Science.gov

Sample records for ms pulsed electrolysis

  1. Control of Analyte Electrolysis in Electrospray Ionization Mass Spectrometry Using Repetitively Pulsed High Voltage

    SciTech Connect

    Kertesz, Vilmos; Van Berkel, Gary J

    2011-01-01

    Analyte electrolysis using a repetitively pulsed high voltage ion source was investigated and compared to that using a regular, continuously operating direct current high voltage ion source in electrospray ionization mass spectrometry. The extent of analyte electrolysis was explored as a function of the length and frequency of the high voltage pulse using the model compound reserpine in positive ion mode. Using +5 kV as the maximum high voltage amplitude, reserpine was oxidized to its 2, 4, 6 and 8-electron oxidation products when direct current high voltage was employed. In contrast, when using a pulsed high voltage, oxidation of reserpine was eliminated by employing the appropriate high voltage pulse length and frequency. This effect was caused by inefficient mass transport of the analyte to the electrode surface during the duration of the high voltage pulse and the subsequent relaxation of the emitter electrode/ electrolyte interface during the time period when the high voltage was turned off. This mode of ESI source operation allows for analyte electrolysis to be quickly and simply switched on or off electronically via a change in voltage pulse variables.

  2. Pulsed voltage electrospray ion source and method for preventing analyte electrolysis

    SciTech Connect

    Kertesz, Vilmos; Van Berkel, Gary

    2011-12-27

    An electrospray ion source and method of operation includes the application of pulsed voltage to prevent electrolysis of analytes with a low electrochemical potential. The electrospray ion source can include an emitter, a counter electrode, and a power supply. The emitter can include a liquid conduit, a primary working electrode having a liquid contacting surface, and a spray tip, where the liquid conduit and the working electrode are in liquid communication. The counter electrode can be proximate to, but separated from, the spray tip. The power system can supply voltage to the working electrode in the form of a pulse wave, where the pulse wave oscillates between at least an energized voltage and a relaxation voltage. The relaxation duration of the relaxation voltage can range from 1 millisecond to 35 milliseconds. The pulse duration of the energized voltage can be less than 1 millisecond and the frequency of the pulse wave can range from 30 to 800 Hz.

  3. Express Electrolysis.

    ERIC Educational Resources Information Center

    Smithenry, Dennis; Gassman, Christopher; Goodridge, Brandon; Petersen, Tom

    1998-01-01

    Explains the process of student and teacher collaboration on a project to develop a faster electrolysis mechanism. Provides a good example of the problem-based approach to science instruction and curriculum. (DDR)

  4. Pulsed Fiber Lasers from ns to ms range and their applications

    NASA Astrophysics Data System (ADS)

    Westphäling, Tim

    Fiber lasers are widely used in industry for various applications. For marking applications the most common types are pulsed fiber lasers with low average power (10-20 W), pulse lengths of 100 ns and pulse energy in 0,5-1 mJ range. However for applications of high speed ablations and cleaning of surfaces higher average power and pulse energy is needed to realize shorter production cycle times. For this purpose pulsed fiber lasers with morehockey 17 h than 500 W average power and 50 mJ pulse energy have been developed to realize economic processes. In the long pulse range (μs to ms pulse length) QCW fiber lasers have been introduced that fulfil the demands of high pulse energy (up to 60 J) at lower average power (few 100 W range). These lasers fulfil the requirements that so far only lamp pumped Nd:YAG-lasers have been realized: high peak power and pulse energy with low average power in order to reduce investment costs for such devices. This presentation describes the latest development of such pulsed fiber lasers and their industrial applications and focuses in more details on drilling applications.

  5. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS

    PubMed Central

    Diwakar, Prasoon K.; Harilal, Sivanandan S.; LaHaye, Nicole L.; Hassanein, Ahmed; Kulkarni, Pramod

    2015-01-01

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes. PMID:26664120

  6. Water electrolysis

    NASA Technical Reports Server (NTRS)

    Schubert, Franz H. (Inventor); Grigger, David J. (Inventor)

    1992-01-01

    This disclosure is directed to an electrolysis cell forming hydrogen and oxygen at space terminals. The anode terminal is porous and able to form oxygen within the cell and permit escape of the gaseous oxygen through the anode and out through a flow line in the presence of backpressure. Hydrogen is liberated in the cell at the opposing solid metal cathode which is permeable to hydrogen but not oxygen so that the migratory hydrogen formed in the cell is able to escape from the cell. The cell is maintained at an elevated pressure so that the oxygen liberated by the cell is delivered at elevated pressure without pumping to raise the pressure of the oxygen.

  7. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  8. Combining Electrolysis and Electroporation for Tissue Ablation.

    PubMed

    Phillips, Mary; Rubinsky, Liel; Meir, Arie; Raju, Narayan; Rubinsky, Boris

    2015-08-01

    Electrolytic ablation is a method that operates by delivering low magnitude direct current to the target region over long periods of time, generating electrolytic products that destroy cells. This study was designed to explore the hypothesis stating that electrolytic ablation can be made more effective when the electrolysis-producing electric charges are delivered using electric pulses with field strength typical in reversible electroporation protocols. (For brevity we will refer to tissue ablation protocols that combine electroporation and electrolysis as E(2).) The mechanistic explanation of this hypothesis is related to the idea that products of electrolysis generated by E(2) protocols can gain access to the interior of the cell through the electroporation permeabilized cell membrane and therefore cause more effective cell death than from the exterior of an intact cell. The goal of this study is to provide a first-order examination of this hypothesis by comparing the charge dosage required to cause a comparable level of damage to a rat liver, in vivo, when using either conventional electrolysis or E(2) approaches. Our results show that E(2) protocols produce tissue damage that is consistent with electrolytic ablation. Furthermore, E(2) protocols cause damage comparable to that produced by conventional electrolytic protocols while delivering orders of magnitude less charge to the target tissue over much shorter periods of time. PMID:25416745

  9. Electrolysis cell stimulation

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.; Phillips, B. R.; Evangelista, J.

    1978-01-01

    Computer program represents attempt to understand and model characteristics of electrolysis cells. It allows user to determine how cell efficiency is affected by temperature, pressure, current density, electrolyte concentration, characteristic dimensions, membrane resistance, and electrolyte circulation rate. It also calculates ratio of bubble velocity to electrolyte velocity for anode and cathode chambers.

  10. Synergistic Combination of Electrolysis and Electroporation for Tissue Ablation

    PubMed Central

    Mikus, Paul; Klein, Nina; Rubinsky, Liel; Rubinsky, Boris

    2016-01-01

    Electrolysis, electrochemotherapy with reversible electroporation, nanosecond pulsed electric fields and irreversible electroporation are valuable non-thermal electricity based tissue ablation technologies. This paper reports results from the first large animal study of a new non-thermal tissue ablation technology that employs “Synergistic electrolysis and electroporation” (SEE). The goal of this pre-clinical study is to expand on earlier studies with small animals and use the pig liver to establish SEE treatment parameters of clinical utility. We examined two SEE methods. One of the methods employs multiple electrochemotherapy-type reversible electroporation magnitude pulses, designed in such a way that the charge delivered during the electroporation pulses generates the electrolytic products. The second SEE method combines the delivery of a small number of electrochemotherapy magnitude electroporation pulses with a low voltage electrolysis generating DC current in three different ways. We show that both methods can produce lesion with dimensions of clinical utility, without the need to inject drugs as in electrochemotherapy, faster than with conventional electrolysis and with lower electric fields than irreversible electroporation and nanosecond pulsed ablation. PMID:26866693

  11. Synergistic Combination of Electrolysis and Electroporation for Tissue Ablation.

    PubMed

    Stehling, Michael K; Guenther, Enric; Mikus, Paul; Klein, Nina; Rubinsky, Liel; Rubinsky, Boris

    2016-01-01

    Electrolysis, electrochemotherapy with reversible electroporation, nanosecond pulsed electric fields and irreversible electroporation are valuable non-thermal electricity based tissue ablation technologies. This paper reports results from the first large animal study of a new non-thermal tissue ablation technology that employs "Synergistic electrolysis and electroporation" (SEE). The goal of this pre-clinical study is to expand on earlier studies with small animals and use the pig liver to establish SEE treatment parameters of clinical utility. We examined two SEE methods. One of the methods employs multiple electrochemotherapy-type reversible electroporation magnitude pulses, designed in such a way that the charge delivered during the electroporation pulses generates the electrolytic products. The second SEE method combines the delivery of a small number of electrochemotherapy magnitude electroporation pulses with a low voltage electrolysis generating DC current in three different ways. We show that both methods can produce lesion with dimensions of clinical utility, without the need to inject drugs as in electrochemotherapy, faster than with conventional electrolysis and with lower electric fields than irreversible electroporation and nanosecond pulsed ablation. PMID:26866693

  12. Wind Electrolysis: Hydrogen Cost Optimization

    SciTech Connect

    Saur, G.; Ramsden, T.

    2011-05-01

    This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

  13. Hydrogen Generation From Electrolysis

    SciTech Connect

    Steven Cohen; Stephen Porter; Oscar Chow; David Henderson

    2009-03-06

    Small-scale (100-500 kg H2/day) electrolysis is an important step in increasing the use of hydrogen as fuel. Until there is a large population of hydrogen fueled vehicles, the smaller production systems will be the most cost-effective. Performing conceptual designs and analyses in this size range enables identification of issues and/or opportunities for improvement in approach on the path to 1500 kg H2/day and larger systems. The objectives of this program are to establish the possible pathways to cost effective larger Proton Exchange Membrane (PEM) water electrolysis systems and to identify areas where future research and development efforts have the opportunity for the greatest impact in terms of capital cost reduction and efficiency improvements. System design and analysis was conducted to determine the overall electrolysis system component architecture and develop a life cycle cost estimate. A design trade study identified subsystem components and configurations based on the trade-offs between system efficiency, cost and lifetime. Laboratory testing of components was conducted to optimize performance and decrease cost, and this data was used as input to modeling of system performance and cost. PEM electrolysis has historically been burdened by high capital costs and lower efficiency than required for large-scale hydrogen production. This was known going into the program and solutions to these issues were the focus of the work. The program provided insights to significant cost reduction and efficiency improvement opportunities for PEM electrolysis. The work performed revealed many improvement ideas that when utilized together can make significant progress towards the technical and cost targets of the DOE program. The cell stack capital cost requires reduction to approximately 25% of today’s technology. The pathway to achieve this is through part count reduction, use of thinner membranes, and catalyst loading reduction. Large-scale power supplies are available

  14. Magma Electrolysis: An update

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.

    1991-01-01

    Electrolytic extraction of O2 from molten lunar soil is conceptually simple and thus a candidate process for producing O2 on the Moon. Possible container and electrode materials are being tested for durability in corrosive high-temperature silicate melts and looking for complications that might increase energy requirements. Gaseous oxygen is being produced by electrolysis of 1-2 gram quantities of silicate melts in spinel (MgAl2O4) crucibles; in these melts, spinel is a stable phase. The concentration of FeO was kept low because FeO decrease O2 production efficiency. Platinum electrodes were placed about 0.5 cm apart in the melt. The spinel crucible was still intact after 40 minutes of electrolysis, when the experiment was halted for examination. The Pt anode was also intact; its Pt was maintained in a dynamci state in which the anode was continuously oxidized but quickly reduced again by the silicate melt, inhibiting migration of Pt away from the anode. In melts with low concentrations of Al2O3 + SiO2 (2 wt percent), the energy of resistance heating was only approximately equal to 10 to 20 percent of the theoretical amount required to produce O2. In melts substantially more concentrated in Al2O3 + SiO2, higher melt viscosity resulted in frothing that, in the worst case, caused high enough melt resistivities to raise the energy requirements to nearly 10 times theoretical. Both Fe and Si are produced at the cathode; in iron-rich melts, a- and c-iron and molten ferrosilicon were observed. Production was also observed at the cathode of a previously unrecognized gas; which is not yet identified. The solubility of metallic species was measured in silicate melts. They are too low to reduce significantly the efficiency of O2 production.

  15. Magnetic Resonance Imaging of Electrolysis.

    PubMed Central

    Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris

    2015-01-01

    This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research. PMID:25659942

  16. Magnetic Resonance Imaging of Electrolysis.

    NASA Astrophysics Data System (ADS)

    Meir, Arie; Hjouj, Mohammad; Rubinsky, Liel; Rubinsky, Boris

    2015-02-01

    This study explores the hypothesis that Magnetic Resonance Imaging (MRI) can image the process of electrolysis by detecting pH fronts. The study has relevance to real time control of cell ablation with electrolysis. To investigate the hypothesis we compare the following MR imaging sequences: T1 weighted, T2 weighted and Proton Density (PD), with optical images acquired using pH-sensitive dyes embedded in a physiological saline agar solution phantom treated with electrolysis and discrete measurements with a pH microprobe. We further demonstrate the biological relevance of our work using a bacterial E. Coli model, grown on the phantom. The results demonstrate the ability of MRI to image electrolysis produced pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E. Coli model grown on the phantom. The results are promising and invite further experimental research.

  17. Membrane Cells for Brine Electrolysis.

    ERIC Educational Resources Information Center

    Tingle, M.

    1982-01-01

    Membrane cells were developed as alternatives to mercury and diaphragm cells for the electrolysis of brine. Compares the three types of cells, focusing on the advantages and disadvantages of membrane cells. (JN)

  18. Pulse

    MedlinePlus

    Heart rate; Heart beat ... The pulse can be measured at areas where an artery passes close to the skin. These areas include the: ... side of the foot Wrist To measure the pulse at the wrist, place the index and middle ...

  19. Electrolysis Propulsion for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.; Arrington, Lynn A.; McElroy, James F.; Mitlitsky, Fred; Weisberg, Andrew H.; Carter, Preston H., II; Myers, Blake; Reed, Brian D.

    1997-01-01

    Electrolysis propulsion has been recognized over the last several decades as a viable option to meet many satellite and spacecraft propulsion requirements. This technology, however, was never used for in-space missions. In the same time frame, water based fuel cells have flown in a number of missions. These systems have many components similar to electrolysis propulsion systems. Recent advances in component technology include: lightweight tankage, water vapor feed electrolysis, fuel cell technology, and thrust chamber materials for propulsion. Taken together, these developments make propulsion and/or power using electrolysis/fuel cell technology very attractive as separate or integrated systems. A water electrolysis propulsion testbed was constructed and tested in a joint NASA/Hamilton Standard/Lawrence Livermore National Laboratories program to demonstrate these technology developments for propulsion. The results from these testbed experiments using a I-N thruster are presented. A concept to integrate a propulsion system and a fuel cell system into a unitized spacecraft propulsion and power system is outlined.

  20. Transient nanobubbles in short-time electrolysis

    NASA Astrophysics Data System (ADS)

    Svetovoy, Vitaly B.; Sanders, Remco G. P.; Elwenspoek, Miko C.

    2013-05-01

    Water electrolysis in a microsystem is observed and analyzed on a short-time scale of ∼10 μs. The very unusual properties of the process are stressed. An extremely high current density is observed because the process is not limited by the diffusion of electroactive species. The high current is accompanied by a high relative supersaturation, S > 1000, that results in homogeneous nucleation of bubbles. On the short-time scale only nanobubbles can be formed. These nanobubbles densely cover the electrodes and aggregate at a later time to microbubbles. The effect is significantly intensified with a small increase of temperature. Application of alternating polarity voltage pulses produces bubbles containing a mixture of hydrogen and oxygen. Spontaneous reaction between gases is observed for stoichiometric bubbles with sizes smaller than ∼150 nm. Such bubbles disintegrate violently affecting the surfaces of the electrodes.

  1. Transient nanobubbles in short-time electrolysis.

    PubMed

    Svetovoy, Vitaly B; Sanders, Remco G P; Elwenspoek, Miko C

    2013-05-01

    Water electrolysis in a microsystem is observed and analyzed on a short-time scale of ∼10 μs. The very unusual properties of the process are stressed. An extremely high current density is observed because the process is not limited by the diffusion of electroactive species. The high current is accompanied by a high relative supersaturation, S > 1000, that results in homogeneous nucleation of bubbles. On the short-time scale only nanobubbles can be formed. These nanobubbles densely cover the electrodes and aggregate at a later time to microbubbles. The effect is significantly intensified with a small increase of temperature. Application of alternating polarity voltage pulses produces bubbles containing a mixture of hydrogen and oxygen. Spontaneous reaction between gases is observed for stoichiometric bubbles with sizes smaller than ∼150 nm. Such bubbles disintegrate violently affecting the surfaces of the electrodes. PMID:23598648

  2. Electrolysis Performance Improvement and Validation Experiment

    NASA Technical Reports Server (NTRS)

    Schubert, Franz H.

    1992-01-01

    Viewgraphs on electrolysis performance improvement and validation experiment are presented. Topics covered include: water electrolysis: an ever increasing need/role for space missions; static feed electrolysis (SFE) technology: a concept developed for space applications; experiment objectives: why test in microgravity environment; and experiment description: approach, hardware description, test sequence and schedule.

  3. A study of electrode passivation during aqueous phenol electrolysis

    SciTech Connect

    Gattrell, M.; Kirk, D.W. )

    1993-04-01

    The process of electrode passivation during phenol electrolysis at a platinum electrode was studied in a sulfuric acid electrolyte (pH0-1). Passive film growth and the effects of concentration and potential were investigated using chronoamperometry, x-ray photoelectron spectroscopy, and gel permeation chromatography. The main products of the phenol oxidation are oligomers/polymers with weight-averaged molecular weights typically around 1000 g/mol after a 30 ms anodic pulse. X-ray photoelectron spectroscopy shows that the passivating polymer film is oxidized incompletely with many hydroxyl groups present. Increased potential increased the polymerization rate, but above 1.0 V vs. SCE film decomposition reactions also occurred. Increased phenol concentration increased the charge required to initiate passivation. Potential steps to the open-circuit potential or to mo9re cathodic values can interfere with the passivation process. Chronamperometric results show that the current decay at the passivated electrode is roughly inversely proportional to time and that the currents for a fixed amount of polymerization reaction follow a Tafel relationship. This t;type of decay is not due to a limitation caused b;y reactant diffusion through, nor IR drop across, a growing film but is more characteristic of electron tunneling through a growing insulating barrier layer. The model proposed for the observed behavior involves the formation of a region of high molecular weight, oxidized material at the electrode surface which blocks further reaction at the electrode. The rate-determining step at the passivated electrode is therefore electron tunneling through this unreactive material.

  4. Electrolysis Bubbles Make Waterflow Visible

    NASA Technical Reports Server (NTRS)

    Schultz, Donald F.

    1990-01-01

    Technique for visualization of three-dimensional flow uses tiny tracer bubbles of hydrogen and oxygen made by electrolysis of water. Strobe-light photography used to capture flow patterns, yielding permanent record that is measured to obtain velocities of particles. Used to measure simulated mixing turbulence in proposed gas-turbine combustor and also used in other water-table flow tests.

  5. Vacuum electrolysis of quartz

    DOEpatents

    King, James Claude

    1976-01-13

    The disclosure is directed to a method for processing quartz used in fabricating crystal resonators such that transient frequency change of resonators exposed to pulse irradiation is virtually eliminated. The method involves heating the crystal quartz in a hydrogen-free atmosphere while simultaneously applying an electric field in the Z-axis direction of the crystal. The electric field is maintained during the cool-down phase of the process.

  6. Pulse

    MedlinePlus

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the patient's heart is pumping. ... rate gives information about your fitness level and health.

  7. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis.

    PubMed

    Chen, Y X; Lavacchi, A; Miller, H A; Bevilacqua, M; Filippi, J; Innocenti, M; Marchionni, A; Oberhauser, W; Wang, L; Vizza, F

    2014-01-01

    The energetic convenience of electrolytic water splitting is limited by thermodynamics. Consequently, significant levels of hydrogen production can only be obtained with an electrical energy consumption exceeding 45 kWh kg(-1)H2. Electrochemical reforming allows the overcoming of such thermodynamic limitations by replacing oxygen evolution with the oxidation of biomass-derived alcohols. Here we show that the use of an original anode material consisting of palladium nanoparticles deposited on to a three-dimensional architecture of titania nanotubes allows electrical energy savings up to 26.5 kWh kg(-1)H2 as compared with proton electrolyte membrane water electrolysis. A net energy analysis shows that for bio-ethanol with energy return of the invested energy larger than 5.1 (for example, cellulose), the electrochemical reforming energy balance is advantageous over proton electrolyte membrane water electrolysis. PMID:24892771

  8. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis

    NASA Astrophysics Data System (ADS)

    Chen, Y. X.; Lavacchi, A.; Miller, H. A.; Bevilacqua, M.; Filippi, J.; Innocenti, M.; Marchionni, A.; Oberhauser, W.; Wang, L.; Vizza, F.

    2014-06-01

    The energetic convenience of electrolytic water splitting is limited by thermodynamics. Consequently, significant levels of hydrogen production can only be obtained with an electrical energy consumption exceeding 45 kWh kg-1H2. Electrochemical reforming allows the overcoming of such thermodynamic limitations by replacing oxygen evolution with the oxidation of biomass-derived alcohols. Here we show that the use of an original anode material consisting of palladium nanoparticles deposited on to a three-dimensional architecture of titania nanotubes allows electrical energy savings up to 26.5 kWh kg-1H2 as compared with proton electrolyte membrane water electrolysis. A net energy analysis shows that for bio-ethanol with energy return of the invested energy larger than 5.1 (for example, cellulose), the electrochemical reforming energy balance is advantageous over proton electrolyte membrane water electrolysis.

  9. Electrical Impedance Tomography of Electrolysis

    PubMed Central

    Meir, Arie; Rubinsky, Boris

    2015-01-01

    The primary goal of this study is to explore the hypothesis that changes in pH during electrolysis can be detected with Electrical Impedance Tomography (EIT). The study has relevance to real time control of minimally invasive surgery with electrolytic ablation. To investigate the hypothesis, we compare EIT reconstructed images to optical images acquired using pH-sensitive dyes embedded in a physiological saline agar gel phantom treated with electrolysis. We further demonstrate the biological relevance of our work using a bacterial E.Coli model, grown on the phantom. The results demonstrate the ability of EIT to image pH changes in a physiological saline phantom and show that these changes correlate with cell death in the E.coli model. The results are promising, and invite further experimental explorations. PMID:26039686

  10. Solid oxide electrolysis: Concluding remarks.

    PubMed

    Jun, Areum; Ju, Young-Wan; Kim, Guntae

    2015-01-01

    Renewable energy resources such as solar energy, wind energy, hydropower or geothermal energy have attracted significant attention in recent years. Renewable energy sources have to match supply with demand, therefore it is essential that energy storage devices (e.g., secondary batteries) are developed. However, secondary batteries are accompanied with critical problems such as high cost for the limited energy storage capacity and loss of charge over time. Energy storage in the form of chemical species, such as H2 or CO2, have no constraints on energy storage capacity and will also be essential. When plentiful renewable energy exists, for example, it could be used to convert H2O into hydrogen via water electrolysis. Also, renewable energy resources could be used to reduce CO2 into CO and recycle CO2 and H2O into sustainable hydrocarbon fuels in solid oxide electrolysis (SOE). PMID:26470860

  11. Electrolysis of simulated lunar melts

    NASA Technical Reports Server (NTRS)

    Lewis, R. H.; Lindstrom, D. J.; Haskin, L. A.

    1985-01-01

    Electrolysis of molten lunar soil or rock is examined as an attractive means of wresting useful raw materials from lunar rocks. It requires only hat to melt the soil or rock and electricity to electrolyze it, and both can be developed from solar power. The conductivities of the simple silicate diopside, Mg CaSi2O6 were measured. Iron oxide was added to determine the effect on conductivity. The iron brought about substantial electronic conduction. The conductivities of simulated lunar lavas were measured. The simulated basalt had an AC conductivity nearly a fctor of two higher than that of diopside, reflecting the basalt's slightly higher total concentration of the 2+ ions Ca, Mg, and Fe that are the dominant charge carriers. Electrolysis was shown to be about 30% efficient for the basalt composition.

  12. Desulfurization from Bauxite Water Slurry (BWS) Electrolysis

    NASA Astrophysics Data System (ADS)

    Gong, Xuzhong; Ge, Lan; Wang, Zhi; Zhuang, Siyuan; Wang, Yuhua; Ren, Lihui; Wang, Mingyong

    2016-02-01

    Feasibility of high-sulfur bauxite electrolysis desulfurization was examined using the electrochemical characterization, XRD, DTA, and FTIR. The cyclic voltammetry curves indicated that bauxite water slurry (BWS) electrolysis in NaOH system was controlled by diffusion. Additionally, the desulfurization effect of NaCl as the electrolyte was significantly better than that of NaOH as an electrolyte. As the stirring rate increased, the desulfurization ratio in NaCl system was not increased obviously, while the desulfurization ratio in NaOH system increased significantly, indicating further that electrolysis desulfurization in NaOH solution was controlled by diffusion. According to XRD, DTA, and FTIR analysis, the characteristic peaks of sulfur-containing phase in bauxite after electrolysis weakened or disappeared, indicating that the pyrite in bauxite was removed from electrolysis. Finally, the electrolytic desulfurization technology of bauxite was proposed based on the characteristics of BWS electrolysis.

  13. Electrolysis-induced bubbling in soft solids for elastic-wave generation

    NASA Astrophysics Data System (ADS)

    Montalescot, S.; Roger, B.; Zorgani, A.; Souchon, R.; Grasland-Mongrain, P.; Ben Haj Slama, R.; Bera, J.-C.; Catheline, S.

    2016-02-01

    Water electrolysis was discovered in 1800, with the famous experiment investigated here within soft tissue from an elastic-wave point of view. Indeed, we report that the rapid formation of hydrogen bubbles after transient (10 ms) electrolysis in water-based gels produces elastic waves. These bubbles are observed using an ultrafast optical camera. As the bubbles are trapped between the rigid electrode and the soft matter, they act as a source of elastic waves that are measured in the bulk using an ultrafast ultrasound scanner. The elastic-wave amplitude is shown to be in good agreement with a simple bubble model.

  14. Alkaline Electrolysis Final Technical Report

    SciTech Connect

    RIchard Bourgeois; Steven Sanborn; Eliot Assimakopoulos

    2006-07-13

    In this project, GE developed electrolyzer stack technologies to meet DOE’s goals for low cost electrolysis hydrogen. The main barrier to meeting the targets for electrolyzer cost was in stack assembly and construction. GE’s invention of a single piece or “monolithic” plastic electrolyzer stack reduces these costs considerably. In addition, GE developed low cost cell electrodes using a novel application of metal spray coating technology. Bench scale stack testing and cost modeling indicates that the DOE targets for stack capital cost and efficiency can be met by full-scale production of industrial electrolyzers incorporating GE’s stack technology innovations.

  15. Static feed water electrolysis module

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Schubert, F. H.; Jensen, F. C.

    1974-01-01

    An advanced static feed water electrolysis module (SFWEM) and associated instrumentation for generating breathable O2 was developed. The system also generates a H2 byproduct for use in an air revitalization system for O2 recovery from metabolic CO2. Special attention was given to: (1) eliminating water feed compartment degassing, (2) eliminating need for zero gravity condenser/separators, (3) increasing current density capability, and (4) providing a self contained module so that operation is independent of laboratory instrumentation and complicated startup/shutdown procedures.

  16. Combined Electrolysis Catalytic Exchange (CECE)

    SciTech Connect

    Ellis, R.E.; Mills, T.K.; Rogers, M.L.

    1980-09-30

    Starting from an effort to control airborne emissions, the Mound tritium containment program has evolved to include development of the Combined Electrolysis Catalytic Exchange (CECE) process. This process separates tritiated aqueous streams into detritiated water and an enriched hydrogen stream that is suitable for use by other tritium recovery processes. Experimentation has shown that the process performs as predicted by bench-scale measurements, and that available process components exhibit acceptable resistance to damage by radiation from tritium exposure. Planned future efforts are concentrated on finalizing automatic control of the process and on developing feed treatment methods for the protection of process components.

  17. Studies in electron phenomena in MOS structures: The pulsed C-V method. M.S. Thesis. Abstract Only

    NASA Technical Reports Server (NTRS)

    Kaplan, G.

    1983-01-01

    The pulse hysteresis capacitance voltage (C-V) provides a straight forward technique for measuring the change of various charges in MOS structures and a tool for investigating the kinetics of various electron phenomena is developed and described. The method can be used for measuring the energy distribution and kinetics of surface states with the resolution of about 1/5 x 10 to the -9 power cm eV. Some transients in an MOS structure, particularly, the thermal generation of minority charge carriers via surface states and the relaxation of minority charge carriers supplied from the inversion layer outside the MOS structure are theoretically investigated. Analytical expressions which clearly present the physics of those electron phenomena are derived.

  18. Electrolysis of a molten semiconductor.

    PubMed

    Yin, Huayi; Chung, Brice; Sadoway, Donald R

    2016-01-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides. PMID:27553525

  19. Electrolysis of a molten semiconductor

    PubMed Central

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-01-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides. PMID:27553525

  20. Attenuated Allergenic Activity of Ovomucoid After Electrolysis

    PubMed Central

    Kido, Jun

    2015-01-01

    Ovomucoid (OMC) is the most prominent allergen causing hen's egg allergy, containing disulfide (S-S) bonds that may be responsible for its allergic action. As S-S bonds may be reduced during electrolysis, this study was undertaken to evaluate modulation of the allergic action of OMC after electrolysis. Electrolysis was carried out for 1% OMC containing 1% sodium chloride for 30 minutes with a voltage difference of 90 V, 0.23 A (30 mA/cm2). Protein assays, amino acid measurement, and mass spectrometry in untreated OMC and OMC on both the anode and cathode sides after electrolysis were performed. Moreover, 21 patients with IgE-mediated hen's egg allergy were evaluated by using the skin prick test (SPT) for untreated OMC and OMC after electrolysis. The allergic action of OMC was reduced after electrolysis on both the anode and cathode sides when evaluated by the SPT. The modifications of OMC on electrolysis caused the loss of 2 distinct peptide fragments (57E-63K and 123H-128R) as seen on matrix-associated laser desorption/ionization time-of-flight mass spectrometry. The total free SH groups in OMC were increased on the cathode side. Although the regions of S-S broken bonds were not determined in this study, the change in S-S bonds in OMC on both the anode and cathode sides may reduce the allergenic activity. PMID:26333707

  1. Attenuated Allergenic Activity of Ovomucoid After Electrolysis.

    PubMed

    Kido, Jun; Matsumoto, Tomoaki

    2015-11-01

    Ovomucoid (OMC) is the most prominent allergen causing hen's egg allergy, containing disulfide (S-S) bonds that may be responsible for its allergic action. As S-S bonds may be reduced during electrolysis, this study was undertaken to evaluate modulation of the allergic action of OMC after electrolysis. Electrolysis was carried out for 1% OMC containing 1% sodium chloride for 30 minutes with a voltage difference of 90 V, 0.23 A (30 mA/cm²). Protein assays, amino acid measurement, and mass spectrometry in untreated OMC and OMC on both the anode and cathode sides after electrolysis were performed. Moreover, 21 patients with IgE-mediated hen's egg allergy were evaluated by using the skin prick test (SPT) for untreated OMC and OMC after electrolysis. The allergic action of OMC was reduced after electrolysis on both the anode and cathode sides when evaluated by the SPT. The modifications of OMC on electrolysis caused the loss of 2 distinct peptide fragments (57E-63K and 123H-128R) as seen on matrix-associated laser desorption/ionization time-of-flight mass spectrometry. The total free SH groups in OMC were increased on the cathode side. Although the regions of S-S broken bonds were not determined in this study, the change in S-S bonds in OMC on both the anode and cathode sides may reduce the allergenic activity. PMID:26333707

  2. Bactericidal effect of a Nd:YAG laser on Enterococcus faecalis at pulse durations of 15 and 25 ms in dentine depths of 500 and 1,000 μm.

    PubMed

    Franzen, René; Gutknecht, Norbert; Falken, Silke; Heussen, Nicole; Meister, Jörg

    2011-01-01

    The success of endodontic treatment depends on the effective elimination of microorganisms from the root canal, and lasers provide more effective disinfection than conventional treatment using rinsing solutions. The objective of this in vitro study was to determine the bactericidal effect of laser irradiation in dentine of various depths at a wavelength of 1,064 nm and pulse durations of 15 and 25 ms. A total of 90 dentine slices were cut from bovine incisors and divided into two groups (45 slices each) of thickness 500 and 1,000 μm. All were inoculated with a suspension of Enterococcus faecalis (5.07 × 10(9) bacteria/ml). Based on the clinically accepted dose (approximately 300 J/cm(2)), the following laser settings were chosen for this study: 1.75 W, 0.7 Hz for 4 s, three repetitions. The two groups were divided into two subgroups of 15 slices each to be irradiated with pulse durations of 15 and 25 ms. The remaining 15 slices per group were not irradiated to serve as a control. After irradiation, the colony-forming units (CFU) were counted and evaluated. To determine the bactericidal effect of irradiation with different pulse durations, the results in the different groups were compared statistically. For all irradiated subgroups a bactericidal effect was observed at pulse durations of 15 and 25 ms (p=0.0085 and p<0.0001). The corresponding average log kills were 0.29 (15 ms) and 0.52 (25 ms) for 500 μm and 0.15 and 0.3 for 1,000 μm, respectively. The results of this in vitro study showed that Nd:YAG laser irradiation with a pulse duration of 15 ms eliminated an average of 49% and 29% of E. faecalis at dentine depths of 500 μm and 1,000 μm, respectively, and irradiation with a pulse duration of 25 ms eliminated 70% (500 μm) and 50% (1,000 μm). However, these values are lower than those achieved with the established protocol using microsecond pulses. PMID:20809081

  3. ELECTROLYSIS OF THORIUM AND URANIUM

    DOEpatents

    Hansen, W.N.

    1960-09-01

    An electrolytic method is given for obtaining pure thorium, uranium, and thorium-uranium alloys. The electrolytic cell comprises a cathode composed of a metal selected from the class consisting of zinc, cadmium, tin, lead, antimony, and bismuth, an anode composed of at least one of the metals selected from the group consisting of thorium and uranium in an impure state, and an electrolyte composed of a fused salt containing at least one of the salts of the metals selected from the class consisting of thorium, uranium. zinc, cadmium, tin, lead, antimony, and bismuth. Electrolysis of the fused salt while the cathode is maintained in the molten condition deposits thorium, uranium, or thorium-uranium alloys in pure form in the molten cathode which thereafter may be separated from the molten cathode product by distillation.

  4. Direct spectral analysis of tea samples using 266 nm UV pulsed laser-induced breakdown spectroscopy and cross validation of LIBS results with ICP-MS.

    PubMed

    Gondal, M A; Habibullah, Y B; Baig, Umair; Oloore, L E

    2016-05-15

    Tea is one of the most common and popular beverages spanning vast array of cultures all over the world. The main nutritional benefits of drinking tea are its anti-oxidant properties, presumed protection against certain cancers, inhibition of inflammation and possible protective effects against diabetes. Laser induced breakdown spectrometer (LIBS) was assembled as a powerful tool for qualitative and quantitative analysis of various brands of tea samples using 266 nm pulsed UV laser. LIBS spectra for six brands of tea samples in the wavelength range of 200-900 nm was recorded and all elements present in our tea samples were identified. The major toxic elements detected in several brands of tea samples were bromine, chromium and minerals like iron, calcium, potassium and silicon. The spectral assignment was conducted prior to the determination of concentration of each element. For quantitative analysis, calibration curves were drawn for each element using standard samples prepared in known concentration in the tea matrix. The plasma parameters (electron temperature and electron density) were also determined prior to the tea samples spectroscopic analysis. The concentration of iron, chromium, potassium, bromine, copper, silicon and calcium detected in all tea samples was between 378-656, 96-124, 1421-6785, 99-1476, 17-36, 2-11 and 92-130 mg L(-1) respectively. The limits of detection estimated for Fe, Cr, K, Br, Cu, Si, Ca in tea samples were 22, 12, 14, 11, 6, 1 and 12 mg L(-1) respectively. To further confirm the accuracy of our LIBS results, we determined the concentration of each element present in tea samples by using standard analytical technique like ICP-MS. The concentrations detected with our LIBS system are in excellent agreement with ICP-MS results. The system assembled for spectral analysis in this work could be highly applicable for testing the quality and purity of food and also pharmaceuticals products. PMID:26992530

  5. Water electrolysis system refurbishment and testing

    NASA Technical Reports Server (NTRS)

    Greenough, B. M.

    1972-01-01

    The electrolytic oxygen generator for the back-up water electrolysis system in a 90-day manned test was refurbished, improved and subjected to a 182-day bench test. The performance of the system during the test demonstrated the soundness of the basic electrolysis concept, the high development status of the automatic controls which allowed completely hands-off operation, and the capability for orbital operation. Some design improvements are indicated.

  6. Electrolysis of trichloromethylated organic compounds under aerobic conditions catalyzed by the B12 model complex for ester and amide formation.

    PubMed

    Shimakoshi, Hisashi; Luo, Zhongli; Inaba, Takuya; Hisaeda, Yoshio

    2016-06-21

    The electrolysis of benzotrichloride at -0.9 V vs. Ag/AgCl in the presence of the B12 model complex, heptamethyl cobyrinate perchlorate, in ethanol under aerobic conditions using an undivided cell equipped with a platinum mesh cathode and a zinc plate anode produced ethylbenzoate in 56% yield with 92% selectivity. The corresponding esters were obtained when the electrolysis was carried out in various alcohols such as methanol, n-propanol, and i-propanol. Benzoyl chloride was detected by GC-MS during the electrolysis as an intermediate for the ester formation. When the electrolysis was carried out under anaerobic conditions, partially dechlorinated products, 1,1,2,2-tetrachloro-1,2-diphenylethane and 1,2-dichlorostilibenes (E and Z forms), were obtained instead of an ester. ESR spin-trapping experiments using 5,5,-dimethylpyrroline N-oxide (DMPO) revealed that the corresponding oxygen-centered radical and carbon-centered radical were steadily generated during the electrolyses under aerobic and anaerobic conditions, respectively. Applications of the aerobic electrolysis to various organic halides, such as substituted benzotrichlorides, are described. Furthermore, the formation of amides with moderate yields by the aerobic electrolysis of benzotrichloride catalyzed by the B12 model complex in the presence of amines in acetonitrile is reported. PMID:27071703

  7. Pediatric MS

    MedlinePlus

    ... of the oral medications in the pediatric population. Network of Pediatric MS Centers The National MS Society ... MS Study Group (2004) and established a nationwide network of six Pediatric MS Centers of Excellence (2006) ...

  8. Solid polymer electrolyte water electrolysis

    NASA Astrophysics Data System (ADS)

    Takenaka, H.; Torikai, E.; Kawami, Y.; Wakabayashi, N.

    Electrocatalyst performances and bonding to solid polymer electrolytes used for water electrolysis are investigated. Noble metal and metal alloy catalysts were plated to Nafion perfluorosulfonic acid polymer membranes without a binder by the use of a reducing agent solution held on the opposite side of the membrane from a metal salt solution. It was found that pretreatment of the membrane by hydrothermal treatment or gas plasma surface roughening improves metal adhesivity and thus reduces contact resistance between the membrane and the catalyst. Measurements of the constituents of cell voltage for platinum, rhodium and iridium anodes with platinum cathodes reveals that anodic overvoltage is a major component of voltage loss and depends on the type of electrocatalyst, being greatest for Pd and least for Ir. Ir and Ir-alloy electrodes, which were found to be the best catalysts for oxygen evolution, are found to have Tafel slopes of 0.04-0.06 V/decade. In a cell with a Pt cathode and Ir anode, cell voltage is observed to decrease with increasing temperature, reaching 1.56-1.59 V at a current density of 50 A/sq dm and 90 C, which corresponds to a thermal efficiency of 93-95%.

  9. 21 CFR 886.4250 - Ophthalmic electrolysis unit.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic electrolysis unit. 886.4250 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4250 Ophthalmic electrolysis unit. (a) Identification. An ophthalmic electrolysis unit is an AC-powered or battery-powered device intended to...

  10. Production of Oxygen from Lunar Regolith using Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Sibille, Laurent; Sadoway, Donald R.; Sirk, Aislinn; Tripathy, Prabhat; Melendez, Orlando; Standish, Evan; Dominquez, Jesus A.; Stefanescu, Doru M.; Curreri, Peter A.; Poizeau, Sophie

    2009-01-01

    This slide presentation reviews the possible use of molten oxide electrolysis to extract oxygen from the Lunar Regolith. The presentation asserts that molten regolith electrolysis has advanced to be a useful method for production of oxygen and metals in situ on the Moon. The work has demonstrated an 8 hour batch of electrolysis at 5 amps using Iridium inert anodes.

  11. 21 CFR 886.4250 - Ophthalmic electrolysis unit.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic electrolysis unit. 886.4250 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4250 Ophthalmic electrolysis unit. (a) Identification. An ophthalmic electrolysis unit is an AC-powered or battery-powered device intended to...

  12. 21 CFR 886.4250 - Ophthalmic electrolysis unit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic electrolysis unit. 886.4250 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4250 Ophthalmic electrolysis unit. (a) Identification. An ophthalmic electrolysis unit is an AC-powered or battery-powered device intended to...

  13. 21 CFR 886.4250 - Ophthalmic electrolysis unit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic electrolysis unit. 886.4250 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4250 Ophthalmic electrolysis unit. (a) Identification. An ophthalmic electrolysis unit is an AC-powered or battery-powered device intended to...

  14. 21 CFR 886.4250 - Ophthalmic electrolysis unit.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic electrolysis unit. 886.4250 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4250 Ophthalmic electrolysis unit. (a) Identification. An ophthalmic electrolysis unit is an AC-powered or battery-powered device intended to...

  15. Contact glow discharge electrolysis: its origin, plasma diagnostics and non-faradaic chemical effects

    NASA Astrophysics Data System (ADS)

    Gupta, Susanta K. Sen

    2015-12-01

    Contact glow discharge electrolysis (CGDE) also termed plasma electrolysis is a novel electrolysis where a stable sheath of light emitting plasma develops around an electrode immersed well inside a relatively high-conductivity liquid electrolyte during normal electrolysis (NE) at several hundred volts. The phenomenon may develop in dc-, pulsed dc-, ac- as well as RF-driven electrolyses. The chemical effects of CGDE are remarkably non-faradaic in respect to the nature of the products as well as their yields. The article traces comprehensively the progress made in studies of CGDE in aqueous and non-aqueous solutions since 1844 and reviews the developments in the understanding of its origin, light emission, plasma state and non-faradaic effects leading to the elucidation of detailed mechanism of the origin of CGDE on the basis of the onset of hydrodynamic instabilities in local vaporization of the solvent near the working electrode during NE, and that of highly non-faradaic effects of CGDE based on a model of two reaction zones located within the electrode plasma and at the plasma-liquid interface producing solvent derived radicals at high local concentrations. Keeping in view the recent surge of interest in varied applications of CGDE, the article is appended with highlights of these applications across synthetic chemistry, waste water treatment, electrosurgical devices, nanoparticle fabrications, surface engineering and micro-machining.

  16. Sulfur-containing catalysts for water electrolysis

    SciTech Connect

    Burshtein, R.Kh.; Kazarinov, V.E.; Pshenichnikov, A.G.; Barbasheva, I.E.; Gafarova, O.A.; Obrushnikova, I.V.

    1987-11-01

    A catalyst which is made by reaction of nickel and cobalt salts with sodium dithionite has been developed in order to obtain active electrodes for water electrolysis. In acidic solutions of pH between 2.7 and 4.0 the dithionite decomposes to sulfur, hydrogen sulfide, and sulfite. This reaction was used by us to activate electrodes in the presence of nickel and cobalt salts. The electrodes obtained were used in alkaline water electrolysis, both as cathodes and as anodes. The tests were performed in 6 N KOH at a temperature of 70/sup 0/C. The potentials were measured relative to a mercury-mercuric oxide reference electrode.

  17. Lunar production of oxygen by electrolysis

    NASA Technical Reports Server (NTRS)

    Keller, Rudolf

    1991-01-01

    Two approaches to prepare oxygen from lunar resources by direct electrolysis are discussed. Silicates can be melted or dissolved in a fused salt and electrolyzed with oxygen evolved at the anode. Direct melting and electrolysis is potentially a very simple process, but high temperatures of 1400-1500 C are required, which aggravates materials problems. Operating temperatures can be lowered to about 1000 C by employing a molten salt flux. In this case, however, losses of electrolyte components must be avoided. Experimentation on both approaches is progressing.

  18. Base-acid hybrid water electrolysis.

    PubMed

    Chen, Long; Dong, Xiaoli; Wang, Fei; Wang, Yonggang; Xia, Yongyao

    2016-02-21

    A base-acid hybrid electrolytic system with a low onset voltage of 0.78 V for water electrolysis was developed by using a ceramic Li-ion exchange membrane to separate the oxygen-evolving reaction (OER) in a basic electrolyte solution containing the Li-ion and hydrogen-evolving reaction (HER) in an acidic electrolyte solution. PMID:26804323

  19. A Study on the Preparation of Regular Multiple Micro-Electrolysis Filler and the Application in Pretreatment of Oil Refinery Wastewater

    PubMed Central

    Yang, Ruihong; ZHU, Jianzhong; Li, Yingliu; Zhang, Hui

    2016-01-01

    Through a variety of material screening experiments, Al was selected as the added metal and constituted a multiple micro-electrolysis system of Fe/C/Al. The metal proportion of alloy-structured filler was also analyzed with the best Fe/C/Al ratio of 3:1:1. The regular Fe/C/Al multiple micro-electrolysis fillers were prepared using a high-temperature anaerobic roasting method. The optimum conditions for oil refinery wastewater treated by Fe/C/Al multiple micro-electrolysis were determined to be an initial pH value of 3, reaction time of 80 min, and 0.05 mol/L Na2SO4 additive concentration. The reaction mechanism of the treatment of oil refinery wastewater by Fe/C/Al micro-electrolysis was investigated. The process of the treatment of oil refinery wastewater with multiple micro-electrolysis conforms to the third-order reaction kinetics. The gas chromatography–mass spectrometry (GC–MS) used to analyze the organic compounds of the oil refinery wastewater before and after treatment and the Ultraviolet–visible spectroscopy (UV–VIS) absorption spectrum analyzed the degradation process of organic compounds in oil refinery wastewater. The treatment effect of Fe/C/Al multiple micro-electrolysis was examined in the continuous experiment under the optimum conditions, which showed high organic compound removal and stable treatment efficiency. PMID:27136574

  20. A Study on the Preparation of Regular Multiple Micro-Electrolysis Filler and the Application in Pretreatment of Oil Refinery Wastewater.

    PubMed

    Yang, Ruihong; Zhu, Jianzhong; Li, Yingliu; Zhang, Hui

    2016-01-01

    Through a variety of material screening experiments, Al was selected as the added metal and constituted a multiple micro-electrolysis system of Fe/C/Al. The metal proportion of alloy-structured filler was also analyzed with the best Fe/C/Al ratio of 3:1:1. The regular Fe/C/Al multiple micro-electrolysis fillers were prepared using a high-temperature anaerobic roasting method. The optimum conditions for oil refinery wastewater treated by Fe/C/Al multiple micro-electrolysis were determined to be an initial pH value of 3, reaction time of 80 min, and 0.05 mol/L Na₂SO₄ additive concentration. The reaction mechanism of the treatment of oil refinery wastewater by Fe/C/Al micro-electrolysis was investigated. The process of the treatment of oil refinery wastewater with multiple micro-electrolysis conforms to the third-order reaction kinetics. The gas chromatography-mass spectrometry (GC-MS) used to analyze the organic compounds of the oil refinery wastewater before and after treatment and the Ultraviolet-visible spectroscopy (UV-VIS) absorption spectrum analyzed the degradation process of organic compounds in oil refinery wastewater. The treatment effect of Fe/C/Al multiple micro-electrolysis was examined in the continuous experiment under the optimum conditions, which showed high organic compound removal and stable treatment efficiency. PMID:27136574

  1. High temperature electrolysis for syngas production

    DOEpatents

    Stoots, Carl M.; O'Brien, James E.; Herring, James Stephen; Lessing, Paul A.; Hawkes, Grant L.; Hartvigsen, Joseph J.

    2011-05-31

    Syngas components hydrogen and carbon monoxide may be formed by the decomposition of carbon dioxide and water or steam by a solid-oxide electrolysis cell to form carbon monoxide and hydrogen, a portion of which may be reacted with carbon dioxide to form carbon monoxide. One or more of the components for the process, such as steam, energy, or electricity, may be provided using a nuclear power source.

  2. Technology Status: Fuel Cells and Electrolysis Cells

    NASA Technical Reports Server (NTRS)

    Mcbryar, H.

    1978-01-01

    The status of the baselined shuttle fuel cell as well as the acid membrane fuel cell and space-oriented water electrolysis technologies are presented. The more recent advances in the alkaline fuel cell technology area are the subject of a companion paper. A preliminary plan for the focusing of these technologies towards regenerative energy storage applications in the multi-hundred kilowatt range is also discussed.

  3. Economics of liquid hydrogen from water electrolysis

    NASA Technical Reports Server (NTRS)

    Lin, F. N.; Moore, W. I.; Walker, S. W.

    1985-01-01

    An economical model for preliminary analysis of LH2 cost from water electrolysis is presented. The model is based on data from vendors and open literature, and is suitable for computer analysis of different scenarios for 'directional' purposes. Cost data associated with a production rate of 10,886 kg/day are presented. With minimum modification, the model can also be used to predict LH2 cost from any electrolyzer once the electrolyzer's cost data are available.

  4. Electrolysis cell for the manufacture of persulfates

    NASA Technical Reports Server (NTRS)

    Cueto, J. M.

    1986-01-01

    A cell for the electrolytic generation of persulfates, characterized by the fact that a housing acts as cathode, is made of metal, and consists of a lower electrolytically active section and an upper electrolytically inactive section. It is designed so that there is produced the greatest possible current density suited to produce the desired electrolysis effect. This invention, compared to the devices used until now, exhibits considerable advantages whereby it is particularly suited for the production of potassium persulfate.

  5. Evaluation of the alkaline electrolysis of zinc

    SciTech Connect

    Meisenhelder, J.H.; Brown, A.P.; Loutfy, R.O.; Yao, N.P.

    1981-05-01

    The alkaline leach and electrolysis process for zinc production is compared to the conventional acid-sulfate process in terms of both energy saving and technical merit. In addition, the potential for industrial application of the alkaline process is discussed on the basis of present market conditions, possible future zinc market scenarios, and the probability of increased secondary zinc recovery. In primary zinc production, the energy-saving potential for the alkaline process was estimated to be greater than 10%, even when significantly larger electrolysis current densities than those required for the sulfate process are used. The principal technical advantages of the alkaline process are that it can handle low-grade, high-iron-content or oxidized ores (like most of those found in the US) in a more cost- and energy-efficient manner than can the sulfate process. Additionally, in the electrowinning operation, the alkaline process should be technically superior because a dendritic or sponge deposit is formed that is amenable to automated collection without interruption of the electrolysis. Also, use of the higher current densities would result in significant capital cost reductions. Alkaline-based electrolytic recovery processes were considered for the recycling of zinc from smelter baghouse dusts and from the potential source of nickel/zinc electric-vehicle batteries. In all comparisons, an alkaline process was shown to be technically superior and, particularly for the baghouse dusts, energetically and economically superior to alternatively proposed recovery methods based on sulfate electrolysis. It is concluded that the alkaline zinc method is an important alternative technology to the conventional acid zinc process. (WHK)

  6. Space Station propulsion electrolysis system - 'A technology challenge'

    SciTech Connect

    Le, M.

    1989-01-01

    The Space Station propulsion system will utilize a water electrolysis system to produce the required eight-to-one ratio of gaseous hydrogen and oxygen propellants. This paper summarizes the state of the art in water electrolysis technologies and the supporting development programs at the NASA Lyndon B. Johnson Space Center. Preliminary proof of concept test data from a fully integrated propulsion testbed are discussed. The technical challenges facing the development of the high-pressure water electrolysis system are discussed. 5 refs.

  7. Space Station propulsion electrolysis system - 'A technology challenge'

    NASA Technical Reports Server (NTRS)

    Le, Michael

    1989-01-01

    The Space Station propulsion system will utilize a water electrolysis system to produce the required eight-to-one ratio of gaseous hydrogen and oxygen propellants. This paper summarizes the state of the art in water electrolysis technologies and the supporting development programs at the NASA Lyndon B. Johnson Space Center. Preliminary proof of concept test data from a fully integrated propulsion testbed are discussed. The technical challenges facing the development of the high-pressure water electrolysis system are discussed.

  8. Simple Electrolyzer Model Development for High-Temperature Electrolysis System Analysis Using Solid Oxide Electrolysis Cell

    SciTech Connect

    JaeHwa Koh; DuckJoo Yoon; Chang H. Oh

    2010-07-01

    An electrolyzer model for the analysis of a hydrogen-production system using a solid oxide electrolysis cell (SOEC) has been developed, and the effects for principal parameters have been estimated by sensitivity studies based on the developed model. The main parameters considered are current density, area specific resistance, temperature, pressure, and molar fraction and flow rates in the inlet and outlet. Finally, a simple model for a high-temperature hydrogen-production system using the solid oxide electrolysis cell integrated with very high temperature reactors is estimated.

  9. Underwater microdischarge in arranged microbubbles produced by electrolysis in electrolyte solution using fabric-type electrode

    SciTech Connect

    Sakai, Osamu; Kimura, Masaru; Tachibana, Kunihide; Shirafuji, Tatsuru

    2008-12-08

    Pulsed microdischarge was generated in microbubbles produced by electrolysis in an electrolyte solution without external gas feed by using a fabric-type electrode. The electrode structure not only allowed low-voltage ignition of the atmospheric-pressure discharge in hydrogen or oxygen containing microbubbles but also worked effectively in producing and holding the bubbles on its surface. The generation of reactive species was verified by optical emissions from the produced microplasmas, and their transport into the solution was monitored by the change in hydrogen concentration.

  10. Water electrolysis and energy harvesting with zero-dimensional ion-sensitive field-effect transistors.

    PubMed

    Clément, N; Nishiguchi, K; Dufreche, J F; Guerin, D; Fujiwara, A; Vuillaume, D

    2013-08-14

    The relationship of the gas bubble size to the size distribution critically influences the effectiveness of electrochemical processes. Several optical and acoustical techniques have been used to characterize the size and emission frequency of bubbles. Here, we used zero-dimensional (0D) ion-sensitive field-effect transistors (ISFETs) buried under a microbath to detect the emission of individual bubbles electrically and to generate statistics on the bubble emission time. The bubble size was evaluated via a simple model of the electrolytic current. We suggest that energy lost during water electrolysis could be used to generate electric pulses at an optimal efficiency with an array of 0D ISFETs. PMID:23879333

  11. -Based Cermet Inert Anodes for Aluminum Electrolysis

    NASA Astrophysics Data System (ADS)

    Tian, ZhongLiang; Lai, YanQing; Li, ZhiYou; Chai, DengPeng; Li, Jie; Liu, YeXiang

    2014-11-01

    The new aluminum electrolysis technology based on inert electrodes has received much interest for several decades because of the environment and energy advantages. The key to realize this technique is the inert anode. This article presents China's recent developments of NiFe2O4-based cermet inert anodes, which include the optimization of material performance, the joint between the cermet inert anode and metallic bar, as well as the results of 20 kA pilot testing for a large-size inert anode group. The problems NiFe2O4-based cermet inert anodes face are also discussed.

  12. Materials for Hydrogen Generation via Water Electrolysis

    SciTech Connect

    Paul A. Lessing

    2007-05-01

    A review is presented of materials that could be utilized as electrolytes (and their associated electrodes and interconnect materials) in solid-state electrolysis cells to convert water (or steam) into hydrogen and oxygen. Electrolytes that function as oxygen ion conductors or proton conductors are considered for various operating temperatures from approximately 80 °C to 1000 °C. The fundamental electrochemical reactions are reviewed with some discussion of special sources of steam and DC electricity (advanced nuclear) to drive the reactions at the higher temperatures.

  13. Degradation in Solid Oxide Cells During High Temperature Electrolysis

    SciTech Connect

    Manohar Sohal

    2009-05-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells. One goal of that project is to address the technical and degradation issues associated with solid oxide electrolysis cells. This report covers a variety of these degradation issues, which were discussed during a workshop on “Degradation in Solid Oxide Electrolysis Cells and Strategies for its Mitigation,” held in Phoenix, AZ on October 27, 2008. Three major degradation issues related to solid oxide electrolysis cells discussed at the workshop are: • Delamination of O2-electrode and bond layer on steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple-phase boundary) • Loss of electrical/ionic conductivity of electrolyte. This list is not all inclusive, but the workshop summary can be useful in providing a direction for future research related to the degradation of solid oxide electrolysis cells.

  14. Solid-State Water Electrolysis with an Alkaline Membrane

    SciTech Connect

    Leng, YJ; Chen, G; Mendoza, AJ; Tighe, TB; Hickner, MA; Wang, CY

    2012-06-06

    We report high-performance, durable alkaline membrane water electrolysis in a solid-state cell. An anion exchange membrane (AEM) and catalyst layer ionomer for hydroxide ion conduction were used without the addition of liquid electrolyte. At 50 degrees C, an AEM electrolysis cell using iridium oxide as the anode catalyst and Pt black as the cathode catalyst exhibited a current density of 399 mA/cm(2) at 1.80 V. We found that the durability of the AEM-based electrolysis cell could be improved by incorporating a highly durable ionomer in the catalyst layer and optimizing the water feed configuration. We demonstrated an AEM-based electrolysis cell with a lifetime of > 535 h. These first-time results of water electrolysis in a solid-state membrane cell are promising for low-cost, scalable hydrogen production.

  15. Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells

    SciTech Connect

    James E. O'Brien

    2012-03-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technology will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.

  16. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    SciTech Connect

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  17. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell.

    PubMed

    Huang, Xiao; Qu, Yan; Cid, Clément A; Finke, Cody; Hoffmann, Michael R; Lim, Keahying; Jiang, Sunny C

    2016-04-01

    The paucity of proper sanitation facilities has contributed to the spread of waterborne diseases in many developing countries. The primary goal of this study was to demonstrate the feasibility of using a wastewater electrolysis cell (WEC) for toilet wastewater disinfection. The treated wastewater was designed to reuse for toilet flushing and agricultural irrigation. Laboratory-scale electrochemical (EC) disinfection experiments were performed to investigate the disinfection efficiency of the WEC with four seeded microorganisms (Escherichia coli, Enterococcus, recombinant adenovirus serotype 5, and bacteriophage MS2). In addition, the formation of organic disinfection byproducts (DBPs) trihalomethanes (THMs) and haloacetic acids (HAA5) at the end of the EC treatment was also investigated. The results showed that at an applied cell voltage of +4 V, the WEC achieved 5-log10 reductions of all four seeded microorganisms in real toilet wastewater within 60 min. In contrast, chemical chlorination (CC) disinfection using hypochlorite [NaClO] was only effective for the inactivation of bacteria. Due to the rapid formation of chloramines, less than 0.5-log10 reduction of MS2 was observed in toilet wastewater even at the highest [NaClO] dosage (36 mg/L, as Cl2) over a 1 h reaction. Experiments using laboratory model waters showed that free reactive chlorine generated in situ during EC disinfection process was the main disinfectant responsible for the inactivation of microorganisms. However, the production of hydroxyl radicals [OH], and other reactive oxygen species by the active bismuth-doped TiO2 anode were negligible under the same electrolytic conditions. The formation of THMs and HAA5 were found to increase with higher applied cell voltage. Based on the energy consumption estimates, the WEC system can be operated using solar energy stored in a DC battery as the sole power source. PMID:26854604

  18. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell

    PubMed Central

    Huang, Xiao; Qu, Yan; Cid, Clément A.; Finke, Cody; Hoffmann, Michael R.; Lim, Keahying; Jiang, Sunny C.

    2016-01-01

    The paucity of proper sanitation facilities has contributed to the spread of waterborne diseases in many developing countries. The primary goal of this study was to demonstrate the feasibility of using a wastewater electrolysis cell (WEC) for toilet wastewater disinfection. The treated wastewater was designed to reuse for toilet flushing and agricultural irrigation. Laboratory-scale electrochemical (EC) disinfection experiments were performed to investigate the disinfection efficiency of the WEC with four seeded microorganisms (Escherichia coli, Enterococcus, recombinant adenovirus serotype 5, and bacteriophage MS2). In addition, the formation of organic disinfection byproducts (DBPs) trihalomethanes (THMs) and haloacetic acids (HAA5) at the end of the EC treatment was also investigated. The results showed that at an applied cell voltage of +4 V, the WEC achieved 5-log10 reductions of all four seeded microorganisms in real toilet wastewater within 60 min. In contrast, chemical chlorination (CC) disinfection using hypochlorite [NaClO] was only effective for the inactivation of bacteria. Due to the rapid formation of chloramines, less than 0.5-log10 reduction of MS2 was observed in toilet wastewater even at the highest [NaClO] dosage (36 mg/L, as Cl2) over a 1 h reaction. Experiments using laboratory model waters showed that free reactive chlorine generated in situ during EC disinfection process was the main disinfectant responsible for the inactivation of microorganisms. However, the production of hydroxyl radicals [•OH], and other reactive oxygen species by the active bismuth-doped TiO2 anode were negligible under the same electrolytic conditions. The formation of THMs and HAA5 were found to increase with higher applied cell voltage. Based on the energy consumption estimates, the WEC system can be operated using solar energy stored in a DC battery as the sole power source. PMID:26854604

  19. Electrolysis-reducing electrodes for electrokinetic devices.

    PubMed

    Erlandsson, Per G; Robinson, Nathaniel D

    2011-03-01

    Direct current electrokinetic systems generally require Faradaic reactions to occur at a pair of electrodes to maintain an electric field in an electrolyte connecting them. The vast majority of such systems, e.g. electrophoretic separations (capillary electrophoresis) or electroosmotic pumps (EOPs), employ electrolysis of the solvent in these reactions. In many cases, the electrolytic products, such as H+ and OH⁻ in the case of water, can negatively influence the chemical or biological species being transported or separated, and gaseous products such as O₂ and H₂ can break the electrochemical circuit in microfluidic devices. This article presents an EOP that employs the oxidation/reduction of the conjugated polymer poly(3,4-ethylenedioxythiophene), rather than electrolysis of a solvent, to drive flow in a capillary. Devices made with poly(3,4-ethylenedioxythiophene) electrodes are compared with devices made with Pt electrodes in terms of flow and local pH change at the electrodes. Furthermore, we demonstrate that flow is driven for applied potentials under 2 V, and the electrodes are stable for potentials of at least 100 V. Electrochemically active electrodes like those presented here minimize the disadvantage of integrated EOP in, e.g. lab-on-a-chip applications, and may open new possibilities, especially for battery-powered disposable point-of-care devices. PMID:21425174

  20. HYFIRE: fusion-high temperature electrolysis system

    SciTech Connect

    Fillo, J A; Powell, J R; Steinberg, M; Benenati, R; Dang, V D; Horn, F; Isaacs, H; Lazareth, O; Makowitz, H; Usher, J

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400/sup 0/C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800/sup 0/C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H/sub 2/ and O/sub 2/, electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%.

  1. Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates

    NASA Technical Reports Server (NTRS)

    Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-01-01

    Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell-lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a-Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two "control plates" are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (gladwater) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.

  2. Static feed water electrolysis subsystem development

    NASA Technical Reports Server (NTRS)

    Schubert, Franz H. (Inventor); Grigger, David J. (Inventor)

    1991-01-01

    This disclosure is directed to an electrolysis cell forming hydrogen and oxygen at spaced terminals. The anode terminal is porous and able to form oxygen within the cell and permit escape of the gaseous oxygen through the anode and out through a flow line in the presence of backpressure. Hydrogen is liberated in the cell at the opposing solid metal cathode which is permeable to hydrogen but not oxygen so that the migratory hydrogen formed in the cell is able to escape from the cell. The cell is maintained at an elevated pressure so that oxygen liberated by the cell is delivered at elevated pressure without pumping to raise the pressure of the oxygen.

  3. Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings

    SciTech Connect

    2003-09-01

    This document summarizes the opportunities and challenges for low-cost renewable hydrogen production from wind and hydropower. The Workshop on Electrolysis Production of Hydrogen from Wind and Hydropower was held September 9-10, 2003.

  4. Technology advancement of the static feed water electrolysis process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  5. Materials Degradation Studies for High Temperature Steam Electrolysis Systems

    SciTech Connect

    Paul Demkowicz; Pavel Medvedev; Kevin DeWall; Paul Lessing

    2007-06-01

    Experiments are currently in progress to assess the high temperature degradation behavior of materials in solid oxide electrolysis systems. This research includes the investigation of various electrolysis cell components and balance of plant materials under both anodic and cathodic gas atmospheres at temperatures up to 850°C. Current results include corrosion data for a high temperature nickel alloy used for the air-side flow field in electrolysis cells and a commercial ferritic stainless steel used as the metallic interconnect. Three different corrosion inhibiting coatings were also tested on the steel material. The samples were tested at 850ºC for 500 h in both air and H2O/H2 atmospheres. The results of this research will be used to identify degradation mechanisms and demonstrate the suitability of candidate materials for long-term operation in electrolysis cells.

  6. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    SciTech Connect

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

    2006-04-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.

  7. MS Detectors

    SciTech Connect

    Koppenaal, David W.; Barinaga, Charles J.; Denton, M Bonner B.; Sperline, Roger P.; Hieftje, Gary M.; Schilling, G. D.; Andrade, Francisco J.; Barnes IV., James H.

    2005-11-01

    Good eyesight is often taken for granted, a situation that everyone appreciates once vision begins to fade with age. New eyeglasses or contact lenses are traditional ways to improve vision, but recent new technology, i.e. LASIK laser eye surgery, provides a new and exciting means for marked vision restoration and improvement. In mass spectrometry, detectors are the 'eyes' of the MS instrument. These 'eyes' have also been taken for granted. New detectors and new technologies are likewise needed to correct, improve, and extend ion detection and hence, our 'chemical vision'. The purpose of this report is to review and assess current MS detector technology and to provide a glimpse towards future detector technologies. It is hoped that the report will also serve to motivate interest, prompt ideas, and inspire new visions for ion detection research.

  8. Modeling Degradation in Solid Oxide Electrolysis Cells

    SciTech Connect

    Manohar S. Sohal; Anil V. Virkar; Sergey N. Rashkeev; Michael V. Glazoff

    2010-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic no equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, , within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, no equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  9. Design of a water electrolysis flight experiment

    NASA Technical Reports Server (NTRS)

    Lee, M. Gene; Grigger, David J.; Thompson, C. Dean; Cusick, Robert J.

    1993-01-01

    Supply of oxygen (O2) and hydrogen (H2) by electolyzing water in space will play an important role in meeting the National Aeronautics and Space Administration's (NASA's) needs and goals for future space missios. Both O2 and H2 are envisioned to be used in a variety of processes including crew life support, spacecraft propulsion, extravehicular activity, electrical power generation/storage as well as in scientific experiment and manufacturing processes. The Electrolysis Performance Improvement Concept Study (EPICS) flight experiment described herein is sponsored by NASA Headquarters as a part of the In-Space Technology Experiment Program (IN-STEP). The objective of the EPICS is to further contribute to the improvement of the SEF technology, specifially by demonstrating and validating the SFE electromechanical process in microgravity as well as investigating perrformance improvements projected possible in a microgravity environment. This paper defines the experiment objective and presents the results of the preliminary design of the EPICS. The experiment will include testing three subscale self-contained SFE units: one containing baseline components, and two units having variations in key component materials. Tests will be conducted at varying current and thermal condition.

  10. Adsorption and decomposition of organophosphorus compounds on nanoscale metal oxide particle. In situ GC-MS studies of pulsed microreactions over magnesium oxide. (Reannouncement with new availability information). Progress report, 31 December 1991-30 June 1992

    SciTech Connect

    Li, Y.X.; Koper, O.; Atteya, M.; Klabunde, K.J.

    1992-12-31

    Using an in situ reactor GC-MS system, the thermal decomposition of organophosphorus compound (as models of nerve agents) has been compared with their destructive adsorption on high surface area magnesium oxide. Dramatically lower temperatures are required when MgO is present. Volatile products evolved were formic acid, water, alcohols, and alkenes. At higher temperatures CO, CH4, and water predominated. Phosphorus residues remained completed immobilized. Addition of water enhanced the facility of MgO to destroy these compounds, and in fact, water pulses were found to partially regenerate a spent MgO bed. Using 18O labeling some aspects of the reaction mechanisms were clarified and in particular showed that oxygen scrambling occurred. Surface OH and MgO groups transferred oxygen in the formation of formic acid, and surface mobility and reactivity of adsorbed groups was very high. The substantial capacity of high surface area MgO for destruction and immobilization of such toxic substance makes it attractive for air purification schemes as well as solid reagents for destruction and immobilization of bulk quantities of hazardous phosphorus compounds or organohalides. Organophosphorus, ultrafine powder, destructive adsorption, magnesium oxide, immobilization, nanoscale powder.

  11. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides.

    PubMed

    Bi, Lei; Boulfrad, Samir; Traversa, Enrico

    2014-12-21

    Energy crisis and environmental problems caused by the conventional combustion of fossil fuels boost the development of renewable and sustainable energies. H2 is regarded as a clean fuel for many applications and it also serves as an energy carrier for many renewable energy sources, such as solar and wind power. Among all the technologies for H2 production, steam electrolysis by solid oxide electrolysis cells (SOECs) has attracted much attention due to its high efficiency and low environmental impact, provided that the needed electrical power is generated from renewable sources. However, the deployment of SOECs based on conventional oxygen-ion conductors is limited by several issues, such as high operating temperature, hydrogen purification from water, and electrode stability. To avoid these problems, proton-conducting oxides are proposed as electrolyte materials for SOECs. This review paper provides a broad overview of the research progresses made for proton-conducting SOECs, summarizing the past work and finding the problems for the development of proton-conducting SOECs, as well as pointing out potential development directions. PMID:25134016

  12. Gadolinia-Doped Ceria Cathodes for Electrolysis of CO2

    NASA Technical Reports Server (NTRS)

    Adler, Stuart B.

    2009-01-01

    Gadolinia-doped ceria, or GDC, (Gd(0.4)Ce(0.6)O(2-delta), where the value of delta in this material varies, depending on the temperature and oxygen concentration in the atmosphere in which it is being used) has shown promise as a cathode material for high-temperature electrolysis of carbon dioxide in solid oxide electrolysis cells. The polarization resistance of a GDC electrode is significantly less than that of an otherwise equivalent electrode made of any of several other materials that are now in use or under consideration for use as cathodes for reduction of carbon dioxide. In addition, GDC shows no sign of deterioration under typical temperature and gas-mixture operating conditions of a high-temperature electrolyzer. Electrolysis of CO2 is of interest to NASA as a way of generating O2 from the CO2 in the Martian atmosphere. On Earth, a combination of electrolysis of CO2 and electrolysis of H2O might prove useful as a means of generating synthesis gas (syngas) from the exhaust gas of a coal- or natural-gas-fired power plant, thereby reducing the emission of CO2 into the atmosphere. The syngas a mixture of CO and H2 could be used as a raw material in the manufacture, via the Fisher-Tropsch process, of synthetic fuels, lubrication oils, and other hydrocarbon prod

  13. High Temperature Electrolysis using Electrode-Supported Cells

    SciTech Connect

    J. E. O'Brien; C. M. Stoots

    2010-07-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. The cells currently under study were developed primarily for the fuel cell mode of operation. Results presented in this paper were obtained from single cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (~10 µm thick), nickel-YSZ steam/hydrogen electrodes (~1400 µm thick), and manganite (LSM) air-side electrodes (~90 µm thick). The purpose of the present study was to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysis mode under various operating conditions. Initial performance was documented through a series of DC potential sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-duration testing, first in the fuel cell mode, then in the electrolysis mode over more than 500 hours of operation. Results indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of the single-cell test apparatus developed specifically for these experiments.

  14. Degradation of m-dihydroxybenzene by contact glow discharge electrolysis in aqueous

    NASA Astrophysics Data System (ADS)

    Gai, Ke; Qi, Huili; Ma, Dongping; Wang, Chunlin

    2013-03-01

    This paper reported the degradation of m-dihydroxybenzene aqueous solution with contact Glow Discharge Electrolysis. The rate of degradation in different conditions such as pH, H2O2, Fe2+, methanol, and other affecting factors were studied. The results showed that there is faster removal rate when the solution is in a relatively higher acidity; H2O2 can improve the efficiency rate. Fe2+ can promote reaction, but radical elimination agent of methanol will decrease the rate of the reaction. On the basis of analyzing the ultraviolet (UV) spectra of the solution and the intermediate products from High Performance Liquid Chromatography-Mass Spectrum (HPLC-MS), reaction pathway was proposed.

  15. A Small-Scale and Low-Cost Apparatus for the Electrolysis of Water

    ERIC Educational Resources Information Center

    Eggeen, Per-Odd; Kvittingen, Lise

    2004-01-01

    The construction of two simple, inexpensive apparatuses that clearly show the electrolysis of water are described. Traditionally the electrolysis of water is conducted in a Hofmann apparatus which is expensive and fragile.

  16. Heat and Products Induced by Plasma Electrolysis

    SciTech Connect

    Tadahiko Mizuno; Tadayoshi Ohmori; Tadashi Akimoto; Akito Takahashi

    2000-11-12

    Plasma is formed on an electrode surface when a metal cathode is polarized in high-voltage electrolysis in a liquid electrolyte. When a liquid electrolyte is polarized at high voltage (70 to 500 V), it gives rise to an electric discharge and a plasma state. We measured the output heat and input electric power in real time by a method that combined open cell isoperibolic calorimetry and flow calorimetry. Takahashi et al. hypothesize a nuclear reaction induced by photon activation on the cathode element. We have attempted to explain the experimental results by a mechanism that produces no radioactive materials or weak radioactive emission. We applied the Takahashi theory developed for Pd and Au electrodes to the case of a W electrode. We have first reported that the distribution for their reaction product showed clearly one or two peaks that consisted of the mass number around 52 for the case of Pd and 64 and 120 for Au. This paper mainly pertains to the metal electrode. With a tungsten electrode, one peak in the anomalous elements is for the major elements from 40 to 65, and the other is from 100 to 120. The total mass of elements generated during excess heat evolution was on the order of 1 mg. Based on this mass, according to conventional laws of fission and fusion, 'commensurate' heat would have been on the order of 10{sup 6} to 10{sup 7} J. The actual excess heat was typically estimated at 10{sup 5}-several orders of magnitude less than the expected value. It is still difficult to calculate the actual weight loss of the reactive material before and after the reaction. However, we can say that the total energy generated was much less than the value calculated from the produced weight. We conclude that the photofission mechanism explains the amount of excess heat and the distribution of the element generation during the electrochemical treatment.

  17. Effect of catalyst on electrolysis of ammonia effluents

    NASA Astrophysics Data System (ADS)

    Bonnin, Egilda P.; Biddinger, Elizabeth J.; Botte, Gerardine G.

    The electrolysis of ammonia (NH 3) was studied as a remediation process for the removal of ammonia from wastewater, with the advantage of producing hydrogen while returning clean water to the environment. An electro-catalyst able to support the electro-oxidation of ammonia at low concentrations was designed. Two substrates were tested, Raney nickel and carbon fiber. Carbon fiber was found to be a better substrate for the electrolysis of ammonia at low concentrations. The performance of noble metals such as Rh, Pt and Ir, electroplated on the carbon fiber substrate was also evaluated. Rh-Pt-Ir and Pt-Ir on carbon fiber substrate were found to be the most promising electrodes for the electrolysis of ammonia at low concentrations. The maximum ammonia conversion was 91.49 ± 0.01% for a typical concentration of ammonia found in sewage water and the Faradaic efficiency was 91.81 ± 0.13% on the selected anode.

  18. Development status of a preprototype water electrolysis subsystem

    NASA Technical Reports Server (NTRS)

    Martin, R. B.; Erickson, A. C.

    1981-01-01

    A preprototype water electrolysis subsystem was designed and fabricated for NASA's advanced regenerative life support program. A solid polymer is used for the cell electrolyte. The electrolysis module has 12 cells that can generate 5.5 kg/day of oxygen for the metabolic requirements of three crewmembers, for cabin leakage, and for the oxygen and hydrogen required for carbon dioxide collection and reduction processes. The subsystem can be operated at a pressure between 276 and 2760 kN/sq m and in a continuous constant-current, cyclic, or standby mode. A microprocessor is used to aid in operating the subsystem. Sensors and controls provide fault detection and automatic shutdown. The results of development, demonstration, and parametric testing are presented. Modifications to enhance operation in an integrated and manned test are described. Prospective improvements for the electrolysis subsystem are discussed.

  19. Application of electrolysis for detoxification of an antineoplastic in urine.

    PubMed

    Kobayashi, Toyohide; Hirose, Jun; Sano, Kouichi; Kato, Ryuji; Ijiri, Yoshio; Takiuchi, Hiroya; Tanaka, Kazuhiko; Goto, Emi; Tamai, Hiroshi; Nakano, Takashi

    2012-04-01

    Antineoplastics in excreta from patients have been considered to be one of the origins of cytotoxic, carcinogenic, teratogenic, and mutagenic contaminants in surface water. Recent studies have demonstrated that antineoplastics in clinical wastewater can be detoxified by electrolysis. In this study, to develop a method for the detoxification of antineoplastics in excreta, methotrexate solution in the presence of human urine was electrolyzed and evaluated. We found that urine inhibits detoxification by electrolysis; however, this inhibition decreased by diluting urine. In urine samples, the concentrations of active chlorine generated by anodic oxidation from 0.9% NaCl solution for inactivation of antineoplastics increased in dilution-dependent and time-dependent manner. These results indicate that electrolysis with platinum-based iridium oxide composite electrode is a possible method for the detoxification of a certain antineoplastic in urine. PMID:22154144

  20. Electrolysis of lunar soil to produce oxygen and metals

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.; Keller, R.

    1991-01-01

    The discussion of melt electrolysis consists of three sections. The implications of the chemistry and physics of fluxed and raw melts on melt electrolysis are discussed first. This includes discussion of the factor that influence melt resistivity, melt viscosity, oxygen production efficiency, and the theoretical energy required to produce oxygen. Second, the implications of phase equilibria and solubilities in silicate melts on the selection of materials for container and electrodes are discussed. The implications of proposed container and electrode materials on melt composition and how this effects expected resistivities, viscosities, as outlined in the first section are discussed. Finally, a general discussion of the basic features of both the fluxed and unfluxed melt electrolysis is given, including their advantages and disadvantages and how they compare with alternative processes.

  1. Water Electrolysis for In-Situ Resource Utilization (ISRU)

    NASA Technical Reports Server (NTRS)

    Lee, Kristopher A.

    2016-01-01

    Sending humans to Mars for any significant amount of time will require capabilities and technologies that enable Earth independence. To move towards this independence, the resources found on Mars must be utilized to produce the items needed to sustain humans away from Earth. To accomplish this task, NASA is studying In Situ Resource Utilization (ISRU) systems and techniques to make use of the atmospheric carbon dioxide and the water found on Mars. Among other things, these substances can be harvested and processed to make oxygen and methane. Oxygen is essential, not only for sustaining the lives of the crew on Mars, but also as the oxidizer for an oxygen-methane propulsion system that could be utilized on a Mars ascent vehicle. Given the presence of water on Mars, the electrolysis of water is a common technique to produce the desired oxygen. Towards this goal, NASA designed and developed a Proton Exchange Membrane (PEM) water electrolysis system, which was originally slated to produce oxygen for propulsion and fuel cell use in the Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project. As part of the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) project, this same electrolysis system, originally targeted at enabling in situ propulsion and power, operated in a life-support scenario. During HESTIA testing at Johnson Space Center, the electrolysis system supplied oxygen to a chamber simulating a habitat housing four crewmembers. Inside the chamber, oxygen was removed from the atmosphere to simulate consumption by the crew, and the electrolysis system's oxygen was added to replenish it. The electrolysis system operated nominally throughout the duration of the HESTIA test campaign, and the oxygen levels in the life support chamber were maintained at the desired levels.

  2. Experimental study of the electrolysis of silicate melts

    NASA Technical Reports Server (NTRS)

    Keller, Rudolf

    1992-01-01

    Melting and electrolyzing lunar silicates yields oxygen gas and potentially can be practiced in situ to produce oxygen. With the present experiments conducted with simulant oxides at 1425-1480 C, it was ascertained that oxygen can be obtained anodically at feasible rates and current efficiencies. An electrolysis cell was operated with platinum anodes in a sealed vessel, and the production of gas was monitored. In these electrolysis experiments, stability of anodes remained a problem, and iron and silicon did not reduce readily into the liquid silver cathode.

  3. Carbon dioxide and water vapor high temperature electrolysis

    NASA Technical Reports Server (NTRS)

    Isenberg, Arnold O.; Verostko, Charles E.

    1989-01-01

    The design, fabrication, breadboard testing, and the data base obtained for solid oxide electrolysis systems that have applications for planetary manned missions and habitats are reviewed. The breadboard tested contains sixteen tubular cells in a closely packed bundle for the electrolysis of carbon dioxide and water vapor. The discussion covers energy requirements, volume, weight, and operational characteristics related to the measurement of the reactant and product gas compositions, temperature distribution along the electrolyzer tubular cells and through the bundle, and thermal energy losses. The reliability of individual cell performance in the bundle configuration is assessed.

  4. Simulation of isoelectro focusing processes. [stationary electrolysis of charged species

    NASA Technical Reports Server (NTRS)

    Palusinski, O. A.

    1980-01-01

    This paper presents the computer implementation of a model for the stationary electrolysis of two or more charged species. This has specific application to the technique of isoelectric focussing, in which the stationary electrolysis of ampholytes is used to generate a pH gradient useful for the separation of proteins, peptides and other biomolecules. The fundamental equations describing the process are given. These equations are transformed to a form suitable for digital computer implementation. Some results of computer simulation are described and compared to data obtained in the laboratory.

  5. Installation of Ohio's First Electrolysis-Based Hydrogen Fueling Station

    NASA Technical Reports Server (NTRS)

    Scheidegger, Brianne T.; Lively, Michael L.

    2012-01-01

    This paper describes progress made towards the installation of a hydrogen fueling station in Northeast Ohio. In collaboration with several entities in the Northeast Ohio area, the NASA Glenn Research Center is installing a hydrogen fueling station that uses electrolysis to generate hydrogen on-site. The installation of this station is scheduled for the spring of 2012 at the Greater Cleveland Regional Transit Authority s Hayden bus garage in East Cleveland. This will be the first electrolysis-based hydrogen fueling station in Ohio.

  6. Hydrogen generation by electrolysis of aqueous organic solutions

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Valdez, Thomas I. (Inventor)

    2002-01-01

    A device for electrolysis of an aqueous solution of an organic fuel. The electrolyte is a solid-state polymer membrane with anode and cathode catalysts on both surfaces for electro-oxidization and electro-reduction. A low-cost and portable hydrogen generator can be made based on the device with organic fuels such as methanol.

  7. Hydrogen generation by electrolysis of aqueous organic solutions

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Valdez, Thomas I. (Inventor)

    2006-01-01

    A device for electrolysis of an aqueous solution of an organic fuel. The electrolyte is a solid-state polymer membrane with anode and cathode catalysts on both surfaces for electro-oxidization and electro-reduction. A low-cost and portable hydrogen generator can be made based on the device with organic fuels such as methanol.

  8. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1982-04-01

    Metallic aluminum may be produced by the electrolysis of Al/sub 2/S/sub 3/ at 700 to 800/sup 0/C in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  9. Three-Man Solid Electrolyte Carbon Dioxide Electrolysis Breadboard

    NASA Technical Reports Server (NTRS)

    Isenberg, Arnold O.

    1989-01-01

    The development of the Three-Man (2.2 lb CO2/man-day) Solid Electrolyte CO2 Electrolysis Breadboard consisted of a Phase 1 and 2 effort. The Phase 1 effort constituted fabrication of three electrolysis cell types and performing parametric testing, off-design testing, and cell life testing. The Phase 2 consisted of the preliminary design, incorporation of palladium (Pd) tubes for hydrogen separation from the electrolyzer cathode feed gases, design support testing, final design, fabrication, and performance testing of the breadboard system. The results of performance tests demonstrated that CO2 electrolysis in an oxygen reclamation system for long duration space-based habitats is feasible. Closure of the oxygen system loop, therefore, can be achieved by CO2 electrolysis. In a two step process the metabolic CO2 and H2O vapor are electrolyzed into O2, H2, and CO. The CO can subsequently be disproportionated into carbon and CO2 in a carbon deposition reactor and the CO2 in turn be recycled and electrolyzed for total O2 recovery. The development effort demonstrated electrolyzer system can be designed and built to operate safely and reliably and the incorporation of Pd tubes for hydrogen diffusion can be integrated safely with predictable performance.

  10. Electrolysis cell functions as water vapor dehumidifier and oxygen generator

    NASA Technical Reports Server (NTRS)

    Clifford, J. E.

    1971-01-01

    Water vapor is absorbed in hygroscopic electrolyte, and oxygen generated by absorbed water electrolysis at anode is added simultaneously to air stream. Cell applications include on-board aircraft oxygen systems, portable oxygen generators, oxygen concentration requirements, and commercial air conditioning and dehumidifying systems.

  11. PEM Electrolysis H2A Production Case Study Documentation

    SciTech Connect

    James, Brian; Colella, Whitney; Moton, Jennie; Saur, G.; Ramsden, T.

    2013-12-31

    This report documents the development of four DOE Hydrogen Analysis (H2A) case studies for polymer electrolyte membrane (PEM) electrolysis. The four cases characterize PEM electrolyzer technology for two hydrogen production plant sizes (Forecourt and Central) and for two technology development time horizons (Current and Future).

  12. Production of oxygen from lunar soil by molten salt electrolysis

    NASA Technical Reports Server (NTRS)

    Keller, Rudolf

    1989-01-01

    A simple approach to utilizing lunar resources proposes to dissolve lunar soil, without or with little beneficiation, in a suitable molten salt and to electrolyze the oxides to oxygen and a metal byproduct. The envisioned process and the required technological advances are discussed. Promising electrolysis conditions have been identified in a recent experimental program to manufacture silicon and aluminum from anorthite.

  13. Improved Durability of SOEC Stacks for High Temperature Electrolysis

    SciTech Connect

    James E. O'Brien; Robert C. O'Brien; Xiaoyu Zhang; Joseph J. Hartvigsen; Greg Tao

    2013-01-01

    High temperature steam electrolysis is a promising technology for efficient and sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology can be realized. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolyte-supported and electrode-supported SOEC stacks were provided by Ceramatec Inc. and Materials and Systems Research Inc. (MSRI), respectively, for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technologies developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, espectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. Optimization of electrode materials, interconnect coatings, and electrolyte-electrode interface microstructures contribute to better durability of SOEC stacks.

  14. Oxygen from the lunar soil by molten silicate electrolysis

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.

    1992-01-01

    Accepting that oxygen, rather than gigantic gems or gold, is likely to make the Moon's Klondike, the extraction of oxygen from the lunar soil by molten silicate electrolysis has chosen to be investigated. Process theory and proposed lunar factory are addressed.

  15. Analysis of cavitation effect for water purifier using electrolysis

    NASA Astrophysics Data System (ADS)

    Shin, Dong Ho; Ko, Han Seo; Lee, Seung Ho

    2015-11-01

    Water is a limited and vital resource, so it should not be wasted by pollution. A development of new water purification technology is urgent nowadays since the original and biological treatments are not sufficient. The microbubble-aided method was investigated for removal of algal in this study since it overcomes demerits of the existing purification technologies. Thus, the cavitation effect in a venturi-type tube using the electrolysis was analyzed. Ruthenium-coated titanium plates were used as electrodes. Optimum electrode interval and applied power were determined for the electrolysis. Then, the optimized electrodes were installed in the venturi-type tube for generating cavitation. The cavitation effect could be enhanced without any byproduct by the bubbly flow induced by the electrolysis. The optimum mass flow rate and current were determined for the cavitation with the electrolysis. Finally, the visualization techniques were used to count the cell number of algal and microbubbles for the confirmation of the performance. As a result, the energy saving and high efficient water purifier was fabricated in this study. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. 2013R1A2A2A01068653).

  16. Production of aluminum metal by electrolysis of aluminum sulfide

    DOEpatents

    Minh, Nguyen Q.; Loutfy, Raouf O.; Yao, Neng-Ping

    1984-01-01

    Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

  17. Endurance Test and Evaluation of Alkaline Water Electrolysis Cells

    NASA Technical Reports Server (NTRS)

    Kovach, Andrew J.; Schubert, Franz H.; Chang, B. J.; Larkins, Jim T.

    1985-01-01

    The overall objective of this program is to assess the state of alkaline water electrolysis cell technology and its potential as part of a Regenerative Fuel Cell System (RFCS) of a multikilowatt orbiting powerplant. The program evaluates the endurance capabilities of alkaline electrolyte water electrolysis cells under various operating conditions, including constant condition testing, cyclic testing and high pressure testing. The RFCS demanded the scale-up of existing cell hardware from 0.1 sq ft active electrode area to 1.0 sq ft active electrode area. A single water electrolysis cell and two six-cell modules of 1.0 sq ft active electrode area were designed and fabricated. The two six-cell 1.0 sq ft modules incorporate 1.0 sq ft utilized cores, which allow for minimization of module assembly complexity and increased tolerance to pressure differential. A water electrolysis subsystem was designed and fabricated to allow testing of the six-cell modules. After completing checkout, shakedown, design verification and parametric testing, a module was incorporated into the Regenerative Fuel Cell System Breadboard (RFCSB) for testing at Life Systems, Inc., and at NASA JSC.

  18. Determination of the Electronics Charge--Electrolysis of Water Method.

    ERIC Educational Resources Information Center

    Venkatachar, Arun C.

    1985-01-01

    Presents an alternative method for measuring the electronic charge using data from the electrolysis of acidified distilled water. The process (carried out in a commercially available electrolytic cell) has the advantage of short completion time so that students can determine electron charge and mass in one laboratory period. (DH)

  19. HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION FROM NUCLEAR ENERGY

    SciTech Connect

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Joseph J. Hartvigsen

    2005-10-01

    An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.

  20. HYDROGEN GENERATION FROM ELECTROLYSIS - REVISED FINAL TECHNICAL REPORT

    SciTech Connect

    IBRAHIM, SAMIR; STICHTER, MICHAEL

    2008-07-31

    DOE GO13028-0001 DESCRIPTION/ABSTRACT This report is a summary of the work performed by Teledyne Energy Systems to understand high pressure electrolysis mechanisms, investigate and address safety concerns related to high pressure electrolysis, develop methods to test components and systems of a high pressure electrolyzer, and produce design specifications for a low cost high pressure electrolysis system using lessons learned throughout the project. Included in this report are data on separator materials, electrode materials, structural cell design, and dissolved gas tests. Also included are the results of trade studies for active area, component design analysis, high pressure hydrogen/oxygen reactions, and control systems design. Several key pieces of a high pressure electrolysis system were investigated in this project and the results will be useful in further attempts at high pressure and/or low cost hydrogen generator projects. An important portion of the testing and research performed in this study are the safety issues that are present in a high pressure electrolyzer system and that they can not easily be simplified to a level where units can be manufactured at the cost goals specified, or operated by other than trained personnel in a well safeguarded environment. The two key objectives of the program were to develop a system to supply hydrogen at a rate of at least 10,000 scf/day at a pressure of 5000psi, and to meet cost goals of $600/ kW in production quantities of 10,000/year. On these two points TESI was not successful. The project was halted due to concerns over safety of high pressure gas electrolysis and the associated costs of a system which reduced the safety concerns.

  1. Development of a solid polymer electrolyte electrolysis cell module and ancillary components for a breadboard water electrolysis system

    NASA Technical Reports Server (NTRS)

    Porter, F. J., Jr.

    1972-01-01

    Solid polymer electrolyte technology in a water electrolysis system along with ancillary components to generate oxygen and hydrogen for a manned space station application are considered. Standard commercial components are utilized wherever possible. Presented are the results of investigations, surveys, tests, conclusions and recommendations for future development efforts.

  2. Removal of volatile fatty acids and ammonia recovery from unstable anaerobic digesters with a microbial electrolysis cell.

    PubMed

    Cerrillo, Míriam; Viñas, Marc; Bonmatí, August

    2016-11-01

    Continuous assays with a microbial electrolysis cell (MEC) fed with digested pig slurry were performed to evaluate its stability and robustness to malfunction periods of an anaerobic digestion (AD) reactor and its feasibility as a strategy to recover ammonia. When performing punctual pulses of volatile fatty acids (VFA) in the anode compartment of the MEC, simulating a malfunction of the AD process, an increase in the current density was produced (up to 14 times, reaching values of 3500mAm(-2)) as a result of the added chemical oxygen demand (COD), especially when acetate was used. Furthermore, ammonium diffusion from the anode to the cathode compartment was enhanced and the removal efficiency achieved up to 60% during daily basis VFA pulses. An AD-MEC combined system has proven to be a robust and stable configuration to obtain a high quality effluent, with a lower organic and ammonium content. PMID:27501031

  3. High Temperature Steam Electrolysis Materials Degradation: Preliminary Results of Corrosion Tests on Ceramatec Electrolysis Cell Components

    SciTech Connect

    Paul Demkowicz; Prateek Sachdev; Kevin DeWall; Pavel Medvedev

    2007-06-01

    Corrosion tests were performed on stainless steel and nickel alloy coupons in H2O/H2 mixtures and dry air to simulate conditions experienced in high temperature steam electrolysis systems. The stainless steel coupons were tested bare and with one of three different proprietary coatings applied. Specimens were corroded at 850°C for 500 h with weight gain data recorded at periodic intervals. Post-test characterization of the samples included surface and cross-section scanning electron microscopy, grazing incidence x-ray diffraction, and area-specific resistance measurements. The uncoated nickel alloy outperformed the ferritic stainless steel under all test conditions based on weight gain data. Parabolic rate constants for corrosion of these two uncoated alloys were consistent with values presented in the literature under similar conditions. The steel coatings reduced corrosion rates in H2O/H2 mixtures by as much as 50% compared to the untreated steel, but in most cases showed negligible corrosion improvement in air. The use of a rare-earth-based coating on stainless steel did not result in a significantly different area specific resistance values after corrosion compared to the untreated alloy. Characterization of the samples is still in progress and the findings will be revised when the complete data set is available.

  4. Composition Pulse Time-Of-Flight Mass Flow Sensor

    DOEpatents

    Mosier, Bruce P.; Crocker, Robert W.; Harnett, Cindy K. l

    2004-01-13

    A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 .mu.L/min) and at pressures at least as great as 10,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined

  5. On the generation of mini-clusters of microbubbles using water electrolysis

    NASA Astrophysics Data System (ADS)

    Medina-Palomo, Ana; Igualada-Villodre, Elena; Rodriguez-Rodriguez, Javier

    2014-11-01

    The interest on microbubbles and their behavior under ultrasound excitation has increased over the last years. Several phenomena can be observed when microbubbles interact with an ultrasound field. For instance, they can oscillate at their natural frequency, translate in the direction of the acoustic pulse (due to the well-known Bjerknes force) or coalesce (due to the secondary Bjerknes force). To study these effects, it is convenient to have an isolated bubble or a cloud consisting of a few bubbles. Using electrolysis we are able to produce mini-clusters of bubbles with controlled parameters, namely, bubble number and size distribution. We achieve this control using voltage pulses of well-defined properties. The most remarkable characteristics of this technique are its low cost and ease of implementation. We illustrate the applications of the technique with some academic examples, like the validation of the expressions for the primary and secondary Bjerknes forces. Funded by the Spanish Ministry of Economy and Competitiveness through grant DPI2011-28356-C03-02.

  6. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    NASA Astrophysics Data System (ADS)

    Saksono, Nelson; Febiyanti, Irine Ayu; Utami, Nissa; Ibrahim

    2015-12-01

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H2O2 amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical current throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.

  7. Development of a static feed water electrolysis system

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Lantz, J. B.; Hallick, T. M.

    1982-01-01

    A one person level oxygen generation subsystem was developed and production of the one person oxygen metabolic requirements, 0.82 kg, per day was demonstrated without the need for condenser/separators or electrolyte pumps. During 650 hours of shakedown, design verification, and endurance testing, cell voltages averaged 1.62 V at 206 mA/sq cm and at average operating temperature as low as 326 K, virtually corresponding to the state of the art performance previously established for single cells. This high efficiency and low waste heat generation prevented maintenance of the 339 K design temperature without supplemental heating. Improved water electrolysis cell frames were designed, new injection molds were fabricated, and a series of frames was molded. A modified three fluid pressure controller was developed and a static feed water electrolysis that requires no electrolyte in the static feed compartment was developed and successfully evaluated.

  8. Natural gas anodes for aluminium electrolysis in molten fluorides.

    PubMed

    Haarberg, Geir Martin; Khalaghi, Babak; Mokkelbost, Tommy

    2016-08-15

    Industrial primary production of aluminium has been developed and improved over more than 100 years. The molten salt electrolysis process is still suffering from low energy efficiency and considerable emissions of greenhouse gases (CO2 and PFC). A new concept has been suggested where methane is supplied through the anode so that the CO2 emissions may be reduced significantly, the PFC emissions may be eliminated and the energy consumption may decrease significantly. Porous carbon anodes made from different graphite grades were studied in controlled laboratory experiments. The anode potential, the anode carbon consumption and the level of HF gas above the electrolyte were measured during electrolysis. In some cases it was found that the methane oxidation was effectively participating in the anode process. PMID:27210046

  9. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    SciTech Connect

    Saksono, Nelson; Febiyanti, Irine Ayu Utami, Nissa; Ibrahim

    2015-12-29

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H{sub 2}O{sub 2} amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical current throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.

  10. Entropic Heat Effects in Aluminum Electrolysis Cells with Inert Anodes

    NASA Astrophysics Data System (ADS)

    Solheim, Asbjørn

    2016-04-01

    While the overall energy requirement for the aluminum electrolysis is well known and can be calculated from readily available thermodynamic data, the distribution of the different types of energy to the anode, the cathode, and the electrolyte is not straightforward. The present attempt is based on the application of activity data including partial entropies on the electrode reactions in a cell operating with inert anodes. The calculations indicate that the cell reaction implies a relatively strong cooling of the anode, a moderate heating of the cathode, and a moderate cooling of the electrolyte. The mass- and heat transfer coefficients at the anode in a cell with inert anodes were estimated. The electrolyte at the anode will be higher in aluminum fluoride, lower in alumina, and colder than the bulk of the electrolyte. The cooling and heating effects are only marginally different from the situation prevailing in traditional aluminum electrolysis cells with carbon anodes.

  11. Comparison of waste combustion and waste electrolysis - A systems analysis

    NASA Technical Reports Server (NTRS)

    Holtzapple, Mark T.; Little, Frank E.

    1989-01-01

    A steady state model of a closed environmental system has been developed which includes higher plant growth for food production, and is designed to allow wastes to be combusted or electrolyzed. The stoichiometric equations have been developed to evaluate various trash compositions, food items (both stored and produced), metabolic rates, and crew sizes. The advantages of waste electrolysis versus combustion are: (1) oxygen is not required (which reduces the load on the oxygen producing system); (2) the CO2 and H2 products are produced in pure form (reducing the load on the separators); and (3) nitrogen is converted to nitrate (which is directly usable by plants). Weight tradeoff studies performed using this model have shown that waste electrolysis reduces the life support weight of a 4-person crew by 1000 to 2000 kg.

  12. Development of combined electrolysis catalytic exchange. Final report

    SciTech Connect

    Ellis, R.E.; Lentz, J.E.; Rogers, M.L.; Sienkiewicz, C.J.

    1982-06-24

    Aqueous wastes contaminated with tritium in the form of HTO pose a difficult disposal problem. Since the only difference between HTO and the major constituent (H/sub 2/O) of such wastes is the isotopic form of the hydrogen, an isotopic separation process is required for decontamination of these wastes. Several processes were tried experimentally before the Combined Electrolysis Catalytic Exchange (CECE) process was chosen for pilot-scale development. This process concentrates tritium in the water phase by contacting gaseous hydrogen with water over a catalyst. Experimental work was performed to determine the effects of tritium radiolysis on the electrolysis cells and exchange catalyst. Processes to remove impurities from the feed stream were developed, and in order to evaluate feasibility, a small, pilot-scale CECE system was designed, built, and operated. Several potential applications are discussed, and results of experimenta work for two of these applications are given.

  13. Direct Lit Electrolysis In A Metallic Lithium Fusion Blanket

    SciTech Connect

    Colon-Mercado, H.; Babineau, D.; Elvington, M.; Garcia-Diaz, B.; Teprovich, J.; Vaquer, A.

    2015-10-13

    A process that simplifies the extraction of tritium from molten lithium based breeding blankets was developed.  The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fission/fusion reactors is critical in order to maintained low concentrations.  This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Because of the high affinity of tritium for the blanket, extraction is complicated at the required low levels. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering the hydrogen and deuterium thru an electrolysis step at high temperatures. 

  14. Hydrogen Transport to Mars Enables the Sabatier/Electrolysis Process

    NASA Technical Reports Server (NTRS)

    Mueller, P. J.; Rapp, D.

    1997-01-01

    The Sabatier/Electrolysis (S/E) process is an attractive approach to in situ propellant production (ISPP), and a breadboard demonstration of this process at Lockheed Martin Astronautics funded by JPL performed very well, with high conversion efficiency, and reliable diurnal operation. There is a net usage of hydrogen in the S/E process, and this has been the principal problem for this approach to ISPP.

  15. Carbon dioxide electrolysis using a ceramic electrolyte. [for space processing

    NASA Technical Reports Server (NTRS)

    Erstfeld, T. E.; Mullins, O., Jr.; Williams, R. J.

    1979-01-01

    This paper discusses the results of an experimental study of the electrical aspects of carbon dioxide electrolysis using a ceramic electrolyte. The electrolyte compositions used in this study are 8% Y2O3 stabilized ZrO2, 7.5% CaO stabilized ZrO2, and 5% Y2O3 stabilized ThO2. Results indicate that the 8% Y2O3 stabilized ZrO2 is the best material to use for electrolysis, in terms of current as a function of voltage and temperature, and in terms of efficiency of oxide ion flow through it. The poorest results were obtained with the 5% Y2O3 stabilized ThO2 composition. An electrolysis system which might be employed to reclaim oxygen and carbon from effluents of space manufacturing, assuming that an industry would have to electrolyze 258,000 tonnes of CO2 per year, is predicted to require a total cell area of 110,000 sq m of 1 mm thickness and electrical capacity of 441 MW.

  16. Improving electrokinetic microdevice stability by controlling electrolysis bubbles.

    PubMed

    Lee, Hwi Yong; Barber, Cedrick; Minerick, Adrienne R

    2014-07-01

    The voltage-operating window for many electrokinetic microdevices is limited by electrolysis gas bubbles that destabilize microfluidic system causing noise and irreproducible responses above ∼3 V DC and less than ∼1 kHz AC at 3 Vpp. Surfactant additives, SDS and Triton X-100, and an integrated semipermeable SnakeSkin® membrane were employed to control and assess electrolysis bubbles from platinum electrodes in a 180 by 70 μm, 10 mm long microchannel. Stabilized current responses at 100 V DC were observed with surfactant additives or SnakeSkin® barriers. Electrolysis bubble behaviors, visualized via video microscopy at the electrode surface and in the microchannels, were found to be influenced by surfactant function and SnakeSkin® barriers. Both SDS and Triton X-100 surfactants promoted smaller bubble diameters and faster bubble detachment from electrode surfaces via increasing gas solubility. In contrast, SnakeSkin® membranes enhanced natural convection and blocked bubbles from entering the microchannels and thus reduced current disturbances in the electric field. This data illustrated that electrode surface behaviors had substantially greater impacts on current stability than microbubbles within microchannels. Thus, physically blocking bubbles from microchannels is less effective than electrode functionalization approaches to stabilize electrokinetic microfluidic systems. PMID:24648277

  17. Endurance test and evaluation of alkaline water electrolysis cells

    NASA Technical Reports Server (NTRS)

    Burke, K. A.; Schubert, F. H.

    1981-01-01

    Utilization in the development of multi-kW low orbit power systems is discussed. The following technological developments of alkaline water electrolysis cells for space power application were demonstrated: (1) four 92.9 cm2 single water electrolysis cells, two using LST's advanced anodes and two using LST's super anodes; (2) four single cell endurance test stands for life testing of alkaline water electrolyte cells; (3) the solid performance of the advanced electrode and 355 K; (4) the breakthrough performance of the super electrode; (5) the four single cells for over 5,000 hours each significant cell deterioration or cell failure. It is concluded that the static feed water electrolysis concept is reliable and due to the inherent simplicity of the passive water feed mechanism coupled with the use of alkaline electrolyte has greater potential for regenerative fuel cell system applications than alternative electrolyzers. A rise in cell voltage occur after 2,000-3,000 hours which was attributed to deflection of the polysulfone end plates due to creepage of the thermoplastic. More end plate support was added, and the performance of the cells was restored to the initial performance level.

  18. Iron migration from the anode surface in alumina electrolysis

    NASA Astrophysics Data System (ADS)

    Zhuravleva, Elena N.; Drozdova, Tatiana N.; Ponomareva, Svetlana V.; Kirik, Sergei D.

    2013-01-01

    Corrosion destruction of two-component iron-based alloys used as an anode in high-temperature alumina electrolysis in the melt of NaF/KF/AlF3 electrolyte has been considered. Ni, Si, Cu, Cr, Mn, Al, Ti in the amount of up to 10% have been tested as the dopants to an anode alloys. The composition of the corrosion products has been studied using X-ray diffraction, scanning electron microscopy and electron microprobe analysis. It has been established that the anode corrosion is induced by a surface electrochemical polarization and iron atom oxidation. Iron ions come into an exchange interaction with the fluoride components of the melted electrolyte, producing FeF2. The last interacts with oxyfluoride species transforming into the oxide forms: FeAl2O4, Fe3O4, Fe2O3. Due to the low solubility, the iron oxides are accumulated in the near-electrode sheath. The only small part of iron from anode migrates to cathode that makes an production of high purity aluminum of a real task. The alloy dopants are also subjected to corrosion in accordance with electromotive series resulting corrosion tunnels on the anode surface. The oxides are final compounds which collect in the same area. The corrosion products form an anode shell which is electronic conductor at electrolysis temperature. The electrolysis of alumina occurs beyond the corrosion shell. The rate limiting step in the corrosion is the electrolyte penetration through corrosion shell to the anode surface. The participation of the released oxygen in the corrosion has not been observed.

  19. Characteristics of electrolysis, ozonation, and their combination process on treatment of municipal wastewater.

    PubMed

    Kishimoto, Naoyuki; Morita, Yukako; Tsuno, Hiroshi; Yasuda, Yuuji

    2007-09-01

    The characteristics of municipal wastewater treatment by electrolysis, ozonation, and combination processes of electrolysis and aeration using three gaseous species (nitrogen [N2], oxygen [O2], and ozone [O3]) were discussed in this research using ruthenium oxide (RuO2)-coated titanium anodes and stainless-steel (SUS304) cathodes. Electrolysis and electrolysis with nitrogen aeration were characterized by a rapid decrease in 5-day biochemical oxygen demand (BODs) and total nitrogen and a slow decrease in chemical oxygen demand (COD). In contrast, ozonation, electrolysis with oxygen aeration, and electrolysis with ozone aeration were characterized by transformation of persistent organic matter to biodegradable matter and preservation of total nitrogen. The best energy efficiency in removing BOD5 and total nitrogen was demonstrated by electrolysis, as a result of direct anodic oxidation and indirect oxidation with free chlorine produced from the chloride ion (Cl-) at the anodes. However, electrolysis with ozone aeration was found to be superior to the other processes, in terms of its energy efficiency in removing COD and its ability to remove COD completely, as a result of hydroxyl radical (*OH) production via cathodic reduction of ozone. PMID:17910373

  20. Electrolysis of Water in the Secondary School Science Laboratory with Inexpensive Microfluidics

    ERIC Educational Resources Information Center

    Davis, T. A.; Athey, S. L.; Vandevender, M. L.; Crihfield, C. L.; Kolanko, C. C. E.; Shao, S.; Ellington, M. C. G.; Dicks, J. K.; Carver, J. S.; Holland, L. A.

    2015-01-01

    This activity allows students to visualize the electrolysis of water in a microfluidic device in under 1 min. Instructional materials are provided to demonstrate how the activity meets West Virginia content standards and objectives. Electrolysis of water is a standard chemistry experiment, but the typical laboratory apparatus (e.g., Hoffman cell)…

  1. Electrolysis Performance Improvement Concept Study (EPICS) flight experiment phase C/D

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Lee, M. G.

    1995-01-01

    The overall purpose of the Electrolysis Performance Improvement Concept Study flight experiment is to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer concept as well as investigate the effect of microgravity on water electrolysis performance. The scope of the experiment includes variations in microstructural characteristics of electrodes and current densities in a static feed electrolysis cell configuration. The results of the flight experiment will be used to improve efficiency of the static feed electrolysis process and other electrochemical regenerative life support processes by reducing power and expanding the operational range. Specific technologies that will benefit include water electrolysis for propulsion, energy storage, life support, extravehicular activity, in-space manufacturing and in-space science in addition to other electrochemical regenerative life support technologies such as electrochemical carbon dioxide and oxygen separation, electrochemical oxygen compression and water vapor electrolysis. The Electrolysis Performance Improvement Concept Study flight experiment design incorporates two primary hardware assemblies: the Mechanical/Electrochemical Assembly and the Control/Monitor Instrumentation. The Mechanical/Electrochemical Assembly contains three separate integrated electrolysis cells along with supporting pressure and temperature control components. The Control/Monitor Instrumentation controls the operation of the experiment via the Mechanical/Electrochemical Assembly components and provides for monitoring and control of critical parameters and storage of experimental data.

  2. High School Students' Proficiency and Confidence Levels in Displaying Their Understanding of Basic Electrolysis Concepts

    ERIC Educational Resources Information Center

    Sia, Ding Teng; Treagust, David F.; Chandrasegaran, A. L.

    2012-01-01

    This study was conducted with 330 Form 4 (grade 10) students (aged 15-16 years) who were involved in a course of instruction on electrolysis concepts. The main purposes of this study were (1) to assess high school chemistry students' understanding of 19 major principles of electrolysis using a recently developed 2-tier multiple-choice diagnostic…

  3. Production of Oxygen from Lunar Regolith by Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2009-01-01

    This paper describes the use of the molten oxide electrolysis (MOE) process for the extraction of oxygen for life support and propellant, and silicon and metallic elements for use in fabrication on the Moon. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis is ideal for extraction, since the electron is the only practical reducing agent. MOE has several advantages over other extraction methods. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. Alternatively, MOE requires no import of consumable reagents (e.g. fluorine and carbon) as other processes do, and does not rely on interfacing multiple processes to obtain refined products. Electrolytic processing has the advantage of selectivity of reaction in the presence of a multi-component feed. Products from lunar regolith can be extracted in sequence according to the stabilities of their oxides as expressed by the values of the free energy of oxide formation (e.g. chromium, manganese, Fe, Si, Ti, Al, magnesium, and calcium). Previous work has demonstrated the viability of producing Fe and oxygen from oxide mixtures similar in composition to lunar regolith by molten oxide electrolysis (electrowinning), also called magma electrolysis having shown electrolytic extraction of Si from regolith simulant. This paper describes recent advances in demonstrating the MOE process by a joint project with participation by NASA KSC and

  4. Modeling of Sustainable Base Production by Microbial Electrolysis Cell.

    PubMed

    Blatter, Maxime; Sugnaux, Marc; Comninellis, Christos; Nealson, Kenneth; Fischer, Fabian

    2016-07-01

    A predictive model for the microbial/electrochemical base formation from wastewater was established and compared to experimental conditions within a microbial electrolysis cell. A Na2 SO4 /K2 SO4 anolyte showed that model prediction matched experimental results. Using Shewanella oneidensis MR-1, a strong base (pH≈13) was generated using applied voltages between 0.3 and 1.1 V. Due to the use of bicarbonate, the pH value in the anolyte remained unchanged, which is required to maintain microbial activity. PMID:27265318

  5. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model

  6. DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect

    M. S. Sohal; J. E. O'Brien; C. M. Stoots; V. I. Sharma; B. Yildiz; A. Virkar

    2012-02-01

    Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL's test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems

  7. Oxygen Production on Mars Using Solid Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.

    1997-01-01

    If oxygen for propulsion and life support needs were to be extracted from martian resources, significant savings in launch mass and costs could be attained for both manned and unmanned missions. In addition to reduced cost the ability to produce oxygen from martian resources would decrease the risks associated with long duration stays on the surface of Mars. One method of producing the oxygen from the carbon dioxide rich atmosphere of Mars involves solid oxide electrolysis. A brief summary of the theory of operation will be presented followed by a schematic description of a Mars oxygen production pland and a discussion of its power consumption characteristics.

  8. Experimental study of the electrolysis of silicate melts

    NASA Technical Reports Server (NTRS)

    Keller, R.; Larimer, K. T.

    1991-01-01

    To produce oxygen from lunar resources, it may be feasible to melt and electrolyze local silicate ores. This possibility was explored experimentally with synthesized melts of appropriate compositions. Platinum electrodes were employed at a melt temperature of 1425 C. When silicon components of the melt were reduced, the platinum cathode degraded rapidly, which prompted the substitution of a graphite cathode substrate. Discrete particles containing iron or titanium were found in the solidified electrolyte after three hours of electrolysis. Electrolyte conductivities did not decrease substantially, but the escape of gas bubbles, in some cases, appeared to be hindered by high viscosity of the melt.

  9. DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect

    J. E. O'Brien; C. M. Stoots; V. I. Sharma; B. Yildiz; A. V. Virkar

    2010-06-01

    Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL’s test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in

  10. Generating Hydrogen through Water Electrolysis using Concentrator Photovoltaics

    SciTech Connect

    McConnell, R.; Thompson, J.

    2005-01-01

    Hydrogen can be an important element in reducing global climate change if the feedstock and process to produce the hydrogen are carbon free. Using nuclear energy to power a high temperature water electrolysis process meets these constraints while another uses heat and electricity from solar electric concentrators. Nuclear researchers have estimated the cost of hydrogen generated in this fashion and we will compare their estimates with those we have made for generating hydrogen using electricity and waste heat from a dish concentrator photovoltaic system. The conclusion is that the costs are comparable and low enough to compete with gasoline costs in the not too distant future.

  11. Feedwater cleanup for combined electrolysis catalytic exchange. Final report

    SciTech Connect

    Lentz, J.E.; Sienkiewicz, C.J.; Ellis, R.E.

    1982-07-30

    Chemical analyses were performed on a series of samples of tritiated wastewater from the Mound Effluent Recovery System (ERS). These analyses indicated that a wide range of organic impurities, as well as several specific inorganic impurities, was present in the water. One of the more damaging organic contaminants found was oil; therefore laboratory experiments were conducted to develop an oil removal method. Based on results of these analyses and experiments, a pilot scale system was designed and built to remove impurities from Mound ERS water. This system successfully removed impurities from ERS water making it suitable as feed for the combined Electrolysis Catalytic Exchange (CECE) system.

  12. Electrolysis: Information and Opportunities for Electric Power Utilities

    SciTech Connect

    Kroposki, B.; Levene, J.; Harrison, K.; Sen, P.K.; Novachek, F.

    2006-09-01

    Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near- to mid-term conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors of the U.S. economy unfolds, electric power utilities need to understand the potential benefits and impacts. This report provides a historical perspective of hydrogen, discusses the process of electrolysis for hydrogen production (especially from solar and wind technologies), and describes the opportunities for electric power utilities.

  13. Thermal imaging of solid oxide cells operating under electrolysis conditions

    NASA Astrophysics Data System (ADS)

    Cumming, D. J.; Elder, R. H.

    2015-04-01

    Solid oxide fuel cells remain at the forefront of research into electrochemical energy conversion technology. More recent interest has focused on operating in electrolyser mode to convert steam or carbon dioxide into hydrogen or carbon monoxide, respectively. The mechanism of these reactions is not fully understood, particularly when operated in co-electrolysis mode using both steam and CO2. This contribution reports the use of a thermal camera to directly observe changes in the cell temperature during operation, providing a remote, non-contact and highly sensitive method for monitoring an operational cell.

  14. Study on preparation of NiOOH by a new catalytic electrolysis method

    SciTech Connect

    Sun Yanzhi; Pan Junqing Wan Pingyu; Liu Xiaoguang

    2009-04-02

    The present paper reports a new catalytic electrolysis method to prepare NiOOH. KMnO{sub 4} is proposed as a catalyst to play the role of electron-transfer medium in the electrolysis preparation of NiOOH for the first time. Through the self-redox reaction of KMnO{sub 4}, the highly efficient electron-transfer process between the electrolyte and the electrode of the spherical Ni(OH){sub 2} is realized, thus resulting in a high electrolytic efficiency and short electrolysis time. The mechanism of catalytic electrolysis is preliminarily discussed. The experimental results show that the electrode prepared with the NiOOH powders by catalytic electrolysis offers a discharge capacity of 267 mAh g{sup -1} at a current density of 120 mA g{sup -1} and exhibits good cycling performance.

  15. High-Speed MALDI MS/MS Imaging Mass Spectrometry Using Continuous Raster Sampling

    PubMed Central

    Prentice, Boone M.; Chumbley, Chad W.; Caprioli, Richard M.

    2015-01-01

    A matrix-assisted laser desorption/ionization time of flight/time of flight tandem mass spectrometer (MALDI TOF/TOF) has been used for high-speed precursor/fragment ion transition image acquisition. High throughput analysis is facilitated by a Nd:YLF solid state laser capable of pulse repetition rates up to 5 kHz, a high digitizer acquisition rate (up to 50 pixels/second), and continuous laser raster sampling. MS/MS experiments are enabled through the use of a precision timed ion selector, second source acceleration, and a dedicated collision cell. Continuous raster sampling is shown here to facilitate rapid MS/MS ion image acquisition from thin tissue sections for the drug rifampicin and of a common kidney lipid, SM4s(d18:1/24:1). The ability to confirm the structural identity of an analyte as part of the MS/MS imaging experiment is an essential part of the analysis. Additionally, the increase in sensitivity and specificity afforded by an MS/MS approach is highly advantageous, especially when interrogating complex chemical environments such as those in biological tissues. Herein, we report continuous laser raster sampling TOF/TOF imaging methodologies which demonstrate 8-14 fold increases in throughput compared to existing MS/MS instrumentation, an important advantage when imaging large areas on tissues. PMID:26149115

  16. Electrochemical reduction of CO 2 in solid oxide electrolysis cells

    NASA Astrophysics Data System (ADS)

    Zhan, Zhongliang; Zhao, Lin

    This paper describes results on the electrochemical reduction of carbon dioxide using the same device as the typical planar nickel-YSZ cermet electrode supported solid oxide fuel cells (H 2-CO 2, Ni-YSZ|YSZ|LSCF-GDC, LSCF, air). Operation in both the fuel cell and the electrolysis mode indicates that the electrodes could work reversibly for the charge transfer processes. An electrolysis current density of ≈1 A cm -2 is observed at 800 °C and 1.3 V for an inlet mixtures of 25% H 2-75% CO 2. Mass spectra measurement suggests that the nickel-YSZ cermet electrode is highly effective for reduction of CO 2 to CO. Analysis of the gas transport in the porous electrode and the adsorption/desorption process over the nickel surface indicates that the cathodic reactions are probably dominated by the reduction of steam to hydrogen, whereas carbon monoxide is mainly produced via the reverse water gas shift reaction.

  17. Technology advancement of the static feed water electrolysis process

    NASA Technical Reports Server (NTRS)

    Jensen, F. C.; Schubert, F. H.

    1977-01-01

    Some results are presented of a research and development program to continue the development of a method to generate oxygen for crew metabolic consumption during extended manned space flights. The concept being pursued is that of static feed water electrolysis. Specific major results of the work included: (1) completion of a 30-day electrode test using a Life Systems, Inc.-developed high performance catalyst. During startup the cell voltages were as low as 1.38 V at current densities of 108 mA/sq cm (100 ASF) and temperatures of 355 K (180 F). At the end of 30 days of testing the cell voltages were still only 1.42 V at 108 mA/sq cm, (2) determination that the Static Feed Water Electrolysis Module does not release an aerosol of the cell electrolyte into the product gas streams after a break-in period of 24 hours following a new electrolyte charge, and (3) completion of a detailed design analysis of an electrochemical Oxygen Generation Subsystem at a three-man level (4.19 kg/day (9.24 lb/day) of oxygen).

  18. Electrolysis Propulsion Provides High-Performance, Inexpensive, Clean Spacecraft Propulsion

    NASA Technical Reports Server (NTRS)

    deGroot, Wim A.

    1999-01-01

    An electrolysis propulsion system consumes electrical energy to decompose water into hydrogen and oxygen. These gases are stored in separate tanks and used when needed in gaseous bipropellant thrusters for spacecraft propulsion. The propellant and combustion products are clean and nontoxic. As a result, costs associated with testing, handling, and launching can be an order of magnitude lower than for conventional propulsion systems, making electrolysis a cost-effective alternative to state-of-the-art systems. The electrical conversion efficiency is high (>85 percent), and maximum thrust-to-power ratios of 0.2 newtons per kilowatt (N/kW), a 370-sec specific impulse, can be obtained. A further advantage of the water rocket is its dual-mode potential. For relatively high thrust applications, the system can be used as a bipropellant engine. For low thrust levels and/or small impulse bit requirements, cold gas oxygen can be used alone. An added innovation is that the same hardware, with modest modifications, can be converted into an energy-storage and power-generation fuel cell, reducing the spacecraft power and propulsion system weight by an order of magnitude.

  19. Static Feed Water Electrolysis Subsystem Testing and Component Development

    NASA Technical Reports Server (NTRS)

    Koszenski, E. P.; Schubert, F. H.; Burke, K. A.

    1983-01-01

    A program was carried out to develop and test advanced electrochemical cells/modules and critical electromechanical components for a static feed (alkaline electrolyte) water electrolysis oxygen generation subsystem. The accomplishments were refurbishment of a previously developed subsystem and successful demonstration for a total of 2980 hours of normal operation; achievement of sustained one-person level oxygen generation performance with state-of-the-art cell voltages averaging 1.61 V at 191 ASF for an operating temperature of 128F (equivalent to 1.51V when normalized to 180F); endurance testing and demonstration of reliable performance of the three-fluid pressure controller for 8650 hours; design and development of a fluid control assembly for this subsystem and demonstration of its performance; development and demonstration at the single cell and module levels of a unitized core composite cell that provides expanded differential pressure tolerance capability; fabrication and evaluation of a feed water electrolyte elimination five-cell module; and successful demonstration of an electrolysis module pressurization technique that can be used in place of nitrogen gas during the standby mode of operation to maintain system pressure and differential pressures.

  20. Results Of Recent High Temperature Co-Electrolysis Studies At The Idaho National Laboratory

    SciTech Connect

    C. M. Stoots; James E. O'Brien; Joseph J. Hartvigsen

    2007-11-01

    For the past several years, the Idaho National Laboratory and Ceramatec, Inc. have been studying the feasibility of high temperature solid oxide electrolysis for large-scale, nuclear-powered hydrogen production. Parallel to this effort, the INL and Ceramatec have been researching high temperature solid oxide co-electrolysis of steam/CO2 mixtures to produce syngas, the raw material for synthetic fuels production. When powered by nuclear energy, high temperature co-electrolysis offers a carbon-neutral means of syngas production while consuming CO2. The INL has been conducting experiments to characterize the electrochemical performance of co-electrolysis, as well as validate INL-developed computer models. An inline methanation reactor has also been tested to study direct methane production from co-electrolysis products. Testing to date indicate that high temperature steam electrolysis cells perform equally well under co-electrolysis conditions. Process model predictions compare well with measurements for outlet product compositions. The process appears to be a promising technique for large-scale syngas production.

  1. Nested data independent MS/MS acquisition.

    PubMed

    Kaufmann, Anton; Walker, Stephan

    2016-07-01

    Data independent acquisition (DIA) attempts to provide comprehensive MS/MS data while providing a cycle time that is capable of following the elution profile of chromatographic peaks. Currently available MS technology is not yet fully capable of fulfilling these expectations. This paper suggests a new multiplex-based approach to more closely achieve this objective. Customized scans have been programmed for a Q Orbitrap instrument. Multiple nonadjacent mass range segments are sequentially collected (cut out) by the quadrupole. These combined mass ranges undergo fragmentation, and the resulting product ions are analyzed as a whole by the Orbitrap analyzer. The systematical variation of the mass range segments (nested design) permits the mathematical assignment of the observed product ions within a narrow precursor mass range. The proposed approach allows the use of mass windows that are narrower than those in conventional DIA (SWATH). A unique aspect of the proposed approach is the fact that halving the mass window width requires the addition of only a single multiplexed scan. This is different from conventional DIA, which requires the number of mass windows to be doubled in order to achieve the same objective. This paper shows that for a given cycle time, the proposed nested DIA technique produces significantly less chimeric product ion spectra than conventional DIA. However, further improvements from the programming, and most likely the hardware side, are still required in order to achieve the aim of comprehensive MS/MS. Graphical Abstract Schematic of nested design. PMID:27188447

  2. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    SciTech Connect

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable

  3. Novel process for recycling magnesium alloy employing refining and solid oxide membrane electrolysis

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofei

    Magnesium is the least dense engineering metal, with an excellent stiffness-to-weight ratio. Magnesium recycling is important for both economic and environmental reasons. This project demonstrates feasibility of a new environmentally friendly process for recycling partially oxidized magnesium scrap to produce very pure magnesium at low cost. It combines refining and solid oxide membrane (SOM) based oxide electrolysis in the same reactor. Magnesium and its oxide are dissolved in a molten flux. This is followed by argon-assisted evaporation of dissolved magnesium, which is subsequently condensed in a separate condenser. The molten flux acts as a selective medium for magnesium dissolution, but not aluminum or iron, and therefore the magnesium collected has high purity. Potentiodynamic scans are performed to monitor the magnesium content change in the scrap as well as in solution in the flux. The SOM electrolysis is employed in the refining system to enable electrolysis of the magnesium oxide dissolved in the flux from the partially oxidized scrap. During the SOM electrolysis, oxygen anions are transported out of the flux through a yttria stabilized zirconia membrane to a liquid silver anode where they are oxidized. Simultaneously, magnesium cations are transported through the flux to a steel cathode where they are reduced. The combination of refining and SOM electrolysis yields close to 100% removal of magnesium metal from partially oxidized magnesium scrap. The magnesium recovered has a purity of 99.6w%. To produce pure oxygen it is critical to develop an inert anode current collector for use with the non-consumable liquid silver anode. In this work, an innovative inert anode current collector is successfully developed and used in SOM electrolysis experiments. The current collector employs a sintered strontium-doped lanthanum manganite (La0.8Sr0.2MnO 3-delta or LSM) bar, an Inconel alloy 601 rod, and a liquid silver contact in between. SOM electrolysis experiments

  4. DESIGN OF A COMPACT HEAT EXCHANGER FOR HEAT RECUPERATION FROM A HIGH TEMPERATURE ELECTROLYSIS SYSTEM

    SciTech Connect

    G. K. Housley; J.E. O'Brien; G.L. Hawkes

    2008-11-01

    Design details of a compact heat exchanger and supporting hardware for heat recuperation in a high-temperature electrolysis application are presented. The recuperative heat exchanger uses a vacuum-brazed plate-fin design and operates between 300 and 800°C. It includes corrugated inserts for enhancement of heat transfer coefficients and extended heat transfer surface area. Two recuperative heat exchangers are required per each four-stack electrolysis module. The heat exchangers are mated to a base manifold unit that distributes the inlet and outlet flows to and from the four electrolysis stacks. Results of heat exchanger design calculations and assembly details are also presented.

  5. THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE ELECTROLYSIS AND BIO-MASS GASIFICATION

    SciTech Connect

    M. G. McKellar; G. L. Hawkes; J. E. O'Brien

    2008-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to improve the hydrogen production efficiency of the steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon dioxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K.

  6. Treatment of chitin-producing wastewater by micro-electrolysis-contact oxidization.

    PubMed

    Yang, Yue-ping; Xu, Xin-hua; Chen, Hai-feng

    2004-04-01

    The technique of micro-electrolysis-contact oxidization was exploited to treat chitin-producing wastewater. Results showed that Fe-C micro-electrolysis can remove about 30% COD(cr), raise pH from 0.7 to 5.5. The COD(cr) removal efficiency by biochemical process can be more than 80%. During a half year's operation, the whole system worked very stably and had good results, as proved by the fact that every quality indicator of effluent met the expected discharge standards; which means that chitin wastewater can be treated by the technique of micro-electrolysis, contact oxidization. PMID:14994434

  7. High Temperature Electrolysis 4 kW Experiment Design, Operation, and Results

    SciTech Connect

    J.E. O'Brien; X. Zhang; K. DeWall; L. Moore-McAteer; G. Tao

    2012-09-01

    This report provides results of long-term stack testing completed in the new high-temperature steam electrolysis multi-kW test facility recently developed at INL. The report includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This facility has provided a demonstration of high-temperature steam electrolysis operation at the 4 kW scale with advanced cell and stack technology. This successful large-scale demonstration of high-temperature steam electrolysis will help to advance the technology toward near-term commercialization.

  8. Study on the Inter-electrode Process of Aluminum Electrolysis

    NASA Astrophysics Data System (ADS)

    Yang, Youjian; Gao, Bingliang; Wang, Zhaowen; Shi, Zhongning; Hu, Xianwei

    2016-02-01

    The voltage distribution between carbon anode and aluminum cathode in cryolite electrolyte saturated with alumina was determined using a scanning reference electrode to investigate the inter-electrode process during aluminum electrolysis. The results showed that the anode-cathode-distance (ACD) is consisted of three parts: a relatively stable cathode boundary layer, bubble-free electrolyte layer, and gas-liquid layer near the anode. The aluminum diffusion layer with high electronic conductivity as well as the crystallization of cryolite was observed at the cathode boundary layer. The thickness of the aluminum diffusion layer varied with current density, which further determined the critical ACD. The thickness, coverage, and releasing frequency of the bubbles on both laboratory and industrial prebaked cells were derived, and it is found that the average bubble coverage decreases with current density, and the average coverage at 0.8 A cm-2 is approximately 50 pct.

  9. Continuous microalgae recovery using electrolysis with polarity exchange.

    PubMed

    Kim, Jungmin; Ryu, Byung-Gon; Kim, Bo-Kyong; Han, Jong-In; Yang, Ji-Won

    2012-05-01

    There is increasing interest in the use of microalgae as a renewable source for the production of fuels and chemicals, but improvements are needed in all steps of this process, including harvesting. A continuous microalgae harvest system was developed based on electrolysis, referred to here as a continuous electrolytic microalgae (CEM) harvest system. This innovative system combines cultivation and harvesting and enables continuous and efficient concentration of microalgae. The electrodes were subject to a polarity exchange (PE) in the middle of the operation to further improve the harvest efficiency. Use of PE, rather than conventional electro-coagulation-flotation (ECF), led to more efficient cell recovery and more uniform recovery over the entire harvest chamber. In addition, PE increased the cell growth rate and the circulated cells remained intact after harvesting. PMID:22397823

  10. Advancements in water vapor electrolysis technology. [for Space Station ECLSS

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Heppner, Dennis B.; Sudar, Martin

    1988-01-01

    The paper describes a technology development program whose goal is to develop water vapor electrolysis (WVE) hardware that can be used selectively as localized topping capability in areas of high metabolic activity without oversizing the central air revitalization system on long-duration manned space missions. The WVE will be used primarily to generate O2 for the crew cabin but also to provide partial humidity control by removing water vapor from the cabin atmosphere. The electrochemically based WVE interfaces with cabin air which is controlled in the following ranges: dry bulb temperature of 292 to 300 K; dew point temperature of 278 to 289 K; relative humidity of 25 to 75 percent; and pressure of 101 + or - 1.4 kPa. Design requirements, construction details, and results for both single-cell and multicell module testing are presented, and the preliminary sizing of a multiperson subsystem is discussed.

  11. Alkaline Ammonia Electrolysis on Electrodeposited Platinum for Controllable Hydrogen Production.

    PubMed

    Gwak, Jieun; Choun, Myounghoon; Lee, Jaeyoung

    2016-02-19

    Ammonia is beginning to attract a great deal of attention as an alternative energy source carrier, because clean hydrogen can be produced through electrolytic processes without the emission of COx . In this study, we deposited various shapes of Pt catalysts under potentiostatic mode; the electrocatalytic oxidation behavior of ammonia using these catalysts was studied in alkaline media. The electrodeposited Pt was characterized by both qualitative and quantitative analysis. To discover the optimal structure and the effect of ammonia concentration, the bulk pH value, reaction temperature, and applied current of ammonia oxidation were investigated using potential sweep and galvanostatic methods. Finally, ammonia electrolysis was conducted using a zero-gap cell, producing highly pure hydrogen with an energy efficiency over 80 %. PMID:26530809

  12. Hydrogen production via urea electrolysis using a gel electrolyte

    NASA Astrophysics Data System (ADS)

    King, Rebecca L.; Botte, Gerardine G.

    2011-03-01

    A technology was demonstrated for the production of hydrogen and other valuable products (nitrogen and clean water) through the electrochemical oxidation of urea in alkaline media. In addition, this process remediates toxic nitrates and prevents gaseous ammonia emissions. Improvements to urea electrolysis were made through replacement of aqueous KOH electrolyte with a poly(acrylic acid) gel electrolyte. A small volume of poly(acrylic acid) gel electrolyte was used to accomplish the electrochemical oxidation of urea improving on the previous requirement for large amounts of aqueous potassium hydroxide. The effect of gel composition was investigated by varying polymer content and KOH concentrations within the polymer matrix in order to determine which is the most advantageous for the electrochemical oxidation of urea and production of hydrogen.

  13. Impact of low gravity on water electrolysis operation

    NASA Technical Reports Server (NTRS)

    Powell, F. T.; Schubert, F. H.; Lee, M. G.

    1989-01-01

    Advanced space missions will require oxygen and hydrogen utilities for several important operations including the following: (1) propulsion; (2) electrical power generation and storage; (3) environmental control and life support; (4) extravehicular activity; (5) in-space manufacturing and (6) in-space science activities. An experiment suited to a Space Shuttle standard middeck payload has been designed for the Static Feed Water Electrolysis technology which has been viewed as being capable of efficient, reliable oxygen and hydrogen generation with few subsystem components. The program included: end use design requirements, phenomena to be studied, Space Shuttle Orbiter experiment constraints, experiment design and data requirements, and test hardware requirements. The objectives are to obtain scientific and engineering data for future research and development and to focus on demonstrating and monitoring for safety of a standard middeck payload.

  14. Competitively priced hydrogen via high-efficiency nuclear electrolysis

    NASA Technical Reports Server (NTRS)

    Escher, W. J. D.; Donakowski, T. D.

    1977-01-01

    A fully dedicated nuclear-electrolytic hydrogen-production facility, based on advanced (1985) technology, has been synthesized and assessed at the conceptual level. The facility integrates an HTGR operating a binary shaftpower-extraction cycle at 980 C top temperature, direct dc electricity generation via acyclic generators, and high-current density high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced. Pipeline-pressure hydrogen and coproduct oxygen are produced at 6900 kPa. On consistent costing bases, the advanced facility concept was found to provide hydrogen costs that were approximately half those associated with conventional, contemporary-technology nuclear electrolysis. The nuclear heat-to-hydrogen energy conversion efficiency for the advanced system was estimated as 43%, against 25% for the baseline present-day approach.

  15. A model-based understanding of solid-oxide electrolysis cells (SOECs) for syngas production by H2O/CO2 co-electrolysis

    NASA Astrophysics Data System (ADS)

    Menon, Vikram; Fu, Qingxi; Janardhanan, Vinod M.; Deutschmann, Olaf

    2015-01-01

    High temperature co-electrolysis of H2O and CO2 offers a promising route for syngas (H2, CO) production via efficient use of heat and electricity. The performance of a SOEC during co-electrolysis is investigated by focusing on the interactions between transport processes and electrochemical parameters. Electrochemistry at the three-phase boundary is modeled by a modified Butler-Volmer approach that considers H2O electrolysis and CO2 electrolysis, individually, as electrochemically active charge transfer pathways. The model is independent of the geometrical structure. A 42-step elementary heterogeneous reaction mechanism for the thermo-catalytic chemistry in the fuel electrode, the dusty gas model (DGM) to account for multi-component diffusion through porous media, and a plug flow model for flow through the channels are used in the model. Two sets of experimental data are reproduced by the simulations, in order to deduce parameters of the electrochemical model. The influence of micro-structural properties, inlet cathode gas velocity, and temperature are discussed. Reaction flow analysis is performed, at OCV, to study methane production characteristics and kinetics during co-electrolysis. Simulations are carried out for configurations ranging from simple one-dimensional electrochemical button cells to quasi-two-dimensional co-flow planar cells, to demonstrate the effectiveness of the computational tool for performance and design optimization.

  16. Hydrogen Production:. Ceramic Materials for High Temperature Water Electrolysis

    NASA Astrophysics Data System (ADS)

    Hammou, A.

    2006-06-01

    Hydogen, H2 is regarded as the main energy vector for the future. Today, the world production of hydrogen rises to 550 billion Nm3 (44 Mt) corresponding to 1,5% of the primary energy production. Contrary to fossil fuels, H2 does not exist in a native form and its use obviously requires its fabrication and storage. The future status of H2 as a fuel for electricity production (fuel cells) and for automobile transportation makes necessary a considerable increase of its production. Some H2 manufactoring processes are briefly described in the first part of this article : (i) steam methane reforming, (ii) water decomposition by thermochemical cycles, (iii) water decomposition by photoelectrochemistry, (iv) water or organic compounds decomposition in using bacteria or alguae. The second part concerns the H2 production by water electrolysis. This manufactoring process does not exceed 1% of the total production of hydrogen. It is expected that the electrolysers working at high temperature (700-900°C) using ceramic oxides based electrolytes are the more promising. Two groups are considered: electrolysers with proton conductors or oxide ion conductors as electrolytes. Proton conductors belong to the perovskite oxides family MCe1-xLnxO3 with M = Ba, Sr and Ln = Lanthanide. For these conductors, few results on water electrolysis at high temperature are available in the litterature and will be shown here. Electrolysers using oxide ion conductors are more promising. The selected materials are those developped for SOFCs : YSZ for the electrolyte, Ni based cermets for the cathode materials and La1-xSrxMO3±δ with M = Mn, Co, Ni, Fe ... The electrochemical characteristics of the anodic and cathodic interfaces as well as the perfomances of electrolysers working at high temperature are presented.

  17. Primary-Progressive MS (PPMS)

    MedlinePlus

    ... MS? Types of MS Primary progressive MS (PPMS) Primary progressive MS (PPMS) Share Smaller Text Larger Text Print In this article Overview PPMS is characterized by worsening neurologic function ( ...

  18. Sensitivity of GC-EI/MS, GC-EI/MS/MS, LC-ESI/MS/MS, LC-Ag(+) CIS/MS/MS, and GC-ESI/MS/MS for analysis of anabolic steroids in doping control.

    PubMed

    Cha, Eunju; Kim, Sohee; Kim, Ho Jun; Lee, Kang Mi; Kim, Ki Hun; Kwon, Oh-Seung; Lee, Jaeick

    2015-01-01

    This study compared the sensitivity of various separation and ionization methods, including gas chromatography with an electron ionization source (GC-EI), liquid chromatography with an electrospray ionization source (LC-ESI), and liquid chromatography with a silver ion coordination ion spray source (LC-Ag(+) CIS), coupled to a mass spectrometer (MS) for steroid analysis. Chromatographic conditions, mass spectrometric transitions, and ion source parameters were optimized. The majority of steroids in GC-EI/MS/MS and LC-Ag(+) CIS/MS/MS analysis showed higher sensitivities than those obtained with other analytical methods. The limits of detection (LODs) of 65 steroids by GC-EI/MS/MS, 68 steroids by LC-Ag(+) CIS/MS/MS, 56 steroids by GC-EI/MS, 54 steroids by LC-ESI/MS/MS, and 27 steroids by GC-ESI/MS/MS were below cut-off value of 2.0 ng/mL. LODs of steroids that formed protonated ions in LC-ESI/MS/MS analysis were all lower than the cut-off value. Several steroids such as unconjugated C3-hydroxyl with C17-hydroxyl structure showed higher sensitivities in GC-EI/MS/MS analysis relative to those obtained using the LC-based methods. The steroids containing 4, 9, 11-triene structures showed relatively poor sensitivities in GC-EI/MS and GC-ESI/MS/MS analysis. The results of this study provide information that may be useful for selecting suitable analytical methods for confirmatory analysis of steroids. PMID:26489966

  19. Photochemical defluorination of aqueous perfluorooctanoic acid (PFOA) by Fe(0)/GAC micro-electrolysis and VUV-Fenton photolysis.

    PubMed

    Zhang, Li-Hong; Cheng, Jian-Hua; You, Xia; Liang, Xiao-Yan; Hu, Yong-You

    2016-07-01

    Perfluorooctanoic acid (PFOA) is extremely persistent and bioaccumulative in the environment; thus, it is very urgent to investigate an effective and moderate technology to treat the pollution of PFOA. In this study, a process combined iron and granular activated carbon (Fe(0)/GAC) micro-electrolysis with VUV-Fenton system is employed for the remediation of PFOA. Approximately 50 % PFOA (10 mg L(-1)) could be efficiently defluorinated under the following conditions: pH 3.0, dosage of Fe 7.5 g L(-1), dosage of GAC 12.5 g L(-1), and concentration of H2O2 22.8 mmol L(-1). Meanwhile, during the process, evident defluorination was observed and the concentration of fluoride ion was eventually 3.23 mg L(-1). The intermediates including five shorter-chain perfluorinated carboxylic acids (PFCAs), i.e., C7, C6, C5, C4, and C3, were also analyzed by high-performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS) and defluorination mechanisms of PFOA was proposed, which involved photochemical of OH·, direct photolysis (185-nm VUV), and photocatalytic degradation of PFOA in the presence of Fe(3+) (254-nm UV). PMID:27030239

  20. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.

    PubMed

    Liu, Guangli; Zhou, Ying; Luo, Haiping; Cheng, Xing; Zhang, Renduo; Teng, Wenkai

    2015-12-01

    The aim of this study was to investigate different microbial electrolysis desalination cells for malic acid production. The systems included microbial electrolysis desalination and chemical-production cell (MEDCC), microbial electrolysis desalination cell (MEDC) with bipolar membrane and anion exchange membrane (BP-A MEDC), MEDC with bipolar membrane and cation exchange membrane (BP-C MEDC), and modified microbial desalination cell (M-MDC). The microbial electrolysis desalination cells performed differently in terms of malic acid production and energy consumption. The MEDCC performed best with the highest malic acid production rate (18.4 ± 0.6 mmol/Lh) and the lowest energy consumption (0.35 ± 0.14 kWh/kg). The best performance of MEDCC was attributable to the neutral pH condition in the anode chamber, the lowest internal resistance, and the highest Geobacter percentage of the anode biofilm population among all the reactors. PMID:26367771

  1. High Temperature Steam Electrolysis: Demonstration of Improved Long-Term Performance

    SciTech Connect

    J. E. O'Brien; X. Zhang; R. C. O'Brien; G. Tao

    2011-11-01

    Long-term performance is an ongoing issue for hydrogen production based on high-temperature steam electrolysis (HTSE). For commercial deployment, solid-oxide electrolysis stacks must achieve high performance with long-term degradation rates of {approx}0.5%/1000 hours or lower. Significant progress has been achieved toward this goal over the past few years. This paper will provide details of progress achieved under the Idaho National Laboratory high temperature electrolysis research program. Recent long-term stack tests have achieved high initial performance with degradation rates less than 5%/khr. These tests utilize internally manifolded stacks with electrode-supported cells. The cell material sets are optimized for the electrolysis mode of operation. Details of the cells and stacks will be provided along with details of the test apparatus, procedures, and results.

  2. Advancements in oxygen generation and humidity control by water vapor electrolysis

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Sudar, M.; Lee, M. C.

    1988-01-01

    Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.

  3. THE HIGH-TEMPERATURE ELECTROLYSIS PROGRAM AT THE IDAHO NATIONAL LABORATORY: OBSERVATIONS ON PERFORMANCE DEGRADATION

    SciTech Connect

    J. E. O'Brien; C. M. Stoots; J. S. Herring; K. G. Condie; G. K. Housley

    2009-06-01

    This paper presents an overview of the high-temperature electrolysis research and development program at the Idaho National Laboratory, with selected observations of electrolysis cell degradation at the single-cell, small stack and large facility scales. The objective of the INL program is to address the technical and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for hydrogen production from steam. In the envisioned application, high-temperature electrolysis would be coupled to an advanced nuclear reactor for efficient large-scale non-fossil non-greenhouse-gas hydrogen production. The program supports a broad range of activities including small bench-scale experiments, larger scale technology demonstrations, detailed computational fluid dynamic modeling, and system modeling. A summary of the current status of these activities and future plans will be provided, with a focus on the problem of cell and stack degradation.

  4. Stainless steel anodes for alkaline water electrolysis and methods of making

    DOEpatents

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  5. Pulse Oximetry

    MedlinePlus

    ... www.thoracic.org amount of gases (oxygen and carbon dioxide) that are in your blood. To get an ... Also, a pulse oximeter does not measure your carbon dioxide level. How accurate is the pulse oximeter? The ...

  6. Ms. Mentor Unmasked

    ERIC Educational Resources Information Center

    Krebs, Paula

    2008-01-01

    This article presents an interview with Emily Toth, who writes the monthly "Ms. Mentor" academic advice column in the "Chronicle of Higher Education" and teaches in the English department at Louisiana State University, in Baton Rouge. She is the author of "Ms. Mentor's Impeccable Advice for Women in Academia" (1997), "Inside Peyton Place: The Life…

  7. High performance of nitrogen and phosphorus removal in an electrolysis-integrated biofilter.

    PubMed

    Gao, Y; Xie, Y W; Zhang, Q; Yu, Y X; Yang, L Y

    2016-01-01

    A novel electrolysis-integrated biofilter system was developed in this study to evaluate the intensified removal of nitrogen and phosphorus from contaminated water. Two laboratory-scale biofilter systems were established, one with electrolysis (E-BF) and one without electrolysis (BF) as control. The dynamics of intensified nitrogen and phosphorus removal and the changes of inflow and outflow water qualities were also evaluated. The total nitrogen (TN) removal rate was 94.4% in our newly developed E-BF, but only 74.7% in the control BF. Ammonium removal rate was up to 95% in biofilters with or without electrolysis integration with an influent ammonium concentration of 40 mg/L, and the accumulation of nitrate and nitrite was much lower in the effluent of E-BF than that of BF. Thus electrolysis plays an important role in TN removal especially the nitrate and nitrite removal. Phosphorus removal was significantly enhanced, exceeding 90% in E-BF by chemical precipitation, physical adsorption, and flocculation of phosphorus because of the in situ formation of ferric ions by the anodizing of sacrificial iron anodes. Results from this study indicate that the electrolysis integrated biofilter is a promising solution for intensified nitrogen and phosphorus removal. PMID:27508376

  8. Optimum conditions for Al13 polymer formation in PACl preparation by electrolysis process.

    PubMed

    Qu, Jiuhui; Liu, Huijuan

    2004-04-01

    This paper introduces a new and effective method for preparation of PACl-electrolysis process. A series of PACl with high content of Al13 polymer was successfully prepared by electrolysis process. The amount of Al13 polymer formed in electrolysis process was found to be highly influenced by current density (di), the distance between the electrodes, electrolysis time and the stirring rate of the electrolyte. For the AlT (total aluminum concentration) of 2.0 M PACl obtained by electrolysis process, the optimal di and distance between the electrodes were 1.1 Adm(-2) and 10 mm respectively. The optimum circulating rate was 5.5 l h(-1). Because of the inhomogeneous pH between the surface of cathode and the bulk solution, the electrolysis process has the advantage to form more Al(OH)4- as precursor of Al13 polymer. At the optimum condition, Al13 polymer accounted for above 70% of AlT (PACl of AlT=2.0 M and B=2.0), which was much higher than that of PACl prepared by other method. PMID:14720546

  9. MS/MS Automated Selected Ion Chromatograms

    Energy Science and Technology Software Center (ESTSC)

    2005-12-12

    This program can be used to read a LC-MS/MS data file from either a Finnigan ion trap mass spectrometer (.Raw file) or an Agilent Ion Trap mass spectrometer (.MGF and .CDF files) and create a selected ion chromatogram (SIC) for each of the parent ion masses chosen for fragmentation. The largest peak in each SIC is also identified, with reported statistics including peak elution time, height, area, and signal to noise ratio. It creates severalmore » output files, including a base peak intensity (BPI) chromatogram for the survey scan, a BPI for the fragmentation scans, an XML file containing the SIC data for each parent ion, and a "flat file" (ready for import into a database) containing summaries of the SIC data statistics.« less

  10. PULSE GENERATOR

    DOEpatents

    Roeschke, C.W.

    1957-09-24

    An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.

  11. High Temperature Electrolysis Pressurized Experiment Design, Operation, and Results

    SciTech Connect

    J.E. O'Brien; X. Zhang; G.K. Housley; K. DeWall; L. Moore-McAteer

    2012-09-01

    A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate planar cells with dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. It is also suitable for testing other cell and stack geometries including tubular cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. Pressurized operation of a ten-cell internally manifolded solid oxide electrolysis stack has been successfully demonstrated up 1.5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this

  12. Managing Progressive MS

    MedlinePlus

    ... MS Society | 8 builders about renovations and home adaptations to support independence. OTs may also evaluate and ... Staying at home will mean making changes. Home adaptations do more than fight fatigue. They offer safety, ...

  13. Living with Advanced MS

    MedlinePlus

    ... Read More Read More Resource Edward M. Dowd Personal Advocate Program The Edward M. Dowd Personal Advocate ... Informed About the Society Vision Careers Leadership Cultural Values Financials News Press Room MS Prevalence Charitable Ratings ...

  14. MS Based Metabonomics

    SciTech Connect

    Want, Elizabeth J.; Metz, Thomas O.

    2010-03-01

    Metabonomics is the latest and least mature of the systems biology triad, which also includes genomics and proteomics, and has its origins in the early orthomolecular medicine work pioneered by Linus Pauling and Arthur Robinson. It was defined by Nicholson and colleagues in 1999 as the quantitative measurement of perturbations in the metabolite complement of an integrated biological system in response to internal or external stimuli, and is often used today to describe many non-global types of metabolite analyses. Applications of metabonomics are extensive and include toxicology, nutrition, pharmaceutical research and development, physiological monitoring and disease diagnosis. For example, blood samples from millions of neonates are tested routinely by mass spectrometry (MS) as a diagnostic tool for inborn errors of metabolism. The metabonome encompasses a wide range of structurally diverse metabolites; therefore, no single analytical platform will be sufficient. Specialized sample preparation and detection techniques are required, and advances in NMR and MS technologies have led to enhanced metabonome coverage, which in turn demands improved data analysis approaches. The role of MS in metabonomics is still evolving as instrumentation and software becomes more sophisticated and as researchers realize the strengths and limitations of current technology. MS offers a wide dynamic range, high sensitivity, and reproducible, quantitative analysis. These attributes are essential for addressing the challenges of metabonomics, as the range of metabolite concentrations easily exceeds nine orders of magnitude in biofluids, and the diversity of molecular species ranges from simple amino and organic acids to lipids and complex carbohydrates. Additional challenges arise in generating a comprehensive metabolite profile, downstream data processing and analysis, and structural characterization of important metabolites. A typical workflow of MS-based metabonomics is shown in Figure

  15. IMS - MS Data Extractor

    Energy Science and Technology Software Center (ESTSC)

    2015-10-20

    An automated drift time extraction and computed associated collision cross section software tool for small molecule analysis with ion mobility spectrometry-mass spectrometry (IMS-MS). The software automatically extracts drift times and computes associated collision cross sections for small molecules analyzed using ion mobility spectrometry-mass spectrometry (IMS-MS) based on a target list of expected ions provided by the user.

  16. Electrode kinetics of a water vapor electrolysis cell

    NASA Technical Reports Server (NTRS)

    Jacobs, G.

    1974-01-01

    The anodic electrochemical behavior of the water vapor electrolysis cell was investigated. A theoretical review of various aspects of cell overvoltage is presented with special emphasis on concentration overvoltage and activation overvoltage. Other sources of overvoltage are described. The experimental apparatus controlled and measured anode potential and cell current. Potentials between 1.10 and 2.60 V (vs NHE) and currents between 0.1 and 3000 mA were investigated. Different behavior was observed between the standard cell and the free electrolyte cell. The free electrolyte cell followed typical Tafel behavior (i.e. activation overvoltage) with Tafel slopes of about 0.15, and the exchange current densities of 10 to the minus 9th power A/sq cm, both in good agreement with literature values. The standard cell exhibitied this same Tafel behavior at lower current densities but deviated toward lower than expected current densities at higher potentials. This behavior and other results were examined to determine their origin.

  17. Ferric chloride leach-electrolysis process for production of lead

    SciTech Connect

    Sandberg, R.G.; Wong, M.M.

    1980-01-01

    The U.S. Department of the Interior, Bureau of Mines, under a cost-sharing, cooperative research agreement with lead producers, is studying a process to eliminate sulfur oxide generation and to minimize lead emission in the production of lead. The new process consists of leaching lead sulfide concentrate with a ferric chloride-sodium chloride solution to produce lead chloride, and fused-salt electrolysis of lead chloride to produce lead metal and chlorine. The chlorine is used to regenerate ferric chloride in the leach solution. The study is being conducted in a process investigation unit which treats 750 lb of concentrate a day. This paper discusses the results of operation of the process investigation unit, data on lead monitoring, and the precautions employed to control lead levels in the workplace atmosphere. The monitoring data for the initial phase of the investigation show lead levels well within OSHA permissible exposure limits. Continued development is necessary before the process can be considered for implementation.

  18. Systems Engineering Provides Successful High Temperature Steam Electrolysis Project

    SciTech Connect

    Charles V. Park; Emmanuel Ohene Opare, Jr.

    2011-06-01

    This paper describes two Systems Engineering Studies completed at the Idaho National Laboratory (INL) to support development of the High Temperature Stream Electrolysis (HTSE) process. HTSE produces hydrogen from water using nuclear power and was selected by the Department of Energy (DOE) for integration with the Next Generation Nuclear Plant (NGNP). The first study was a reliability, availability and maintainability (RAM) analysis to identify critical areas for technology development based on available information regarding expected component performance. An HTSE process baseline flowsheet at commercial scale was used as a basis. The NGNP project also established a process and capability to perform future RAM analyses. The analysis identified which components had the greatest impact on HTSE process availability and indicated that the HTSE process could achieve over 90% availability. The second study developed a series of life-cycle cost estimates for the various scale-ups required to demonstrate the HTSE process. Both studies were useful in identifying near- and long-term efforts necessary for successful HTSE process deployment. The size of demonstrations to support scale-up was refined, which is essential to estimate near- and long-term cost and schedule. The life-cycle funding profile, with high-level allocations, was identified as the program transitions from experiment scale R&D to engineering scale demonstration.

  19. Cadmium (II) removal mechanisms in microbial electrolysis cells.

    PubMed

    Colantonio, Natalie; Kim, Younggy

    2016-07-01

    Cadmium is a toxic heavy metal, causing serious environmental and human health problems. Conventional methods for removing cadmium from wastewater are expensive and inefficient for low concentrations. Microbial electrolysis cells (MECs) can simultaneously treat wastewater, produce hydrogen gas, and remove heavy metals with low energy requirements. Lab-scale MECs were operated to remove cadmium under various electric conditions: applied voltages of 0.4, 0.6, 0.8, and 1.0 V; and a fixed cathode potential of -1.0 V vs. Ag/AgCl. Regardless of the electric condition, rapid removal of cadmium was demonstrated (50-67% in 24 h); however, cadmium concentration in solution increased after the electric current dropped with depleted organic substrate under applied voltage conditions. For the fixed cathode potential, the electric current was maintained even after substrate depletion and thus cadmium concentration did not increase. These results can be explained by three different removal mechanisms: cathodic reduction; Cd(OH)2 precipitation; and CdCO3 precipitation. When the current decreased with depleted substrates, local pH at the cathode was no longer high due to slowed hydrogen evolution reaction (2H(+)+2e(-)→H2); thus, the precipitated Cd(OH)2 and CdCO3 started dissolving. To prevent their dissolution, sufficient organic substrates should be provided when MECs are used for cadmium removal. PMID:26970043

  20. Oxygen production by electrolysis of molten lunar regolith

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.

    1990-01-01

    The goal of this study was threefold. First, the theoretical energy requirements of the process were to be defined. This includes studies of the relevant oxidation-reduction reactions in the melt, their kinetics and energies of reaction, and experimental determination of production efficiencies and melt resistivities as functions of melt composition and applied potential. Second, the product(s) of silicate electrolysis were to be characterized. This includes: (1) evaluating the phase relationships in the systems SiO2-TiO2-Al2O3-MgO-FeO-CaO and Fe-Si; (2) estimating the compositions of the metal products as a function of applied potential and feedstock composition based on phase equilibria in the Fe-Si system and free energy values for SiO2 and FeO reported in the literature; (3) definition of compositions of products in actual experiments; and (4) definition of the form the product takes (whether phases separate or remain fixed, whether crystals settle or float in the remaining melt, and how large crystals form). Third, materials for these highly corrosive high-temperature silicate melts were to be identified. This includes identifing materials that may be either inert or thermodynamically stable in these melts, and experimental testing of the materials to confirm that they do not deteriorate. The results are discussed within this framework.

  1. Electrolysis Performance Improvement Concept Study (EPICS) Flight Experiment-Reflight

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.

    1997-01-01

    The Electrolysis Performance Improvement Concept Study (EPICS) is a flight experiment to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer (SFE) concept which was selected for the use aboard the International Space Station (ISS) for oxygen (O2) generation. It also is to investigate the impact of microgravity on electrochemical cell performance. Electrochemical cells are important to the space program because they provide an efficient means of generating O2 and hydrogen (H2) in space. Oxygen and H2 are essential not only for the survival of humans in space but also for the efficient and economical operation of various space systems. Electrochemical cells can reduce the mass, volume and logistical penalties associated with resupply and storage by generating and/or consuming these gases in space. An initial flight of the EPICS was conducted aboard STS-69 from September 7 to 8, 1995. A temperature sensor characteristics shift and a missing line of software code resulted in only partial success of this initial flight. Based on the review and recommendations of a National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) review team a reflight activity was initiated to obtain the remaining desired results, not achieved during the initial flight.

  2. Impact of volatile fatty acids on microbial electrolysis cell performance.

    PubMed

    Yang, Nan; Hafez, Hisham; Nakhla, George

    2015-10-01

    This study investigated the performance of microbial electrolysis cells (MECs) fed with three common fermentation products: acetate, butyrate, and propionate. Each substrate was fed to the reactor for three consecutive-batch cycles. The results showed high current densities for acetate, but low current densities for butyrate and propionate (maximum values were 6.0 ± 0.28, 2.5 ± 0.06, 1.6 ± 0.14 A/m(2), respectively). Acetate also showed a higher coulombic efficiency of 87 ± 5.7% compared to 72 ± 2.0 and 51 ± 6.4% for butyrate and propionate, respectively. This paper also revealed that acetate could be easily oxidized by anode respiring bacteria in MEC, while butyrate and propionate could not be oxidized to the same degree. The utilization rate of the substrates in MEC followed the order: acetate > butyrate > propionate. The ratio of suspended biomass to attached biomass was approximately 1:4 for all the three substrates. PMID:26159302

  3. Modeling Degradation in Solid Oxide Electrolysis Cells - Volume II

    SciTech Connect

    Manohar Motwani

    2011-09-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells (SOECs). To accomplish this, technical and degradation issues associated with the SOECs will need to be addressed. This report covers various approaches being pursued to model degradation issues in SOECs. An electrochemical model for degradation of SOECs is presented. The model is based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. It is shown that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential,, within the electrolyte. The within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just near the oxygen electrode/electrolyte interface, leading to oxygen electrode delamination. These predictions are in accordance with the reported literature on the subject. Development of high pressures may be avoided by introducing some electronic conduction in the electrolyte. By combining equilibrium thermodynamics, non-equilibrium (diffusion) modeling, and first-principles, atomic scale calculations were performed to understand the degradation mechanisms and provide practical recommendations on how to inhibit and/or completely mitigate them.

  4. Composition pulse time-of-flight mass flow sensor

    DOEpatents

    Harnett, Cindy K.; Crocker, Robert W.; Mosier, Bruce P.; Caton, Pamela F.; Stamps, James F.

    2007-06-05

    A device for measuring fluid flow rates over a wide range of flow rates (<1 nL/min to >10 .mu.L/min) and at pressures at least as great as 2,000 psi. The invention is particularly adapted for use in microfluidic systems. The device operates by producing compositional variations in the fluid, or pulses, that are subsequently detected downstream from the point of creation to derive a flow rate. Each pulse, comprising a small fluid volume, whose composition is different from the mean composition of the fluid, can be created by electrochemical means, such as by electrolysis of a solvent, electrolysis of a dissolved species, or electrodialysis of a dissolved ionic species. Measurements of the conductivity of the fluid can be used to detect the arrival time of the pulses, from which the fluid flow rate can be determined. A pair of spaced apart electrodes can be used to produce the electrochemical pulse. In those instances where it is desired to measure a wide range of fluid flow rates a three electrode configuration in which the electrodes are spaced at unequal distances has been found to be desirable.

  5. STS-47 MS Davis and MS Jemison conduct LBNP experiment in the SLJ module

    NASA Technical Reports Server (NTRS)

    1992-01-01

    At the aft end of the Spacelab Japan (SLJ) science module, STS-47 Mission Specialist (MS) N. Jan Davis (foreground) readies Rack 9 Automatic Blood Pressure System (ABPS) controls as MS Mae C. Jemison, inside the cylindrical fabric lower body negative pressure (LBNP) device, waits for the LBNP experiment to begin. LBNP device is sealed around Jemison's waist. It is attached to the SLJ floor and has a controller that operates a pump to change the pressure inside. Davis will monitor Jemison's pulse rate, blood pressure, and cardiac dimensions and functions.

  6. Pulse stretcher

    DOEpatents

    Horton, J.A.

    1994-05-03

    Apparatus for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse is disclosed. The apparatus uses a White cell having a plurality of optical delay paths of successively increasing number of passes between the field mirror and the objective mirrors. A pulse from a laser travels through a multi-leg reflective path between a beam splitter and a totally reflective mirror to the laser output. The laser pulse is also simultaneously injected through the beam splitter to the input mirrors of the optical delay paths. The pulses from the output mirrors of the optical delay paths go simultaneously to the laser output and to the input mirrors of the longer optical delay paths. The beam splitter is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output. 6 figures.

  7. Pulsed power

    NASA Astrophysics Data System (ADS)

    Stone, David H.

    Pulsed power systems are critical elements for such prospective weapons technologies as high-power microwaves, electrothermal and electromagnetic projectile launchers, neutral particle beams, space-based FELs, ground-based lasers, and charged particle beams. Pulsed power will also be essential for the development of nonweapon military systems such as lidars and ultrawideband radars, and could serve as the bases for nuclear weapon effect simulators. The pulsed power generation requirements for each of these systems is considered.

  8. Progressive-Relapsing MS (PRMS)

    MedlinePlus

    ... the disease process in MS and in MRI technology. Individuals who were previously diagnosed with progressive-relapsing MS would now be ... The National MS Society is Here to Help Need More Information? We ...

  9. Pulse Voltammetry

    NASA Astrophysics Data System (ADS)

    Stojek, Zbigniew

    The idea of imposing potential pulses and measuring the currents at the end of each pulse was proposed by Barker in a little-known journal as early as in 1958 [1]. However, the first reliable trouble-free and affordable polarographs offering voltammetric pulse techniques appeared on the market only in the 1970s. This delay was due to some limitations on the electronic side. In the 1990s, again substantial progress in electrochemical pulse instrumentation took place. This was related to the introduction of microprocessors, computers, and advanced software.

  10. Ultrasound-Guided Percutaneous Electrolysis and Eccentric Exercises for Subacromial Pain Syndrome: A Randomized Clinical Trial

    PubMed Central

    Arias-Buría, José L.; Truyols-Domínguez, Sebastián; Valero-Alcaide, Raquel; Salom-Moreno, Jaime; Atín-Arratibel, María A.; Fernández-de-las-Peñas, César

    2015-01-01

    Objective. To compare effects of ultrasound- (US-) guided percutaneous electrolysis combined with an eccentric exercise program of the rotator cuff muscles in subacromial pain syndrome. Methods. Thirty-six patients were randomized and assigned into US-guided percutaneous electrolysis (n = 17) group or exercise (n = 19) group. Patients were asked to perform an eccentric exercise program of the rotator cuff muscles twice every day for 4 weeks. Participants assigned to US-guided percutaneous electrolysis group also received the application of galvanic current through acupuncture needle on each session once a week (total 4 sessions). Shoulder pain (NPRS) and disability (DASH) were assessed at baseline, after 2 sessions, and 1 week after the last session. Results. The ANOVA revealed significant Group∗Time interactions for shoulder pain and disability (all, P < 0.01): individuals receiving US-guided percutaneous electrolysis combined with the eccentric exercises experienced greater improvement than those receiving eccentric exercise alone. Conclusions. US-guided percutaneous electrolysis combined with eccentric exercises resulted in small better outcomes at short term compared to when only eccentric exercises were applied in subacromial pain syndrome. The effect was statistically and clinically significant for shoulder pain but below minimal clinical difference for function. Future studies should investigate the long-term effects and potential placebo effect of this intervention. PMID:26649058

  11. Intensified nitrogen and phosphorus removal in a novel electrolysis-integrated tidal flow constructed wetland system.

    PubMed

    Ju, Xinxin; Wu, Shubiao; Zhang, Yansheng; Dong, Renjie

    2014-08-01

    A novel electrolysis-integrated tidal flow constructed wetland (CW) system was developed in this study. The dynamics of intensified nitrogen and phosphorus removal and that of hydrogen sulphide control were evaluated. Ammonium removal of up to 80% was achieved with an inflow concentration of 60 mg/L in wetland systems with and without electrolysis integration. Effluent nitrate concentration decreased from 2 mg/L to less than 0.5 mg/L with the decrease in current intensity from 1.5 mA/cm(2) to 0.57 mA/cm(2) in the electrolysis-integrated wetland system, thus indicating that the current intensity of electrolysis plays an important role in nitrogen transformations. Phosphorus removal was significantly enhanced, exceeding 95% in the electrolysis-integrated CW system because of the in-situ formation of a ferric iron coagulant through the electro-dissolution of a sacrificial iron anode. Moreover, the electrolyzed wetland system effectively inhibits sulphide accumulation as a result of a sulphide precipitation coupled with ferrous-iron electro-dissolution and/or an inhibition of bacterial sulphate reduction under increased aerobic conditions. PMID:24784452

  12. Electrolysis byproduct D2O provides a third way to mitigate CO2

    SciTech Connect

    Schenewerk, William Ernest

    2009-09-01

    Rapid atomic power deployment may be possible without using fast breeder reactors or making undue demands on uranium resource. Using by-product D2O and thorium-U233 in CANDU and RBMK piles may circumvent need for either fast breeder reactors or seawater uranium. Atmospheric CO2 is presently increasing 2.25%/year in proportion to 2.25%/year exponential fossil fuel consumption increase. Roughly 1/3 anthropologic CO2 is removed by various CO2 sinks. CO2 removal is modelled as being proportional to 45-year-earlier CO2 amount above 280 ppm-C Water electrolysis produces roughly 0.1 kg-D20/kWe-y. Material balance assumes each electrolysis stage increases D2O bottoms concentration times 3. Except for first two electrolysis stages, all water from hydrogen consumption is returned to electrolysis. The unique characteristic of this process is the ability to economically burn all deuterium-enriched H2 in vehicles. Condensate from vehicles returns to appropriate electrolysis stage. Fuel cell condensate originally from reformed natural gas may augment second-sage feed. Atomic power expansion is 5%/year, giving 55000 GWe by 2100. World primary energy increases 2.25%/y, exceeding 4000 EJ/y by 2100. CO2 maximum is roughly 600 ppm-C around year 2085. CO2 declines back below 300 ppm-C by 2145 if the 45-year-delay seawater sink remains effective.

  13. RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS

    SciTech Connect

    X, Zhang; J. E. O'Brien; R. C. O'Brien; J. J. Hartvigsen; G. Tao; N. Petigny

    2012-07-01

    High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupported and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.

  14. Design of an Integrated Laboratory Scale Test for Hydrogen Production via High Temperature Electrolysis

    SciTech Connect

    G.K. Housley; K.G. Condie; J.E. O'Brien; C. M. Stoots

    2007-06-01

    The Idaho National Laboratory (INL) is researching the feasibility of high-temperature steam electrolysis for high-efficiency carbon-free hydrogen production using nuclear energy. Typical temperatures for high-temperature electrolysis (HTE) are between 800º-900ºC, consistent with anticipated coolant outlet temperatures of advanced high-temperature nuclear reactors. An Integrated Laboratory Scale (ILS) test is underway to study issues such as thermal management, multiple-stack electrical configuration, pre-heating of process gases, and heat recuperation that will be crucial in any large-scale implementation of HTE. The current ILS design includes three electrolysis modules in a single hot zone. Of special design significance is preheating of the inlet streams by superheaters to 830°C before entering the hot zone. The ILS system is assembled on a 10’ x 16’ skid that includes electronics, power supplies, air compressor, pumps, superheaters, , hot zone, condensers, and dew-point sensor vessels. The ILS support system consists of three independent, parallel supplies of electrical power, sweep gas streams, and feedstock gas mixtures of hydrogen and steam to the electrolysis modules. Each electrolysis module has its own support and instrumentation system, allowing for independent testing under different operating conditions. The hot zone is an insulated enclosure utilizing electrical heating panels to maintain operating conditions. The target hydrogen production rate for the ILS is 5000 Nl/hr.

  15. Performance Assessment of Single Electrode-Supported Solid Oxide Cells Operating in the Steam Electrolysis Mode

    SciTech Connect

    X. Zhang; J. E. O'Brien; R. C. O'Brien; N. Petigny

    2011-11-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. Results presented in this paper were obtained from single cells, with an active area of 16 cm{sup 2} per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes ({approx}10 {mu}m thick), nickel-YSZ steam/hydrogen electrodes ({approx}1400 {mu}m thick), and modified LSM or LSCF air-side electrodes ({approx}90 {mu}m thick). The purpose of the present study is to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysis mode under various operating conditions. Initial performance was documented through a series of voltage-current (VI) sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-term testing, first in the fuel cell mode, then in the electrolysis mode. Results generally indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of an improved single-cell test apparatus developed specifically for these experiments.

  16. Ultrasound-Guided Percutaneous Electrolysis and Eccentric Exercises for Subacromial Pain Syndrome: A Randomized Clinical Trial.

    PubMed

    Arias-Buría, José L; Truyols-Domínguez, Sebastián; Valero-Alcaide, Raquel; Salom-Moreno, Jaime; Atín-Arratibel, María A; Fernández-de-Las-Peñas, César

    2015-01-01

    Objective. To compare effects of ultrasound- (US-) guided percutaneous electrolysis combined with an eccentric exercise program of the rotator cuff muscles in subacromial pain syndrome. Methods. Thirty-six patients were randomized and assigned into US-guided percutaneous electrolysis (n = 17) group or exercise (n = 19) group. Patients were asked to perform an eccentric exercise program of the rotator cuff muscles twice every day for 4 weeks. Participants assigned to US-guided percutaneous electrolysis group also received the application of galvanic current through acupuncture needle on each session once a week (total 4 sessions). Shoulder pain (NPRS) and disability (DASH) were assessed at baseline, after 2 sessions, and 1 week after the last session. Results. The ANOVA revealed significant Group∗Time interactions for shoulder pain and disability (all, P < 0.01): individuals receiving US-guided percutaneous electrolysis combined with the eccentric exercises experienced greater improvement than those receiving eccentric exercise alone. Conclusions. US-guided percutaneous electrolysis combined with eccentric exercises resulted in small better outcomes at short term compared to when only eccentric exercises were applied in subacromial pain syndrome. The effect was statistically and clinically significant for shoulder pain but below minimal clinical difference for function. Future studies should investigate the long-term effects and potential placebo effect of this intervention. PMID:26649058

  17. On-board hydrogen storage and production: An application of ammonia electrolysis

    NASA Astrophysics Data System (ADS)

    Boggs, Bryan K.; Botte, Gerardine G.

    On-board hydrogen storage and production via ammonia electrolysis was evaluated to determine whether the process was feasible using galvanostatic studies between an ammonia electrolytic cell (AEC) and a breathable proton exchange membrane fuel cell (PEMFC). Hydrogen-dense liquid ammonia stored at ambient temperature and pressure is an excellent source for hydrogen storage. This hydrogen is released from ammonia through electrolysis, which theoretically consumes 95% less energy than water electrolysis; 1.55 Wh g -1 H 2 is required for ammonia electrolysis and 33 Wh g -1 H 2 for water electrolysis. An ammonia electrolytic cell (AEC), comprised of carbon fiber paper (CFP) electrodes supported by Ti foil and deposited with Pt-Ir, was designed and constructed for electrolyzing an alkaline ammonia solution. Hydrogen from the cathode compartment of the AEC was fed to a polymer exchange membrane fuel cell (PEMFC). In terms of electric energy, input to the AEC was less than the output from the PEMFC yielding net electrical energies as high as 9.7 ± 1.1 Wh g -1 H 2 while maintaining H 2 production equivalent to consumption.

  18. Simultaneous treatment of washing, disinfection and sterilization using ultrasonic levitation, silver electrolysis and ozone oxidation.

    PubMed

    Ueda, Toyotoshi; Hara, Masanori; Odagawa, Ikumi; Shigihara, Takanori

    2009-03-01

    A new type of ultrasonic washer-disinfector-sterilizer, able to clean, disinfect and sterilize most kinds of reusable medical devices, has been developed by using the ultrasonic levitation function with umbrella-shape oscillators and ozone bubbling together with sterilization carried out by silver electrolysis. We have examined the biomedical and physicochemical performance of this instrument. Prokariotic and gram-negative Escherichia coli and eukariotic Saccharomyces cerevisiae were killed by silver electrolysis in 18 min and 1 min, respectively. Prokariotic and gram-positive Geobacillus stearothermophilus and Bacillus atrophaeus, which are most resistant to autoclave and gas sterilization, respectively, were killed by silver electrolysis within 20 min. Prokariotic and gram-negative Pseudomonas aeruginosa was also killed by silver electrolysis in 10 min. The intensity distribution of the ultrasonic levitation waves was homogeneous throughout the tank. The concentration of ozone gas was 2.57 mg/ kg. The concentration of dissolved silver ions was around 0.17 mg/L. The disulfide bond in proteins was confirmed to be destroyed by silver electrolysis. PMID:19344093

  19. Overview of High-Temperature Electrolysis for Hydrogen Production

    SciTech Connect

    Herring, J. S.; O'Brien, J. E.; Stoots, C. M.; Hartvigsen, J. J.; Petri, M. C.; Carter, J. D.; Bischoff, B. L.

    2007-06-01

    Over the last five years there has been a growing interest in the use of hydrogen as an energy carrier, particularly to augment transportation fuels and thus reduce our dependence on imported petroleum. Hydrogen is now produced primarily via steam reforming of methane. However, in the long term, methane reforming is not a viable process for the large-scale hydrogen production since such fossil fuel conversion processes consume non-renewable resources and emit greenhouse gases. Nuclear energy can be used to produce hydrogen without consuming fossil fuels and without emitting greenhouse gases through the splitting of water into hydrogen and oxygen. The Nuclear Hydrogen Initiative of the DOE Office of Nuclear Energy is developing three general categories of high temperature processes for hydrogen production: thermochemical, electrolytic and hybrid thermo-electrolytic. This paper introduces the work being done in the development of high temperature electrolysis of steam. High Temperature Electrolysis (HTE) is built on the technology of solid oxide fuel cells (SOFCs), which were invented over a century ago, but which have been most vigorously developed during the last twenty years. SOFCs consume hydrogen and oxygen and produce steam and electricity. Solid Oxide Electrolytic Cells (SOECs) consume electricity and steam and produce hydrogen and oxygen. The purpose of the HTE research is to solve those problems unique to the electrolytic mode of operation, while building further on continuing fuel cell development. ORGANIZATION Experiments have been conducted for the last three years at the Idaho National Laboratory and at Ceramatec, Inc. on the operation of button cells and of progressively larger stacks of planar cells. In addition, the INL has been performing analyses of the cell-scale fluid dynamics and plant-scale flowsheets in order to determine optimum operating conditions and plant configurations. Argonne National Laboratory has been performing experiments for the

  20. PULSE AMPLIFIER

    DOEpatents

    Johnstone, C.W.

    1958-06-17

    The improvement of pulse amplifiers used with scintillation detectors is described. The pulse amplifier circuit has the advantage of reducing the harmful effects of overloading cause by large signal inputs. In general the pulse amplifier circuit comprises two amplifier tubes with the input pulses applied to one amplifier grid and coupled to the second amplifier tube through a common cathode load. The output of the second amplifier is coupled from the plate circuit to a cathode follower tube grid and a diode tube in connected from grid to cathode of the cathode follower tube. Degenerative feedback is provided in the second amplifier by coupling a signal from the cathode follower cathode to the second amplifier grid. The circuit proqides moderate gain stability, and overload protection for subsequent pulse circuits.

  1. Combined uranous nitrate production consisting of undivided electrolytic cell and divided electrolytic cell (Electrolysis → Electrolytic cell)

    SciTech Connect

    Yuan, Zhongwei; Yan, Taihong; Zheng, Weifang; Li, Xiaodong; Yang, Hui; Xian, Liang

    2013-07-01

    The electrochemical reduction of uranyl nitrate is a green, mild way to make uranous ions. Undivided electrolyzers whose maintenance is less but their conversion ratio and current efficiency are low, have been chosen. However, at the beginning of undivided electrolysis, high current efficiency can also be maintained. Divided electrolyzers' conversion ratio and current efficiency is much higher because the re-oxidation of uranous on anode is avoided, but their maintenance costs are more, because in radioactive environment the membrane has to be changed after several operations. In this paper, a combined method of uranous production is proposed which consists of 2 stages: undivided electrolysis (early stage) and divided electrolysis (late stage) to benefit from the advantages of both electrolysis modes. The performance of the combined method was tested. The results show that in combined mode, after 200 min long electrolysis (80 min undivided electrolysis and 120 min divided electrolysis), U(IV) yield can achieve 92.3% (500 ml feed, U 199 g/l, 72 cm{sup 2} cathode, 120 mA/cm{sup 2}). Compared with divided mode, about 1/3 working time in divided electrolyzer is reduced to achieve the same U(IV) yield. If 120 min long undivided electrolysis was taken, more than 1/2 working time can be reduced in divided electrolyzer, which means that about half of the maintenance cost can also be reduced. (authors)

  2. Basic trends and chief products in the electrolysis of methanolic solutions of monomethyl adipate and its alkali salts

    SciTech Connect

    Shul'zhenko, G.I.; Freidlin, G.N.; Kovsman, E.P.; Vasil'ev, Yu. B.

    1986-08-01

    Preparative electrolysis under galvanostatic conditions was used to study the effect of the principal adjustable process parameters, such as temperature, the water content of the original electrolyte, current density, electrolysis time, and the concentration of monoester salt, on the formation of methyl valerate and methyl allylacetate. The character of the influence of these parameters was established.

  3. Changes in the Radioactivity, Topography, and Surface Composition of Uranium after Hydrogen Loading by Aqueous Electrolysis

    NASA Astrophysics Data System (ADS)

    Dash, J.; Chicea, D.

    2005-12-01

    Hydrogen loading of 99.98% pure natural uranium foils (0.18mm thick) was performed by aqueous electrolysis in order to compare with glow discharge results. The alpha, beta, and gamma specific radioactivity were measured after hydrogen loading and compared with the control. Some of the samples revealed an increase of the specific radioactivity of up to 20%. Gamma-ray spectroscopy was also performed on the samples. Results reveal an increase of the specific counts for the peaks of Th234 and U235 and a decrease in the U Kα1 characteristic X-ray peak. The surface topography changed from granular before electrolysis to pitted afterward. The thorium concentration increased slightly after electrolysis compared with the original material. In summary, this work in progress reveals that loading hydrogen into uranium increases the uranium decay rate, in agreement with the glow discharge results.

  4. Hydrogen production from switchgrass via a hybrid pyrolysis-microbial electrolysis process

    SciTech Connect

    Lewis, Alex J.; Ren, Shoujie; Ye, Philip; Kim, Pyoungchung; Labbe, Niki; Borole, Abhijeet P.

    2015-06-30

    A new approach to hydrogen production using a hybrid pyrolysis-microbial electrolysis process is described. The aqueous stream generated during pyrolysis of switchgrass was used as a substrate for hydrogen production in a microbial electrolysis cell, achieving a maximum hydrogen production rate of 4.3 L H2/L-day at a loading of 10 g COD/L-anode-day. Hydrogen yields ranged from 50 3.2% to76 0.5% while anode coulombic efficiency ranged from 54 6.5% to 96 0.21%, respectively. Significant conversion of furfural, organic acids and phenolic molecules was observed under both batch and continuous conditions. The electrical and overall energy efficiency ranged from 149-175% and 48-63%, respectively. The results demonstrate the potential of the pyrolysis-microbial electrolysis process as a sustainable and efficient route for production of renewable hydrogen with significant implications for hydrocarbon production from biomass.

  5. Solid polymer electrolyte water electrolysis system development. [to generate oxygen for manned space station applications

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.

  6. Using Response Surface Methodology in Synthesis of Ultrafine Copper Nanoparticles by Electrolysis

    NASA Astrophysics Data System (ADS)

    Tamilvanan, A.; Balamurugan, K.; Ponappa, K.; Madhan Kumar, B.

    2016-02-01

    Electrolysis is a method used for producing copper (Cu) nanoparticles at faster rate and at low cost in ambient conditions. The property of Cu nanoparticles prepared by electrolysis depends on their process parameters. The influence of selected process parameters such as copper sulfate (CuSo4) concentration, electrode gap and electrode potential difference on particle size was investigated. To optimize these parameters response surface methodology (RSM) was used. Cu nanoparticles prepared by electrolysis were characterized by using X-ray diffraction (XRD) and scanning electron microscope (SEM). After reviewing the results of analysis of variance (ANOVA), mathematical equation was created and optimized parameters for producing Cu nanoparticles were determined. The results confirm that the average size of Cu particle at the optimum condition was found to be 17nm and they are hexagonal in shape.

  7. Tritium-enrichment via CECE-process with high temperature steam electrolysis (HOT ELLY)

    SciTech Connect

    Keil, W.; Erdle, E.

    1988-09-01

    Aqueous waste which is a by-product of nuclear fuel reprocessing plants, is contaminated with tritium in the form of HTO. This waste must be disposed of in a suitable compact manner. In order to minimize waste volume, tritiated water is enriched by several orders of magnitude of its original concentration. This task is accomplished by using the existing combined electrolysis catalytic exchange (CECE)-Process, which is presently in pilot operation with tritium in a German nuclear research facility (Kernforschungszentrum Karlsruhe, KfK, FRG). Substantial energy reduction can be achieved by substituting the conventional water electrolysis by high-temperature steam electrolysis (HOT ELLY) for separating tritiated water into its components.

  8. Thermal and Electrochemical Performance of a High-Temperature Steam Electrolysis Stack

    SciTech Connect

    J. O'Brien; C. Stoots; G. Hawkes; J. Hartvigsen

    2006-11-01

    A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for hydrogen production from steam. We are conducting a progression of electrolysis stack testing activities, at increasing scales, along with a continuation of supporting research activities in the areas of materials development, single-cell testing, detailed computational fluid dynamics (CFD) and systems modeling. This paper will present recent experimental results obtained from testing of planar solid-oxide stacks operating in the electrolysis mode. The hydrogen-production and electrochemical performance of these stacks will be presented, over a range of operating conditions. In addition, internal stack temperature measurements will be presented, with comparisons to computational fluid dynamic predictions.

  9. A Feasibility Study of Steelmaking by Molten Oxide Electrolysis (TRP9956)

    SciTech Connect

    Donald R. Sadoway; Gerbrand Ceder

    2009-12-31

    Molten oxide electrolysis (MOE) is an extreme form of molten salt electrolysis, a technology that has been used to produce tonnage metals for over 100 years - aluminum, magnesium, lithium, sodium and the rare earth metals specifically. The use of carbon-free anodes is the distinguishing factor in MOE compared to other molten salt electrolysis techniques. MOE is totally carbon-free and produces no CO or CO2 - only O2 gas at the anode. This project is directed at assessing the technical feasibility of MOE at the bench scale while determining optimum values of MOE operating parameters. An inert anode will be identified and its ability to sustain oxygen evalution will be demonstrated.

  10. A Process Model for the Production of Hydrogen Using High Temperature Electrolysis

    SciTech Connect

    M. G. Mc Kellar; E. A. Harvego; M. Richards; A. Shenoy

    2006-07-01

    High temperature electrolysis (HTE) involves the splitting of stream into hydrogen and oxygen at high temperatures. The primary advantage of HTE over conventional low temperature electrolysis is that considerably higher hydrogen production efficiencies can be achieved. Performing the electrolysis process at high temperatures results in more favorable thermodynamics for electrolysis, more efficient production of electricity, and allows direct use of process heat to generate steam. This paper presents the results of process analyses performed to evaluate the hydrogen production efficiencies of an HTE plant coupled to a 600 MWt Modular Helium Reactor (MHR) that supplies both the electricity and process heat needed to drive the process. The MHR operates with a coolant outlet temperature of 950 C. Approximately 87% of the high-temperature heat is used to generate electricity at high efficiency using a direct, Brayton-cycle power conversion system. The remaining high-temperature heat is used to generate a superheated steam / hydrogen mixture that is supplied to the electrolyzers. The analyses were performed using the HYSYS process modeling software. The model used to perform the analyses consisted of three loops; a primary high temperature helium loop, a secondary helium loop and the HTE process loop. The detailed model included realistic representations of all major components in the system, including pumps, compressors, heat exchange equipment, and the electrolysis stack. The design of the hydrogen production process loop also included a steam-sweep gas system to remove oxygen from the electrolysis stack so that it can be recovered and used for other applications. Results of the process analyses showed that hydrogen production efficiencies in the range of 45% to 50% are achievable with this system.

  11. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect

    James E. O'Brien

    2010-08-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  12. Parametric Study Of Large-Scale Production Of Syngas Via High Temperature Co-Electrolysis

    SciTech Connect

    J. E. O'Brien; M. G. McKellar; C. M. Stoots; J. S. Herring; G. L. Hawkes

    2007-11-01

    A process model has been developed to evaluate the potential performance of a largescale high-temperature co-electrolysis plant for the production of syngas from steam and carbon dioxide. The co-electrolysis process allows for direct electrochemical reduction of the steam – carbon dioxide gas mixture, yielding hydrogen and carbon monoxide, or syngas. The process model has been developed using the Honeywell UniSim systems analysis code. Using this code, a detailed process flow sheet has been defined that includes all the components that would be present in an actual plant such as pumps, compressors, heat exchangers, turbines, and the electrolyzer. Since the electrolyzer is not a standard UniSim component, a custom one-dimensional co-electrolysis model was developed for incorporation into the overall UniSim process flow sheet. The one dimensional co-electrolysis model assumes local chemical equilibrium among the four process-gas species via the gas shift reaction. The electrolyzer model allows for the determination of co-electrolysis outlet temperature, composition (anode and cathode sides); mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. The one-dimensional electrolyzer model was validated by comparison with results obtained from a fully three dimensional computational fluid dynamics model developed using FLUENT, and by comparison to experimental data. This paper provides representative results obtained from the UniSim flow sheet model for a 300 MW co-electrolysis plant, coupled to a high-temperature gas-cooled nuclear reactor. The coelectrolysis process, coupled to a nuclear reactor, provides a means of recycling carbon dioxide back into a useful liquid fuel. If the carbon dioxide source is based on biomass, the overall process, from production through utilization, would be climate neutral.

  13. An impulse-driven liquid-droplet deposition interface for combining LC with MALDI MS and MS/MS.

    PubMed

    Young, J Bryce; Li, Liang

    2006-03-01

    A simple and robust impulse-driven droplet deposition system was developed for off-line liquid chromatography matrix-assisted laser desorption ionization mass spectrometry (LC-MALDI MS). The system uses a solenoid operated with a pulsed voltage power supply to generate impulses that dislodge the hanging droplets from the LC outlet directly to a MALDI plate via a momentum transfer process. There is no contact between the LC outlet and the collection surface. The system is compatible with solvents of varying polarity and viscosity, and accommodates the use of hydrophobic and hydrophilic MALDI matrices. MALDI spots are produced on-line with the separation, and do not require further processing before MS analysis. It is shown that high quality MALDI spectra from 5 fmol of pyro-Glu-fibrinopeptide deposition after LC separation could be obtained using the device, indicating that there was no sample loss in the interface. To demonstrate the analytical performance of the system as a proteome analysis tool, a range of BSA digest concentrations covering about 3 orders of magnitude, from 5 fmol to 1 pmol, were analyzed by LC-MALDI quadrupole time-of-flight MS, yielding 6 and 57% amino acid sequence coverage, respectively. In addition, a complex protein mixture of an E. coli cell extract was tryptically digested and analyzed by LC-MALDI MS, resulting in the detection of a total of 409 unique peptides from 100 fractions of 15-s intervals. PMID:16443366

  14. ICP-MS Workshop

    SciTech Connect

    Carman, April J.; Eiden, Gregory C.

    2014-11-01

    This is a short document that explains the materials that will be transmitted to LLNL and DNN HQ regarding the ICP-MS Workshop held at PNNL June 17-19th. The goal of the information is to pass on to LLNL information regarding the planning and preparations for the Workshop at PNNL in preparation of the SIMS workshop at LLNL.

  15. Solid polymer electrolyte water electrolysis preprototype subsystem. [oxygen production for life support systems on space stations

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Hardware and controls developed for an electrolysis demonstration unit for use with the life sciences payload program and in NASA's regenerative life support evaluation program are described. Components discussed include: the electrolysis module; power conditioner; phase separator-pump and hydrogen differential regulator; pressure regulation of O2, He, and N2; air-cooled heat exchanger; water accumulator; fluid flow sight gage assembly; catalytic O2/H2 sensor; gas flow sensors; low voltage power supply; 100 Amp DC contactor assembly; and the water purifier design.

  16. Fractional capacity electrolyzer development for CO2 and H2O electrolysis

    NASA Technical Reports Server (NTRS)

    Wynveen, R. A.

    1980-01-01

    The electrolyzer module was designed to produce 0.24 kg/d (0.53 lb/d) of breathable oxygen from the electrolysis of metabolic carbon dioxide and water vapor. The fractional capacity electrolyzer module is constructed from three electrochemical tube cells and contains only three critical seals. The module design illustrated an 84 percent reduction in the total number of seals for a one person capacity oxygen generating system based on the solid electrolyte carbon dioxide and water vapor electrolysis concept. The electrolyzer module was successfully endurance tested for 71 days.

  17. Modeling and simulation of the flow field in the electrolysis of magnesium

    NASA Astrophysics Data System (ADS)

    Sun, Ze; Zhang, He-Nan; Li, Ping; Li, Bing; Lu, Gui-Min; Yu, Jian-Guo

    2009-05-01

    A three-dimensional mathematical model was developed to describe the flow field in the electrolysis cell of the molten magnesium salt, where the model of the three-phase flow was coupled with the electric field force. The mathematical model was validated against the experimental data of the cold model in the electrolysis cell of zinc sulfate with 2 mol/L concentration. The flow field of the cold model was measured by particle image velocimetry, a non-intrusive visualization experimental technique. The flow field in the advanced diaphragmless electrolytic cell of the molten magnesium salt was investigated by the simulations with the mathematical model.

  18. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  19. Improved enzymatic hydrolysis of lignocellulosic biomass through pretreatment with plasma electrolysis.

    PubMed

    Gao, Jing; Chen, Li; Zhang, Jian; Yan, Zongcheng

    2014-11-01

    A comprehensive research on plasma electrolysis as pretreatment method for water hyacinth (WH) was performed based on lignin content, crystalline structure, surface property, and enzymatic hydrolysis. A large number of active particles, such as HO and H2O2, generated by plasma electrolysis could decompose the lignin of the biomass samples and reduce the crystalline index. An efficient pretreatment process made use of WH pretreated at a load of 48 wt% (0.15-0.18 mm) in FeCl3 solution for 30 min at 450 V. After the pretreatment, the sugar yield of WH was increased by 126.5% as compared with unpretreated samples. PMID:25205055

  20. THERMODYNAMIC CONSIDERATIONS FOR THERMAL WATER SPLITTING PROCESSES AND HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect

    J. E. O'Brien

    2008-11-01

    A general thermodynamic analysis of hydrogen production based on thermal water splitting processes is presented. Results of the analysis show that the overall efficiency of any thermal water splitting process operating between two temperature limits is proportional to the Carnot efficiency. Implications of thermodynamic efficiency limits and the impacts of loss mechanisms and operating conditions are discussed as they pertain specifically to hydrogen production based on high-temperature electrolysis. Overall system performance predictions are also presented for high-temperature electrolysis plants powered by three different advanced nuclear reactor types, over their respective operating temperature ranges.

  1. Water electrolysis system - H2 and O2 generation. [for spacecraft atmosphere revitalization

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Lee, M. K.; Davenport, R. J.; Quattrone, P. D.

    1978-01-01

    An oxygen generation system design based on the static feed water electrolysis concept is described. The system is designed to generate 4.20 kg/d of oxygen to satisfy the metabolic needs of a three-person crew, to compensate for spacecraft leakage, and to provide the oxygen required by the electrochemical depolarized CO2 concentrator. The system has a fixed hardware weight of 75 kg, occupies a volume of 0.11 cu m, and requires only 1.1 kw of electrical power. The static feed electrolysis concept is discussed, and experimental data on the high-performance electrode are presented.

  2. Carbon dioxide electrolysis with solid oxide electrolyte cells for oxygen recovery in life support systems

    NASA Technical Reports Server (NTRS)

    Isenberg, Arnold O.; Cusick, Robert J.

    1988-01-01

    The direct electrochemical reduction of carbon dioxide (CO2) is achieved without catalysts and at sufficiently high temperatures to avoid carbon formation. The tubular electrolysis cell consists of thin layers of anode, electrolyte, cathode and cell interconnection. The electrolyte is made from yttria-stabilized zirconia which is an oxygen ion conductor at elevated temperatures. Anode and cell interconnection materials are complex oxides and are electronic conductors. The cathode material is a composite metal-ceramic structure. Cell performance characteristics have been determined using varying feed gas compositions and degrees of electrochemical decomposition. Cell test data are used to project the performance of a three-person CO2-electrolysis breadboard system.

  3. Space Station propulsion - Advanced development testing of the water electrolysis concept at MSFC

    NASA Technical Reports Server (NTRS)

    Jones, Lee W.; Bagdigian, Deborah R.

    1989-01-01

    The successful demonstration at Marshall Space Flight Center (MSFC) that the water electrolysis concept is sufficiently mature to warrant adopting it as the baseline propulsion design for Space Station Freedom is described. In particular, the test results demonstrated that oxygen/hydrogen thruster, using gaseous propellants, can deliver more than two million lbf-seconds of total impulse at mixture ratios of 3:1 to 8:1 without significant degradation. The results alao demonstrated succcessful end-to-end operation of an integrated water electrolysis propulsion system.

  4. The Use and Practice of Simple Electrolysis Kit that can be Experimented at Home

    NASA Astrophysics Data System (ADS)

    Nakabayashi, Kenichi; Yuji, Toshifumi

    This paper describes the development and the questionnaire survey of the simple electrolysis kit “Eneppa”. The junior high school student was able to conduct the experiment on electrolysis with this experiment kit at home. The teaching practice was done for the junior high school student with a developed experiment kit, and the questionnaire was analyzed. As a result, the student used this kit as a familiar experiment teaching material, and was practicing the content of study at the school with the family and the friend.

  5. Pulse Voltammetry.

    ERIC Educational Resources Information Center

    Osteryoung, Janet

    1983-01-01

    Discusses the nature of pulse voltammetry, indicating that its widespread use arises from good sensitivity and detection limits and from ease of application and low cost. Provides analytical and mechanistic applications of the procedure. (JN)

  6. Pulse stretcher

    DOEpatents

    Horton, James A.

    1994-01-01

    Apparatus (20) for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse. The apparatus (20) uses a White cell (10) having a plurality of optical delay paths (18a-18d) of successively increasing number of passes between the field mirror (13) and the objective mirrors (11 and 12). A pulse (26) from a laser (27) travels through a multi-leg reflective path (28) between a beam splitter (21) and a totally reflective mirror (24) to the laser output (37). The laser pulse (26) is also simultaneously injected through the beam splitter (21) to the input mirrors (14a-14d) of the optical delay paths (18a-18d). The pulses from the output mirrors (16a-16d) of the optical delay paths (18a-18d) go simultaneously to the laser output (37) and to the input mirrors ( 14b-14d) of the longer optical delay paths. The beam splitter (21) is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output (37).

  7. TESTING AND PERFORMANCE ANALYSIS OF NASA 5 CM BY 5 CM BI-SUPPORTED SOLID OXIDE ELECTROLYSIS CELLS OPERATED IN BOTH FUEL CELL AND STEAM ELECTROLYSIS MODES

    SciTech Connect

    R. C. O'Brien; J. E. O'Brien; C. M. Stoots; X. Zhang; S. C. Farmer; T. L. Cable; J. A. Setlock

    2011-11-01

    A series of 5 cm by 5 cm bi-supported Solid Oxide Electrolysis Cells (SOEC) were produced by NASA for the Idaho National Laboratory (INL) and tested under the INL High Temperature Steam Electrolysis program. The results from the experimental demonstration of cell operation for both hydrogen production and operation as fuel cells is presented. An overview of the cell technology, test apparatus and performance analysis is also provided. The INL High Temperature Steam Electrolysis laboratory has developed significant test infrastructure in support of single cell and stack performance analyses. An overview of the single cell test apparatus is presented. The test data presented in this paper is representative of a first batch of NASA's prototypic 5 cm by 5 cm SOEC single cells. Clearly a significant relationship between the operational current density and cell degradation rate is evident. While the performance of these cells was lower than anticipated, in-house testing at NASA Glenn has yielded significantly higher performance and lower degradation rates with subsequent production batches of cells. Current post-test microstructure analyses of the cells tested at INL will be published in a future paper. Modification to cell compositions and cell reduction techniques will be altered in the next series of cells to be delivered to INL with the aim to decrease the cell degradation rate while allowing for higher operational current densities to be sustained. Results from the testing of new batches of single cells will be presented in a future paper.

  8. NAPS-MS

    PubMed Central

    Gudesblatt, Mark; Kresa-Reahl, Kiren; Brandes, David W.; Sater, Pamela

    2016-01-01

    Background: Patients with multiple sclerosis (MS) have higher rates of fatigue, mood disturbance, and cognitive impairments than healthy populations. Disease-modifying agents may affect sleep. Although patients taking natalizumab often show improvement in fatigue during the first year of therapy, the mechanism behind this effect is unknown. The aim of the NAPS-MS study was to investigate whether natalizumab affected objective measures of sleep as determined by polysomnography (PSG) and multiple sleep latency testing (MSLT) in patients with MS with fatigue or sleepiness initiating therapy. Additional goals were to evaluate changes in measures of fatigue, mood, and cognition and to correlate these measures with objective sleep measures. Methods: Patients underwent PSG and MSLT before their first natalizumab infusion and after their seventh. Patients completed the Modified Fatigue Impact Scale, Fatigue Severity Scale (FSS), Epworth Sleepiness Scale (ESS), and visual analogue scale for fatigue (VAS-F) at their first, fourth, and seventh natalizumab infusions. NeuroTrax cognitive tests and the Hospital Anxiety and Depression Scale (HADS) were performed at the first and seventh natalizumab infusions. Results: Changes in sleep efficiency, wakefulness after sleep onset, and multiple sleep latency from baseline to 6 months of therapy did not reach significance. The FSS, VAS-F, ESS, and HADS scores were significantly improved after 6 months of therapy; cognitive scores were not significantly improved. Conclusions: Although treatment with natalizumab was associated with improvements in fatigue, sleepiness, and mood, changes in objective measures of sleep were not significant. PMID:27551242

  9. The Production and Characterization of Ceramic Carbon Electrode Materials for CuCl-HCl Electrolysis

    NASA Astrophysics Data System (ADS)

    Edge, Patrick

    Current H2 gas supplies are primarily produced through steam methane reforming and other fossil fuel based processes. This lack of viable large scale and environmentally friendly H2 gas production has hindered the wide spread adoption of H2 fuel cells. A potential solution to this problem is the Cu-Cl hybrid thermochemical cycle. The cycle captures waste heat to drive two thermochemical steps creating CuCl as well as O2 gas and HCl from CuCl2 and water. The CuCl is oxidized in HCl to produce H2 gas and regenerate CuCl2, this process occurs at potentials well below those required for water electrolysis. The electrolysis process occurs in a traditional PEM fuel-cell. In the aqueous anolyte media Cu(I) will form anionic complexes such as CuCl 2 - or CuCl32-. The slow transport of these species to the anode surface limits the overall electrolysis process. To improve this transport process we have produced ceramic carbon electrode (CCE) materials through a sol-gel method incorporating a selection of amine containing silanes with increasing numbers of primary and secondary amines. When protonated these amines allow for improved transport of anionic copper complexes. The electrochemical and physical characterization of these CCE materials in a half and full-cell electrolysis environment will be presented. Electrochemical analysis was performed using cell polarization, cyclic voltammetry, and electrochemical impedance spectroscopy.

  10. Water electrolysis on La1-xSrxCoO3-δ perovskite electrocatalysts

    NASA Astrophysics Data System (ADS)

    Mefford, J. Tyler; Rong, Xi; Abakumov, Artem M.; Hardin, William G.; Dai, Sheng; Kolpak, Alexie M.; Johnston, Keith P.; Stevenson, Keith J.

    2016-03-01

    Perovskite oxides are attractive candidates as catalysts for the electrolysis of water in alkaline energy storage and conversion systems. However, the rational design of active catalysts has been hampered by the lack of understanding of the mechanism of water electrolysis on perovskite surfaces. Key parameters that have been overlooked include the role of oxygen vacancies, B-O bond covalency, and redox activity of lattice oxygen species. Here we present a series of cobaltite perovskites where the covalency of the Co-O bond and the concentration of oxygen vacancies are controlled through Sr2+ substitution into La1-xSrxCoO3-δ. We attempt to rationalize the high activities of La1-xSrxCoO3-δ through the electronic structure and participation of lattice oxygen in the mechanism of water electrolysis as revealed through ab initio modelling. Using this approach, we report a material, SrCoO2.7, with a high, room temperature-specific activity and mass activity towards alkaline water electrolysis.

  11. Electrolysis of neodymium oxide. Final report for the period August 19, 1991 through February 28, 1997

    SciTech Connect

    Keller, R.; Larimer, K.T.

    1997-05-01

    The objective of this research was to develop an electrolytic process for the continuous and economic production of neodymium alloys from neodymium oxide. The electrolysis of neodymium oxide continued to show promise for implementation as a low-cost process to produce high- quality neodymium or neodymium-iron alloy.

  12. A techno-economic model of a solid oxide electrolysis system.

    PubMed

    Milobar, Daniel G; Hartvigsen, Joseph J; Elangovan, S

    2015-01-01

    Solid oxide cells can play a vital role in addressing energy and environmental issues. In fuel cell mode they are capable of producing electric energy at high efficiency using hydrocarbon fuels and in the electrolysis mode can produce hydrogen from steam or synthesis gas from a mixture of steam and carbon dioxide. The solid oxide electrolysis cells (SOECs) can operate at a wide range of conditions. A capable means by which to select operating conditions in the application of solid oxide electrolyzers is a necessity for successful commercial operation. Power and efficiency can be determined over a wide range of operating conditions by applying fundamental electrochemical principles to a SOEC system. Operating conditions may be selected based on power requirements or with efficiency as a priority. Operating cost for electricity which is a function of both power and efficiency can also be used to determine optimal operating conditions. Performance maps based on closed form isothermal parametric models for both hydrogen and natural gas fueled SOFC stacks have been demonstrated previously. This approach applied to a SOEC stack is shown. This model was applied to generate performance maps for a solid oxide cell stack operated in the electrolysis mode. The functional form of the model and the boundaries of the operating envelope provide useful insight into the SOEC operating characteristics and a simple means of selecting conditions for electrolysis operation. PMID:26222446

  13. Recent advances in sulfur dioxide depolarized electrolysis for creating chemical resources

    SciTech Connect

    Lu, P.W.T.; Flaherty, R.; Garcia, E.R.

    1981-08-01

    An advanced electrolysis technology was developed at Westinghouse Electric Corporation for the electrochemical conversion of SO/sub 2/ and H/sub 2/O into useful chemicals: hydrogen and sulfuric acid. Electrode fabrication techniques and optimization of electrolyzer are discussed.

  14. A Review of Sealing Technologies Applicable to Solid Oxide Electrolysis Cells

    SciTech Connect

    Paul A. Lessing

    2007-05-01

    This article reviews designs and materials investigated for various seals in high temperature solid oxide fuel cell “stacks” and how they might be implemented in solid oxide electrolysis cells that decompose steam into hydrogen and oxygen. Materials include metals, glasses, glass–ceramics, cements, and composites. Sealing designs include rigid seals, compressive seals, and compliant seals.

  15. Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells.

    PubMed

    Chen, Xinbing; Guan, Chengzhi; Xiao, Guoping; Du, Xianlong; Wang, Jian-Qiang

    2015-01-01

    High temperature (HT) steam/CO2 coelectrolysis with solid oxide electrolysis cells (SOECs) using the electricity and heat generated from clean energies is an important alternative for syngas production without fossil fuel consumption and greenhouse gas emissions. Herein, reaction characteristics and the outlet syngas composition of HT steam/CO2 coelectrolysis under different operating conditions, including distinct inlet gas compositions and electrolysis current densities, are systematically studied at 800 °C using commercially available SOECs. The HT coelectrolysis process, which has comparable performance to HT steam electrolysis, is more active than the HT CO2 electrolysis process, indicating the important contribution of the reverse water-gas shift reaction in the formation of CO. The outlet syngas composition from HT steam/CO2 coelectrolysis is very sensitive to the operating conditions, indicating the feasibility of controlling the syngas composition by varying these conditions. Maximum steam and CO2 utilizations of 77% and 76% are achieved at 1.0 A cm(-2) with an inlet gas composition of 20% H2/40% steam/40% CO2. PMID:26204849

  16. Water electrolysis on La1-xSrxCoO3-δ perovskite electrocatalysts.

    PubMed

    Mefford, J Tyler; Rong, Xi; Abakumov, Artem M; Hardin, William G; Dai, Sheng; Kolpak, Alexie M; Johnston, Keith P; Stevenson, Keith J

    2016-01-01

    Perovskite oxides are attractive candidates as catalysts for the electrolysis of water in alkaline energy storage and conversion systems. However, the rational design of active catalysts has been hampered by the lack of understanding of the mechanism of water electrolysis on perovskite surfaces. Key parameters that have been overlooked include the role of oxygen vacancies, B-O bond covalency, and redox activity of lattice oxygen species. Here we present a series of cobaltite perovskites where the covalency of the Co-O bond and the concentration of oxygen vacancies are controlled through Sr(2+) substitution into La1-xSrxCoO3-δ. We attempt to rationalize the high activities of La1-xSrxCoO3-δ through the electronic structure and participation of lattice oxygen in the mechanism of water electrolysis as revealed through ab initio modelling. Using this approach, we report a material, SrCoO2.7, with a high, room temperature-specific activity and mass activity towards alkaline water electrolysis. PMID:27006166

  17. RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: SINGLE CELL TESTS

    SciTech Connect

    X. Zhang; J. E. O'Brien; R. C. O'Brien

    2012-07-01

    An experimental investigation on the performance and durability of single solid oxide electrolysis cells (SOECs) is under way at the Idaho National Laboratory. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOECs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus has been developed for single cell and small stack tests from different vendors. Single cells from Ceramatec Inc. show improved durability compared to our previous stack tests. Single cells from Materials and Systems Research Inc. (MSRI) demonstrate low degradation both in fuel cell and electrolysis modes. Single cells from Saint Gobain Advanced Materials (St. Gobain) show stable performance in fuel cell mode, but rapid degradation in the electrolysis mode. Electrolyte-electrode delamination is found to have significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the microstructure help to mitigate degradation. Polarization scans and AC impedance measurements are performed during the tests to characterize the cell performance and degradation.

  18. Nanoporous materials for reducing the over potential of creating hydrogen by water electrolysis

    DOEpatents

    Anderson, Marc A.; Leonard, Kevin C.

    2016-06-14

    Disclosed is an electrolyzer including an electrode including a nanoporous oxide-coated conducting material. Also disclosed is a method of producing a gas through electrolysis by contacting an aqueous solution with an electrode connected to an electrical power source, wherein the electrode includes a nanoporous oxide-coated conducting material.

  19. Combined system of monothermal chemical exchange process with electrolysis and thermal diffusion process for enriching tritium

    SciTech Connect

    Kitamoto, A.; Hasegawa, K.; Masui, T.

    1988-09-01

    Monothermal chemical exchange process with electrolysis (wellknown as the CECE process) is an effective method for enriching and removing tritium from tritiated water of low to middle level activity. The thermal diffusion process (ThD) is a low inventory gas phase method for enriching tritium from hydrogen. ThD and CECE process can be combined with each other by hydrogen gas line.

  20. Detritiation of low-level aqueous waste by Combined Electrolysis Catalytic Exchange

    SciTech Connect

    Rogers, M.L.

    1982-01-01

    The Combined Electrolysis Catalytic Exchange (CECE) technology is, at present, the only viable means for removing tritium from low level aqueous waste. The CECE process will be described and the results of experimentation at Mound will be discussed. Several specific low level applications that might benefit from this technology will be outlined. 4 figures, 1 table.

  1. Hydrogen Production Performance of a 10-Cell Planar Solid-Oxide Electrolysis Stack

    SciTech Connect

    James O'Brien; Carl Stoots; Steve Herring; J. Hartvigsen

    2005-05-01

    An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolytesupported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 100 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.

  2. Status of the development of solid polymer electrolyte water electrolysis for large scale hydrogen generation

    NASA Astrophysics Data System (ADS)

    Russell, J. H.

    1982-02-01

    Solid polymer electrolyte water electrolysis for large scale hydrogen generation is reported. The program was aimed at performance improvement. Reductions in cell impedance were demonstrated which improve cell performance by over 100 mV. A prototype 500 SCFH system for field evaluation was developed.

  3. Water electrolysis on La1-xSrxCoO3-δ perovskite electrocatalysts

    DOE PAGESBeta

    Mefford, J. Tyler; Rong, Xi; Abakumov, Artem M.; Hardin, William G.; Dai, Sheng; Kolpak, Alexie; Johnston, Keith P.; Stevenson, Keith J.

    2016-03-23

    Here, perovskite oxides are attractive candidates as catalysts for the electrolysis of water in alkaline energy storage and conversion systems. However, the rational design of active catalysts has been hampered by the lack of understanding of the mechanism of water electrolysis on perovskite surfaces. Key parameters that have been overlooked include the role of oxygen vacancies, B–O bond covalency, and redox activity of lattice oxygen species. Here we present a series of cobaltite perovskites where the covalency of the Co–O bond and the concentration of oxygen vacancies are controlled through Sr2+ substitution into La1–xSrxCoO3–δ. We attempt to rationalize the highmore » activities of La1–xSrxCoO3–δ through the electronic structure and participation of lattice oxygen in the mechanism of water electrolysis as revealed through ab initio modelling. Using this approach, we report a material, SrCoO2.7, with a high, room temperature-specific activity and mass activity towards alkaline water electrolysis.« less

  4. Development of electrolysis-cell separator for 125/sup 0/C operation. Advanced alkaline electrolysis cell development. Final report

    SciTech Connect

    Murray, J N

    1983-03-01

    This report contains the findings of a seven-month contracted effort. The major technical task involved a 125/sup 0/C operating temperature test of the 20 v/o polybenzimidazole (PBI) - 80 v/o potassium titanate (K/sub 2/TiO/sub 3/) separator in combination with the nickel-molybdenum cathode electrocatalyst system dubbed the C-AN cathode using the ARIES test system which was developed previously. The test of the PBI-K/sub 2/TiO/sub 3/ separator was only partially successful. The anticipated 1.85 (75/sup 0/C) and 1.75 volt per cell (100/sup 0/C) input requirement at 550 ma/cm/sup 2/ were surpassed slightly. The test module operated stably for about 550 hr. Although there were some mechanical difficulties with the ARIES test unit, testing at 125/sup 0/C proceeded from 745 hr on test until the test was terminated at 2318 operating hours to allow diagnostic disassembly. The input voltage degraded to a value of 1.82 volt per cell at 125/sup 0/C which is unacceptable. Diagnostic disassembly showed the PBI portion of the separator was no longer present. PBI had been shown to be stable in 123/sup 0/C, 45 w/o KOH solutions in a 1000-hr test. The attack is suggested to be attributable to a peroxide or perchlorate type oxidizer which would be unique to the electrolysis mode and probably not present in alkaline fuel cell applications. Recommendations for further testing include an evaluation of the chemical compatibility of PBI with alkaline/oxidizer solutions and endurance testing the C-AN cathode with new improved anode structures at 125/sup 0/C using asbestos separators in combination with a silicate saturated KOH electrolyte. Demonstration of the stability of this 1.65 volt per cell (90% voltage efficiency) technology at 500 ma/cm/sup 2/ will document an inexpensive and intelligent hydrogen production process which will satisfy the needs of the United States in the 1990s.

  5. Thermoluminescence measurement technique using millisecond temperature pulses.

    PubMed

    Manfred, Michael E; Gabriel, Nicholas T; Yukihara, Eduardo G; Talghader, Joseph J

    2010-06-01

    A measurement technique, pulsed thermoluminescence, is described which uses short thermal pulses to excite trapped carriers leading to radiative recombination. The pulses are obtained using microstructures with approximately 500 micros thermal time constants. The technique has many of the advantages of pulsed optically stimulated luminescence without the need for optical sources and filters to isolate the luminescent signal. Charge carrier traps in alpha-Al(2)O(3):C particles on microheaters were filled using 205 nm light. Temperature pulses of 10 and 50 ms were applied to the heaters and compared with a standard thermoluminescence curve taken at a ramp rate of 5 K s(-1). This produced curves of intensity verses temperature similar to standard thermoluminescence except shifted to higher temperatures. The luminescence of single particles was read multiple times with negligible loss of population. The lower limit of the duration of useful pulses appears to be limited by particle size and thermal contact between the particle and heater. PMID:20522565

  6. Separation of Charging and Charge Transition Currents with Inductive Voltage Pulses

    NASA Astrophysics Data System (ADS)

    Vanags, M.; Kleperis, J.; Bajars, G.

    2011-01-01

    Inductive voltage pulses are generated in the electric circuit consisting of a DC power source, a pulse generator, a BUZ350 field transistor, a blocking diode, and a bifilarly wound transformer. Very short inductive voltage pulses arising at disruption of current in the primary circuit (>1 μs) are applied to a water electrolysis cell, which causes its quick charging followed by a relatively slower discharge tail. To take voltage and current pulses from the cell consisting of steel electrodes and water-KOH solution, an oscilloscope is employed. By changing the concentration of electrolyte and the distance between electrodes it is found that applying inductive voltage pulses to such a cell it is possible to separate the double-layer charging currents from the charge transition (Faradic) current.

  7. Secondary-Progressive MS (SPMS)

    MedlinePlus

    ... spite of the medication you are taking, the conversation with your MS care provider might be about ... SPMS is stable without activity or progression, the conversation with your MS care could focus on rehabilitation ...

  8. Optimization of the LCLS Single Pulse Shutter

    SciTech Connect

    Adera, Solomon; /Georgia Tech., Atlanta /SLAC

    2010-08-25

    A mechanical shutter which operates on demand is used to isolate a single pulse from a 120 Hz X-ray source. This is accomplished with a mechanical shutter which is triggered on demand with frequencies ranging from 0 to 10 Hz. The single pulse shutter is an iron blade that oscillates on a pivot in response to a force generated by a pair of pulsed electromagnets (current driven teeter-totter). To isolate an individual pulse from the X-ray beam, the motion of the mechanical shutter should be synchronized in such a way that it allows a single pulse to pass through the aperture and blocks the other incoming pulses. Two consecutive pulses are only {approx} 8 ms apart and the shutter is required to complete one full cycle such that no two pulses pass through the opening. Also the opening of the shutter blade needs to be at least 4 mm so that a 1 mm diameter rms Gaussian beam can pass through without modulation. However, the 4 mm opening is difficult to obtain due to blade rebound and oscillation of the blade after colliding with the electromagnet. The purpose of this project is to minimize and/or totally eliminate the rebound of the shutter blade in pursuit of maximizing the aperture while keeping the open window interval < {approx}12 ms.

  9. Lithium batteries for pulse power

    SciTech Connect

    Redey, L.

    1990-01-01

    New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

  10. Pulsed liquid microjet for microsurgery

    NASA Astrophysics Data System (ADS)

    Fletcher, D. A.; Palanker, D. V.

    2001-03-01

    The precision of soft tissue dissection with pulsed lasers in liquid media is typically limited by collateral damage from vapor bubbles created during energy deposition. We present an alternative technique for creating incisions using a pulsed liquid microjet driven by an electric discharge-induced vapor bubble generated inside a micronozzle. We use this technique to create a pulsed jet 30 μm in diameter with a peak velocity of 90 m/s and total ejected volume on the order of 100 pl. Incision tests on a polyacrylamide gel simulating soft tissue show that the width of the cut is comparable to the diameter of the micronozzle and that collateral damage is significantly less than that produced by a vapor bubble not confined by the nozzle.

  11. Effect of pulse duty cycle on Inconel 718 laser welds

    NASA Technical Reports Server (NTRS)

    McCay, M. H.; McCay, T. D.; Dahotre, N. B.; Sharp, C. M.; Sedghinasab, A.; Gopinathan, S.

    1989-01-01

    Crack sensitive Inconel 718 was laser pulse welded using a 3.0 kW CO2 laser. Weld shape, structure, and porosity were recorded as a function of the pulse duty cycle. Within the matrix studied, the welds were found to be optimized at a high (17 ms on, 7 ms off) duty cycle. These welds were superior in appearance and lack of porosity to both low duty cycle and CW welds.

  12. Cellular tolerance to pulsed heating

    NASA Astrophysics Data System (ADS)

    Simanovski, Dimitrii; Sarkar, M.; Irani, A.; O'Connell-Rodwell, C.; Contag, C.; Schwettman, H. Alan; Palanker, D.

    2005-04-01

    Many laser therapies involve significant heating of tissue with pulses varying from picoseconds to minutes in duration. In some of the applications heating is a primary goal, while in others it is an undesirable side effect. In both cases, if a hyperthermia is involved, the knowledge about the threshold temperature leading to irreversible cellular damage is critically important. We study the dependence of the threshold temperature on duration of the heat exposure in the range of 0.3 ms to 5 seconds. Thin layer of cells cultured in a Petri dish was exposed to a pulsed CO2 laser radiation. Laser beam was focused onto sample providing Gaussian intensity distribution in the focal plane with a beam diameter (2w) 2-10 mm. Surface temperature in the central part of the focal spot (1mm in diameter) was measured by thermal infrared (IR) emission from the sample, recorded with a fast IR detector. For pulses shorter than 1 s the temperature profile across the focal spot was found to closely correspond to the radial distribution of the laser beam intensity, thus allowing for accurate determination of temperature at any given distance from the center of the spot. Immediate cellular damage was assessed using vital staining with the live/dead fluorescent assay. Threshold temperatures were found to vary from 65 °C at 5 s of heating to 160 °C at pulses of 0.3 ms in duration. The shorter end of this range was limited by vaporization, which occurs during the laser pulse and results in mechanical damage to cells. Dependence of the maximal temperature on pulse duration could be approximated by Arrhenius law with activation energy being about 1 eV.

  13. PULSE COUNTER

    DOEpatents

    Trumbo, D.E.

    1959-02-10

    A transistorized pulse-counting circuit adapted for use with nuclear radiation detecting detecting devices to provide a small, light weight portable counter is reported. The small size and low power requirements of the transistor are of particular value in this instance. The circuit provides an adjustable count scale with a single transistor which is triggered by the accumulated charge on a storage capacitor.

  14. Water rocket - Electrolysis propulsion and fuel cell power

    SciTech Connect

    Carter, P H; Dittman, M D; Kare, J T; Militsky, F; Myers, B; Weisberg, A H

    1999-07-24

    Water Rocket is the collective name for an integrated set of technologies that offer new options for spacecraft propulsion, power, energy storage, and structure. Low pressure water stored on the spacecraft is electrolyzed to generate, separate, and pressurize gaseous hydrogen and oxygen. These gases, stored in lightweight pressure tanks, can be burned to generate thrust or recombined to produce electric power. As a rocket propulsion system, Water Rocket provides the highest feasible chemical specific impulse (-400 seconds). Even higher specific impulse propulsion can be achieved by combining Water Rocket with other advanced propulsion technologies, such as arcjet or electric thrusters. With innovative pressure tank technology, Water Rocket's specific energy [Wh/kg] can exceed that of the best foreseeable batteries by an order of magnitude, and the tanks can often serve as vehicle structural elements. For pulsed power applications, Water Rocket propellants can be used to drive very high power density generators, such as MHD devices or detonation-driven pulse generators. A space vehicle using Water Rocket propulsion can be totally inert and non-hazardous during assembly and launch. These features are particularly important for the timely development and flight qualification of new classes of spacecraft, such as microsats, nanosats, and refuelable spacecraft.

  15. LC-MS and MS/MS in the analysis of recombinant proteins

    NASA Astrophysics Data System (ADS)

    Coulot, M.; Domon, B.; Grossenbacher, H.; Guenat, C.; Maerki, W.; Müller, D. R.; Richter, W. J.

    1993-03-01

    Applicability and performance of electrospray ionization mass spectrometry (ESIMS) is demonstrated for protein analysis. ESIMS is applied in conjunction with on-line HPLC (LC-ESlMS) and direct tandem mass spectrometry (positive and negative ion mode ESlMS/MS) to the structural characterization of a recombinant protein (r-hirudin variant 1) and a congener phosphorylated at threonine 45 (RP-1).

  16. The Interconversion of Electrical and Chemical Energy: The Electrolysis of Water and the Hydrogen-Oxygen Fuel Cell.

    ERIC Educational Resources Information Center

    Roffia, Sergio; And Others

    1988-01-01

    Discusses some of the drawbacks of using a demonstration of the electrolysis of water to illustrate the interconversion between electrical and chemical energy. Illustrates a simple apparatus allowing demonstration of this concept while overcoming these drawbacks. (CW)

  17. Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis.

    PubMed

    Pavel, Claudiu C; Cecconi, Franco; Emiliani, Chiara; Santiccioli, Serena; Scaffidi, Adriana; Catanorchi, Stefano; Comotti, Massimiliano

    2014-01-27

    Low-temperature electricity-driven water splitting is an established technology for hydrogen production. However, the two main types, namely proton exchange membrane (PEM) and liquid alkaline electrolysis, have limitations. For instance, PEM electrolysis requires a high amount of costly platinum-group-metal (PGM) catalysts, and liquid alkaline electrolysis is not well suited for intermittent operation. Herein we report a highly efficient alkaline polymer electrolysis design, which uses a membrane-electrode assembly (MEA) based on low-cost transition-metal catalysts and an anion exchange membrane (AEM). This system exhibited similar performance to the one achievable with PGM catalysts. Moreover, it is very suitable for intermittent power operation, durable, and able to efficiently operate at differential pressure up to 3 MPa. This system combines the benefits of PEM and liquid alkaline technologies allowing the scalable production of low-cost hydrogen from renewable sources. PMID:24339230

  18. Co-electrolysis of steam and CO2 in a solid oxide electrolysis cell with La0.75Sr0.25Cr0.5Mn0.5O3-δ -Cu ceramic composite electrode

    NASA Astrophysics Data System (ADS)

    Xing, Ruimin; Wang, Yarong; Zhu, Yongqiang; Liu, Shanhu; Jin, Chao

    2015-01-01

    Cu impregnation has been performed to improve electronic conductivity of La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) material in reducing atmosphere, and solid oxide electrolysis cells (SOECs) with the configuration of LSCF|LSGM|LSCM-Cu are prepared and evaluated for high temperature steam and carbon dioxide co-electrolysis. Electrochemical impedance spectra (EIS) and voltage-current curves are carried out to characterize the cell performances. Compared with LSCF|LSGM|LSCM cell without Cu impregnation for steam electrolysis under the same conditions, EIS results show that LSCF|LSGM|LSCM-Cu cell not only displays lower ohmic resistance and better electrochemical performances, but also their resistance increases with the percentage of the fed CO2 under open circuit voltage, in which the polarization resistance dominates. With the applied electrolysis voltage of 1.65 V and the operating temperature of 750 °C, the maximum consumed current density increases from 1.31 A cm-2 without CO2 to 1.82 A cm-2 with 37.5% CO2. Although there is an increase of 2.0% in the applied electrolysis voltage, the cell has exhibited an excellent durability test for more than 50 h with the electrolysis current density of 0.33 A cm-2 and the gas mixture of 50% AH-25% H2-25% CO2 at 750 °C.

  19. Preliminary study of the electrolysis of aluminum sulfide in molten salts

    SciTech Connect

    Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

    1983-02-01

    A preliminary laboratory-scale study of the electrolysis of aluminum sulfide in molten salts investigated the (1) solubility of Al/sub 2/S/sub 3/ in molten salts, (2) electrochemical behavior of Al/sub 2/S/sub 3/, and (3) electrolysis of Al/sub 2/S/sub 3/ with the determination of current efficiency as a function of current density. The solubility measurements show that MgCl/sub 2/-NaCl-KCl eutectic electrolyte at 1023 K can dissolve up to 3.3 mol % sulfide. The molar ratio of sulfur to aluminum in the eutectic is about one, which suggests that some sulfur remains undissolved, probably in the form of MgS. The experimental data and thermodynamic calculations suggest that Al/sub 2/S/sub 3/ dissolves in the eutectic to form AlS/sup +/ species in solution. Addition of AlCl/sub 3/ to the eutectic enhances the solubility of Al/sub 2/S/sub 3/; the solubility increases with increasing AlCl/sub 3/ concentration. The electrode reaction mechanism for the electrolysis of Al/sub 2/S/sub 3/ was elucidated by using linear sweep voltammetry. The cathodic reduction of aluminum-ion-containing species to aluminum proceeds by a reversible, diffusion-controlled, three-electron reaction. The anodic reaction involves the two-electron discharge of sulfide-ion-containing species, followed by the fast dimerization of sulfur atoms to S/sub 2/. Electrolysis experiments show that Al/sub 2/S/sub 3/ dissolved in molten MgCl/sub 2/-NaCl-KCl eutectic or in eutectic containing AlCl/sub 3/ can be electrolyzed to produce aluminum and sulfur. In the eutectic at 1023 K, the electrolysis can be conducted up to about 300 mA/cm/sup 2/ for the saturation solubility of Al/sub 2/S/sub 3/. Although these preliminary results are promising, additional studies are needed to elucidate many critical operating parameters before the technical potential of the electrolysis can be accurately assessed. 20 figures, 18 tables.

  20. PROGRESS IN HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION USING PLANAR SOFC TECHNOLOGY

    SciTech Connect

    O'Brien, J. E.; Herring, J. S.; Stoots, C. M.; Hawkes, G. L.; Hartvigsen, J., J.; Mehrdad Shahnam

    2005-04-01

    A research program is under way at the Idaho National Laboratory to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. The research program includes both experimental and modeling activities. Selected results from both activities are presented in this paper. Experimental results were obtained from a ten-cell planar electrolysis stack, fabricated by Ceramatec , Inc. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Stack performance is shown to be dependent on inlet steam flow rate. A three-dimensional computational fluid dynamics (CFD) model was also created to model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell as it would exist in the experimental electrolysis stack. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT1. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with

  1. Al/sub 2/S/sub 3/ preparation and use in electrolysis process for aluminum production

    DOEpatents

    Hsu, C.C.; Loutfy, R.O.; Yao, N.P.

    A continuous process for producing aluminum sulfide and for electrolyzing the aluminum sulfide to form metallic aluminum in which the aluminum sulfide is produced from aluminum oxide and COS or CS/sub 2/ in the presence of a chloride melt which also serves as the electrolysis bath. Circulation between the reactor and electrolysis cell is carried out to maintain the desired concentration of aluminum sulfide in the bath.

  2. MS-DIAL: Data Independent MS/MS Deconvolution for Comprehensive Metabolome Analysis

    PubMed Central

    Tsugawa, Hiroshi; Cajka, Tomas; Kind, Tobias; Ma, Yan; Higgins, Brendan; Ikeda, Kazutaka; Kanazawa, Mitsuhiro; VanderGheynst, Jean; Fiehn, Oliver; Arita, Masanori

    2015-01-01

    Data-independent acquisition (DIA) in liquid chromatography tandem mass spectrometry (LC-MS/MS) provides more comprehensive untargeted acquisition of molecular data. Here we provide an open-source software pipeline, MS-DIAL, to demonstrate how DIA improves simultaneous identification and quantification of small molecules by mass spectral deconvolution. For reversed phase LC-MS/MS, our program with an enriched LipidBlast library identified total 1,023 lipid compounds from nine algal strains to highlight their chemotaxonomic relationships. PMID:25938372

  3. Analysis of Biomolecules by Atmospheric Pressure Visible-Wavelength MALDI-Ion Trap-MS in Transmission Geometry

    NASA Astrophysics Data System (ADS)

    West, Raymond E.; Findsen, Eric W.; Isailovic, Dragan

    2013-10-01

    We report the development of a new AP visible-wavelength MALDI-ion trap-MS instrument with significantly improved performance over our previously reported system ( Int. J. Mass Spectrom. 315, 66-73 (2012)). A Nd:YAG pulsed laser emitting light at 532 nm was used to desorb and ionize oligosaccharides and peptides in transmission geometry through a glass slide. Limits of detection (LODs) achieved in MS mode correspond to picomole quantities of oligosaccharides and femtomole quantities of peptides. Tandem MS (MS/MS) experiments enabled identification of enzymatically digested proteins and oligosaccharides by comparison of MS/MS spectra with data found in protein and glycan databases. Moreover, the softness of ionization, LODs, and fragmentation spectra of biomolecules by AP visible-wavelength MALDI-MS were compared to those obtained by AP UV MALDI-MS using a Nd:YAG laser emitting light at 355 nm. AP visible-wavelength MALDI appears to be a softer ionization technique then AP UV MALDI for the analysis of sulfated peptides, while visible-wavelength MALDI-MS, MS/MS, and MS/MS/MS spectra of other biomolecules analyzed were mostly similar to those obtained by AP UV MALDI-MS. Therefore, the methodology presented will be useful for MS and MSn analyses of biomolecules at atmospheric pressure. Additionally, the AP visible-wavelength MALDI developed can be readily used for soft ionization of analytes on various mass spectrometers.

  4. Synthesis of magnetic nanoparticles by atmospheric-pressure plasma electrolysis and observation of liquid flow induced by plasma

    NASA Astrophysics Data System (ADS)

    Shirai, Naoki; Yoshida, Taketo; Aoki, Takuya; Uchida, Satoshi; Tochikubo, Fumiyoshi

    2015-09-01

    For the synthesis of magnetic metal NPs (nanoparticles), we used the electrolysis combined with atmospheric-pressure plasma. Plasma irradiated positive ions or electron to the solution surface; it worked as electrode of electrolysis. In the case of using aqueous solutions of FeCl2, magnetic NPs were synthesized at plasma-liquid interface when electron was irradiated to liquid surface. The plasma was generated in a miniature helium gas flow surrounded by a shielding gas flow controlling the gas condition around the plasma. The condition of magnetic NPs synthesis depended on the shielding gas species of plasma. In the case of using Ar or N2 shielding gas, magnetic NPs were synthesized. On the other hand, in the case of using O2 shielding gas or without shielding gas, magnetic NPs were not synthesized. To synthesize NPs without chemicals such as FeCl2 solutions, we use plasma electrolysis with iron electrode which is immersed in liquid. When plasma electrolysis was operated, iron electrode eluted to Fe cation and it becomes magnetic NPs at plasma-liquid interface. By using this method much of Fe3O4 is synthesized. In addition, we investigated liquid flow of plasma electrolysis by using Schlieren visualization. Liquid flow was observed when plasma electrolysis was operated.

  5. Internal calibrants allow high accuracy peptide matching between MALDI imaging MS and LC-MS/MS.

    PubMed

    Gustafsson, Johan O R; Eddes, James S; Meding, Stephan; Koudelka, Tomas; Oehler, Martin K; McColl, Shaun R; Hoffmann, Peter

    2012-08-30

    One of the important challenges for MALDI imaging mass spectrometry (MALDI-IMS) is the unambiguous identification of measured analytes. One way to do this is to match tryptic peptide MALDI-IMS m/z values with LC-MS/MS identified m/z values. Matching using current MALDI-TOF/TOF MS instruments is difficult due to the variability of in situ time-of-flight (TOF) m/z measurements. This variability is currently addressed using external calibration, which limits achievable mass accuracy for MALDI-IMS and makes it difficult to match these data to downstream LC-MS/MS results. To overcome this challenge, the work presented here details a method for internally calibrating data sets generated from tryptic peptide MALDI-IMS on formalin-fixed paraffin-embedded sections of ovarian cancer. By calibrating all spectra to internal peak features the m/z error for matches made between MALDI-IMS m/z values and LC-MS/MS identified peptide m/z values was significantly reduced. This improvement was confirmed by follow up matching of LC-MS/MS spectra to in situ MS/MS spectra from the same m/z peak features. The sum of the data presented here indicates that internal calibrants should be a standard component of tryptic peptide MALDI-IMS experiments. PMID:22634080

  6. Registration of MS-01RKN, MS-24RKN, MS-30RKN, MS-33RKN, MS-35RKN and MS-37RKN cotton germplasm lines with resistance to root-knot nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mississippi Agricultural and Forestry Experiment Station, The Agricultural Research Service, United States Department of Agriculture, and Cotton Incorporated Cary, NC, announce the release of six germplasm lines of upland cotton, MS-01RKN, MS-24RKN, MS-30RKN, MS-33RKN, MS-35RKN, and MS-37RKN that ha...

  7. Pulsed hydrojet

    DOEpatents

    Bohachevsky, I.O.; Torrey, M.D.

    1986-06-10

    An underwater pulsed hydrojet propulsion system is provided for accelerating and propelling a projectile or other vessel. A reactant, such as lithium, is fluidized and injected into a water volume. The resulting reaction produces an energy density in a time effective to form a steam pocket. Thrust flaps or baffles direct the pressure from the steam pocket toward an exit nozzle for accelerating a water volume to create thrust. A control system regulates the dispersion of reactant to control thrust characteristics.

  8. Design of a Pulsed Flux Concentrator for the ILC Positron Source

    SciTech Connect

    Gronberg, J; Abbott, R; Brown, C; Javedani, J; Piggott, W T; Clarke, J

    2010-05-17

    The Positron Source for the International Linear Collider requires an optical matching device after the target to increase the capture efficiency for positrons. Pulsed flux concentrators have been used by previous machines to improve the capture efficiency but the ILC has a 1 ms long pulse train which is too long for a standard flux concentrator. A pulsed flux concentrator with a 40 ms flat top was created for a hyperon experiment in 1965 which used liquid nitrogen cooling to reduce the resistance of the concentrating plates and extend the lifetime of the pulse. We report on a design for a 1 ms device based on this concept.

  9. Pulsed high-order volume mode gyroklystron

    NASA Astrophysics Data System (ADS)

    Zaitsev, N. I.; Ilyakov, E. V.; Kuzikov, S. V.; Kulagin, I. S.; Lygin, V. K.; Moiseev, M. A.; Petelin, M. I.; Shevchenko, A. S.

    2005-10-01

    We present the results of studies of a gyroklystron with the TE53 output mode. A 30-dB gain is obtained at a frequency of 30 GHz for an output power of 5 MW, efficiency 25%, pulse duration 0.4 ms, and amplification bandwidth 40 MHz.

  10. Copper-nickel superalloys as inert alloy anodes for aluminum electrolysis

    NASA Astrophysics Data System (ADS)

    Shi, Zhongning; Xu, Junli; Qiu, Zhuxian; Wang, Zhaowen; Gao, Bingliang

    2003-11-01

    The superalloys Cu-Ni-Al, Cu-Ni-Fe, and Cu-Ni-Cr were studied as anodes for aluminum electrolysis. The alloys were tested for corrosion in acidic electrolyte molten salt and for oxidation in both air and oxygen. The results showed that the Cu-Ni-Al anodes possess excellent resistance to oxidation and corrosion, and the oxidation rates of Cu-Ni-Fe and Cu-Ni-Al anodes were slower than those of pure copper or nickel. During electrolysis, the cell voltage of the Cu-Ni-Al anode was affected most by the concentration of alumina in cryolite molten salt. The Cu-Ni-Fe anode exhibited corrosion resistance in electrolyte molten salt. Comparatively, the Cu-Ni-Cr anode showed poor resistance to oxidation and corrosion. The testing found that further study is warranted on the use of Cu-Ni-Al and Cu-Ni-Fe as inert alloy anodes.

  11. A study of selective electrodialysis and the possibilities offered by coupling with electrolysis

    SciTech Connect

    Aimar, P.

    1985-04-01

    The objective of this work is to emphasize an aspect of electrodialysis which is sometimes overlooked by chemical engineers, which is the possibility of fractionating mixtures of ions of the same sign. This phenomenon has been described in several basic articles, and is presented in an analytical manner, so as to identify its advantages and limitations. The recovery of silver by electrolysis from a photographic fixing bath provides a clear illustration of the possibilities in this type of electrodialysis. It is shown in this application that the rate of recovery of silver can be improved without modifying the conditions of electrolysis merely by pretreating the solution in a selective electrodialysis unit. The criteria for selection of the process of electrodialysis are derived from a mathematical model for a complete installation.

  12. System Design and New Materials for Reversible, Solid-Oxide, High Temperature Steam Electrolysis

    SciTech Connect

    Ruud, J.A.

    2007-12-20

    High temperature solid oxide electrolysis cells (SOECs) offer high electrical efficiency and a potential path to large scale hydrogen production. Solid oxide technology is capable of both power generation and hydrogen production. That makes it possible for the development of a reversible solid-oxide system that can respond to market conditions to produce electricity or hydrogen on demand. New high-temperature electrolyzer cell materials are needed to enable cost-effective hydrogen production system designs based on reversible steam electrolysis. Two test methods were established for the eventual development of the reversible, durable electrode materials: the button cell test and the oxygen electrode test. The button cell test is capable of evaluating the performance and degradation of full solid oxide cells with dual atmosphere of air and hydrogen-steam. The oxygen electrode test is capable of isolating the performance and degradation of the oxygen electrode. It has higher throughput and sensitivity than the button cell test.

  13. Spatially confined catalysis-enhanced high-temperature carbon dioxide electrolysis.

    PubMed

    Yang, Liming; Xue, Xingjian; Xie, Kui

    2015-05-01

    In this study, a potential ilmenite cathode material Ni0.9TiO3 is designed for efficient CO2 electrolysis in an oxide-ion-conducting solid-oxide electrolyzer. Spatially confined catalysis has been successfully achieved to substantially improve cathode activity by in situ growth of catalytically active nickel nanoparticles on a ceramic skeleton. The combined analysis of XRD, SEM, EDS, XPS, TGA and Raman results together confirm that the growth of nickel catalyst is completely reversible in redox cycles. The n-type electrical properties of cathodes are systematically investigated and correlated to electrochemical performance. Efficient CO2 electrolysis with a Faraday efficiency above 90% has been demonstrated with Ni0.9TiO3 in contrast to 60% for a TiO2 cathode at 800 °C. PMID:25864375

  14. Hydrogen from renewable energy - Photovoltaic/water electrolysis as an exemplary approach

    NASA Technical Reports Server (NTRS)

    Sprafka, R. J.; Tison, R. R.; Escher, W. J. D.

    1984-01-01

    A feasibility study has been conducted for a NASA Kennedy Space Center liquid hydrogen/liquid oxygen production facility using solar cell arrays as the power source for electrolysis. The 100 MW output of the facility would be split into 67.6 and 32 MW portions for electrolysis and liquefaction, respectively. The solar cell array would cover 1.65 sq miles, and would be made up of 249 modular 400-kW arrays. Hydrogen and oxygen are generated at either dispersed or centralized water electrolyzers. The yearly hydrogen output is projected to be 5.76 million lbs, with 8 times that much oxygen; these fuel volumes can support approximately 18 Space Shuttle launches/year.

  15. Test results of six-month test of two water electrolysis systems

    NASA Technical Reports Server (NTRS)

    Mills, E. S.; Wells, G. W.

    1972-01-01

    The two water electrolysis systems used in the NASA space station simulation 90-day manned test of a regenerative life support system were refurbished as required and subjected to 26-weeks of testing. The two electrolysis units are both promising systems for oxygen and hydrogen generation and both needed extensive long-term testing to evaluate the performance of the respective cell design and provide guidance for further development. Testing was conducted to evaluate performance in terms of current, pressure, variable oxygen demands, and orbital simulation. An automatic monitoring system was used to record, monitor and printout performance data at one minute, ten minute or one-hour intervals. Performance data is presented for each day of system operation for each module used during the day. Failures are analyzed, remedial action taken to eliminate problems is discussed and recommendations for redesign for future space applications are stated.

  16. Feasibility of alternative electrode materials for high temperature CO2 reduction on solid oxide electrolysis cell

    NASA Astrophysics Data System (ADS)

    Singh, Vandana; Muroyama, Hiroki; Matsui, Toshiaki; Hashigami, Satoshi; Inagaki, Toru; Eguchi, Koichi

    2015-10-01

    The electrochemical performance of Ni-gadolinia-doped ceria (GDC) cathode was studied for CO2 reduction on solid oxide electrolysis cell (SOEC) at 1000 °C and compared with that of Ni-yttria stabilized zirconia (Ni-YSZ) cathode. Ni-GDC cathode demonstrated higher performance for CO2 reduction. Furthermore, lanthanum strontium cobalt ferrite (LSCF) anode exhibited lower overpotential than lanthanum strontium manganite-yttria stabilized zirconia (LSM-YSZ) anode. Ni-GDC cathode and LSCF anode were found to be stable under a constant current density of -0.90 A cm-2 at 900 °C. Moreover, no substantial performance degradation was observed for the cell having Ni-GDC cathode and LSCF anode even after 9 h of electrolysis operation under a constant current density of -1.2 A cm-2 at 1000 °C.

  17. Development of solid electrolytes for water electrolysis at intermediate temperatures. Task 3 report; Annual report

    SciTech Connect

    Linkous, C.A.; Anderson, R.; Kopitzke, R.W.

    1995-12-01

    This project is an attempt to synthesize and fabricate proton exchange membranes for hydrogen production via water electrolysis that can take advantage of the better kinetic and thermodynamic conditions that exist at higher temperatures. Current PEM technology is limited to the 125--150 C range. Based on previous work evaluating thermohydrolytic stability, some 5 families of polymers were chosen as viable candidates: polyether ketones, polyether sulfones, fluorinated polyimides, polybenzimidazoles, and polyphenyl quinoxalines. Several of these have been converted into ionomers via sulfonation and fashioned into membranes for evaluation. In particular, the sulfonated polyetheretherketone, or SPEEK, was tested for water uptake, thermo-conductimetric analysis, and performance as the solid electrolyte material in an electrolysis cell. Results comparable to commercial perfluorocarbon sulfonates were obtained.

  18. Conversion of laser energy to chemical energy by the photoassisted electrolysis of water

    NASA Technical Reports Server (NTRS)

    Wrighton, M. S.

    1976-01-01

    Ultraviolet irradiation of the n-type semiconductor TiO2 crystal electrode of an aqueous electrochemical cell evolves O2 at the TiO2 electrode and H2 at the Pt electrode. The gases are typically evolved in a 2:1 (H2:O2) volume ratio. The photoassisted reaction seems to require applied voltages, but values as low as 0.25 V do allow the photoassisted electrolysis to proceed. Prolonged irradiation in either acid or base evolves the gaseous products in amounts which clearly demonstrate that the reaction is catalytic with respect to the TiO2. The wavelength response of the TiO2 and the correlation of product yield and current are reported. The results support the claim that TiO2 is a true photoassistance agent for the electrolysis of water. Minimum optical storage efficiencies of the order of 1 percent can be achieved by the production of H2.

  19. Advances in Molten Oxide Electrolysis for the Production of Oxygen and Metals from Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Sadoway, Donald R.; Sirk, Aislinn; Sibille, Laurent; Melendez, Orlando; Lueck, Dale; Curreri, Peter; Dominquez, Jesus; Whitlow, Jonathan

    2008-01-01

    As part of an In-Situ Resource Utilization infrastructure to sustain long term-human presence on the lunar surface, the production of oxygen and metals by electrolysis of lunar regolith has been the subject of major scrutiny. There is a reasonably large body of literature characterizing the candidate solvent electrolytes, including ionic liquids, molten salts, fluxed oxides, and pure molten regolith itself. In the light of this information and in consideration of available electrolytic technologies, the authors have determined that direct molten oxide electrolysis at temperatures of approx 1600 C is the most promising avenue for further development. Results from ongoing studies as well as those of previous workers will be presented. Topics include materials selection and testing, electrode stability, gas capture and analysis, and cell operation during feeding and tapping.

  20. Treatment of linear alkylbenzene sulfonate (LAS) wastewater by internal electrolysis--biological contact oxidation process.

    PubMed

    Cao, X Z; Li, Y M

    2011-01-01

    Surfactant wastewater is usually difficult to treat due to its toxicity and poor biodegradability. A separate physico-chemical or biochemical treatment method achieves a satisfactory effect with difficulty. In this study, treatment of the wastewater collected from a daily chemical plant by the combination processes of Fe/C internal electrolysis and biological contact oxidation was investigated. For the internal electrolysis process, the optimal conditions were: pH = 4-5, Fe/C = (10-15):1, air-water ratio = (10-20):1 and hydraulic retention time (HRT)= 2 h. For the biological contact oxidation process, the optimal conditions were: HRT = 12 h, DO = 4.0-5.0 mg/L. Treated by the above combined processes, the effluent could meet the I-grade criteria specified in Integrated Wastewater Discharge Standard of China (GB 8978-1996). The results provide valuable information for full-scale linear alkylbenzene sulfonate wastewater treatment. PMID:22053469

  1. Effect of AN Additive on Thermal Output during Electrolysis of Heavy Water with a Palladium Cathode

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Dash, J.

    A titanium additive to a heavy water-sulfuric acid electrolyte has been found to increase the thermal output during electrolysis with a palladium foil cathode. Eight runs, about 6 h each, over a period of 16 days, gave an average of 1.8 W excess thermal power output compared with a light water control cell. This is about twice the excess obtained in co-deposition experiments. The excess thermal power output ranged from 0.5 ± 0.1 to 2.6 ± 0.1 W, which was an average of about 17% more than the input power. The additive apparently catalyzes heat-producing reactions on the surface of the palladium. After electrolysis, the Pd cathode contained localized surface concentrations of Ag, Ni, Fe, Ti, S, and Pt.

  2. Recent Progress At The Idaho National Laboratory In High Temperature Electrolysis For Hydrogen And Syngas Production

    SciTech Connect

    C. Stoots; J. O'Brien; J. Herring; J. Hartvigsen

    2008-11-01

    This paper presents the most recent results of experiments conducted at the Idaho National Laboratory (INL) studying electrolysis of steam and coelectrolysis of steam / carbon dioxide in solid-oxide electrolysis stacks. Single button cell tests as well as multi-cell stack testing have been conducted. Multi-cell stack testing used 10 x 10 cm cells (8 x 8 cm active area) supplied by Ceramatec, Inc (Salt Lake City, Utah, USA) and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to 15 kW testing capacity (H2 production rate based upon lower heating value).

  3. Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials.

    PubMed

    Zhou, Minghua; Yang, Jie; Wang, Hongyu; Jin, Tao; Xu, Dake; Gu, Tingyue

    2013-01-01

    Today's global energy crisis requires a multifaceted solution. Bioenergy is an important part of the solution. The microbial fuel cell (MFC) technology stands out as an attractive potential technology in bioenergy. MFCs can convert energy stored in organic matter directly into bioelectricity. MFCs can also be operated in the electrolysis mode as microbial electrolysis cells to produce bioproducts such as hydrogen and ethanol. Various wastewaters containing low-grade organic carbons that are otherwise unutilized can be used as feed streams for MFCs. Despite major advances in the past decade, further improvements in MFC power output and cost reduction are needed for MFCs to be practical. This paper analysed MFC operating principles using bioenergetics and bioelectrochemistry. Several major issues were explored to improve the MFC performance. An emphasis was placed on the use of catalytic materials for MFC electrodes. Recent advances in the production of various biomaterials using MFCs were also investigated. PMID:24350445

  4. Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review

    NASA Astrophysics Data System (ADS)

    Nechache, A.; Cassir, M.; Ringuedé, A.

    2014-07-01

    High temperature water electrolysis based on Solid Oxide Electrolysis Cell (SOEC) is a very promising solution to produce directly pure hydrogen. However, degradation issues occurring during operation still represent a scientific and technological barrier in view of its development at an industrial scale. Electrochemical Impedance Spectroscopy (EIS) is a powerful in-situ fundamental tool adapted to the study of SOEC systems. Hence, after a quick presentation of EIS principle and data analysis methods, this review demonstrates how EIS can be used: (i) to characterize the performance and mechanisms of SOEC electrodes; (ii) as a complementary tool to study SOEC degradation processes for different cell configurations, in addition to post-test tools such as scanning electron microscopy (SEM) or X-ray diffraction (XRD). The use of EIS to establish a systematic SOEC analysis is introduced as well.

  5. Hydrogen production by water electrolysis using tetra-alkyl-ammonium-sulfonic acid ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Fiegenbaum, Fernanda; Martini, Emilse M.; de Souza, Michèle O.; Becker, Márcia R.; de Souza, Roberto F.

    2013-12-01

    Triethylammonium-propanesulfonic acid tetrafluoroborate (TEA-PS·BF4) is used as an electrolyte in the water electrolysis. The electrolysis of water with this ionic conductor produces high current densities with high efficiencies, even at room temperatures. A system using TEA-PS·BF4 in an electrochemical cell with platinum electrodes has current densities (i) up to 1.77 A cm-2 and efficiencies between 93 and 99% in temperatures ranging from 25 °C to 80 °C. The activation energy observed with TEA-PS·BF4 is ca. 9.3 kJ mol-1, a low value that can be explained by the facilitation of proton transport in the organised aqueous ionic liquid media. The unexpectedly high efficiency of this system is discussed by taking into account the high conductivities associated with the Brönsted and Lewis acidity characteristics associated with these ionic conductive materials.

  6. Pulsed Plasma Thruster Contamination

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Arrington, Lynn A.; Pencil, Eric J.; Carter, Justin; Heminger, Jason; Gatsonis, Nicolas

    1996-01-01

    Pulsed Plasma Thrusters (PPT's) are currently baselined for the Air Force Mightysat II.1 flight in 1999 and are under consideration for a number of other missions for primary propulsion, precision positioning, and attitude control functions. In this work, PPT plumes were characterized to assess their contamination characteristics. Diagnostics included planar and cylindrical Langmuir probes and a large number of collimated quartz contamination sensors. Measurements were made using a LES 8/9 flight PPT at 0.24, 0.39, 0.55, and 1.2 m from the thruster, as well as in the backflow region behind the thruster. Plasma measurements revealed a peak centerline ion density and velocity of approx. 6 x 10(exp 12) cm(exp -3) and 42,000 m/s, respectively. Optical transmittance measurements of the quartz sensors after 2 x 10(exp 5) pulses showed a rapid decrease in plume contamination with increasing angle from the plume axis, with a barely measurable transmittance decrease in the ultraviolet at 90 deg. No change in optical properties was detected for sensors in the backflow region.

  7. Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells.

    PubMed

    Foley, Jeffrey M; Rozendal, René A; Hertle, Christopher K; Lant, Paul A; Rabaey, Korneel

    2010-05-01

    Existing wastewater treatment options are generally perceived as energy intensive and environmentally unfriendly. Much attention has been focused on two new approaches in the past years, (i) microbial fuel cells and (ii) microbial electrolysis cells, which directly generate electrical current or chemical products, respectively, during wastewater treatment. These systems are commonly denominated as bioelectrochemical systems, and a multitude of claims have been made in the past regarding the environmental impact of these treatment options. However, an in-depth study backing these claims has not been performed. Here, we have conducted a life cycle assessment (LCA) to compare the environmental impact of three industrial wastewater treatment options, (i) anaerobic treatment with biogas generation, (ii) a microbial fuel cell treatment, with direct electricity generation, and (iii) a microbial electrolysis cell, with hydrogen peroxide production. Our analysis showed that a microbial fuel cell does not provide a significant environmental benefit relative to the "conventional" anaerobic treatment option. However, a microbial electrolysis cell provides significant environmental benefits through the displacement of chemical production by conventional means. Provided that the target conversion level of 1000 A.m(-3) can be met, the decrease in greenhouse gas emissions and other environmentally harmful emissions (e.g., aromatic hydrocarbons) of the microbial electrolysis cell will be a key driver for the development of an industrial standard for this technology. Evidently, this assessment is highly dependent on the underlying assumptions, such as the used reactor materials and target performance. This provides a challenge and an opportunity for researchers in the field to select and develop appropriate and environmentally benign materials of construction, as well as demonstrate the required 1000 A.m(-3) performance at pilot and full scale. PMID:20356090

  8. Selection of combined water electrolysis and resistojet propulsion for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.

    1988-01-01

    An analytical rationale is presented for the configuration of the NASA Space Station's two-element propulsion system, and attention is given to the cost benefits accruing to this system over the Space Station's service life. The principal system element uses gaseous oxygen and hydrogen obtained through water electrolysis to furnish attitude control, backup attitude control, and contingency maneuvering. The secondary element uses resistojets to augment Space Station reboost through the acceleration of waste gases in the direction opposite the Station's flight path.

  9. 3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL

    SciTech Connect

    Grant L. Hawkes; James E. O'Brien; Greg Tao

    2011-11-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal

  10. Feasibility Analysis of Liquefying Oxygen Generated from Water Electrolysis Units on Lunar Surface

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.

    2009-01-01

    Concepts for liquefying oxygen (O2) generated from water electrolysis subsystems on the Lunar surface were explored. Concepts for O2 liquefaction units capable of generating 1.38 lb/hr (0.63 kg/hr) liquid oxygen (LOX) were developed. Heat and mass balance calculations for the liquefaction concepts were conducted. Stream properties, duties of radiators, heat exchangers and compressors for the selected concepts were calculated and compared.

  11. Diagnosis of sources of current inefficiency in industrial molten salt electrolysis cells by Raman spectroscopy

    SciTech Connect

    Sadoway, D.R.

    1988-07-29

    The purpose of this project was to employ Raman spectroscopy in the study of industrial molten salt electrolysis cells. The objective was to improve the understanding of the chemistry and electrochemistry of the relevant melt systems and, in turn, of energy loss mechanisms in the industrial processes. On this basis new ways to improve the energy efficiency of these industrial reactors might be identified. The research plan has several principal elements. First, there was the design and construction of laboratory scale representations of industrial molten salt electrolysis cells that would at the same time serve a spectrocells. Secondly, there was the mastery of the preparation of the molten salt electrolytes, what in industry is called the ''front end.'' Thirdly, there was the adaptation of commercially available Raman instrumentation in order to facilitate the proposed studies. It is the nature of the specimens that so dramatically distinguished this work from conventional Raman studies for which commercial instrumentation is designed: first, the laboratory scale electrolysis cells are large compared to typical spectrocells; and secondly, the cells operate at, what for Raman studies are, extremely high temperatures. 4 refs., 2 figs.

  12. Summary Report on Solid-oxide Electrolysis Cell Testing and Development

    SciTech Connect

    J.E. O'Brien; X. Zhang; R.C. O'Brien; G.L. Hawkes

    2012-01-01

    Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cells (SOECs) for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. From 2003 to 2009, this work was sponsored by the United States Department of Energy Nuclear Hydrogen Initiative, under the Office of Nuclear Energy. Starting in 2010, the high-temperature electrolysis (HTE) research program has been sponsored by the INL Next Generation Nuclear Plant Project. This report provides a summaryof program activities performed in Fiscal Year (FY) 2011 and the first quarter of FY-12, with a focus on small-scale testing and cell development activities. HTE research priorities during this period have included the development and testing of SOEC and stack designs that exhibit high-efficiency initial performance and low, long-term degradation rates. This report includes contributions from INL and five industry partners: Materials and Systems Research, Incorporated (MSRI); Versa Power Systems, Incorporated (VPS); Ceramatec, Incorporated; National Aeronautics and Space Administration - Glenn Research Center (NASA - GRC); and the St. Gobain Advanced Materials Division. These industry partners have developed SOEC cells and stacks for in-house testing in the electrolysis mode and independent testing at INL. Additional fundamental research and post-test physical examinations have been performed at two university partners: Massachusetts Institute of Technology (MIT) and the University of Connecticut. Summaries of these activities and test results are also presented in this report.

  13. Formation of Deposits on the Cathode Surface of Aluminum Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Allard, François; Soucy, Gervais; Rivoaland, Loig

    2014-12-01

    The efficiency of electrolysis cells for aluminum production is reduced when deposits are formed on the cathode block surface. Overfeeding of alumina or excessive heat loss in industrial cells leads to the formation of highly resistive deposits. In this study, the chemical composition of sludge, ledge toe, and thin deposits was investigated at the bottom of both industrial and experimental electrolysis cells. The formation of deposits in laboratory experiments was demonstrated in acidic, neutral, and basic electrolytic bath. A gradient of chiolite (Na5Al3F14) and α-Al2O3 was observed in the deposits. The bath at the bottom of the experimental electrolysis cell had a higher cryolite ratio implying a higher liquidus temperature. The sludge formed at the bottom of the cell can lift the aluminum metal resulting in an important reduction of the contact surface between the aluminum and the cathode block. Moreover, the deposits disturb the current path and generate horizontal current components in the metal which enhance the motion and lower the current efficiency. A thin film of bath supersaturated in alumina was observed under the metal. This work provides clarification on the formation mechanisms of the various deposits responsible for the deterioration of the cathode surface.

  14. Conceptual study of on orbit production of cryogenic propellants by water electrolysis

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    1991-01-01

    The feasibility is assessed of producing cryogenic propellants on orbit by water electrolysis in support of NASA's proposed Space Exploration Initiative (SEI) missions. Using this method, water launched into low earth orbit (LEO) would be split into gaseous hydrogen and oxygen by electrolysis in an orbiting propellant processor spacecraft. The resulting gases would then be liquified and stored in cryogenic tanks. Supplying liquid hydrogen and oxygen fuel to space vehicles by this technique has some possible advantages over conventional methods. The potential benefits are derived from the characteristics of water as a payload, and include reduced ground handling and launch risk, denser packaging, and reduced tankage and piping requirements. A conceptual design of a water processor was generated based on related previous studies, and contemporary or near term technologies required. Extensive development efforts would be required to adapt the various subsystems needed for the propellant processor for use in space. Based on the cumulative results, propellant production by on orbit water electrolysis for support of SEI missions is not recommended.

  15. Status of the INL high-temperature electrolysis research program –experimental and modeling

    SciTech Connect

    J. E. O'Brien; C. M. Stoots; M. G. McKellar; E. A. Harvego; K. G. Condie; G. K. Housley; J. S. Herring; J. J. Hartvigsen

    2009-04-01

    This paper provides a status update on the high-temperature electrolysis (HTE) research and development program at the Idaho National Laboratory (INL), with an overview of recent large-scale system modeling results and the status of the experimental program. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor coolant outlet temperatures. In terms of experimental research, the INL has recently completed an Integrated Laboratory Scale (ILS) HTE test at the 15 kW level. The initial hydrogen production rate for the ILS test was in excess of 5000 liters per hour. Details of the ILS design and operation will be presented. Current small-scale experimental research is focused on improving the degradation characteristics of the electrolysis cells and stacks. Small-scale testing ranges from single cells to multiple-cell stacks. The INL is currently in the process of testing several state-of-the-art anode-supported cells and is working to broaden its relationship with industry in order to improve the long-term performance of the cells.

  16. THERMAL AND ELECTROCHEMICAL THREE DIMENSIONAL CFD MODEL OF A PLANAR SOLID OXIDE ELECTROLYSIS CELL

    SciTech Connect

    Grant Hawkes; Jim O'Brien; Carl Stoots; Steve Herring; Mehrdad Shahnam

    2005-07-01

    A three-dimensional computational fluid dynamics (CFD) model has been created to model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell, as it would exist in an electrolysis stack. Details of the model geometry are specific to a stack that was fabricated by Ceramatec , Inc. and tested at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT2. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with experimental results obtained from an actual ten-cell stack tested at INL.

  17. Enhanced dewaterability of textile dyeing sludge using micro-electrolysis pretreatment.

    PubMed

    Ning, Xun-An; Wen, Weibin; Zhang, Yaping; Li, Ruijing; Sun, Jian; Wang, Yujie; Yang, Zuoyi; Liu, Jingyong

    2015-09-15

    The effects of micro-electrolysis treatment on textile dyeing sludge dewatering and its mechanisms were investigated in this study. Capillary suction time (CST) and settling velocity (SV) were used to evaluate sludge dewaterability. Extracellular polymeric substances (EPS) concentration and sludge disintegration degree (DDSCOD) were determined to explain the observed changes in sludge dewaterability. The results demonstrated that the micro-electrolysis could significantly improve sludge dewaterability by disrupting the sludge floc structure. The optimal conditions of sludge dewatering were the reaction time of 20 min, initial pH of 2.5, Fe/C mass ratio of 1/1, and the iron powder dosage of 2.50 g/L, which achieved good CST (from 34.1 to 27.8 s) and SV (from 75 to 60%) reduction efficiency. In addition, the scanning electron microscope (SEM) images revealed that the treated sludge floc clusters are broken up and that the dispersion degree is better than that of a raw sludge sample. The optimal EPS concentration and DDSCOD to obtain maximum sludge dewaterability was 43-46 mg/L and 4.2-4.9%, respectively. The destruction of EPS was one of the primary reasons for the improvement of sludge dewaterability during micro-electrolysis treatment. PMID:26172108

  18. CFD Model Of A Planar Solid Oxide Electrolysis Cell For Hydrogen Production From Nuclear Energy

    SciTech Connect

    Grant L. Hawkes; James E. O'Brien; Carl M. Stoots; J. Stephen Herring

    2005-10-01

    A three-dimensional computational fluid dynamics (CFD) model has been created to model hightemperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell as it would exist in an electrolysis stack. Details of the model geometry are specific to a stack that was fabricated by Ceramatec2, Inc. and tested at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT2. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with experimental results obtained from an actual ten-cell stack tested at INL.

  19. Composite cathode based on doped vanadate enhanced with loaded metal nanoparticles for steam electrolysis

    NASA Astrophysics Data System (ADS)

    Li, Yuanxin; Wu, Guojian; Ruan, Cong; Zhou, Qi; Wang, Yan; Doherty, Winston; Xie, Kui; Wu, Yucheng

    2014-05-01

    The use of composite electrodes based on La0.7Sr0.3VO3 (LSV) for steam electrolysis has uncovered the tremendous potential and capacity inherent in this material. Unfortunately, this material has a major setback of inefficient electrolysis triggered by limited electrocatalytic activity. In this work, an infiltration method is employed to load catalytic-active metal nanoparticles onto the composite electrodes in order to achieve an activity-enhanced electrode performance. The electrical properties of LSV are methodically explored and correlated to electrode performance. At 800 °C in either pure H2 or low hydrogen partial pressure (pH2) of 5%H2/N2, the polarization resistance of symmetrical cells with Ni-loaded LSV (LSV-Ni) cathode is largely enhanced, in contrast to bare LSV cathode. Similar improvement is also achieved for the Fe-loaded LSV (LSV-Fe) cathode in a wide range of hydrogen partial pressures of 5%-100%. The Faraday efficiencies of LSV-Ni and LSV-Fe composite cathodes were remarkably improved for electrolysis in either 3%H2O/4.7H2/Ar or 3%H2O/Ar at 800 °C.

  20. Water electrolysis with a conducting carbon cloth: subthreshold hydrogen generation and superthreshold carbon quantum dot formation.

    PubMed

    Biswal, Mandakini; Deshpande, Aparna; Kelkar, Sarika; Ogale, Satishchandra

    2014-03-01

    A conducting carbon cloth, which has an interesting turbostratic microstructure and functional groups that are distinctly different from other ordered forms of carbon, such as graphite, graphene, and carbon nanotubes, was synthesized by a simple one-step pyrolysis of cellulose fabric. This turbostratic disorder and surface chemical functionalities had interesting consequences for water splitting and hydrogen generation when such a cloth was used as an electrode in the alkaline electrolysis process. Importantly, this work also gives a new twist to carbon-assisted electrolysis. During electrolysis, the active sites in the carbon cloth allow slow oxidation of its surface to transform the surface groups from COH to COOH and so forth at a voltage as low as 0.2 V in a two-electrode system, along with platinum as the cathode, instead of 1.23 V (plus overpotential), which is required for platinum, steel, or even graphite anodes. The quantity of subthreshold hydrogen evolved was 24 mL cm(-2)  h(-1) at 1 V. Interestingly, at a superthreshold potential (>1.23 V+overpotential), another remarkable phenomenon was found. At such voltages, along with the high rate and quantity of hydrogen evolution, rapid exfoliation of the tiny nanoscale (5-7 nm) units of carbon quantum dots (CQDs) are found in copious amounts due to an enhanced oxidation rate. These CQDs show bright-blue fluorescence under UV light. PMID:24492961

  1. 3D CFD Model of a Multi-Cell High Temperature Electrolysis Stack

    SciTech Connect

    G.L. Hawkes; J. E. O'Brien; C. M. Stoots

    2007-11-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis stack performance and steam electrolysis in the Idaho National Laboratory Integrated Lab Scale (ILS) experiment. The model is made of 60 planar cells stacked on top of each other operated as Solid Oxide Electrolysis Cells (SOEC). Details of the model geometry are specific to a stack that was fabricated by Ceramatec, Inc1. and tested at the Idaho National Laboratory. Inlet and outlet plenum flow and distribution are considered. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT2. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC userdefined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation overpotential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Variations in flow distribution, and species concentration are discussed. End effects of flow and per-cell voltage are also considered.

  2. 3-D CFD MODEL OF A MULTI-CELL HIGH TEMPERATURE ELECTROLYSIS STACK

    SciTech Connect

    Grant Hawkes; James O'Brien; Carl Stoots; Brian Hawkes

    2009-05-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis stack performance and steam electrolysis in the Idaho National Laboratory (INL) Integrated Lab Scale (ILS) experiment. The model is made of 60 planar cells stacked on top of each other operated as Solid Oxide Electrolysis Cells (SOEC). Details of the model geometry are specific to a stack that was fabricated by Ceramatec, Inc. and tested at INL. Inlet and outlet plenum flow and distribution are considered. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density, and hydrogen production over a range of stack operating conditions. Variations in flow distribution and species concentration are discussed. End effects of flow and per-cell voltage are also considered.

  3. Electricity and H2 generation from hemicellulose by sequential fermentation and microbial fuel/electrolysis cell

    NASA Astrophysics Data System (ADS)

    Yan, Di; Yang, Xuewei; Yuan, Wenqiao

    2015-09-01

    Electricity and hydrogen generation by bacteria Geobacter sulfurreducens in a dual-chamber microbial fuel/electrolysis cell following the fermentation of hemicellulose by bacteria Moorella thermoacetica was investigated. Experimental results showed that 10 g l-1 xylose under 60 °C was appropriate for the fermentation of xylose by M. thermoacetica, yielding 0.87 g-acetic acid per gram of xylose consumed. Corncob hydrolysate could also be fermented to produce acetic acid, but with lower yield (0.74 g-acid per g-xylose). The broths of xylose and corncob hydrolysate fermented by M. thermoacetica containing acetic acid were fed to G. sulfurreducens in a dual-chamber microbial fuel/electrolysis cell for electricity and hydrogen generation. The highest open-circuit cell voltages generated were 802 and 745 mV, and hydrogen yields were 41.7 and 23.3 mmol per mol-acetate, in xylose and corncob hydrolysate fermentation broth media, respectively. The internal resistance of the microbial fuel/electrolysis cell fed with corncob hydrolysate fermentation broth (3472 Ω) was much higher than that with xylose fermentation broth (1993 Ω) or sodium acetate medium (467 Ω), which was believed to be the main cause of the variation in hydrogen yield of the three feeding media.

  4. Hydrogen production from switchgrass via an integrated pyrolysis-microbial electrolysis process.

    PubMed

    Lewis, A J; Ren, S; Ye, X; Kim, P; Labbe, N; Borole, A P

    2015-11-01

    A new approach to hydrogen production using an integrated pyrolysis-microbial electrolysis process is described. The aqueous stream generated during pyrolysis of switchgrass was used as a substrate for hydrogen production in a microbial electrolysis cell, achieving a maximum hydrogen production rate of 4.3 L H2/L anode-day at a loading of 10 g COD/L-anode-day. Hydrogen yields ranged from 50±3.2% to 76±0.5% while anode Coulombic efficiency ranged from 54±6.5% to 96±0.21%, respectively. Significant conversion of furfural, organic acids and phenolic molecules was observed under both batch and continuous conditions. The electrical and overall energy efficiency ranged from 149-175% and 48-63%, respectively. The results demonstrate the potential of the pyrolysis-microbial electrolysis process as a sustainable and efficient route for production of renewable hydrogen with significant implications for hydrocarbon production from biomass. PMID:26210530

  5. Hydrogen production from switchgrass via a hybrid pyrolysis-microbial electrolysis process

    DOE PAGESBeta

    Lewis, Alex J.; Ren, Shoujie; Ye, Philip; Kim, Pyoungchung; Labbe, Niki; Borole, Abhijeet P.

    2015-06-30

    A new approach to hydrogen production using a hybrid pyrolysis-microbial electrolysis process is described. The aqueous stream generated during pyrolysis of switchgrass was used as a substrate for hydrogen production in a microbial electrolysis cell, achieving a maximum hydrogen production rate of 4.3 L H2/L-day at a loading of 10 g COD/L-anode-day. Hydrogen yields ranged from 50 3.2% to76 0.5% while anode coulombic efficiency ranged from 54 6.5% to 96 0.21%, respectively. Significant conversion of furfural, organic acids and phenolic molecules was observed under both batch and continuous conditions. The electrical and overall energy efficiency ranged from 149-175% and 48-63%,more » respectively. The results demonstrate the potential of the pyrolysis-microbial electrolysis process as a sustainable and efficient route for production of renewable hydrogen with significant implications for hydrocarbon production from biomass.« less

  6. Nanostructured F doped IrO2 electro-catalyst powders for PEM based water electrolysis

    NASA Astrophysics Data System (ADS)

    Kadakia, Karan Sandeep; Jampani, Prashanth H.; Velikokhatnyi, Oleg I.; Datta, Moni Kanchan; Park, Sung Kyoo; Hong, Dae Ho; Chung, Sung Jae; Kumta, Prashant N.

    2014-12-01

    Fluorine doped iridium oxide (IrO2:F) powders with varying F content ranging from 0 to 20 wt.% has been synthesized by using a modification of the Adams fusion method. The precursors (IrCl4 and NH4F) are mixed with NaNO3 and heated to elevated temperatures to form high surface area nanomaterials as electro-catalysts for PEM based water electrolysis. The catalysts were then coated on a porous Ti substrate and have been studied for the oxygen evolution reaction in PEM based water electrolysis. The IrO2:F with an optimum composition of IrO2:10 wt.% F shows remarkably superior electrochemical activity and chemical stability compared to pure IrO2. The results have also been supported via kinetic studies by conducting rotating disk electrode (RDE) experiments. The RDE studies confirm that the electro-catalysts follow the two electron transfer reaction for electrolysis with calculated activation energy of ∼25 kJ mol-1. Single full cell tests conducted also validate the superior electrochemical activity of the 10 wt.% F doped IrO2.

  7. Performance of Single Electrode-Supported Cells Operating in the Electrolysis Mode

    SciTech Connect

    J. E. O'Brien; G. K. Housley; D. G. Milobar

    2009-11-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from single cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (~10 µm thick), nickel-YSZ steam/hydrogen electrodes (~1400 µm thick), and manganite (LSM) air-side electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 – 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented.

  8. Effects of pulse duration on magnetostimulation thresholds

    SciTech Connect

    Saritas, Emine U.; Goodwill, Patrick W.; Conolly, Steven M.

    2015-06-15

    Purpose: Medical imaging techniques such as magnetic resonance imaging and magnetic particle imaging (MPI) utilize time-varying magnetic fields that are subject to magnetostimulation limits, which often limit the speed of the imaging process. Various human-subject experiments have studied the amplitude and frequency dependence of these thresholds for gradient or homogeneous magnetic fields. Another contributing factor was shown to be number of cycles in a magnetic pulse, where the thresholds decreased with longer pulses. The latter result was demonstrated on two subjects only, at a single frequency of 1.27 kHz. Hence, whether the observed effect was due to the number of cycles or due to the pulse duration was not specified. In addition, a gradient-type field was utilized; hence, whether the same phenomenon applies to homogeneous magnetic fields remained unknown. Here, the authors investigate the pulse duration dependence of magnetostimulation limits for a 20-fold range of frequencies using homogeneous magnetic fields, such as the ones used for the drive field in MPI. Methods: Magnetostimulation thresholds were measured in the arms of six healthy subjects (age: 27 ± 5 yr). Each experiment comprised testing the thresholds at eight different pulse durations between 2 and 125 ms at a single frequency, which took approximately 30–40 min/subject. A total of 34 experiments were performed at three different frequencies: 1.2, 5.7, and 25.5 kHz. A solenoid coil providing homogeneous magnetic field was used to induce stimulation, and the field amplitude was measured in real time. A pre-emphasis based pulse shaping method was employed to accurately control the pulse durations. Subjects reported stimulation via a mouse click whenever they felt a twitching/tingling sensation. A sigmoid function was fitted to the subject responses to find the threshold at a specific frequency and duration, and the whole procedure was repeated at all relevant frequencies and pulse durations

  9. Pulse-burst laser systems for fast Thomson scattering (invited).

    PubMed

    Den Hartog, D J; Ambuel, J R; Borchardt, M T; Falkowski, A F; Harris, W S; Holly, D J; Parke, E; Reusch, J A; Robl, P E; Stephens, H D; Yang, Y M

    2010-10-01

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned. PMID:21033868

  10. Pulse-burst laser systems for fast Thomson scattering (invited)

    SciTech Connect

    Den Hartog, D. J.; Ambuel, J. R.; Holly, D. J.; Robl, P. E.; Borchardt, M. T.; Falkowski, A. F.; Harris, W. S.; Parke, E.; Reusch, J. A.; Stephens, H. D.; Yang, Y. M.

    2010-10-15

    Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to ''pulse-burst'' capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

  11. Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation and Structure Elucidation Using MS-FINDER Software.

    PubMed

    Tsugawa, Hiroshi; Kind, Tobias; Nakabayashi, Ryo; Yukihira, Daichi; Tanaka, Wataru; Cajka, Tomas; Saito, Kazuki; Fiehn, Oliver; Arita, Masanori

    2016-08-16

    Compound identification from accurate mass MS/MS spectra is a bottleneck for untargeted metabolomics. In this study, we propose nine rules of hydrogen rearrangement (HR) during bond cleavages in low-energy collision-induced dissociation (CID). These rules are based on the classic even-electron rule and cover heteroatoms and multistage fragmentation. We evaluated our HR rules by the statistics of MassBank MS/MS spectra in addition to enthalpy calculations, yielding three levels of computational MS/MS annotation: "resolved" (regular HR behavior following HR rules), "semiresolved" (irregular HR behavior), and "formula-assigned" (lacking structure assignment). With this nomenclature, 78.4% of a total of 18506 MS/MS fragment ions in the MassBank database and 84.8% of a total of 36370 MS/MS fragment ions in the GNPS database were (semi-) resolved by predicted bond cleavages. We also introduce the MS-FINDER software for structure elucidation. Molecular formulas of precursor ions are determined from accurate mass, isotope ratio, and product ion information. All isomer structures of the predicted formula are retrieved from metabolome databases, and MS/MS fragmentations are predicted in silico. The structures are ranked by a combined weighting score considering bond dissociation energies, mass accuracies, fragment linkages, and, most importantly, nine HR rules. The program was validated by its ability to correctly calculate molecular formulas with 98.0% accuracy for 5063 MassBank MS/MS records and to yield the correct structural isomer with 82.1% accuracy within the top-3 candidates. In a test with 936 manually identified spectra from an untargeted HILIC-QTOF MS data set of human plasma, formulas were correctly predicted in 90.4% of the cases, and the correct isomer structure was retrieved at 80.4% probability within the top-3 candidates, including for compounds that were absent in mass spectral libraries. The MS-FINDER software is freely available at http

  12. Effectiveness of multiple pulses on flow index of electroporation

    NASA Astrophysics Data System (ADS)

    Morshed, Bashir I.; Shams, Maitham; Mussivand, Tofy

    2012-04-01

    Electroporation is the formation of reversible pores in cell membranes without rupturing the membrane using a high electric field. Electroporation is an important technique for various biomedical applications including drug delivery, gene transfection and therapeutic treatments. A microfluidic device was developed to investigate electroporation using single and multiple pulses. The device contained integrated electrodes inside microchannels. Stained cells were introduced inside the microchannels and excitation pulses were applied. Sequences of images were captured using an integrated-camera on an optical microscope in the bright-field mode. Stained pixel data from the sequences of images were extracted through image processing to detect and quantify electroporation. Flow Index of EP (FIEP) was computed from the normalized (wrt initial) stained pixel data. Multiple pulses increased FIEP when increased energy was delivered, but reduced FIEP when the same amount of energy was delivered. Mean FIEP using 20 V excitation for 1 pulse of 1 ms was 0.256, 10 pulses of 1 ms was 0.329 and 1 pulse of 10 ms was 0.422. These experimental results show that a single pulse is more effective to induce higher FIEP compared to multiple pulses. FIEP enables quantitative and systematic study towards optimization of pulse parameters for electroporation-based applications.

  13. PULSE COLUMN

    DOEpatents

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  14. 3D CFD Model of High Temperature H2O/CO2 Co-electrolysis

    SciTech Connect

    Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring; Joe Hartvigsen

    2007-06-01

    3D CFD Model of High Temperature H2O/CO2 Co-Electrolysis Grant Hawkes1, James O’Brien1, Carl Stoots1, Stephen Herring1 Joe Hartvigsen2 1 Idaho National Laboratory, Idaho Falls, Idaho, grant.hawkes@inl.gov 2 Ceramatec Inc, Salt Lake City, Utah INTRODUCTION A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature co-electrolysis of steam and carbon dioxide in a planar solid oxide electrolyzer (SOE) using solid oxide fuel cell technology. A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of planar solid-oxide electrolysis cell technology for syn-gas production from CO2 and steam. Various runs have been performed under different run conditions to help assess the performance of the SOE. This paper presents CFD results of this model compared with experimental results. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to produce syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. A strong interest exists in the large-scale production of syn-gas from CO2 and steam to be reformed into a usable transportation fuel. If biomass is used as the carbon source, the overall process is climate neutral. Consequently, there is a high level of interest in production of syn-gas from CO2 and steam electrolysis. With the price of oil currently around $60 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World

  15. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    SciTech Connect

    G. L. Hawkes; J. E. O'Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power

  16. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  17. An Environmentally Friendly Process Involving Refining and Membrane-Based Electrolysis for Magnesium Recovery from Partially Oxidized Scrap Alloy

    NASA Astrophysics Data System (ADS)

    Guan, Xiaofei; Pal, Uday B.; Powell, Adam C.

    2013-10-01

    Magnesium is recovered from partially oxidized scrap alloy by combining refining and solid oxide membrane (SOM) electrolysis. In this combined process, a molten salt eutectic flux (45 wt.% MgF2-55 wt.% CaF2) containing 10 wt.% MgO and 2 wt.% YF3 was used as the medium for magnesium recovery. During refining, magnesium and its oxide are dissolved from the scrap into the molten flux. Forming gas is bubbled through the flux and the dissolved magnesium is removed via the gas phase and condensed in a separate condenser at a lower temperature. The molten flux has a finite solubility for magnesium and acts as a selective medium for magnesium dissolution, but not aluminum or iron, and therefore the magnesium recovered has high purity. After refining, SOM electrolysis is performed in the same reactor to enable electrolysis of the dissolved magnesium oxide in the molten flux producing magnesium at the cathode and oxygen at the SOM anode. During SOM electrolysis, it is necessary to decrease the concentration of the dissolved magnesium in the flux to improve the faradaic current efficiency and prevent degradation of the SOM. Thus, for both refining and SOM electrolysis, it is very important to measure and control the magnesium solubility in the molten flux. High magnesium solubility facilitates refining whereas lower solubility benefits the SOM electrolysis process. Computational fluid dynamics modeling was employed to simulate the flow behavior of the flux stirred by the forming gas. Based on the modeling results, an optimized design of the stirring tubes and its placement in the flux are determined for efficiently removing the dissolved magnesium and also increasing the efficiency of the SOM electrolysis process.

  18. Determination of Glyphosate Levels in Breast Milk Samples from Germany by LC-MS/MS and GC-MS/MS.

    PubMed

    Steinborn, Angelika; Alder, Lutz; Michalski, Britta; Zomer, Paul; Bendig, Paul; Martinez, Sandra Aleson; Mol, Hans G J; Class, Thomas J; Pinheiro, Nathalie Costa

    2016-02-17

    This study describes the validation and application of two independent analytical methods for the determination of glyphosate in breast milk. They are based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS), respectively. For LC-MS/MS, sample preparation involved an ultrafiltration followed by chromatography on an anion exchange column. The analysis by GC-MS/MS involved an extraction step, cleanup on a cation exchange column, and derivatization with heptafluorobutanol and trifluoroacetic acid anhydride. Both methods were newly developed for breast milk and are able to quantify glyphosate residues at concentrations as low as 1 ng/mL. The methods were applied to quantify glyphosate levels in 114 breast milk samples, which had been collected from August to September of 2015 in Germany. The mothers participated at their own request and thus do not form a representative sample. In none of the investigated samples were glyphosate residues above the limit of detection found. PMID:26808680

  19. Electrostatic Changes Observed with Narrow Bipolar Pulses

    NASA Astrophysics Data System (ADS)

    Karunarathne, S.; Marshall, T. C.; Stolzenburg, M.; Karunarathna, N.

    2015-12-01

    Narrow bipolar pulses (NBPs) or compact intracloud discharges are impulsive discharges that are considered to be the strongest natural emitters in the HF radio band; they usually occur at high altitudes in some thunderstorms. In the summer of 2011, we collected E-change data with wideband flat-plate antennas (0.16 Hz - 2.5 MHz) at ten stations covering an area of nearly 70 km x 100 km in and around Kennedy Space Center, Florida, USA. On one thunderstorm day, 14 August 2011, we detected 226 positive NBPs, and some observations of these pulses were published in Karunarathne et al. [2015, JGR-atmospheres]. Of these 226 NBPs, 50 (22.1 %) occurred within 10 km horizontally of at least one sensor. All of these closer sensors show electrostatic changes associated with corresponding NBPs, with a net electrostatic change in the main bipolar pulse and with a slower electrostatic change after the bipolar pulse that seems similar to short continuing current immediately after some cloud-to-ground return strokes. Although NBPs have been considered as short duration pulses (10 - 20 microseconds), the electrostatic changes after the main bipolar pulse ranged from 0.7 ms to 34 ms and associated charge moments were calculated. The total duration of the electrostatic E-change was strongly dependent on the distance to the sensors. In this presentation, we will present data for these electrostatic changes, some statistics, and physical background and reasoning for the electrostatic changes.

  20. Mathematical Analysis of High-Temperature Co-electrolysis of CO2 and O2 Production in a Closed-Loop Atmosphere Revitalization System

    SciTech Connect

    Michael G. McKellar; Manohar S. Sohal; Lila Mulloth; Bernadette Luna; Morgan B. Abney

    2010-03-01

    NASA has been evaluating two closed-loop atmosphere revitalization architectures based on Sabatier and Bosch carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. A number of process models have been developed and analyzed to determine the theoretical power required to recover oxygen, O2, in each case. These models include the current Sabatier and Bosch technologies and combinations of those processes with high-temperature co-electrolysis. The cases of constant CO2 supply and constant O2 production were evaluated. In addition, a process model of the hydrogenation process with co-electrolysis was developed and compared. Sabatier processes require the least amount of energy input per kg of oxygen produced. If co-electrolysis replaces solid polymer electrolyte (SPE) electrolysis within the Sabatier architecture, the power requirement is reduced by over 10%, but only if heat recuperation is used. Sabatier processes, however, require external water to achieve the lower power results. Under conditions of constant incoming carbon dioxide flow, the Sabatier architectures require more power than the other architectures. The Bosch, Boudouard with co-electrolysis, and the hydrogenation with co-electrolysis processes require little or no external water. The Bosch and hydrogenation processes produce water within their reactors, which aids in reducing the power requirement for electrolysis. The Boudouard with co-electrolysis process has a higher electrolysis power requirement because carbon

  1. Electrolysis of metal oxides in MgCl2 based molten salts with an inert graphite anode.

    PubMed

    Yuan, Yating; Li, Wei; Chen, Hualin; Wang, Zhiyong; Jin, Xianbo; Chen, George Z

    2016-08-15

    Electrolysis of solid metal oxides has been demonstrated in MgCl2-NaCl-KCl melt at 700 °C taking the electrolysis of Ta2O5 as an example. Both the cathodic and anodic processes have been investigated using cyclic voltammetry, and potentiostatic and constant voltage electrolysis, with the cathodic products analysed by XRD and SEM and the anodic products by GC. Fast electrolysis of Ta2O5 against a graphite anode has been realized at a cell voltage of 2 V, or a total overpotential of about 400 mV. The energy consumption was about 1 kW h kgTa(-1) with a nearly 100% Ta recovery. The cathodic product was nanometer Ta powder with sizes of about 50 nm. The main anodic product was Cl2 gas, together with about 1 mol% O2 gas and trace amounts of CO. The graphite anode was found to be an excellent inert anode. These results promise an environmentally-friendly and energy efficient method for metal extraction by electrolysis of metal oxides in MgCl2 based molten salts. PMID:27203663

  2. Recycling Carbon Dioxide into Sustainable Hydrocarbon Fuels: Electrolysis of Carbon Dioxide and Water

    NASA Astrophysics Data System (ADS)

    Graves, Christopher Ronald

    Great quantities of hydrocarbon fuels will be needed for the foreseeable future, even if electricity based energy carriers begin to partially replace liquid hydrocarbons in the transportation sector. Fossil fuels and biomass are the most common feedstocks for production of hydrocarbon fuels. However, using renewable or nuclear energy, carbon dioxide and water can be recycled into sustainable hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. The purpose of this work was to develop critical components of a system that recycles CO2 into liquid hydrocarbon fuels. The concept is examined at several scales, beginning with a broad scope analysis of large-scale sustainable energy systems and ultimately studying electrolysis of CO 2 and H2O in high temperature solid oxide cells as the heart of the energy conversion, in the form of three experimental studies. The contributions of these studies include discoveries about electrochemistry and materials that could significantly improve the overall energy use and economics of the CO2-to-fuels system. The broad scale study begins by assessing the sustainability and practicality of the various energy carriers that could replace petroleum-derived hydrocarbon fuels, including other hydrocarbons, hydrogen, and storage of electricity on-board vehicles in batteries, ultracapacitors, and flywheels. Any energy carrier can store the energy of any energy source. This sets the context for CO2 recycling -- sustainable energy sources like solar and wind power can be used to provide the most energy-dense, convenient fuels which can be readily used in the existing infrastructure. The many ways to recycle CO2 into hydrocarbons, based on thermolysis, thermochemical loops, electrolysis, and photoelectrolysis of CO2 and/or H 2O, are critically reviewed. A process based on high temperature co-electrolysis

  3. METLIN: MS/MS metabolite data from the MAGGIE Project

    DOE Data Explorer

    METLIN is a metabolite database for metabolomics containing over 50,000 structures, it also represents a data management system designed to assist in a broad array of metabolite research and metabolite identification by providing public access to its repository of current and comprehensive MS/MS metabolite data. An annotated list of known metabolites and their mass, chemical formula, and structure are available on the METLIN website. Each metabolite is conveniently linked to outside resources such as the the Kyoto Encyclopedia of Genes and Genomes (KEGG) for further reference and inquiry. MS/MS data is also available on many of the metabolites. The list is expanding continuously as more metabolite information is being deposited and discovered. [from http://metlin.scripps.edu/] Metlin is a component of the MAGGIE Project. MAGGIE is funded by the DOE Genomics: GTL and is an acronym for "Molecular Assemblies, Genes, and Genomics Integrated Efficiently."

  4. GeLC-MS/MS Analysis of Complex Protein Mixtures

    PubMed Central

    Dzieciatkowska, Monika; Hill, Ryan; Hansen, Kirk C.

    2015-01-01

    Discovery-based proteomics has found its place in nearly every facet of biological research. A key objective of this approach is to maximize sequence coverage for proteins across a wide concentration range. Fractionating samples at the protein level is one of the most common ways to circumvent challenges due to sample complexity and improve proteome coverage. Of the available methods, one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by liquid chromatography-tandem mass spectrometry (GeLC-MS/MS) is a robust and reproducible method for qualitative and quantitative proteomic analysis. Here we describe a general GeLC-MS/MS protocol and include technical advice and outline caveats to increase the probability of a successful analysis. PMID:24791981

  5. Qualitative identification of rodenticide anticoagulants by LC-MS/MS.

    PubMed

    Middleberg, Robert A; Homan, Joseph

    2012-01-01

    Rodenticide anticoagulants are used in the control of rodent populations. In addition to accidental ingestions in humans, such agents have also been used for homicidal and suicidal purposes. There are two major groups of rodenticide anticoagulants - hydroxycoumarins and indanediones. Before the advent of LC-MS/MS, analysis for such agents was relegated to such techniques as TLC and HPLC with nonspecific modes of detection. LC-MS/MS has been used to determine any given number of rodenticide anticoagulants in animal tissues, foods, plasma, etc. Use of this technique allows for the simultaneous identification of individual compounds within both classes of rodenticide anticoagulants. The LC-MS/MS method presented allows for simultaneous qualitative identification of brodifacoum, bromadiolone, chlorphacinone, dicumarol, difenacoum, diphacinone, and warfarin in blood, serum, and plasma using ESI in the negative mode. Two transitions are monitored for each analyte after a simple sample preparation. Chromatographic separation is accomplished using a gradient of ammonium hydroxide in water and ammonium hydroxide in methanol. Chloro-warfarin is used as internal standard. PMID:22767114

  6. Pulsed Laser Ablation of Soft Biological Tissues

    NASA Astrophysics Data System (ADS)

    Vogel, Alfred; Venugopalan, Vasan

    In this chapter we focus on the key elements that form our current understanding of the mechanisms of pulsed laser ablation of soft biological tissues. We present a conceptual framework providing mechanistic links between various ablation applications and the underlying thermodynamic and phase change processes [1]. We define pulsed laser ablation as the use of laser pulses with duration of ~1 ms or less for the incision or removal of tissue regardless of the photophysical or photochemical processes involved. However, we will confine this presentation to pulsed ablation performed on a tissue level that does not involve laser-induced plasma formation. Ablation processes within transparent tissues or cells resulting from non-linear absorption have been considered in reviews by Vogel and Venugopalan [1] and by Vogel and co-workers [2].

  7. High velocity pulsed wire-arc spray

    NASA Technical Reports Server (NTRS)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor); Kincaid, Russell W. (Inventor)

    1999-01-01

    Wire arc spraying using repetitively pulsed, high temperature gas jets, usually referred to as plasma jets, and generated by capillary discharges, substantially increases the velocity of atomized and entrained molten droplets. The quality of coatings produced is improved by increasing the velocity with which coating particles impact the coated surface. The effectiveness of wire-arc spraying is improved by replacing the usual atomizing air stream with a rapidly pulsed high velocity plasma jet. Pulsed power provides higher coating particle velocities leading to improved coatings. 50 micron aluminum droplets with velocities of 1500 m/s are produced. Pulsed plasma jet spraying provides the means to coat the insides of pipes, tubes, and engine block cylinders with very high velocity droplet impact.

  8. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    PubMed Central

    D’Ostilio, Kevin; Rothwell, John C; Murphy, David L

    2014-01-01

    Objective This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with lower voltage rating than prior cTMS devices. Main results cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (<10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in 10 healthy volunteers. Significance The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool. PMID:25242286

  9. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    NASA Astrophysics Data System (ADS)

    Peterchev, Angel V.; DʼOstilio, Kevin; Rothwell, John C.; Murphy, David L.

    2014-10-01

    Objective. This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach. We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with a lower voltage rating than prior cTMS devices. Main results. cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (\\lt 10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in ten healthy volunteers. Significance. The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool.

  10. CHALLENGES IN GENERATING HYDROGEN BY HIGH TEMPERATURE ELECTROLYSIS USING SOLID OXIDE CELLS

    SciTech Connect

    M. S. Sohal; J. E. O'Brien; C. M. Stoots; M. G. McKellar; J. S. Herring; E. A. Harvego

    2008-03-01

    Idaho National Laboratory’s (INL) high temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells is presented in this paper. The research results reported here have been obtained in a laboratory-scale apparatus. These results and common scale-up issues also indicate that for the technology to be successful in a large industrial setting, several technical, economical, and manufacturing issues have to be resolved. Some of the issues related to solid oxide cells are stack design and performance optimization, identification and evaluation of cell performance degradation parameters and processes, integrity and reliability of the solid oxide electrolysis (SOEC) stacks, life-time prediction and extension of the SOEC stack, and cost reduction and economic manufacturing of the SOEC stacks. Besides the solid oxide cells, balance of the hydrogen generating plant also needs significant development. These issues are process and ohmic heat source needed for maintaining the reaction temperature (~830°C), high temperature heat exchangers and recuperators, equal distribution of the reactants into each cell, system analysis of hydrogen and associated energy generating plant, and cost optimization. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.23/kg of hydrogen assuming an internal rate of return of 10%. These issues need interdisciplinary research effort of federal laboratories, solid oxide cell manufacturers, hydrogen consumers, and other such stakeholders. This paper discusses research and development accomplished by INL on such issues and highlights associated challenges that need to

  11. Nonlinear time-series analysis of current signal in cathodic contact glow discharge electrolysis

    NASA Astrophysics Data System (ADS)

    Allagui, Anis; Rojas, Andrea Espinel; Bonny, Talal; Elwakil, Ahmed S.; Abdelkareem, Mohammad Ali

    2016-05-01

    In the standard two-electrode configuration employed in electrolytic process, when the control dc voltage is brought to a critical value, the system undergoes a transition from conventional electrolysis to contact glow discharge electrolysis (CGDE), which has also been referred to as liquid-submerged micro-plasma, glow discharge plasma electrolysis, electrode effect, electrolytic plasma, etc. The light-emitting process is associated with the development of an irregular and erratic current time-series which has been arbitrarily labelled as "random," and thus dissuaded further research in this direction. Here, we examine the current time-series signals measured in cathodic CGDE configuration in a concentrated KOH solution at different dc bias voltages greater than the critical voltage. We show that the signals are, in fact, not random according to the NIST SP. 800-22 test suite definition. We also demonstrate that post-processing low-pass filtered sequences requires less time than the native as-measured sequences, suggesting a superposition of low frequency chaotic fluctuations and high frequency behaviors (which may be produced by more than one possible source of entropy). Using an array of nonlinear time-series analyses for dynamical systems, i.e., the computation of largest Lyapunov exponents and correlation dimensions, and re-construction of phase portraits, we found that low-pass filtered datasets undergo a transition from quasi-periodic to chaotic to quasi-hyper-chaotic behavior, and back again to chaos when the voltage controlling-parameter is increased. The high frequency part of the signals is discussed in terms of highly nonlinear turbulent motion developed around the working electrode.

  12. Lunar Metal Oxide Electrolysis with Oxygen and Photovoltaic Array Production Applications

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Ethridge, E.; Hudson, S.; Sen, S.

    2006-01-01

    This paper presents the results of a Marshall Space Flight Center funded effort to conduct an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis (MOE) process to produce oxygen and metal from lunar resources to support human exploration of space. Oxygen extracted from lunar materials can be used for life support and propellant, and silicon and metallic elements produced can be used for in situ fabrication of thin-film solar cells for power production. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis, MOE, is chosen for extraction, since the electron is the most practical reducing agent. MOE was also chosen for following reasons. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. In the experiments reported here, melts containing iron oxide were electrolyzed in a low temperature supporting oxide electrolyte (developed by D. Sadoway, MIT). The production of oxygen and reduced iron were observed. Electrolysis was also performed on the supporting electrolyte with JSC-1 Lunar Simulant. The cell current for the supporting electrolyte alone is negligible while the current for the electrolyte with JSC-1 shows significant current and a peak at about -0.6 V indicating reductive reaction in the simulant.

  13. Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2010-06-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents

  14. Efficient treatment of azo dye containing wastewater in a hybrid acidogenic bioreactor stimulated by biocatalyzed electrolysis.

    PubMed

    Wang, Hong-Cheng; Cheng, Hao-Yi; Wang, Shu-Sen; Cui, Dan; Han, Jing-Long; Hu, Ya-Ping; Su, Shi-Gang; Wang, Ai-Jie

    2016-01-01

    In this study, a novel scaled-up hybrid acidogenic bioreactor (HAB) was designed and adopted to evaluate the performance of azo dye (acid red G, ARG) containing wastewater treatment. Principally, HAB is an acidogenic bioreactor coupled with a biocatalyzed electrolysis module. The effects of hydraulic retention time (HRT) and ARG loading rate on the performance of HAB were investigated. In addition, the influent was switched from synthetic wastewater to domestic wastewater to examine the key parameters for the application of HAB. The results showed that the introduction of the biocatalyzed electrolysis module could enhance anoxic decolorization and COD (chemical oxygen demand) removal. The combined process of HAB-CASS presented superior performance compared to a control system without biocatalyzed electrolysis (AB-CASS). When the influent was switched to domestic wastewater, with an environment having more balanced nutrients and diverse organic matters, the ARG, COD and nitrogen removal efficiencies of HAB-CASS were further improved, reaching 73.3%±2.5%, 86.2%±3.8% and 93.5%±1.6% at HRT of 6 hr, respectively, which were much higher than those of AB-CASS (61.1%±4.7%, 75.4%±5.0% and 82.1%±2.1%, respectively). Moreover, larger TCV/TV (total cathode volume/total volume) for HAB led to higher current and ARG removal. The ARG removal efficiency and current at TCV/TV of 0.15 were 39.2%±3.7% and 28.30±1.48 mA, respectively. They were significantly increased to 62.1%±2.0% and 34.55±0.83 mA at TCV/TV of 0.25. These results show that HAB system could be used to effectively treat real wastewater. PMID:26899658

  15. CFD Model of a Planar Solid Oxide Electrolysis Cell: Base Case and Variations

    SciTech Connect

    G. L. Hawkes; J. E. O'Brien; C. M. Stoots; J. S. Herring; R. W. Jones

    2007-07-01

    A three-dimensional computational fluid dynamics (CFD) model has been created to model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell, as it would exist in an electrolysis stack. Details of the model geometry are specific to a stack that was fabricated by Ceramatec, Inc. and tested at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with experimental results obtained from an actual ten-cell stack tested at INL. Mean per-cell area-specific-resistance (ASR) values decrease with increasing current density, consistent with experimental data. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, cathode and anode exchange current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicated the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

  16. X-ray Photoelectron Spectroscopy ofGaP_{1-x}N_x Photocorroded as a Result of Hydrogen Productionthrough Water Electrolysis

    SciTech Connect

    Mayer, Marie A.; /Illinois U., Urbana /SLAC

    2006-09-27

    Photoelectrochemical (PEC) cells produce hydrogen gas through the sunlight driven electrolysis of water. By extracting hydrogen and oxygen from water and storing solar energy in the H-H bond, they offer a promising renewable energy technology. Addition of dilute amounts of nitrogen to III-V semiconductors has been shown to dramatically increase the stability of these materials for hydrogen production. In an effort to learn more about the origin of semiconductor photocorrosion in PEC cells, three samples of p-type GaP with varying levels of nitrogen content (0%, 0.2%, 2%) were photocorroded and examined by X-ray Photoelectron Spectroscopy (XPS). GaPN samples were observed to be more efficient during the hydrogen production process than the pure GaP samples. Sample surfaces contained gallium oxides in the form of Ga{sub 2}O{sub 3} and Ga(OH){sub 3} and phosphorus oxide (P{sub 2}O{sub 5}), as well as surface oxides from exposure to air. A significant shift in intensity from bulk to surface peaks dramatic nitrogen segregation to the surface during photoelectrochemical hydrogen production. Further investigations, including using a scanning electron microscope to investigate sample topography and inductively coupled plasma mass spectroscopy (ICP-MS) analysis for solution analyses, are under way to determine the mechanism for these changes.

  17. Relapsing-Remitting MS (RRMS)

    MedlinePlus Videos and Cool Tools

    ... fibers themselves. During these inflammatory attacks, activated immune cells cause small, localized areas of damage which produce ... MRI) scans, and these lesions contain more inflammatory cells. People with primary progressive MS (PPMS) tend to ...

  18. Fe-30Ni-5NiO alloy as inert anode for low-temperature aluminum electrolysis

    NASA Astrophysics Data System (ADS)

    Zhu, Yuping; He, Yedong; Wang, Deren

    2011-05-01

    Fe-30Ni-5NiO alloy anodes were prepared by a spark plasma sintering process for aluminum electrolysis. NiO nano-particles with the size of ˜20 nm were dispersed in the anodes. The oxidation behaviors of the anodes were investigated at 800°C and 850°C, respectively. The electrolysis corrosion behaviors were tested in a cryolite-alumina electrolyte at a low temperature of 800°C with anodic current densities of ˜0.5 A/cm2. The results indicated that the oxidation kinetic of the anodes followed a parabolic law. A continuous Fe2O3 film selectively formed on the surface of the anode during the electrolysis process. A semi-continuous Al2O3 layer was observed at oxide film/alloy interface, probably caused by an in-situ chemical dissolution process.

  19. Energy storage using high pressure electrolysis and methods for reconversion. [in automobile fuel synthesis

    NASA Technical Reports Server (NTRS)

    Hughes, W. L.

    1973-01-01

    Theoretical and experimental studies on high pressure electrolysis producing hydrogen and oxygen for energy storage and reconversion are reported. Moderate temperature, high pressure hydrogen/oxygen fuel cells with nickel electrodes are investigated for effects of pressure, temperature, and membrane porosity. Test results from an aphodid burner turbine generator combination obtained 40 percent kilowatt hours out of the fuel cell divided by kilowatt hours into the electrolyzer. It is concluded that high pressure hydrogenation of organic materials can be used to synthesize hydrozenes and methanes for making synthetic vehicular fuels.

  20. From Oxygen Generation to Metals Production: In Situ Resource Utilization by Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Khetpal, Deepak; Ducret, Andrew C.; Sadoway, Donald R.

    2003-01-01

    For the exploration of other bodies in the solar system, electrochemical processing is arguably the most versatile technology for conversion of local resources into usable commodities: by electrolysis one can, in principle, produce (1) breathable oxygen, (2) silicon for the fabrication of solar cells, (3) various reactive metals for use as electrodes in advanced storage batteries, and (4) structural metals such as steel and aluminum. Even so, to date there has been no sustained effort to develop such processes, in part due to the inadequacy of the database. The objective here is to identify chemistries capable of sustaining molten oxide electrolysis in the cited applications and to examine the behavior of laboratory-scale cells designed to generate oxygen and to produce metal. The basic research includes the study of the underlying high-temperature physical chemistry of oxide melts representative of lunar regolith and of Martian soil. To move beyond empirical approaches to process development, the thermodynamic and transport properties of oxide melts are being studied to help set the limits of composition and temperature for the processing trials conducted in laboratory-scale electrolysis cells. The goal of this investigation is to deliver a working prototype cell that can use lunar regolith and Martian soil to produce breathable oxygen along with metal by-product. Additionally, the process can be generalized to permit adaptation to accommodate different feedstock chemistries, such as those that will be encountered on other bodies in the solar system. The expected results of this research include: (1) the identification of appropriate electrolyte chemistries; (2) the selection of candidate anode and cathode materials compatible with electrolytes named above; and (3) performance data from a laboratory-scale cell producing oxygen and metal. On the strength of these results it should be possible to assess the technical viability of molten oxide electrolysis for in

  1. Perovskite chromates cathode with exsolved iron nanoparticles for direct high-temperature steam electrolysis.

    PubMed

    Li, Yuanxin; Wang, Yan; Doherty, Winston; Xie, Kui; Wu, Yucheng

    2013-09-11

    Recently, composite cathodes based on doped lanthanum chromates have been widely employed for direct steam electrolysis. However, this approach limits the electrode performances and Faraday efficiency due to insufficient electrocatalytic activity. This study addresses the drawbacks and reports an improved electrocatalytic activity and Faraday efficiency of composite cathode with a reversibly exsolved iron nanoparticles anchored on the surface of doped lanthanum chromates. A-site deficient and B-site excess (La0.75Sr0.25)0.85(Cr0.5Fe0.5)0.85Fe0.15O3-δ (LSCrFF) was designed as the parent material to anchor the exsolved iron nanoparticles on the surface of perovskite chromate (La0.75Sr0.25)(Cr0.5Fe0.5)O3-δ (LSCrF) via high-temperature reduction. The electrical properties of LSCrF and Fe/LSCrF were systematically investigated and correlated with electrochemical performance of the composite electrodes in symmetrical cells and electrolysis cells. The iron nanoparticles significantly improve the electrical conductivity of LSCrF from 1.80 to 6.35 S cm(-1) for Fe/LSCrF at 800 °C and Po2 of 10(-15) atm. The polarization resistance, Rp, of the symmetrical cells was accordingly enhanced from 4.26 Ω cm2 with LSCrF to 2.58 Ω cm2 with Fe/LSCrF in hydrogen atmosphere at 800 °C. The Faraday efficiency for the direct steam electrolysis showed a marked increase of 89.3% with LSCrFF cathode at 800 °C and 1.8 V as opposed to 76.7% with the cathodes based on LSCrF. The synergetic effect of catalytic-active iron nanoparticles and redox-stable LSCrF substrate produced improved performances and excellent stability for the direct steam electrolysis without a flow of reducing gas over the composite cathodes. PMID:23931726

  2. Hydrogen Economy: The Role of Nano-scaled Support Material for Electrocatalysts Aimed for Water Electrolysis

    NASA Astrophysics Data System (ADS)

    Paunović, Perica; Popovski, Orce; Dimitrov, Aleksandar T.

    The role and importance of support materials for electrocatalysts aimed for water electrolysis is given. Besides their superior support characteristics such as electroconductivity, a high developed surface area and chemical stability, support materials should be an active participant in the catalytic activity through strong metal-support interactions (SMSI) with the metallic catalytic phase. Subject of this paper are several support materials: (i) Vulcan XC-72, (ii) Vulcan XC-72 with TiO2, (iii) multiwalled carbon nanotubes (MWCNTs) and (iv) Magneli phases, i.e. nonstoichiometric titanium oxides. A comparison of catalytic activity of Co-based electrocatalysts deposited on all support materials mentioned is given.

  3. Production of anhydrous aluminum chloride composition and process for electrolysis thereof

    DOEpatents

    Vandegrift, George F.; Krumpelt, Michael; Horwitz, E. Philip

    1983-01-01

    A process for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

  4. Degradation of Chloroanilines in Aqueous Solution by Contact Glow Discharge Electrolysis

    NASA Astrophysics Data System (ADS)

    Gao, Jin-zhang; Hu, Zhong-ai; Lu, Quan-fang; Na, Peng-jun; Chen, Ping; Liu, Yong-jun; Yu, Jie

    2003-04-01

    Contact glow discharge electrolysis of some chloroanilines in sodium sulfate was investigated in different initial concentrations. Each of them underwent the dechlorination, deamination through oxidative degradation, and were eventually decomposed into hydrogen carbonate and carbon dioxide. It was testified that the chlorine atom and amidogen could be transformed into chloride ion and nitrite ion, respectively. Fe2+ has a remarkable catalytic effect on the degradation of them. On the basis of the detailed analysis of the intermediate products and kinetic behaviors, the reaction pathway was proposed, in which the attack of hydroxyl radical on the benzene ring of starting material might be a key step.

  5. HIGH-TEMPERATURE CO-ELECTROLYSIS OF H2O AND CO2 FOR SYNGAS PRODUCTION

    SciTech Connect

    Stoots, C.M.

    2006-11-01

    Worldwide, the demand for light hydrocarbon fuels like gasoline and diesel oil is increasing. To satisfy this demand, oil companies have begun to utilize oil deposits of lower hydrogen content (an example is the Athabasca Oil Sands). Additionally, the higher contents of sulfur and nitrogen of these resources requires processes such as hydrotreating to meet environmental requirements. In the mean time, with the price of oil currently over $50 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. South Africa has used synfuels to power a significant number of their buses, trucks, and taxicabs. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to investigate the feasibility of producing syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. The syngas can then be used for synthetic fuel production. This program is a combination of experimental and computational activities. Since the solid oxide electrolyte material is a conductor of oxygen ions, CO can be produced by electrolyzing CO2 sequestered from some greenhouse gas-emitting process. Under certain conditions, however, CO can further electrolyze to produce carbon, which can then deposit on cell surfaces and reduce cell performance. The understanding of the co-electrolysis of steam and CO2 is also complicated by the competing water-gas shift reaction. Results of experiments and calculations to date of CO2 and CO2/H2O electrolysis will be presented and discussed. These will include

  6. Development status of solid polymer electrolyte water electrolysis for large scale hydrogen generation

    NASA Astrophysics Data System (ADS)

    Russell, J. H.

    1981-03-01

    Solid polymer water electrolysis technology for large scale hydrogen generation is reviewed. A hydrogen generator module, capable of producing 2000 SCFH, was operated successfully for over 700 hours in the 200 kW system. Test results and further information are presented. Technology development was continued in support of improving both capital cost and conversion efficiency. Progress made in the development of the 10 sq ft active area cell included completion of the initial design, the beginning of fabrication development, and installation of new facilities for cell manufacture.

  7. In-Situ Propellant Production on Mars: A Sabatier/Electrolysis Demonstration Plant

    NASA Technical Reports Server (NTRS)

    Clark, David L.

    1997-01-01

    An efficient, reliable propellant production plant has been developed for use on Mars. Using a Sabatier reactor in conjunction with a water electrolysis system, a complete demonstration plant has produced methane and liquid oxygen from simulated Martian atmosphere. The production plant has demonstrated high efficiency, extended duration production and autonomous operations. This paper presents the results and conclusions relating to eventual use in a Mars sample return mission. This work was funded by the Jet Propulsion Laboratory (JPL). The production plant was built and tested at the Propulsion Center of Lockheed Martin at the Denver Colorado facility.

  8. Investigation of Fe:ZnSe laser in pulsed and repetitively pulsed regimes

    SciTech Connect

    Velikanov, S D; Zaretskiy, N A; Zotov, E A; Maneshkin, A A; Chuvatkin, R S; Yutkin, I M; Kozlovsky, V I; Korostelin, Yu V; Krokhin, O N; Podmar'kov, Yu P; Savinova, S A; Skasyrsky, Ya K; Frolov, M P

    2015-01-31

    The characteristics of a Fe:ZnSe laser pumped by a single-pulse free-running Er : YAG laser and a repetitively pulsed HF laser are presented. An output energy of 4.9 J is achieved in the case of liquid-nitrogen cooling of the Fe{sup 2+}:ZnSe active laser element longitudinally pumped by an Er:YAG laser with a pulse duration of 1 ms and an energy up to 15 J. The laser efficiency with respect to the absorbed energy is 47%. The output pulse energy at room temperature is 53 mJ. The decrease in the output energy is explained by a strong temperature dependence of the upper laser level lifetime and by pulsed heating of the active element. The temperature dependence of the upper laser level lifetime is used to determine the pump parameters needed to achieve high pulse energies at room temperature. Stable repetitively-pulsed operation of the Fe{sup 2+}:ZnSe laser at room temperature with an average power of 2.4 W and a maximum pulse energy of 14 mJ is achieved upon pumping by a 1-s train of 100-ns HF laser pulses with a repetition rate of 200 Hz. (lasers)

  9. Ablation and analysis of small cell populations and single cells by consecutive laser pulses

    NASA Astrophysics Data System (ADS)

    Shrestha, Bindesh; Nemes, Peter; Vertes, Akos

    2010-10-01

    Laser ablation of single cells through a sharpened optical fiber is used for the detection of metabolites by laser ablation electrospray ionization (LAESI) mass spectrometry (MS). Ablation of the same Allium cepa epidermal cell by consecutive pulses indicates the rupture of the cell wall by the second shot. Intracellular sucrose heterogeneity is detected by subsequent laser pulses pointing to rupturing the vacuolar membrane by the third exposure. Ion production by bursts of laser pulses shows that the drying of ruptured A. cepa cells occurs in ˜50 s at low pulse rates (10 pulses/s bursts) and significantly faster at high pulse rates (100 pulses/s bursts). These results point to the competing role of cytoplasm ejection and evaporative drying in diminishing the LAESI-MS signal in ˜50 s or 100 laser pulses, whichever occurs first.

  10. ADJUSTABLE DOUBLE PULSE GENERATOR

    DOEpatents

    Gratian, J.W.; Gratian, A.C.

    1961-08-01

    >A modulator pulse source having adjustable pulse width and adjustable pulse spacing is described. The generator consists of a cross coupled multivibrator having adjustable time constant circuitry in each leg, an adjustable differentiating circuit in the output of each leg, a mixing and rectifying circuit for combining the differentiated pulses and generating in its output a resultant sequence of negative pulses, and a final amplifying circuit for inverting and square-topping the pulses. (AEC)

  11. Pulse detonation MHD power

    SciTech Connect

    Litchford, R.J.; Thompson, B.R.; Lineberry, J.T.

    1998-07-01

    A series of laboratory scale experiments were conducted to investigate the basic engineering performance characteristics of a pulse detonation driven magnetohydrodynamic electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium-hydroxide/ methanol spray were detonated at atmospheric pressure in a 1 m long tube having an inside diameter of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p{sub 2}/p{sub 1} {approximately} 34 and D {approximately} 2400 m/s) and enabled the measurement of current density ({approximately} 2 A/cm{sup 2}) and electrical conductivity ({approximately} 6 mho/m) behind the detonation wave front. In a second set of experiments, a 30 cm long continuous electrode Faraday channel having a height of 2.54 cm and a width of 2.0 cm was attached to the end of the tube using an area transition duct. The Faraday channel was placed inside a permanent magnet assembly having a nominal magnetic induction of 0.6 Tesla, and the electrodes were connected to an active loading circuit in order to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. In these single-shot experiments, the near-electrode potential drop was found to consume approximately 60% of the effective u x B induced potential. For B = 0.6 Tesla, the authors obtained a peak open circuit voltage of V{sub O}C = Bh {approximately} 10 volts implying an effective burned gas velocity relative to the tube of {approximately} 660 m/s which may be compared with the theoretical equilibrium value for the idealized case (1100 m/s). The experiments indicated peak power extraction at a load impedance between 5 and 10 Ohms. The measured peak electrical energy density ranged from 10 to 10{sup 3} J/m{sup 3} when the effective magnetic induction was varied from 0.6 to 4.2 Tesla. These results

  12. A novel clean and effective syngas production system based on partial oxidation of methane assisted solid oxide co-electrolysis process

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Liu, Tong; Fang, Shumin; Xiao, Guoliang; Wang, Huanting; Chen, Fanglin

    2015-03-01

    Development of the syngas production from solid oxide H2O/CO2 co-electrolysis is limited by the intensive energy input and low efficiency. Here, we present a new concept to efficiently generate syngas in both sides of the solid oxide electrolyzer by synergistically combining co-electrolysis with partial oxidation of methane (POM). Thermodynamic calculation and electrochemical measurements for the POM assisted solid oxide co-electrolysis processes on the SFM-SDC/LSGM/SFM-SDC cells exhibited an reduced electric input, increased energy conversion efficiency and decreased cathodic co-electrolysis polarization resistance in comparison with the conventional co-electrolysis. This method will be crucial to establish a clean and effective energy conversion system to meet global sustainable energy needs.

  13. Simultaneous recovery of Zn and MnO2 from used batteries, as raw materials, by electrolysis.

    PubMed

    Buzatu, Mihai; Săceanu, Simona; Ghica, Valeriu Gabriel; Iacob, Gheorghe; Buzatu, Traian

    2013-08-01

    High purity electrolytic manganese dioxide (EMD) is the main raw material used for manufacturing of zinc and manganese based portable batteries (alkaline with manganese AlMn and zinc carbon Zn-C). Lately, due to the progressive depletion of MnO(2) natural resources, the quantity of artificially electrolytic produced MnO(2) has started to increase to satisfy the demand. This paper describes an electrolytic process for the simultaneous production of the following components:The electrolysis process was conducted in a specialized laboratory facility. The study was particularly focused on the following electrolysis process parameters: PMID:23731699

  14. Control of the electrode metal transfer by means of the welding current pulse generator

    NASA Astrophysics Data System (ADS)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Knyaz'kov, S.; Tyasto, A.

    2016-04-01

    The paper presents a generator of welding current pulses to transfer an electrode metal into the molten pool. A homogeneous artificial line is used to produce near rectangular pulses. The homogeneous artificial line provides the minimum heat input with in the pulse to transfer the electrode metal, and it significantly decreases the impact of disturbances affecting this transfer. The pulse frequency does not exceed 300 Hz, and the duration is 0.6 ÷ 0.9 ms.

  15. SLAC pulsed X-ray facility

    NASA Astrophysics Data System (ADS)

    Ipe, N. E.; McCall, R. C.; Baker, E. D.

    1986-05-01

    The Stanford Linear Accelerator Center (SLAC) operates a high energy (up to 33 GeV) linear accelerator delivering pulses up to a few microseconds wide. The pulsed nature of the electron beam creates problems in the detection and measurement of radiation both from the accelerator beam and the klystrons that provide the RF power for the accelerator. Hence, a pulsed X-ray facility has been built at SLAC mainly for the purpose of testing the response of different radiation detection instruments to pulsed radiation fields. The X-ray tube consists of an electron gun with a control grid. This provides a stream of pulsed electrons that can be accelerated towards a confined target-window. The window is made up of aluminum 0.051 cm (20 mils) thick, plated on the vacuum side with a layer of gold 0.0006 cm (1/4 mil) thick. The frequency of electron pulses can be varied by an internal pulser from 60 to 360 pulses per second with pulse widths of 360 ns to 5 ms. The pulse amplitude can be varied over a wide range of currents. An external pulser can be used to obtain other frequencies or special pulse shapes. The voltage across the gun can be varied from 0 to 100 kV. The major part of the X-ray tube is enclosed in a large walk-in-cabinet made of 1.9 cm (3/4 in) plywood and lined with 0.32 cm (1/8 in) lead to make a very versatile facility.

  16. Long pulse production from short pulses

    DOEpatents

    Toeppen, J.S.

    1994-08-02

    A method of producing a long output pulse from a short pump pulse is disclosed, using an elongated amplified fiber having a doped core that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding. A seed beam of the longer wavelength is injected into the core at one end of the fiber and a pump pulse of the shorter wavelength is injected into the cladding at the other end of the fiber. The counter-propagating seed beam and pump pulse will produce an amplified output pulse having a time duration equal to twice the transit time of the pump pulse through the fiber plus the length of the pump pulse. 3 figs.

  17. Long pulse production from short pulses

    DOEpatents

    Toeppen, John S.

    1994-01-01

    A method of producing a long output pulse (SA) from a short pump pulse (P), using an elongated amplified fiber (11) having a doped core (12) that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding 13. A seed beam (S) of the longer wavelength is injected into the core (12) at one end of the fiber (11) and a pump pulse (P) of the shorter wavelength is injected into the cladding (13) at the other end of the fiber (11). The counter-propagating seed beam (S) and pump pulse (P) will produce an amplified output pulse (SA) having a time duration equal to twice the transit time of the pump pulse (P) through the fiber (11) plus the length of the pump pulse (P).

  18. ExMS: data analysis for HX-MS experiments.

    PubMed

    Kan, Zhong-Yuan; Mayne, Leland; Chetty, Palaniappan Sevugan; Englander, S Walter

    2011-11-01

    A previous paper considered the problems that presently limit the hydrogen exchange-mass spectrometry (HX-MS) method for studying the biophysical and functional properties of proteins. Many of these problems can be overcome by obtaining and analyzing hundreds of sequentially overlapping peptide fragments that cover the protein many times over (Mayne et al. J. Am. Soc. Mass Spectrom. 2011: 10.1007/s13361-011-0235-4). This paper describes a computer program called ExMS that furthers this advance by making it possible to efficiently process crowded mass spectra and definitively identify and characterize these many peptide fragments. ExMS automatically scans through high resolution MS data to find the individual isotopic peaks and isotopic envelopes of a list of peptides previously identified by MS/MS. It performs a number of tests to ensure correct identification in spite of peptide overlap in both chromatographic and mass spectrometric dimensions and possible multi-modal envelopes due to static or dynamic structural heterogeneity or HX EX1 behavior. The program can automatically process data from many sequential HX time points with no operator intervention at the rate of ~2 sec per peptide per HX time point using desktop computer equipment, but it also provides for rapid manual checking and decision when ambiguity exists. Additional subroutines can provide a step by step report of performance at each test along the way and parameter adjustment, deconvolute isotopic envelopes, and plot the time course of single and multi-modal H-D exchange. The program will be available on an open source basis at: http://HX2.med.upenn.edu/download.html. PMID:21952778

  19. Effect of sintering temperature on the electrolysis of TiO2

    NASA Astrophysics Data System (ADS)

    Li, Ze-quan; Ru, Li-yue; Bai, Cheng-guang; Zhang, Na; Wang, Hai-hua

    2012-07-01

    The effects of sintering temperature on the microstructure and the conductivity of TiO2 cathodes were studied by examining the phase composition, microstructure, and element contents of the sintered cathodes and the cathodic products using X-ray diffraction and scanning electronic microscopy-energy dispersive spectrometry. The oxygen vacancy, conductivity, average pore diameter, and specific surface area of the sintered cathodes were detected by X-ray photoelectron spectroscopy, four-point probe, and ASPA 2010. The results showed that TiO2 phase transformations occurred, and oxygen vacancies formed with the increase of sintering temperature. The cathodic conductivity improved, but the average pore diameter and the effective response area of the TiO2 cathode were reduced when the sintering temperature increased. These phenomena could weaken the contact between reaction ions and electrons and also had the same effect on the cathodes and the molten salt. Moreover, they were disadvantageous to ion migration, so a lower sintering temperature was favorable for the microstructure of electrolysis. Consequently, the cathodic conductivity may be improved, but the microstructure became compact with the increase of sintering temperature. The cathodic products at different temperatures indicated that the cathodic conductivity was more important for electrolysis.

  20. Direct anodic hydrochloric acid and cathodic caustic production during water electrolysis

    NASA Astrophysics Data System (ADS)

    Lin, Hui-Wen; Cejudo-Marín, Rocío; Jeremiasse, Adriaan W.; Rabaey, Korneel; Yuan, Zhiguo; Pikaar, Ilje

    2016-02-01

    Hydrochloric acid (HCl) and caustic (NaOH) are among the most widely used chemicals by the water industry. Direct anodic electrochemical HCl production by water electrolysis has not been successful as current commercially available electrodes are prone to chlorine formation. This study presents an innovative technology simultaneously generating HCl and NaOH from NaCl using a Mn0.84Mo0.16O2.23 oxygen evolution electrode during water electrolysis. The results showed that protons could be anodically generated at a high Coulombic efficiency (i.e. ≥ 95%) with chlorine formation accounting for 3 ~ 5% of the charge supplied. HCl was anodically produced at moderate strengths at a CE of 65 ± 4% together with a CE of 89 ± 1% for cathodic caustic production. The reduction in CE for HCl generation was caused by proton cross-over from the anode to the middle compartment. Overall, this study showed the potential of simultaneous HCl and NaOH generation from NaCl and represents a major step forward for the water industry towards on-site production of HCl and NaOH. In this study, artificial brine was used as a source of sodium and chloride ions. In theory, artificial brine could be replaced by saline waste streams such as Reverse Osmosis Concentrate (ROC), turning ROC into a valuable resource.

  1. The advanced EctoSys electrolysis as an integral part of a ballast water treatment system.

    PubMed

    Echardt, J; Kornmueller, A

    2009-01-01

    A full-scale 500 m(3)/h ballast water treatment system was tested according to the landbased type approval procedure of the International Maritime Organization (IMO). The system consists of disc filters followed by the advanced EctoSys electrolysis as an integral part for disinfection. The test water quality exceeded by far the minimum requirements for type approval testing. Due to the properties of the special electrodes used together with the striking disinfection effect, the disinfectants assumed to be produced inline by the EctoSys cell in river water were hydroxyl radicals, while in brackish water additionally chlorine and consequently the more stable bromine were formed. In river water, no residual oxidants could be detected in accordance with the assumed production of not responding, highly-reactive and short-living hydroxyl radicals. Accordingly, disinfection byproduct (DBP) formation was very low and close to the limit of quantification in river water. While in brackish water, initial residual oxidant concentrations were maximum 2 mg/L as chlorine and mostly brominated DBP (especially bromoform and bromate) were found. Overall considering this worst case test approach, the DBP concentrations of the treated effluents were below or in the range of the WHO Drinking Water Guideline values and therefore evaluated as acceptable for discharge to the environment. The stringent discharge standard by IMO concerning viable organisms was fully met in river and brackish water, proving the disinfection efficiency of the EctoSys electrolysis against smaller plankton and bacteria. PMID:19901453

  2. Photoassisted Electrolysis of Water by Irradiation of a Titanium Dioxide Electrode

    PubMed Central

    Wrighton, Mark S.; Ginley, David S.; Wolczanski, Peter T.; Ellis, Arthur B.; Morse, David L.; Linz, Arthur

    1975-01-01

    Ultraviolet irradiation (351, 364 nm) of the n-type semiconductor TiO2 as the single crystal electrode of an aqueous electrochemical cell evolves O2 at the TiO2 electrode and H2 at the Pt electrode. The gases are typically evolved in a two: one (H2:O2) volume ratio. The photoassisted reaction seems to require applied voltages, but values as low as 0.25 V do allow the photoassisted electrolysis to proceed. Prolonged irradiation in either acid or base evolves the gaseous products in amounts which clearly demonstrate that the reaction is catalytic with respect to the TiO2. The wavelength response of the TiO2 and the correlation of product yield and current are reported. The results support the claim that TiO2 is a true photoassistance agent for the electrolysis of water. Minimum optical storage efficiencies of the order of 1% can be achieved by the production of H2. PMID:16592241

  3. Phosphonate removal from discharged circulating cooling water using iron-carbon micro-electrolysis.

    PubMed

    Zhou, Zhen; Qiao, Weimin; Lin, Yangbo; Shen, Xuelian; Hu, Dalong; Zhang, Jianqiao; Jiang, Lu-Man; Wang, Luochun

    2014-01-01

    Phosphonate is a commonly used corrosion and scale inhibitor for a circulating cooling water (CCW) system. Its discharge could cause eutrophication of receiving waters. The iron-carbon (Fe/C) micro-electrolysis technology was used to degrade and remove phosphonate from discharged CCW. The influences of initial pH, Fe/C ratio (FCR) and temperature on phosphonate removal were investigated in a series of batch tests and optimized by response surface methodology. The quadratic model of phosphonate removal was obtained with satisfactory degrees of fitness. The optimum conditions with total phosphorus removal efficiency of 95% were obtained at pH 7.0, FCR of 1.25, and temperature of 45 °C. The phosphonate removal mechanisms were also studied. Phosphonate removal occurred predominantly via two consecutive reactive phases: the degradation of phosphonate complexes (Ca-phosphonate) and the precipitation of Fe/C micro-electrolysis products (PO₄(3-), Ca²⁺ and Fe³⁺). PMID:25098884

  4. Production of hydrogen by photovoltaic-powered electrolysis. Task 1 report

    SciTech Connect

    Block, D.L.

    1995-12-01

    The report presents results of a cooperative effort among the Florida Energy Office, NASA/Kennedy Space Center, the US Department of Energy and the Florida Solar Energy Center (FSEC). It reports on a task to evaluate hydrogen production from photovoltaic (PV)-powered electrolysis. The resulting activities covered five years of effort funded at a total of $216,809. The results represent a successful, coordinated effort among two state agencies and two federal agencies. Results are reported on two separate investigations. The first investigation looked at the use of line focus concentrating photovoltaics coupled with single-cell electrolyzers to produce gaseous hydrogen. The concept, and its design, construction and operation, are presented. The objectives of the line focusing PV system are to reduce overall system cost under the assumptions that lenses and mirrors are cheaper to deploy than are PV cells, and that low-voltage, high-current dc electricity can efficiently power a single-cell elctrolyzer to produce hydrogen. The second investigation evaluated a base case cost of PV electrolysis hydrogen production based on present-day PV and electrolyzer costs and efficiencies. A second step analyzed the hydrogen costs based on a best prediction of where PV costs and efficiencies will be in 10 years. These results set the minimum cost standards that other renewable production technologies must meet or better.

  5. Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification.

    PubMed

    Xing, Wei; Li, Desheng; Li, Jinlong; Hu, Qianyi; Deng, Shihai

    2016-07-01

    A process combining micro-electrolysis and autotrophic denitrification (CEAD) with iron-carbon micro-electrolysis carriers was developed for nitrate removal. The process was performed using organic-free influent with a NO3(-)-N concentration of 40.0±3.0mg/L and provided an average nitrate removal efficiency of 95% in stable stages. The total nitrogen removal efficiency reached 75%, with 21% of NO3(-)-N converted into NH4(+)-N. The corresponding hydraulic retention time was 8-10h, and the optimal pH ranged from 8.5 to 9.5. Microbial analysis with high-throughput sequencing revealed that dominant microorganisms in the reactor belonged to the classes of β-, γ-, and α-Proteobacteria. The abundance of the genera Thermomonas significantly increased during the operation, comprising 21.4% and 24.1% in sludge attached to the carriers in the middle and at the bottom of the reactor, respectively. The developed CEAD achieved efficient nitrate removal from water without organics, which is suitable for practical application. PMID:27019127

  6. Direct anodic hydrochloric acid and cathodic caustic production during water electrolysis.

    PubMed

    Lin, Hui-Wen; Cejudo-Marín, Rocío; Jeremiasse, Adriaan W; Rabaey, Korneel; Yuan, Zhiguo; Pikaar, Ilje

    2016-01-01

    Hydrochloric acid (HCl) and caustic (NaOH) are among the most widely used chemicals by the water industry. Direct anodic electrochemical HCl production by water electrolysis has not been successful as current commercially available electrodes are prone to chlorine formation. This study presents an innovative technology simultaneously generating HCl and NaOH from NaCl using a Mn0.84Mo0.16O2.23 oxygen evolution electrode during water electrolysis. The results showed that protons could be anodically generated at a high Coulombic efficiency (i.e. ≥ 95%) with chlorine formation accounting for 3 ~ 5% of the charge supplied. HCl was anodically produced at moderate strengths at a CE of 65 ± 4% together with a CE of 89 ± 1% for cathodic caustic production. The reduction in CE for HCl generation was caused by proton cross-over from the anode to the middle compartment. Overall, this study showed the potential of simultaneous HCl and NaOH generation from NaCl and represents a major step forward for the water industry towards on-site production of HCl and NaOH. In this study, artificial brine was used as a source of sodium and chloride ions. In theory, artificial brine could be replaced by saline waste streams such as Reverse Osmosis Concentrate (ROC), turning ROC into a valuable resource. PMID:26848031

  7. Effects of electric voltage and sodium chloride level on electrolysis of swine wastewater.

    PubMed

    Cho, J H; Lee, J E; Ra, C S

    2010-08-15

    The effects of electric voltage and NaCl concentration on the removal of pollutants in swine wastewater were investigated to determine the optimum operation conditions for a designed electrolysis process. An up-flow electrolytic reactor was fabricated from Plexiglas, and one titanium anode coated with iridium oxide (IrO(2)) and two stainless steel cathodes were installed in it. The anode surface area was 80 cm(2)/L and the hydraulic retention time (HRT) was 6h. The results indicated that the pollutant removal was highly proportional to the electric voltage and removal could be enhanced by adding NaCl. The removal efficiencies of NH(4)-N, soluble nitrogen (NH(4)-N plus NO(x)-N), soluble total organic carbon (STOC), and color were proportional to the NaCl level up to 0.05% NaCl level, beyond which no further enhancement in removal was observed. However, such a tendency was not observed in the case of PO(4)-P removal. The obtained results indicate that 7 V and 0.05% (8.56 mM) NaCl level would be the optimum conditions for the designed electrolysis process. Under these conditions, the average removal efficiencies of NH(4)-N, soluble nitrogen, PO(4)-P, STOC, and color were 99%, 94%, 59%, 64%, and 93%, respectively. PMID:20471168

  8. Research on inhibitive behaviors of electrolysis on the growth of Microcystis aeruginosa.

    PubMed

    Xu, Y F; Yang, J; Ou, M M; Wang, Y L; Jia, J P; Pan, H D

    2006-06-01

    Electrochemical method using a novel Ti/RuO2 anode was employed to inhibit a typical cyanobacteria, Microcystis aeruginosa (M. aeruginosa) under different electrolytic conditions. It is demonstrated that Ti/RuO2 anode was more efficient than traditional graphite anode in M. aeruginosa inhibition. The experimental results showed that the higher current density or longer electrolytic time could effectively improve the inhibition of M. aeruginosa. In addition, sodium chloride was a more effective electrolyte than sodium sulfate to enhance inhibition. The maximum inhibiting rate dose to 100% could be obtained at a current density of 12 mA cm(-2) when sodium chloride was used as a supporting electrolyte. Furthermore, UV-Visible spectra demonstrated that the structures of phycocyanins and chlorophyll a (Chl a) in M. aeruginosa could be changed or destroyed during electrolysis. Moreover, EPR spectra showed the generation of the free radicals through electrolysis, which might be one of the reasons responsible for the inhibition of algal growth. PMID:16865923

  9. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide

    PubMed Central

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-01-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH→Ni(OH)2) and an anodic OH− oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion. PMID:27199009

  10. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide

    NASA Astrophysics Data System (ADS)

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-05-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH-->Ni(OH)2) and an anodic OH- oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion.

  11. Direct anodic hydrochloric acid and cathodic caustic production during water electrolysis

    PubMed Central

    Lin, Hui-Wen; Cejudo-Marín, Rocío; Jeremiasse, Adriaan W.; Rabaey, Korneel; Yuan, Zhiguo; Pikaar, Ilje

    2016-01-01

    Hydrochloric acid (HCl) and caustic (NaOH) are among the most widely used chemicals by the water industry. Direct anodic electrochemical HCl production by water electrolysis has not been successful as current commercially available electrodes are prone to chlorine formation. This study presents an innovative technology simultaneously generating HCl and NaOH from NaCl using a Mn0.84Mo0.16O2.23 oxygen evolution electrode during water electrolysis. The results showed that protons could be anodically generated at a high Coulombic efficiency (i.e. ≥ 95%) with chlorine formation accounting for 3 ~ 5% of the charge supplied. HCl was anodically produced at moderate strengths at a CE of 65 ± 4% together with a CE of 89 ± 1% for cathodic caustic production. The reduction in CE for HCl generation was caused by proton cross-over from the anode to the middle compartment. Overall, this study showed the potential of simultaneous HCl and NaOH generation from NaCl and represents a major step forward for the water industry towards on-site production of HCl and NaOH. In this study, artificial brine was used as a source of sodium and chloride ions. In theory, artificial brine could be replaced by saline waste streams such as Reverse Osmosis Concentrate (ROC), turning ROC into a valuable resource. PMID:26848031

  12. Advanced electrolysis development for hydrogen-cycle peak shaving for electric utilities

    SciTech Connect

    Fernandes, R.A.; Nuttall, L.J.

    1982-09-01

    Meeting peak power demands can impose limiting conditions on generation, transmission, and distribution equipment in the electric utility network--especially around urban areas. Utilization of a cost-effective energy storage system capable of being located near the load centers could improve load factors and maximize utilization of installed capital equipment. A hydrogen-cycle peak-shaving system (HCPS) can be sited in populated areas, imposing no environmental concerns, and providing considerable flexibility not only in meeting peak load demands, but also in helping to meet varying system load-growth patterns. Several possible configurations for an HCPS are described, together with a summary of the features and benefits. An alternate ''dispersed'' HCPS system is also described for use by a combined electric and gas utility. One of the key elements in an HCPS system is an efficient, cost-effective water electrolysis unit. The General Electric Company has been working with the Niagara Mohawk Power Company, and others, since 1976 on the development of a unique solid-polymer electrolyte (SPE) electrolysis system which offers considerably higher efficiencies and potentially lower capital cost as compared with conventional commercial alkaline electrolyzers. The current status of this development program is discussed.

  13. Three-Dimensional Computational Fluid Dynamics Modeling of Solid Oxide Electrolysis Cells and Stacks

    SciTech Connect

    Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring

    2008-07-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created for detailed analysis of a high-temperature electrolysis stack (solid oxide fuel cells operated as electrolyzers). Inlet and outlet plenum flow distributions are discussed. Maldistribution of plena flow show deviations in per-cell operating conditions due to non-uniformity of species concentrations. Models have also been created to simulate experimental conditions and for code validation. Comparisons between model predictions and experimental results are discussed. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the electrolysis mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Variations in flow distribution, and species concentration are discussed. End effects of flow and per-cell voltage are also considered. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition.

  14. Estimating Hydrogen Production Potential in Biorefineries Using Microbial Electrolysis Cell Technology

    SciTech Connect

    Borole, Abhijeet P; Mielenz, Jonathan R

    2011-01-01

    Microbial electrolysis cells (MECs) are devices that use a hybrid biocatalysis-electrolysis process for production of hydrogen from organic matter. Future biofuel and bioproducts industries are expected to generate significant volumes of waste streams containing easily degradable organic matter. The emerging MEC technology has potential to derive added- value from these waste streams via production of hydrogen. Biorefinery process streams, particularly the stillage or distillation bottoms contain underutilized sugars as well as fermentation and pretreatment byproducts. In a lignocellulosic biorefinery designed for producing 70 million gallons of ethanol per year, up to 7200 m3/hr of hydrogen can be generated. The hydrogen can either be used as an energy source or a chemical reagent for upgrading and other reactions. The energy content of the hydrogen generated is sufficient to meet 57% of the distillation energy needs. We also report on the potential for hydrogen production in existing corn mills and sugar-based biorefineries. Removal of the organics from stillage has potential to facilitate water recycle. Pretreatment and fermentation byproducts generated in lignocellulosic biorefinery processes can accumulate to highly inhibitory levels in the process streams, if water is recycled. The byproducts of concern including sugar- and lignin- degradation products such as furans and phenolics can also be converted to hydrogen in MECs. We evaluate hydrogen production from various inhibitory byproducts generated during pretreatment of various types of biomass. Finally, the research needs for development of the MEC technology and aspects particularly relevant to the biorefineries are discussed.

  15. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide.

    PubMed

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-01-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH→Ni(OH)2) and an anodic OH(-) oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion. PMID:27199009

  16. Experimental design, operation, and results of a 4 kW high temperature steam electrolysis experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyu; O'Brien, James E.; Tao, Greg; Zhou, Can; Housley, Gregory K.

    2015-11-01

    High temperature steam electrolysis (HTSE) is a promising technology for large-scale hydrogen production. However, research on HTSE performance above the kW level is limited. This paper presents the results of 4 kW HTSE long-term test completed in a multi-kW test facility recently developed at the Idaho National Laboratory (INL). The 4 kW HTSE unit consisted of two solid oxide electrolysis stacks electrically connected in parallel, each of which included 40 electrode-supported planar cells. A current density of 0.41 A cm-2 was used for the long-term operating at a constant current mode, resulting in a theoretical hydrogen production rate about 23 slpm. A demonstration of 830 h stable operation was achieved with a degradation rate of 3.1% per 1000 h. The paper also includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This successful demonstration of multi-kW scale HTSE unit will help to advance the technology toward near-term commercialization.

  17. Investigations on degradation of the long-term proton exchange membrane water electrolysis stack

    NASA Astrophysics Data System (ADS)

    Sun, Shucheng; Shao, Zhigang; Yu, Hongmei; Li, Guangfu; Yi, Baolian

    2014-12-01

    A 9-cell proton exchange membrane (PEM) water electrolysis stack is developed and tested for 7800 h. The average degradation rate of 35.5 μV h-1 per cell is measured. The 4th MEA of the stack is offline investigated and characterized. The electrochemical impedance spectroscopy (EIS) shows that the charge transfer resistance and ionic resistance of the cell both increase. The linear sweep scan (LSV) shows the hydrogen crossover rate of the membrane has slight increase. The electron probe X-ray microanalyze (EPMA) illustrates further that Ca, Cu and Fe elements distribute in the membrane and catalyst layers of the catalyst-coated membranes (CCMs). The cations occupy the ion exchange sites of the Nafion polymer electrolyte in the catalyst layers and membrane, which results in the increase in the anode and the cathode overpotentials. The metallic impurities originate mainly from the feed water and the components of the electrolysis unit. Fortunately, the degradation was reversible and can be almost recovered to the initial performance by using 0.5 M H2SO4. This indicates the performance degradation of the stack running 7800 h is mainly caused by a recoverable contamination.

  18. Electrolysis within anaerobic bioreactors stimulates breakdown of toxic products from azo dye treatment.

    PubMed

    Gavazza, Sávia; Guzman, Juan J L; Angenent, Largus T

    2015-04-01

    Azo dyes are the most widely used coloring agents in the textile industry, but are difficult to treat. When textile effluents are discharged into waterways, azo dyes and their degradation products are known to be environmentally toxic. An electrochemical system consisting of a graphite-plate anode and a stainless-steel mesh cathode was placed into a lab-scale anaerobic bioreactor to evaluate the removal of an azo dye (Direct Black 22) from synthetic textile wastewater. At applied potentials of 2.5 and 3.0 V when water electrolysis occurs, no improvement in azo dye removal efficiency was observed compared to the control reactor (an integrated system with electrodes but without an applied potential). However, applying such electric potentials produces oxygen via electrolysis and promoted the aerobic degradation of aromatic amines, which are toxic, intermediate products of anaerobic azo dye degradation. The removal of these amines indicates a decrease in overall toxicity of the effluent from a single-stage anaerobic bioreactor, which warrants further optimization in anaerobic digestion. PMID:25750156

  19. Development of an advanced static feed water electrolysis module. [for spacecraft

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.; Jensen, F. C.; Quattrone, P. D.

    1975-01-01

    A Static Feed Water Electrolysis Module (SFWEM) was developed to produce 0.92 kg/day (2.0 lb/day) of oxygen (O2). Specific objectives of the program's scope were to (1) eliminate the need for feed water cavity degassing, (2) eliminate the need for subsystem condenser/separators, (3) increase current density capability while decreasing electrolysis cell power (i.e., cell voltage) requirements, and (4) eliminate subsystem rotating parts and incorporate control and monitor instrumentation. A six-cell, one-man capacity module having an active area of 0.00929 sq m (0.10 sq ft) per cell was designed, fabricated, assembled, and subjected to 111 days (2664 hr) of parametric and endurance testing. The SFWEM was successfully operated over a current density range of 0 to 1076 mA/sq cm (0 to 1000 ASF), pressures of ambient to 2067 kN/sq m (300 psia), and temperatures of ambient to 366 K (200 F). During a 94-day endurance test, the SFWEM successfully demonstrated operation without the need for feed water compartment degassing.

  20. Design Criteria, Operating Conditions, and Nickel-Iron Hydroxide Catalyst Materials for Selective Seawater Electrolysis.

    PubMed

    Dionigi, Fabio; Reier, Tobias; Pawolek, Zarina; Gliech, Manuel; Strasser, Peter

    2016-05-10

    Seawater is an abundant water resource on our planet and its direct electrolysis has the advantage that it would not compete with activities demanding fresh water. Oxygen selectivity is challenging when performing seawater electrolysis owing to competing chloride oxidation reactions. In this work we propose a design criterion based on thermodynamic and kinetic considerations that identifies alkaline conditions as preferable to obtain high selectivity for the oxygen evolution reaction. The criterion states that catalysts sustaining the desired operating current with an overpotential <480 mV in alkaline pH possess the best chance to achieve 100 % oxygen/hydrogen selectivity. NiFe layered double hydroxide is shown to satisfy this criterion at pH 13 in seawater-mimicking electrolyte. The catalyst was synthesized by a solvothermal method and the activity, surface redox chemistry, and stability were tested electrochemically in alkaline and near-neutral conditions (borate buffer at pH 9.2) and under both fresh seawater conditions. The Tafel slope at low current densities is not influenced by pH or presence of chloride. On the other hand, the addition of chloride ions has an influence in the temporal evolution of the nickel reduction peak and on both the activity and stability at high current densities at pH 9.2. Faradaic efficiency close to 100 % under the operating conditions predicted by our design criteria was proven using in situ electrochemical mass spectrometry. PMID:27010750

  1. Application of electrolysis to stimulate microbial reductive PCE dechlorination and oxidative VC biodegradation.

    PubMed

    Lohner, Svenja T; Tiehm, Andreas

    2009-09-15

    A novel approach was applied to stimulate biodegradation of chloroethenes bya coupled bioelectro-process. In a flow-through column system, microbial dechlorination of tetrachloroethene to cis-dichloroethene, vinyl chloride, and ethene was stimulated by hydrogen produced by water electrolysis. Dechlorinating bacteria (Dehalococcoides spp. and Desulfitobacterium spp.) and also methanogens and homoacetogens were detected in the anaerobic column. Simultaneously, oxidative biodegradation of lower chlorinated metabolites (vinyl chloride) was stimulated by electrolytic oxygen formation in the corresponding aerobic column. The process was stable for more than 100 days and an average removal of approximately 23 micromol/d PCE and 72 micromo/d vinyl chloride was obtained with a current density of 0.05 mA/cm2. Abiotic electrochemical degradation of the contaminants was not observed. Microbial dechlorination correlated with the current densities in the applied range of 0.01-0.05 mA/cm2. The results are promising for environmental applications, since with electrolysis hydrogen and oxygen can be supplied continuously to chloroethene degrading microorganisms, and the supply rates can be easily controlled by adjusting the electric current. PMID:19806748

  2. Alkali doped poly (2,5-benzimidazole) membrane for alkaline water electrolysis: Characterization and performance

    NASA Astrophysics Data System (ADS)

    Diaz, Liliana A.; Hnát, Jaromír; Heredia, Nayra; Bruno, Mariano M.; Viva, Federico A.; Paidar, Martin; Corti, Horacio R.; Bouzek, Karel; Abuin, Graciela C.

    2016-04-01

    The properties and performance of linear and cross-linked KOH doped ABPBI membranes as electrolyte/separator for zero gap alkaline water electrolysis cells are evaluated and compared with a commercial Zirfon® diaphragm. Stability in alkaline environment, swelling, thermal properties, water sorption, KOH uptake and conductivity of linear (L-ABPBI) and cross-linked (C-ABPBI) membranes doped with different concentrations of KOH are analyzed. Linear membranes show stability up to 3.0 mol·dm-3 KOH doping, while cross-linked membranes are stable up to 4.2 mol·dm-3 KOH doping. Both kinds of membranes exhibit good thermal stability and reasonable specific ionic conductivity at 22 °C in the range between 7 and 25 mS·cm-1, being slightly higher the conductivity of C-ABPBI membranes than that of L-ABPBI ones. In short-term electrolysis tests both L-ABPBI and C-ABPBI membranes show better performance than Zirfon diaphragm in the range from 50 to 70 °C. A current density of 335 mA·cm-2 at a cell voltage of 2.0 V is attained with C-ABPBI membranes doped in 3 mol·dm-3 KOH at 70 °C, a performance comparable with that of commercial units operating at temperatures ca. 80 °C and 30 wt% KOH (6.7 mol·dm-3) as electrolyte.

  3. An exergetic/energetic/economic analysis of three hydrogen production processes - Electrolysis, hybrid, and thermochemical

    NASA Astrophysics Data System (ADS)

    Funk, J. E.; Eisermann, W.

    This paper presents the results of a combined first and second law analysis, along with capital and operating costs, for hydrogen production from water by means of electrolytic, hybrid, and thermochemical processes. The processes are SPE and Lurgi electrolysis with light water reactor power generation and sulfur cycle hybrid, thermochemical and SPE electrolysis with a very high temperature reactor primary energy source. Energy and Exergy (2nd law) flow diagrams for the process are shown along with the location and magnitude of the process irreversibilities. The overall process thermal (1st law) efficiencies vary from 25 to 51% and the exergetic (2nd law) efficiencies, referred to the fuel for the primary energy source, vary from 22 to 45%. Capital and operating costs, escalated to 1979 dollars, are shown for each process for both the primary energy source and the hydrogen production plant. All costs were taken from information available in the open literature and are for a plant capacity of 100 x 10 to the 6th SCF/day. Production costs vary from 10 to 18 $/GJ, based on the higher heating value of hydrogen, and are based on a 90% plant operating factor with a 21% annual charge on total capital costs.

  4. Composite membranes for alkaline electrolysis based on polysulfone and mineral fillers

    NASA Astrophysics Data System (ADS)

    Burnat, Dariusz; Schlupp, Meike; Wichser, Adrian; Lothenbach, Barbara; Gorbar, Michal; Züttel, Andreas; Vogt, Ulrich F.

    2015-09-01

    Mineral-based membranes for high temperature alkaline electrolysis were developed by a phase inversion process with polysulfone as binder. The long-term stability of new mineral fillers: wollastonite, forsterite and barite was assessed by 8000 h-long leaching experiments (5.5 M KOH, 85 °C) combined with thermodynamic modelling. Barite has released only 6.22 10-4 M of Ba ions into the electrolyte and was selected as promising filler material, due to its excellent stability. Barite-based membranes, prepared by the phase inversion process, were further studied. The resistivity of these membranes in 5.5 M KOH was investigated as a function of membrane thickness and total porosity, hydrodynamic porosity as well as gas purities determined by conducting electrolysis at ambient conditions. It was found that a dense top layer resulting from the phase inversion process, shows resistivity values up to 451.0 ± 22 Ω cm, which is two orders of magnitude higher than a porous bulk membrane microstructure (3.89 Ω cm). Developed membranes provided hydrogen purity of 99.83 at 200 mA cm-2, which is comparable to previously used chrysotile membranes and higher than commercial state-of-the-art Zirfon 500utp membrane. These cost-effective polysulfone - barite membranes are promising candidates as asbestos replacement for commercial applications.

  5. 12 CFR Appendix Ms-3 to Part 1024 - Appendix MS-3 to Part 1024

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 8 2014-01-01 2014-01-01 false Appendix MS-3 to Part 1024 MS Appendix MS-3 to... ACT (REGULATION X) Pt. 1024, App. MS-3 Appendix MS-3 to Part 1024 Model Force-Placed Insurance Notice Forms Table of Contents MS-3(A)—Model Form for Force-Placed Insurance Notice Containing...

  6. LC-MS-based metabolomics

    PubMed Central

    Zhou, Bin; Xiao, Jun Feng; Tuli, Leepika

    2013-01-01

    Metabolomics aims at identification and quantitation of small molecules involved in metabolic reactions. LC-MS has enjoyed a growing popularity as the platform for metabolomic studies due to its high throughput, soft ionization, and good coverage of metabolites. The success of LC-MS-based metabolomic study often depends on multiple experimental, analytical, and computational steps. This review presents a workflow of a typical LC-MS-based metabolomic analysis for identification and quantitation of metabolites indicative of biological/environmental perturbations. Challenges and current solutions in each step of the workflow are reviewed. The review intends to help investigators understand the challenges in metabolomic studies and to determine appropriate experimental, analytical, and computational methods to address these challenges. PMID:22041788

  7. Fast initial continuous current pulses versus return stroke pulses in tower-initiated lightning

    NASA Astrophysics Data System (ADS)

    Azadifar, Mohammad; Rachidi, Farhad; Rubinstein, Marcos; Rakov, Vladimir A.; Paolone, Mario; Pavanello, Davide; Metz, Stefan

    2016-06-01

    We present a study focused on pulses superimposed on the initial continuous current of upward negative discharges. The study is based on experimental data consisting of correlated lightning current waveforms recorded at the instrumented Säntis Tower in Switzerland and electric fields recorded at a distance of 14.7 km from the tower. Two different types of pulses superimposed on the initial continuous current were identified: (1) M-component-type pulses, for which the microsecond-scale electric field pulse occurs significantly earlier than the onset of the current pulse, and (2) fast pulses, for which the onset of the field matches that of the current pulse. We analyze the currents and fields associated with these fast pulses (return-stroke type (RS-type) initial continuous current (ICC) pulses) and compare their characteristics with those of return strokes. A total of nine flashes containing 44 RS-type ICC pulses and 24 return strokes were analyzed. The median current peaks associated with RS-type ICC pulses and return strokes are, respectively, 3.4 kA and 8 kA. The associated median E-field peaks normalized to 100 km are 1.5 V/m and 4.4 V/m, respectively. On the other hand, the electric field peaks versus current peaks for the two data sets (RS-type ICC pulses and return strokes) are characterized by very similar linear regression slopes, namely, 3.67 V/(m kA) for the ICC pulses and 3.77 V/(m kA) for the return strokes. Assuming the field-current relation based on the transmission line model, we estimated the apparent speed of both the RS-type ICC pulses and return strokes to be about 1.4 × 108 m/s. A strong linear correlation is observed between the E-field risetime and the current risetime for the ICC pulses, similar to the relation observed between the E-field risetime and current risetime for return strokes. The similarity of the RS-type ICC pulses with return strokes suggests that these pulses are associated with the mixed mode of charge transfer to ground.

  8. MS-MS Approaches for the Analysis of Environmental Pollutants

    EPA Science Inventory

    Concern about the environment and the start of environmental analysis coincided with the rise of gas chromatography-mass spectrometry (GC-MS). The United States Environmental Protection Agency (U.S. EPA) was founded in 1970, and as the need for techniques to analyze environmental...

  9. Exploring intense attosecond pulses

    NASA Astrophysics Data System (ADS)

    Charalambidis, D.; Tzallas, P.; Benis, E. P.; Skantzakis, E.; Maravelias, G.; Nikolopoulos, L. A. A.; Peralta Conde, A.; Tsakiris, G. D.

    2008-02-01

    After introducing the importance of non-linear processes in the extreme-ultra-violet (XUV) spectral regime to the attosecond (asec) pulse metrology and time domain applications, we present two successfully implemented techniques with excellent prospects in generating intense asec pulse trains and isolated asec pulses, respectively. For the generation of pulse trains two-color harmonic generation is exploited. The interferometric polarization gating technique appropriate for the generation of intense isolated asec pulses is discussed and compared to other relevant approaches.

  10. Reactions and mass transport in high temperature co-electrolysis of steam/CO2 mixtures for syngas production

    NASA Astrophysics Data System (ADS)

    Kim, Si-Won; Kim, Hyoungchul; Yoon, Kyung Joong; Lee, Jong-Ho; Kim, Byung-Kook; Choi, Wonjoon; Lee, Jong-Heun; Hong, Jongsup

    2015-04-01

    High temperature co-electrolysis of steam/CO2 mixtures using solid oxide cells has been proposed as a promising technology to mitigate climate change and power fluctuation of renewable energy. To make it viable, it is essential to control the complex reacting environment in their fuel electrode. In this study, dominant reaction pathway and species transport taking place in the fuel electrode and their effect on the cell performance are elucidated. Results show that steam is a primary reactant in electrolysis, and CO2 contributes to the electrochemical performance subsequently in addition to the effect of steam. CO2 reduction is predominantly governed by thermochemical reactions, whose influence to the electrochemical performance is evident near limiting currents. Chemical kinetics and mass transport play a significant role in co-electrolysis, given that the reduction reactions and diffusion of steam/CO2 mixtures are slow. The characteristic time scales determined by the kinetics, diffusion and materials dictate the cell performance and product compositions. The fuel electrode design should account for microstructure and catalysts for steam electrolysis and thermochemical CO2 reduction in order to optimize syngas production and store electrical energy effectively and efficiently. Syngas yield and selectivity are discussed, showing that they are substantially influenced by operating conditions, fuel electrode materials and its microstructure.

  11. A novel electrolysis cell for CO2 reduction to CO in ionic liquid/organic solvent electrolyte

    NASA Astrophysics Data System (ADS)

    Shi, Jin; Shi, Feng; Song, Ning; Liu, Jian-Xiong; Yang, Xi-Kun; Jia, You-Jian; Xiao, Zheng-Wei; Du, Ping

    2014-08-01

    A novel electrolysis cell has been developed for CO2 reduction to CO in an ionic liquid/organic solvent electrolyte. The electrolysis cell is separated into two compartments by an ion-exchange membrane (Nafion117). The cathode compartment is filled with a CO2 saturated 1-butyl-3-methyl-imidazolium trifluoromethanesulfonates ([Bmim][CF3SO3])/propylene carbonate (PC) solution. The anode compartment is filled with a 0.1 M H2SO4 aqueous solution. A Ag foil and a graphite rod are used as the cathode and the anode respectively. In this electrolysis cell, CO2 reduction can be carried out in the nonaqueous electrolyte, and H2O oxidation can be carried out in the aqueous solution. Thus CO can be produced from CO2 and H2O. Owing to the high solubility of CO2 in the nonaqueous electrolyte, the Faradaic efficiency of CO formation is high, reached 90.1% at -1.72 V (vs Pt wire). After 3 h electrolysis, no poisonous species are observed on the cathode. The Ag electrode exhibits a high electrocatalytic activity for CO2 reduction to CO.

  12. The Concept and Analytical Investigation of CO2 and Steam Co-Electrolysis for Resource Utilization in Space Exploration

    NASA Technical Reports Server (NTRS)

    McKellar, Michael G.; Stoots, Carl M.; Sohal, Manohar S.; Mulloth, Lila M.; Luna, Bernadette; Abney, Morgan B.

    2010-01-01

    CO2 acquisition and utilization technologies will have a vital role in designing sustainable and affordable life support and in situ fuel production architectures for human and robotic exploration of Moon and Mars. For long-term human exploration to be practical, reliable technologies have to be implemented to capture the metabolic CO2 from the cabin air and chemically reduce it to recover oxygen. Technologies that enable the in situ capture and conversion of atmospheric CO2 to fuel are essential for a viable human mission to Mars. This paper describes the concept and mathematical analysis of a closed-loop life support system based on combined electrolysis of CO2 and steam (co-electrolysis). Products of the coelectrolysis process include oxygen and syngas (CO and H2) that are suitable for life support and synthetic fuel production, respectively. The model was developed based on the performance of a co-electrolysis system developed at Idaho National Laboratory (INL). Individual and combined process models of the co-electrolysis and Sabatier, Bosch, Boudouard, and hydrogenation reactions are discussed and their performance analyses in terms of oxygen production and CO2 utilization are presented.

  13. A Vivens Ex Vivo Study on the Synergistic Effect of Electrolysis and Freezing on the Cell Nucleus

    PubMed Central

    Lugnani, Franco; Zanconati, Fabrizio; Marcuzzo, Thomas; Bottin, Cristina; Mikus, Paul; Guenther, Enric; Klein, Nina; Rubinsky, Liel; Stehling, Michael K.; Rubinsky, Boris

    2015-01-01

    Freezing—cryosurgery, and electrolysis—electrochemical therapy (EChT), are two important minimally invasive surgery tissue ablation technologies. Despite major advantages they also have some disadvantages. Cryosurgery cannot induce cell death at high subzero freezing temperatures and requires multiple freeze thaw cycles, while EChT requires high concentrations of electrolytic products—which makes it a lengthy procedure. Based on the observation that freezing increases the concentration of solutes (including products of electrolysis) in the frozen region and permeabilizes the cell membrane to these products, this study examines the hypothesis that there could be a synergistic effect between freezing and electrolysis in their use together for tissue ablation. Using an animal model we refer to as vivens ex vivo, which may be of value in reducing the use of animals for experiments, combined with a Hematoxylin stain of the nucleus, we show that there are clinically relevant protocols in which the cell nucleus appears intact when electrolysis and freezing are used separately but is affected by certain combinations of electrolysis and freezing. PMID:26695185

  14. Enhanced hydroxyl radical generation in the combined ozonation and electrolysis process using carbon nanotubes containing gas diffusion cathode.

    PubMed

    Wu, Donghai; Lu, Guanghua; Zhang, Ran; Lin, Qiuhong; Yan, Zhenhua; Liu, Jianchao; Li, Yi

    2015-10-01

    Combination of ozone together with electrolysis (ozone-electrolysis) is a promising wastewater treatment technology. This work investigated the potential use of carbon nanotube (CNT)-based gas diffusion cathode (GDC) for ozone-electrolysis process employing hydroxyl radicals (·OH) production as an indicator. Compared with conventional active carbon (AC)-polytetrafluoroethylene (PTFE) and carbon black (CB)-PTFE cathodes, the production of ·OH in the coupled process was improved using CNTs-PTFE GDC. Appropriate addition of acetylene black (AB) and pore-forming agent Na2SO4 could enhance the efficiency of CNTs-PTFE GDC. The optimum GDC composition was obtained by response surface methodology (RSM) analysis and was determined as CNTs 31.2 wt%, PTFE 60.6 wt%, AB 3.5 wt%, and Na2SO4 4.7 wt%. Moreover, the optimized CNT-based GDC exhibited much more effective than traditional Ti and graphite cathodes in Acid Orange 7 (AO7) mineralization and possessed the desirable stability without performance decay after ten times reaction. The comparison tests revealed that peroxone reaction was the main pathway of ·OH production in the present system, and cathodic reduction of ozone could significantly promote ·OH generation. These results suggested that application of CNT-based GDC offers considerable advantages in ozone-electrolysis of organic wastewater. PMID:26036588

  15. Photocatalytic activity and reusability of ZnO layer synthesised by electrolysis, hydrogen peroxide and heat treatment.

    PubMed

    Akhmal Saadon, Syaiful; Sathishkumar, Palanivel; Mohd Yusoff, Abdull Rahim; Hakim Wirzal, Mohd Dzul; Rahmalan, Muhammad Taufiq; Nur, Hadi

    2016-08-01

    In this study, the zinc oxide (ZnO) layer was synthesised on the surface of Zn plates by three different techniques, i.e. electrolysis, hydrogen peroxide and heat treatment. The synthesised ZnO layers were characterised using scanning electron microscopy, X-ray diffraction, UV-visible diffuse reflectance and photoluminescence spectroscopy. The photocatalytic activity of the ZnO layer was further assessed against methylene blue (MB) degradation under UV irradiation. The photocatalytic degradation of MB was achieved up to 84%, 79% and 65% within 1 h for ZnO layers synthesised by electrolysis, heat and hydrogen peroxide treatment, respectively. The reusability results show that electrolysis and heat-treated ZnO layers have considerable photocatalytic stability. Furthermore, the results confirmed that the photocatalytic efficiency of ZnO was directly associated with the thickness and enlarged surface area of the layer. Finally, this study proved that the ZnO layers synthesised by electrolysis and heat treatment had shown better operational stability and reusability. PMID:26732538

  16. Effects of Lecture, Teacher Demonstrations, Discussion and Practical Work on 10th Graders' Attitudes to Chemistry and Understanding of Electrolysis.

    ERIC Educational Resources Information Center

    Thompson, Jerome; Soyibo, Kola

    2002-01-01

    Investigates whether the use of the combination of lecture, teacher demonstrations, class discussion, and student practical work in small groups significantly improved experimental subjects' attitudes to chemistry and understanding of electrolysis more than their control group counterparts who were not exposed to practical work. Examines whether…

  17. Highlights from Faraday Discussion 182: Solid Oxide Electrolysis: Fuels and Feedstocks from Water and Air, York, UK, July 2015.

    PubMed

    Stefan, Elena; Norby, Truls

    2016-01-31

    The rising importance of converting high peak electricity from renewables to fuels has urged field specialists to organize this Faraday Discussion on Solid Oxide Electrolysis. The topic is of essential interest in order to achieve a greater utilization of renewable energy and storage at higher densities. PMID:26758816

  18. HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY – SYSTEM SIMULATION AND ECONOMICS

    SciTech Connect

    J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

    2009-05-01

    A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

  19. How the novel integration of electrolysis in tidal flow constructed wetlands intensifies nutrient removal and odor control.

    PubMed

    Ju, Xinxin; Wu, Shubiao; Huang, Xu; Zhang, Yansheng; Dong, Renjie

    2014-10-01

    Intensified nutrient removal and odor control in a novel electrolysis-integrated tidal flow constructed wetland were evaluated. The average removal efficiencies of COD and NH4(+)-N were above 85% and 80% in the two experimental wetlands at influent COD concentration of 300 mg/L and ammonium nitrogen concentration of 60 mg/L regardless of electrolysis integration. Effluent nitrate concentration decreased from 2.5mg/L to 0.5mg/L with the reduction in current intensity from 1.5 mA/cm(2) to 0.57 mA/cm(2). This result reveals the important role of current intensity in nitrogen transformation. Owing to the ferrous and ferric iron coagulant formed through the electro-dissolution of the iron anode, electrolysis integration not only exerted a positive effect on phosphorus removal but also effectively inhibited sulfide accumulation for odor control. Although electrolysis operation enhanced nutrient removal and promoted the emission of CH4, no significant difference was observed in the microbial communities and abundance of the two experimental wetlands. PMID:25103037

  20. Transducing Energy Loss in Water Electrolysis with a 0D Ion-Sensitive Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Clement, Nicolas; Nishiguchi, Katsuhiko; Dufrêche, Jean-François; Guérin, David; Patriarche, Gilles; Troadec, David; Fujiwara, Akira; Vuillaume, Dominique

    2013-03-01

    In order to produce hydrogen as a fuel source of the future, water electrolysis is one of the most ``promising'' green approaches. Although electrolysis efficiency can be as high as 80%, it still means that at least 20% of the energy is lost. The use of transducers to collect the energy loss in water electrolysis is attractive. Among the various transducers, several ideas have been proposed such as an air bubble powered rotary driving apparatus or a microcantilever vibrating after impact of each bubble. However, the main source of energy lost appears at electrode interfaces with the presence of a double layer of ions acting as a resistor and capacitor. In this study, we show that using a 0D - ultra low noise - ISFET, allows getting the energy coming from the double layer fluctuation at each H2 bubble emission. Interestingly, the output signal that can be tuned with salt concentration and electrolysis current exactly corresponds to that of action potential which could be useful for bio-applications. In addition, electrical detection of bubbles emission at single bubble level also opens the door to optimization of hydrolysis efficiency and further save energy for hydrogen production.

  1. Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts

    PubMed Central

    Mefford, J. Tyler; Rong, Xi; Abakumov, Artem M.; Hardin, William G.; Dai, Sheng; Kolpak, Alexie M.; Johnston, Keith P.; Stevenson, Keith J.

    2016-01-01

    Perovskite oxides are attractive candidates as catalysts for the electrolysis of water in alkaline energy storage and conversion systems. However, the rational design of active catalysts has been hampered by the lack of understanding of the mechanism of water electrolysis on perovskite surfaces. Key parameters that have been overlooked include the role of oxygen vacancies, B–O bond covalency, and redox activity of lattice oxygen species. Here we present a series of cobaltite perovskites where the covalency of the Co–O bond and the concentration of oxygen vacancies are controlled through Sr2+ substitution into La1−xSrxCoO3−δ. We attempt to rationalize the high activities of La1−xSrxCoO3−δ through the electronic structure and participation of lattice oxygen in the mechanism of water electrolysis as revealed through ab initio modelling. Using this approach, we report a material, SrCoO2.7, with a high, room temperature-specific activity and mass activity towards alkaline water electrolysis. PMID:27006166

  2. Pulse-burst operation of standard Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Den Hartog, D. J.; Ambuel, J. R.; Borchardt, M. T.; Reusch, J. A.; Robl, P. E.; Yang, Y. M.

    2010-05-01

    Two standard commercial flashlamp-pumped Nd:YAG lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to fifteen 2 J Q-switched pulses (1064 nm) at repetition rates 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by IGBT (insulated gate bipolar transistor) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to study the dynamic evolution of the electron temperature.

  3. A pulsed mode electrolytic drug delivery device

    NASA Astrophysics Data System (ADS)

    Yi, Ying; Buttner, Ulrich; Carreno, Armando A. A.; Conchouso, David; Foulds, Ian G.

    2015-10-01

    This paper reports the design of a proof-of-concept drug delivery device that is actuated using the bubbles formed during electrolysis. The device uses a platinum (Pt) coated nickel (Ni) metal foam and a solid drug in reservoir (SDR) approach to improve the device’s performance. This electrochemically-driven pump has many features that are unlike conventional drug delivery devices: it is capable of pumping periodically and being refilled automatically; it features drug release control; and it enables targeted delivery. Pt-coated metal foam is used as a catalytic reforming element, which reduces the period of each delivery cycle. Two methods were used for fabricating the Pt-coated metal: sputtering and electroplating. Of these two methods, the sputtered Pt-coated metal foam has a higher pumping rate; it also has a comparable recombination rate when compared to the electroplated Pt-coated metal foam. The only drawback of this catalytic reformer is that it consumes nickel scaffold. Considering long-term applications, the electroplated Pt metal foam was selected for drug delivery, where a controlled drug release rate of 2.2 μg  ±  0.3 μg per actuation pulse was achieved using 4 mW of power.

  4. Multifunctional pulse sequence generator for pulse NMR

    NASA Astrophysics Data System (ADS)

    Wang, Dongsheng

    1988-06-01

    A new multifunctional pulse sequence generator has been designed and constructed. It can conveniently generate various pulse sequences used in nuclear-magnetic resonance (NMR) to measure the spin-lattice relaxation time T1, the spin-spin relaxation time T2, and the spin-locking relaxation time T1 ρ. It can also be used in pulse Fourier transform NMR and double resonance. The intervals of pulses can increase automatically with sequence repetitions and the generator can be used in two-dimensional spectrum measurement and spin-density imaging research. The sequences can be generated through four different triggering methods and there are two synchronous pulse outputs and fifteen auxiliary pulse outputs, so the generator can be conveniently interfaced with a computer or other instruments. The circuitry, functions, and features of the generator are described in this article.

  5. Recycling Carbon Dioxide into Sustainable Hydrocarbon Fuels: Electrolysis of Carbon Dioxide and Water

    NASA Astrophysics Data System (ADS)

    Graves, Christopher Ronald

    Great quantities of hydrocarbon fuels will be needed for the foreseeable future, even if electricity based energy carriers begin to partially replace liquid hydrocarbons in the transportation sector. Fossil fuels and biomass are the most common feedstocks for production of hydrocarbon fuels. However, using renewable or nuclear energy, carbon dioxide and water can be recycled into sustainable hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. The purpose of this work was to develop critical components of a system that recycles CO2 into liquid hydrocarbon fuels. The concept is examined at several scales, beginning with a broad scope analysis of large-scale sustainable energy systems and ultimately studying electrolysis of CO 2 and H2O in high temperature solid oxide cells as the heart of the energy conversion, in the form of three experimental studies. The contributions of these studies include discoveries about electrochemistry and materials that could significantly improve the overall energy use and economics of the CO2-to-fuels system. The broad scale study begins by assessing the sustainability and practicality of the various energy carriers that could replace petroleum-derived hydrocarbon fuels, including other hydrocarbons, hydrogen, and storage of electricity on-board vehicles in batteries, ultracapacitors, and flywheels. Any energy carrier can store the energy of any energy source. This sets the context for CO2 recycling -- sustainable energy sources like solar and wind power can be used to provide the most energy-dense, convenient fuels which can be readily used in the existing infrastructure. The many ways to recycle CO2 into hydrocarbons, based on thermolysis, thermochemical loops, electrolysis, and photoelectrolysis of CO2 and/or H 2O, are critically reviewed. A process based on high temperature co-electrolysis

  6. ASSESSMENT OF THE IMMUNE RESPONSIVENESS OF MICE IRRADIATED WITH CONTINUOUS WAVE OR PULSE-MODULATED 425-MHZ RADIO FREQUENCY RADIATION

    EPA Science Inventory

    Groups of female BALB/C mice were irradiated with 425-MHz radio frequency (RF) radiation either continuous wave (CW) or pulse modulated (PM, 1-ms pulse width, 250 pulses/s). Mice were irradiated in a rectangular strip-transmission line at average forward powers of 78, 17.7, or 5 ...

  7. MS/MS and LC-MS/MS analysis of choline/ethanolamine plasmalogens via promotion of alkali metal adduct formation.

    PubMed

    Otoki, Yurika; Nakagawa, Kiyotaka; Kato, Shunji; Miyazawa, Teruo

    2015-11-01

    Tandem mass spectrometry (MS/MS) has been used for the analysis of plasmalogen (Pls), a physiologically important class of vinyl ether-linked phospholipid. However, MS/MS generally causes little fragmentation of Pls, especially choline Pls (PC-Pls). Previous MS/MS studies reported an increased formation of product ions of PC-Pls (and also ethanolamine Pls (PE-Pls)) in the presence of 'alkali metals.' Therefore, use of alkali metals considerably leads to the development of a method for analysis of both PC- and PE-Pls. In this study, this notion was evaluated using quadrupole-time-of-flight MS/MS and liquid chromatography (LC) coupled with MS/MS. Results from MS/MS confirmed that alkali metals (e.g., sodium) produced significant fragmentation of PC-Pls and PE-Pls. A number of structure-diagnostic product ions exhibiting high intensities were observed under optimized MS/MS conditions using alkali metals. Moreover, the ability to selectively and sensitively identify PC-Pls and PE-Pls at the molecular species level in biological samples (rat brain and heart) was demonstrated using LC-MS/MS. Therefore, the herein developed method appears to be a powerful tool for analyzing Pls and may provide a better understanding of their physiological roles in vivo. PMID:26447938

  8. LIBS and LA-ICP-MS; Old techniques, new approaches

    NASA Astrophysics Data System (ADS)

    Mueller, P. A.; Foster, D. A.; Gonzalez, J.; Colucci, M.; Russo, R.

    2012-12-01

    Over the past decade laser ablation in-situ solid sampling for chemical analysis with an ICP-MS analyzer (LA-ICP-MS, single and multi-collector) has become a generally accepted technique across a wide range of disciplines (geochemistry, forensic science, life sciences, etc). More recently, Laser Induced Breakdown Spectrometry (LIBS) has developed into a complementary technique that offers full spectral analysis of the laser plasma without the need for a mass spectrometer. Both techniques provide in-situ solid sample elemental and isotopic analysis at high spatial resolution (<5 microns) with minimal sample preparation. LA-ICP-MS affords the analyst low detection limits (ppb) and the ability to optimize across a specific mass range for high precision element or isotope ratios. LIBS, while providing slightly higher detection limits (ppm), allows for simultaneous and near complete spectral coverage of the laser plasma. Both techniques are capable of producing semi-quantitative and quantitative data. Integration of a LA and LIBS system could be a powerful tool to allow full spectral element and isotope/element ratio data on the same laser plume (plasma and particulates). Although LIBS and LA typically operate under different conditions of pulse length, spot size, and energy, the ability to capture elemental abundance information from the light that is otherwise wasted during LA makes an important complement to the limited number of ions measured in multi-collector ICP-MS analyses. Such an approach would not require the compromises in sampled volume associated with either split-streams (two ICP-MS systems required; diluted aerosol streams) or with peak switching in the MS (magnetic or electrostatic) because extraction of light-based information does not impact the number of ions measured for isotope ratios. We present LIBS experiments with UV-nanosecond lasers at 17mJ energies delivered to spot sizes of <100 μm and light directed to an ICCD detection system on NIST

  9. Evaluating GC/MS Performance

    SciTech Connect

    Alcaraz, A; Dougan, A

    2006-11-26

    Evaluating the chemical background in the GC/MS system (system background) and solvent purity. This procedure will allow the analyst to verify that the GC/MS is free of chemical interferences or contamination and verify the solvent being utilized is free of interferences - Conduct a GC/MS analysis without injecting a solvent (system background) and Conduct a GC/MS analysis inject 1uL of CH2Cl2 solvent (Solvent background). GC conditions: (1) Injector Temperature (C): Injector Temperature is typically set at 250; (2) Transferline Temperature (C) - The Transferline Temperature is typically set at 280 C; (3) Constant flow (Sec./cm2) - This value, in seconds per cubic cm. Typically, set at 32; (4) Splitless mode (Sec.) - This value, in seconds, is the time before the purge valve opens. Typically, set at 45 seconds; (5) Starting Temperature (C): The Starting Temperature value can be set at 40 C; (6) Hold Time 1 (Min.) - Hold Time 1 is the amount of time, in minutes at the Starting Temperature that Ramp 1 Temperature is held. Typically set at 3 minutes; (7) Ramp 1 Rate (C/Min.) - Ramp 1 Rate is the temperature rise per unit time and has a typically value of 8 C per minute to 300 C; and (8) Hold Time 2 (Min.): Hold Time 2 is the amount of time, in minutes at the final Temperature that Ramp 1 Temperature is held. Temperature is held at 300 C for 3 minutes. MS conditions: Electronic - 40 to 500 amu, Scan Range - 30-600 m/z, Scan time - 0.7 sec, Mass Resolution - 07u, and Electron energy 1 - 70 eV. The total ion chromatograms (TIC) from a bakeout and solvent should be void of any large chromatographic peaks (see figure 1). Autotune using the PFTBA calibrant: First selecting the autotune option and click on standard autotune. The software program will generate final tune report similar to figure 2. If there are any MS tuning problems (e.g., dirty source, air leak, etc.) the tuning process will fail. Be sure to save the tune file before proceeding to the next step. Run an 'Air

  10. DIFFERENTIAL PULSE HEIGHT DISCRIMINATOR

    DOEpatents

    Test, L.D.

    1958-11-11

    Pulse-height discriminators are described, specifically a differential pulse-height discriminator which is adapted to respond to pulses of a band of amplitudes, but to reject pulses of amplitudes greater or less than tbe preselected band. In general, the discriminator includes a vacuum tube having a plurality of grids adapted to cut off plate current in the tube upon the application of sufficient negative voltage. One grid is held below cutoff, while a positive pulse proportional to the amplltude of each pulse is applled to this grid. Another grid has a negative pulse proportional to the amplitude of each pulse simultaneously applied to it. With this arrangement the tube will only pass pulses which are of sufficlent amplitude to counter the cutoff bias but not of sufficlent amplitude to cutoff the tube.

  11. CE-microreactor-CE-MS/MS for protein analysis

    PubMed Central

    Schoenherr, Regine M.; Ye, Mingliang; Vannatta, Michael

    2008-01-01

    We present a proof-of-principle for a fully automated bottom-up approach to protein characterization. Proteins are first separated by capillary electrophoresis. A pepsin microreactor is incorporated into the distal end of this capillary. Peptides formed in the reactor are transferred to a second capillary, where they are separated by capillary electrophoresis and characterized by mass spectrometry. While peptides generated from one digestion are being separated in the second capillary, the next protein fraction undergoes digestion in the microreactor. The migration time in the first dimension capillary is characteristic of the protein while migration time in the second dimension is characteristic of the peptide. Spot capacity for the two-dimensional separation is 590. A MS/MS analysis of a mixture of cytochrome C and myoglobin generated Mascot MOWSE scores of 107 for cytochrome C and 58 for myoglobin. The sequence coverages were 48% and 22%, respectively. PMID:17295444

  12. Therapeutic drug monitoring of tamoxifen using LC-MS/MS.

    PubMed

    Tchu, Simone M; Lynch, Kara L; Wu, Alan H B

    2012-01-01

    Tamoxifen is a selective estrogen receptor modulator (SERM) that is used widely in the treatment of estrogen receptor positive breast cancer (ER+). Therapeutic monitoring of tamoxifen, and its metabolites N-desmethyltamoxifen (NDTam) and 4-hydroxy-N-desmethyltamoxifen (endoxifen), may be clinically useful for guiding treatment decisions. Two significant barriers to tamoxifen efficacy are: (1) variability in conversion of tamoxifen into the potent antiestrogenic metabolite, endoxifen, and (2) poor compliance and adherence to tamoxifen therapy. Therapeutic monitoring can be used to address both of these issues. Low levels of endoxifen indicate either poor compliance or poor metabolism of tamoxifen. Low tamoxifen levels would suggest poor compliance while a low ratio of endoxifen to NDTam would be indicative of poor metabolism. Solid phase extraction of patient serum followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) detection enables rapid, accurate, detection of tamoxifen, N-desmethyltamoxifen, and endoxifen. PMID:22767121

  13. Laser pulse stacking method

    DOEpatents

    Moses, Edward I.

    1992-01-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter.

  14. Nerve-pulse interactions

    SciTech Connect

    Scott, A.C.

    1982-01-01

    Some recent experimental and theoretical results on mechanisms through which individual nerve pulses can interact are reviewed. Three modes of interactions are considered: (1) interaction of pulses as they travel along a single fiber which leads to velocity dispersion; (2) propagation of pairs of pulses through a branching region leading to quantum pulse code transformations; and (3) interaction of pulses on parallel fibers through which they may form a pulse assembly. This notion is analogous to Hebb's concept of a cell assembly, but on a lower level of the neural hierarchy.

  15. Laser pulse stacking method

    DOEpatents

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  16. Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: Bottlenecks and limitations.

    PubMed

    Escapa, A; San-Martín, M I; Mateos, R; Morán, A

    2015-03-01

    Microbial electrolysis cells (MECs) have the potential to become a sustainable domestic wastewater (dWW) treatment system. However, new scale-up experiences are required to gain knowledge of critical issues in MEC designs. In this study we assess the ability of two twin membraneless MEC units (that are part of a modular pilot-scale MEC) to treat dWW. Batch tests yielded COD removal efficiencies as high as 92%, with most of the hydrogen (>80% of the total production) being produced during the first 48h. During the continuous tests, MECs performance deteriorated significantly (energy consumption was relatively high and COD removal efficiencies fell below 10% in many cases), which was attributed to an inadequate configuration of the anodic chamber, insufficient mixing inside this chamber, inefficient hydrogen management on the cathode side and finally to dWW in itself. Some alternatives to the current design are suggested. PMID:25590425

  17. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs).

    PubMed

    Ren, Lijiao; Siegert, Michael; Ivanov, Ivan; Pisciotta, John M; Logan, Bruce E

    2013-05-01

    High-throughput microbial electrolysis cells (MECs) were used to perform treatability studies on many different refinery wastewater samples all having appreciably different characteristics, which resulted in large differences in current generation. A de-oiled refinery wastewater sample from one site (DOW1) produced the best results, with 2.1±0.2 A/m(2) (maximum current density), 79% chemical oxygen demand removal, and 82% headspace biological oxygen demand removal. These results were similar to those obtained using domestic wastewater. Two other de-oiled refinery wastewater samples also showed good performance, with a de-oiled oily sewer sample producing less current. A stabilization lagoon sample and a stripped sour wastewater sample failed to produce appreciable current. Electricity production, organics removal, and startup time were improved when the anode was first acclimated to domestic wastewater. These results show mini-MECs are an effective method for evaluating treatability of different wastewaters. PMID:23567698

  18. Conjugated oligoelectrolyte represses hydrogen oxidation by Geobacter sulfurreducens in microbial electrolysis cells.

    PubMed

    Liu, Jia; Hou, Huijie; Chen, Xiaofen; Bazan, Guillermo C; Kashima, Hiroyuki; Logan, Bruce E

    2015-12-01

    A conjugated oligoelectrolyte (COE), which spontaneously aligns within cell membranes, was shown to completely inhibit H2 uptake by Geobacter sulfurreducens in microbial electrolysis cells. Coulombic efficiencies that were 490±95%, due to H2 recycling between the cathode and microorganisms on the anode, were reduced to 86±2% with COE addition. The use of the COE resulted in a 67-fold increase in H2 gas recovery, and a 4.4-fold increase in acetate removal. Current generation, H2 recovery and COD removals by Geobacter metallireducens, which cannot use H2, were unaffected by COE addition. These results show that this COE is an effective H2 uptake inhibitor, and that it can enable improved and sustained H2 gas recovery in this bioelectrochemical system. PMID:26265121

  19. Initial Operation of the High Temperature Electrolysis Integrated Laboratory Scale Experiment at INL

    SciTech Connect

    C. M. Stoots; J. E. O'Brien; K. G. Condie; J. S. Herring; J. J. Hartvigsen

    2008-06-01

    An integrated laboratory scale, 15 kW high-temperature electrolysis facility has been developed at the Idaho National Laboratory under the U.S. Department of Energy Nuclear Hydrogen Initiative. Initial operation of this facility resulted in over 400 hours of operation with an average hydrogen production rate of approximately 0.9 Nm3/hr. The integrated laboratory scale facility is designed to address larger-scale issues such as thermal management (feed-stock heating, high-temperature gas handling), multiple-stack hot-zone design, multiple-stack electrical configurations, and other “integral” issues. This paper documents the initial operation of the ILS, with experimental details about heat-up, initial stack performance, as well as long-term operation and stack degradation.

  20. Development status of solid polymer electrolyte water electrolysis for manned spacecraft life support systems

    NASA Technical Reports Server (NTRS)

    Nuttall, L. J.; Titterington, W. A.

    1974-01-01

    Details of the design and system verification test results are presented for a six-man-rated oxygen generation system. The system configuration incorporates components and instrumentation for computer-controlled operation with automatic start-up/shutdown sequencing, fault detection and isolation, and with self-contained sensors and controls for automatic safe emergency shutdown. All fluid and electrical components, sensors, and electronic controls are designed to be easily maintainable under zero-gravity conditions. On-board component spares are utilized in the system concept to sustain long-term operation (six months minimum) in a manned spacecraft application. The system is centered on a 27-cell solid polymer electrolyte water electrolysis module which, combined with the associated system components and controls, forms a total system envelope 40 in. high, 40 in. wide, and 30 in. deep.

  1. Electrolysis of plutonium nitride in LiCl-KCl eutectic melts

    NASA Astrophysics Data System (ADS)

    Shirai, O.; Iwai, T.; Shiozawa, K.; Suzuki, Y.; Sakamura, Y.; Inoue, T.

    2000-01-01

    The electrolysis of plutonium nitride, PuN, was investigated in the LiCl-KCl eutectic salt with 0.54 wt% PuCl 3 at 773 K in order to understand the dissolution of PuN at the anode and the deposition of metal at the cathode from the viewpoint of the application of a pyrochemical process to nitride fuel cycle. It was found from cyclic voltammetry that the electrochemical dissolution of PuN began nearly at the theoretically evaluated potential and this reaction was irreversible. Several grams of plutonium metal were successfully recovered at the molybdenum electrode as a deposit with a current efficiency of about 90%, although some fractions of the deposited plutonium often fell from the molybdenum electrode.

  2. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.

    PubMed

    Rago, Laura; Baeza, Juan A; Guisasola, Albert

    2016-06-01

    This work reports the first successful enrichment and operation of alkaline bioelectrochemical systems (microbial fuel cells, MFC, and microbial electrolysis cells, MEC). Alkaline (pH=9.3) bioelectrochemical hydrogen production presented better performance (+117%) compared to conventional neutral conditions (2.6 vs 1.2 litres of hydrogen gas per litre of reactor per day, LH2·L(-1)REACTOR·d(-1)). Pyrosequencing results of the anodic biofilm showed that while Geobacter was mainly detected under conventional neutral conditions, Geoalkalibacter sp. was highly detected in the alkaline MFC (21%) and MEC (48%). This is the first report of a high enrichment of Geoalkalibacter from an anaerobic mixed culture using alkaline conditions in an MEC. Moreover, Alkalibacter sp. was highly present in the anodic biofilm of the alkaline MFC (37%), which would indicate its potentiality as a new exoelectrogen. PMID:26855359

  3. Direct preparation of La2Zr2O7 microspheres by cathode plasma electrolysis.

    PubMed

    Liu, Chenxu; Zhang, Jin; Deng, Shunjie; Wang, Peng; He, Yedong

    2016-07-15

    La2Zr2O7 microspheres were directly prepared by cathode plasma electrolysis (CPE) in the electrolyte of Zr(NO3)4·5H2O and La(NO3)3·6H2O. Compared with high temperature sintering methods, the energy of plasma was completely used by CPE and made it possible to prepare the microspheres without calcining. The diameters of microspheres were mostly in the range of 0.5-5μm and the microspheres consisted of fluorite and pyrochlore structures of La2Zr2O7. Moreover, the microspheres possessed potential photocatalytic activity and fluorescence property, owing to the high crystallinity and large surface area of the microspheres. PMID:27124808

  4. The effects of electrolysis at room temperature on retrogradation of sweet potato starch.

    PubMed

    Xijun, Lian; Kunsheng, Zhang; Qingfeng, Luo; Xu, Zhang; Shuyi, Zhao

    2012-01-01

    The effects of electrolysis at room temperature on formation of sweet potato retrograded starch were studied by photographic method in the paper. The optimal parameters of electrolytic preparation of sweet potato retrograded starch were determined. The ratio between sweet potato starch and water was 10 g/100 mL with addition of NaCl 1.0 g/100 mL, pH value of the solution was 6.0 and the solution was electrolyzed for 30 min at 90 V at room temperature, then it was stored at 4°C for 24h after being autoclaved for 30 min at 120°C, the retrogradation rate of sweet potato starch at this condition was 33.1%, which is 138% higher than that of control group. Four possible reasons are put forward to explain the results. PMID:22008104

  5. Hydrogen production in microbial reverse-electrodialysis electrolysis cells using a substrate without buffer solution.

    PubMed

    Song, Young-Hyun; Hidayat, Syarif; Kim, Han-Ki; Park, Joo-Yang

    2016-06-01

    The aim of this work was to use substrate without buffer solution in a microbial reverse-electrodialysis electrolysis cell (MREC) for hydrogen production under continuous flow condition (10 cell pairs of RED stacks, HRT=5, 7.5, and 15h). Decreasing in the HRT (increasing in the organic matter) made cell current stable and increased. Hydrogen gas was produced at a rate of 0.61m(3)-H2/m(3)-Van/d in H-MREC, with a COD removal efficiency of 81% (1.55g/L/d) and a Coulombic efficiency of 41%. This MREC system without buffer solution could successfully produce hydrogen gas at a consistent rate. PMID:26888336

  6. Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility

    SciTech Connect

    Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

    2009-07-01

    A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

  7. Lunar oxygen and metal for use in near-Earth space: Magma electrolysis

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.

    1990-01-01

    Because it is energetically easier to get material from the Moon to Earth orbit than from the Earth itself, the Moon is a potentially valuable source of materials for use in space. The unique conditions on the Moon, such as vacuum, absence of many reagents common on the Earth, and the presence of very nontraditional ores suggest that a unique and nontraditional process for extracting materials from the ores may prove the most practical. With this in mind, an investigation of unfluxed silicate electrolysis as a method for extracting oxygen, iron, and silicon from lunar regolith was initiated and is discussed. The advantages of the process include simplicity of concept, absence of need to supply reagents from Earth, and low power and mass requirements for the processing plant. Disadvantages include the need for uninterrupted high temperature and the highly corrosive nature of the high-temperature silicate melts which has made identifying suitable electrode and container materials difficult.

  8. Lunar oxygen and metal for use in near-earth space - Magma electrolysis

    NASA Technical Reports Server (NTRS)

    Colson, Russell O.; Haskin, Larry A.

    1990-01-01

    The unique conditions on the moon, such as vacuum, absence of many reagents common on the earth, and presence of very nontraditional 'ores', suggest that a unique and nontraditional process for extracting materials from the ores may prove the most practical. An investigation has begun into unfluxed silicate electrolysis as a method for extracting oxygen, Fe, and Si from lunar regolith. The advantages of the process include simplicity of concept, absence of need to supply reagents from the earth, and low power and mass requirements for the processing plant. Disadvantages include the need for uninterrupted high temperature and the highly corrosive nature of the high-temperature silicate melts, which has made identifying suitable electrode and container materials difficult.

  9. Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell.

    PubMed

    Villano, Marianna; Scardala, Stefano; Aulenta, Federico; Majone, Mauro

    2013-02-01

    The anode of a two-chamber methane-producing microbial electrolysis cell (MEC) was poised at +0.200V vs. the standard hydrogen electrode (SHE) and continuously fed (1.08gCOD/Ld) with acetate in anaerobic mineral medium. A gas mixture (carbon dioxide 30vol.% in N(2)) was continuously added to the cathode for both pH control and carbonate supply. At the anode, 94% of the influent acetate was removed, mostly through anaerobic oxidation (91% coulombic efficiency); the resulting electric current was mainly recovered as methane (79% cathode capture efficiency). Low biomass growth was observed at the anode and ammonium was transferred through the cationic membrane and concentrated at the cathode. These findings suggest that the MEC can be used for the treatment of low-strength wastewater, with good energy efficiency and low sludge production. PMID:23313682

  10. Generation of High Pressure Oxygen via Electrochemical Pumping in a Multi-stage Electrolysis Stack

    NASA Technical Reports Server (NTRS)

    Setlock, John A (Inventor); Green, Robert D (Inventor); Farmer, Serene (Inventor)

    2016-01-01

    An oxygen pump can produce high-purity high-pressure oxygen. Oxygen ions (O.sup.2-) are electrochemically pumped through a multi-stage electrolysis stack of cells. Each cell includes an oxygen-ion conducting solid-state electrolyte between cathode and anode sides. Oxygen dissociates into the ions at the cathode side. The ions migrate across the electrolyte and recombine at the anode side. An insulator is between adjacent cells to electrically isolate each individual cell. Each cell receives a similar volt potential. Recombined oxygen from a previous stage can diffuse through the insulator to reach the cathode side of the next stage. Each successive stage similarly incrementally pressurizes the oxygen to produce a final elevated pressure.

  11. Size-dependent capacitance of NiO nanoparticles synthesized with cathodic contact glow discharge electrolysis

    NASA Astrophysics Data System (ADS)

    Allagui, Anis; Alami, Abdul Hai; Baranova, Elena A.; Wüthrich, Rolf

    2014-09-01

    NiO nanoparticles of 70, 91 and 107 nm average diameter are synthesized by cathodic contact glow discharge electrolysis at 30, 36 and 42 VDC respectively, in 2 M H2SO4 + 0.5 M ethanol + 2.5 mg ml-1 of PVP, and are investigated for electrochemical energy storage. From the cyclic voltammetry and galvanostatic charge-discharge measurements in 1 M KOH, it was found that a maximum specific capacitance of 218 F g-1 is achieved with the 70 nm NiO nanoparticles at 2.7 A g-1. Larger nanoparticles of 91 and 107 nm diameter exhibit specific capacitances of 106 and 63 F g-1, respectively, suggesting a size-dependent capacitive performance enhanced with decreasing particles size.

  12. Microbial electrolysis cells for waste biorefinery: A state of the art review.

    PubMed

    Lu, Lu; Ren, Zhiyong Jason

    2016-09-01

    Microbial electrolysis cells (MECs) is an emerging technology for energy and resource recovery during waste treatment. MECs can theoretically convert any biodegradable waste into H2, biofuels, and other value added products, but the system efficacy can vary significantly when using different substrates or are operated in different conditions. To understand the application niches of MECs in integrative waste biorefineries, this review provides a critical analysis of MEC system performance reported to date in terms of H2 production rate, H2 yield, and energy efficiency under a variety of substrates, applied voltages and other crucial factors. It further discusses the mutual benefits between MECs and dark fermentation and argues such integration can be a viable approach for efficient H2 production from renewable biomass. Other marketable products and system integrations that can be applied to MECs are also summarized, and the challenges and prospects of the technology are highlighted. PMID:27020129

  13. TOF-SIMS characterization of impurity enrichment and redistribution in solid oxide electrolysis cells during operation.

    PubMed

    Kiebach, Ragnar; Norrman, Kion; Chatzichristodoulou, Christodoulos; Chen, Ming; Sun, Xiufu; Ebbesen, Sune D; Mogensen, Mogens B; Hendriksen, Peter Vang

    2014-10-28

    TOF-SIMS analyses of state-of-the-art high temperature solid oxide electrolysis cells before and after testing under different operating conditions were performed. The investigated cells consist of an yttria stabilized zirconia (YSZ) electrolyte, a La1-xSrxMnO3-δ composite anode and a Ni-YSZ cermet cathode. The surfaces and cross-sections of the cells were analyzed, and several elemental impurities like Si, Ca and Na were identified and spatially mapped and their enrichment and migration during operation is reported. With advancing operation time, the concentration of these elements, especially Na and Ca, increases. For Si, a concentration gradient is found from the gas inlet to the gas outlet. Additionally, a loss of Ni percolation in the active cathode is observed in the same area where the Si enrichment is found. Based on the obtained TOF-SIMS results, the influence of the operating conditions on degradation is discussed. PMID:24860844

  14. Analysis of Marine Biotoxins Using LC-MS/MS.

    PubMed

    Luckas, Bernd; Erler, Katrin; Krock, Bernd

    2015-01-01

    Different clinical types of algae-related poisoning have attracted scientific and commercial attention: paralytic shellfish poisoning (PSP), diarrhetic shellfish poisoning (DSP), and amnesic shellfish poisoning (ASP). Bioassays are common methods for the determination of marine biotoxins. However, biological tests are not completely satisfactory, mainly due to the low sensitivity and the absence of specialized variations. In this context LC-MS methods replaced HPLC methods with optical detectors, allowing both effective seafood control and monitoring of phytoplankton in terms of the different groups of marine biotoxins. This chapter describes state-of-the-art LC-MS/MS methods for the detection and quantitation of different classes of phycotoxins in shellfish matrices. These classes include the highly hydrophilic paralytic shellfish poisoning (PSP) toxins. Hydrophilic interaction liquid chromatography (HILIC) has been shown to be useful in the separation of PSP toxins and is described in detail within this chapter. Another important class of phycotoxins is diarrhetic shellfish poisoning (DSP) toxins. This group traditionally comprises okadaic acid and dinophysistoxins (DTXs), pectenotoxins (PTXs), and yessotoxins (YTXs). The most recently described shellfish poisoning syndrome, azaspiracid shellfish poisoning (AZP) is caused by azaspiracids, which in turn are diarrhetic, but usually are treated separately as AZP. The last group of regulated shellfish toxins is the amnesic shellfish poisoning (ASP) toxin domoic acid, produced by species of the genus Pseudo-nitzschia. PMID:26108513

  15. Quantitative acylcarnitine determination by UHPLC-MS/MS--Going beyond tandem MS acylcarnitine "profiles".

    PubMed

    Minkler, Paul E; Stoll, Maria S K; Ingalls, Stephen T; Kerner, Janos; Hoppel, Charles L

    2015-12-01

    Tandem MS "profiling" of acylcarnitines and amino acids was conceived as a first-tier screening method, and its application to expanded newborn screening has been enormously successful. However, unlike amino acid screening (which uses amino acid analysis as its second-tier validation of screening results), acylcarnitine "profiling" also assumed the role of second-tier validation, due to the lack of a generally accepted second-tier acylcarnitine determination method. In this report, we present results from the application of our validated UHPLC-MS/MS second-tier method for the quantification of total carnitine, free carnitine, butyrobetaine, and acylcarnitines to patient samples with known diagnoses: malonic acidemia, short-chain acyl-CoA dehydrogenase deficiency (SCADD) or isobutyryl-CoA dehydrogenase deficiency (IBD), 3-methyl-crotonyl carboxylase deficiency (3-MCC) or ß-ketothiolase deficiency (BKT), and methylmalonic acidemia (MMA). We demonstrate the assay's ability to separate constitutional isomers and diastereomeric acylcarnitines and generate values with a high level of accuracy and precision. These capabilities are unavailable when using tandem MS "profiles". We also show examples of research interest, where separation of acylcarnitine species and accurate and precise acylcarnitine quantification is necessary. PMID:26458767

  16. Direct Electrolysis of Molten Lunar Regolith for the Production of Oxygen and Metals on the Moon

    NASA Technical Reports Server (NTRS)

    Sirk, Aislinn H. C.; Sadoway, Donald R.; Sibille, Laurent

    2010-01-01

    When considering the construction of a lunar base, the high cost ($ 100,000 a kilogram) of transporting materials to the surface of the moon is a significant barrier. Therefore in-situ resource utilization will be a key component of any lunar mission. Oxygen gas is a key resource, abundant on earth and absent on the moon. If oxygen could be produced on the moon, this provides a dual benefit. Not only does it no longer need to be transported to the surface for breathing purposes; it can also be used as a fuel oxidizer to support transportation of crew and other materials more cheaply between the surface of the moon, and lower earth orbit (approximately $20,000/kg). To this end a stable, robust (lightly manned) system is required to produce oxygen from lunar resources. Herein, we investigate the feasibility of producing oxygen, which makes up almost half of the weight of the moon by direct electrolysis of the molten lunar regolith thus achieving the generation of usable oxygen gas while producing primarily iron and silicon at the cathode from the tightly bound oxides. The silicate mixture (with compositions and mechanical properties corresponding to that of lunar regolith) is melted at temperatures near 1600 C. With an inert anode and suitable cathode, direct electrolysis (no supporting electrolyte) of the molten silicate is carried out, resulting in production of molten metallic products at the cathode and oxygen gas at the anode. The effect of anode material, sweep rate, and electrolyte composition on the electrochemical behavior was investigated and implications for scale-up are considered. The activity and stability of the candidate anode materials as well as the effect of the electrolyte composition were determined. Additionally, ex-situ capture and analysis of the anode gas to calculate the current efficiency under different voltages, currents and melt chemistries was carried out.

  17. Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-08-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

  18. U.S. Geographic Analysis of the Cost of Hydrogen from Electrolysis

    SciTech Connect

    Saur, G.; Ainscough, C.

    2011-12-01

    This report summarizes U.S. geographic analysis of the cost of hydrogen from electrolysis. Wind-based water electrolysis represents a viable path to renewably-produced hydrogen production. It might be used for hydrogen-based transportation fuels, energy storage to augment electricity grid services, or as a supplement for other industrial hydrogen uses. This analysis focuses on the levelized production, costs of producing green hydrogen, rather than market prices which would require more extensive knowledge of an hourly or daily hydrogen market. However, the costs of hydrogen presented here do include a small profit from an internal rate of return on the system. The cost of renewable wind-based hydrogen production is very sensitive to the cost of the wind electricity. Using differently priced grid electricity to supplement the system had only a small effect on the cost of hydrogen; because wind electricity was always used either directly or indirectly to fully generate the hydrogen. Wind classes 3-6 across the U.S. were examined and the costs of hydrogen ranged from $3.74kg to $5.86/kg. These costs do not quite meet the 2015 DOE targets for central or distributed hydrogen production ($3.10/kg and $3.70/kg, respectively), so more work is needed on reducing the cost of wind electricity and the electrolyzers. If the PTC and ITC are claimed, however, many of the sites will meet both targets. For a subset of distributed refueling stations where there is also inexpensive, open space nearby this could be an alternative to central hydrogen production and distribution.

  19. Pulse to pulse klystron diagnosis system

    SciTech Connect

    Nowak, J.; Davidson, V.; Genova, L.; Johnson, R.; Reagan, D.

    1981-03-01

    This report describes a system used to study the behavior of SLAC high powered klystrons operating with a twice normal pulse width of 5 ..mu..s. At present, up to eight of the klystrons installed along the accelerator can be operated with long pulses and monitored by this system. The report will also discuss some of the recent findings and investigations.

  20. 12 CFR Appendix Ms-2 to Part 1024 - Appendix MS-2 to Part 1024

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 8 2014-01-01 2014-01-01 false Appendix MS-2 to Part 1024 MS Appendix MS-2 to... ACT (REGULATION X) Pt. 1024, App. MS-2 Appendix MS-2 to Part 1024 NOTICE OF ASSIGNMENT, SALE, OR.... PRESENT SERVICER Date FUTURE SERVICER Date Effective Date Note: At 78 FR 10886, Feb. 14, 2013, appendix...

  1. 12 CFR Appendix Ms-1 to Part 1024 - Appendix MS-1 to Part 1024

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 8 2014-01-01 2014-01-01 false Appendix MS-1 to Part 1024 MS Appendix MS-1 to Part 1024 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION REAL ESTATE SETTLEMENT PROCEDURES ACT (REGULATION X) Pt. 1024, App. MS-1 Appendix MS-1 to Part 1024 SERVICING DISCLOSURE...

  2. 24 CFR Appendix Ms-2 to Part 3500 - Appendix MS-2 to Part 3500

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Appendix MS-2 to Part 3500 MS Appendix MS-2 to Part 3500 Housing and Urban Development Regulations Relating to Housing and Urban... HOUSING AND URBAN DEVELOPMENT REAL ESTATE SETTLEMENT PROCEDURES ACT Pt. 3500, App. MS-2 Appendix MS-2...

  3. 24 CFR Appendix Ms-1 to Part 3500 - Appendix MS-1 to Part 3500

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Appendix MS-1 to Part 3500 MS Appendix MS-1 to Part 3500 Housing and Urban Development Regulations Relating to Housing and Urban... HOUSING AND URBAN DEVELOPMENT REAL ESTATE SETTLEMENT PROCEDURES ACT Pt. 3500, App. MS-1 Appendix MS-1...

  4. 24 CFR Appendix Ms-1 to Part 3500 - Appendix MS-1 to Part 3500

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Appendix MS-1 to Part 3500 MS Appendix MS-1 to Part 3500 Housing and Urban Development Regulations Relating to Housing and Urban... HOUSING AND URBAN DEVELOPMENT REAL ESTATE SETTLEMENT PROCEDURES ACT Pt. 3500, App. MS-1 Appendix MS-1...

  5. 24 CFR Appendix Ms-2 to Part 3500 - Appendix MS-2 to Part 3500

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Appendix MS-2 to Part 3500 MS Appendix MS-2 to Part 3500 Housing and Urban Development Regulations Relating to Housing and Urban... HOUSING AND URBAN DEVELOPMENT REAL ESTATE SETTLEMENT PROCEDURES ACT Pt. 3500, App. MS-2 Appendix MS-2...

  6. 24 CFR Appendix Ms-2 to Part 3500 - Appendix MS-2 to Part 3500

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Appendix MS-2 to Part 3500 MS Appendix MS-2 to Part 3500 Housing and Urban Development Regulations Relating to Housing and Urban... HOUSING AND URBAN DEVELOPMENT REAL ESTATE SETTLEMENT PROCEDURES ACT Pt. 3500, App. MS-2 Appendix MS-2...

  7. 24 CFR Appendix Ms-1 to Part 3500 - Appendix MS-1 to Part 3500

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Appendix MS-1 to Part 3500 MS Appendix MS-1 to Part 3500 Housing and Urban Development Regulations Relating to Housing and Urban... HOUSING AND URBAN DEVELOPMENT REAL ESTATE SETTLEMENT PROCEDURES ACT Pt. 3500, App. MS-1 Appendix MS-1...

  8. 24 CFR Appendix Ms-1 to Part 3500 - Appendix MS-1 to Part 3500

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Appendix MS-1 to Part 3500 MS Appendix MS-1 to Part 3500 Housing and Urban Development Regulations Relating to Housing and Urban... HOUSING AND URBAN DEVELOPMENT REAL ESTATE SETTLEMENT PROCEDURES ACT Pt. 3500, App. MS-1 Appendix MS-1...

  9. 24 CFR Appendix Ms-1 to Part 3500 - Appendix MS-1 to Part 3500

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Appendix MS-1 to Part 3500 MS Appendix MS-1 to Part 3500 Housing and Urban Development Regulations Relating to Housing and Urban... HOUSING AND URBAN DEVELOPMENT REAL ESTATE SETTLEMENT PROCEDURES ACT Pt. 3500, App. MS-1 Appendix MS-1...

  10. 24 CFR Appendix Ms-2 to Part 3500 - Appendix MS-2 to Part 3500

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Appendix MS-2 to Part 3500 MS Appendix MS-2 to Part 3500 Housing and Urban Development Regulations Relating to Housing and Urban... HOUSING AND URBAN DEVELOPMENT REAL ESTATE SETTLEMENT PROCEDURES ACT Pt. 3500, App. MS-2 Appendix MS-2...

  11. 24 CFR Appendix Ms-2 to Part 3500 - Appendix MS-2 to Part 3500

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Appendix MS-2 to Part 3500 MS Appendix MS-2 to Part 3500 Housing and Urban Development Regulations Relating to Housing and Urban... HOUSING AND URBAN DEVELOPMENT REAL ESTATE SETTLEMENT PROCEDURES ACT Pt. 3500, App. MS-2 Appendix MS-2...

  12. Comparison study of intense pulsed light versus a long-pulse pulsed dye laser in the treatment of facial skin rejuvenation.

    PubMed

    Kono, Taro; Groff, William Frederick; Sakurai, Hiroyuki; Takeuchi, Masaki; Yamaki, Takashi; Soejima, Kazutaka; Nozaki, Motohiro

    2007-11-01

    Currently, various nonablative skin resurfacing techniques are being used to rejuvenate facial skin, including lasers and intense pulsed light (IPL). There are few direct comparison studies between IPLs and lasers. The objective of our study is to compare the effectiveness of intense pulsed light versus a long-pulse pulsed dye laser (LPDL) in the treatment of facial skin rejuvenation. Ten Asian patients with Fitzpatrick skin types III-IV were enrolled in this study. One half of the face was treated with IPL (6 treatment sessions) and the other side was treated by LPDL (3 treatment sessions). An LPDL with a wavelength of 595 nm and spot size of 7 mm was used. Utilizing the compression method, lentigines were treated using a PDL with a fluence between 9-12 J/cm and a pulse duration of 1.5 ms. Wrinkles were treated with fluences between 10 to 12 J/cm and a pulse duration of 20 ms, using a pulse-stacking technique. An IPL with a type B handpiece was used. Lentigines and wrinkles were treated with fluences between 27 to 40 J/cm and a pulse duration of 20 ms. The improvement of lentigines was 62.3% and 81.1% for IPL and LPDL respectively. There was no significant difference between IPL and LPDL in wrinkle reduction. There was no scarring or pigmentary change seen with either device. Both IPL and LPDL are effective for facial skin rejuvenation in Asians, but LPDL treatment is significantly better than IPL treatment in the treatment of lentigines. The use of the compression technique may allow this LPDL to be used effectively for facial rejuvenation and with fewer treatment sessions, when compared with the IPL. PMID:17992138

  13. Analysis of 136 pesticides in avocado using a modified QuEChERS method with LC-MS/MS and GC-MS/MS.

    PubMed

    Chamkasem, Narong; Ollis, Lisa W; Harmon, Tiffany; Lee, Sookwang; Mercer, Greg

    2013-03-13

    A simple and high-throughput screening method for the analysis of 136 pesticides in avocado ( Persea americana ) by LC-(+)-ESI-MS/MS and GC-MS/MS is presented. A modified QuEChERS sample preparation method was developed to improve the extraction recovery of highly lipophilic pesticides. Extracts from minced avocados after acetonitrile (MeCN) extraction were directly injected to LC-MS/MS, whereas other GC-amenable compounds were treated with the modified QuEChERS procedure for GC-MS/MS analysis. The average recoveries for 79 pesticides quantified by LC-MS/MS at 10, 50, and 200 ng/g fortifying levels were 86.1% or better (with maximum RSD at 9.2%), whereas GC-MS/MS analysis demonstrated 70.2% or better (RSD < 18%) for average recovery from 57 compounds at the same spike levels. The application of LC- and GC-MS/MS combined with the improved extraction procedures led to the current method, which can quantitate these pesticides even if they are present in avocados below the targeted action level by FDA. This method demonstrated the improved recovery of several challenging lipophilic pesticides in highly fat-rich avocados. PMID:23362971

  14. Radial pulse (image)

    MedlinePlus

    ... heart. The arteries are the vessels with the "pulse", a rhythmic pushing of the blood in the ... a refilling of the heart chamber. To determine heart rate, one feels the beats at a pulse point ...

  15. Wrist pulse (image)

    MedlinePlus

    To measure the pulse at the wrist, place the index and middle finger over the underside of the opposite wrist, below the base ... firmly with flat fingers until you feel the pulse in the radial artery.

  16. PTR-MS in enology

    NASA Astrophysics Data System (ADS)

    Spitaler, Renate; Araghipour, Nooshin; Mikoviny, Tomas; Wisthaler, Armin; Via, Josef Dalla; Märk, Tilmann D.

    2007-10-01

    The present communication deals with the improvement of proton transfer reaction mass spectrometry (PTR-MS) wine headspace analyses. In contrast to previous PTR-MS investigations of wine, where wine headspace was ionized by protonated ethanol clusters, the headspace was diluted by a factor of 1:40 with N2 and ionized by H3O+ ions. This method is better suited for routine applications than the previously reported method since it is simpler, faster, and the mass spectra obtained are less complex. A test wine was mixed with ethanol and with water to yield ethanol contents ranging from 10 to 15% (v/v) and these mixtures were analyzed to assess whether any quantitative differences in the composition of volatiles were detectable. The data showed no impact of the ethanol content on the wine headspace composition. The new method was applied to eight different wine samples produced from two different grape varieties: Pinot Noir and Cabernet Sauvignon. Each variety was grown in two different locations in South Tyrol (Northern Italy) and harvested at two different dates. Quantitative (but not qualitative) differences in PTR-MS spectra between the two wine varieties were observed. Using principal component analysis of selected m/z signals differentiation between Pinot Noir and Cabernet Sauvignon samples was achievable.

  17. Alternate drop pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of alternate drop pulse polarography is presented. An experimental evaluation of alternate drop pulse polarography shows complete compensation of the capacitative background due to drop expansion. The capillary response phenomenon was studied in the absence of faradaic reaction and the capillary response current was found to depend on the pulse width to the -0.72 power. Increased signal-to-noise ratios were obtained using alternate drop pulse polarography at shorter drop times.

  18. Electrical pulse generator

    DOEpatents

    Norris, Neil J.

    1979-01-01

    A technique for generating high-voltage, wide dynamic range, shaped electrical pulses in the nanosecond range. Two transmission lines are coupled together by resistive elements distributed along the length of the lines. The conductance of each coupling resistive element as a function of its position along the line is selected to produce the desired pulse shape in the output line when an easily produced pulse, such as a step function pulse, is applied to the input line.

  19. Optically pulsed electron accelerator

    DOEpatents

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  20. Optically pulsed electron accelerator

    DOEpatents

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  1. Constant potential pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of constant potential pulse polarography, In which all pulses are to be the same potential, is presented theoretically and evaluated experimentally. The response obtained is in the form of a faradaic current wave superimposed on a constant capacitative component. Results obtained with a computer-controlled system exhibit a capillary response current similar to that observed In normal pulse polarography. Calibration curves for Pb obtained using a modified commercial pulse polarographic instrument are in good accord with theoretical predictions.

  2. Attenuated total reflectance spectroscopy with chirped-pulse upconversion.

    PubMed

    Shirai, Hideto; Duchesne, Constance; Furutani, Yuji; Fuji, Takao

    2014-12-01

    Chirped-pulse upconversion technique has been applied to attenuated total reflectance (ATR) infrared spectroscopy. An extremely broadband infrared pulse was sent to an ATR diamond prism and the reflected pulse was converted to the visible by using four-wave mixing in krypton gas. Absorption spectra of liquids in the range from 200 to 5500 cm(-1) were measured with a visible spectrometer on a single-shot basis. The system was applied to observe the dynamics of exchanging process of two solvents, water and acetone, which give clear vibrational spectral contrast. We observed that the exchange was finished within ∼ 10 ms. PMID:25606893

  3. Comparison of short-pulsed and long-pulsed 532 nm lasers in the removal of freckles.

    PubMed

    Vejjabhinanta, Voraphol; Elsaie, Mohamed L; Patel, Shalu S; Patel, Asha; Caperton, Caroline; Nouri, Keyvan

    2010-11-01

    The purpose of this study was to compare the efficacy and safety of the 532 nm long-pulsed laser (10 ms) with that of the 532 nm short-pulsed laser (10 ns) for freckle removal. Currently, the gold standard for treatment is the short-pulsed laser. Recently, several long-pulsed lasers have been introduced for both hair removal and the treatment of freckles. To our investigative team's knowledge, no controlled experiments have been performed to compare the safety and efficacy of long-pulsed versus short-pulsed lasers for the treatment of freckles. This was a 4-week trial, and all patients had three freckles that were randomly allocated to be treated with short-pulse laser, long-pulse laser, or to receive no treatment (control). All patients had three freckles that were randomly selected to be treated with short-pulse 532 nm Medlite IV laser (10 n, 1 J/cm(2)), or long-pulse 532 nm Aura laser (10 ms, 1 J/cm(2)) or to remain as a control (no treatment). The laser treatment was only performed once, followed by a 1-day and a 1-month follow-up visit. Freckle size was determined by a novel surface area measurement technique that was created by our research staff. The study included 17 sets of freckles (three in each set). All of the lesions which received the short-pulsed laser treatment had immediate whitening of the lesions, which turned into dry scabs the next day. None of the freckles treated in the long-pulsed group or control group developed immediate whitening or scabs. No blisters or ulcers developed. The average pain score in the short-pulsed laser group was 2-3 out of 10, while it was 0 out of 10 in the long-pulsed laser group. All scabs that developed in the short-pulsed laser group fell off between days 6 and 12 (average 8 days). The outcome of this study verified the appropriate treatment of freckles. The study confirmed that when the same energy settings, short-pulsed laser is the more effective laser treatment regimen (when compared with the long-pulsed laser

  4. The potential of combining ion trap/MS/MS and TOF/MS for identification of emerging contaminants

    USGS Publications Warehouse

    Ferrer, I.; Furlong, E.T.; Heine, C.E.; Thurman, E.M.

    2002-01-01

    The use of a method combining ion trap tandem mass spectrometry (MS/MS) and time of flight mass spectrometry (TOF/MS) for identification of emerging contaminates was discussed. The two tools together complemented each other in sensitivity, fragmentation and accurate mass determination. Liquid chromatography/electrospray ionization/ion-trap tandem mass spectrometry (LC/ESI/MS/MS), in positive ion mode of operation, was used to separate and identify specific compounds. Diagnostic fragment ions were obtained for a polyethyleneglycol(PEG) homolog by ion trap MS/MS, and fragments were measured by TOF/MS. It was observed that the combined method gave an exact mass measurement that differed from the calculated mass.

  5. Diagnosis of sources of current inefficiency in industrial molten salt electrolysis cells by Raman spectroscopy: A topical report on chlorides: Topical report, June 1982-June 1987

    SciTech Connect

    Sadoway, D. R.

    1987-06-01

    Molten salt electrolysis, a very energy-intensive process, is used in the extraction of light metals. Aluminum production by the Hall process and magnesium production in the Dow and I.G. Farbenindustrie cells constitute the major commercial applications of metal electrowinning from molten-salt media at present. The energy input into the electrolysis cell is in the form of direct current, and the energy efficiencies in the magnesium or aluminum processes are only in the 30 to 40% range. Major energy reductions are achieved by reducing the cell voltage or by increasing the current efficiency. Goal of the research is to identify the sources of the current losses occurring in molten salt electrolysis. This research worked on the systems of I.G. Farben magnesium chloride and Alcoa smelting aluminum chloride processes. Raman spectra were measured and analyzed for each component or their mixtures of the electrolyte for magnesium and aluminum reduction in chloride melts. Raman measurements were also conducted on the melts of industrial composition for aluminum and magnesium electrolysis. In laboratory-scale cells which imitated industrial practice, Raman spectra were measured in situ during electrolysis in attempts to identify the streamers, coloration of electrolyte, and any subvalent species. They were known to occur only during electrolysis, and they have been reported to be possible current losses. Cyclic voltammetry was conducted to obtain information about the generation of subvalent species which were not detected by Raman measurement. These were thought to be kinetic entities present only during electrolysis. Results of Raman spectroscopy and electrochemistry of magnesium and aluminum reduction from molten chloride bath are presented. The results would be useful to establish the basis for the study of electrolysis of aluminum from molten fluoride media. 119 refs., 66 figs.

  6. Selenium speciation analysis of Misgurnus anguillicaudatus selenoprotein by HPLC-ICP-MS and HPLC-ESI-MS/MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analytical methods for selenium (Se) speciation were developed using high performance liquid chromatography (HPLC) coupled to either inductively coupled plasma mass spectrometry (ICP-MS) or electrospray ionization tandem mass spectrometry (ESI-MS/MS). Separations of selenomethionine (Se-Met) and sel...

  7. Hybrid chirped pulse amplification system

    DOEpatents

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  8. Stress pulse phenomena

    SciTech Connect

    McGlaun, M.

    1993-08-01

    This paper is an introductory discussion of stress pulse phenomena in simple solids and fluids. Stress pulse phenomena is a very rich and complex field that has been studied by many scientists and engineers. This paper describes the behavior of stress pulses in idealized materials. Inviscid fluids and simple solids are realistic enough to illustrate the basic behavior of stress pulses. Sections 2 through 8 deal with the behavior of pressure pulses. Pressure is best thought of as the average stress at a point. Section 9 deals with shear stresses which are most important in studying solids.

  9. Miniature pulsed magnet system for synchrotron x-ray measurements

    SciTech Connect

    Linden, Peter J. E. M. van der; Mathon, Olivier; Strohm, Cornelius; Sikora, Marcin

    2008-07-15

    We have developed a versatile experimental apparatus for synchrotron x-ray measurements in pulsed high magnetic fields. The apparatus consists of a double cryostat incorporating a liquid nitrogen bath to cool the miniature pulsed coil and an independent helium flow cryostat allowing sample temperatures from 4 up to 250 K. The high duty cycle miniature pulsed coils can generate up to 38 T. During experiments at 30 T a repetition rate of 6 pulses/min was routinely reached. Using a 4 kJ power supply, the pulse duration was between 500 {mu}s and 1 ms. The setup was used for nuclear forward scattering measurements on {sup 57}Fe up to 25 T on the ESRF beamline ID18. In another experiment, x-ray magnetic circular dichroism was measured up to 30 T on the ESRF energy dispersive beamline ID24.

  10. A Pulse-Burst Laser System for Thomson Scattering

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Borchardt, M. T.; Yang, Y. M.; Ambuel, J. R.; Holly, D. J.; Mattison, H. E.; Robl, P. E.

    2008-11-01

    A ``pulse-burst'' laser system is being constructed for addition to the Thomson scattering diagnostic on the MST reversed-field pinch. This laser will produce a burst of up to 200 approximately 1 J Q-switched pulses at repetition rates 5--250 kHz. The laser will operate at 1064 nm and is a master oscillator, power amplifier (MOPA) system. Variable pulse-width drive (0.1--20 ms) of the flashlamps is accomplished by IGBT switching of large electrolytic capacitor banks. In the near term, these flashlamp power supplies will be adapted to drive the flashlamps in the two existing commercial Nd:YAG lasers used for Thomson scattering on the MST RFP. This will enable these lasers to produce a burst of up to 40 pulses at repetition frequencies <= 1 kHz. The burst train of laser pulses will enable the study of Te and ne dynamics in a single MST shot.

  11. Laser fusion pulse shape controller

    DOEpatents

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  12. Determination of sterigmatocystin in feed by LC-MS/MS.

    PubMed

    Biancardi, Alberto; Dall'Asta, Chiara

    2015-01-01

    An LC-MS/MS method is proposed for the analysis of sterigmatocystin in cereals and feed. The method is based on a solid-liquid extraction and a dilute-and-shoot approach. Accuracy and precision were established at the LOQ (1 μg kg(-1)); the mean overall recovery (n = 6) was 98%, with a confidence interval of 3.8% and a CV% of 3.7%. Accuracy and precision were also assessed at three other concentration levels (2.03, 5.07 and 10.14 μg kg(-1); six replicates per level). The mean overall recovery (n = 24, LOQ included) was 99% with a confidence interval of 0.8% and a CV% of 1.9%. The method was then applied to 14 naturally incurred feed samples. Aflatoxin B1 was present in the range 28.7-240.1 µg kg(-1), while lower concentrations of sterigmatocystin were found (0.7-2.2 µg kg(-1)). This method may represent a valuable choice, ensuring a high level of accuracy and precision, as well as high-throughput performance. Therefore, it meets the recent EFSA opinion recommendation in terms of availability of fast and sensitive methods (recommended LOQ = 1.5 μg kg(-1)) in order to increase data collection to allow for the assessment of dietary exposure. PMID:26471726

  13. LC-MS/MS determination of tralopyril in water samples.

    PubMed

    Oliveira, Isabel B; Schönenberger, René; Barroso, Carlos M; Suter, Marc J-F

    2016-02-01

    A targeted analytical method was established to determine tralopyril (4-bromo-2-(4-chlorophenyl)-5-(trifluoromethyl)-1H-pyrrole-3-carbonitrile) in water. This compound has been recently introduced as a biocide in ship antifouling paints, becoming a potential new environmental contaminant. The method presented here allows for the first time the direct determination of tralopyril in environmental samples without the need of a pre-concentration step. The injected sample is separated by a 30 min HPLC-gradient on a reversed phase column and the compound identified and quantified by negative ion LC-MS/MS. Tralopyril solutions in DMSO, seawater, river Glatt water and E3 medium (used for zebrafish experiments) were analysed to demonstrate the applicability of the method. The method provides good retention time reproducibility and a quantitation limit (LOQ) of 0.025 μg L(-1) for DMSO, seawater and E3 exposure medium and 0.05 μg L(-1) for river Glatt water. Calculated tralopyril half-lives were 6.1 h for seawater, 8.1 h for river Glatt water and 7.4 h for E3 medium at 18 °C. PMID:26694794

  14. Analysis of serum proteins by LC-MS/MS.

    PubMed

    Tonack, Sarah; Neoptolemos, John P; Costello, Eithne

    2010-01-01

    Serum contains a vast array of proteins, some of which are specific to blood whilst others are secreted into blood from tissues and organs. The so-called tissue leakage factors reveal information about the tissue from which they originate and are therefore of great potential importance as disease biomarkers. There are already a number of blood-borne biomarkers in routine clinical use that aid in the diagnosis or management of cancer. However, there is a pressing need for additional markers, and new methods to find them are under development. Here we provide a protocol for serum protein profiling using liquid chromatography tandem mass spectrometry (LC-MS/MS). Included in this procedure, we detail the pre-processing steps of lipid and high-abundance protein removal. These procedures can also be employed up-stream of quantification methods such as isobaric tags for relative and absolute quantification (iTRAQ). Chapter 12 is devoted to the iTRAQ approach for quantifying proteins, and it is therefore not described in this chapter. PMID:20839111

  15. PULSE DURATION LENGTHENER

    DOEpatents

    Aiken, W.R.

    1958-02-01

    This patent pertains to pulse modifying apparatus and, more particularly, describes a device to provide a rise time and time base expander for signal pulses having a very short duration. The basic element of the device is a vacuum tube comprising a charged particie beam, grid control means, an accelerating electrode, a drift tube, and a collector electrode. As the short duration input pulse modulates the particle beam through the grid control means, the voltage between the drift tube and accelerating electrode is caused to vary, whereby the output signal from the collector is a pulse having longer rise time, expanded duration and proportionate characteristics of the original pulse. The invention is particuiarly useful where subsequent pulse circultry does not have the frequency bandwidth to handle the short duration pulse without distorting it.

  16. ELECTRICAL PULSE COUNTER APPARATUS

    DOEpatents

    Kaufman, W.M.; Jeeves, T.A.

    1962-09-01

    A progressive electrical pulse counter circuit rs designed for the counting of a chain of input pulses. The circuit employs a series of direct connected bistable counting stages simultaneously pulsed by each input pulse and a delay means connected between each of the stages. Each bistable stage has two d-c operative states, which stage, when in its initial state, prevents the next succeeding stage from changing its condition when the latter stage is pulsed. Since the delay circuits between the stages prevents the immediate decay of the d-c state of each stage when the stages are pulsed, only one stage will change its state for each input pulse, thereby providing progressive stage-by-stage counting. (AEC)

  17. Ab-initio study of fluorine-doped tin dioxide: A prospective catalyst support for water electrolysis

    NASA Astrophysics Data System (ADS)

    Velikokhatnyi, Oleg I.; Kumta, Prashant N.

    2011-02-01

    In an attempt to identify new electrochemically stable catalyst supports for electrolysis of water, the electronic structure of SnO 2 doped with different fluorine concentrations has been calculated using the Vienna ab-initio simulation package (VASP) in the projector-augmented wave (PAW) method with the general gradient approximation (GGA) for conducting the exchange-correlation corrections. The role of fluorine in improving the electronic conductivity is discussed. An increase in the density of electronic states at the Fermi level with increase in the concentration of fluorine incorporated into the main SnO 2 matrix agrees well with published experimental observations. Despite a gradual decrease in the cohesive energies for the fluorine-doped tin oxide with increase in fluorine concentration, the doped material still remains an appropriate candidate for use as catalyst supports in water electrolysis warranting further experimental validation.

  18. Ammonia synthesis. Ammonia synthesis by N₂ and steam electrolysis in molten hydroxide suspensions of nanoscale Fe₂O₃.

    PubMed

    Licht, Stuart; Cui, Baochen; Wang, Baohui; Li, Fang-Fang; Lau, Jason; Liu, Shuzhi

    2014-08-01

    The Haber-Bosch process to produce ammonia for fertilizer currently relies on carbon-intensive steam reforming of methane as a hydrogen source. We present an electrochemical pathway in which ammonia is produced by electrolysis of air and steam in a molten hydroxide suspension of nano-Fe2O3. At 200°C in an electrolyte with a molar ratio of 0.5 NaOH/0.5 KOH, ammonia is produced at 1.2 volts (V) under 2 milliamperes per centimeter squared (mA cm(-2)) of applied current at coulombic efficiency of 35% (35% of the applied current results in the six-electron conversion of N2 and water to ammonia, and excess H2 is cogenerated with the ammonia). At 250°C and 25 bar of steam pressure, the electrolysis voltage necessary for 2 mA cm(-2) current density decreased to 1.0 V. PMID:25104378

  19. Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media.

    PubMed

    Lacasa, Engracia; Cañizares, Pablo; Llanos, Javier; Rodrigo, Manuel A

    2012-04-30

    In this work, the effect of the cathode material (conductive diamond, stainless steel, silicon carbide, graphite or lead) and the current density (150-1400 A m(-2)) on the removal of nitrates from aqueous solutions is studied by electrolysis in non-divided electrochemical cells equipped with conductive diamond anodes, using sodium sulphate as the electrolyte. The results show that the cathode material very strongly influences both the process performance and the product distribution. The main products obtained are gaseous nitrogen (NO, N(2)O and NO(2)) and ammonium ions. Nitrate removal follows first order kinetics, which indicates that the electrolysis process is controlled by mass transfer. Furthermore, the stainless steel and graphite cathodes show a great selectivity towards the production of ammonium ions, whereas the silicon carbide cathode leads to the highest formation of gaseous nitrogen, which production is promoted at low current densities. PMID:22387000

  20. Joule-Heated Molten Regolith Electrolysis Reactor Concepts for Oxygen and Metals Production on the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Sibille, Laurent; Dominques, Jesus A.

    2012-01-01

    The maturation of Molten Regolith Electrolysis (MRE) as a viable technology for oxygen and metals production on explored planets relies on the realization of the self-heating mode for the reactor. Joule heat generated during regolith electrolysis creates thermal energy that should be able to maintain the molten phase (similar to electrolytic Hall-Heroult process for aluminum production). Self-heating via Joule heating offers many advantages: (1) The regolith itself is the crucible material, it protects the vessel walls (2) Simplifies the engineering of the reactor (3) Reduces power consumption (no external heating) (4) Extends the longevity of the reactor. Predictive modeling is a tool chosen to perform dimensional analysis of a self-heating reactor: (1) Multiphysics modeling (COMSOL) was selected for Joule heat generation and heat transfer (2) Objective is to identify critical dimensions for first reactor prototype.