structures and 3 out of 9 high covariance structures in SK-N-AS cells. Conclusion Our results demonstrate that many human noncoding, structured and conserved RNA genes remain to be discovered and that tissue specific tiling array data can be used in combination with computational predictions of sequences encoding structural RNAs to improve the search for such genes. PMID:17645787

  4. Nucleobase-Modified PNA Suppresses Translation by Forming a Triple Helix with a Hairpin Structure in mRNA In?Vitro and in Cells.

    PubMed

    Endoh, Tamaki; Hnedzko, Dziyana; Rozners, Eriks; Sugimoto, Naoki

    2016-01-01

    Compounds that bind specifically to double-stranded regions of RNA have potential as regulators of structure-based RNA function; however, sequence-selective recognition of double-stranded RNA is challenging. The modification of peptide nucleic acid (PNA) with unnatural nucleobases enables the formation of PNA-RNA triplexes. Herein, we demonstrate that a 9-mer PNA forms a sequence-specific PNA-RNA triplex with a dissociation constant of less than 1?nm at physiological pH. The triplex formed within the 5' untranslated region of an mRNA reduces the protein expression levels both in?vitro and in cells. A single triplet mismatch destabilizes the complex, and in this case, no translation suppression is observed. The triplex-forming PNAs are unique and potent compounds that hold promise as inhibitors of cellular functions that are controlled by double-stranded RNAs, such as RNA interference, RNA editing, and RNA localization mediated by protein-RNA interactions. PMID:26473504

  5. NMR structure and dynamics of the RNA-binding site for the histone mRNA stem-loop binding protein.

    PubMed Central

    DeJong, Eric S; Marzluff, William F; Nikonowicz, Edward P

    2002-01-01

    The 3' end of replication-dependent histone mRNAs terminate in a conserved sequence containing a stem-loop. This 26-nt sequence is the binding site for a protein, stem-loop binding protein (SLBP), that is involved in multiple aspects of histone mRNA metabolism and regulation. We have determined the structure of the 26-nt sequence by multidimensional NMR spectroscopy. There is a 16-nt stem-loop motif, with a conserved 6-bp stem and a 4-nt loop. The loop is closed by a conserved U.A base pair that terminates the canonical A-form stem. The pyrimidine-rich 4-nt loop, UUUC, is well organized with the three uridines stacking on the helix, and the fourth base extending across the major groove into the solvent. The flanking nucleotides at the base of the hairpin stem do not assume a unique conformation, despite the fact that the 5' flanking nucleotides are a critical component of the SLBP binding site. PMID:11871662

  6. Mechanical properties of amyloid-like fibrils defined by secondary structures

    NASA Astrophysics Data System (ADS)

    Bortolini, C.; Jones, N. C.; Hoffmann, S. V.; Wang, C.; Besenbacher, F.; Dong, M.

    2015-04-01

    Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology are extensively studied - among these parameters, the secondary structures and the pH have been revealed to be crucial, since a variation in pH changes the fibril morphology and net chirality during protein aggregation. It is important to quantify the mechanical properties of these fibrils in order to help the design of effective strategies for treating diseases related to the presence of amyloid fibrils. In this work, we show that by changing pH the mechanical properties of amyloid-like fibrils vary as well. In particular, we reveal that these mechanical properties are strongly related to the content of secondary structures. We analysed and estimated the Young's modulus (E) by comparing the persistence length (Lp) - measured from the observation of TEM images by using statistical mechanics arguments - with the mechanical information provided by peak force quantitative nanomechanical property mapping (PF-QNM). The secondary structure content and the chirality are investigated by means of synchrotron radiation circular dichroism (SR-CD). Results arising from this study could be fruitfully used as a protocol to investigate other medical or engineering relevant peptide fibrils.Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology are extensively studied - among these parameters, the secondary structures and the pH have been revealed to be crucial, since a variation in pH changes the fibril morphology and net chirality during protein aggregation. It is important to quantify the mechanical properties of these fibrils in order to help the design of effective strategies for treating diseases related to the presence of amyloid fibrils. In this work, we show that by changing pH the mechanical properties of amyloid-like fibrils vary as well. In particular, we reveal that these mechanical properties are strongly related to the content of secondary structures. We analysed and estimated the Young's modulus (E) by comparing the persistence length (Lp) - measured from the observation of TEM images by using statistical mechanics arguments - with the mechanical information provided by peak force quantitative nanomechanical property mapping (PF-QNM). The secondary structure content and the chirality are investigated by means of synchrotron radiation circular dichroism (SR-CD). Results arising from this study could be fruitfully used as a protocol to investigate other medical or engineering relevant peptide fibrils. Electronic supplementary information (ESI) available: A molecular model for the peptide studied and the charge chart associated to it. In addition, an AFM image of pH 4 fibrils is presented. See DOI: 10.1039/c4nr05109b

  7. Sequence-specific sup 1 H NMR assignments and secondary structure of eglin c

    SciTech Connect

    Hyberts, S.G.; Wagner, G. )

    1990-02-13

    Sequence-specific nuclear magnetic resonance assignments were obtained for eglin c, a polypeptide inhibitor of the granulocytic proteinases elastase and cathepsin G and some other proteinases. The protein consists of a single polypeptide chain of 70 residues. All proton resonances were assigned except for some labile protons of arginine side chains. The patterns of nuclear Overhauser enhancements and coupling constants and the observation of slow hydrogen exchange were used to characterize the secondary structure of the protein. The results indicate that the solution structure of the free inhibitor is very similar to the crystal structure reported for the same protein in the complex with subtilisin Carlsberg. However, a part of the binding loop seems to have a significantly different conformation in the free protein.

  8. Rigidity, Secondary Structure, and the Universality of the Boson Peak in Proteins

    PubMed Central

    Perticaroli, Stefania; Nickels, Jonathan D.; Ehlers, Georg; Sokolov, Alexei P.

    2014-01-01

    Complementary neutron- and light-scattering results on nine proteins and amino acids reveal the role of rigidity and secondary structure in determining the time- and lengthscales of low-frequency collective vibrational dynamics in proteins. These dynamics manifest in a spectral feature, known as the boson peak (BP), which is common to all disordered materials. We demonstrate that BP position scales systematically with structural motifs, reflecting local rigidity: disordered proteins appear softer than α-helical proteins; which are softer than β-sheet proteins. Our analysis also reveals a universal spectral shape of the BP in proteins and amino acid mixtures; superimposable on the shape observed in typical glasses. Uniformity in the underlying physical mechanism, independent of the specific chemical composition, connects the BP vibrations to nanometer-scale heterogeneities, providing an experimental benchmark for coarse-grained simulations, structure/rigidity relationships, and engineering of proteins for novel applications. PMID:24940784

  9. Profiles and Majority Voting-Based Ensemble Method for Protein Secondary Structure Prediction

    PubMed Central

    Bouziane, Hafida; Messabih, Belhadri; Chouarfia, Abdallah

    2011-01-01

    Machine learning techniques have been widely applied to solve the problem of predicting protein secondary structure from the amino acid sequence. They have gained substantial success in this research area. Many methods have been used including k-Nearest Neighbors (k-NNs), Hidden Markov Models (HMMs), Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), which have attracted attention recently. Today, the main goal remains to improve the prediction quality of the secondary structure elements. The prediction accuracy has been continuously improved over the years, especially by using hybrid or ensemble methods and incorporating evolutionary information in the form of profiles extracted from alignments of multiple homologous sequences. In this paper, we investigate how best to combine k-NNs, ANNs and Multi-class SVMs (M-SVMs) to improve secondary structure prediction of globular proteins. An ensemble method which combines the outputs of two feed-forward ANNs, k-NN and three M-SVM classifiers has been applied. Ensemble members are combined using two variants of majority voting rule. An heuristic based filter has also been applied to refine the prediction. To investigate how much improvement the general ensemble method can give rather than the individual classifiers that make up the ensemble, we have experimented with the proposed system on the two widely used benchmark datasets RS126 and CB513 using cross-validation tests by including PSI-BLAST position-specific scoring matrix (PSSM) profiles as inputs. The experimental results reveal that the proposed system yields significant performance gains when compared with the best individual classifier. PMID:22058650

  10. Enzyme activity inhibition and secondary structure disruption of nano-TiO2 on pepsin.

    PubMed

    Zhu, Rong-Rong; Wang, Wen-Rui; Sun, Xiao-Yu; Liu, Hui; Wang, Shi-Long

    2010-09-01

    In this study, the binding and enzyme activity inhibitory effect of nano-TiO(2) on pepsin was explored compared with micro-TiO(2). Nano-TiO(2) was about 60 nm and micro-TiO(2) was about 200 nm, both round in shape. The activity of pepsin was depressed significantly by nano-TiO(2) comparing to micro-ones. The results of UV spectrometry, HPLC, SDS-PAGE and CD assay proved that micro-TiO(2) has only physical absorption effect on pepsin, but no impairment on primary sequences or secondary structure. However, nano-TiO(2) had coordination interaction with pepsin besides physical binding effect. The secondary structure of pepsin was unfolded with the treatment of nano-TiO(2) at pH 6.5 and pH 3.53, which might consequently affect the beta-hairpin loop that protects the active center of pepsin, and then reduce the enzyme activity. Furthermore, the thermodynamic mechanisms of interaction between nano-TiO(2) and pepsin were explored by fluorescence spectrum and ITC analysis. According to the results of thermodynamic analysis, the K value was 3.64x10(6), stoichiometry (N(pepsin:nano-TiO2)) was 3.04x10(3), the total DeltaH was -2277 cal/mol, DeltaS was 22.7 cal/(K mol), therefore the nano-TiO(2)-pepsin interaction is spontaneous. The depression of activity and the unfolding of secondary structure of pepsin were resulted from non-covalent reactions, including electrostatic force and hydrophobic binding. This work studied the different inhibitory effects and revealed mechanisms of the interaction between micro/nano-TiO(2) and pepsin, and provided a useful approach for evaluating the health risk of nano-materials on level of proteins. PMID:20541600

  11. Pitch accent alignment in romance: primary and secondary associations with metrical structure.

    PubMed

    Prieto, Pilar; D'Imperio, Mariapaola; Fivela, Barbara Gili

    2005-01-01

    The article describes the contrastive possibilities of alignment of high accents in three Romance varieties, namely, Central Catalan, Neapolitan Italian, and Pisa Italian. The Romance languages analyzed in this article provide crucial evidence that small differences in alignment in rising accents should be encoded phonologically. To account for such facts within the AM model, the article develops the notion of "phonological anchoring" as an extension of the concept of secondary association originally proposed by Pierrehumbert and Beckman (1988), and later adopted by Grice (1995), Grice, Ladd, and Arvaniti (2000), and others to explain the behavior of edge tones. The Romance data represent evidence that not only peripheral edge tones seek secondary associations. We claim that the phonological representation of pitch accents should include two independent mechanisms to encode alignment properties with metrical structure: (1) encoding of the primary phonological association (or affiliation) between the tone and its tone-bearing unit; and (2), for some specific cases, encoding of the secondary phonological anchoring of tones to prosodic edges (moras, syllables, and prosodic words). The Romance data described in the article provide crucial evidence of mora-edge, syllable-edge, and word-edge H tonal associations. PMID:16715682

  12. Interplay between desolvation and secondary structure in mediating cosolvent and temperature induced alpha-synuclein aggregation

    PubMed Central

    Anderson, V L; Webb, W W; Eliezer, D

    2013-01-01

    Both increased temperature and moderate concentrations of fluorinated alcohols enhance aggregation of the Parkinson’s disease-associated protein α–synuclein (αS). Here, we investigate the secondary structural rearrangements induced by heating and trifluoroethanol (TFE). At low TFE concentrations, CD spectra feature a negative peak characteristic of disordered polypeptides near 200 nm and a slight shoulder around 220 nm suggesting some polyproline-II content. Upon heating, these peaks weaken, while a weak negative signal develops at 222 nm. At high TFE concentrations, the spectra show distinct minima at 208 and 222 nm, indicative of considerable α-helical structure, which diminish upon heating. We observe a crossover between the low-TFE and high-TFE behavior near 15% TFE, where we previously showed that a partially helical intermediate is populated. We postulate that the protein is well solvated by water at low TFE concentrations and by TFE at high TFE concentrations, but may become desolvated at the crossover point. We discuss the potential roles and interplay of desolvation and helical secondary structure in driving αS aggregation. PMID:22932003

  13. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure

    PubMed Central

    Coleman, Annette W.

    2007-01-01

    For evolutionary comparisons, phylogenetics and evaluation of potential interbreeding taxa of a species, various loci have served for animals and plants and protistans. One [second internal transcribed spacer (ITS2) of the nuclear ribosomal DNA] is highly suitable for all. Its sequence is species specific. It has already been used extensively and very successfully for plants and some protistans, and a few animals (where historically, the mitochondrial genes have dominated species studies). Despite initial impressions that ITS2 is too variable, it has proven to provide useful biological information at higher taxonomic levels, even across all eukaryotes, thanks to the conserved aspects of its transcript secondary structure. The review of all eukaryote groups reveals that ITS2 is expandable, but always retains in its RNA transcript a common core structure of two helices with hallmark characteristics important for ribosomal RNA processing. This aspect of its RNA transcript secondary structure can rescue difficult alignment problems, making the ITS2 a more powerful tool for phylogenetics. Equally important, the recognition of eukaryote-wide homology regions provides extensive and detailed information to test experimental studies of ribosomal rRNA processing. PMID:17459886

  14. 5' and 3' untranslated regions of pestivirus genome: primary and secondary structure analyses.

    PubMed Central

    Deng, R; Brock, K V

    1993-01-01

    Within the conserved 5' untranslated region (UTR) of the pestivirus genome three highly variable regions were identified. Preceding the polyprotein start codon, multiple cryptic AUG codons and several small open reading frames are characteristic for all the five pestiviruses. Inspection of the context of AUGs revealed that the polyprotein initiation AUG of pestivirus has a weak context for efficient translation initiation. The most favorable context was found in two of the cryptic AUGs. Two oligopyrimidine-rich tracts upstream to the conserved either cryptic or authentic AUG in the 5'-UTR of pestivirus were identified and 83.3% of their nucleotide sequences are complementary to the consensus sequence at the 3' terminus of eucaryotic 18S rRNA. A secondary structure model for the 5'-UTR of pestivirus was predicted. Nucleotide sequence comparison among five pestiviruses led to the identification of a variable region and a conserved region in the 3'-UTR. A deletion of 41 nucleotides was found within the variable region in Osloss. A secondary structure model for the 3'-UTR was also predicted. The structural similarity of the 5'-UTR between pestiviruses and picornaviruses and hepatitis C viruses was demonstrated and the possible implications of features of the 5' and 3'-UTR of pestiviruses are discussed. PMID:8388102

  15. The secondary structure and sequence optimization of an RNA ligase ribozyme.

    PubMed Central

    Ekland, E H; Bartel, D P

    1995-01-01

    In vitro selection can generate functional sequence variants of an RNA structural motif that are useful for comparative analysis. The technique is particularly valuable in cases where natural variation is unavailable or non-existent. We report the extension of this approach to a new extreme--the identification of a 112 nt ribozyme secondary structure imbedded within a 186 nt RNA. A pool of 10(14) variants of an RNA ligase ribozyme was generated using combinatorial chemical synthesis coupled with combinatorial enzymatic ligation such that 172 of the 186 relevant positions were partially mutagenized. Active variants of this pool were enriched using an in vitro selection scheme that retains the sequence variability at positions very close to the ligation junction. Ligases isolated after four rounds of selection catalyzed self-ligation up to 700 times faster than the starting sequence. Comparative analysis of the isolates indicated that when complexed with substrate RNAs the ligase forms a nested, double pseudo-knot secondary structure with seven stems and several important joining segments. Comparative analysis also suggested the identity of mutations that account for the increased activity of the selected ligase variants; designed constructs incorporating combinations of these changes were more active than any of the individual ligase isolates. Images PMID:7667099

  16. Interplay between desolvation and secondary structure in mediating cosolvent and temperature induced alpha-synuclein aggregation

    NASA Astrophysics Data System (ADS)

    Anderson, V. L.; Webb, W. W.; Eliezer, D.

    2012-10-01

    Both increased temperature and moderate concentrations of fluorinated alcohols enhance aggregation of the Parkinson's disease-associated protein α-synuclein (αS). Here, we investigate the secondary structural rearrangements induced by heating and trifluoroethanol [TFE]. At low TFE concentrations, CD spectra feature a negative peak characteristic of disordered polypeptides near 200 nm and a slight shoulder around 220 nm suggesting some polyproline-II content. Upon heating, these peaks weaken, while a weak negative signal develops at 222 nm. At high TFE concentrations, the spectra show distinct minima at 208 and 222 nm, indicative of considerable α-helical structure, which diminish upon heating. We observe a crossover between the low-TFE and high-TFE behavior near 15% TFE, where we previously showed that a partially helical intermediate is populated. We postulate that the protein is well solvated by water at low TFE concentrations and by TFE at high TFE concentrations, but may become desolvated at the crossover point. We discuss the potential roles and interplay of desolvation and helical secondary structure in driving αS aggregation.

  17. PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information

    PubMed Central

    Simossis, V. A.; Heringa, J.

    2005-01-01

    PRofile ALIgNEment (PRALINE) is a fully customizable multiple sequence alignment application. In addition to a number of available alignment strategies, PRALINE can integrate information from database homology searches to generate a homology-extended multiple alignment. PRALINE also provides a choice of seven different secondary structure prediction programs that can be used individually or in combination as a consensus for integrating structural information into the alignment process. The program can be used through two separate interfaces: one has been designed to cater to more advanced needs of researchers in the field, and the other for standard construction of high confidence alignments. The web-based output is designed to facilitate the comprehensive visualization of the generated alignments by means of five default colour schemes based on: residue type, position conservation, position reliability, residue hydrophobicity and secondary structure, depending on the options set. A user can also define a custom colour scheme by selecting which colour will represent one or more amino acids in the alignment. All generated alignments are also made available in the PDF format for easy figure generation for publications. The grouping of sequences, on which the alignment is based, can also be visualized as a dendrogram. PRALINE is available at . PMID:15980472

  18. Structures in secondary flow under simple harmonic inflow in a 180 degree curved pipe model of an artery

    NASA Astrophysics Data System (ADS)

    Glenn, Autumn L.; Seagrave, Sarah L.; Bulusu, Kartik V.; Plesniak, Michael W.

    2011-11-01

    Inward centrifuging of fluid in a 180 degree curved pipe leads to development of secondary flow vortical structures. These Dean's vortices have been widely studied in steady flows. Complex secondary flow structures were observed under (unsteady) physiological flow forcing associated with the cardiac cycle, as well as simple harmonic forcing. These structures were investigated under several simple harmonic inflow conditions with phase-locked 2-D PIV measurements to examine the formation of coherent structures in the secondary flow. Experimental velocity field data were acquired at various cross-sectional planes along the bend. Multiple vortex pairs were observed at 90 degrees into the bend for all waveforms investigated. The overarching goal of this study is to understand the effect of driving waveform characteristics, i.e. period, flow acceleration, etc. on secondary flow morphologies and to characterize these morphologies in terms of dimensionless parameters describing the flow. Supported by the National Science Foundation under Grant No. CBET-0828903.

  19. MacSECPROT: two programs in BASIC to evaluate protein secondary structure.

    PubMed

    Luttke, A

    1989-12-01

    Two interactive programs in BASIC are described, which provide useful tools to evaluate protein secondary structure. Output is given in two formats: (1) graphics are displayed on screen, which can be printed immediately, and (2) textfiles are saved to disk as permanent records and can be printed with a word-processing program. The programs are fast and easy to use and could be a valuable teaching aid in biochemical and molecular biology courses. Program lists are written in Microsoft BASIC for the Apple Macintosh, but can be adapted to other machines accepting graphic commands. PMID:2606566

  20. Maintenance of secondary power and structural systems for electric arc furnaces

    SciTech Connect

    Surgeon, D.A.

    1997-05-01

    Key components and assemblies utilized on the secondary side of electric arc melting (or refining furnaces) have been discussed with emphasis on maintenance, design and modification of current-carrying and structural equipment. Common causes of failure for electrode holders and pads, water-cooled furnace cables and mast arm assemblies have been reviewed, and the cause and effect relationship of production demands with equipment life evaluated. Normal and expected wear vs excessive and premature damage are discussed, and recommendations made on how to prolong equipment life leading to a reduction in production delays due to unscheduled maintenance downtime.

  1. Comparative structure and biomechanics of plant primary and secondary cell walls

    PubMed Central

    Cosgrove, Daniel J.; Jarvis, Michael C.

    2012-01-01

    Recent insights into the physical biology of plant cell walls are reviewed, summarizing the essential differences between primary and secondary cell walls and identifying crucial gaps in our knowledge of their structure and biomechanics. Unexpected parallels are identified between the mechanism of expansion of primary cell walls during growth and the mechanisms by which hydrated wood deforms under external tension. There is a particular need to revise current “cartoons” of plant cell walls to be more consistent with data from diverse approaches and to go beyond summarizing limited aspects of cell walls, serving instead as guides for future experiments and for the application of new techniques. PMID:22936943

  2. Enhancement of accuracy and efficiency for RNA secondary structure prediction by sequence segmentation and MapReduce

    PubMed Central

    2013-01-01

    Background Ribonucleic acid (RNA) molecules play important roles in many biological processes including gene expression and regulation. Their secondary structures are crucial for the RNA functionality, and the prediction of the secondary structures is widely studied. Our previous research shows that cutting long sequences into shorter chunks, predicting secondary structures of the chunks independently using thermodynamic methods, and reconstructing the entire secondary structure from the predicted chunk structures can yield better accuracy than predicting the secondary structure using the RNA sequence as a whole. The chunking, prediction, and reconstruction processes can use different methods and parameters, some of which produce more accurate predictions than others. In this paper, we study the prediction accuracy and efficiency of three different chunking methods using seven popular secondary structure prediction programs that apply to two datasets of RNA with known secondary structures, which include both pseudoknotted and non-pseudoknotted sequences, as well as a family of viral genome RNAs whose structures have not been predicted before. Our modularized MapReduce framework based on Hadoop allows us to study the problem in a parallel and robust environment. Results On average, the maximum accuracy retention values are larger than one for our chunking methods and the seven prediction programs over 50 non-pseudoknotted sequences, meaning that the secondary structure predicted using chunking is more similar to the real structure than the secondary structure predicted by using the whole sequence. We observe similar results for the 23 pseudoknotted sequences, except for the NUPACK program using the centered chunking method. The performance analysis for 14 long RNA sequences from the Nodaviridae virus family outlines how the coarse-grained mapping of chunking and predictions in the MapReduce framework exhibits shorter turnaround times for short RNA sequences. However, as the lengths of the RNA sequences increase, the fine-grained mapping can surpass the coarse-grained mapping in performance. Conclusions By using our MapReduce framework together with statistical analysis on the accuracy retention results, we observe how the inversion-based chunking methods can outperform predictions using the whole sequence. Our chunk-based approach also enables us to predict secondary structures for very long RNA sequences, which is not feasible with traditional methods alone. PMID:24564983

  3. Differential protein occupancy profiling of the mRNA transcriptome

    PubMed Central

    2014-01-01

    Background RNA-binding proteins (RBPs) mediate mRNA biogenesis, translation and decay. We recently developed an approach to profile transcriptome-wide RBP contacts on polyadenylated transcripts by next-generation sequencing. A comparison of such profiles from different biological conditions has the power to unravel dynamic changes in protein-contacted cis-regulatory mRNA regions without a priori knowledge of the regulatory protein component. Results We compared protein occupancy profiles of polyadenylated transcripts in MCF7 and HEK293 cells. Briefly, we developed a bioinformatics workflow to identify differential crosslinking sites in cDNA reads of 4-thiouridine crosslinked polyadenylated RNA samples. We identified 30,000 differential crosslinking sites between MCF7 and HEK293 cells at an estimated false discovery rate of 10%. 73% of all reported differential protein-RNA contact sites cannot be explained by local changes in exon usage as indicated by complementary RNA-seq data. The majority of differentially crosslinked positions are located in 3′ UTRs, show distinct secondary-structure characteristics and overlap with binding sites of known RBPs, such as ELAVL1. Importantly, mRNA transcripts with the most significant occupancy changes show elongated mRNA half-lives in MCF7 cells. Conclusions We present a global comparison of protein occupancy profiles from different cell types, and provide evidence for altered mRNA metabolism as a result of differential protein-RNA contacts. Additionally, we introduce POPPI, a bioinformatics workflow for the analysis of protein occupancy profiling experiments. Our work demonstrates the value of protein occupancy profiling for assessing cis-regulatory RNA sequence space and its dynamics in growth, development and disease. PMID:24417896

  4. The Pekin duck IL-10R2 common chain: cDNA cloning, genomic structure, molecular characterization and mRNA expression analysis.

    PubMed

    Yao, Q; Fischer, K P; Arnesen, K; Lorne Tyrrell, D; Gutfreund, K S

    2013-10-01

    The interleukin-10 receptor 2 (IL-10R2, IL-10Rβ) is required for the signalling of the class 2 cytokines IL-10, IL-22, IL-26 and IFN-λ1-3 . Here, we describe the identification of the Pekin duck IL-10R2 (duIL-10R2) common chain and its gene structure. The duIL-10R2 cDNA encodes a 343 amino acid protein that has an amino acid identity of 76% and 42% with chicken and human IL-10R2, respectively. Binding residues of human IL-10R2 for IL-10 and IL-22 were mostly conserved in the avian IL-10R2 proteins within loops L3 and L5, but not within loops L2 and L6. Homology modelling of the duIL-10R2 extracellular domain structure using soluble human IL-10R2 (shIL-10R2, PDB ID: 3LQM) as a template revealed a protruding loop L5 and two distinct clefts between loops L2/L3 and L3/L5, similar to shIL-10R2. However, in contrast to the three amino acid β-hairpin loop L2 of shIL-10R2, loop L2 of duIL-10R2 is five residues longer. Residues within a putative Tyk2 binding site were highly conserved across all vertebrate IL-10R2 proteins examined. The duIL-10R2 gene shares a seven exon-six intron structure with chicken and human IL-10R2 genes, but avian genes are more compact. DuIL-10R2 mRNA was constitutively expressed in all tissues. Mitogen stimulation of duck peripheral blood mononuclear cells (PBMC) did not alter transcript levels. Our observations suggest that genomic organization and structural features implicated in multiple cytokine-binding properties of human IL-10R2 are conserved in duck IL-10R2, but the evolutionary changes that appear to have lead to low-affinity cytokine interaction within loop L2 are distinct to mammalian species. PMID:23331509

  5. Structure prediction and functional characterization of secondary metabolite proteins of Ocimum.

    PubMed

    Roy, Sudeep; Maheshwari, Nidhi; Chauhan, Rashi; Sen, Naresh Kumar; Sharma, Ashok

    2011-01-01

    Various species of Ocimum have acquired special attention due to their medicinal properties. Different parts of the plant (root, stem, flower, leaves) are used in the treatment of a wide range of disorders from centuries. Experimental structures (X-ray and NMR) of proteins from different Ocimum species, are not yet available in the Protein Databank (PDB). These proteins play a key role in various metabolic pathways in Ocimum. 3D structures of the proteins are essential to determine most of their functions. Homology modeling approach was employed in order to derive structures for these proteins. A program meant for comparative modeling- Modeller 9v7 was utilized for the purpose. The modeled proteins were further validated by Prochek and Verify-3d and Errat servers. Amino acid composition and polarity of these proteins was determined by CLC-Protein Workbench tool. Expasy's Prot-param server and Cys_rec tool were used for physico-chemical and functional characterization of these proteins. Studies of secondary structure of these proteins were carried out by computational program, Profunc. Swiss-pdb viewer was used to visualize and analyze these homology derived structures. The structures are finally submitted in Protein Model Database, PMDB so that they become accessible to other users for further studies. PMID:21769194

  6. Ambient modal identification of a primary-secondary structure by Fast Bayesian FFT method

    NASA Astrophysics Data System (ADS)

    Au, Siu-Kui; Zhang, Feng-Liang

    2012-04-01

    The Mong Man Wai Building is a seven-storied reinforced concrete structure situated on the campus of the City University of Hong Kong. On its roof a two-storied steel frame has been recently constructed to host a new wind tunnel laboratory. The roof frame and the main building form a primary-secondary structure. The dynamic characteristics of the resulting system are of interest from a structural dynamics point of view. This paper presents work on modal identification of the structure using ambient vibration measurement. An array of tri-axial acceleration data has been obtained using a number of setups to cover all locations of interest with a limited number of sensors. Modal identification is performed using a recently developed Fast Bayesian FFT method. In addition to the most probable modal properties, their posterior uncertainties can also be assessed using the method. The posterior uncertainty of mode shape is assessed by the expected value of the Modal Assurance Criteria (MAC) of the most probable mode shape with a random mode shape consistent with the posterior distribution. The mode shapes of the overall structural system are obtained by assembling those from individual setups using a recently developed least-square method. The identification results reveal a number of interesting features about the structural system and provide important information defining the baseline modal properties of the building. Practical interpretation of the statistics of modal parameters calculated from frequentist and Bayesian context is also discussed.

  7. Evolutionary conservation of sequence and secondary structures inCRISPR repeats

    SciTech Connect

    Kunin, Victor; Sorek, Rotem; Hugenholtz, Philip

    2006-09-01

    Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) are a novel class of direct repeats, separated by unique spacer sequences of similar length, that are present in {approx}40% of bacterial and all archaeal genomes analyzed to date. More than 40 gene families, called CRISPR-associated sequences (CAS), appear in conjunction with these repeats and are thought to be involved in the propagation and functioning of CRISPRs. It has been proposed that the CRISPR/CAS system samples, maintains a record of, and inactivates invasive DNA that the cell has encountered, and therefore constitutes a prokaryotic analog of an immune system. Here we analyze CRISPR repeats identified in 195 microbial genomes and show that they can be organized into multiple clusters based on sequence similarity. All individual repeats in any given cluster were inferred to form characteristic RNA secondary structure, ranging from non-existent to pronounced. Stable secondary structures included G:U base pairs and exhibited multiple compensatory base changes in the stem region, indicating evolutionary conservation and functional importance. We also show that the repeat-based classification corresponds to, and expands upon, a previously reported CAS gene-based classification including specific relationships between CRISPR and CAS subtypes.

  8. Thermal behavior of proteins: heat-resistant proteins and their heat-induced secondary structural changes.

    PubMed

    Kim, T D; Ryu, H J; Cho, H I; Yang, C H; Kim, J

    2000-12-01

    Most proteins are denatured by heat treatment, and the process is usually irreversible. However, some proteins, such as hyperthermophilic proteins are known to be stable even at the boiling temperature of water. We here describe a systematic investigation of thermal behavior of proteins by purifying and characterizing some heat-resistant proteins (HRPs) that are not aggregated upon heat treatment. Although most proteins were precipitated by boiling in a water bath, about 20 and 70 wt % of total proteins appeared to be heat-resistant in Jurkat T-cell lysates and human serum, respectively. We identified major HRPs from Jurkat T-cells and human serum by N-terminal amino acid sequencing and Western blot analysis. HRPs of 20 and 45 kDa (HRP20 and HRP45) were identified as alpha-synuclein and calreticulin, respectively, and HRPs of 60, 27, and 16 kDa (HRP60, HRP27, and HRP16) were identified as human serum fetuin, apolipoprotein A-I, and transthyretin, respectively. By a systematic investigation of the effect of heat on the secondary structure of the purified HRPs by circular dichroic spectroscopy, we observed four major types of thermal behavior, suggesting that the proteins could protect themselves through these pathways. Although our analysis is restricted to protein secondary structural changes, our data indicate that heat resistance of protein can be achieved in several different ways depending on the thermodynamic stability of native (N), unfolded (U), denatured (D), and intermediate (I) states. PMID:11101300

  9. A Tool Preference Choice Method for RNA Secondary Structure Prediction by SVM with Statistical Tests

    PubMed Central

    Hor, Chiou-Yi; Yang, Chang-Biau; Chang, Chia-Hung; Tseng, Chiou-Ting; Chen, Hung-Hsin

    2013-01-01

    The Prediction of RNA secondary structures has drawn much attention from both biologists and computer scientists. Many useful tools have been developed for this purpose. These tools have their individual strengths and weaknesses. As a result, based on support vector machines (SVM), we propose a tool choice method which integrates three prediction tools: pknotsRG, RNAStructure, and NUPACK. Our method first extracts features from the target RNA sequence, and adopts two information-theoretic feature selection methods for feature ranking. We propose a method to combine feature selection and classifier fusion in an incremental manner. Our test data set contains 720 RNA sequences, where 225 pseudoknotted RNA sequences are obtained from PseudoBase, and 495 nested RNA sequences are obtained from RNA SSTRAND. The method serves as a preprocessing way in analyzing RNA sequences before the RNA secondary structure prediction tools are employed. In addition, the performance of various configurations is subject to statistical tests to examine their significance. The best base-pair accuracy achieved is 75.5%, which is obtained by the proposed incremental method, and is significantly higher than 68.8%, which is associated with the best predictor, pknotsRG. PMID:23641141

  10. Membrane association and destabilization by Aggregatibacter actinomycetemcomitans leukotoxin requires changes in secondary structures.

    PubMed

    Walters, M J; Brown, A C; Edrington, T C; Baranwal, S; Du, Y; Lally, E T; Boesze-Battaglia, K

    2013-10-01

    Aggregatibacter actinomycetemcomitans is a common inhabitant of the upper aerodigestive tract of humans and non-human primates and is associated with disseminated infections, including lung and brain abscesses, pediatric infective endocarditis, and localized aggressive periodontitis. Aggregatibacter actinomycetemcomitans secretes a repeats-in-toxin protein, leukotoxin, which exclusively kills lymphocyte function-associated antigen-1-bearing cells. The toxin's pathological mechanism is not fully understood; however, experimental evidence indicates that it involves the association with and subsequent destabilization of the target cell's plasma membrane. We have long hypothesized that leukotoxin secondary structure is strongly correlated with membrane association and destabilization. In this study, we tested this hypothesis by analysing lipid-induced changes in leukotoxin conformation. Upon incubation of leukotoxin with lipids that favor leukotoxin-membrane association, we observed an increase in leukotoxin α-helical content that was not observed with lipids that favor membrane destabilization. The change in leukotoxin conformation after incubation with these lipids suggests that membrane binding and membrane destabilization have distinct secondary structural requirements, suggesting that they are independent events. These studies provide insight into the mechanism of cell damage that leads to disease progression by A. actinomycetemcomitans. PMID:23678967

  11. Proton NMR assignments and secondary structure of the snake venom protein echistatin

    SciTech Connect

    Yuan Chen; Baum, J. ); Pitzenberger, S.M.; Garsky, V.M.; Lumma, P.K.; Sanyal, G. )

    1991-12-17

    The snake venom protein echistatin is a potent inhibitor of platelet aggregation. The inhibitory properties of echistatin have been attributed to the Arg-Gly-Asp sequence at residues 24-26. In this paper, sequence-specific nuclear magnetic resonance assignments are presented for the proton resonances of echistatin in water. The single-chain protein contains 49 amino acids and 4 cystine bridges. All of the backbone amide, C{sub alpha}H, and side-chain resonances, except for the {eta}-NH of the arginines, have been assigned. The secondary structure of the protein was characterized from the pattern of nuclear Overhauser enhancements, from the identification of slowly exchanging amide protons, from {sup 3}J{sub c{alpha}H-NH} coupling constants, and from circular dichroism studies. The data suggest that the secondary structure consists of a type I {beta}-turn, a short {beta}-hairpin, and a short-, irregular, antiparallel {beta}-sheet and that the Arg-Gly-Asp sequence is in a flexible loop connecting two strands of the distorted antiparallel {beta}-sheet.

  12. Rule generation for protein secondary structure prediction with support vector machines and decision tree.

    PubMed

    He, Jieyue; Hu, Hae-Jin; Harrison, Robert; Tai, Phang C; Pan, Yi

    2006-03-01

    Support vector machines (SVMs) have shown strong generalization ability in a number of application areas, including protein structure prediction. However, the poor comprehensibility hinders the success of the SVM for protein structure prediction. The explanation of how a decision made is important for accepting the machine learning technology, especially for applications such as bioinformatics. The reasonable interpretation is not only useful to guide the "wet experiments," but also the extracted rules are helpful to integrate computational intelligence with symbolic AI systems for advanced deduction. On the other hand, a decision tree has good comprehensibility. In this paper, a novel approach to rule generation for protein secondary structure prediction by integrating merits of both the SVM and decision tree is presented. This approach combines the SVM with decision tree into a new algorithm called SVM_ DT, which proceeds in three steps. This algorithm first trains an SVM. Then, a new training set is generated through careful selection from the output of the SVM. Finally, the obtained training set is used to train a decision tree learning system and to extract the corresponding rule sets. The results of the experiments of protein secondary structure prediction on RS126 data set show that the comprehensibility of SVM_DT is much better than that of the SVM. Moreover, the generalization ability of SVM_DT is better than that of C4.5 decision trees and is similar to that of the SVM. Hence, SVM_DT can be used not only for prediction, but also for guiding biological experiments. PMID:16570873

  13. Secondary structure provides a template for the folding of nearby polypeptides

    PubMed Central

    Kameda, Tomoshi; Takada, Shoji

    2006-01-01

    Although protein structures are primarily encoded by their sequences, they are also critically dependent on environmental factors such as solvents and interactions with other molecules. Here we investigate how the folding-energy landscape of a short peptide is altered by interactions with another peptide, by performing atomistic replica-exchange molecular dynamics simulations of polyalanines in various environments. We analyzed the free-energy landscapes of Ala7 and Ala8 in isolation, near an α-helix template, and near a β-strand template. The isolated Ala7 and Ala8 at 270 K were mainly in polyproline II helix conformations and in equilibrium between the α-helix and polyproline II helix, respectively, in harmony with the experiment. Interestingly, we found remarkably strong secondary-structure “templating”; namely, the α-helix template enhanced α-helix conformation and the β-strand template induced β-strand conformation in the simulated Ala8. The α-helix template lowered the nearby dielectric constant, which strengthened hydrogen bonds in the simulated Ala8, leading to α-helix stabilization. The β-strand template provided hydrogen bond positions to the simulated Ala8, sharply inducing β-strand structure. With or without templates, the energy landscape of Ala8 is always funnel-like and centered at the α-helix conformation, whereas entropic contribution disfavors the α-helix, leading to subtle competition. Secondary-structure templating may play a critical role in protein conformation dynamics in the cellular environment. PMID:17101976

  14. Secondary-Structure Analysis of Denatured Proteins by Vacuum-Ultraviolet Circular Dichroism Spectroscopy

    PubMed Central

    Matsuo, Koichi; Sakurada, Yoshie; Yonehara, Ryuta; Kataoka, Mikio; Gekko, Kunihiko

    2007-01-01

    To elucidate the structure of denatured proteins, we measured the vacuum-ultraviolet circular dichroism (VUVCD) spectra from 260 to 172 nm of three proteins (metmyoglobin, staphylococcal nuclease, and thioredoxin) in the native and the acid-, cold-, and heat-denatured states, using a synchrotron-radiation VUVCD spectrophotometer. The circular dichroism spectra of proteins fully unfolded by guanidine hydrochloride (GdnHCl) were also measured down to 197 nm for comparison. These denatured proteins exhibited characteristic VUVCD spectra that reflected a considerable amount of residual secondary structures. The contents of α-helices, β-strands, turns, poly-L-proline type II (PPII), and unordered structures were estimated for each denatured state of the three proteins using the SELCON3 program with Protein Data Bank data and the VUVCD spectra of 31 reference proteins reported in our previous study. Based on these contents, the characteristics of the four types of denaturation were discussed for each protein. In all types of denaturation, a decrease in α-helices was accompanied by increases in β-strands, PPII, and unordered structures. About 20% β-strands were present even in the proteins fully unfolded by GdnHCl in which β-sheets should be broken. From these results, we propose that denatured proteins constitute an ensemble of residual α-helices and β-sheets, partly unfolded (or distorted) α-helices and β-strands, PPII, and unordered structures. PMID:17369421

  15. Water-in-oil micro-emulsion enhances the secondary structure of a protein by confinement.

    PubMed

    Shipovskov, Stepan; Oliveira, Cristiano L P; Hoffmann, Søren Vrønning; Schauser, Leif; Sutherland, Duncan S; Besenbacher, Flemming; Pedersen, Jan Skov

    2012-09-17

    A scheme is presented in which an organic solvent environment in combination with surfactants is used to confine a natively unfolded protein inside an inverse microemulsion droplet. This type of confinement allows a study that provides unique insight into the dynamic structure of an unfolded, flexible protein which is still solvated and thus under near-physiological conditions. In a model system, the protein osteopontin (OPN) is used. It is a highly phosphorylated glycoprotein that is expressed in a wide range of cells and tissues for which limited structural analysis exists due to the high degree of flexibility and large number of post-translational modifications. OPN is implicated in tissue functions, such as inflammation and mineralisation. It also has a key function in tumour metastasis and progression. Circular dichroism measurements show that confinement enhances the secondary structural features of the protein. Small-angle X-ray scattering and dynamic light scattering show that OPN changes from being a flexible protein in aqueous solution to adopting a less flexible and more compact structure inside the microemulsion droplets. This novel approach for confining proteins while they are still hydrated may aid in studying the structure of a wide range of natively unfolded proteins. PMID:22730383

  16. Ab initio study of novel carbon nanofoam structure as an anode material for Li secondary battery

    NASA Astrophysics Data System (ADS)

    Park, Hanjin; Park, Sora; Kang, Seoung-Hun; Kwon, Young-Kyun

    2014-03-01

    Using ab inito density functional theory, we investigate the adsorption and diffusion properties of Li atoms on a new carbon nanostructure, which may be used as an anode of Li secondary battery. We focus on a special carbon nanofoam structure consisting of Schwarzite structures with negative Gaussian curvature as core parts, which are interconnected through (4,4) CNT segments. Considering the symmetry of the nanofoam structure, we find various Li adsorption sites exhibiting relatively large binding energies (>= 2 . 00 eV). Based on these adsorption sites, we identify several diffusion paths on the outside or inside surface of the nanofoam structure and examine the diffusion barriers along the paths. Our results show that Li atom can diffuse almost freely due to its low energy barriers on both outside and inside surfaces. Finally, we also evaluate the energy gain tendency and the volume expansion as well as the average binding energy while adding Li atoms to estimate the Li-capacity and recyclability of the system, which are important characterisitics for anode materials. We conclude that the carbon nanofoam structure would be better as an anode material than graphite in Li capacity and volume expansion.

  17. Structural requirements of iron-responsive elements for binding of the protein involved in both transferrin receptor and ferritin mRNA post-transcriptional regulation.

    PubMed Central

    Leibold, E A; Laudano, A; Yu, Y

    1990-01-01

    The synthesis of both transferrin receptor (TfR) and ferritin is regulated post-transcriptionally by iron. This is mediated by iron responsive elements (IREs) in the 5'- and 3'-untranslated regions, respectively, of TfR and ferritin mRNAs. Although these IREs have different sequences, they both form a characteristic stem-loop. We used competition assays and partial peptide mapping of UV-crosslinked ferritin and TfR IRE-protein complexes to show that the cytosolic protein binding to the ferritin 5'-IRE, the iron-responsive element binding protein (IRE-BP), also binds to TfR 3'-IREs. To identify the structural requirements necessary for RNA-protein binding, ferritin IRE RNAs were synthesized which contained altered secondary structures and base substitutions. Affinities of these RNAs for IRE-BP were assayed in RNA-protein binding gels. Substitutions disrupting base-pairing of the stem prevented IRE-BP binding. Substitutions which restored base-pairing also restored IRE-BP binding. We conclude that the IRE-BP binds to both ferritin and TfR IREs and recognizes a particular IRE conformation. Images PMID:2336358

  18. SeqFold: genome-scale reconstruction of RNA secondary structure integrating high-throughput sequencing data.

    PubMed

    Ouyang, Zhengqing; Snyder, Michael P; Chang, Howard Y

    2013-02-01

    We present an integrative approach, SeqFold, that combines high-throughput RNA structure profiling data with computational prediction for genome-scale reconstruction of RNA secondary structures. SeqFold transforms experimental RNA structure information into a structure preference profile (SPP) and uses it to select stable RNA structure candidates representing the structure ensemble. Under a high-dimensional classification framework, SeqFold efficiently matches a given SPP to the most likely cluster of structures sampled from the Boltzmann-weighted ensemble. SeqFold is able to incorporate diverse types of RNA structure profiling data, including parallel analysis of RNA structure (PARS), selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq), fragmentation sequencing (FragSeq) data generated by deep sequencing, and conventional SHAPE data. Using the known structures of a wide range of mRNAs and noncoding RNAs as benchmarks, we demonstrate that SeqFold outperforms or matches existing approaches in accuracy and is more robust to noise in experimental data. Application of SeqFold to reconstruct the secondary structures of the yeast transcriptome reveals the diverse impact of RNA secondary structure on gene regulation, including translation efficiency, transcription initiation, and protein-RNA interactions. SeqFold can be easily adapted to incorporate any new types of high-throughput RNA structure profiling data and is widely applicable to analyze RNA structures in any transcriptome. PMID:23064747

  19. Combining sequence-based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations

    PubMed Central

    Lees, Jonathan G; Janes, Robert W

    2008-01-01

    Background A number of sequence-based methods exist for protein secondary structure prediction. Protein secondary structures can also be determined experimentally from circular dichroism, and infrared spectroscopic data using empirical analysis methods. It has been proposed that comparable accuracy can be obtained from sequence-based predictions as from these biophysical measurements. Here we have examined the secondary structure determination accuracies of sequence prediction methods with the empirically determined values from the spectroscopic data on datasets of proteins for which both crystal structures and spectroscopic data are available. Results In this study we show that the sequence prediction methods have accuracies nearly comparable to those of spectroscopic methods. However, we also demonstrate that combining the spectroscopic and sequences techniques produces significant overall improvements in secondary structure determinations. In addition, combining the extra information content available from synchrotron radiation circular dichroism data with sequence methods also shows improvements. Conclusion Combining sequence prediction with experimentally determined spectroscopic methods for protein secondary structure content significantly enhances the accuracy of the overall results obtained. PMID:18197968

  20. Internal transcribed spacer 1 secondary structure analysis reveals a common core throughout the anaerobic fungi (Neocallimastigomycota).

    PubMed

    Koetschan, Christian; Kittelmann, Sandra; Lu, Jingli; Al-Halbouni, Djamila; Jarvis, Graeme N; Müller, Tobias; Wolf, Matthias; Janssen, Peter H

    2014-01-01

    The internal transcribed spacer (ITS) is a popular barcode marker for fungi and in particular the ITS1 has been widely used for the anaerobic fungi (phylum Neocallimastigomycota). A good number of validated reference sequences of isolates as well as a large number of environmental sequences are available in public databases. Its highly variable nature predisposes the ITS1 for low level phylogenetics; however, it complicates the establishment of reproducible alignments and the reconstruction of stable phylogenetic trees at higher taxonomic levels (genus and above). Here, we overcame these problems by proposing a common core secondary structure of the ITS1 of the anaerobic fungi employing a Hidden Markov Model-based ITS1 sequence annotation and a helix-wise folding approach. We integrated the additional structural information into phylogenetic analyses and present for the first time an automated sequence-structure-based taxonomy of the ITS1 of the anaerobic fungi. The methodology developed is transferable to the ITS1 of other fungal groups, and the robust taxonomy will facilitate and improve high-throughput anaerobic fungal community structure analysis of samples from various environments. PMID:24663345

  1. Sequential NMR resonance assignment and secondary structure of ferrocytochrome c553 from Desulfovibrio vulgaris Hildenborough.

    PubMed

    Marion, D; Guerlesquin, F

    1992-09-01

    Two-dimensional nuclear magnetic resonance spectroscopy was used to assign the proton resonances of ferrocytochrome c553 from Desulfovibrio vulgaris Hildenbourough at 37 degrees C and pH = 5.9. Only a few side-chain protons were not identified because of degeneracy or overlap. The spin systems of the 79 amino acids were identified by DQF-COSY and HOHAHA spectra in H2O and D2O. Sequential assignments were obtained from NOESY connectivities between adjacent amide, C alpha H, and C beta H protons. From sequential NH(i)----NH(i + 1) and long-range C alpha H(i)----NH(i + 3) connectivities, four stretches of helices were identified (2----8, 34----46, 53----59, 67----77). Long-range NOE between residues in three different helices provide qualitative information on the tertiary structure, in agreement with the general folding pattern of cytochrome c. The heme protons, including the propionate groups, were assigned, and the identification of Met 57 as sixth heme ligand was established. The dynamical behavior of the ring protons of the six tyrosines was analyzed in detail in terms of steric hindrance. The NMR data for ferrocytochrome c553 are consistent with the X-ray structure for the homologous cytochrome from D. vulgaris Miyazaki. On the basis of the secondary structure element and of observed chemical shift due to the heme ring current, a structural alignment of eukaryotic and prokaryotic cytochromes c is proposed. PMID:1326323

  2. mRNA

    PubMed Central

    Van Lint, Sandra; Heirman, Carlo; Thielemans, Kris; Breckpot, Karine

    2013-01-01

    Two decades ago, mRNA became the focus of research in molecular medicine and was proposed as an active pharmaceutical ingredient for the therapy of cancer. In this regard, mRNA has been mainly used for ex vivo modification of antigen-presenting cells (APCs), such as dendritic cells (DCs). This vaccination strategy has proven to be safe, well tolerated and capable of inducing tumor antigen-specific immune responses. Recently, the direct application of mRNA for in situ modification of APCs, hence immunization was shown to be feasible and at least as effective as DC-based immunization in pre-clinical models. It is believed that application of mRNA as an off-the-shelf vaccine represents an important step in the development of future cancer immunotherapeutic strategies. Here, we will discuss the use of ex vivo mRNA-modified DCs and “naked mRNA” for cancer immunotherapy focusing on parameters such as the employed DC subtype, DC activation stimulus and route of immunization. In addition, we will provide an overview on the clinical trials published so far, trying to link their outcome to the aforementioned parameters. PMID:23291946

  3. Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex.

    PubMed

    Ferrari, Julia; West, Joan A; Via, Sara; Godfray, H Charles J

    2012-02-01

    Polyphagous insect herbivores experience different selection pressures on their various host plant species. How this affects population divergence and speciation may be influenced by the bacterial endosymbionts that many harbor. Here, we study the population structure and symbiont community of the pea aphid (Acyrthosiphon pisum), which feeds on a range of legume species and is known to form genetically differentiated host-adapted populations. Aphids were collected from eight legume genera in England and Germany. Extensive host plant associated differentiation was observed with this collection of pea aphids comprising nine genetic clusters, each of which could be associated with a specific food plant. Compared to host plant, geography contributed little to genetic differentiation. The genetic clusters were differentiated to varying degrees, but this did not correlate with their degree of divergence in host use. We surveyed the pea aphid clones for the presence of six facultative (secondary) bacterial endosymbionts and found they were nonrandomly distributed across the aphid genetic clusters and this distribution was similar in the two countries. Aphid clones on average carried 1.4 species of secondary symbiont with those associated with Lathyrus having significantly fewer. The results are interpreted in the light of the evolution of specialization and ecological speciation. PMID:22276535

  4. Role of secondary long wavelength structures in the saturation of electron temperature gradient driven turbulence

    SciTech Connect

    Li Jiquan; Kishimoto, Y.

    2008-11-15

    The dynamics of secondary long wavelength structures (LWSs) in electron temperature gradient (ETG) driven turbulence are investigated by performing gyrofluid simulations and modeling analyses in a slab geometry with an emphasis of the underlying nonlinear interaction processes. It is shown that the back-reaction of the secondary LWS on the ambient fluctuations essentially contributes to saturating ETG instability and limiting the electron transport. The LWS is nonlinearly generated mainly through the beating of the most unstable ETG modes, even a weak modulation instability. The back-reaction is identified as the enhanced stabilization of the ETG modes due to the streamer-type feature of the LWS, which dominantly produces a local poloidal mode coupling among unstable and highly damped spectral components to form a global mode, besides the suppression effect of the LWS due to the radial shearing decorrelation and/or the radial mode coupling. Finally, the correspondence between the LWS in the slab model and the quasimode observed in toroidal ETG simulation [Z. Lin et al., Phys. Plasmas 12, 056125 (2005)] and the importance of the nonlinear mode coupling in the multiscale turbulence interaction are discussed.

  5. Laser Raman evidence for new cloverleaf secondary structures for eukaryotic 5.8S RNA and prokaryotic 5S RNA.

    PubMed Central

    Luoma, G A; Marshall, A G

    1978-01-01

    Neither of the two previously proposed secondary structures for eukaryotic 5.8S RNA is consistent with the present laser Raman results. A new, highly stable "cloverleaf" secondary structure not only fits the Raman data but also accounts for previously determined enzymatic partial cleavage patterns, base sequence and pairing homologies, and G-C and A-U base pair numbers and ratios. The new cloverleaf model also conserves several structural features (constant loops, bulges, and stems) consistent with known 5.8S RNA functions. Finally, we propose a similar new cloverleaf secondary structure for Escherichia coli 5S RNA, consonant with many known properties of prokaryotic 5S RNA. PMID:368804

  6. Alignment editing and identification of consensus secondary structures for nucleic acid sequences: interactive use of dot matrix representations.

    PubMed Central

    Davis, J P; Janjić, N; Pribnow, D; Zichi, D A

    1995-01-01

    We present a computer-aided approach for identifying and aligning consensus secondary structure within a set of functionally related oligonucleotide sequences aligned by sequence. The method relies on visualization of secondary structure using a generalization of the dot matrix representation appropriate for consensus sequence data sets. An interactive computer program implementing such a visualization of consensus structure has been developed. The program allows for alignment editing, data and display filtering and various modes of base pair representation, including co-variation. The utility of this approach is demonstrated with four sample data sets derived from in vitro selection experiments and one data set comprising tRNA sequences. Images PMID:7501472

  7. Poly(L-lysine) and Clay Nanocomposite with Desired Matrix Secondary Structure: Effects of Polypeptide Molecular Weight

    SciTech Connect

    Hule,R.; Pochan, D.

    2007-01-01

    Nanocomposites (NC) were formed using cationic poly(L-lysine) (PLL), a semicrystalline polypeptide, that was reinforced by sodium montmorillonite (MMT) clay via solution intercalation technique. By varying solution conditions such as pH, temperature, and polypeptide concentration in the presence of clay platelets, the secondary structure of PLL was controllably altered into {alpha}-helical, {beta}-sheet, and random coil. The high molecular weight polypeptide shows a strong propensity to fold into the {beta}-sheet structure when cast as films, irrespective of the initial secondary structure in solution. Nanocomposite local morphology confirms intercalated MMT platelets with PLL over a wide range of compositions.

  8. Design and analysis of supporting structure between the primary mirror and the secondary mirror on a space telescope

    NASA Astrophysics Data System (ADS)

    Wang, Chenjie; Chai, Wenyi; Feng, Liangjie; Yang, Wengang; Wang, Wei; Fan, Xuewu

    2015-10-01

    Mechanical stability is a significant segment for an on-axis space telescope to assure its assembly accuracy as well as the image quality in the rigorous space environment, supporting structure between the primary mirror and the secondary mirror as a main structure of the on-axis space telescope must be designed reasonably to meet the mission requirements of the space telescope. Meanwhile, in view of the limitation of the satellite launching cost, it is necessary to reduce the weight and power compensation during the supporting structure design based on the satisfaction of telescope performance. Two types of supporting structure for a space telescope are designed, one is three-tripod structure which has three tripods located on the optical bench to support the secondary mirror assemblies and keep the distance between the primary mirror and the secondary mirror, the other is barrel supporting structure which includes a tube and a secondary mirror support with four spider struts. To compare the mechanical performance and launching cost of the two kinds of supporting structure, both structural and thermal analysis model are established. The analysis results indicates that the three-tripod support is lighter, has better mechanical performance and needs less power compensation than the barrel support.

  9. Secondary structural analysis of the carboxyl-terminal domain from different connexin isoforms.

    PubMed

    Spagnol, Gaëlle; Al-Mugotir, Mona; Kopanic, Jennifer L; Zach, Sydney; Li, Hanjun; Trease, Andrew J; Stauch, Kelly L; Grosely, Rosslyn; Cervantes, Matthew; Sorgen, Paul L

    2016-03-01

    The connexin carboxyl-terminal (CxCT) domain plays a role in the trafficking, localization, and turnover of gap junction channels, as well as the level of gap junction intercellular communication via numerous post-translational modifications and protein-protein interactions. As a key player in the regulation of gap junctions, the CT presents itself as a target for manipulation intended to modify function. Specific to intrinsically disordered proteins, identifying residues whose secondary structure can be manipulated will be critical toward unlocking the therapeutic potential of the CxCT domain. To accomplish this goal, we used biophysical methods to characterize CxCT domains attached to their fourth transmembrane domain (TM4). Circular dichroism and nuclear magnetic resonance were complementary in demonstrating the connexin isoforms that form the greatest amount of α-helical structure in their CT domain (Cx45 > Cx43 > Cx32 > Cx50 > Cx37 ≈ Cx40 ≈ Cx26). Studies compared the influence of 2,2,2-trifluoroethanol, pH, phosphorylation, and mutations (Cx32, X-linked Charcot-Marie Tooth disease; Cx26, hearing loss) on the TM4-CxCT structure. While pH modestly influences the CT structure, a major structural change was associated with phosphomimetic substitutions. Since most connexin CT domains are phosphorylated throughout their life cycle, studies of phospho-TM4-CxCT isoforms will be critical toward understanding the role that structure plays in regulating gap junction function. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 143-162, 2016. PMID:26542351

  10. Prot-2S: a new python web tool for protein secondary structure studies.

    PubMed

    Munteanu, Cristian R; Magalhães, Alexandre L

    2009-01-01

    Prot-2S is a bioinformatics web application devised to analyse the protein chain secondary structures (2S) (http:/ /www.requimte.pt:8080/Prot-2S/). The tool is built on the RCSB Protein Data Bank PDB and DSSP application/files and includes calculation/graphical display of amino acid propensities in 2S motifs based on any user amino acid classification/code (for any particular protein chain list). The interface can calculate the 2S composition, display the 2S subsequences and search for DSSP non-standard residues and for pairs/triplets/quadruplets (amino acid patterns in 2S motifs). This work presents some Prot-2S applications showing its usefulness in protein research and as an e-learning tool as well. PMID:19640828

  11. Innovative FT-IR imaging of protein film secondary structure before and after heat treatment.

    PubMed

    Bonwell, Emily S; Wetzel, David L

    2009-11-11

    Changes in the secondary structure of globular protein occur during thermal processing. An infrared reflecting mirrored optical substrate that is unaffected by heat allows recording infrared spectra of protein films in a reflection absorption mode on the stage of an FT-IR microspectrometer. Hydrated films of myoglobin protein cast from solution on the mirrored substrate are interrogated before and after thermal denaturation to allow a direct comparison. Focal plane array imaging of 280 protein films allowed selection of the same area in the image from which to extract spectra. After treatment, 110 of 140 spectra from multiple films showed a dramatic shift from the alpha-helix form (1650 +/- 5 cm(-1)) to aggregated forms on either side of the original band. Seventy maxima were near 1625 cm(-1), and 40 shifted in the direction of 1670 cm(-1). The method developed was applied to films cast from two other commercial animal and plant protein sources. PMID:19835374

  12. Secondary-structure characterization by far-UV CD of highly purified uncoupling protein 1 expressed in yeast.

    PubMed Central

    Douette, Pierre; Navet, Rachel; Bouillenne, Fabrice; Brans, Alain; Sluse-Goffart, Claudine; Matagne, André; Sluse, Francis E

    2004-01-01

    The rat UCP1 (uncoupling protein 1) is a mitochondrial inner-membrane carrier involved in energy dissipation and heat production. We expressed UCP1 carrying a His6 epitope at its C-terminus in Saccharomyces cerevisiae mitochondria. The recombinant-tagged UCP1 was purified by immobilized metal-ion affinity chromatography to homogeneity (>95%). This made it suitable for subsequent biophysical characterization. Fluorescence resonance energy transfer experiments showed that n-dodecyl-beta-D-maltoside-solubilized UCP1-His6 retained its PN (purine nucleotide)-binding capacity. The far-UV CD spectrum of the functional protein clearly indicated the predominance of alpha-helices in the UCP1 secondary structure. The UCP1 secondary structure exhibited an alpha-helical degree of approx. 68%, which is at least 25% higher than the previously reported estimations based on computational predictions. Moreover, the helical content remained unchanged in free and PN-loaded UCP1. A homology model of the first repeat of UCP1, built on the basis of X-ray-solved close parent, the ADP/ATP carrier, strengthened the CD experimental results. Our experimental and computational results indicate that (i) alpha-helices are the major component of UCP1 secondary structure; (ii) PN-binding mechanism does not involve significant secondary-structure rearrangement; and (iii) UCP1 shares similar secondary-structure characteristics with the ADP/ATP carrier, at least for the first repeat. PMID:14766012

  13. Effect of Secondary Cooling Conditions on Solidification Structure and Central Macrosegregation in Continuously Cast High-Carbon Rectangular Billet

    NASA Astrophysics Data System (ADS)

    Zeng, Jie; Chen, Weiqing

    2015-10-01

    Solidification structures of high carbon rectangular billet with a size of 180 mm × 240 mm in different secondary cooling conditions were simulated using cellular automaton-finite element (CAFE) coupling model. The adequacy of the model was compared with the simulated and the actual macrostructures of 82B steel. Effects of the secondary cooling water intensity on solidification structures including the equiaxed grain ratio and the equiaxed grain compactness were discussed. It was shown that the equiaxed grain ratio and the equiaxed grain compactness changed in the opposite direction at different secondary cooling water intensities. Increasing the secondary cooling water intensity from 0.9 or 1.1 to 1.3 L/kg could improve the equiaxed grain compactness and decrease the equiaxed grain ratio. Besides, the industrial test was conducted to investigate the effect of different secondary cooling water intensities on the center carbon macrosegregation of 82B steel. The optimum secondary cooling water intensity was 0.9 L/kg, while the center carbon segregation degree was 1.10. The relationship between solidification structure and center carbon segregation was discussed based on the simulation results and the industrial test.

  14. A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence.

    PubMed

    Rice, D W; Eisenberg, D

    1997-04-11

    In protein fold recognition, a probe amino acid sequence is compared to a library of representative folds of known structure to identify a structural homolog. In cases where the probe and its homolog have clear sequence similarity, traditional residue substitution matrices have been used to predict the structural similarity. In cases where the probe is sequentially distant from its homolog, we have developed a (7 x 3 x 2 x 7 x 3) 3D-1D substitution matrix (called H3P2), calculated from a database of 119 structural pairs. Members of each pair share a similar fold, but have sequence identity less than 30%. Each probe sequence position is defined by one of seven residue classes and three secondary structure classes. Each homologous fold position is defined by one of seven residue classes, three secondary structure classes, and two burial classes. Thus the matrix is five-dimensional and contains 7 x 3 x 2 x 7 x 3 = 882 elements or 3D-1D scores. The first step in assigning a probe sequence to its homologous fold is the prediction of the three-state (helix, strand, coil) secondary structure of the probe; here we use the profile based neural network prediction of secondary structure (PHD) program. Then a dynamic programming algorithm uses the H3P2 matrix to align the probe sequence with structures in a representative fold library. To test the effectiveness of the H3P2 matrix a challenging, fold class diverse, and cross-validated benchmark assessment is used to compare the H3P2 matrix to the GONNET, PAM250, BLOSUM62 and a secondary structure only substitution matrix. For distantly related sequences the H3P2 matrix detects more homologous structures at higher reliabilities than do these other substitution matrices, based on sensitivity versus specificity plots (or SENS-SPEC plots). The added efficacy of the H3P2 matrix arises from its information on the statistical preferences for various sequence-structure environment combinations from very distantly related proteins. It introduces the predicted secondary structure information from a sequence into fold recognition in a statistical way that normalizes the inherent correlations between residue type, secondary structure and solvent accessibility. PMID:9135128

  15. Prediction of the secondary structure of the nicotinic acetylcholine receptor nontransmembrane regions.

    PubMed

    Ortells, M O

    1997-11-01

    A consensus prediction for the secondary structure of the muscle nicotinic acetylcholine receptor (alpha, beta, gamma, and delta subunits) extracellular regions is presented. This protein is a member of the ligand-gated ion channel superfamily, which also encompasses the 5HT3, GABAA, and glycine receptors. The strategy used here is based on the application of six different prediction methods to an alignment of 118 sequences of this superfamily. A consensus prediction was finally produced for each of the four different subunits of the muscle nicotinic receptor nonmembrane regions. The predicted percentages, with respect to the total receptor length, and averaged for the four subunits are as follows: alpha-helix 29.7%, beta-sheet 24.9%, and turn + coil 21.7%. When adding to these values the estimations of the secondary structure reported for the transmembrane region only, the results are in agreement with those obtained experimentally by Yager et al. and Méthot et al. The deviations with respect to these experimental estimations are alpha-helix +2.8%, beta-sheet -4/-5% and turn + coil +3/+2%, respectively. Considering the predictions made for individual subunits, the best approximation was obtained for the alpha subunit, with deviations of -0.2% for alpha-helix, -2.5/-1.5% for beta-sheet, and +0.9/+1.9% for turn + coil. The prediction was used to infer the residues involved in forming three helices that presumably flank the ligand-binding pocket and to propose mechanism for transferring the information of the ligand binding to the ion channel. PMID:9365993

  16. [Compariative study of mitochondrial tRNA gene sequence and secondary structure among fifteen Predatory birds].

    PubMed

    Wang, Xiang; Sun, Yi; Yuan, Xiao-Dong; Tang, Min-Qian; Wang, Li; Yu, Ye-Fei; Li, Qing-Wei

    2004-04-01

    Three major clusters of mitochondrial tRNA genes (tRNA(Ile) -tRNA(Gln) -tRNA(Met), tRNA(Trp)- tRNA(Ala) -tRNA(Asn)- tRNA(CYs) -tRNA(Tyr) and tRNA(His) tRNA(Ser)(AGY) -tRNA(Leu)(CUN) from 13 species of Predatory birds were amplified and sequenced. The length of these tRNA clusters was similar among species (212 approximately 214 bp, 353 approximately 362 bp, 205 approximately 208 bp, respectively), and 47% of the sequences were variable, 67% of which were involved in the loop regions. The stem regions were relatively conserved, and the variable base pairs were under the restriction of compensatory changes or G-U wobble pairing which could be regarded as mechanisms for maintaining a stable secondary structure. Maximum-parsimony (MP) and Neighbor joining (NJ) phylogenetic trees were constructed using all the tRNA gene sequences or stein-forming nucleotides with Caprimulgus indicus as outgroup. We found that the bootstrap values for branches of trees using the tRNA sequences were commonly higher than the others, therefore the phylogenetic relationship of Predatory birds reflected by these data may be closer to the truth. Phylogenetic analyses indicated that Accipitridae was closer to Strigidae instead of Falconidae, and the classification of Tytonidae was different from the conclusion from the previously morphological and DNA-DNA hybridization studies. By comparing the secondary structure among taxa we found that the characters of nucleotide insertions and deletions in some tRNA genes have synapomorphies, suggesting that these characters may be useful for resolving the phylogenetic relationship of different families in Predatory birds with higher phylogenetic performance. PMID:15487512

  17. Resolving detailed molecular structures in complex organic mixtures and modeling their secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Goodman-Rendall, Kevin A. S.; Zhuang, Yang R.; Amirav, Aviv; Chan, Arthur W. H.

    2016-03-01

    Characterization of unresolved complex mixtures (UCMs) remains an ongoing challenge towards developing detailed and accurate inputs for modeling secondary organic aerosol (SOA) formation. Traditional techniques based on gas chromatography/electron impact-mass spectrometry induce excessive fragmentation, making it difficult to speciate and quantify isomers precisely. The goal of this study is to identify individual organic isomers by gas chromatography/mass spectrometry with supersonic molecular beam (SMB-GC/MS, also known as GC/MS with Cold EI) and to incorporate speciated isomers into an SOA model that accounts for the specific structures elucidated. Two samples containing atmospherically relevant UCMs are analyzed. The relative isomer distributions exhibit remarkably consistent trends across a wide range of carbon numbers. Constitutional isomers of different alkanes are speciated and individually quantified as linear, branched - for the first time by position of branching - multiply branched, or unsaturated - by degree of ring substitution and number of rings. Relative amounts of exact molecular structures are used as input parameters in an SOA box model to study the effects of molecular structures on SOA yields and volatility evolution. Highly substituted cyclic, mono-substituted cyclic, and linear species have the highest SOA yields while branched alkanes formed the least SOA. The rate of functionalization of a representative UCM is found to be in agreement with current volatility basis set (VBS) parameterizations based on detailed knowledge of composition and known oxidation mechanisms, confirming the validity of VBS parameters currently used in air quality models.

  18. Mod-seq: A High-Throughput Method for Probing RNA Secondary Structure.

    PubMed

    Lin, Yizhu; May, Gemma E; Joel McManus, C

    2015-01-01

    It has become increasingly clear that large RNA molecules, especially long noncoding RNAs, function in almost all gene regulatory processes (Cech & Steitz, 2014). Many large RNAs appear to be structural scaffolds for assembly of important RNA/protein complexes. However, the structures of most large cellular RNA molecules are currently unknown (Hennelly & Sanbonmatsu, 2012). While chemical probing can reveal single-stranded regions of RNA, traditional approaches to identify sites of chemical modification are time consuming. Mod-seq is a high-throughput method used to map chemical modification sites on RNAs of any size, including complex mixtures of RNA. In this protocol, we describe preparation of Mod-seq high-throughput sequencing libraries from chemically modified RNA. We also describe a software package "Mod-seeker," which is a compilation of scripts written in Python, for the analysis of Mod-seq data. Mod-seeker returns statistically significant modification sites, which can then be used to aid in secondary structure prediction. PMID:26068740

  19. Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation

    PubMed Central

    Lopez, Rita; Sarg, Bettina; Lindner, Herbert; Bartolomé, Salvador; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-01-01

    Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation. PMID:25870416

  20. Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation.

    PubMed

    Lopez, Rita; Sarg, Bettina; Lindner, Herbert; Bartolomé, Salvador; Ponte, Inma; Suau, Pedro; Roque, Alicia

    2015-05-19

    Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin, indicating that linker histone phosphorylation impaired chromatin aggregation. These findings provide new insights into the effects of linker histone phosphorylation in chromatin condensation. PMID:25870416

  1. On The Dissolution Kinetics Of Positive Photoresists: The Secondary Structure Model

    NASA Astrophysics Data System (ADS)

    Templeton, Michael K.; Szmanda, Charles R.; Zampini, Anthony

    1987-08-01

    Dissolution kinetics of several model resins with well defined molecular structures were studied extensively. These include a pure m-cresol formaldehyde novolac resin and an alternating m,R-cresol novolac. Other phenolic materials, such as poly(4-hydroxy-styrene), were also examined. Secondary structures of these materials were predicted by molecular mechanics energy minimization techniques and corroborated by comparison with existing experimentally determined X-ray crystallographic data, where available. The excellent agreement between theory and experiment for simple systems lends credence to structural predictions for our model systems. The salient conformational features of these molecules are manifested in the variety of inter- and intramolecular hydrogen bonding interactions which influence strongly the dissolution properties of a given resin. Dissolution kinetics were studied as a function of cation type, developer ionic strength, normality and temperature. The results are explained in terms of the inter- and intramolecular interactions predicted for these resins. Finally we show results which indicate the utility of our model to the design of resist/developer systems.

  2. Sterilization mechanism of nitrogen gas plasma: induction of secondary structural change in protein.

    PubMed

    Sakudo, Akikazu; Higa, Masato; Maeda, Kojiro; Shimizu, Naohiro; Imanishi, Yuichiro; Shintani, Hideharu

    2013-07-01

    The mechanism of action on biomolecules of N₂ gas plasma, a novel sterilization technique, remains unclear. Here, the effect of N₂ gas plasma on protein structure was investigated. BSA, which was used as the model protein, was exposed to N₂ gas plasma generated by short-time high voltage pulses from a static induction thyristor power supply. N₂ gas plasma-treated BSA at 1.5 kilo pulses per second showed evidence of degradation and modification when assessed by Coomassie brilliant blue staining and ultraviolet spectroscopy at 280 nm. Fourier transform infrared spectroscopy analysis was used to determine the protein's secondary structure. When the amide I region was analyzed in the infrared spectra according to curve fitting and Fourier self-deconvolution, N₂ gas plasma-treated BSA showed increased α-helix and decreased β-turn content. Because heating decreased α-helix and increased β-sheet content, the structural changes induced by N₂ gas plasma-treatment of BSA were not caused by high temperatures. Thus, the present results suggest that conformational changes induced by N₂ gas plasma are mediated by mechanisms distinct from heat denaturation. PMID:23617321

  3. Transport and Localization Elements in Myelin Basic Protein mRNA

    PubMed Central

    Ainger, Kevin; Avossa, Daniela; Diana, Amy S.; Barry, Christopher; Barbarese, Elisa; Carson, John H.

    1997-01-01

    Myelin basic protein (MBP) mRNA is localized to myelin produced by oligodendrocytes of the central nervous system. MBP mRNA microinjected into oligodendrocytes in primary culture is assembled into granules in the perikaryon, transported along the processes, and localized to the myelin compartment. In this work, microinjection of various deleted and chimeric RNAs was used to delineate regions in MBP mRNA that are required for transport and localization in oligodendrocytes. The results indicate that transport requires a 21-nucleotide sequence, termed the RNA transport signal (RTS), in the 3′ UTR of MBP mRNA. Homologous sequences are present in several other localized mRNAs, suggesting that the RTS represents a general transport signal in a variety of different cell types. Insertion of the RTS from MBP mRNA into nontransported mRNAs, causes the RNA to be transported to the oligodendrocyte processes. Localization of mRNA to the myelin compartment requires an additional element, termed the RNA localization region (RLR), contained between nucleotide 1,130 and 1,473 in the 3′ UTR of MBP mRNA. Computer analysis predicts that this region contains a stable secondary structure. If the coding region of the mRNA is deleted, the RLR is no longer required for localization, and the region between nucleotide 667 and 953, containing the RTS, is sufficient for both RNA transport and localization. Thus, localization of coding RNA is RLR dependent, and localization of noncoding RNA is RLR independent, suggesting that they are localized by different pathways. PMID:9281585

  4. Evolution of primary and secondary structures in 5S and 5. 8S rRNA. [Bombyx mori

    SciTech Connect

    Curtiss, W.C.

    1986-01-01

    The secondary structure of Bombyx mori 5S rRNA was studied using the sing-strand specific S1 nuclease and the base pair specific cobra venom ribonuclease. The RNA was end-labeled with (/sup 32/P) at either the 5' or 3' end and sequenced using enzymatic digestion techniques. These enzymatic data coupled with thermodynamic structure prediction were used to generate a secondary structure for 5S rRNA. A computer algorithm has been implemented to aid in the comparison of a large set of homologous RNAs. Eukaryotic 5S rRNA sequences from thirty four diverse species were compared by (1) alignment or the sequences, (2) the positions of substitutions were located with respect to the aligned sequence and secondary structure, and (3) the R-Y model of base stacking was used to study stacking pattern relationships in the structure. Eukaryotic 5S rRNA was found to have significant sequence variation throughout much of the molecule while maintaining a relatively constant secondary structure. A detailed analysis of the sequence and structure variability in each region of the molecule is presented.

  5. FPGA accelerator for protein secondary structure prediction based on the GOR algorithm

    PubMed Central

    2011-01-01

    Background Protein is an important molecule that performs a wide range of functions in biological systems. Recently, the protein folding attracts much more attention since the function of protein can be generally derived from its molecular structure. The GOR algorithm is one of the most successful computational methods and has been widely used as an efficient analysis tool to predict secondary structure from protein sequence. However, the execution time is still intolerable with the steep growth in protein database. Recently, FPGA chips have emerged as one promising application accelerator to accelerate bioinformatics algorithms by exploiting fine-grained custom design. Results In this paper, we propose a complete fine-grained parallel hardware implementation on FPGA to accelerate the GOR-IV package for 2D protein structure prediction. To improve computing efficiency, we partition the parameter table into small segments and access them in parallel. We aggressively exploit data reuse schemes to minimize the need for loading data from external memory. The whole computation structure is carefully pipelined to overlap the sequence loading, computing and back-writing operations as much as possible. We implemented a complete GOR desktop system based on an FPGA chip XC5VLX330. Conclusions The experimental results show a speedup factor of more than 430x over the original GOR-IV version and 110x speedup over the optimized version with multi-thread SIMD implementation running on a PC platform with AMD Phenom 9650 Quad CPU for 2D protein structure prediction. However, the power consumption is only about 30% of that of current general-propose CPUs. PMID:21342582

  6. How a Spatial Arrangement of Secondary Structure Elements Is Dispersed in the Universe of Protein Folds

    PubMed Central

    Minami, Shintaro; Sawada, Kengo; Chikenji, George

    2014-01-01

    It has been known that topologically different proteins of the same class sometimes share the same spatial arrangement of secondary structure elements (SSEs). However, the frequency by which topologically different structures share the same spatial arrangement of SSEs is unclear. It is important to estimate this frequency because it provides both a deeper understanding of the geometry of protein folds and a valuable suggestion for predicting protein structures with novel folds. Here we clarified the frequency with which protein folds share the same SSE packing arrangement with other folds, the types of spatial arrangement of SSEs that are frequently observed across different folds, and the diversity of protein folds that share the same spatial arrangement of SSEs with a given fold, using a protein structure alignment program MICAN, which we have been developing. By performing comprehensive structural comparison of SCOP fold representatives, we found that approximately 80% of protein folds share the same spatial arrangement of SSEs with other folds. We also observed that many protein pairs that share the same spatial arrangement of SSEs belong to the different classes, often with an opposing N- to C-terminal direction of the polypeptide chain. The most frequently observed spatial arrangement of SSEs was the 2-layer α/β packing arrangement and it was dispersed among as many as 27% of SCOP fold representatives. These results suggest that the same spatial arrangements of SSEs are adopted by a wide variety of different folds and that the spatial arrangement of SSEs is highly robust against the N- to C-terminal direction of the polypeptide chain. PMID:25243952

  7. Structural features of helical secondary structures and leucine-rich repeat superhelix in proteins as revealed by HELFIT analyses

    NASA Astrophysics Data System (ADS)

    Matsushima, Norio; Enkhbayar, Purevjav

    2012-09-01

    The HELFIT program determines the helical parameters - pitch, residues per turn (n), radius, and handedness - and p = rmsd / (N - 1)1/2 estimating helical regularity, where "rmsd" is the root mean square deviation from the best fit helix or superhelix and "N" is helix/superhelix length. Helical secondary structures - α-helix and 310-helix - and solenoid structures of leucine rich repeats (LRRs) in The Protein Data Bank (PDB) were analyzed by the HELFIT program. The results indicate that the definition of 310-helices in terms of average, uniform dihedral angles is not appropriate and that it is inherently unstable for a polypeptide to form an extended, regular 310-helix. The 310-helices observed in proteins are better referred to parahelices. A modification of the α-helix, termed the ω-helix, that has four residues in one turn of a helix, has been identified only in synthetic polypeptides. The results also demonstrate that the right-handed ω-helix occur really in proteins. The solenoid structures of LRR domains in brasinosteroid insensitive 1 (BRI1), internalin J (InlJ), and internalin A (InlA) are well represented by a superhelix rather than by a circular arc.

  8. An infrared sensor analysing label-free the secondary structure of the Abeta peptide in presence of complex fluids.

    PubMed

    Nabers, Andreas; Ollesch, Julian; Schartner, Jonas; Ktting, Carsten; Genius, Just; Haumann, Ute; Klafki, Hans; Wiltfang, Jens; Gerwert, Klaus

    2016-03-01

    The secondary structure change of the Abeta peptide to beta-sheet was proposed as an early event in Alzheimer's disease. The transition may be used for diagnostics of this disease in an early state. We present an Attenuated Total Reflection (ATR) sensor modified with a specific antibody to extract minute amounts of Abeta peptide out of a complex fluid. Thereby, the Abeta peptide secondary structure was determined in its physiological aqueous environment by FTIR-difference-spectroscopy. The presented results open the door for label-free Alzheimer diagnostics in cerebrospinal fluid or blood. It can be extended to further neurodegenerative diseases. An immunologic ATR-FTIR sensor for Abeta peptide secondary structure analysis in complex fluids is presented. PMID:25808829

  9. Computing the partition function and sampling for saturated secondary structures of RNA, with respect to the Turner energy model.

    PubMed

    Waldispühl, J; Clote, P

    2007-03-01

    An RNA secondary structure is saturated if no base pairs can be added without violating the definition of secondary structure. Here we describe a new algorithm, RNAsat, which for a given RNA sequence a, an integral temperature 0 secondary structures of a which have exactly k base pairs, R is the universal gas constant and E(S) denotes the free energy with respect to the Turner nearest neighbor energy model. By dynamic programming, we compute Z(k)(T)simultaneously for all values of k in time O(n(5)) and space O(n(3)).Additionally, RNAsat computes the partition function Q(k)(T)(a) = SigmaSepsilonS(k)(a) exp(-E(S)/RT), where the sum is over all secondary structures of a which have k base pairs; the latter computation is performed simultaneously for all values of k in O(n(4)) time and O(n(3)) space. Lastly, using the partition function Z(k)(T) [resp. Q(k)(T)] with stochastic backtracking, RNAsat rigorously samples the collection of saturated secondary structures [resp. secondary structures] having k base pairs; for Q(k)(T) this provides a parametrized form of Sfold sampling (Ding and Lawrence, 2003). Using RNAsat, (i) we compute the ensemble free energy for saturated secondary structures having k base pairs, (ii) show cooperativity of the Turner model, (iii) demonstrate a temperature-dependent phase transition, (iv) illustrate the predictive advantage of RNAsat for precursor microRNA cel-mir-72 of C. elegans and for the pseudoknot PKB 00152 of Pseudobase (van Batenburg et al., 2001), (v) illustrate the RNA shapes (Giegerich et al., 2004) of sampled secondary structures [resp. saturated structures] having exactly k base pairs. A web server for RNAsat is under construction at bioinformatics.bc.edu/clotelab/RNAsat/. PMID:17456015

  10. Modulation of the activity of RNase E in vitro by RNA sequences and secondary structures 5' to cleavage sites.

    PubMed

    Mackie, G A; Genereaux, J L; Masterman, S K

    1997-01-01

    The endoribonuclease RNase E is believed to initiate the degradation of many mRNAs in Escherichia coli, yet the mechanism by which it recognizes cleavage sites is poorly understood. We have prepared derivatives of the mRNA encoding ribosomal protein S20 which contain a single major RNase E cleavage site at residues 300/301 preceded by variable 5' extensions. Three of these RNAs are cleaved in vitro with significantly reduced efficiencies relative to the intact S20 mRNA by both crude RNase E and pure Rne protein (endonuclease component of RNase E). In all three substrates as well as in the full-length mRNA the major cleavage site itself remains single-stranded. One such substrate (t84D) contains a 5' stem-loop structure characterized by three noncanonical A-G pairs. Removal or denaturation of the stem restores efficient cleavage at the major RNase E site. The other two contain single-stranded 5'-termini but apparently lack cleavage sites near the termini. Our data show that sensitivity to RNase E can be influenced by distant structural motifs in the RNA and also suggest a model in which the initial recognition and cleavage of a substrate near its 5' end facilitates sequential cleavages at more distal sites. The model implies that RNase E contains at least a dimer of the Rne subunit and that the products of the first cleavage are retained by Rne prior to the second cleavage. PMID:8995304

  11. ITS2 Secondary Structure Improves Discrimination between Medicinal “Mu Tong” Species when Using DNA Barcoding

    PubMed Central

    Zhang, Wei; Yuan, Yuan; Yang, Shuo; Huang, Jianjun; Huang, Luqi

    2015-01-01

    DNA barcoding is a promising species identification method, but it has proved difficult to find a standardized DNA marker in plant. Although the ITS/ITS2 RNA transcript has been proposed as the core barcode for seed plants, it has been criticized for being too conserved in some species to provide enough information or too variable in some species to align it within the different taxa ranks. We selected 30 individuals, representing 16 species and four families, to explore whether ITS2 can successfully resolve species in terms of secondary structure. Secondary structure was predicted using Mfold software and sequence-structure was aligned by MARNA. RNAstat software transformed the secondary structures into 28 symbol code data for maximum parsimony (MP) analysis. The results showed that the ITS2 structures in our samples had a common four-helix folding type with some shared motifs. This conserved structure facilitated the alignment of ambiguous sequences from divergent families. The structure alignment yielded a MP tree, in which most topological relationships were congruent with the tree constructed using nucleotide sequence data. When the data was combined, we obtained a well-resolved and highly supported phylogeny, in which individuals of a same species were clustered together into a monophyletic group. As a result, the different species that are often referred to as the herb “Mu tong” were successfully identified using short fragments of 250 bp ITS2 sequences, together with their secondary structure. Thus our analysis strengthens the potential of ITS2 as a promising DNA barcode because it incorporates valuable secondary structure information that will help improve discrimination between species. PMID:26132382

  12. Improved prediction of RNA secondary structure by integrating the free energy model with restraints derived from experimental probing data

    PubMed Central

    Wu, Yang; Shi, Binbin; Ding, Xinqiang; Liu, Tong; Hu, Xihao; Yip, Kevin Y.; Yang, Zheng Rong; Mathews, David H.; Lu, Zhi John

    2015-01-01

    Recently, several experimental techniques have emerged for probing RNA structures based on high-throughput sequencing. However, most secondary structure prediction tools that incorporate probing data are designed and optimized for particular types of experiments. For example, RNAstructure-Fold is optimized for SHAPE data, while SeqFold is optimized for PARS data. Here, we report a new RNA secondary structure prediction method, restrained MaxExpect (RME), which can incorporate multiple types of experimental probing data and is based on a free energy model and an MEA (maximizing expected accuracy) algorithm. We first demonstrated that RME substantially improved secondary structure prediction with perfect restraints (base pair information of known structures). Next, we collected structure-probing data from diverse experiments (e.g. SHAPE, PARS and DMS-seq) and transformed them into a unified set of pairing probabilities with a posterior probabilistic model. By using the probability scores as restraints in RME, we compared its secondary structure prediction performance with two other well-known tools, RNAstructure-Fold (based on a free energy minimization algorithm) and SeqFold (based on a sampling algorithm). For SHAPE data, RME and RNAstructure-Fold performed better than SeqFold, because they markedly altered the energy model with the experimental restraints. For high-throughput data (e.g. PARS and DMS-seq) with lower probing efficiency, the secondary structure prediction performances of the tested tools were comparable, with performance improvements for only a portion of the tested RNAs. However, when the effects of tertiary structure and protein interactions were removed, RME showed the highest prediction accuracy in the DMS-accessible regions by incorporating in vivo DMS-seq data. PMID:26170232

  13. Investigations of primary and secondary impact structures on the moon and laboratory experiments to study the ejecta of secondary particles. Ph.D. Thesis - Ruprecht Karl Univ.

    NASA Technical Reports Server (NTRS)

    Koenig, B.

    1977-01-01

    Young lunar impact structures were investigated by using lunar orbiter, Apollo Metric and panorama photographs. Measurements on particularly homogeneous areas low in secondary craters made possible an expansion of primary crater distribution to small diameters. This is now sure for a range between 20m or = D or = 20km and this indicates that the size and velocity distribution of the impacting bodies in the last 3 billion years has been constant. A numerical approximation in the form of a 7th degree polynomial was obtained for the distribution.

  14. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning.

    PubMed

    Heffernan, Rhys; Paliwal, Kuldip; Lyons, James; Dehzangi, Abdollah; Sharma, Alok; Wang, Jihua; Sattar, Abdul; Yang, Yuedong; Zhou, Yaoqi

    2015-01-01

    Direct prediction of protein structure from sequence is a challenging problem. An effective approach is to break it up into independent sub-problems. These sub-problems such as prediction of protein secondary structure can then be solved independently. In a previous study, we found that an iterative use of predicted secondary structure and backbone torsion angles can further improve secondary structure and torsion angle prediction. In this study, we expand the iterative features to include solvent accessible surface area and backbone angles and dihedrals based on Cα atoms. By using a deep learning neural network in three iterations, we achieved 82% accuracy for secondary structure prediction, 0.76 for the correlation coefficient between predicted and actual solvent accessible surface area, 19° and 30° for mean absolute errors of backbone φ and ψ angles, respectively, and 8° and 32° for mean absolute errors of Cα-based θ and τ angles, respectively, for an independent test dataset of 1199 proteins. The accuracy of the method is slightly lower for 72 CASP 11 targets but much higher than those of model structures from current state-of-the-art techniques. This suggests the potentially beneficial use of these predicted properties for model assessment and ranking. PMID:26098304

  15. Protein secondary structure prediction from circular dichroism spectra using a self-organizing map with concentration correction.

    PubMed

    Hall, Vincent; Sklepari, Meropi; Rodger, Alison

    2014-09-01

    Collecting circular dichroism (CD) spectra for protein solutions is a simple experiment, yet reliable extraction of secondary structure content is dependent on knowledge of the concentration of the protein--which is not always available with accuracy. We previously developed a self-organizing map (SOM), called Secondary Structure Neural Network (SSNN), to cluster a database of CD spectra and use that map to assign the secondary structure content of new proteins from CD spectra. The performance of SSNN is at least as good as other available protein CD structure-fitting algorithms. In this work we apply SSNN to a collection of spectra of experimental samples where there was suspicion that the nominal protein concentration was incorrect. We show that by plotting the normalized root mean square deviation of the SSNN predicted spectrum from the experimental one versus a concentration scaling-factor it is possible to improve the estimate of the protein concentration while providing an estimate of the secondary structure. For our implementation (51 data points 240-190 nm in nm increments) good fits and structure estimates were obtained if the NRMSD (normalized root mean square displacement, RMSE/data range) is <0.03; reasonable for NRMSD <0.05; and variable above this. We also augmented the reference database with 100% helical spectra and truly random coil spectra. PMID:24890763

  16. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning

    PubMed Central

    Heffernan, Rhys; Paliwal, Kuldip; Lyons, James; Dehzangi, Abdollah; Sharma, Alok; Wang, Jihua; Sattar, Abdul; Yang, Yuedong; Zhou, Yaoqi

    2015-01-01

    Direct prediction of protein structure from sequence is a challenging problem. An effective approach is to break it up into independent sub-problems. These sub-problems such as prediction of protein secondary structure can then be solved independently. In a previous study, we found that an iterative use of predicted secondary structure and backbone torsion angles can further improve secondary structure and torsion angle prediction. In this study, we expand the iterative features to include solvent accessible surface area and backbone angles and dihedrals based on Cα atoms. By using a deep learning neural network in three iterations, we achieved 82% accuracy for secondary structure prediction, 0.76 for the correlation coefficient between predicted and actual solvent accessible surface area, 19° and 30° for mean absolute errors of backbone φ and ψ angles, respectively, and 8° and 32° for mean absolute errors of Cα-based θ and τ angles, respectively, for an independent test dataset of 1199 proteins. The accuracy of the method is slightly lower for 72 CASP 11 targets but much higher than those of model structures from current state-of-the-art techniques. This suggests the potentially beneficial use of these predicted properties for model assessment and ranking. PMID:26098304

  17. Investigating the secondary structures for long oligonucleotides using attenuated-total-reflection nanoplasmon-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Chiu, K.-C.; Yu, L.-Y.; Lin, C.-Y.; Chen, S.-J.

    2007-09-01

    This study utilizes a nanoplasmon-enhanced Raman scattering based on the attenuated-total-reflection (ATR) method to investigate the secondary structures of long oligonucleotides and their influence on the DNA hybridization. It is found that the ring-breathing modes of adenine, thymine, guanine, and cytosine in Raman fingerprint associated with three 60mer oligonucleotides with prominent secondary structures are lower than those observed for the two oligonucleotides with no obvious secondary structures. It is also determined that increasing the DNA hybridization temperature from 35 °C to 45 °C reduces secondary structure effects. The kinetics of biomolecular interaction analysis can be performed by using surface plasmons resonance biosensor, but the structural information of the oligonucleotides can not observed directly. The ATR-Raman spectrum can provide the structural information of the oligonucleotide monolayer on the sensing surface with the help of a silver patterned nanostructure film based on the finite-difference time-domain simulation and the e-beam lithography fabrication adapted as an ATR-Raman active substrate.

  18. Protein-associated water and secondary structure effect removal of blood proteins from metallic substrates.

    PubMed

    Anand, Gaurav; Zhang, Fuming; Linhardt, Robert J; Belfort, Georges

    2011-03-01

    Removing adsorbed protein from metals has significant health and industrial consequences. There are numerous protein-adsorption studies using model self-assembled monolayers or polymeric substrates but hardly any high-resolution measurements of adsorption and removal of proteins on industrially relevant transition metals. Surgeons and ship owners desire clean metal surfaces to reduce transmission of disease via surgical instruments and minimize surface fouling (to reduce friction and corrosion), respectively. A major finding of this work is that, besides hydrophobic interaction adhesion energy, water content in an adsorbed protein layer and secondary structure of proteins determined the access and hence ability to remove adsorbed proteins from metal surfaces with a strong alkaline-surfactant solution (NaOH and 5 mg/mL SDS in PBS at pH 11). This is demonstrated with three blood proteins (bovine serum albumin, immunoglobulin, and fibrinogen) and four transition metal substrates and stainless steel (platinum (Pt), gold (Au), tungsten (W), titanium (Ti), and 316 grade stainless steel (SS)). All the metallic substrates were checked for chemical contaminations like carbon and sulfur and were characterized using X-ray photoelectron spectroscopy (XPS). While Pt and Au surfaces were oxide-free (fairly inert elements), W, Ti, and SS substrates were associated with native oxide. Difference measurements between a quartz crystal microbalance with dissipation (QCM-D) and surface plasmon resonance spectroscopy (SPR) provided a measure of the water content in the protein-adsorbed layers. Hydrophobic adhesion forces, obtained with atomic force microscopy, between the proteins and the metals correlated with the amount of the adsorbed protein-water complex. Thus, the amount of protein adsorbed decreased with Pt, Au, W, Ti and SS, in this order. Neither sessile contact angle nor surface roughness of the metal substrates was useful as predictors here. All three globular proteins behaved similarly on addition of the alkaline-surfactant cleaning solution, in that platinum and gold exhibited an increase, while tungsten, titanium, and stainless steel showed a decrease in weight. According to dissipation measurements with the QCM-D, the adsorbed layer for platinum and gold was rigid, while that for the tungsten, titanium, and stainless steel was much more flexible. The removal efficiency of adsorbed-protein by alkaline solution of SDS depended on the water content of the adsorbed layers for W, Ti, and SS, while for Pt and Au, it depended on secondary structural content. When protein adsorption was high (Pt, Au), protein-protein interactions and protein-surface interactions were dominant and the removal of protein layers was limited. Water content of the adsorbed protein layer was the determining factor for how efficiently the layer was removed by alkaline SDS when protein adsorption was low. Hence, protein-protein and protein-surface interactions were minimal and protein structure was less perturbed in comparison with those for high protein adsorption. Secondary structural content determined the efficient removal of adsorbed protein for high adsorbed amount. PMID:21182242

  19. Determination of Endosperm Protein Secondary Structure in Hard Wheat Breeding Lines using Synchrotron Infrared Microspectroscopy

    SciTech Connect

    Wetzel, D.; Bonwell, E; Fritz, T; Fritz, A

    2008-01-01

    One molecular aspect of mature hard wheat protein quality for breadmaking is the relative amount of endosperm protein in the {alpha}-helix form compared with that in other secondary structure forms including {beta}-sheet. Modeling of {alpha}-helix and {beta}-sheet absorption bands that contribute to the amide I band at 1650 cm{sup -1} was applied to more than 1500 spectra in this study. The microscopic view of wheat endosperm is dominated by many large starch granules with protein in between. The spectrum produced from in situ microspectroscopy of this mixture is dominated by carbohydrate bands from the large starch granules that fill up the field. The high spatial resolution achievable with synchrotron infrared microspectroscopy enables revealing good in situ spectra of the protein located interstitially. Synchrotron infrared microspectroscopic mapping of 4 {mu}m thick frozen sections of endosperm in the subaleurone region provides spectra from a large number of pixels. Pixels with protein-dominated spectra are sorted out from among adjacent pixels to minimize the starch absorption and scattering contributions. Subsequent data treatment to extract information from the amide I band requires a high signal to noise ratio. Although spectral interference of the carbohydrate band on the amide band is not a problem, the scattering produced by the large starch granules diminishes the signal to noise ratio throughout the spectrum. High density mapping was done on beamlines U2B and U10B at the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY. Mapping with a single masked spot size of 5.5 {mu}m diameter or confocal 5 {mu}mX5{mu}m spot size, respectively, on the two beamlines used produced spectra for new breeding lines under current consideration. Appropriate data treatment allows calculation of a numerical estimate of the {alpha}-helix population relative to other secondary protein structures from the position and shape of the amide I absorption band. Current breeding lines show a substantial variance in this feature and its determination allows the prediction of relative quality for breadmaking to be taken into consideration for subsequent steps in the wheat breeding process. Data treatments include deconvolution, modeling of the individual resulting bands that contribute to the amide I band to enable measurement of the relative amounts of both forms. Results with specimens representing multiple crop years of hard winter wheat breeding are reported. It is evident that a range is available for the breeder to choose from, that allows including this protein molecular structural attribute in the selection process.

  20. Determination of Endosperm Protein Secondary Structure in Hard Wheat Breeding Lines using Synchrotron Infrared Microspectroscopy

    SciTech Connect

    Bonwell,E.; Fisher, T.; Fritz, A.; Wetzel, D.

    2008-01-01

    One molecular aspect of mature hard wheat protein quality for breadmaking is the relative amount of endosperm protein in the a-helix form compared with that in other secondary structure forms including {beta}-sheet. Modeling of a-helix and {beta}-sheet absorption bands that contribute to the amide I band at 1650 cm-1 was applied to more than 1500 spectra in this study. The microscopic view of wheat endosperm is dominated by many large starch granules with protein in between. The spectrum produced from in situ microspectroscopy of this mixture is dominated by carbohydrate bands from the large starch granules that fill up the field. The high spatial resolution achievable with synchrotron infrared microspectroscopy enables revealing good in situ spectra of the protein located interstitially. Synchrotron infrared microspectroscopic mapping of 4 {mu}m thick frozen sections of endosperm in the subaleurone region provides spectra from a large number of pixels. Pixels with protein-dominated spectra are sorted out from among adjacent pixels to minimize the starch absorption and scattering contributions. Subsequent data treatment to extract information from the amide I band requires a high signal to noise ratio. Although spectral interference of the carbohydrate band on the amide band is not a problem, the scattering produced by the large starch granules diminishes the signal to noise ratio throughout the spectrum. High density mapping was done on beamlines U2B and U10B at the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY. Mapping with a single masked spot size of 5.5 {mu}m diameter or confocal 5 {mu}m x 5 {mu}m spot size, respectively, on the two beamlines used produced spectra for new breeding lines under current consideration. Appropriate data treatment allows calculation of a numerical estimate of the a-helix population relative to other secondary protein structures from the position and shape of the amide I absorption band. Current breeding lines show a substantial variance in this feature and its determination allows the prediction of relative quality for breadmaking to be taken into consideration for subsequent steps in the wheat breeding process. Data treatments include deconvolution, modeling of the individual resulting bands that contribute to the amide I band to enable measurement of the relative amounts of both forms. Results with specimens representing multiple crop years of hard winter wheat breeding are reported. It is evident that a range is available for the breeder to choose from, that allows including this protein molecular structural attribute in the selection process.

  1. Secondary flow structure from stent-induced perturbations in a bent pipe model for curved arteries

    NASA Astrophysics Data System (ADS)

    Shu, Fangjun; Glenn, Autumn; Bulusu, Kartik; Plesniak, Michael W.

    2010-11-01

    Secondary flow structures were investigated in a 180-degree circular bend under physiological (pulsatile) flow conditions with a stent model installed upstream of the bend. Upstream Reynolds number ranged from 200 to 1400 and the cardiac cycle period was scaled to match the physiological Womersley number, Wo=4.2. Experimental data were acquired using 2-D PIV at various cross-sectional planes along the bend. Similar to the results in absence of the stent model, symmetric counter-rotating vortex pairs were observed to develop during the cardiac cycle. In addition, transient unstable flow was initiated at the deceleration phase of the systolic peak (t/T=0.21). This complex flow is mainly attributable to perturbations induced by the stent model. It is characterized by breakdown of Dean- and Lyne-type vortices into various multiple-scale vortices. The phase-averaged flow fields were analyzed using the proper orthogonal decomposition (POD) method to gain further insight regarding the structural features of the flow.

  2. Duplex formation and secondary structure of ?-PNA observed by NMR and CD.

    PubMed

    Viville, J M P; Barluenga, S; Winssinger, N; Delsuc, M A

    2016-03-01

    Peptide nucleic acids (PNAs) are non-natural oligonucleotides mimics, wherein the phosphoribose backbone has been replaced by a peptidic moiety (N-(2-aminoethyl)glycine). This peptidic backbone lends itself to substitution and the ?-position has proven to yield oligomers with enhanced hybridization properties. In this study, we use Nuclear Magnetic Resonance (NMR) and Circular Dichroism (CD) to explore the properties of the supramolecular duplexes formed by these species. We show that standard Watson-Crick base pair as well as non-standard ones are formed in solution. The duplexes thus formed present marked melting transition temperatures substantially higher than their nucleic acid homologs. Moreover, the presence of a chiral group on the ?-peptidic backbone increases further this transition temperature, leading to very stable duplexes. PNA duplexes with a chiral backbone present a marked chiral secondary structure, observed by CD, and showing a common folding pattern for all studied structures. Nevertheless small differences are observed depending on the details of the nucleobase sequence. PMID:26493008

  3. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.

    PubMed

    Spencer, Matt; Eickholt, Jesse; Jianlin Cheng

    2015-01-01

    Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent. PMID:25750595

  4. High evolutionary conservation of the secondary structure and of certain nucleotide sequences of U5 RNA.

    PubMed Central

    Branlant, C; Krol, A; Lazar, E; Haendler, B; Jacob, M; Galego-Dias, L; Pousada, C

    1983-01-01

    The nucleotide sequence of chicken, pheasant, duck and Tetrahymena pyriformis U5 RNAs as well as that of new mammalian variant U5 RNAs was determined and compared to that of rat and HeLa cells U5 RNAs. Primary structure conservation is about 95% between rat and human cells, 82% between mammals and birds and 57% between the Protozoan and mammals. The same model of secondary structure, a free single-stranded region flanked by two hairpins can be constructed from all RNAs and is identical to the model previously proposed for mammalian U5 RNA on an experimental basis (1). Thus, this model is confirmed and is likely to be that of an ancestor U5 RNA. The 3' region of the U5 RNA molecule constitutes domain A, and is common to U1, U2, U4 and U5 RNAs (2). The characteristic nucleotide sequences of domain A are highly conserved throughout the phylogenetic evolution of U5 RNA suggesting that they are important elements in the function of the four small RNAs. Another region of high evolutionary conservation is the top part of the 5' side hairpin whose conserved sequence is specific to U5 RNA. It might participate in the particular function of U5 RNA. PMID:6200827

  5. A DFT-GGA based thermodynamic analysis of the secondary structure of proteins

    NASA Astrophysics Data System (ADS)

    Ismer, Lars; Neugebauer, Jrg

    2005-03-01

    Studies of the thermodynamic stability of the secondary structure of proteins are important for understanding the protein folding process. We have therefore estimated the free energy change to fold a fully extended structure (FES) into the ?-helical conformation for isolated infinite poly-glycine (Gly) and -alanine (Ala) chains. The calculations have been performed employing DFT-GGA, a plane-wave pseudo-potential approach and the harmonic approximation. Our results reveal [1], that this approach leads to a significantly improved description of thermodynamic data with respect to previous studies based on empirical force fields. Further we find, that the enthalpy to transform an ?-helix into an FES strongly reduces with increasing temperature: at room temperature the free energy difference for Gly is close to zero within the numerical error bar (0.5 kcal/mol), whereas for Ala the ?-helix is by 1.0 kcal/mol more stable. We conclude, without recoursing to any empirical input parameters, that an isolated Ala-FES will even at room temperature spontaneously fold into an ?-helix.1. L. Ismer, J. Ireta, S. Boeck and J. Neugebauer submitted to Phys. Rev. E

  6. Formation of secondary structures in heat-resistant steels under sliding friction

    NASA Astrophysics Data System (ADS)

    Lad'yanov, V. I.; Goncharov, O. Yu.; Malenko, P. I.; Nikonova, R. M.; Gilmutdinov, F. Z.; Mokrushina, M. I.; Tereshkina, S. A.; Leonov, A. Yu.; Relmasira, K. J.

    2015-12-01

    The formation of secondary structures in nicotrated layers on surfaces of complex-alloy heatresistant 25Kh3M3NBTsA and 30KhN2MFA structural steels under the effect of sliding friction with resource lubrication has been studied using metallography, X-ray diffraction, X-ray photoelectron spectroscopy, and thermodynamic modeling. It has been found that, under friction, the nicotrated layer on the steels oxidizes to produce iron oxides, which is substantially less pronounced for 25Kh3M3NBTsA steel than for 30KhN2MFA steel. It has been shown using thermodynamic modeling that, under equilibrium conditions, the heating of both steels to a temperature of ~300C leads to the formation of an internal-oxidation layer, which consists of FeO with MoO2, Cr2O3, and carbon impurities, a Fe3O4 interlayer with MoO2 and Cr2O3 impurities, and a top layer of Fe2O3 with Cr2O3 impurity. The heating of steels to a temperature of ~700C leads to the formation of an internal-oxidation layer, which consists of FeO with MoO2 and carbon impurities, a Fe3O4 interlayer with MoO2 impurity, and a top layer of Cr2O3 with Fe2MnO4 and SiO2 impurities.

  7. The influence of viral RNA secondary structure on interactions with innate host cell defences

    PubMed Central

    Witteveldt, Jeroen; Blundell, Richard; Maarleveld, Joris J.; McFadden, Nora; Evans, David J.; Simmonds, Peter

    2014-01-01

    RNA viruses infecting vertebrates differ fundamentally in their ability to establish persistent infections with markedly different patterns of transmission, disease mechanisms and evolutionary relationships with their hosts. Although interactions with host innate and adaptive responses are complex and persistence mechanisms likely multi-factorial, we previously observed associations between bioinformatically predicted RNA secondary formation in genomes of positive-stranded RNA viruses with their in vivo fitness and persistence. To analyse this interactions functionally, we transfected fibroblasts with non-replicating, non-translated RNA transcripts from RNA viral genomes with differing degrees of genome-scale ordered RNA structure (GORS). Single-stranded RNA transcripts induced interferon-β mediated though RIG-I and PKR activation, the latter associated with rapid induction of antiviral stress granules. A striking inverse correlation was observed between induction of both cellular responses with transcript RNA structure formation that was independent of both nucleotide composition and sequence length. The consistent inability of cells to recognize RNA transcripts possessing GORS extended to downstream differences from unstructured transcripts in expression of TNF-α, other interferon-stimulated genes and induction of apoptosis. This functional association provides novel insights into interactions between virus and host early after infection and provides evidence for a novel mechanism for evading intrinsic and innate immune responses. PMID:24335283

  8. Determination of the secondary structure of group II bulge loops using the fluorescent probe 2-aminopurine.

    PubMed

    Dishler, Abigael L; McMichael, Elizabeth L; Serra, Martin J

    2015-05-01

    Eleven RNA hairpins containing 2-aminopurine (2-AP) in either base-paired or single nucleotide bulge loop positions were optically melted in 1 M NaCl; and, the thermodynamic parameters ΔH°, ΔS°, ΔG°37, and TM for each hairpin were determined. Substitution of 2-AP for an A (adenosine) at a bulge position (where either the 2-AP or A is the bulge) in the stem of a hairpin, does not affect the stability of the hairpin. For group II bulge loops such as AA/U, where there is ambiguity as to which of the A residues is paired with the U, hairpins with 2-AP substituted for either the 5' or 3' position in the hairpin stem have similar stability. Fluorescent melts were performed to monitor the environment of the 2-AP. When the 2-AP was located distal to the hairpin loop on either the 5' or 3' side of the hairpin stem, the change in fluorescent intensity upon heating was indicative of an unpaired nucleotide. A database of phylogenetically determined RNA secondary structures was examined to explore the presence of naturally occurring bulge loops embedded within a hairpin stem. The distribution of bulge loops is discussed and related to the stability of hairpin structures. PMID:25805856

  9. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    PubMed Central

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas S.; Lisby, Michael; Salanti, Ali; Fordyce, Sarah L.; Jespersen, Jakob S.; Carter, Richard; Deitsch, Kirk W.; Theander, Thor G.; Pedersen, Anders Gorm; Arnot, David E.

    2014-01-01

    Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens. PMID:24253306

  10. Enzyme stability, thermodynamics and secondary structures of α-amylase as probed by the CD spectroscopy.

    PubMed

    Kikani, B A; Singh, S P

    2015-11-01

    An amylase of a thermophilic bacterium, Bacillus sp. TSSC-3 (GenBank Number, EU710557) isolated from the Tulsi Shyam hot spring reservoir (Gujarat, India) was purified to the homogeneity in a single step on phenyl sepharose 6FF. The molecular weight of the enzyme was 25kD, while the temperature and pH optima for the enzyme catalysis were 80°C and 7, respectively. The purified enzyme was highly thermostable with broad pH stability and displayed remarkable resistance against surfactants, chelators, urea, guanidine HCl and various solvents as well. The stability and changes in the secondary structure of the enzyme under various extreme conditions were determined by the circular dichroism (CD) spectroscopy. The stability trends and the changes in the α-helices and β-sheets were analyzed by Mean Residual Ellipticity (MRE) and K2D3. The CD data confirmed the structural stability of the enzyme under various harsh conditions, yet it indicated reduced α-helix content and increased β-sheets upon denaturation. The thermodynamic parameters; deactivation rate constant, half-life, changes in entropy, enthalpy, activation energy and Gibb's free energy indicated that the enzyme-substrate reactions were highly stable. The overall profile of the enzyme: high thermostability, alkalitolerance, calcium independent nature, dextrose equivalent values and resistance against chemical denaturants, solvents and surfactants suggest its commercial applications. PMID:26297306

  11. FTIR Study On The Secondary Structure Of Mucin From Mucinous Cystadenoma Of The Ovary

    NASA Astrophysics Data System (ADS)

    Shen, Keng; Wu, Paochen; Zhou, Weij in; Liu, Fuan; Guo, Hai; Wu, Jinguang

    1989-12-01

    The mucinous cystadenoma, a common benign neoplasm of the ovary, may sometime bring about a fatal outcome known as pseudomyxoma peritonei which is characterized by massive accumulation of mucinous substance in the peritoneal cavity, resulting in extensive adhesions, chronic progressive intestinal obstruction and finally death of the patient. Surgical approach to this condition proves to be a palliative procedure. Repeated operation can only remove part of the geletinous material and reaccumulation of mucus within 1-2 years after the initial surgery is almost a rule. In view of the benign histologic nature of the disease, chemotherapy, either systemic or intraperitoneal, and radiotherapy are generally ineffective in arresting the progression of the pathologic process and preventing the reaccumulation of mucus. Therefore, the only hope lies on the introduction into the peritoneal cavity some agents which may dissolve the accumulated mucin, relieve the intestinal obstruction, and consequently, prolong and even save the life f the patient. Based on this conception, sporadic articles by a few authors(1,2)ap-peared in the literature reporting their clinical experience with different mucolytic agents. However, some blindness would inevitably be involved in such investigations due to the lack of a comprehensive understanding of the chemical structures of the substance. The purpose of the present paper is to report our preliminary results of study of the secondary structures of mucin secreted by this special type of tumor.

  12. Telomerase RNAs of different ciliates have a common secondary structure and a permuted template.

    PubMed

    Lingner, J; Hendrick, L L; Cech, T R

    1994-08-15

    Telomerase is composed of protein and RNA. The RNA serves as a template for telomere DNA synthesis and may also be important for enzyme structure or catalysis. We have used the presence of conserved sequence elements in the promoter and template regions to amplify by PCR the telomerase RNA genes from six different hypotrichous ciliates: Oxytricha nova, Oxytricha trifallax, Stylonychia mytilis, Stylonychia lemnae, Euplotes aediculatus, and Euplotes eurystomus. RNaseH cleavage of the O. nova RNA in extracts by use of a complementary oligonucleotide leads to loss of telomerase activity, supporting the identification. Primary sequence and biochemical experiments suggest that the templates of Oxytricha and Stylonychia are circularly permuted relative to that of E. aediculatus. On the basis of the pause sites, the former two add G4T4 during a single primer elongation cycle, whereas E. aediculatus adds G3T4G. The only primary sequence element outside the template that is conserved between these phylogenetically distant telomerase RNAs is the sequence 5'-(C)UGUCA-3', which precedes the template regions by exactly two bases. We propose a common secondary structure model that is based on nucleotide covariations, a model which resembles that proposed previously for tetrahymenine telomerase RNAs. PMID:7958872

  13. Structure of Velocity Distribution of Sheath-Accelerated Secondary Electrons in Asymmetric RF-DC Discharge

    NASA Astrophysics Data System (ADS)

    Khrabrov, Alexander V.; Carlsson, Johan; Kaganovich, Igor D.; Ventzek, Peter L.; Chen, Lee

    2015-09-01

    Low-pressure capacitively-coupled discharges with additional DC bias applied to a separate electrode find important industrial applications. Prime examples are plasma-assisted etching and deposition technologies. An interesting and important property of such discharges, observed in experiments, is an enhanced and non-monotonic high-energy tail of the electron velocity distribution function (EVDF) near the surface of the RF (a.k.a. powered) electrode. Such structures, at energies of several hundred eV, are possibly caused by secondary electrons emitted from the electrodes and interacting with two high-voltage sheaths; a stationary sheath at the DC electrode and an oscillating, self-biased sheath at the powered electrode. We have performed particle simulations where the features in the EVDF of electrons impacting the RF electrode are fully resolved at all energies. An analytic model has been developed to predict existence of peaked and step-like structures in the EVDF. The latter electrons can be grouped by the number of bounces between the sheaths during their lifetime in the discharge. Each of the groups may give rise to an individual peak in the distribution. Initial particle-in-cell simulations of these effects will be reported.

  14. Inhibition of protein synthesis stabilizes histone mRNA

    SciTech Connect

    Stimac, E.; Groppi, V.E. Jr.; Coffino, P.

    1984-10-01

    The inhibition of protein synthesis in exponentially growing S49 cells leads to a specific fivefold increase in histone mRNA in 30 min. The rate of transcription of histone mRNA, measured in intact or digitonin-permeabilized cells, is increased slightly, if at all, by cycloheximide inhibition of protein synthesis. Both approach-to-equilibrium labeling and pulse-chase experiments show that cycloheximide prolongs histone mRNA half-life from approximately 30 min to > 2 h. Histone mRNA made before the addition of cycloheximide becomes stable after the inhibition of protein synthesis, whereas removal of the inhibitor is followed by rapid degradation of histone mRNA. This suggests that the increased stability of histone mRNA during inhibition of protein synthesis results not from alteration of the structure of the mRNA, but from the loss of an activity in the cell which regulates histone mRNA turnover.

  15. Structure and hibernation-associated expression of the transient receptor potential vanilloid 4 channel (TRPV4) mRNA in the Japanese grass lizard (Takydromus tachydromoides).

    PubMed

    Nagai, Kazuya; Saitoh, Yasushi; Saito, Shigeru; Tsutsumi, Ken-ichi

    2012-03-01

    Animals possess systems for sensing environmental temperature using temperature-sensitive ion channels called transient receptor potential channels (TRPs). Various TRPs have been identified and characterized in mammals. However, those of ectotherms, such as reptiles, are less well studied. Here, we identify the V subfamily of TRP (TRPV) in two reptile species: Japanese grass lizard (Takydromus tachydromoides) and Japanese four-lined ratsnake (Elaphe quadrivirgata). Phylogenetic analysis of TRPVs indicated that ectothermic reptilian TRPVs are more similar to those of endothermic chicken and mammals, than to other ectotherms, such as frog and fish. Expression analysis of TRPV4 mRNA in the lizard showed that its expression in tissues and organs is specifically controlled in cold environments and hibernation. The mRNA was ubiquitously expressed in seven tissues/organs examined. Both cold-treatment and hibernation lowered TRPV4 expression, but in a tissue/organ-specific manner. Cold-treatment reduced TRPV4 expression in tongue and muscle, while in hibernation it was reduced more widely in brain, tongue, heart, lung, and muscle. Interestingly, however, levels of TRPV4 mRNA in the skin remained unaffected after entering hibernation and cold-treatment, implying that TRPV4 in the skin may act as an environmental temperature sensor throughout the reptilian life cycle, including hibernation. This is the first report, to our knowledge, to describe reptilian TRPV4 in relation to hibernation. PMID:22379986

  16. Residual structure of Streptococcus mutans biofilm following complete disinfection favors secondary bacterial adhesion and biofilm re-development.

    PubMed

    Ohsumi, Tatsuya; Takenaka, Shoji; Wakamatsu, Rika; Sakaue, Yuuki; Narisawa, Naoki; Senpuku, Hidenobu; Ohshima, Hayato; Terao, Yutaka; Okiji, Takashi

    2015-01-01

    Chemical disinfection of oral biofilms often leaves biofilm structures intact. This study aimed to examine whether the residual structure promotes secondary bacterial adhesion. Streptococcus mutans biofilms generated on resin-composite disks in a rotating disc reactor were disinfected completely with 70% isopropyl alcohol, and were again cultured in the same reactor after resupplying with the same bacterial solution. Specimens were subjected to fluorescence confocal laser scanning microscopy, viable cell counts and PCR-Invader assay in order to observe and quantify secondarily adhered cells. Fluorescence microscopic analysis, particularly after longitudinal cryosectioning, demonstrated stratified patterns of viable cells on the disinfected biofilm structure. Viable cell counts of test specimens were significantly higher than those of controls, and increased according to the amount of residual structure and culture period. Linear regression analysis exhibited a high correlation between viable and total cell counts. It was concluded that disinfected biofilm structures favored secondary bacterial adhesion. PMID:25635770

  17. Residual Structure of Streptococcus mutans Biofilm following Complete Disinfection Favors Secondary Bacterial Adhesion and Biofilm Re-Development

    PubMed Central

    Ohsumi, Tatsuya; Takenaka, Shoji; Wakamatsu, Rika; Sakaue, Yuuki; Narisawa, Naoki; Senpuku, Hidenobu; Ohshima, Hayato; Terao, Yutaka; Okiji, Takashi

    2015-01-01

    Chemical disinfection of oral biofilms often leaves biofilm structures intact. This study aimed to examine whether the residual structure promotes secondary bacterial adhesion. Streptococcus mutans biofilms generated on resin-composite disks in a rotating disc reactor were disinfected completely with 70% isopropyl alcohol, and were again cultured in the same reactor after resupplying with the same bacterial solution. Specimens were subjected to fluorescence confocal laser scanning microscopy, viable cell counts and PCR-Invader assay in order to observe and quantify secondarily adhered cells. Fluorescence microscopic analysis, particularly after longitudinal cryosectioning, demonstrated stratified patterns of viable cells on the disinfected biofilm structure. Viable cell counts of test specimens were significantly higher than those of controls, and increased according to the amount of residual structure and culture period. Linear regression analysis exhibited a high correlation between viable and total cell counts. It was concluded that disinfected biofilm structures favored secondary bacterial adhesion. PMID:25635770

  18. Understanding the effect of secondary structure on molecular interactions of poly-L-lysine with different substrates by SFA.

    PubMed

    Binazadeh, Mojtaba; Faghihnejad, Ali; Unsworth, Larry D; Zeng, Hongbo

    2013-10-14

    Nonspecific adsorption of proteins on biomaterial surfaces challenges the widespread application of engineered materials, and understanding the impact of secondary structure of proteins and peptides on their adsorption process is of both fundamental and practical importance in bioengineering. In this work, poly-L-lysine (PLL)-based α-helices and β-sheets were chosen as a model system to investigate the effect of secondary structure on peptide interactions with substrates of various surface chemistries. Circular dichroism (CD) was used to confirm the presence of both α-helix and β-sheet structured PLL in aqueous solutions and upon adsorption to quartz, where these secondary structures seemed to be preserved. Atomic force microscopy (AFM) imaging showed different surface patterns for adsorbed α-helix and β-sheet PLL. Interactions between PLL of different secondary structures and various substrates (i.e., PLL, Au, mica, and poly(ethylene glycol) (PEG)) were directly measured using a surface forces apparatus (SFA). It was found that β-sheet PLL films showed higher adsorbed layer thicknesses in general. Adhesion energies of β-sheet versus Au and β-sheet versus β-sheet were considerably higher than that of α-helix versus Au and α-helix versus α-helix systems, respectively. Au and β-sheet PLL interactions seemed to be more dependent on the salt concentration than that of α-helix, while the presence of a grafted PEG layer greatly diminished any attraction with either PLL structure. The molecular interaction mechanism of peptide in different secondary structures is discussed in terms of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, Alexander-de Gennes (AdG) steric model and hydrogen bonding, which provides important insight into the fundamental understanding of the interaction mechanism between proteins and biomaterials. PMID:24032485

  19. Fourier-transform infrared spectroscopic studies on avidin secondary structure and complexation with biotin and biotin-lipid assemblies.

    PubMed Central

    Swamy, M J; Heimburg, T; Marsh, D

    1996-01-01

    Fourier-transform infrared studies have been carried out to investigate the secondary structure and thermal stability of hen egg white avidin and its complexes with biotin and with a biotinylated lipid derivative, N-biotinyl dimyristoyl phosphatidylethanolamine (DMBPE) in aqueous dispersion. Analysis of the amide I stretching band of avidin yielded a secondary structural content composed of approximately 66% beta-sheet and extended structures, with the remainder being attributed to disordered structure and beta-turns. Binding of biotin or specific association with the biotinylated lipid DMBPE did not result in any appreciable changes in the secondary structure content of the protein, but a change in hydrogen bond stability of the beta-sheet or extended chain regions was indicated. The latter effect was enhanced by surface interactions in the case of the biotin-lipid assemblies, as was demonstrated by electrostatic binding to a nonspecific negatively charged lipid. Difference spectra of the bound biotin implicated a direct involvement of the ureido moiety in the ligand interaction that was consistent with hydrogen bonding to amino acid residues in the avidin protein. It was found that complexation with avidin leads to a decrease in bond length of the biotin ureido carbonyl group that is consistent with a reduction of sp3 character of the C-O bond when it is hydrogen bonded to the protein. Studies of the temperature dependence of the spectra revealed that for avidin alone the secondary structure was unaltered up to approximately 75 degrees C, above which the protein undergoes a highly cooperative transition to an unfolded state with concomitant loss of ordered secondary structure. The complexes of avidin with both biotin and membrane-bound DMBPE lipid assemblies display a large increase in thermal stability compared with the native protein. PMID:8842222

  20. Regulation of mRNA transport, localization and translation in the nervous system of mammals (Review)

    PubMed Central

    DI LIEGRO, CARLO MARIA; SCHIERA, GABRIELLA; DI LIEGRO, ITALIA

    2014-01-01

    Post-transcriptional control of mRNA trafficking and metabolism plays a critical role in the actualization and fine tuning of the genetic program of cells, both in development and in differentiated tissues. Cis-acting signals, responsible for post-transcriptional regulation, reside in the RNA message itself, usually in untranslated regions, 5′ or 3′ to the coding sequence, and are recognized by trans-acting factors: RNA-binding proteins (RBPs) and/or non-coding RNAs (ncRNAs). ncRNAs bind short mRNA sequences usually present in the 3′-untranslated (3′-UTR) region of their target messages. RBPs recognize specific nucleotide sequences and/or secondary/tertiary structures. Most RBPs assemble on mRNA at the moment of transcription and shepherd it to its destination, somehow determining its final fate. Regulation of mRNA localization and metabolism has a particularly important role in the nervous system where local translation of pre-localized mRNAs has been implicated in developing axon and dendrite pathfinding, and in synapse formation. Moreover, activity-dependent mRNA trafficking and local translation may underlie long-lasting changes in synaptic efficacy, responsible for learning and memory. This review focuses on the role of RBPs in neuronal development and plasticity, as well as possible connections between ncRNAs and RBPs. PMID:24452120

  1. Orientation Determination of Protein Helical Secondary Structure Using Linear and Nonlinear Vibrational Spectroscopy

    PubMed Central

    Nguyen, Khoi Tan; Le Clair, Stéphanie V.; Ye, Shuji; Chen, Zhan

    2009-01-01

    In this paper, we systematically presented the orientation determination of protein helical secondary structures using vibrational spectroscopic methods, particularly the nonlinear Sum Frequency Generation (SFG) vibrational spectroscopy, along with linear vibrational spectroscopic techniques such as infrared spectroscopy and Raman scattering. SFG amide I signals can be collected using different polarization combinations of the input laser beams and output signal beam to measure the second order nonlinear optical susceptibility components of the helical amide I modes, which are related to their molecular hyperpolarizability elements through the orientation distribution of these helices. The molecular hyperpolarizability elements of amide I modes of a helix can be calculated based on the infrared transition dipole moment and Raman polarizability tensor of the helix; these quantities are determined by using the bond additivity model to sum over the individual infrared dipole transition moments and Raman polarizability tensors, respectively, of the peptide units (or the amino acid residues). The computed overall infrared transition dipole moment and Raman polarizability tensor of a helix can be validated by experimental data using polarized infrared and polarized Raman spectroscopy on samples with well-aligned helical structures. From the deduced SFG hyperpolarizability elements and measured SFG second order nonlinear susceptibility components, orientation information regarding helical structures can be determined. Even though such orientation information can also be measured using polarized infrared or polarized Raman amide I signals, SFG has a much lower detection limit, which can be used to study the orientation of a helix when its surface coverage is much lower than a monolayer. In addition, the combination of different vibrational spectroscopic techniques, e.g., SFG and Attenuated Total Reflectance – Fourier Transform Infrared spectroscopy, provides more measured parameters for orientation determination, aiding in the deduction of more complicated orientation distributions. In this paper, we discussed two types of helices: the α-helix and 3–10 helix. However, the orientation determination method presented here is general, and thus can be applied to study other helices as well. The calculations of SFG amide I hyperpolarizability components for α-helical and 3–10 helical structures with different chain lengths have also been performed. It was found that when the helices reach a certain length, the number of peptide units in the helix should not alter the data analysis substantially. It was shown in the calculation, however, that when the helix chain is short, the SFG hyperpolarizability component ratios can vary substantially when the chain length is changed. Because 3–10 helical structures can be quite short in proteins, the orientation determination for a short 3–10 helix needs to take into account the number of peptide units in the helix. PMID:19650636

  2. Decentralization and Structural Change in Secondary Education in Argentina: The Case of the Province of Buenos Aires

    ERIC Educational Resources Information Center

    Acedo, Clementina; Gorostiaga, Jorge M.; Senen-Gonzalez, Silvia

    2007-01-01

    Over the past decade, Argentina created and implemented a compulsory lower-secondary education level, within an ambitious educational reform programme. This article addresses the reform at the national level, diverse provincial responses, and the particular way that the powerful province of Buenos Aires appropriated the structural change. The…

  3. Effect of Programmed Instruction on Students' Attitude towards Structure of the Atom and the Periodic Table among Kenyan Secondary Schools

    ERIC Educational Resources Information Center

    Wangila, M. J.; Martin, W.; Ronald, M.

    2015-01-01

    This study examined the effect of Programmed Instruction on students' attitude towards Structure of the Atom and the Periodic Table (SAPT) among mixed (co-educational) secondary schools of Butere district, Kakamega county, Kenya. The quasi-experimental research design was adopted, using the nonrandomized Solomon four-group as a model. The sample…

  4. DNA secondary structure of the released strand stimulates WRN helicase action on forked duplexes without coordinate action of WRN exonuclease

    SciTech Connect

    Ahn, Byungchan; Bohr, Vilhelm A.

    2011-08-12

    Highlights: {yields} In this study, we investigated the effect of a DNA secondary structure on the two WRN activities. {yields} We found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. {yields} These results imply that WRN helicase and exonuclease activities can act independently. -- Abstract: Werner syndrome (WS) is an autosomal recessive premature aging disorder characterized by aging-related phenotypes and genomic instability. WS is caused by mutations in a gene encoding a nuclear protein, Werner syndrome protein (WRN), a member of the RecQ helicase family, that interestingly possesses both helicase and exonuclease activities. Previous studies have shown that the two activities act in concert on a single substrate. We investigated the effect of a DNA secondary structure on the two WRN activities and found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. These results imply that WRN helicase and exonuclease activities can act independently, and we propose that the uncoordinated action may be relevant to the in vivo activity of WRN.

  5. Fine-grained parallelism accelerating for RNA secondary structure prediction with pseudoknots based on FPGA.

    PubMed

    Xia, Fei; Jin, Guoqing

    2014-06-01

    PKNOTS is a most famous benchmark program and has been widely used to predict RNA secondary structure including pseudoknots. It adopts the standard four-dimensional (4D) dynamic programming (DP) method and is the basis of many variants and improved algorithms. Unfortunately, the O(N(6)) computing requirements and complicated data dependency greatly limits the usefulness of PKNOTS package with the explosion in gene database size. In this paper, we present a fine-grained parallel PKNOTS package and prototype system for accelerating RNA folding application based on FPGA chip. We adopted a series of storage optimization strategies to resolve the "Memory Wall" problem. We aggressively exploit parallel computing strategies to improve computational efficiency. We also propose several methods that collectively reduce the storage requirements for FPGA on-chip memory. To the best of our knowledge, our design is the first FPGA implementation for accelerating 4D DP problem for RNA folding application including pseudoknots. The experimental results show a factor of more than 50x average speedup over the PKNOTS-1.08 software running on a PC platform with Intel Core2 Q9400 Quad CPU for input RNA sequences. However, the power consumption of our FPGA accelerator is only about 50% of the general-purpose micro-processors. PMID:24969746

  6. Inclusion of persistence length-based secondary structure in replica field theoretic models of heteropolymer freezing

    PubMed Central

    Weber, Jeffrey K.; Pande, Vijay S.

    2013-01-01

    The protein folding problem has long represented a holy grail in statistical physics due to its physical complexity and its relevance to many human diseases. While past theoretical work has yielded apt descriptions of protein folding landscapes, recent large-scale simulations have provided insights into protein folding that were impractical to obtain from early theories. In particular, the role that non-native contacts play in protein folding, and their relation to the existence of misfolded, ?-sheet rich trap states on folding landscapes, has emerged as a topic of interest in the field. In this paper, we present a modified model of heteropolymer freezing that includes explicit secondary structural characteristics which allow observations of intramolecular amyloid states to be probed from a theoretical perspective. We introduce a variable persistence length-based energy penalty to a model Hamiltonian, and we illustrate how this modification alters the phase transitions present in the theory. We find, in particular, that inclusion of this variable persistence length increases both generic freezing and folding temperatures in the model, allowing both folding and glass transitions to occur in a more highly optimized fashion. We go on to discuss how these changes might relate to protein evolution, misfolding, and the emergence of intramolecular amyloid states. PMID:24089729

  7. Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens

    PubMed Central

    Bushley, Kathryn E.; Ohm, Robin A.; Otillar, Robert; Martin, Joel; Schackwitz, Wendy; Grimwood, Jane; MohdZainudin, NurAinIzzati; Xue, Chunsheng; Wang, Rui; Manning, Viola A.; Dhillon, Braham; Tu, Zheng Jin; Steffenson, Brian J.; Salamov, Asaf; Sun, Hui; Lowry, Steve; LaButti, Kurt; Han, James; Copeland, Alex; Lindquist, Erika; Barry, Kerrie; Schmutz, Jeremy; Baker, Scott E.; Ciuffetti, Lynda M.; Grigoriev, Igor V.; Zhong, Shaobin; Turgeon, B. Gillian

    2013-01-01

    The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP–encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence. PMID:23357949

  8. Spatial structure of neuronal receptive field in awake monkey secondary visual cortex (V2).

    PubMed

    Liu, Lu; She, Liang; Chen, Ming; Liu, Tianyi; Lu, Haidong D; Dan, Yang; Poo, Mu-Ming

    2016-02-16

    Visual processing depends critically on the receptive field (RF) properties of visual neurons. However, comprehensive characterization of RFs beyond the primary visual cortex (V1) remains a challenge. Here we report fine RF structures in secondary visual cortex (V2) of awake macaque monkeys, identified through a projection pursuit regression analysis of neuronal responses to natural images. We found that V2 RFs could be broadly classified as V1-like (typical Gabor-shaped subunits), ultralong (subunits with high aspect ratios), or complex-shaped (subunits with multiple oriented components). Furthermore, single-unit recordings from functional domains identified by intrinsic optical imaging showed that neurons with ultralong RFs were primarily localized within pale stripes, whereas neurons with complex-shaped RFs were more concentrated in thin stripes. Thus, by combining single-unit recording with optical imaging and a computational approach, we identified RF subunits underlying spatial feature selectivity of V2 neurons and demonstrated the functional organization of these RF properties. PMID:26839410

  9. Identification of WD40 repeats by secondary structure-aided profile-profile alignment.

    PubMed

    Wang, Chuan; Dong, Xiaobao; Han, Lei; Su, Xiao-Dong; Zhang, Ziding; Li, Jinyan; Song, Jiangning

    2016-06-01

    A WD40 protein typically contains four or more repeats of ~40 residues ended with the Trp-Asp dipeptide, which folds into β-propellers with four β strands in each repeat. They often function as scaffolds for protein-protein interactions and are involved in numerous fundamental biological processes. Despite their important functional role, the "velcro" closure of WD40 propellers and the diversity of WD40 repeats make their identification a difficult task. Here we develop a new WD40 Repeat Recognition method (WDRR), which uses predicted secondary structure information to generate candidate repeat segments, and further employs a profile-profile alignment to identify the correct WD40 repeats from candidate segments. In particular, we design a novel alignment scoring function that combines dot product and BLOSUM62, thereby achieving a great balance of sensitivity and accuracy. Taking advantage of these strategies, WDRR could effectively reduce the false positive rate and accurately identify more remote homologous WD40 repeats with precise repeat boundaries. We further use WDRR to re-annotate the Pfam families in the β-propeller clan (CL0186) and identify a number of WD40 repeat proteins with high confidence across nine model organisms. The WDRR web server and the datasets are available at http://protein.cau.edu.cn/wdrr/. PMID:27021623

  10. Spontaneous deposition of polylysine on surfaces: role of the secondary structure to optimize noncovalent coating strategies.

    PubMed

    Di Mauro, Alessandro; Mirabella, Francesca; D'Urso, Alessandro; Randazzo, Rosalba; Purrello, Roberto; Fragalà, Maria Elena

    2015-01-01

    Understanding the factors that governs spontaneous molecular transfer from solution to solid surface is fundamental to control noncovalent surface functionalization strategies, both in term of robustness and reproducibility. The comprehension of the nature of interaction involved in the mechanism of spontaneous adsorption will allow for a fine modulation of the deposition process. Herein, we provide experimental evidences to demonstrate that poly-lysine secondary structure represents a crucial factor profoundly influencing the outcome of its spontaneous deposition on quartz surfaces. In particular, random coil to α-helix transition is required to drive an effective transfer of the poly-l-lysine at the liquid-solid interface. β-sheet deposition requires longer times to be accomplished, while random-coil deposition is highly unfavored. Accordingly, polylysine deposition on quartz and silicon is effective when α-helix is formed in solution (pH>10). This surface noncovalent functionalization represents a simple strategy to fabricate hybrid organic-inorganic or biocompatible materials. In fact, the proposed methodology is proven robust and repeatable and compatible for combination with solution or vapor phases (i.e. MOCVD) nanomaterial deposition approaches. PMID:25441360

  11. Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens

    SciTech Connect

    Condon, Bradford J.; Leng, Yueqiang; Wu, Dongliang; Bushley, Kathryn E.; Ohm, Robin A.; Otillar, Robert; Martin, Joel; Schackwitz, Wendy; Grimwood, Jane; MohdZainudin, NurAinlzzati; Xue, Chunsheng; Wang, Rui; Manning, Viola A.; Dhillon, Braham; Tu, Zheng Jin; Steffenson, Brian J.; Salamov, Asaf; Sun, Hui; Lowry, Steve; LaButti, Kurt; Han, James; Copeland, Alex; Lindquist, Erika; Barry, Kerrie; Schmutz, Jeremy; Baker, Scott E.; Ciuffetti, Lynda M.; Grigoriev, Igor V.; Zhong, Shaobin; Turgeon, B. Gillian

    2013-01-24

    The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25 higher than those between inbred lines and 50 lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.

  12. Secondary dislocation structures in a Ni-TiN system from the GMS and O-lattice theory

    NASA Astrophysics Data System (ADS)

    Tang, Yiru; Dai, Fuzhi; Gu, Xinfu; Wang, Zhongchang; Zhang, Wenzheng

    2016-03-01

    The preferred state in an interface is the key to evaluating misfit strain, especially for the interphase interfaces in secondary preferred state. The structure of good matching site (GMS) in a GMS clusters offers a guidance for the preferred state, especially for identifying the coincidence site lattice in two dimension for secondary preferred state and the Burgers vectors in a large misfit system. Here, we combine the GMS with O-lattice theory to calculate the secondary dislocation structure in the habit planes of the type II and III TiN precipitates in a Ni-TiN system. We find that under a slight elastic strain, the type III habit plane contains a single set of secondary dislocations, consistent with the experimental observation. The type II habit plane contains three sets of secondary dislocations, two of which can be relaxed to be nearly parallel and another of which may be invisible in diffraction contrast due to its short Burgers vector. The present study provides a reasonable interpretation to the observed interfacial dislocations, and also suggests Burgers vectors for the dislocations that are not determined experimentally.

  13. The Structure of Educational Costs: Multiproduct Cost Functions for Primary and Secondary Schools in Latin America.

    ERIC Educational Resources Information Center

    Jimenez, Emmanuel

    1986-01-01

    Relying heavily on equations and tabular data, this paper analyzes the educational cost functions of primary and secondary schooling levels in Latin America. Economies of scale are found for both levels in Bolivian and Paraguayan urban schools; schools combining primary and secondary school services are shown to be less cost effective. (23…

  14. Polymorphism, population structure, and multivariate relationships among secondary traits in open-pollinated corn heterotic groups

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant, ear and kernel traits directly or indirectly associated with grain yield in corn (Zea mays) were suggested as "secondary" traits to select for larger grain yield, especially in open-pollinated corn varieties (OPVs) and their hybrids (OPVhs). Thirty-four secondary traits, besides grain yield, ...

  15. Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites

    PubMed Central

    Feng, Zhiyang; Kallifidas, Dimitris; Brady, Sean F.

    2011-01-01

    A single gram of soil is predicted to contain thousands of unique bacterial species. The majority of these species remain recalcitrant to standard culture methods, prohibiting their use as sources of unique bioactive small molecules. The cloning and analysis of DNA extracted directly from environmental samples (environmental DNA, eDNA) provides a means of exploring the biosynthetic capacity of natural bacterial populations. Environmental DNA libraries contain large reservoirs of bacterial genetic diversity from which new secondary metabolite gene clusters can be systematically recovered and studied. The identification and heterologous expression of type II polyketide synthase-containing eDNA clones is reported here. Functional analysis of three soil DNA-derived polyketide synthase systems in Streptomyces albus revealed diverse metabolites belonging to well-known, rare, and previously uncharacterized structural families. The first of these systems is predicted to encode the production of the known antibiotic landomycin E. The second was found to encode the production of a metabolite with a previously uncharacterized pentacyclic ring system. The third was found to encode the production of unique KB-3346-5 derivatives, which show activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. These results, together with those of other small-molecule-directed metagenomic studies, suggest that culture-independent approaches are capable of accessing biosynthetic diversity that has not yet been extensively explored using culture-based methods. The large-scale functional screening of eDNA clones should be a productive strategy for generating structurally previously uncharacterized chemical entities for use in future drug development efforts. PMID:21768346

  16. Characterization of the secondary structure of calmodulin in complex with a calmodulin-binding domain peptide

    SciTech Connect

    Roth, S.M.; Schneider, D.M.; Strobel, L.A.; Wand, A.J. Univ. of Illinois, Urbana ); Van Berkum, M.F.A.; Means, A.R. )

    1992-02-11

    The interaction between calcium-saturated chicken calmodulin and a peptide corresponding to the calmodulin-binding domain of the chicken smooth muscle myosin light chain kinase has been studied by multinuclear and multidimensional nuclear magnetic resonance methods. Extensive {sup 1}H and {sup 15}N resonance assignments of calmodulin in the complex have been obtained from the analysis of two- and three-dimensional nuclear magnetic resonance spectra. The assignment of calmodulin in the complex was facilitated by the use of selective labeling of the protein with {alpha}-{sup 15}N-labeled valine, alanine, lysine, leucine, and glycine. These provided reference points during the main-chain-directed analysis of three-dimensional spectra of complexes prepared with uniformly {sup 15}N-labeled calmodulin. The pattern of nuclear Overhauser effects (NOE) seen among main-chain amide NH, C{sub {alpha}}H, and C{sub {beta}}H hydrogens indicates that the secondary structure of the globular domains of calmodulin in the complex closely corresponds to that observed in the calcium-saturated state of the protein in the absence of bound peptide. However, the backbone conformation of residues 76-84 adopts an extended chain conformation upon binding of the peptide in contrast to its helical conformation in the absence of peptide. A sufficient number of NOEs between the globular domains of calmodulin and the bound peptide have been found to indicate that the N- and C-terminal regions of the peptide interact with the C- and N-terminal domains of calmodulin, respectively. The significance of these results are discussed in terms of recently proposed models for the structure of calmodulin-peptide complexes.

  17. Ebola virus RNA editing depends on the primary editing site sequence and an upstream secondary structure.

    PubMed

    Mehedi, Masfique; Hoenen, Thomas; Robertson, Shelly; Ricklefs, Stacy; Dolan, Michael A; Taylor, Travis; Falzarano, Darryl; Ebihara, Hideki; Porcella, Stephen F; Feldmann, Heinz

    2013-01-01

    Ebolavirus (EBOV), the causative agent of a severe hemorrhagic fever and a biosafety level 4 pathogen, increases its genome coding capacity by producing multiple transcripts encoding for structural and nonstructural glycoproteins from a single gene. This is achieved through RNA editing, during which non-template adenosine residues are incorporated into the EBOV mRNAs at an editing site encoding for 7 adenosine residues. However, the mechanism of EBOV RNA editing is currently not understood. In this study, we report for the first time that minigenomes containing the glycoprotein gene editing site can undergo RNA editing, thereby eliminating the requirement for a biosafety level 4 laboratory to study EBOV RNA editing. Using a newly developed dual-reporter minigenome, we have characterized the mechanism of EBOV RNA editing, and have identified cis-acting sequences that are required for editing, located between 9 nt upstream and 9 nt downstream of the editing site. Moreover, we show that a secondary structure in the upstream cis-acting sequence plays an important role in RNA editing. EBOV RNA editing is glycoprotein gene-specific, as a stretch encoding for 7 adenosine residues located in the viral polymerase gene did not serve as an editing site, most likely due to an absence of the necessary cis-acting sequences. Finally, the EBOV protein VP30 was identified as a trans-acting factor for RNA editing, constituting a novel function for this protein. Overall, our results provide novel insights into the RNA editing mechanism of EBOV, further understanding of which might result in novel intervention strategies against this viral pathogen. PMID:24146620

  18. Application of the local regression method interval partial least-squares to the elucidation of protein secondary structure.

    PubMed

    Navea, Susana; Tauler, Romà; de Juan, Anna

    2005-01-15

    The infrared amide bands are sensitive to the conformation of the polypeptide backbone of proteins. Since the backbone of proteins folds in complex spatial arrangements, the amide bands of these proteins result from the superimposition of vibration modes corresponding to the different types of structural motifs (alpha helices, beta sheets, etc.). Initially, band deconvolution techniques were applied to determine the secondary structure of proteins, i.e., the abundance of each structural motif in the polypeptide chain was directly related to the area of the suitable deconvolved vibration modes under the amide I band (1700-1600 cm(-1)). Recently, several multivariate regression methods have been used to predict the secondary structure of proteins as an alternative to the previous methods. They are based on establishing a relationship between a matrix of infrared protein spectra and another that includes their secondary structure, expressed as the fractions of the different structural motifs, determined from X-ray analysis. In this study, we investigated the use of the local regression method interval partial least-squares (iPLS) to seek improvements to the full-spectrum PLS and other regression methods. The local character of iPLS avoids the use of spectral regions that can introduce noise or that can be irrelevant for prediction and focuses on finding specific spectral ranges related to each secondary structure motif in all the proteins. This study has been applied to a representative protein data set with infrared spectra covering a large wavenumber range, including amides I-III bands (1700-1200 cm(-1)). iPLS has revealed new structural mode assignments related to less explored amide bands and has offered a satisfactory predictive ability using a small amount of selected specific spectral information. PMID:15620888

  19. Probing local secondary structure by fluorescence: time-resolved and circular dichroism studies of highly purified neurotoxins.

    PubMed Central

    Dahms, T E; Szabo, A G

    1995-01-01

    The relationship between beta-sheet secondary structure and intrinsic tryptophan fluorescence parameters of erabutoxin b, alpha-cobratoxin, and alpha-bungarotoxin were examined. Nuclear magnetic resonance and x-ray crystallography have shown that these neurotoxins have comparable beta-sheet, beta-turn, and random coil secondary structures. Each toxin contains a single tryptophan (Trp) residue within its beta-sheet. The time-resolved fluorescence properties of native erabutoxin b and alpha-cobratoxin are best described by triple exponential decay kinetics, whereas native alpha-bungarotoxin exhibits more than four lifetimes. The disulphide bonds of each toxin were reduced to facilitate carboxymethylation and amidocarboxymethylation. The two different toxin derivatives of all three neurotoxins displayed triple exponential decay kinetics and were completely denatured as evidenced by circular dichroism (random coil). The concentration (c) values of the three fluorescence decay times (time-resolved fluorescence spectroscopy (TRFS)) were dramatically different from those of the native toxins. Each neurotoxin, treated with different concentrations of guanidinium hydrochloride (GuHCl), was studied both by circular dichroism and TRFS. Disappearance of the beta-sheet secondary structural features with increasing concentrations of GuHCl was accompanied by a shift in the relative contribution (c value) of each fluorescence decay time (TRFS). It was found that certain disulphide residues confer added stability to the beta-sheet secondary structure of these neurotoxins and that the center of the beta-sheet is last to unfold. These titrations show that Trp can be used as a very localized probe of secondary structure. Images FIGURE 1 PMID:8527671

  20. RNase footprinting of protein binding sites on an mRNA target of small RNAs.

    PubMed

    Peng, Yi; Soper, Toby J; Woodson, Sarah A

    2012-01-01

    Endoribonuclease footprinting is an important technique for probing RNA-protein interactions with single nucleotide resolution. The susceptibility of RNA residues to enzymatic digestion gives information about the RNA secondary structure, the location of protein binding sites, and the effects of protein binding on the RNA structure. Here we present a detailed protocol for using RNase T2, which cleaves single stranded RNA with a preference for A nucleotides, to footprint the protein Hfq on the rpoS mRNA leader. This protocol covers how to form the RNP complex, determine the correct dose of enzyme, footprint the protein, and analyze the cleavage pattern using primer extension. PMID:22736006

  1. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more.

    PubMed

    Rivas, Elena; Lang, Raymond; Eddy, Sean R

    2012-02-01

    The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases. PMID:22194308

  2. Crystal Structure of a Bacterial Topoisomerase IB in Complex with DNA Reveals a Secondary DNA Binding Site

    SciTech Connect

    Patel, Asmita; Yakovleva, Lyudmila; Shuman, Stewart; Mondragón, Alfonso

    2010-10-22

    Type IB DNA topoisomerases (TopIB) are monomeric enzymes that relax supercoils by cleaving and resealing one strand of duplex DNA within a protein clamp that embraces a {approx}21 DNA segment. A longstanding conundrum concerns the capacity of TopIB enzymes to stabilize intramolecular duplex DNA crossovers and form protein-DNA synaptic filaments. Here we report a structure of Deinococcus radiodurans TopIB in complex with a 12 bp duplex DNA that demonstrates a secondary DNA binding site located on the surface of the C-terminal domain. It comprises a distinctive interface with one strand of the DNA duplex and is conserved in all TopIB enzymes. Modeling of a TopIB with both DNA sites suggests that the secondary site could account for DNA crossover binding, nucleation of DNA synapsis, and generation of a filamentous plectoneme. Mutations of the secondary site eliminate synaptic plectoneme formation without affecting DNA cleavage or supercoil relaxation.

  3. Two-dimensional sup 1 H NMR studies on HPr protein from Staphylococcus aureus: Complete sequential assignments and secondary structure

    SciTech Connect

    Kalbitzer, H.R.; Neidig, K.P. ); Hengstenberg, W. )

    1991-11-19

    Complete sequence-specific assignments of the {sup 1}H NMR spectrum of HPr protein from Staphylococcus aureus were obtained by two-dimensional NMR methods. Important secondary structure elements that can be derived from the observed nuclear Overhauser effects are a large antiparallel {beta}-pleated sheet consisting of four strands, A, B, C, D, a segment S{sub AB} consisting of an extended region around the active-center histidine (His-15) and an {alpha}-helix, a half-turn between strands B and C, a segment S{sub CD} which shows no typical secondary structure, and the {alpha}-helical, C-terminal segment S{sub term}. These general structural features are similar to those found earlier in HPr proteins from different microorganisms such as Escherichia coli, Bacillus subtilis, and Streptococcus faecalis.

  4. Structure and spectra of irradiated secondaries in close binaries. A model calculation of the pre-cataclysmic variable UU Sagittae

    NASA Astrophysics Data System (ADS)

    Wawrzyn, A. C.; Barman, T. S.; Gnther, H. M.; Hauschildt, P. H.; Exter, K. M.

    2009-10-01

    Context: The standard stellar model atmosphere ignores the influence of external radiation. This assumption, while sufficient for most stars, fails for many short-period binaries. Aims: In setting up combined model atmospheres for close binaries, we want to constrain the parameters of both components, especially in the case of a hot primary component strongly influencing its cool secondary companion. This situation can be found after common envelope evolution (CEE). The status of both components today allows one to retrace the CEE itself. Methods: We used our stellar atmosphere code PHOENIX, which includes the effect of irradiation in its radiation transport equation, to investigate the close binary star UU Sge. We combined our calculated spectra of both components, weighted by their visible size, and adjusted the input parameters until reasonable agreement with observations is reached. Results: We derive a range of 80 000-85 000 K for the effective temperature of the primary (Teff, p) and give a rough estimate for the primary's abundances, particularly the nitrogen enrichment. The heated day-side of the secondary has an apparent effective or equilibrium temperature of 24 000-26 000 K, nearly independent of its intrinsic luminosity. It shows an enhancement in nitrogen and carbon. Conclusions: The evolution of the primary and secondary stars were strongly influenced by the other's presence. Radiation from the primary on the secondary's day-side is still an important factor in understanding the secondary's atmospheric structure.

  5. BCL::Fold - De Novo Prediction of Complex and Large Protein Topologies by Assembly of Secondary Structure Elements

    PubMed Central

    Karakaş, Mert; Woetzel, Nils; Staritzbichler, Rene; Alexander, Nathan; Weiner, Brian E.; Meiler, Jens

    2012-01-01

    Computational de novo protein structure prediction is limited to small proteins of simple topology. The present work explores an approach to extend beyond the current limitations through assembling protein topologies from idealized α-helices and β-strands. The algorithm performs a Monte Carlo Metropolis simulated annealing folding simulation. It optimizes a knowledge-based potential that analyzes radius of gyration, β-strand pairing, secondary structure element (SSE) packing, amino acid pair distance, amino acid environment, contact order, secondary structure prediction agreement and loop closure. Discontinuation of the protein chain favors sampling of non-local contacts and thereby creation of complex protein topologies. The folding simulation is accelerated through exclusion of flexible loop regions further reducing the size of the conformational search space. The algorithm is benchmarked on 66 proteins with lengths between 83 and 293 amino acids. For 61 out of these proteins, the best SSE-only models obtained have an RMSD100 below 8.0 Å and recover more than 20% of the native contacts. The algorithm assembles protein topologies with up to 215 residues and a relative contact order of 0.46. The method is tailored to be used in conjunction with low-resolution or sparse experimental data sets which often provide restraints for regions of defined secondary structure. PMID:23173050

  6. Characterizing the secondary protein structure of black widow dragline silk using solid-state NMR and X-ray diffraction.

    PubMed

    Jenkins, Janelle E; Sampath, Sujatha; Butler, Emily; Kim, Jihyun; Henning, Robert W; Holland, Gregory P; Yarger, Jeffery L

    2013-10-14

    This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show that the structure of black widow major ampullate silk fibers is comprised of stacked β-sheet nanocrystallites oriented parallel to the fiber axis and an amorphous region with oriented (anisotropic) and isotropic components. The combination of two-dimensional (2D) (13)C-(13)C through-space and through-bond solid-state NMR experiments provide chemical shifts that are used to determine detailed information about the amino acid motif secondary structure in black widow spider dragline silk. Individual amino acids are incorporated into different repetitive motifs that make up the majority of this protein-based biopolymer. From the solid-state NMR measurements, we assign distinct secondary conformations to each repetitive amino acid motif and, hence, to the amino acids that make up the motifs. Specifically, alanine is incorporated in β-sheet (poly(Alan) and poly(Gly-Ala)), 3(1)-helix (poly(Gly-Gly-Xaa), and α-helix (poly(Gln-Gln-Ala-Tyr)) components. Glycine is determined to be in β-sheet (poly(Gly-Ala)) and 3(1)-helical (poly(Gly-Gly-X(aa))) regions, while serine is present in β-sheet (poly(Gly-Ala-Ser)), 3(1)-helix (poly(Gly-Gly-Ser)), and β-turn (poly(Gly-Pro-Ser)) structures. These various motif-specific secondary structural elements are quantitatively correlated to the primary amino acid sequence of major ampullate spidroin 1 and 2 (MaSp1 and MaSp2) and are shown to form a self-consistent model for black widow dragline silk. PMID:24024617

  7. Pulsed laser deposition of silk protein: Effect of photosensitized-ablation on the secondary structure in thin deposited films

    SciTech Connect

    Tsuboi, Yasuyuki; Goto, Masaharu; Itaya, Akira

    2001-06-15

    Silk fibroin is a simple protein expected to have functional applications in medicine and bioelectronics. The primary structure of this protein is quite simple, and the main secondary structures are {beta}-sheet crystals and amorphous random coils. In the present study, we investigated pulsed laser deposition (PLD) of fibroin with the {beta}-sheet structures as targets. The primary and secondary structures in films deposited were analyzed using infrared spectroscopy. Normal laser deposition at 351 nm using neat fibroin targets produced thin films of fibroin with a random coiled structure. Ablation was triggered by two-photonic excitation of the peptide chains, which resulted in the destruction of {beta}-sheet structure in PLD. In order to avoid the two-photonic excitation, we adopted a PLD method utilizing anthracene (5{endash}0.1 wt%) in a photosensitized reaction involving doped fibroin targets. Laser light (351 or 355 nm) was absorbed only by anthracene, which plays an important role converting photon energy to thermal energy with great ablation efficiency. Thin fibroin films deposited by this method had both random coil and {beta}-sheet structures. As the dopant concentration and laser fluence decreased, the ratio of {beta}-sheet domain to random coil increased in thin deposited films. {copyright} 2001 American Institute of Physics.

  8. Kohonen map as a visualization tool for the analysis of protein sequences: multiple alignments, domains and segments of secondary structures.

    PubMed

    Hanke, J; Reich, J G

    1996-12-01

    The method of Kohonen maps, a special form of neural networks, was applied as a visualization tool for the analysis of protein sequence similarity. The procedure converts sequence (domains, aligned sequences, segments of secondary structure) into a characteristic signal matrix. This conversion depends on the property or replacement score vector selected by the user. Similar sequences have small distance in the signal space. The trained Kohonen network is functionally equivalent to an unsupervised non-linear cluster analyzer. Protein families, or aligned sequences, or segments of similar secondary structure, aggregate as clusters, and their proximity may be inspected on a color screen or on paper. Pull-down menus permit access to background information in the established text-oriented way. PMID:9021261

  9. [Skeleton or mummy: practices and structures for secondary burial in southern Italy in modern and contemporary age].

    PubMed

    Fornaciari, Antonio

    2013-01-01

    The ancient concepts of death as duration and the practices of secondary burial,first analysed by Robert Hertz, still survive in many areas of southern Italy. According to these beliefs death was perceived not as a sudden event, but as a long-lasting process, during which the deceased person had to go through a transitory phase, passing from one state of existence to another. Recent archeological research documents the persistence of secondary burial rites in Southern Italy during the Modern Age. A survey conducted in the province of Messina in Eastern Sicily has identified two surviving architectural structures appointed for the treatment of the bodies: the 'sitting colatoio' aimed at favoring the skeletonisation and the 'horizontal colatoio' used to obtain mummification by dehydration. Both these structures controlled the corpse's decay and transformed the body in a stable and durable simulacra of the dead. PMID:25807706

  10. Use of complementary DNA oligomers to probe trp leader transcript secondary structures involved in transcription pausing and termination.

    PubMed Central

    Fisher, R; Yanofsky, C

    1984-01-01

    DNA oligomers were synthesized that are perfectly complementary to different segments of the tryptophan (trp) operon leader transcript. These 15 nucleotide long oligomers were used as probes of the involvement of transcript secondary structures in two processes: transcription pausing at the pause site located near base pair 90 in the leader region, and transcription termination at the attenuator. The 15-mers were complementary to the four segments of the trp leader transcript which have been shown to form the alternative secondary structures that are believed to be responsible for pausing, termination, and antitermination. Oligomers complementary to RNA segments 1 and 3 relieved termination while the 15-mer complementary to RNA segment 1 relieved pausing. 15-mers complementary to segment 2 had no effect on pausing and the oligomer complementary to segment 4 had virtually no effect on termination. PMID:6201827

  11. a High Efficiency Dye-Sensitized Solar Cell with NANO-TiO2 Secondary Structure in the Photoanode

    NASA Astrophysics Data System (ADS)

    Lan, Zhang; Wu, Jihuai; Lin, Jianming; Huang, Miaoliang

    2013-04-01

    A high efficiency dye-sensitized solar cell (DSC) with nanocrystallite TiO2 (nano-TiO2) secondary structure in the photoanode was successfully fabricated via a simple one step doctor blade printing method with a special nano-TiO2 paste containing micro-sized nano-TiO2 aggregates formed in situ. The special secondary structure in the photoanode shows improved optical absorption, increased light scattering ability, and enhanced electron transport and collection efficiency, resulting in high power conversion efficiency of 7.30% with 6 μm thin nano-TiO2 film in the photoanode, and the highest value of 9.28% by increasing the thickness of the nano-TiO2 film to 11 μm.

  12. Intrusive growth of primary and secondary phloem fibres in hemp stem determines fibre-bundle formation and structure

    PubMed Central

    Snegireva, Anastasia; Chernova, Tatyana; Ageeva, Marina; Lev-Yadun, Simcha; Gorshkova, Tatyana

    2015-01-01

    Plant fibres—cells with important mechanical functions and a widely used raw material—are usually identified in microscopic sections only after reaching a significant length or after developing a thickened cell wall. We characterized the early developmental stages of hemp (Cannabis sativa) stem phloem fibres, both primary (originating from the procambium) and secondary (originating in the cambium), when they still had only a primary cell wall. We gave a major emphasis to the role of intrusive elongation, the specific type of plant cell growth by which fibres commonly attain large cell length. We could identify primary phloem fibres at a distance of only 1.2–1.5 mm from the shoot apical meristem when they grew symplastically with the surrounding tissues. Half a millimeter further downwards along the stem, fibres began their intrusive elongation, which led to a sharp increase in fibre numbers visible within the stem cross-sections. The intrusive elongation of primary phloem fibres was completed within the several distal centimetres of the growing stem, before the onset of their secondary cell wall formation. The formation of secondary phloem fibres started long after the beginning of secondary xylem formation. Our data indicate that only a small portion of the fusiform cambial initials (<10 %) give rise directly or via their derivatives to secondary phloem fibres. The key determinant of final bundle structure, both for primary and secondary phloem fibres, is intrusive growth. Through bi-directional elongation, fibres join other fibres initiated individually in other stem levels, thus forming the bundles. Our results provide the specific developmental basis for further biochemical and molecular-genetic studies of phloem fibre development in hemp, but may be applied to many other species. PMID:26019229

  13. Intrusive growth of primary and secondary phloem fibres in hemp stem determines fibre-bundle formation and structure.

    PubMed

    Snegireva, Anastasia; Chernova, Tatyana; Ageeva, Marina; Lev-Yadun, Simcha; Gorshkova, Tatyana

    2015-01-01

    Plant fibres-cells with important mechanical functions and a widely used raw material-are usually identified in microscopic sections only after reaching a significant length or after developing a thickened cell wall. We characterized the early developmental stages of hemp (Cannabis sativa) stem phloem fibres, both primary (originating from the procambium) and secondary (originating in the cambium), when they still had only a primary cell wall. We gave a major emphasis to the role of intrusive elongation, the specific type of plant cell growth by which fibres commonly attain large cell length. We could identify primary phloem fibres at a distance of only 1.2-1.5 mm from the shoot apical meristem when they grew symplastically with the surrounding tissues. Half a millimeter further downwards along the stem, fibres began their intrusive elongation, which led to a sharp increase in fibre numbers visible within the stem cross-sections. The intrusive elongation of primary phloem fibres was completed within the several distal centimetres of the growing stem, before the onset of their secondary cell wall formation. The formation of secondary phloem fibres started long after the beginning of secondary xylem formation. Our data indicate that only a small portion of the fusiform cambial initials (<10 %) give rise directly or via their derivatives to secondary phloem fibres. The key determinant of final bundle structure, both for primary and secondary phloem fibres, is intrusive growth. Through bi-directional elongation, fibres join other fibres initiated individually in other stem levels, thus forming the bundles. Our results provide the specific developmental basis for further biochemical and molecular-genetic studies of phloem fibre development in hemp, but may be applied to many other species. PMID:26019229

  14. Sequential sup 1 H NMR assignments and secondary structure of an IgG-binding domain from protein G

    SciTech Connect

    Lian, L.Y.; Yang, J.C.; Derrick, J.P.; Sutcliffe, M.J.; Roberts, G.C.K. ); Murphy, J.P.; Goward, C.R.; Atkinson, T. )

    1991-06-04

    Protein G is a member of a class of cell surface bacterial proteins from Streptococcus that bind IgG with high affinity. A fragment of molecular mass 6,988, which retains IgG-binding activity, has been generated by proteolytic digestion and analyzed by {sup 1}H NMR. Two-dimenstional DQF-COSY, TOCSY, and NOESY spectra have been employed to assign the {sup 1}H NMR spectrum of the peptide. Elements of regular secondary structure have been identified by using nuclear Overhauser enhancement, coupling constant, and amide proton exchange data. The secondary structure consists of a central {alpha}-helix (Ala28-Val44), flanked by two portions of {beta}-sheet (Val5-Val26 and Asp45-Lys62). This is a fundamentally different arrangement of secondary structure from that of protein A, which is made up of three consecutive {alpha}-helics in free solution. The authors conclude that the molecular mechanisms underlying the association of protein A and protein G with IgG are different.

  15. Nuclear Magnetic Resonance-Assisted Prediction of Secondary Structure for RNA: Incorporation of Direction-Dependent Chemical Shift Constraints.

    PubMed

    Chen, Jonathan L; Bellaousov, Stanislav; Tubbs, Jason D; Kennedy, Scott D; Lopez, Michael J; Mathews, David H; Turner, Douglas H

    2015-11-17

    Knowledge of RNA structure is necessary to determine structure-function relationships and to facilitate design of potential therapeutics. RNA secondary structure prediction can be improved by applying constraints from nuclear magnetic resonance (NMR) experiments to a dynamic programming algorithm. Imino proton walks from NOESY spectra reveal double-stranded regions. Chemical shifts of protons in GH1, UH3, and UH5 of GU pairs, UH3, UH5, and AH2 of AU pairs, and GH1 of GC pairs were analyzed to identify constraints for the 5' to 3' directionality of base pairs in helices. The 5' to 3' directionality constraints were incorporated into an NMR-assisted prediction of secondary structure (NAPSS-CS) program. When it was tested on 18 structures, including nine pseudoknots, the sensitivity and positive predictive value were improved relative to those of three unrestrained programs. The prediction accuracy for the pseudoknots improved the most. The program also facilitates assignment of chemical shifts to individual nucleotides, a necessary step for determining three-dimensional structure. PMID:26451676

  16. High-Resolution NMR Reveals Secondary Structure and Folding of Amino Acid Transporter from Outer Chloroplast Membrane

    PubMed Central

    Zook, James D.; Molugu, Trivikram R.; Jacobsen, Neil E.; Lin, Guangxin; Soll, Jürgen; Cherry, Brian R.; Brown, Michael F.; Fromme, Petra

    2013-01-01

    Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16), an amino acid transporter from the outer membrane of chloroplasts. Three-dimensional, high-resolution NMR experiments on the 13C, 15N, 2H-triply-labeled protein were used to assign protein backbone resonances and to obtain secondary structure information. The results yield over 95% assignment of N, HN, CO, Cα, and Cβ chemical shifts, which is essential for obtaining a high resolution structure from NMR data. Chemical shift analysis from the assignment data reveals experimental evidence for the first time on the location of the secondary structure elements on a per residue basis. In addition T1Z and T2 relaxation experiments were performed in order to better understand the protein dynamics. Arginine titration experiments yield an insight into the amino acid residues responsible for protein transporter function. The results provide the necessary basis for high-resolution structural determination of this important plant membrane protein. PMID:24205117

  17. Quantitative studies of mRNA recruitment to the eukaryotic ribosome.

    PubMed

    Fraser, Christopher S

    2015-07-01

    The process of peptide bond synthesis by ribosomes is conserved between species, but the initiation step differs greatly between the three kingdoms of life. This is illustrated by the evolution of roughly an order of magnitude more initiation factor mass found in humans compared with bacteria. Eukaryotic initiation of translation is comprised of a number of sub-steps: (i) recruitment of an mRNA and initiator methionyl-tRNA to the 40S ribosomal subunit; (ii) migration of the 40S subunit along the 5' UTR to locate the initiation codon; and (iii) recruitment of the 60S subunit to form the 80S initiation complex. Although the mechanism and regulation of initiation has been studied for decades, many aspects of the pathway remain unclear. In this review, I will focus discussion on what is known about the mechanism of mRNA selection and its recruitment to the 40S subunit. I will summarize how the 43S preinitiation complex (PIC) is formed and stabilized by interactions between its components. I will discuss what is known about the mechanism of mRNA selection by the eukaryotic initiation factor 4F (eIF4F) complex and how the selected mRNA is recruited to the 43S PIC. The regulation of this process by secondary structure located in the 5' UTR of an mRNA will also be discussed. Finally, I present a possible kinetic model with which to explain the process of mRNA selection and recruitment to the eukaryotic ribosome. PMID:25742741

  18. Stabilization of human interferon-α1 mRNA by its antisense RNA.

    PubMed

    Kimura, Tominori; Jiang, Shiwen; Nishizawa, Mikio; Yoshigai, Emi; Hashimoto, Iwao; Nishikawa, Masao; Okumura, Tadayoshi; Yamada, Hisao

    2013-04-01

    Antisense transcription is a widespread phenomenon in the mammalian genome and is believed to play a role in regulating gene expression. However, the exact functional significance of antisense transcription is largely unknown. Here, we show that natural antisense (AS) RNA is an important modulator of interferon-α1 (IFN-α1) mRNA levels. A ~4-kb, spliced IFN-α1 AS RNA targets a single-stranded region within a conserved secondary structure element of the IFN-α1 mRNA, an element which was previously reported to function as the nuclear export element. Following infection of human Namalwa lymphocytes with Sendai virus or infection of guinea pig 104C1 fetal fibroblasts with influenza virus A/PR/8/34, expression of IFN-α1 AS RNA becomes elevated. This elevated expression results in increased IFN-α1 mRNA stability because of the cytoplasmic (but not nuclear) interaction of the AS RNA with the mRNA at the single-stranded region. This results in increased IFN-α protein production. The silencing of IFN-α1 AS RNA by sense oligonucleotides or over-expression of antisense oligoribonucleotides, which were both designed from the target region, confirmed the critical role of the AS RNA in the post-transcriptional regulation of IFN-α1 mRNA levels. This AS RNA stabilization effect is caused by the prevention of the microRNA (miRNA)-induced destabilization of IFN-α1 mRNA due to masking of the miR-1270 binding site. This discovery not only reveals a regulatory pathway for controlling IFN-α1 gene expression during the host innate immune response against virus infection but also suggests a reason for the large number of overlapping complementary transcripts with previously unknown function. PMID:23224365

  19. Translational regulation of PGHS-1 mRNA: 5' untranslated region and first two exons conferring negative regulation.

    PubMed

    Bunimov, Natalia; Smith, Jennifer Erin; Gosselin, Dominique; Laneuville, Odette

    2007-02-01

    Prostaglandin endoperoxide H synthase-1 gene expression is described as inducible in a few contexts such as differentiation of megakaryoblastic MEG-01 cells into platelet-like structures. In the MEG-01 cells model of PGHS-1 gene induction, we previously reported a delay in protein synthesis and identified the translational step of gene expression as being regulated. In the current study, we mapped PGHS-1 mRNA sequences regulating translational efficiency and identified an RNA binding protein. The 5'UTR and first two exons of the PGHS-1 5' mRNA decreased the synthesis of Luciferase protein by approximately 80% without significant changes in mRNA levels when compared to controls. Both the PGHS-1 5'-UTR and the first two exons were required for activity. Sucrose density gradient fractionations of cytoplasmic extracts from MEG-01 cells infected with reporter constructs, either controls or containing PGHS-1 sequence, presented a similar profile of distribution of reporter transcripts between polysomal and non-polysomal fractions. RNA/protein interaction studies revealed nucleolin binding to the 135 nt PGHS-1 sequence. Mutation of the two NRE elements located in the 5'end of PGHS-1 mRNA sequence partially reduced the negative activity of the 135 nt sequence. Stable secondary structures predicted at the 5' end of the transcript are potentially involved in translational regulation. We propose that the 5'end of PGHS-1 mRNA represses translation and could delay the synthesis of PGHS-1 enzyme. PMID:17320986

  20. The Structure of Scientific Arguments by Secondary Science Teachers: Comparison of Experimental and Historical Science Topics

    ERIC Educational Resources Information Center

    Gray, Ron; Kang, Nam-Hwa

    2014-01-01

    Just as scientific knowledge is constructed using distinct modes of inquiry (e.g. experimental or historical), arguments constructed during science instruction may vary depending on the mode of inquiry underlying the topic. The purpose of this study was to examine whether and how secondary science teachers construct scientific arguments during…

  1. The Maslach Burnout Inventory: Testing for Invariant Factorial Structure across Gender for Elementary and Secondary Teachers.

    ERIC Educational Resources Information Center

    Byrne, Barbara M.

    A study was conducted to: (1) test for the factorial validity of the 22-item Maslach Burnout Inventory (MBI) separately for 742 male and 801 female elementary school teachers and 659 male and 721 female secondary school teachers in Central Canada; (2) cross-validate findings across a second independent sample for each teacher group; and (3) test…

  2. The Structure of Scientific Arguments by Secondary Science Teachers: Comparison of Experimental and Historical Science Topics

    ERIC Educational Resources Information Center

    Gray, Ron; Kang, Nam-Hwa

    2014-01-01

    Just as scientific knowledge is constructed using distinct modes of inquiry (e.g. experimental or historical), arguments constructed during science instruction may vary depending on the mode of inquiry underlying the topic. The purpose of this study was to examine whether and how secondary science teachers construct scientific arguments during

  3. Determining the Secondary Structure of Membrane Proteins and Peptides Via Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy.

    PubMed

    Liu, Lishan; Mayo, Daniel J; Sahu, Indra D; Zhou, Andy; Zhang, Rongfu; McCarrick, Robert M; Lorigan, Gary A

    2015-01-01

    Revealing detailed structural and dynamic information of membrane embedded or associated proteins is challenging due to their hydrophobic nature which makes NMR and X-ray crystallographic studies challenging or impossible. Electron paramagnetic resonance (EPR) has emerged as a powerful technique to provide essential structural and dynamic information for membrane proteins with no size limitations in membrane systems which mimic their natural lipid bilayer environment. Therefore, tremendous efforts have been devoted toward the development and application of EPR spectroscopic techniques to study the structure of biological systems such as membrane proteins and peptides. This chapter introduces a novel approach established and developed in the Lorigan lab to investigate membrane protein and peptide local secondary structures utilizing the pulsed EPR technique electron spin echo envelope modulation (ESEEM) spectroscopy. Detailed sample preparation strategies in model membrane protein systems and the experimental setup are described. Also, the ability of this approach to identify local secondary structure of membrane proteins and peptides with unprecedented efficiency is demonstrated in model systems. Finally, applications and further developments of this ESEEM approach for probing larger size membrane proteins produced by overexpression systems are discussed. PMID:26477255

  4. Simulation of unsteady state performance of a secondary air system by the 1D-3D-Structure coupled method

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Li, Peng; Li, Yulong

    2016-02-01

    This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard components that have typical geometric characteristics. Their flow and heat transfer were described by empirical correlations based on experimental data or CFD calculations. A 3D code was used to model the non-standard components that cannot be described by typical geometric languages, while a finite element analysis was carried out to compute the structural deformation and heat conduction at certain important positions. These codes were coupled through their interfaces. Thus, the changes in heat transfer and structure and their interactions caused by exterior disturbances can be reflected. The results of the coupling method in an unsteady state showed an apparent deviation from the existing data, while the results in the steady state were highly consistent with the existing data. The difference in the results in the unsteady state was caused primarily by structural deformation that cannot be predicted by the 1D method. Thus, in order to obtain the unsteady state performance of a secondary air system more accurately and efficiently, the 1D-3D-Structure coupled method should be used.

  5. Nuclear Magnetic Resonance-Assisted Prediction of Secondary Structure for RNA: Incorporation of Direction-Dependent Chemical Shift Constraints

    PubMed Central

    2015-01-01

    Knowledge of RNA structure is necessary to determine structure–function relationships and to facilitate design of potential therapeutics. RNA secondary structure prediction can be improved by applying constraints from nuclear magnetic resonance (NMR) experiments to a dynamic programming algorithm. Imino proton walks from NOESY spectra reveal double-stranded regions. Chemical shifts of protons in GH1, UH3, and UH5 of GU pairs, UH3, UH5, and AH2 of AU pairs, and GH1 of GC pairs were analyzed to identify constraints for the 5′ to 3′ directionality of base pairs in helices. The 5′ to 3′ directionality constraints were incorporated into an NMR-assisted prediction of secondary structure (NAPSS-CS) program. When it was tested on 18 structures, including nine pseudoknots, the sensitivity and positive predictive value were improved relative to those of three unrestrained programs. The prediction accuracy for the pseudoknots improved the most. The program also facilitates assignment of chemical shifts to individual nucleotides, a necessary step for determining three-dimensional structure. PMID:26451676

  6. Determining the Secondary Structure of Membrane Proteins and Peptides Via Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy

    PubMed Central

    Liu, Lishan; Mayo, Daniel J.; Sahu, Indra D.; Zhou, Andy; Zhang, Rongfu; McCarrick, Robert M.; Lorigan, Gary A.

    2016-01-01

    Revealing detailed structural and dynamic information of membrane embedded or associated proteins is challenging due to their hydrophobic nature which makes NMR and X-ray crystallographic studies challenging or impossible. Electron paramagnetic resonance (EPR) has emerged as a powerful technique to provide essential structural and dynamic information for membrane proteins with no size limitations in membrane systems which mimic their natural lipid bilayer environment. Therefore, tremendous efforts have been devoted toward the development and application of EPR spectroscopic techniques to study the structure of biological systems such as membrane proteins and peptides. This chapter introduces a novel approach established and developed in the Lorigan lab to investigate membrane protein and peptide local secondary structures utilizing the pulsed EPR technique electron spin echo envelope modulation (ESEEM) spectroscopy. Detailed sample preparation strategies in model membrane protein systems and the experimental setup are described. Also, the ability of this approach to identify local secondary structure of membrane proteins and peptides with unprecedented efficiency is demonstrated in model systems. Finally, applications and further developments of this ESEEM approach for probing larger size membrane proteins produced by over-expression systems are discussed. PMID:26477255

  7. Evidence of Pervasive Biologically Functional Secondary Structures within the Genomes of Eukaryotic Single-Stranded DNA Viruses

    PubMed Central

    Muhire, Brejnev Muhizi; Golden, Michael; Murrell, Ben; Lefeuvre, Pierre; Lett, Jean-Michel; Gray, Alistair; Poon, Art Y. F.; Ngandu, Nobubelo Kwanele; Semegni, Yves; Tanov, Emil Pavlov; Monjane, Adérito Luis; Harkins, Gordon William; Varsani, Arvind; Shepherd, Dionne Natalie

    2014-01-01

    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here. PMID:24284329

  8. Transcriptional Elongation and mRNA Export Are Coregulated Processes

    PubMed Central

    Molina-Navarro, Maria Micaela; Martinez-Jimenez, Celia Pilar; Rodriguez-Navarro, Susana

    2011-01-01

    Chromatin structure complexity requires the interaction and coordinated work of a multiplicity of factors at different transcriptional regulation stages. Transcription control comprises a set of processes that ensures proper balance in the gene expression under different conditions, such as signals, metabolic states, or development. We could frame those steps from epigenetic marks to mRNA stability to support the holistic view of a fine-tune balance of final mRNA levels through mRNA transcription, export, stability, translation, and degradation. Transport of mRNA from the nucleus to the cytoplasm is a key process in regulated gene expression. Transcriptional elongation and mRNA export are coregulated steps that determine the mature mRNA levels in the cytoplasm. In this paper, recent insights into the coordination of these processes in eukaryotes will be summarised. PMID:22567364

  9. Secondary Plant Products Causing Photosensitization in Grazing Herbivores: Their Structure, Activity and Regulation

    PubMed Central

    Quinn, Jane C.; Kessell, Allan; Weston, Leslie A.

    2014-01-01

    Photosensitivity in animals is defined as a severe dermatitis that results from a heightened reactivity of skin cells and associated dermal tissues upon their exposure to sunlight, following ingestion or contact with UV reactive secondary plant products. Photosensitivity occurs in animal cells as a reaction that is mediated by a light absorbing molecule, specifically in this case a plant-produced metabolite that is heterocyclic or polyphenolic. In sensitive animals, this reaction is most severe in non-pigmented skin which has the least protection from UV or visible light exposure. Photosensitization in a biological system such as the epidermis is an oxidative or other chemical change in a molecule in response to light-induced excitation of endogenous or exogenously-delivered molecules within the tissue. Photo-oxidation can also occur in the plant itself, resulting in the generation of reactive oxygen species, free radical damage and eventual DNA degradation. Similar cellular changes occur in affected herbivores and are associated with an accumulation of photodynamic molecules in the affected dermal tissues or circulatory system of the herbivore. Recent advances in our ability to identify and detect secondary products at trace levels in the plant and surrounding environment, or in organisms that ingest plants, have provided additional evidence for the role of secondary metabolites in photosensitization of grazing herbivores. This review outlines the role of unique secondary products produced by higher plants in the animal photosensitization process, describes their chemistry and localization in the plant as well as impacts of the environment upon their production, discusses their direct and indirect effects on associated animal systems and presents several examples of well-characterized plant photosensitization in animal systems. PMID:24451131

  10. Secondary plant products causing photosensitization in grazing herbivores: their structure, activity and regulation.

    PubMed

    Quinn, Jane C; Kessell, Allan; Weston, Leslie A

    2014-01-01

    Photosensitivity in animals is defined as a severe dermatitis that results from a heightened reactivity of skin cells and associated dermal tissues upon their exposure to sunlight, following ingestion or contact with UV reactive secondary plant products. Photosensitivity occurs in animal cells as a reaction that is mediated by a light absorbing molecule, specifically in this case a plant-produced metabolite that is heterocyclic or polyphenolic. In sensitive animals, this reaction is most severe in non-pigmented skin which has the least protection from UV or visible light exposure. Photosensitization in a biological system such as the epidermis is an oxidative or other chemical change in a molecule in response to light-induced excitation of endogenous or exogenously-delivered molecules within the tissue. Photo-oxidation can also occur in the plant itself, resulting in the generation of reactive oxygen species, free radical damage and eventual DNA degradation. Similar cellular changes occur in affected herbivores and are associated with an accumulation of photodynamic molecules in the affected dermal tissues or circulatory system of the herbivore. Recent advances in our ability to identify and detect secondary products at trace levels in the plant and surrounding environment, or in organisms that ingest plants, have provided additional evidence for the role of secondary metabolites in photosensitization of grazing herbivores. This review outlines the role of unique secondary products produced by higher plants in the animal photosensitization process, describes their chemistry and localization in the plant as well as impacts of the environment upon their production, discusses their direct and indirect effects on associated animal systems and presents several examples of well-characterized plant photosensitization in animal systems. PMID:24451131

  11. Flow Structure and Secondary Flows in Fine-grained Bifurcate Channels

    NASA Astrophysics Data System (ADS)

    Best, J. L.; Parsons, D. R.; Bridge, J. S.; Edmonds, D. A.; Janesko, D.; Klein, F. E.; Slingerland, R. L.; Smith, N. D.

    2007-12-01

    Bifurcations form vital nodes within many fluvio\\-deltaic channels and their stability is critical in determining long- term channel behavior. Although there are an increasing number of laboratory and numerical models detailing flow and morphology within such bifurcations, relatively few field studies exist on the nature of flow within such sites by which to test and validate these models. In particular, the presence and nature of any secondary flow cells is seen as central in controlling fluid and sediment partitioning within the bifurcation, and contributing to long term stability or instability. Here we present results of a field study in the Cumberland Marshes, Saskatchewan, Canada, which sought to document the mean flow fields and patterns of secondary flow at two asymmetric bifurcations within the Mossy River delta. The study used a Teledyne RDI 1200 kHz acoustic Doppler profiler to record three\\-dimensional flow velocities along a series of flow\\-transverse cross\\-sections within these bifurcations. These surveys document the partitioning of main downstream flow through the bifurcation and reveal that bed topographic forcing and secondary flows can be important processes as the flows divide at the bifurcation. These results will be discussed in relation to the functioning of bifurcations and their sediment transport pathways.

  12. Analysis of the relation between the sequence and secondary and three-dimensional structures of immunoglobulin molecules.

    PubMed

    Gelfand, I M; Kister, A E

    1995-11-21

    Methods of structural and statistical analysis of the relation between the sequence and secondary and three-dimensional structures are developed. About 5000 secondary structures of immunoglobulin molecules from the Kabat data base were predicted. Two statistical analyses of amino acids reveal 47 universal positions in strands and loops. Eight universally conservative positions out of the 47 are singled out because they contain the same amino acid in > 90% of all chains. The remaining 39 positions, which we term universally alternative positions, were divided into five groups: hydrophobic, charged and polar, aromatic, hydrophilic, and Gly-Ala, corresponding to the residues that occupied them in almost all chains. The analysis of residue-residue contacts shows that the 47 universal positions can be distinguished by the number and types of contacts. The calculations of contact maps in the 29 antibody structures revealed that residues in 24 of these 47 positions have contacts only with residues of antiparallel beta-strands in the same beta-sheet and residues in the remaining 23 positions always have far-away contacts with residues from other beta-sheets as well. In addition, residues in 6 of the 47 universal positions are also involved in interactions with residues of the other variable or constant domains. PMID:7479903

  13. Factor Structure of the Test Anxiety Inventory for Children and Adolescents (TAICA) Scores across Gender among Students in Elementary and Secondary School Settings

    ERIC Educational Resources Information Center

    Lowe, Patricia A.; Lee, Steven W.

    2008-01-01

    The factor structure of the Test Anxiety Inventory for Children and Adolescents, a new multidimensional measure used to assess test anxiety in elementary and secondary school students, is examined across gender. The sample consisted of 696 elementary and secondary school students (391 girls and 305 boys). Coefficient of congruence and salient…

  14. Secondary structures comparison of aquaporin-1 and bacteriorhodopsin: a Fourier transform infrared spectroscopy study of two-dimensional membrane crystals.

    PubMed Central

    Cabiaux, V; Oberg, K A; Pancoska, P; Walz, T; Agre, P; Engel, A

    1997-01-01

    Aquaporins are integral membrane proteins found in diverse animal and plant tissues that mediate the permeability of plasma membranes to water molecules. Projection maps of two-dimensional crystals of aquaporin-1 (AQP1) reconstituted in lipid membranes suggested the presence of six to eight transmembrane helices in the protein. However, data from other sequence and spectroscopic analyses indicate that this protein may adopt a porin-like beta-barrel fold. In this paper, we use Fourier transform infrared spectroscopy to characterize the secondary structure of highly purified native and proteolyzed AQP1 reconstituted in membrane crystalline arrays and compare it to bacteriorhodopsin. For this analysis the fractional secondary structure contents have been determined by using several different algorithms. In addition, a neural network-based evaluation of the Fourier transform infrared spectra in terms of numbers of secondary structure segments and their interconnections [sij] has been performed. The following conclusions were reached: 1) AQP1 is a highly helical protein (42-48% alpha-helix) with little or no beta-sheet content. 2) The alpha-helices have a transmembrane orientation, but are more tilted (21 degrees or 27 degrees, depending on the considered refractive index) than the bacteriorhodopsin helices. 3) The helices in AQP1 undergo limited hydrogen/deuterium exchange and thus are not readily accessible to solvent. Our data support the AQP1 structural model derived from sequence prediction and epitope insertion experiments: AQP1 is a protein with at least six closely associated alpha-helices that span the lipid membrane. PMID:9199804

  15. Effects of Very Low Dose Fast Neutrons on Cell Membrane And Secondary Protein Structure in Rat Erythrocytes

    PubMed Central

    Nafee, Sherif S.; Shaheen, Salem A.; Al-Hadeethi, Y.

    2015-01-01

    The effects of ionizing radiation on biological cells have been reported in several literatures. Most of them were mainly concerned with doses greater than 0.01 Gy and were also concerned with gamma rays. On the other hand, the studies on very low dose fast neutrons (VLDFN) are rare. In this study, we have investigated the effects of VLDFN on cell membrane and protein secondary structure of rat erythrocytes. Twelve female Wistar rats were irradiated with neutrons of total dose 0.009 Gy (241Am-Be, 0.2 mGy/h) and twelve others were used as control. Blood samples were taken at the 0, 4th, 8th, and 12th days postirradiation. Fourier transform infrared (FTIR) spectra of rat erythrocytes were recorded. Second derivative and curve fitting were used to analysis FTIR spectra. Hierarchical cluster analysis (HCA) was used to classify group spectra. The second derivative and curve fitting of FTIR spectra revealed that the most significant alterations in the cell membrane and protein secondary structure upon neutron irradiation were detected after 4 days postirradiation. The increase in membrane polarity, phospholipids chain length, packing, and unsaturation were noticed from the corresponding measured FTIR area ratios. This may be due to the membrane lipid peroxidation. The observed band shift in the CH2 stretching bands toward the lower frequencies may be associated with the decrease in membrane fluidity. The curve fitting of the amide I revealed an increase in the percentage area of α-helix opposing a decrease in the β-structure protein secondary structure, which may be attributed to protein denaturation. The results provide detailed insights into the VLDFN effects on erythrocytes. VLDFN can cause an oxidative stress to the irradiated erythrocytes, which appears clearly after 4 days postirradiation. PMID:26436416

  16. Cleavages in the 5' region of the ompA and bla mRNA control stability: studies with an E. coli mutant altering mRNA stability and a novel endoribonuclease.

    PubMed Central

    Lundberg, U; von Gabain, A; Melefors, O

    1990-01-01

    We describe here the partial purification of a novel Escherichia coli endoribonuclease, RNase K. This protein catalyses site-specific cleavages in the 5' region of in vitro transcribed ompA and bla transcripts. Some of the resulting cleavage products are also found in cellular ompA mRNA, defining the in vivo activity of RNase K. The following evidence suggests that RNase K initiates mRNA degradation. First, RNase K cleavages are suppressed in the ams mutant, which has a generally prolonged mRNA half-life. Secondly, RNase K cleavage products seem to have very short half-lives in vivo, indicating that they are decay intermediates rather than processing products. Thirdly, the differences in in vivo half-life between the ompA and bla mRNAs are mimicked in in vitro decay reactions with purified RNase K. The relationship between RNase K and the ams locus might point to a more general role of RNase K in mRNA degradation. We discuss the influence of mRNA secondary structure on RNase K cleavage specificity. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 8. PMID:2202593

  17. The influence of the primary and secondary xanthan structure on the enzymatic hydrolysis of the xanthan backbone.

    PubMed

    Kool, Marijn M; Schols, Henk A; Delahaije, Roy J B M; Sworn, Graham; Wierenga, Peter A; Gruppen, Harry

    2013-09-12

    Differently modified xanthans, varying in degree of acetylation and/or pyruvylation were incubated with the experimental cellulase mixture C1-G1 from Myceliophthora thermophila C1. The ionic strength and/or temperature of the xanthan solutions were varied, to obtain different xanthan conformations. The exact conformation at the selected incubation conditions was determined by circular dichroism. The xanthan degradation was analyzed by size exclusion chromatography. It was shown that at a fixed xanthan conformation, the backbone degradation by cellulases is equal for each type of xanthan. Complete backbone degradation is only obtained at a fully disordered conformation, indicating that only the secondary xanthan structure influences the final degree of hydrolysis by cellulases. It is thereby shown that, independently on the degree of substitution, xanthan can be completely hydrolyzed to oligosaccharides. These oligosaccharides can be used to further investigate the primary structure of different xanthans and to correlate the molecular structure to the xanthan functionalities. PMID:23911459

  18. New recombinant cyclohexylamine oxidase variants for deracemization of secondary amines by orthogonally assaying designed mutants with structurally diverse substrates.

    PubMed

    Li, Guangyue; Yao, Peiyuan; Cong, Peiqian; Ren, Jie; Wang, Lei; Feng, Jinhui; Lau, Peter C K; Wu, Qiaqing; Zhu, Dunming

    2016-01-01

    To further expand the substrate range of the cyclohexylamine oxidase (CHAO) from Brevibacterium oxydans, a library of diverse mutants was created and assayed toward a group of structurally diverse substrates. Among them, mutants T198A and M226A exhibited enhanced activity relative to wt CHAO for most (S)-enantiomers of primary amines and some secondary amines. While mutants T198I, L199I, L199F, M226I and M226T were more active than wt CHAO toward the primary amines, mutants T198F, L199T, Y321A, Y321T, Y321I and Y321F enhanced the enzyme activity toward the secondary amines. In particular, mutant Y321I displayed an enhanced catalytic efficiency toward 1-(4-methoxybenzyl)-1, 2, 3, 4, 5, 6, 7, 8-octahydroisoquinoline (13). Whereas a double mutant, Y321I/M226T, acted on (S)-N-(prop-2-yn-1-yl)-2, 3-dihydro-1H-inden-1-amine [(S)-8]. Since (R)-8 is an irreversible inhibitor of monoamine oxidase and (S)-13 is an intermediate of dextromethorphan, a cough suppressant drug, deracemizations of 8 and 13 were carried out with crude enzyme extracts of the respective mutants. This resulted in 51% and 78% isolated yields of (R)-8 and (S)-13, respectively, each with high enantiomeric excess (93% and 99% ee). The results demonstrated the application potential of the evolved CHAO mutants in drug synthesis requiring chiral secondary amines. PMID:27138090

  19. New recombinant cyclohexylamine oxidase variants for deracemization of secondary amines by orthogonally assaying designed mutants with structurally diverse substrates

    PubMed Central

    Li, Guangyue; Yao, Peiyuan; Cong, Peiqian; Ren, Jie; Wang, Lei; Feng, Jinhui; Lau, Peter C.K.; Wu, Qiaqing; Zhu, Dunming

    2016-01-01

    To further expand the substrate range of the cyclohexylamine oxidase (CHAO) from Brevibacterium oxydans, a library of diverse mutants was created and assayed toward a group of structurally diverse substrates. Among them, mutants T198A and M226A exhibited enhanced activity relative to wt CHAO for most (S)-enantiomers of primary amines and some secondary amines. While mutants T198I, L199I, L199F, M226I and M226T were more active than wt CHAO toward the primary amines, mutants T198F, L199T, Y321A, Y321T, Y321I and Y321F enhanced the enzyme activity toward the secondary amines. In particular, mutant Y321I displayed an enhanced catalytic efficiency toward 1-(4-methoxybenzyl)-1, 2, 3, 4, 5, 6, 7, 8-octahydroisoquinoline (13). Whereas a double mutant, Y321I/M226T, acted on (S)-N-(prop-2-yn-1-yl)-2, 3-dihydro-1H-inden-1-amine [(S)-8]. Since (R)-8 is an irreversible inhibitor of monoamine oxidase and (S)-13 is an intermediate of dextromethorphan, a cough suppressant drug, deracemizations of 8 and 13 were carried out with crude enzyme extracts of the respective mutants. This resulted in 51% and 78% isolated yields of (R)-8 and (S)-13, respectively, each with high enantiomeric excess (93% and 99% ee). The results demonstrated the application potential of the evolved CHAO mutants in drug synthesis requiring chiral secondary amines. PMID:27138090

  20. Structure of the Interstellar Boundary Explorer Ribbon from Secondary Charge-exchange at the Solar-Interstellar Interface

    NASA Astrophysics Data System (ADS)

    Zirnstein, E. J.; Heerikhuisen, J.; McComas, D. J.

    2015-05-01

    In 2009, the Interstellar Boundary Explorer discovered a bright “ribbon” of energetic neutral atom (ENA) flux in the energy range ≤0.4-6 keV, encircling a large portion of the sky. This observation was not previously predicted by any models or theories, and since its discovery, it has been the subject of numerous studies of its origin and properties. One of the most studied mechanisms for its creation is the “secondary ENA” process. Here, solar wind ions, neutralized by charge-exchange with interstellar atoms, propagate outside the heliopause; experience two charge-exchange events in the dense outer heliosheath; and then propagate back inside the heliosphere, preferentially in the direction perpendicular to the local interstellar magnetic field. This process has been extensively analyzed using state-of-the-art modeling and simulation techniques, but it has been difficult to visualize. In this Letter, we show the three-dimensional structure of the source of the ribbon, providing a physical picture of the spatial and energy scales over which the secondary ENA process occurs. These results help us understand how the ribbon is generated and further supports a secondary ENA process as the leading ribbon source mechanism.

  1. Structure and mechanism of an inverting alkylsulfatase from Pseudomonas sp. DSM6611 specific for secondary alkyl sulfates.

    PubMed

    Knaus, Tanja; Schober, Markus; Kepplinger, Bernhard; Faccinelli, Martin; Pitzer, Julia; Faber, Kurt; Macheroux, Peter; Wagner, Ulrike

    2012-12-01

    A highly enantioselective and stereoselective secondary alkylsulfatase from Pseudomonas sp. DSM6611 (Pisa1) was heterologously expressed in Escherichia coli BL21, and purified to homogeneity for kinetic and structural studies. Structure determination of Pisa1 by X-ray crystallography showed that the protein belongs to the family of metallo-β-lactamases with a conserved binuclear Zn(2+) cluster in the active site. In contrast to a closely related alkylsulfatase from Pseudomonas aeruginosa (SdsA1), Pisa1 showed a preference for secondary rather than primary alkyl sulfates, and enantioselectively hydrolyzed the (R)-enantiomer of rac-2-octyl sulfate, yielding (S)-2-octanol with inversion of absolute configuration as a result of C-O bond cleavage. In order to elucidate the mechanism of inverting sulfate ester hydrolysis, for which no counterpart in chemical catalysis exists, we designed variants of Pisa1 guided by three-dimensional structure and docking experiments. In the course of these studies, we identified an invariant histidine (His317) near the sulfate-binding site as the general acid for crucial protonation of the sulfate leaving group. Additionally, amino acid replacements in the alkyl chain-binding pocket generated an enzyme variant that lost its stereoselectivity towards rac-2-octyl sulfate. These findings are discussed in light of the potential use of this enzyme family for applications in biocatalysis. PMID:23061549

  2. Population structure and secondary production of Siriella clausii, a dominant detritus feeding mysid in Posidonia oceanica meadows (W Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Barberá, Carmen; Sanchez-Jerez, Pablo; Sorbe, Jean Claude

    2013-10-01

    Temporal trends in abundance, demographic structure of the population and secondary production of Siriella clausii were studied at three different sectors of Posidonia oceanica meadows in the SE Iberian Peninsula, with different levels of habitat complexity. Secondary production was calculated through three methods widely employed in marine invertebrates: the Hynes method (based on demographic structure data) and models by Morin-Bourassa and Brey (based on biomass data). This filter/grazer and detritus feeder is the most abundant mysid in P. oceanica seagrass meadows in the Mediterranean. The population structure was similar in the three sectors, but the temporal pattern of abundance was different, at times even opposite. This pattern may be related to the aggregated spatial distribution, metapopulation dynamics or stochastic factors, but other potential factors could be involved, such as habitat features or predation rates. The values of production oscillated between 25 and 60 mgAFDW/m2/year, depending on the calculation method that was applied, and showed differences between sites and seagrass complexity. The present values are intermediate between those characterising highly productive systems, such as estuaries, and systems of limited productivity (bathyal habitats). Compared to other peracarids, mysid production is greater than that of isopods and less than amphipod production. This is possibly related to the life cycle and reproductive strategies. Detritus feeders such as S. clausii may play an important trophic role due their capacity to use as food the biomass associated to detritus, which constitutes larges reservoirs of carbon derived from seagrass primary production.

  3. ITS2 secondary structure improves phylogeny estimation in a radiation of blue butterflies of the subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus )

    PubMed Central

    2009-01-01

    Background Current molecular phylogenetic studies of Lepidoptera and most other arthropods are predominantly based on mitochondrial genes and a limited number of nuclear genes. The nuclear genes, however, generally do not provide sufficient information for young radiations. ITS2 , which has proven to be an excellent nuclear marker for similarly aged radiations in other organisms like fungi and plants, is only rarely used for phylogeny estimation in arthropods, although universal primers exist. This is partly due to difficulties in the alignment of ITS2 sequences in more distant taxa. The present study uses ITS2 secondary structure information to elucidate the phylogeny of a species-rich young radiation of arthropods, the butterfly subgenus Agrodiaetus. One aim is to evaluate the efficiency of ITS2 to resolve the phylogeny of the subgenus in comparison with COI , the most important mitochondrial marker in arthropods. Furthermore, we assess the use of compensatory base changes in ITS2 for the delimitation of species and discuss the prospects of ITS2 as a nuclear marker for barcoding studies. Results In the butterfly family Lycaenidae, ITS2 secondary structure enabled us to successfully align sequences of different subtribes in Polyommatini and produce a Profile Neighbour Joining tree of this tribe, the resolution of which is comparable to phylogenetic trees obtained with COI+COII . The subgenus Agrodiaetus comprises 6 major clades which are in agreement with COI analyses. A dispersal-vicariance analysis (DIVA) traced the origin of most Agrodiaetus clades to separate biogeographical areas in the region encompassing Eastern Anatolia, Transcaucasia and Iran. Conclusions With the inclusion of secondary structure information, ITS2 appears to be a suitable nuclear marker to infer the phylogeny of young radiations, as well as more distantly related genera within a diverse arthropod family. Its phylogenetic signal is comparable to the mitochondrial marker COI . Compensatory base changes are very rare within Polyommatini and cannot be used for species delimitation. The implementation of secondary structure information into character-based phylogenetic methods is suggested to further improve the versatility of this marker in phylogenetic studies. PMID:20035628

  4. Codon-by-Codon Modulation of Translational Speed and Accuracy Via mRNA Folding

    PubMed Central

    Yang, Jian-Rong; Chen, Xiaoshu; Zhang, Jianzhi

    2014-01-01

    Rapid cell growth demands fast protein translational elongation to alleviate ribosome shortage. However, speedy elongation undermines translational accuracy because of a mechanistic tradeoff. Here we provide genomic evidence in budding yeast and mouse embryonic stem cells that the efficiency–accuracy conflict is alleviated by slowing down the elongation at structurally or functionally important residues to ensure their translational accuracies while sacrificing the accuracy for speed at other residues. Our computational analysis in yeast with codon resolution suggests that mRNA secondary structures serve as elongation brakes to control the speed and hence the fidelity of protein translation. The position-specific effect of mRNA folding on translational accuracy is further demonstrated experimentally by swapping synonymous codons in a yeast transgene. Our findings explain why highly expressed genes tend to have strong mRNA folding, slow translational elongation, and conserved protein sequences. The exquisite codon-by-codon translational modulation uncovered here is a testament to the power of natural selection in mitigating efficiency–accuracy conflicts, which are prevalent in biology. PMID:25051069

  5. A regime map for secondary flow structures under physiological and multi-harmonic inflow through a bent tube model for curved arteries

    NASA Astrophysics Data System (ADS)

    Callahan, Shannon M.; Caldwell, Kirin; Bulusu, Kartik V.; Plesniak, Michael W.

    2012-11-01

    Secondary flow structures are known to affect wall shear stress, which is closely related to atherogenesis and drug particle deposition. A regime map provides a framework to examine phase-wise variations in secondary flow structures under physiological and multi-harmonic inflow waveforms under conditions of a fixed Womersley number (4.2) and curvature ratio (1/7). Experimental PIV data were acquired at the 90-degree location in a 180-degree curved test section of a bent tube model for curved arteries using a blood analog working fluid. Coherent structure detection was performed using a continuous wavelet transform algorithm (PIVlet 1.2) and further analysis was carried out by grouping similar secondary flow structures at a fixed secondary Reynolds numbers. Phase-locked, planar vorticity fields over one period of inflow waveform revealed size, structure and strength similarities in secondary flow morphologies during the acceleration and deceleration phases. The utility of the new regime map lies in the a priori identification of pulsatile secondary flow structures, eliminating the need for exhaustive experimentation or computing, requiring only flow rate measurements that are easily acquired under clinical conditions. Supported by the National Science Foundation, Grant No. CBET-0828903 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  6. SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity

    PubMed Central

    Magnan, Christophe N.; Baldi, Pierre

    2014-01-01

    Motivation: Accurately predicting protein secondary structure and relative solvent accessibility is important for the study of protein evolution, structure and function and as a component of protein 3D structure prediction pipelines. Most predictors use a combination of machine learning and profiles, and thus must be retrained and assessed periodically as the number of available protein sequences and structures continues to grow. Results: We present newly trained modular versions of the SSpro and ACCpro predictors of secondary structure and relative solvent accessibility together with their multi-class variants SSpro8 and ACCpro20. We introduce a sharp distinction between the use of sequence similarity alone, typically in the form of sequence profiles at the input level, and the additional use of sequence-based structural similarity, which uses similarity to sequences in the Protein Data Bank to infer annotations at the output level, and study their relative contributions to modern predictors. Using sequence similarity alone, SSpro’s accuracy is between 79 and 80% (79% for ACCpro) and no other predictor seems to exceed 82%. However, when sequence-based structural similarity is added, the accuracy of SSpro rises to 92.9% (90% for ACCpro). Thus, by combining both approaches, these problems appear now to be essentially solved, as an accuracy of 100% cannot be expected for several well-known reasons. These results point also to several open technical challenges, including (i) achieving on the order of ≥80% accuracy, without using any similarity with known proteins and (ii) achieving on the order of ≥85% accuracy, using sequence similarity alone. Availability and implementation: SSpro, SSpro8, ACCpro and ACCpro20 programs, data and web servers are available through the SCRATCH suite of protein structure predictors at http://scratch.proteomics.ics.uci.edu. Contact: pfbaldi@uci.edu PMID:24860169

  7. Crystal structure of vaccinia virus mRNA capping enzyme provides insights into the mechanism and evolution of the capping apparatus.

    PubMed

    Kyrieleis, Otto J P; Chang, Jonathan; de la Pea, Marcos; Shuman, Stewart; Cusack, Stephen

    2014-03-01

    Vaccinia virus capping enzyme is a heterodimer of D1 (844 aa) and D12 (287 aa) polypeptides that executes all three steps in m(7)GpppRNA synthesis. The D1 subunit comprises an N-terminal RNA triphosphatase (TPase)-guanylyltransferase (GTase) module and a C-terminal guanine-N7-methyltransferase (MTase) module. The D12 subunit binds and allosterically stimulates the MTase module. Crystal structures of the complete D1?D12 heterodimer disclose the TPase and GTase as members of the triphosphate tunnel metalloenzyme and covalent nucleotidyltransferase superfamilies, respectively, albeit with distinctive active site features. An extensive TPase-GTase interface clamps the GTase nucleotidyltransferase and OB-fold domains in a closed conformation around GTP. Mutagenesis confirms the importance of the TPase-GTase interface for GTase activity. The D1?D12 structure complements and rationalizes four decades of biochemical studies of this enzyme, which was the first capping enzyme to be purified and characterized, and provides new insights into the origins of the capping systems of other large DNA viruses. PMID:24607143

  8. Mineral Association Changes the Secondary Structure and Dynamics of Murine Amelogenin

    SciTech Connect

    Lu, Junxia; Xu, Yimin; Buchko, Garry W.; Shaw, Wendy J.

    2013-12-18

    Biomineralization proteins, present during the formation of hard tissues including bones, teeth, egg shells and nacre, result in the exquisite structures and properties of the resulting materials.[1] The structure of these proteins is often implicated in the control of the mineral properties, however very little structural data is available for the bulk of these proteins due to the difficulty in determining structures of immobilized proteins. Solid-state NMR is uniquely suited to the study of the structure of proteins bound to surfaces, demonstrated with the structural and orientation insights provided for the hydroxyapatite mineralization proteins statherin and the amelogenin, LRAP.[2] While these data are some of the only structural data available for this important class of protein, the experiments are often expensive and time consuming, due to the need to prepare and measure samples with isolated spin pairs, and are limited to a size of ~60 residues. In this work, we utilized a combination of 1D and recent 2D[3] solid-state NMR techniques along with a sparsely labelled sample to characterize the structure and dynamics of potential HAP binding residues of the 180 residue enamel protein, amelogenin. Amelogenin nanospheres and mineral bound amelogenin were investigated and a shift from unstructured to -sheet structure was observed, along with a decrease in protein flexibility. This work provides the first molecular level structure and dynamic information of full-length amelogenin on the surface of hydroxyapatite (HAP) and within nanospheres, and demonstrates the ability to evaluate structural characteristics of large biomineralization proteins bound to their physiologically relevant surface. The research was performed at the Pacific Northwest National Laboratory (PNNL), a facility operated by Battelle for the U.S. Department of Energy, with a portion of it performed at the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. DOE Biological and Environmental Research program.

  9. Determination of the primary and secondary structures of the dromedary (Camelus dromedarius) prolactin and comparison with prolactins from other species.

    PubMed

    Martinat, N; Huet, J C; Nespoulous, C; Combarnous, Y; Pernollet, J C

    1991-04-29

    A non-glycosylated form of camel prolactin (camPRL), isolated from one-humped camel (Camelus dromedarius) pituitaries, was totally sequenced. A glycosylated form, separated by affinity chromatography on ConA-Sepharose, was partially sequenced. The comparison of the N-terminal amino acid sequences of the glycosylated and non-glycosylated forms showed that the only putative site of N-glycosylation (Asn-31) was indeed glycosylated. The far ultraviolet (UV) circular dichroism (CD) spectra of the two isohormones were identical, suggesting that the carbohydrate moiety had no effect on the global camPRL secondary structure. The far UV circular dichroism spectra of the two isohormones were analyzed in order to determine their relative proportions of periodic secondary structure, 60% of which was found to be in alpha-helix, as in prolactins of other species. The dromedary sequence was compared to those of other species and interpreted in term of evolutionary process. As already found for gonadotropins, the closest species to the dromedary was found to be the pig. PMID:2029533

  10. Structure, growth and secondary production of two Tyrrhenian populations of the white gorgonian Eunicella singularis (Esper 1791)

    NASA Astrophysics Data System (ADS)

    Munari, Cristina; Serafin, Greta; Mistri, Michele

    2013-03-01

    Growth and secondary production of the shallow-water gorgonian Eunicella singularis were investigated at two infralittoral rocky stations located in the Tyrrhenian Sea (Cannitello and Cape Enfola), separated by a cline of 4 latitude. Colonies were aged by counting the number of annual growth rings at the base of the skeleton. Mean annual linear growth rates were calculated by fitting a von Bertalanffy growth equation for the species. Growth rates were 3.55 and 4.52 cm yr-1 respectively. The Enfola population exhibited an age structure reflecting a past pulse in recruitment. The Cannitello population exhibited a gamma-type distribution, dominated by younger age classes, thus suggesting a continuous recruitment rate over time. The two population differed also in colony density, which was higher at Enfola. Secondary production was estimated by means of the increment-summation method, and yielded 5.6 and 3.2 g ash-free dry weight (AFDW) m-2 yr-1 for Cannitello and Enfola populations, respectively. P/B ratio was higher at Cannitello, because of the age structure of the population. Strong currents probably cause population density-thinning mechanisms, favoring a more continuous recruitment.

  11. Population Structure and Spatial Pattern of Main Tree Species in Secondary Betula platyphylla Forest in Ziwuling Mountains, China

    PubMed Central

    Kang, Di; Guo, Yaoxin; Ren, Chengjie; Zhao, Fazhu; Feng, Yongzhong; Han, Xinhui; Yang, Gaihe

    2014-01-01

    This study investigated a typical secondary Betula platyphylla forest in the Ziwuling Mountains, Loess Plateau, China. In the sample plot, the DBH (diameter at breast height) class structure of B. platyphylla was bimodal. Individuals with small and large DBH values were abundant. The DBH structures of Quercus wutaishanica and Pinus tabulaeformis were close to that of the logistic model, thus suggesting the increasing population of these species. B. platyphylla and Populus davidiana showed random spatial distributions at almost all scales. However, Q. wutaishanica and P. tabulaeformis were significantly clumped at small scales. B. platyphylla had a negative spatial relation with Q. wutaishanica at small spatial scales. P. tabulaeformis and Q. wutaishanica showed negative spatial correlations at small scales, but they had positive correlations at large scales. These results suggest that P. tabulaeformis and Q. wutaishanica shared habitat preferences at these scales. In the future, the secondary B. platyphylla forest in the Ziwuling Mountains in the Loess Plateau will probably change into a multi-species mixed forest (Quercus–Pinus mixed forest). Assisted restoration strategies must be employed to improve the regeneration dynamics of the forest in the long term. PMID:25362993

  12. miR-Explore: Predicting MicroRNA Precursors by Class Grouping and Secondary Structure Positional Alignment.

    PubMed

    Sebastian, Bram; Aggrey, Samuel E

    2013-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expressions by targeting the mRNAs especially in the 3'UTR regions. The identification of miRNAs has been done by biological experiment and computational prediction. The computational prediction approach has been done using two major methods: comparative and n