Science.gov

Sample records for mu-opioid receptor knockout

  1. Abolished thermal and mechanical antinociception but retained visceral chemical antinociception induced by butorphanol in mu-opioid receptor knockout mice.

    PubMed

    Ide, Soichiro; Minami, Masabumi; Ishihara, Kumatoshi; Uhl, George R; Satoh, Masamichi; Sora, Ichiro; Ikeda, Kazutaka

    2008-06-01

    Butorphanol is hypothesized to induce analgesia via opioid pathways, although the precise mechanisms for its effects remain unknown. In this study, we investigated the role of the mu-opioid receptor (MOP) in thermal, mechanical, and visceral chemical antinociception induced by butorphanol using MOP knockout (KO) mice. Butorphanol-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice compared with wildtype mice. The results obtained from our butorphanol-induced mechanical antinociception experiments, assessed by the Randall-Selitto test, were similar to the results obtained from the thermal antinociception experiments in these mice. Interestingly, however, butorphanol retained its ability to induce significant visceral chemical antinociception, assessed by the writhing test, in homozygous MOP-KO mice. The butorphanol-induced visceral chemical antinociception that was retained in homozygous MOP-KO mice was completely blocked by pretreatment with nor-binaltorphimine, a kappa-opioid receptor (KOP) antagonist. In vitro binding and cyclic adenosine monophosphate assays also showed that butorphanol possessed higher affinity for KOPs and MOPs than for delta-opioid receptors. These results molecular pharmacologically confirmed previous studies implicating MOPs, and partially KOPs, in mediating butorphanol-induced analgesia. PMID:18417173

  2. Mu Opioid Receptors on Primary Afferent Nav1.8 Neurons Contribute to Opiate-Induced Analgesia: Insight from Conditional Knockout Mice

    PubMed Central

    Karchewski, Laurie; Gardon, Olivier; Matifas, Audrey; Filliol, Dominique; Becker, Jérôme A. J.; Wood, John N.; Kieffer, Brigitte L.; Gaveriaux-Ruff, Claire

    2013-01-01

    Opiates are powerful drugs to treat severe pain, and act via mu opioid receptors distributed throughout the nervous system. Their clinical use is hampered by centrally-mediated adverse effects, including nausea or respiratory depression. Here we used a genetic approach to investigate the potential of peripheral mu opioid receptors as targets for pain treatment. We generated conditional knockout (cKO) mice in which mu opioid receptors are deleted specifically in primary afferent Nav1.8-positive neurons. Mutant animals were compared to controls for acute nociception, inflammatory pain, opiate-induced analgesia and constipation. There was a 76% decrease of mu receptor-positive neurons and a 60% reduction of mu-receptor mRNA in dorsal root ganglia of cKO mice. Mutant mice showed normal responses to heat, mechanical, visceral and chemical stimuli, as well as unchanged morphine antinociception and tolerance to antinociception in models of acute pain. Inflammatory pain developed similarly in cKO and controls mice after Complete Freund’s Adjuvant. In the inflammation model, however, opiate-induced (morphine, fentanyl and loperamide) analgesia was reduced in mutant mice as compared to controls, and abolished at low doses. Morphine-induced constipation remained intact in cKO mice. We therefore genetically demonstrate for the first time that mu opioid receptors partly mediate opiate analgesia at the level of Nav1.8-positive sensory neurons. In our study, this mechanism operates under conditions of inflammatory pain, but not nociception. Previous pharmacology suggests that peripheral opiates may be clinically useful, and our data further demonstrate that Nav1.8 neuron-associated mu opioid receptors are feasible targets to alleviate some forms of persistent pain. PMID:24069332

  3. The rewarding properties of MDMA are preserved in mice lacking mu-opioid receptors.

    PubMed

    Robledo, Patricia; Mendizabal, Victoria; Ortuño, Jordi; de la Torre, Rafael; Kieffer, Brigitte L; Maldonado, Rafael

    2004-08-01

    The involvement of mu-opioid receptors in the rewarding properties of MDMA was explored in mu-opioid receptor knockout mice using the conditioning place preference paradigm. The associated release of dopamine in the nucleus accumbens was investigated by in vivo microdialysis. A significant rewarding effect of MDMA (10 mg/kg, i.p.) was observed in both wild-type and mu-opioid receptor knockout mice. MDMA (10 mg/kg, i.p.) also induced similar increases in dopamine and decreases in 3,4-dihydroxyphenylacetic acid and homovanillic acid in the nucleus accumbens dialysates of both wild-type and mu-opioid receptor knockout mice. No significant differences in basal levels of dopamine, 3,4-dihydroxyphenylacetic or homovanillic acids between wild-type and mu-opioid receptor knockout mice were observed. In summary, the present results suggest that, in contrast to what has been reported for other drugs of abuse such as opioids, ethanol, nicotine and Delta(9)-tetrahydrocannabinol, mu-opioid receptors do not play a major role in the rewarding properties of MDMA. These differences could be due to distinct mechanisms controlling dopamine release in the nucleus accumbens and suggest that the effects of MDMA on dopaminergic neurons are independent of micro -opioid receptors. PMID:15255997

  4. Mu opioid receptor binding sites in human brain

    SciTech Connect

    Pilapil, C.; Welner, S.; Magnan, J.; Zamir, N.; Quirion, R.

    1986-01-01

    Our experiments focused on the examination of the distribution of mu opioid receptor binding sites in normal human brain using the highly selective ligand (/sup 3/H)DAGO, in both membrane binding assay and in vitro receptor autoradiography. Mu opioid binding sites are very discretely distributed in human brain with high densities of sites found in the posterior amygdala, caudate, putamen, hypothalamus and certain cortical areas. Moreover the autoradiographic distribution of (/sup 3/H)DAGO binding sites clearly reveals the discrete lamination (layers I and III-IV) of mu sites in cortical areas.

  5. Alcohol addiction and the mu-opioid receptor.

    PubMed

    Berrettini, Wade

    2016-02-01

    Alcohol addiction is one of the most common and devastating diseases in the world. Given the tremendous heterogeneity of alcohol addicted individuals, it is unlikely that one medication will help nearly all patients. Thus, there is a clear need to develop predictors of response to existing medications. Naltrexone is a mu-opioid receptor antagonist which has been approved in the United States for treatment of alcohol addiction since 1994. It has limited efficacy, in part due to noncompliance, but many patients do not respond despite high levels of compliance. There are reports that a mis-sense single nucleotide polymorphism (rs179919 or A118G) in the mu-opioid receptor gene predicts a favorable response to naltrexone if an individual carries a 'G' allele. This chapter will review the evidence for this hypothesis. The data are promising that the 'G' allele predisposes to a beneficial naltrexone response among alcohol addicted persons, but additional research is needed to prove this hypothesis in prospective clinical trials. PMID:26226591

  6. Mu Opioid Receptor Actions in the Lateral Habenula

    PubMed Central

    Margolis, Elyssa B.; Fields, Howard L.

    2016-01-01

    Increased activity of lateral habenula (LHb) neurons is correlated with aversive states including pain, opioid abstinence, rodent models of depression, and failure to receive a predicted reward. Agonists at the mu opioid receptor (MOR) are among the most powerful rewarding and pain relieving drugs. Injection of the MOR agonist morphine directly into the habenula produces analgesia, raising the possibility that MOR acts locally within the LHb. Consequently, we examined the synaptic actions of MOR agonists in the LHb using whole cell patch clamp recording. We found that the MOR selective agonist DAMGO inhibits a subset of LHb neurons both directly and by inhibiting glutamate release onto these cells. Paradoxically, DAMGO also presynaptically inhibited GABA release onto most LHb neurons. The behavioral effect of MOR activation will thus depend upon both the level of intrinsic neuronal activity in the LHb and the balance of activity in glutamate and GABA inputs to different LHb neuronal populations. PMID:27427945

  7. Mu opioid receptor polymorphism, early social adversity, and social traits.

    PubMed

    Carver, Charles S; Johnson, Sheri L; Kim, Youngmee

    2016-10-01

    A polymorphism in the mu opioid receptor gene OPRM1 (rs1799971) has been investigated for its role in sensitivity to social contexts. Evidence suggests that the G allele of this polymorphism is associated with higher levels of sensitivity. This study tested for main effects of the polymorphism and its interaction with a self-report measure of childhood adversity as an index of negative environment. Outcomes were several personality measures relevant to social connection. Significant interactions were obtained, such that the negative impact of childhood adversity on personality was greater among G carriers than among A homozygotes on measures of agreeableness, interdependence, anger proneness, hostility, authentic pride, life engagement, and an index of (mostly negative) feelings coloring one's world view. Findings support the role of OPRM1 in sensitivity to negative environments. Limitations are noted, including the lack of a measure of advantageous social environment to assess sensitivity to positive social contexts. PMID:26527429

  8. Mu Opioid Receptor Actions in the Lateral Habenula.

    PubMed

    Margolis, Elyssa B; Fields, Howard L

    2016-01-01

    Increased activity of lateral habenula (LHb) neurons is correlated with aversive states including pain, opioid abstinence, rodent models of depression, and failure to receive a predicted reward. Agonists at the mu opioid receptor (MOR) are among the most powerful rewarding and pain relieving drugs. Injection of the MOR agonist morphine directly into the habenula produces analgesia, raising the possibility that MOR acts locally within the LHb. Consequently, we examined the synaptic actions of MOR agonists in the LHb using whole cell patch clamp recording. We found that the MOR selective agonist DAMGO inhibits a subset of LHb neurons both directly and by inhibiting glutamate release onto these cells. Paradoxically, DAMGO also presynaptically inhibited GABA release onto most LHb neurons. The behavioral effect of MOR activation will thus depend upon both the level of intrinsic neuronal activity in the LHb and the balance of activity in glutamate and GABA inputs to different LHb neuronal populations. PMID:27427945

  9. Mu opioid receptors in developing human spinal cord

    PubMed Central

    RAY, SUBRATA BASU; WADHWA, SHASHI

    1999-01-01

    The distribution of mu opioid receptors was studied in human fetal spinal cords between 12–13 and 24–25 wk gestational ages. Autoradiographic localisation using [3H] DAMGO revealed the presence of mu receptors in the dorsal horn at all age groups with a higher density in the superficial laminae (I–II). A biphasic expression was noted. Receptor density increased in the dorsal horn, including the superficial laminae, between 12–13 and 16–17 wk. This could be associated with a spurt in neurogenesis. The density increased again at 24–25 wk in laminae I–II which resembled the adult pattern of distribution. A dramatic proliferation of cells was noted from the region of the ventricular zone between 16–17 and 24–25 wk. These were considered to be glial cells from their histological features. Mu receptor expression was noted over a large area of the spinal cord including the lateral funiculus at 24–25 wk. This may be due to receptor expression by glial cells. The study presents evidence of mu receptor expression by both neurons and glia during early development of human spinal cord. PMID:10473288

  10. Mu-opioid receptors modulate the stability of dendritic spines.

    PubMed

    Liao, Dezhi; Lin, Hang; Law, Ping Yee; Loh, Horace H

    2005-02-01

    Opioids classically regulate the excitability of neurons by suppressing synaptic GABA release from inhibitory neurons. Here, we report a role for opioids in modulating excitatory synaptic transmission. By activating ubiquitously clustered mu-opioid receptor (MOR) in excitatory synapses, morphine caused collapse of preexisting dendritic spines and decreased synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Meanwhile, the opioid antagonist naloxone increased the density of spines. Chronic treatment with morphine decreased the density of dendritic spines even in the presence of Tetrodotoxin, a sodium channel blocker, indicating that the morphine's effect was not caused by altered activity in neural network through suppression of GABA release. The effect of morphine on dendritic spines was absent in transgenic mice lacking MORs and was blocked by CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-ThrNH2), a mu-receptor antagonist. These data together with others suggest that endogenous opioids and/or constitutive activity of MORs participate in maintaining normal morphology and function of spines, challenging the classical model of opioids. Abnormal alteration of spines may occur in drug addiction when opioid receptors are overactivated by exogenous opiates. PMID:15659552

  11. Detecting the mu opioid receptor in brain following SDS-PAGE with multiple approaches

    PubMed Central

    Huang, Peng; Liu-Chen, Lee-Yuan

    2013-01-01

    In general, it has been difficult to obtain antibodies which are useful for immunoblotting of endogenous seven-transmembrane receptors (7TMRs) despite the claims made by many companies on commercially available antibodies. In this review, we will use the mu opioid receptor (MOPR) in brain as an example to underscore the importance of using knock-out (K/O) mice and multiple independent approaches (ligand affinity-labeling, receptor phosphorylation and immunoblotting) in identifying 7TMRs following sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE). The rigor and convergence of pharmacological and biochemical data provide confidence on the unequivocal identification of MOPR. The distinct relative molecular masses (Mr’s) and band patterns are largely due to variations in the extent of N-glycosylation in different cell lines, brain regions and species. PMID:19482639

  12. Prolonged central mu-opioid receptor occupancy after single and repeated nalmefene dosing.

    PubMed

    Ingman, Kimmo; Hagelberg, Nora; Aalto, Sargo; Någren, Kjell; Juhakoski, Auni; Karhuvaara, Sakari; Kallio, Antero; Oikonen, Vesa; Hietala, Jarmo; Scheinin, Harry

    2005-12-01

    The opioid antagonist nalmefene offers an alternative to traditional pharmacological treatments for alcoholism. The present study was designed to investigate the relationship between nalmefene plasma concentration and central mu-opioid receptor occupancy after a clinically effective dose (20 mg, orally). Pharmacokinetics and mu-opioid receptor occupancy of nalmefene after single and repeated dosing over 7 days was studied in 12 healthy subjects. Serial blood samples were obtained after both dosings, and pharmacokinetic parameters for nalmefene and main metabolites were determined. Central mu-opioid receptor occupancy of nalmefene was measured with positron emission tomography (PET) and [(11)C]carfentanil at four time points (3, 26, 50, 74 h) after both dosings. Nalmefene was rapidly absorbed in all subjects. The mean t(1/2) of nalmefene was 13.4 h after single and repeated dosing. The accumulation of nalmefene and its main metabolites in plasma during the repeated dosing period was as expected for a drug with linear pharmacokinetics, and steady-state was reached for all analytes. Both nalmefene dosings resulted in a very high occupancy at mu-opioid receptors (87-100%), and the decline in the occupancy was similar after both dosings but clearly slower than the decline in the plasma concentration of nalmefene or metabolites. High nalmefene occupancy (83-100%) persisted at 26 h after the dosings. The prolonged mu-opioid receptor occupancy by nalmefene indicates slow dissociation of the drug from mu-opioid receptors. These results support the rational of administering nalmefene when needed before alcohol drinking, and they additionally suggest that a high mu-opioid receptor occupancy can be maintained when nalmefene is taken once daily. PMID:15956985

  13. The presence of the mu-opioid receptor in the isthmus of mare oviduct.

    PubMed

    Desantis, S; Albrizio, M; Ventriglia, G; Deflorio, M; Guaricci, A C; Minoia, R; De Metrio, G

    2008-05-01

    The presence of the mu-opioid receptor and the type of glycosylation in the third extra-cellular loop of this receptor was investigated in the isthmus of mare oviduct during oestrus by means of immunoblotting and immunohistochemistry combined with enzymatic (N-glycosidase F and O-glycosidase) and chemical (beta-elimination) treatments. Immunoblotting analysis showed that the mu-opioid receptor consists of two peptides with molecular weights of around 65 and 50 kDa. After N-deglycosylation with N-glycosidase F an additional immunoreactive peptide was observed at around 30 KDa. The cleavage of O-glycans by O-glycosidase failed in immunoblotting as well as in immunohistochemistry investigations, revealing that the third extra-cellular loop of the mu-opioid receptor expressed in mare isthmus oviduct contains some modifications of the Galbeta(1-3)GalNAc core binding to serine or threonine. Immunohistochemistry revealed the mu-opioid receptor in the mucosal epithelium, some stromal cells, muscle cells and blood vessels. In ciliated cells the mu-opioid receptor showed N-linked glycans, since the immunoreactivity was abolished after N-glycosidase F treatment, whereas it was preserved in the apical region after beta-elimination. Most non-ciliated cells expressed the mu-opioid receptor with both N- and O-linked oligosaccharides, as revealed by the abolition of immunostaining after N-glycosidase F and beta-elimination. Stromal cells, endothelial and muscle cells of blood vessels expressed the mu-opioid receptor containing both N- and O-linked oligosaccharides. Myosalpinx myocytes expressed the mu-opioid receptor with O-linked oligosaccharides. The immunopositive myocytes formed a circular coat in the intrinsic musculature, whereas they were arranged in some isolated, oblique bundles in the extrinsic musculature. In conclusion, the mu-opioid receptor could have a role in the production and the movement of isthmus lumen content that contributes to ensuring the effective

  14. Shadows across mu-Star? Constitutively active mu-opioid receptors revisited.

    PubMed

    Connor, Mark

    2009-04-01

    Constitutively active mu-opioid receptors (mu* receptors) are reported to be formed following prolonged agonist treatment of cells or whole animals. mu* receptors signal in the absence of activating ligand and a blockade of mu* activation of G-proteins by naloxone and naltrexone has been suggested to underlie the profound withdrawal syndrome precipitated by these antagonists in vivo. In this issue of the Journal, Divin et al. examined whether treatment of C6 glioma cells with mu-opioid receptor agonists produced constitutively active mu-opioid receptors or other commonly reported adaptations to prolonged agonist treatment. Adenylyl cyclase superactivation was readily apparent following agonist treatment but there was no evidence of the formation of constitutively active mu-opioid receptors. This result challenges the notion that prolonged agonist exposure inevitably produces mu* receptors, and is consistent with many studies of adaptations in neurons produced by chronic agonist treatment. The investigators provide no explanation of their failure to see mu* receptors in C6 cells, but this is perhaps understandable because the molecular nature of mu* receptors remains elusive, and the precise mechanisms that lead to their formation are unknown. Without knowing exactly what mu* receptors are, how they are formed and how they signal, understanding their role in cellular adaptations to prolonged opioid treatment will remain impossible. Studies such as this should refocus attention on establishing the molecular mechanisms that underlie that phenomenon of mu* receptors. PMID:19368530

  15. Renal mu opioid receptor mechanisms in regulation of renal function in rats.

    PubMed

    Kapusta, D R; Jones, S Y; DiBona, G F

    1991-07-01

    Studies were performed in pentobarbital anesthetized Sprague-Dawley rats to determine whether mu opioid receptor agonists produce changes in renal function via intrarenal mechanisms. Left renal artery infusion of isotonic saline vehicle or the selective mu opioid receptor agonist, dermorphin (0.5 nmol/kg/min), did not alter mean arterial pressure or heart rate. In contrast, left renal artery dermorphin administration produced a significant decrease in left kidney urinary flow rate and sodium excretion without altering glomerular filtration rate or effective renal plasma flow; function of the right kidney was unaffected. Pretreatment of the left kidney with the opioid receptor antagonist naloxone, 50 micrograms/kg into left renal artery, prevented changes in urinary flow rate and sodium excretion induced by subsequent left renal artery dermorphin administration. Prior bilateral renal denervation abolished the antidiuretic and antinatriuretic responses to left renal artery dermorphin administration. These results suggest that mu opioid receptor agonists participate in the process of renal tubular sodium and water reabsorption via an intrarenal action that is dependent on an interaction with renal sympathetic nerves. This may occur via an action of mu opioid receptor agonists to facilitate the nerve terminal release and/or the direct tubular action of norepinephrine to affect renal tubular sodium and water reabsorption. PMID:1677034

  16. Interactions between cannabinoid receptor agonists and mu opioid receptor agonists in rhesus monkeys discriminating fentanyl.

    PubMed

    Maguire, David R; France, Charles P

    2016-08-01

    Cannabinoid receptor agonists such as delta-9-tetrahydrocannabinol (Δ(9)-THC) enhance some (antinociceptive) but not other (positive reinforcing) effects of mu opioid receptor agonists, suggesting that cannabinoids might be combined with opioids to treat pain without increasing, and possibly decreasing, abuse. The degree to which cannabinoids enhance antinociceptive effects of opioids varies across drugs insofar as Δ(9)-THC and the synthetic cannabinoid receptor agonist CP55940 increase the potency of some mu opioid receptor agonists (e.g., fentanyl) more than others (e.g., nalbuphine). It is not known whether interactions between cannabinoids and opioids vary similarly for other (abuse-related) effects. This study examined whether Δ(9)-THC and CP55940 differentially impact the discriminative stimulus effects of fentanyl and nalbuphine in monkeys (n=4) discriminating 0.01mg/kg of fentanyl (s.c.) from saline. Fentanyl (0.00178-0.0178mg/kg) and nalbuphine (0.01-0.32mg/kg) dose-dependently increased drug-lever responding. Neither Δ(9)-THC (0.032-1.0mg/kg) nor CP55940 (0.0032-0.032mg/kg) enhanced the discriminative stimulus effects of fentanyl or nalbuphine; however, doses of Δ(9)-THC and CP55940 that shifted the nalbuphine dose-effect curve markedly to the right and/or down were less effective or ineffective in shifting the fentanyl dose-effect curve. The mu opioid receptor antagonist naltrexone (0.032mg/kg) attenuated the discriminative stimulus effects of fentanyl and nalbuphine similarly. These data indicate that the discriminative stimulus effects of nalbuphine are more sensitive to attenuation by cannabinoids than those of fentanyl. That the discriminative stimulus effects of some opioids are more susceptible to modification by drugs from other classes has implications for developing maximally effective therapeutic drug mixtures with reduced abuse liability. PMID:27184925

  17. Involvement of peripheral mu opioid receptors in scratching behavior in mice.

    PubMed

    Yamamoto, Atsuki; Sugimoto, Yukio

    2010-12-15

    Pruritus is a common adverse effect of opioid treatment. However, the mechanism by which pruritus is induced by opioid administration is unclear. In this study, we examined the effects of the intradermal injection of loperamide, a peripherally restricted opioid receptor agonist, on the itch sensation. When injected intradermally into the rostral part of the back in mice, loperamide elicited scratching behavior. We also examined the effects of the selective mu opioid receptor agonist [d-Ala², N-Me-Phe⁴, Gly⁵-ol]-enkephalin acetate (DAMGO), the selective delta opioid receptor agonist [d-Pen(2,5)]-enkephalin (DPDPE), and the selective kappa opioid receptor agonist U-50488H on scratching behavior in mice in order to determine which subtype is involved in opioid-induced pruritus. Following intradermal injection into the rostral part of the back in mice, DAMGO elicited scratching behavior, while DPDPE and U-50488H did not. This suggests that peripheral mu opioid activation elicits the itch sensation. Next, we focused on the treatment of opioid-induced itch sensation without central adverse effects. Naloxone methiodide is a peripherally restricted opioid receptor antagonist. In the present study, naloxone methiodide significantly suppressed scratching behavior induced by loperamide and DAMGO. These findings suggest that mu opioid receptors play a primary role in peripheral pruritus and that naloxone methiodide may represent a possible remedy for opioid-induced itching. PMID:20863827

  18. Mu Opioids and Their Receptors: Evolution of a Concept

    PubMed Central

    Pan, Ying-Xian

    2013-01-01

    Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes—primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated. PMID:24076545

  19. Real-time imaging of Mu opioid receptors by total internal reflection fluorescence microscopy

    PubMed Central

    Roman-Vendrell, Cristina; Yudowski, Guillermo Ariel

    2016-01-01

    Receptor trafficking and signaling are intimately linked, especially in the Mu opioid receptor (MOR) where ligand dependent endocytosis and recycling have been associated to opioid tolerance and dependence. Ligands of the Mu opioid receptor (MOR) can induce receptor endocytosis and recycling within minutes of exposure in heterologous systems and cultured neurons. Endocytosis removes desensitized receptors after their activation from the plasma membrane, while recycling promotes resensitization by delivering functional receptors to the cell surface. These rapid mechanisms can escape traditional analytical methods where only snapshots are obtained from highly dynamic events. Total internal reflection fluorescence (TIRF) microscopy is a powerful tool that can be used to investigate, in real-time, surface trafficking events at the single molecule level. The restricted excitation of fluorophores located at or near the plasma membrane in combination with high sensitivity quantitative cameras, makes it possible to record and analyze individual endocytic and recycling event in real time. In this chapter, we describe a TIRF microscopy protocol to investigate in real time, the ligand dependent MOR trafficking in Human Embryonic Kidney 293 cells and dissociated striatal neuronal cultures. This approach can provide unique spatio-temporal resolution to understand the fundamental events controlling MOR trafficking at the plasma membrane. PMID:25293317

  20. Human Mu Opioid Receptor (OPRM1A118G) polymorphism is associated with brain mu- opioid receptor binding potential in smokers

    SciTech Connect

    Ray, R.; Logan, J.; Ray, R.; Ruparel, K.; Newberg, A.; Wileyto, E.P.; Loughead, J.W.; Divgi, C.; Blendy, J.A.; Logan, J.; Zubieta, J.-K.; Lerman, C.

    2011-04-15

    Evidence points to the endogenous opioid system, and the mu-opioid receptor (MOR) in particular, in mediating the rewarding effects of drugs of abuse, including nicotine. A single nucleotide polymorphism (SNP) in the human MOR gene (OPRM1 A118G) has been shown to alter receptor protein level in preclinical models and smoking behavior in humans. To clarify the underlying mechanisms for these associations, we conducted an in vivo investigation of the effects of OPRM1 A118G genotype on MOR binding potential (BP{sub ND} or receptor availability). Twenty-two smokers prescreened for genotype (12 A/A, 10 */G) completed two [{sup 11}C] carfentanil positron emission tomography (PET) imaging sessions following overnight abstinence and exposure to a nicotine-containing cigarette and a denicotinized cigarette. Independent of session, smokers homozygous for the wild-type OPRM1 A allele exhibited significantly higher levels of MOR BP{sub ND} than smokers carrying the G allele in bilateral amygdala, left thalamus, and left anterior cingulate cortex. Among G allele carriers, the extent of subjective reward difference (denicotinized versus nicotine cigarette) was associated significantly with MOR BP{sub ND} difference in right amygdala, caudate, anterior cingulate cortex, and thalamus. Future translational investigations can elucidate the role of MORs in nicotine addiction, which may lead to development of novel therapeutics.

  1. Partial purification of the mu opioid receptor irreversibly labeled with (/sup 3/H)b-funaltrexamine

    SciTech Connect

    Liu-Chen, L.Y.; Phillips, C.A.; Tam, S.W.

    1986-03-01

    The mu opioid receptor in bovine striatal membranes was specifically and irreversibly labeled by incubation with 5 nM (/sup 3/H)..beta..-funaltrexamine (approx.-FNA) at 37/sup 0/C for 90 min in the presence of 100 mM NaCl. The specific and irreversible binding of (/sup 3/H)..beta..-FNA as defined by that blocked by 1 /sup +/M naloxone was about 60% of total irreversible binding. The specific irreversible binding was saturable, stereospecific, time-, temperature, and tissue-dependent. Mu opioid ligands were much more potent than delta or kappa ligands in inhibiting the specific irreversible labeling. SDS polyacrylamide gel electrophoresis of solubilized membranes in the presence of 2-mercaptoethanol yielded a major radiolabeled broad band of MW 68-97K daltons, characteristic of a glycoprotein band. This band was not observed in membranes labeled in the presence of excess unlabeled naloxone. The glycoprotein nature of the (/sup 3/H)..beta..-FNA-labeled opioid receptor was confirmed by its binding to a wheat germ agglutinin-Sepharose column and its elution with N-acetylglucosamine.

  2. Quantitative autoradiography of (/sup 3/H)CTOP binding to mu opioid receptors in rat brain

    SciTech Connect

    Hawkins, K.N.; Knapp, R.J.; Gehlert, D.R.; Lui, G.K.; Yamamura, M.S.; Roeske, L.C.; Hruby, V.J.; Yamamura, H.I.

    1988-01-01

    (/sup 3/H)H-D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 ((/sup 3/H)CTOP), a potent and highly selective mu opioid antagonist, was used to localize the mu receptors in rat brain by light microscopic autoradiography. Radioligand binding studies with (/sup 3/H)CTOP using slide-mounted tissue sections of rat brain produced a Kd value of 1.1 nM with a Bmax value of 79.1 fmol/mg protein. Mu opioid agonists and antagonists inhibited (/sup 3/H)CTOP binding with high affinity (IC50 values of 0.2-2.4nM), while the delta agonist DPDPE, delta antagonist ICI 174,864, and kappa agonist U 69,593 were very weak inhibitors of (/sup 3/H)CTOP binding. Light microscopic autoradiography of (/sup 3/H)CTOP binding sites revealed regions of high density and regions of moderate labeling. The cerebral cortex showed a low density of (/sup 3/H)CTOP binding.

  3. Binding characteristics of [3H]14-methoxymetopon, a high affinity mu-opioid receptor agonist.

    PubMed

    Spetea, Mariana; Tóth, Fanni; Schütz, Johannes; Otvös, Ferenc; Tóth, Géza; Benyhe, Sandor; Borsodi, Anna; Schmidhammer, Helmut

    2003-07-01

    The highly potent micro -opioid receptor agonist 14-methoxymetopon (4,5alpha-epoxy-3-hydroxy-14beta-methoxy-5beta,17-dimethylmorphinan-6-one) was prepared in tritium labelled form by a catalytic dehalogenation method resulting in a specific radioactivity of 15.9 Ci/mmol. Opioid binding characteristics of [3H]14-methoxymetopon were determined using radioligand binding assay in rat brain membranes. [3H]14-Methoxymetopon specifically labelled a single class of opioid sites with affinity in low subnanomolar range (Ki = 0.43 nm) and maximal number of binding sites of 314 fmol/mg protein. Binding of [3H]14-methoxymetopon was inhibited by ligands selective for the micro -opioid receptor with high potency, while selective kappa-opioids and delta-opioids were weaker inhibitors. 14-Methoxymetopon increased guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS) binding with an EC50 of 70.9 nm, thus, providing evidence for the agonist character of this ligand. The increase of [35S]GTPgammaS binding was inhibited by naloxone and selective micro -opioid antagonists, indicating a micro -opioid receptor-mediated action. [3H]14-Methoxymetopon is one of the few nonpeptide mu-opioid receptor agonists available in radiolabelled form up to now. Due to its high affinity and selectivity, high stability and extremely low nonspecific binding (<10%), this radioligand would be an important and useful tool in probing mu-opioid receptor mechanisms, as well as to promote a further understanding of the opioid system at the cellular and molecular level. PMID:12887410

  4. Fourteen. beta. -(bromoacetamido)morphine irreversibly labels. mu. opioid receptors in rat brain membranes

    SciTech Connect

    Bidlack, J.M.; Frey, D.K.; Seyed-Mozaffari, A.; Archer, S. )

    1989-05-16

    The binding properties of 14{beta}-(bromoacetamido)morphine (BAM) and the ability of BAM to irreversibly inhibit opioid binding to rat brain membranes were examined to characterize the affinity and selectivity of BAM as an irreversible affinity ligand for opioid receptors. BAM had the same receptor selectivity as morphine, with a 3-5-fold decrease in affinity for the different types of opioid receptors. When brain membranes were incubated with BAM, followed by extensive washing, opioid binding was restored to control levels. However, when membranes were incubated with dithiothreitol (DTT), followed by BAM, and subsequently washed, 90% of the 0.25 nM ({sup 3}H)(D-Ala{sup 2},(Me)Phe{sup 4},Gly(ol){sup 5})enkephalin (DAGO) binding was irreversibly inhibited as a result of the specific alkylation of a sulfhydryl group at the {mu} binding site. This inhibition was dependent on the concentrations of both DTT and BAM. The {mu} receptor specificity of BAM alkylation was demonstrated by the ability of BAM alkylated membranes to still bind the {delta}-selective peptide ({sup 3}H)(D-penicillamine{sup 2},D-penicillamine{sup 5})enkephalin (DPDPE) and (-)-({sup 3}H)bremazocine in the presence of {mu} and {delta} blockers, selective for {kappa} binding sites. Morphine and naloxone partially protected the binding site from alkylation with BAM, while ligands that did not bind to the {mu}s site did not afford protection. These studies have demonstrated that when a disulfide bond at or near {mu} opioid binding sites was reduced, BAM could then alkylate this site, resulting in the specific irreversible labeling of {mu} opioid receptors.

  5. Preprodynorphin mediates locomotion and D2 dopamine and mu-opioid receptor changes induced by chronic 'binge' cocaine administration.

    PubMed

    Bailey, A; Yoo, J H; Racz, I; Zimmer, A; Kitchen, I

    2007-09-01

    Evidence suggests that the kappa-opioid receptor (KOP-r) system plays an important role in cocaine addiction. Indeed, cocaine induces endogenous KOP activity, which is a mechanism that opposes alterations in behaviour and brain function resulting from repeated cocaine use. In this study, we have examined the influence of deletion of preprodynorphin (ppDYN) on cocaine-induced behavioural effects and on hypothalamic-pituitary-adrenal axis activity. Furthermore, we have measured mu-opioid receptor (MOP-r) agonist-stimulated [(35)S]GTPgammaS, dopamine D(1), D(2) receptor and dopamine transporter (DAT) binding. Male wild-type (WT) and ppDYN knockout (KO) mice were injected with saline or cocaine (45 mg/kg/day) in a 'binge' administration paradigm for 14 days. Chronic cocaine produced an enhancement of locomotor sensitisation in KO. No genotype effect was found on stereotypy behaviour. Cocaine-enhanced MOP-r activation in WT but not in KO. There was an overall decrease in D(2) receptor binding in cocaine-treated KO but not in WT mice. No changes were observed in D(1) and DAT binding. Cocaine increased plasma corticosterone levels in WT but not in KO. The data confirms that the endogenous KOP system inhibits dopamine neurotransmission and that ppDYN may mediate the enhancement of MOP-r activity and the activation of the hypothalamic-pituitary-adrenal axis after chronic cocaine treatment. PMID:17532787

  6. Human population genetic structure detected by pain-related mu opioid receptor gene polymorphisms

    PubMed Central

    López Soto, Eduardo Javier; Catanesi, Cecilia Inés

    2015-01-01

    Several single nucleotide polymorphisms (SNPs) in the Mu Opioid Receptor gene (OPRM1) have been identified and associated with a wide variety of clinical phenotypes related both to pain sensitivity and analgesic requirements. The A118G and other potentially functional OPRM1 SNPs show significant differences in their allele distributions among populations. However, they have not been properly addressed in a population genetic analysis. Population stratification could lead to erroneous conclusions when they are not taken into account in association studies. The aim of our study was to analyze OPRM1 SNP variability by comparing population samples of the International Hap Map database and to analyze a new population sample from the city of Corrientes, Argentina. The results confirm that OPRM1 SNP variability differs among human populations and displays a clear ancestry genetic structure, with three population clusters: Africa, Asia, and Europe-America. PMID:26273217

  7. Analgesic effect of interferon-alpha via mu opioid receptor in the rat.

    PubMed

    Jiang, C L; Son, L X; Lu, C L; You, Z D; Wang, Y X; Sun, L Y; Cui, R Y; Liu, X Y

    2000-03-01

    Using the tail-flick induced by electro-stimulation as a pain marker, it was found that pain threshold (PT) was significantly increased after injecting interferon-alpha (IFN alpha) into the lateral ventricle of rats. This effect was dosage-dependent and abolished by monoclonal antibody (McAb) to IFN alpha. Naloxone could inhibit the analgesic effect of IFN alpha, suggesting that the analgesic effect of IFN alpha be related to the opioid receptors. Beta-funaltrexamine (beta-FNA), the mu specific receptor antagonist could completely block the analgesic effect of IFN alpha. The selective delta-opioid receptor antagonist, ICI174,864 and the kappa-opioid receptor antagonist, nor-BNI both failed to prevent the analgesic effect of IFN alpha. IFN alpha could significantly inhibit the production of the cAMP stimulated by forskolin in SK-N-SH cells expressing the mu-opioid receptor, not in NG108-15 cells expressing the delta-opioid receptor uniformly. The results obtained provide further evidence for opioid activity of IFN alpha and suggest that this effect is mediated by central opioid receptors of the mu subtype. The evidence is consistent with the hypothesis that multiple actions of cytokines, such as immunoregulatory and neuroregulatory effects, might be mediated by distinct domains of cytokines interacting with different receptors. PMID:10676852

  8. Muscarinic acetylcholine receptor modulation of mu (mu) opioid receptors in adult rat sphenopalatine ganglion neurons.

    PubMed

    Margas, Wojciech; Mahmoud, Saifeldin; Ruiz-Velasco, Victor

    2010-01-01

    The sphenopalatine ganglion (SPG) neurons represent the parasympathetic branch of the autonomic nervous system involved in controlling cerebral blood flow. In the present study, we examined the coupling mechanism between mu (mu) opioid receptors (MOR) and muscarinic acetylcholine receptors (mAChR) with Ca(2+) channels in acutely dissociated adult rat SPG neurons. Successful MOR activation was recorded in approximately 40-45% of SPG neurons employing the whole cell variant of the patch-clamp technique. In addition, immunofluorescence assays indicated that MOR are not expressed in all SPG neurons while M(2) mAChR staining was evident in all neurons. The concentration-response relationships generated with morphine and [d-Ala2-N-Me-Phe4-Glycol5]-enkephalin (DAMGO) showed IC(50) values of 15.2 and 56.1 nM and maximal Ca(2+) current inhibition of 26.0 and 38.7%, respectively. Activation of MOR or M(2) mAChR with morphine or oxotremorine-methiodide (Oxo-M), respectively, resulted in voltage-dependent inhibition of Ca(2+) currents via coupling with Galpha(i/o) protein subunits. The acute prolonged exposure (10 min) of neurons to morphine or Oxo-M led to the homologous desensitization of MOR and M(2) mAChR, respectively. The prolonged stimulation of M(2) mAChR with Oxo-M resulted in heterologous desensitization of morphine-mediated Ca(2+) current inhibition, and was sensitive to the M(2) mAChR blocker methoctramine. On the other hand, when the neurons were exposed to morphine or DAMGO for 10 min, heterologous desensitization of M(2) mAChR was not observed. These results suggest that in rat SPG neurons activation of M(2) mAChR likely modulates opioid transmission in the brain vasculature to adequately maintain cerebral blood flow. PMID:19889856

  9. Systematic analysis of factors influencing observations of biased agonism at the mu-opioid receptor.

    PubMed

    Thompson, Georgina L; Lane, J Robert; Coudrat, Thomas; Sexton, Patrick M; Christopoulos, Arthur; Canals, Meritxell

    2016-08-01

    Biased agonism describes the ability of distinct G protein-coupled receptor (GPCR) ligands to stabilise distinct receptor conformations leading to the activation of different cell signalling pathways that can deliver different physiologic outcomes. This phenomenon is having a major impact on modern drug discovery as it offers the potential to design ligands that selectively activate or inhibit the signalling pathways linked to therapeutic effects with minimal activation or blockade of signalling pathways that are linked to the development of adverse on-target effects. However, the explosion in studies of biased agonism at multiple GPCR families in recombinant cell lines has revealed a high degree of variability on descriptions of biased ligands at the same GPCR and raised the question of whether biased agonism is a fixed attribute of a ligand in all cell types. The current study addresses this question at the mu-opioid receptor (MOP). Here, we have systematically assessed the impact of differential cellular protein complement (and cellular background), signalling kinetics and receptor species on our previous descriptions of biased agonism at MOP by several opioid peptides and synthetic opioids. Our results show that all these factors need to be carefully determined and reported when considering biased agonism. Nevertheless, our studies also show that, despite changes in overall signalling profiles, ligands that previously showed distinct bias profiles at MOP retained their uniqueness across different cell backgrounds. PMID:27286929

  10. Comparative modeling and molecular dynamics studies of the delta, kappa and mu opioid receptors.

    PubMed

    Strahs, D; Weinstein, H

    1997-09-01

    Molecular models of the trans-membrane domains of delta, kappa and mu opioid receptors, members of the G-protein coupled receptor (GPCR) superfamily, were developed using techniques of homology modeling and molecular dynamics simulations. Structural elements were predicted from sequence alignments of opioid and related receptors based on (i) the consensus, periodicities and biophysical interpretations of alignment-derived properties, and (ii) tertiary structure homology to rhodopsin. Initial model structures of the three receptors were refined computationally with energy minimization and the result of the first 210 ps of a 2 ns molecular dynamics trajectory at 300K. Average structures from the trajectory obtained for each receptor subtype after release of the initial backbone constraints show small backbone deviations, indicating stability. During the molecular dynamics phase, subtype-differentiated residues of the receptors developed divergent structures within the models, including changes in regions common to the three subtypes and presumed to belong to ligand binding regions. The divergent features developed by the model structures appear to be consistent with the observed ligand binding selectivities of the opioid receptors. The results thus implicate identifiable receptor microenvironments as primary determinants of some of the observed subtype specificities in opiate ligand binding and in functional effects of mutagenesis. Networks of interacting residues observed in the models are common to the opiate receptors and other GPCRs, indicating core interfaces that are potentially responsible for structural integrity and signal transduction. Analysis of extended molecular dynamics trajectories reveals concerted motions of distant parts of ligand-binding regions, suggesting motion-sensitive components of ligand binding. The comparative modeling results from this study help clarify experimental observations of subtype differences and suggest both structural and

  11. Crystal structure of the[mu]-opioid receptor bound to a morphinan antagonist

    SciTech Connect

    Manglik, Aashish; Kruse, Andrew C.; Kobilka, Tong Sun; Thian, Foon Sun; Mathiesen, Jesper M.; Sunahara, Roger K.; Pardo, Leonardo; Weis, William I.; Kobilka, Brian K.; Granier, Sébastien

    2012-06-27

    Opium is one of the world's oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many undesirable side effects (sedation, apnoea and dependence) by binding to and activating the G-protein-coupled {mu}-opioid receptor ({mu}-OR) in the central nervous system. Here we describe the 2.8 {angstrom} crystal structure of the mouse {mu}-OR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most G-protein-coupled receptors published so far, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the {mu}-OR crystallizes as a two-fold symmetrical dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.

  12. Affinity of the enantiomers of. alpha. - and. beta. -cyclazocine for binding to the phencyclidine and. mu. opioid receptors

    SciTech Connect

    Todd, S.L.; Balster, R.L.; Martin, B.R. )

    1990-01-01

    The enantiomers in the {alpha} and {beta} series of cyclazocine were evaluated for their ability to bind to phencyclidine (PCP) and {mu}-opioid receptors in order to determine their receptor selectivity. The affinity of (-)-{beta}-cyclazocine for the PCP receptor was 1.5 greater than PCP itself. In contrast, (-)-{alpha}-cyclazocine, (+)-{alpha}-cyclazocine, and (+)-{beta}-cyclazocine were 3-, 5- and 138-fold less potent than PCP, respectively. Scatchard analysis of saturable binding of ({sup 3}H)Tyr-D-Ala-Gly-N-MePhe-Gly-ol (DAMGO) also exhibited a homogeneous population of binding sites with an apparent K{sub D} of 1.9 nM and an estimated Bmax of 117 pM. (3H)Tyr-D-Ala-Gly-N-MePhe-Gly-ol (DAMGO) binding studies revealed that (-)-{alpha}-cyclazocine (K{sub D} = 0.48 nM) was 31-, 1020- and 12,600-fold more potent than (-)-{beta}-cyclazocine, (+)-{alpha}-cyclazocine and (+)-{beta}-cyclazocine, respectively, for binding to the {mu}-opioid receptor. These data show that, although (-)-{beta}-cyclazocine is a potent PCP receptor ligand consistent with its potent PCP-like discriminative stimulus effects, it shows little selectivity for PCP receptor since it also potently displaces {mu}-opioid binding. However, these cyclazocine isomers, due to their extraordinary degree of stereoselectivity, may be useful in characterizing the structural requirements for benzomorphans having activity at the PCP receptor.

  13. Remifentanil produces cross-desensitization and tolerance with morphine on the mu-opioid receptor.

    PubMed

    Nowoczyn, M; Marie, N; Coulbault, L; Hervault, M; Davis, A; Hanouz, J L; Allouche, S

    2013-10-01

    Remifentanil is a powerful mu-opioid (MOP) receptor agonist used in anaesthesia with a very short half-life. However, per-operative perfusion of remifentanil was shown to increase morphine consumption during post-operative period to relieve pain. In the present study, we aimed to describe the cellular mechanisms responsible for this apparent reduction of morphine efficacy. For this purpose, we first examined the pharmacological properties of both remifentanil and morphine at the MOP receptor, endogenously expressed in the human neuroblastoma SH-SY5Y cell line, to regulate adenylyl cyclase and the MAP kinase ERK1/2 pathway, their potency to promote MOP receptor phosphorylation, arrestin 3-CFP (cyan fluorescent protein) recruitment and receptor trafficking during acute and sustained exposure. In the second part of this work, we studied the effects of a prior exposure of remifentanil on morphine-induced inhibition of cAMP accumulation, activation of ERK1/2 and analgesia. We showed that sustained exposure to remifentanil promoted a rapid desensitization of opioid receptors on both signalling pathways and a pretreatment with this agonist reduced signal transduction produced by a second challenge with morphine. While both opioid agonists promoted Ser(375) phosphorylation on MOP receptor, remifentanil induced a rapid internalization of opioid receptors compared to morphine but without detectable arrestin 3-CFP translocation to the plasma membrane in our experimental conditions. Lastly, a cross-tolerance between remifentanil and morphine was observed in mice using the hot plate test. Our in vitro and in vivo data thus demonstrated that remifentanil produced a rapid desensitization and internalization of the MOP receptor that would reduce the anti-nociceptive effects of morphine. PMID:23792280

  14. Mu Opioid Receptor Binding Correlates with Nicotine Dependence and Reward in Smokers

    PubMed Central

    Brasic, James R.; Contoreggi, Carlo; Cascella, Nicola; Mackowick, Kristen M.; Taylor, Richard; Rousset, Olivier; Willis, William; Huestis, Marilyn A.; Concheiro, Marta; Wand, Gary; Wong, Dean F.; Volkow, Nora D.

    2014-01-01

    The rewarding effects of nicotine are associated with activation of nicotine receptors. However, there is increasing evidence that the endogenous opioid system is involved in nicotine's rewarding effects. We employed PET imaging with [11C]carfentanil to test the hypotheses that acute cigarette smoking increases release of endogenous opioids in the human brain and that smokers have an upregulation of mu opioid receptors (MORs) when compared to nonsmokers. We found no significant changes in binding potential (BPND) of [11C]carfentanil between the placebo and the active cigarette sessions, nor did we observe differences in MOR binding between smokers and nonsmokers. Interestingly, we showed that in smokers MOR availability in bilateral superior temporal cortices during the placebo condition was negatively correlated with scores on the Fagerström Test for Nicotine Dependence (FTND). Also in smokers, smoking-induced decreases in [11C]carfentanil binding in frontal cortical regions were associated with self-reports of cigarette liking and wanting. Although we did not show differences between smokers and nonsmokers, the negative correlation with FTND corroborates the role of MORs in superior temporal cortices in nicotine addiction and provides preliminary evidence of a role of endogenous opioid signaling in frontal cortex in nicotine reward. PMID:25493427

  15. Partial agonistic effect of 9-hydroxycorynantheidine on mu-opioid receptor in the guinea-pig ileum.

    PubMed

    Matsumoto, Kenjiro; Takayama, Hiromitsu; Ishikawa, Hayato; Aimi, Norio; Ponglux, Dhavadee; Watanabe, Kazuo; Horie, Syunji

    2006-04-01

    Mitragynine is an indole alkaloid isolated from the Thai medicinal plant Mitragyna speciosa that is reported to have opioid agonistic properties. The 9-demethyl analogue of mitragynine, 9-hydroxycorynantheidine, is synthesized from mitragynine. 9-Hydroxycorynantheidine inhibited electrically stimulated guinea-pig ileum contraction, but its maximum inhibition was weaker than that of mitragynine and its effect was antagonized by naloxone, suggesting that 9-hydroxycorynantheidine possesses partial agonist properties on opioid receptors. Receptor binding assays revealed that 9-hydroxycorynantheidine has high affinity for mu-opioid receptors. In an assay of the guinea-pig ileum, naloxone shifted the concentration-response curves for [D-Ala(2), N-MePhe(4), Gly-ol(5)]-enkephalin (DAMGO), (5alpha,7alpha,8beta)-(+)-N-Methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide (U69593) and 9-hydroxycorynantheidine to the right in a competitive manner. The pA(2) values of naloxone against 9-hydroxycorynantheidine and DAMGO were very similar, but not that against U69593. As indicated by the two assay systems, the opioid effect of 9-hydroxycorynantheidine is selective for the mu-opioid receptor. 9-Hydroxycorynantheidine shifted the concentration-response curve for DAMGO slightly to the right. Pretreatment with the mu-opioid selective and irreversible antagonist beta-funaltorexamine hydrochloride (beta-FNA) shifted the concentration-response curve for DAMGO to the right without affecting the maximum response. On the other hand, beta-FNA did not affect the curve for 9-hydroxycorynantheidine, but decreased the maximum response because of the lack of spare receptors. These studies suggest that 9-hydroxycorynantheidine has partial agonist properties on mu-opioid receptors in the guinea-pig ileum. PMID:16266723

  16. A topographical model of mu-opioid and brain somatostatin receptor selective ligands. NMR and molecular dynamics studies.

    PubMed

    Kazmierski, W M; Ferguson, R D; Lipkowski, A W; Hruby, V J

    1995-01-01

    We have refined the 1H NMR-based conformations of the mu-opioid receptor selective peptides related to somatostatin of general formula Xxx-Yyy1-Cys-Zzz-D-Trp-Lys(Orn)5-Thr-Pen-Thr8- NH2, where Xxx, Yyy, Zzz are 0, D-Phe and Tyr for 1; 0, D-Tic and Tyr for 2; Gly, D-Tic and Tyr for 3; and 0, D-Phe and Tic for 4, respectively, (Kazmierski et al., J. Am. Chem. 113, 2275-2283), using a molecular-dynamics approach. We present evidence that the NMR data are compatible with beta II'-, gamma- and gamma'-turns for the central tetrapeptide Tyr-D-Trp-Lys/Orn-Thr. Based on detailed structural and topographical considerations, we suggest that the mu-opioid receptor selectivity of 2 is due to a particular spatial arrangement of aromatic side chains of D-Tic1 and Tyr3 (7.5 A), and that the opioid receptor recognition domain is located in the N-terminal part of the peptide while the somatostatin receptor recognition domain is determined by the central, turn forming part of this class of cyclic peptides. A model for a mu-opioid selective ligand has emerged from these studies that shows excellent structural similarities to rigid opioid alkaloids. PMID:8537180

  17. Naloxegol: First oral peripherally acting mu opioid receptor antagonists for opioid-induced constipation

    PubMed Central

    Anantharamu, Tejus; Sharma, Sushil; Gupta, Ajay Kumar; Dahiya, Navdeep; Singh Brashier, Dick B.; Sharma, Ashok Kumar

    2015-01-01

    Opioid-induced constipation (OIC) is one of the most troublesome and the most common effects of opioid use leading to deterioration in quality of life of the patients and also has potentially deleterious repercussions on adherence and compliance to opioid therapy. With the current guidelines advocating liberal use of opioids by physicians even for non-cancer chronic pain, the situation is further complicated as these individuals are not undergoing palliative care and hence there cannot be any justification to subject these patients to the severe constipation brought on by opioid therapy which is no less debilitating than the chronic pain. The aim in these patients is to prevent the opioid-induced constipation but at the same time allow the analgesic activity of opioids. Many drugs have been used with limited success but the most specific among them were the peripherally acting mu opioid receptor antagonists (PAMORA). Methylnaltrexone and alvimopan were the early drugs in this group but were not approved for oral use in OIC. However naloxegol, the latest PAMORA has been very recently approved as the first oral drug for OIC. This article gives an overview of OIC, its current management and more specifically the development and approval of naloxegol, including pharmacokinetics, details of various clinical trials, adverse effects and its current status for the management of OIC. PMID:26312011

  18. Graphene decorated with mu-opioid receptor: the ionic screening effect and detection of enkephalin

    NASA Astrophysics Data System (ADS)

    Ping, Jinglei; Johnson, A. T. Charlie; Liu, Renyu; A. T. Charlie Johnson Team; Renyu Liu Collaboration

    2015-03-01

    We investigated the properties of graphene field effect transistors (GFETs) decorated with a computaionally redesigned, water-soluble variant of the human mu-opioid receptor (wsMOR) in physiological buffer solution. The shift of the Fermi level in the GFETs is quantitatively described by chemical-gating effect of charges on the wsMOR that are screened by the ionic solution. Our results suggest that sensitivity to the molecular target is lost when the Debye screening length of the solution is shorter than the distance from the graphene to the wsMOR; thus de-salting may be necessary when wsMOR decorated GFETs are used as biosensors in solution. We used this insight to detect DAMGO, a synthetic analog to the endogenous opioid peptide encephalin, at a concentration of 10 pM (5.1 pg/mL) in artificial cerebrospinal fluid (aCSF) diluted to 5% of its normal salt concentration. When the sensors were measured in a dry state, the limit of detection for DAGMO was 1 pM (0.5 pg/mL), one-third of the baseline in human body.Funding for this work was provided by DARPA.

  19. Genomic structure analysis of promoter sequence of a mouse mu opioid receptor gene.

    PubMed Central

    Min, B H; Augustin, L B; Felsheim, R F; Fuchs, J A; Loh, H H

    1994-01-01

    We have isolated mouse mu opioid receptor genomic clones (termed MOR) containing the entire amino acid coding sequence corresponding to rat MOR-1 cDNA, including additional 5' flanking sequence. The mouse MOR gene is > 53 kb long, and the coding sequence is divided by three introns, with exon junctions in codons 95 and 213 and between codons 386 and 387. The first intron is > 26 kb, the second is 0.8 kb, and the third is > 12 kb. Multiple transcription initiation sites were observed, with four major sites confirmed by 5' rapid amplification of cDNA ends and RNase protection located between 291 and 268 bp upstream of the translation start codon. Comparison of the 5' flanking sequence with a transcription factor database revealed putative cis-acting regulatory elements for transcription factors affected by cAMP, as well as those involved in the action of gluco- and mineralocorticoids, cytokines, and immune-cell-specific factors. Images PMID:8090773

  20. Powerful inhibitory action of mu opioid receptors (MOR) on cholinergic interneuron excitability in the dorsal striatum.

    PubMed

    Ponterio, G; Tassone, A; Sciamanna, G; Riahi, E; Vanni, V; Bonsi, P; Pisani, A

    2013-12-01

    Cholinergic interneurons (ChIs) of dorsal striatum play a key role in motor control and in behavioural learning. Neuropeptides regulate cholinergic transmission and mu opioid receptor (MOR) activation modulates striatal acetylcholine release. However, the mechanisms underlying this effect are yet uncharacterized. Here, we examined the electrophysiological responses of ChIs to the selective MOR agonist, DAMGO {[D-Ala2-MePhe4-Gly(ol)5] enkephalin}. We observed a robust, dose-dependent inhibition of spontaneous firing activity (0.06-3 μM) which was reversible upon drug washout and blocked by the selective antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) (1 μM). Voltage-clamp analysis of the reversal potential of the DAMGO effect did not provide univocal results, indicating the involvement of multiple membrane conductances. The MOR-dependent effect persisted in the presence of GABAA and ionotropic glutamate receptor antagonists, ruling out an indirect effect. Additionally, it depended upon G-protein activation, as it was prevented by intrapipette GDP-β-S. Because D2 dopamine receptors (D2R) and MOR share a common post-receptor signalling pathway, occlusion experiments were performed with maximal doses of both D2R and MOR agonists. The D2R agonist quinpirole decreased spike discharge, which was further reduced by adding DAMGO. Then, D2R or MOR antagonists were used to challenge the response to the respective agonists, DAMGO or quinpirole. No cross-effect was observed, suggesting that the two receptors act independently. Our findings demonstrate a postsynaptic inhibitory modulation by MOR on ChIs excitability. Such opioidergic regulation of cholinergic transmission might contribute to shape information processing in basal ganglia circuits, and represent a potential target for pharmacological intervention. PMID:23891638

  1. Mu opioid receptor localization in the basolateral amygdala: An ultrastructural analysis.

    PubMed

    Zhang, J; Muller, J F; McDonald, A J

    2015-09-10

    Receptor binding studies have shown that the density of mu opioid receptors (MORs) in the basolateral amygdala is among the highest in the brain. Activation of these receptors in the basolateral amygdala is critical for stress-induced analgesia, memory consolidation of aversive events, and stress adaptation. Despite the importance of MORs in these stress-related functions, little is known about the neural circuits that are modulated by amygdalar MORs. In the present investigation light and electron microscopy combined with immunohistochemistry was used to study the expression of MORs in the anterior basolateral nucleus (BLa). At the light microscopic level, light to moderate MOR-immunoreactivity (MOR-ir) was observed in a small number of cell bodies of nonpyramidal interneurons and in a small number of processes and puncta in the neuropil. At the electron microscopic level most MOR-ir was observed in dendritic shafts, dendritic spines, and axon terminals. MOR-ir was also observed in the Golgi apparatus of the cell bodies of pyramidal neurons (PNs) and interneurons. Some of the MOR-positive (MOR+) dendrites were spiny, suggesting that they belonged to PNs, while others received multiple asymmetrical synapses typical of interneurons. The great majority of MOR+ axon terminals (80%) that formed synapses made asymmetrical (excitatory) synapses; their main targets were spines, including some that were MOR+. The main targets of symmetrical (inhibitory and/or neuromodulatory) synapses were dendritic shafts, many of which were MOR+, but some of these terminals formed synapses with somata or spines. All of our observations were consistent with the few electrophysiological studies which have been performed on MOR activation in the basolateral amygdala. Collectively, these findings suggest that MORs may be important for filtering out weak excitatory inputs to PNs, allowing only strong inputs or synchronous inputs to influence pyramidal neuronal firing. PMID:26164501

  2. Agonist-selective mechanisms of mu-opioid receptor desensitization in human embryonic kidney 293 cells.

    PubMed

    Johnson, Elizabeth A; Oldfield, Sue; Braksator, Ellen; Gonzalez-Cuello, Ana; Couch, Daniel; Hall, Kellie J; Mundell, Stuart J; Bailey, Chris P; Kelly, Eamonn; Henderson, Graeme

    2006-08-01

    The ability of two opioid agonists, [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) and morphine, to induce mu-opioid receptor (MOR) phosphorylation, desensitization, and internalization was examined in human embryonic kidney (HEK) 293 cells expressing rat MOR1 as well G protein-coupled inwardly rectifying potassium channel (GIRK) channel subunits. Both DAMGO and morphine activated GIRK currents, but the maximum response to DAMGO was greater than that of morphine, indicating that morphine is a partial agonist. The responses to DAMGO and morphine desensitized rapidly in the presence of either drug. Expression of a dominant negative mutant G protein-coupled receptor kinase 2 (GRK2), GRK2-K220R, markedly attenuated the DAMGO-induced desensitization of MOR1, but it had no effect on morphine-induced MOR1 desensitization. In contrast, inhibition of protein kinase C (PKC) either by the PKC inhibitory peptide PKC (19-31) or staurosporine reduced MOR1 desensitization by morphine but not that induced by DAMGO. Morphine and DAMGO enhanced MOR1 phosphorylation over basal. The PKC inhibitor bisindolylmaleimide 1 (GF109203X) inhibited MOR1 phosphorylation under basal conditions and in the presence of morphine, but it did not inhibit DAMGO-induced phosphorylation. DAMGO induced arrestin-2 translocation to the plasma membrane and considerable MOR1 internalization, whereas morphine did not induce arrestin-2 translocation and induced very little MOR1 internalization. Thus, DAMGO and morphine each induce desensitization of MOR1 signaling in HEK293 cells but by different molecular mechanisms; DAMGO-induced desensitization is GRK2-dependent, whereas morphine-induced desensitization is in part PKC-dependent. MORs desensitized by DAMGO activation are then readily internalized by an arrestin-dependent mechanism, whereas those desensitized by morphine are not. These data suggest that opioid agonists induce different conformations of the MOR that are susceptible to different

  3. Variation at the mu-opioid receptor gene (OPRM1) influences attachment behavior in infant primates.

    PubMed

    Barr, Christina S; Schwandt, Melanie L; Lindell, Stephen G; Higley, J Dee; Maestripieri, Dario; Goldman, David; Suomi, Stephen J; Heilig, Markus

    2008-04-01

    In a variety of species, development of attachment to a caregiver is crucial for infant survival and partly mediated by the endogenous opioids. Functional mu-opioid receptor gene polymorphisms are present in humans (OPRM1 A118G) and rhesus macaques (OPRM1 C77G). We hypothesized that rhesus infants carrying a gain-of-function OPRM1 77G allele would experience increased reward during maternal contact and would, therefore, display increased measures of attachment. We collected behavioral data from rhesus macaques (n = 97) during early infancy and at 6 months of age, across four cycles of maternal separation (4 days) and reunion (3 days). Animals were genotyped for the OPRM1 C77G polymorphism, and the effects of this allele on attachment-related behaviors were analyzed. Infants carrying the G allele exhibited higher levels of attachment behavior during early infancy. During prolonged periods of maternal separation, although infant macaques homozygous for the C allele exhibited decreases in their levels of distress vocalization with repeated separation, this response persisted in G allele carriers. The OPRM1 77G allele also affected social preference during reunion. C/G infants spent increasing amounts of time in social contact with their mothers as a function of repeated separation and were less likely to interact with other individuals in the social group, a pattern not observed among infants with the C/C genotype. These findings suggest a role for OPRM1 variation in the expression of attachment behavior in human subjects, especially as a function of separation from the caregiver. PMID:18378897

  4. Epigenetic Variation in the Mu-opioid Receptor Gene in Infants with Neonatal Abstinence Syndrome

    PubMed Central

    Wachman, Elisha M; Hayes, Marie J; Lester, Barry M; Terrin, Norma; Brown, Mark S; Nielsen, David A; Davis, Jonathan M

    2014-01-01

    Objective Neonatal abstinence syndrome (NAS) from in utero opioid exposure is highly variable with genetic factors appearing to play an important role. Epigenetic changes in cytosine:guanine (CpG) dinucleotide methylation can occur after drug exposure and may help to explain NAS variability. We correlated DNA methylation levels in the mu-opioid receptor (OPRM1) promoter in opioid-exposed infants and correlate them with NAS outcomes. Study design DNA samples from cord blood or saliva were analyzed for 86 infants being treated for NAS according to institutional protocol. Methylation levels at 16 OPRM1 CpG sites were determined and correlated with NAS outcome measures, including need for treatment, treatment with >2 medications, and length of hospital stay. We adjusted for co-variates and multiple genetic testing. Results Sixty-five percent of infants required treatment for NAS, and 24% required ≥2 medications. Hypermethylation of the OPRM1 promoter was measured at the −10 CpG in treated versus non-treated infants [adjusted difference δ=3.2% (95% CI 0.3–6.0%), p=0.03; NS after multiple testing correction]. There was hypermethylation at the −14 [δ=4.9% (95% CI 1.8–8.1%), p=0.003], −10 [δ=5.0% (95% CI 2.3–7.7%), p=0.0005)], and +84 [δ=3.5% (95% CI 0.6 – 6.4), p=0.02] CpG sites in infants requiring ≥2 medications which remained significant for −14 and −10 after multiple testing correction. Conclusions Increased methylation within the OPRM1 promoter is associated with worse NAS outcomes, consistent with gene silencing. PMID:24996986

  5. Affinity, potency and efficacy of tramadol and its metabolites at the cloned human mu-opioid receptor.

    PubMed

    Gillen, C; Haurand, M; Kobelt, D J; Wnendt, S

    2000-08-01

    The present study was conducted to characterise the centrally active analgesic drug tramadol hydrochloride [(1RS,2RS)-2-[(dimethyl-amino)-methyl]-1-(3-methoxyphenyl)-cyclohe xanol hydrochloride] and its metabolites M1, M2, M3, M4 and M5 at the cloned human mu-opioid receptor. Membranes from stably transfected Chinese hamster ovary (CHO) cells were used to determine the four parameters of the ligand-receptor interaction: the affinity of (+/-)-tramadol and its metabolites was determined by competitive inhibition of [3H]naloxone binding under high and low salt conditions. The agonist-induced stimulation of [35S]GTPgammaS binding permits the measurement of potency (EC50), efficacy (Emax = maximal stimulation) and relative intrinsic efficacy (effect as a function of receptor occupation). The metabolite (+)-M1 showed the highest affinity (Ki=3.4 nM) to the human mu-opioid receptor, followed by (+/-)-M5 (Ki=100 nM), (-)-M1 (Ki=240 nM) and (+/-)-tramadol (Ki=2.4 microM). The [35S]GTPgammaS binding assay revealed an agonistic activity for the metabolites (+)-M1, (-)-M1 and (+/-)-M5 with the following rank order of intrinsic efficacy: (+)-M1>(+/-)-M5>(-)-M1. The metabolites (+/-)-M2, (+/-)-M3 and (+/-)-M4 displayed only weak affinity (Ki> 10 microM) and had no stimulatory effect on GTPgammaS binding. These data indicate that the metabolite (+)-M1 is responsible for the mu-opioid-derived analgesic effect. PMID:10961373

  6. Mu Opioid Receptor Modulation of Dopamine Neurons in the Periaqueductal Gray/Dorsal Raphe: A Role in Regulation of Pain.

    PubMed

    Li, Chia; Sugam, Jonathan A; Lowery-Gionta, Emily G; McElligott, Zoe A; McCall, Nora M; Lopez, Alberto J; McKlveen, Jessica M; Pleil, Kristen E; Kash, Thomas L

    2016-07-01

    The periaqueductal gray (PAG) is a brain region involved in nociception modulation, and an important relay center for the descending nociceptive pathway through the rostral ventral lateral medulla. Given the dense expression of mu opioid receptors and the role of dopamine in pain, the recently characterized dopamine neurons in the ventral PAG (vPAG)/dorsal raphe (DR) region are a potentially critical site for the antinociceptive actions of opioids. The objectives of this study were to (1) evaluate synaptic modulation of the vPAG/DR dopamine neurons by mu opioid receptors and to (2) dissect the anatomy and neurochemistry of these neurons, in order to assess the downstream loci and functions of their activation. Using a mouse line that expresses eGFP under control of the tyrosine hydroxylase (TH) promoter, we found that mu opioid receptor activation led to a decrease in inhibitory inputs onto the vPAG/DR dopamine neurons. Furthermore, combining immunohistochemistry, optogenetics, electrophysiology, and fast-scan cyclic voltammetry in a TH-cre mouse line, we demonstrated that these neurons also express the vesicular glutamate type 2 transporter and co-release dopamine and glutamate in a major downstream projection structure-the bed nucleus of the stria terminalis. Finally, activation of TH-positive neurons in the vPAG/DR using Gq designer receptors exclusively activated by designer drugs displayed a supraspinal, but not spinal, antinociceptive effect. These results indicate that vPAG/DR dopamine neurons likely play a key role in opiate antinociception, potentially via the activation of downstream structures through dopamine and glutamate release. PMID:26792442

  7. Mu opioid receptor modulation in the nucleus accumbens lowers voluntary wheel running in rats bred for high running motivation.

    PubMed

    Ruegsegger, Gregory N; Toedebusch, Ryan G; Will, Matthew J; Booth, Frank W

    2015-10-01

    The exact role of opioid receptor signaling in mediating voluntary wheel running is unclear. To provide additional understanding, female rats selectively bred for motivation of low (LVR) versus high voluntary running (HVR) behaviors were used. Aims of this study were 1) to identify intrinsic differences in nucleus accumbens (NAc) mRNA expression of opioid-related transcripts and 2) to determine if nightly wheel running is differently influenced by bilateral NAc injections of either the mu-opioid receptor agonist D-Ala2, NMe-Phe4, Glyo5-enkephalin (DAMGO) (0.25, 2.5 μg/side), or its antagonist, naltrexone (5, 10, 20 μg/side). In Experiment 1, intrinsic expression of Oprm1 and Pdyn mRNAs were higher in HVR compared to LVR. Thus, the data imply that line differences in opioidergic mRNA in the NAc could partially contribute to differences in wheel running behavior. In Experiment 2, a significant decrease in running distance was present in HVR rats treated with 2.5 μg DAMGO, or with 10 μg and 20 μg naltrexone between hours 0-1 of the dark cycle. Neither DAMGO nor naltrexone had a significant effect on running distance in LVR rats. Taken together, the data suggest that the high nightly voluntary running distance expressed by HVR rats is mediated by increased endogenous mu-opioid receptor signaling in the NAc, that is disturbed by either agonism or antagonism. In summary, our findings on NAc opioidergic mRNA expression and mu-opioid receptor modulations suggest HVR rats, compared to LVR rats, express higher running levels mediated by an increase in motivation driven, in part, by elevated NAc opioidergic signaling. PMID:26044640

  8. Endometriosis Is Associated With a Shift in MU Opioid and NMDA Receptor Expression in the Brain Periaqueductal Gray.

    PubMed

    Torres-Reverón, Annelyn; Palermo, Karylane; Hernández-López, Anixa; Hernández, Siomara; Cruz, Myrella L; Thompson, Kenira J; Flores, Idhaliz; Appleyard, Caroline B

    2016-09-01

    Studies have examined how endometriosis interacts with the nervous system, but little attention has been paid to opioidergic systems, which are relevant to pain signaling. We used the autotransplantation rat model of endometriosis and allowed to progress for 60 days. The brain was collected and examined for changes in endogenous opioid peptides, mu opioid receptors (MORs), and the N-methyl-d-aspartate subunit receptor (NR1) in the periaqueductal gray (PAG), since both of these receptors can regulate PAG activity. No changes in endogenous opioid peptides in met- and leu-enkephalin or β-endorphin levels were observed within the PAG. However, MOR immunoreactivity was significantly decreased in the ventral PAG in the endometriosis group. Endometriosis reduced by 20% the number of neuronal profiles expressing MOR and reduced by 40% the NR1 profiles. Our results suggest that endometriosis is associated with subtle variations in opioidergic and glutamatergic activity within the PAG, which may have implications for pain processing. PMID:27089914

  9. Neurokinin1 receptors regulate morphine-induced endocytosis and desensitization of mu opioid receptors in CNS neurons

    PubMed Central

    Yu, Y. Joy; Arttamangkul, Seksiri; Evans, Christopher J.; Williams, John T.; von Zastrow, Mark

    2009-01-01

    Mu opioid receptors (MORs) are G protein-coupled receptors (GPCRs) that mediate the physiological effects of endogenous opioid neuropeptides and opiate drugs such as morphine. MORs are co-expressed with neurokinin 1 receptors (NK1Rs) in several regions of the central nervous system (CNS) that control opioid dependence and reward. NK1R activation affects opioid reward specifically, however, and the cellular basis for this specificity is unknown. We found that ligand-induced activation of NK1Rs produces a cell autonomous and non-reciprocal inhibition of MOR endocytosis induced by diverse opioids. Studies using epitope-tagged receptors expressed in cultured striatal neurons and a neuroblastoma cell model indicated that this heterologous regulation is mediated by NK1R-dependent sequestration of arrestins on endosome membranes. First, endocytic inhibition mediated by wild type NK1Rs was overcome in cells over-expressing β-arrestin2, a major arrestin isoform expressed in striatum. Second, NK1R activation promoted sequestration of β-arrestin2 on endosomes, whereas MOR activation did not. Third, heterologous inhibition of MOR endocytosis was prevented by mutational disruption of β-arrestin2 sequestration by NK1Rs. NK1R-mediated regulation of MOR trafficking was associated with reduced opioid-induced desensitization of adenylyl cyclase signaling in striatal neurons. Further, heterologous regulation of MOR trafficking was observed in both amygdala and locus coeruleus neurons that naturally co-express these receptors. These results identify a cell autonomous mechanism that may underlie the highly specific effects of NK1R on opioid signaling and suggest, more generally, that receptor-specific trafficking of arrestins may represent a fundamental mechanism for coordinating distinct GPCR-mediated signals at the level of individual CNS neurons. PMID:19129399

  10. Mediation of buprenorphine analgesia by a combination of traditional and truncated mu opioid receptor splice variants.

    PubMed

    Grinnell, Steven G; Ansonoff, Michael; Marrone, Gina F; Lu, Zhigang; Narayan, Ankita; Xu, Jin; Rossi, Grace; Majumdar, Susruta; Pan, Ying-Xian; Bassoni, Daniel L; Pintar, John; Pasternak, Gavril W

    2016-10-01

    Buprenorphine has long been classified as a mu analgesic, although its high affinity for other opioid receptor classes and the orphanin FQ/nociceptin ORL1 receptor may contribute to its other actions. The current studies confirmed a mu mechanism for buprenorphine analgesia, implicating several subsets of mu receptor splice variants. Buprenorphine analgesia depended on the expression of both exon 1-associated traditional full length 7 transmembrane (7TM) and exon 11-associated truncated 6 transmembrane (6TM) MOR-1 variants. In genetic models, disruption of delta, kappa1 or ORL1 receptors had no impact on buprenorphine analgesia, while loss of the traditional 7TM MOR-1 variants in an exon 1 knockout (KO) mouse markedly lowered buprenorphine analgesia. Loss of the truncated 6TM variants in an exon 11 KO mouse totally eliminated buprenorphine analgesia. In distinction to analgesia, the inhibition of gastrointestinal transit and stimulation of locomotor activity were independent of truncated 6TM variants. Restoring expression of a 6TM variant with a lentivirus rescued buprenorphine analgesia in an exon 11 KO mouse that still expressed the 7TM variants. Despite a potent and robust stimulation of (35) S-GTPγS binding in MOR-1 expressing CHO cells, buprenorphine failed to recruit β-arrestin-2 binding at doses as high as 10 µM. Buprenorphine was an antagonist in DOR-1 expressing cells and an inverse agonist in KOR-1 cells. Buprenorphine analgesia is complex and requires multiple mu receptor splice variant classes but other actions may involve alternative receptors. PMID:27223691

  11. Mu-opioid receptor activation in the medial shell of nucleus accumbens promotes alcohol consumption, self-administration and cue-induced reinstatement.

    PubMed

    Richard, Jocelyn M; Fields, Howard L

    2016-09-01

    Endogenous opioid signaling in ventral cortico-striatal-pallidal circuitry is implicated in elevated alcohol consumption and relapse to alcohol seeking. Mu-opioid receptor activation in the medial shell of the nucleus accumbens (NAc), a region implicated in multiple aspects of reward processing, elevates alcohol consumption while NAc opioid antagonists reduce it. However, the precise nature of the increases in alcohol consumption, and the effects of mu-opioid agonists on alcohol seeking and relapse are not clear. Here, we tested the effects of the mu-opioid agonist [D-Ala(2), N-MePhe(4), Gly-ol]-enkephalin (DAMGO) in rat NAc shell on lick microstructure in a free-drinking test, alcohol seeking during operant self-administration, extinction learning and expression, and cue-reinforced reinstatement of alcohol seeking. DAMGO enhanced the number, but not the size of drinking bouts. DAMGO also enhanced operant alcohol self-administration and cue-induced reinstatement, but did not affect extinction learning or elicit reinstatement in the absence of cues. Our results suggest that mu-opioid agonism in NAc shell elevates alcohol consumption, seeking and conditioned reinforcement primarily by enhancing the incentive motivational properties of alcohol and alcohol-paired cues, rather than by modulating palatability, satiety, or reinforcement. PMID:27089981

  12. Reconstitution of rate brain /mu/ opioid receptors with purified guanine nucleotide-binding regulatory proteins, G/sub i/ and G/sub o/

    SciTech Connect

    Ueda, Hiroshi; Harada, Hitoshi; Nozaki, Masakatsu; Katada, Toshiaki; Ui, Michio; Satoh, Masamichi; Takagi, Hiroshi

    1988-09-01

    Reconstitution of purified /mu/ opioid receptors with purified guanine nucleotide-binding regulatory proteins (G proteins) was investigated. The purified /mu/ opioid receptor (pI 5.6) migrated as a single M/sub r/ 58,000 polypeptide by NaDodSO/sub 4//PAGE, a value identical to that obtained by affinity cross-linking purified /mu/ receptors. When purified /mu/ receptors were reconstituted with purified G/sub i/, the G protein that mediates the inhibition of adenylate cyclase, the displacement of (/sup 3/H)naloxone binding by (D-Ala/sup 2/,MePhe/sup 4/,Gly-ol/sup 5/)enkephalin was increased 215-fold; this increase was abolished by adding 100 /mu/M guanosine 5'-(/gamma/-thio)triphosphate. Similar increases in agonist displacement of (/sup 3/H)naloxone binding (33-fold) and its abolition by guanosine 5'-(/gamma/-thio)triphosphate were observed with G/sub o/, the G protein of unknown function, but not with the v-Ki-ras protein p.21. The stoichiometry was such that the stimulation of 1 mol of /mu/ receptor led to the binding of (/sup 3/H)guanosine 5'-(/beta/,/gamma/-imido)triphosphate to 2.5 mol of G/sub i/ or to 1.37 mol of G/sub o/. These results suggest that the purified /mu/ opioid receptor is functionally coupled to G/sub i/ and G/sub o/ in the reconstituted phospholipid vesicles.

  13. Ligand-Directed Functional Selectivity at the Mu Opioid Receptor Revealed by Label-Free Integrative Pharmacology On-Target

    PubMed Central

    Morse, Megan; Tran, Elizabeth; Sun, Haiyan; Levenson, Robert; Fang, Ye

    2011-01-01

    Development of new opioid drugs that provide analgesia without producing dependence is important for pain treatment. Opioid agonist drugs exert their analgesia effects primarily by acting at the mu opioid receptor (MOR) sites. High-resolution differentiation of opioid ligands is crucial for the development of new lead drug candidates with better tolerance profiles. Here, we use a label-free integrative pharmacology on-target (iPOT) approach to characterize the functional selectivity of a library of known opioid ligands for the MOR. This approach is based on the ability to detect dynamic mass redistribution (DMR) arising from the activation of the MOR in living cells. DMR assays were performed in HEK-MOR cells with and without preconditioning with probe molecules using label-free resonant waveguide grating biosensors, wherein the probe molecules were used to modify the activity of specific signaling proteins downstream the MOR. DMR signals obtained were then translated into high resolution heat maps using similarity analysis based on a numerical matrix of DMR parameters. Our data indicate that the iPOT approach clearly differentiates functional selectivity for distinct MOR signaling pathways among different opioid ligands, thus opening new avenues to discover and quantify the functional selectivity of currently used and novel opioid receptor drugs. PMID:22003401

  14. Morphine-induced antinociception and reward in "humanized" mice expressing the mu opioid receptor A118G polymorphism.

    PubMed

    Henderson-Redmond, Angela N; Yuill, Matthew B; Lowe, Tammy E; Kline, Aaron M; Zee, Michael L; Guindon, Josée; Morgan, Daniel J

    2016-05-01

    The rewarding and antinociceptive effects of opioids are mediated through the mu-opioid receptor. The A118G single nucleotide polymorphism in this receptor has been implicated in drug addiction and differences in pain response. Clinical and preclinical studies have found that the G allele is associated with increased heroin reward and self-administration, elevated post-operative pain, and reduced analgesic responsiveness to opioids. Male and female mice homozygous for the "humanized" 118AA or 118GG alleles were evaluated to test the hypothesis that 118GG mice are less sensitive to the rewarding and antinociceptive effects of morphine. We found that 118AA and 118GG mice of both genders developed conditioned place preference for morphine. All mice developed tolerance to the antinociceptive and hypothermic effects of morphine. However, morphine tolerance was not different between AA and GG mice. We also examined sensitivity to the antinociceptive and hypothermic effects of cumulative morphine doses. We found that 118GG mice show reduced hypothermic and antinociceptive responses on the hotplate for 10mg/kg morphine. Finally, we examined basal pain response and morphine-induced antinociception in the formalin test for inflammatory pain. We found no gender or genotype differences in either basal pain response or morphine-induced antinociception in the formalin test. Our data suggests that homozygous expression of the GG allele in mice blunts morphine-induced hypothermia and hotplate antinociception but does not alter morphine CPP, morphine tolerance, or basal inflammatory pain response. PMID:26521067

  15. Estrogen facilitates and the kappa and mu opioid receptors mediate antinociception produced by intrathecal (-)-pentazocine in female rats.

    PubMed

    Robinson, Douglas L; Nag, Subodh; Mokha, Sukhbir S

    2016-10-01

    Pentazocine, a mixed-action kappa opioid receptor (KOR) agonist, has high affinity for both KOR and the mu opioid receptor (MOR), and has been shown clinically to alleviate pain with a pronounced effect in women. However, whether local application of pentazocine in the spinal cord produces antinociception and the contribution of spinal KOR and MOR in mediating the effect of pentazocine in female rats remain unknown. Also, it is not known whether pentazocine-induced antinociception in females is estrogen-dependent. Hence, we investigated whether intrathecal (i.t.) (-)-pentazocine produces thermal antinociception and whether estrogen modulates the drug effect in female rats. Only the highest dose of pentazocine (500 nmol) was effective in producing antinociception in ovariectomized (OVX) rats. In contrast, pentazocine produced antinociception in estradiol-treated ovariectomized females (OVX+E) rats with the lowest effective dose being 250nmol. KOR or MOR mediated the effect of the lowest effective dose in OVX+E rats; however, MOR blockade extended the KOR-mediated effect of 500nmol pentazocine in both groups. In normally cycling females, the 250nmol dose was effective in producing antinociception at the proestrous, but not at the diestrous stage of the estrous cycle. Thus, estrogen facilitates and KOR or MOR mediates. the antinociceptive effect of i.t. (-)-pentazocine in female rats. Selective doses of (-)-pentazocine, with or without MOR blockade, may have a therapeutic benefit. PMID:27312267

  16. mu Opioid receptor-mediated G-protein activation by heroin metabolites: evidence for greater efficacy of 6-monoacetylmorphine compared with morphine.

    PubMed

    Selley, D E; Cao, C C; Sexton, T; Schwegel, J A; Martin, T J; Childers, S R

    2001-08-15

    The efficacy of heroin metabolites for the stimulation of mu opioid receptor-mediated G-protein activation was investigated using agonist-stimulated [(35)S]guanosine-5'-O-(gamma-thio)-triphosphate binding. In rat thalamic membranes, heroin and its primary metabolite, 6-monoacetylmorphine (6-MAM), were more efficacious than morphine or morphine-6-beta D-glucuronide. This increased efficacy was not due to increased action of heroin and 6-MAM at delta receptors, as determined by competitive antagonism by naloxone, lack of antagonism by naltrindole, and competitive partial antagonism with morphine. In agreement with this interpretation, the same relative efficacy profile of heroin and its metabolites was observed at the cloned human mu opioid receptor expressed in C6 glioma cells. Moreover, these efficacy differences were GDP-dependent in a manner consistent with accepted mechanisms of receptor-mediated G-protein activation. The activity of heroin was attributed to in vitro deacetylation to 6-MAM, as confirmed by HPLC analysis. These results indicate that the heroin metabolite 6-MAM possesses higher efficacy than other heroin metabolites at mu opioid receptors, which may contribute to the higher efficacy of heroin compared with morphine in certain behavioral paradigms in vivo. PMID:11448454

  17. Acute "binge" cocaine increases mu-opioid receptor mRNA levels in areas of the rat mesolimbic mesocortical dopamine system.

    PubMed

    Yuferov, V; Zhou, Y; Spangler, R; Maggos, C E; Ho, A; Kreek, M J

    1999-01-01

    Autoradiography studies demonstrated that chronic "binge" cocaine administration increased mu-opioid receptor density in dopaminergically innervated rat brain regions, including the cingulate cortex, the nucleus accumbens, and the basolateral amygdala. The present study investigated the effects of a single day of binge-pattern cocaine administration (3 x 15 mg/kg, intraperitoneally [i.p.] at hourly intervals) on mu-opioid receptor mRNA levels in selected brain regions. Rats were sacrificed 30 min after the third injection and mRNA levels were measured by a quantitative solution hybridization RNase protection assay. Acute binge cocaine administration significantly increased mu-opioid receptor mRNA levels in the frontal cortex, nucleus accumbens, and amygdala, but not in the caudate-putamen, thalamus, hippocampus, and hypothalamus. As has been suggested for other G-protein coupled receptors, the rapid increase of MOR mRNA reported in this study might represent an adaptive response to compensate for a decrease in number of receptors following cocaine-induced opioid peptide release. PMID:10210176

  18. Interactions between chemokine and mu-opioid receptors: Anatomical findings and electrophysiological studies in the rat periaqueductal grey

    PubMed Central

    Heinisch, Silke; Palma, Jonathan; Kirby, Lynn G.

    2010-01-01

    Opioids have immunomodulatory functions and may alter susceptibility to immune disorders. Behavioral studies also indicate that chemokines, molecules expressed by immune cells, block opioid induced analgesia in the periaqueductal grey (PAG). Bi-directional heterologous desensitization of opioid and chemokine receptors has been described in cell systems. We report the anatomical and functional interactions of chemokine receptors with the mu-opioid receptor (MOR) in the rat brain. The chemokine receptors, CXCR4 and CX3CR1, as well as their chemokine substrates, CXCL12 and CX3CL1, are widely expressed in the central nervous system (CNS). Immunohistochemical techniques were utilized to investigate MOR-CXCR4 and MOR-CX3CR1 receptor colocalization in multiple brain areas. Our results demonstrate co-expression of these receptors on individual neurons in several regions including cingulate cortex, hippocampus and PAG, suggesting functional receptor interactions. Whole-cell patch-clamp recordings of PAG neurons in a rat brain slice preparation were used to examine morphine or chemokine (CXCL12, CX3CL1) effects alone or in combination on neuronal membrane properties. Morphine (10 µM) hyperpolarized and reduced input resistance of PAG neurons. CXCL12 and CX3CL1 (10 nM) had no impact on either parameter. In the presence of CXCL12, morphine’s electrophysiological effects were blocked in all neurons, whereas with CX3CL1, morphine’s effects were blocked in 57% of neurons. The data provide electrophysiological evidence for MOR-CXCR4 and MOR-CX3CR1 heterologous desensitization in the PAG at the single cell level. These interactions may contribute to the limited utility of opioid analgesics for inflammatory pain treatment and supports chemokines as neuromodulators. PMID:20974247

  19. Exposure to ethanol on prenatal days 19-20 increases ethanol intake and palatability in the infant rat: involvement of kappa and mu opioid receptors.

    PubMed

    Díaz-Cenzano, Elena; Gaztañaga, Mirari; Gabriela Chotro, M

    2014-09-01

    Prenatal exposure to ethanol on gestation Days 19-20, but not 17-18, increases ethanol acceptance in infant rats. This effect seems to be a conditioned response acquired prenatally, mediated by the opioid system, which could be stimulated by ethanol's pharmacological properties (mu-opioid receptors) or by a component of the amniotic fluid from gestation-day 20 (kappa-inducing factor). The latter option was evaluated administering non-ethanol chemosensory stimuli on gestation Days 19-20 and testing postnatal intake and palatability. However, prenatal exposure to anise or vanilla increased neither intake nor palatability of these tastants on postnatal Day 14. In experiment 2, the role of ethanol's pharmacological effect was tested by administering ethanol and selective antagonists of mu and kappa opioid receptors prenatally. Blocking the mu-opioid receptor system completely reversed the effects on intake and palatability, while antagonizing kappa receptors only partially reduced the effects on palatability. This suggests that the pharmacological effect of ethanol on the fetal mu opioid system is the appetitive reinforcer, which induces the prenatally conditioned preference detected in the preweanling period. PMID:24037591

  20. Targeted Expression of Mu-Opioid Receptors in a Subset of Striatal Direct-Pathway Neurons Restores Opiate Reward

    PubMed Central

    Cui, Yijun; Ostlund, Sean B.; James, Alex; Park, Chang Sin; Ge, Weihong; Roberts, Kristofer W.; Mittal, Nitish; Murphy, Niall P.; Cepeda, Carlos; Kieffer, Brigitte L.; Levine, Michael S.; Jentsch, J. David; Walwyn, Wendy M.; Sun, Yi E.; Evans, Christopher J.; Maidment, Nigel T.; Yang, X. William

    2014-01-01

    SUMMARY Mu-Opioid Receptors (MOR) are necessary for the analgesic and addictive effects of opioids such as morphine, but the MOR-expressing neuronal populations that mediate the distinct opiate effects remain elusive. Here we devised a novel conditional BAC rescue strategy to show that mice with targeted MOR expression in a subpopulation of striatal direct-pathway neurons enriched in the striosome and nucleus accumbens, in an otherwise MOR-null background, restore opiate reward, opiate-induced striatal dopamine release, and partially restore motivation to self-administer opiates. However, they lack opiate analgesia or withdrawal. Importantly, we used Cre-mediated deletion of the rescued MOR transgene to establish that striatal, rather than a few extrastriatal sites of MOR transgene expression, is needed for the restoration of opiate reward. Together, our study demonstrates that a subpopulation of striatal direct-pathway neurons is sufficient to support opiate reward-driven behaviors and provides a novel intersectional genetic approach to dissect neurocircuit-specific gene function in vivo. PMID:24413699

  1. Mu-Opioid Receptor Polymorphisms and Breast Cancer in a Korean Female Adult Population: A Retrospective Study

    PubMed Central

    Oh, Chung-Sik; Lee, Seung-Hyun; Yoo, Young-Bum; Yang, Jung-Hyun

    2016-01-01

    Distribution of A118G single nucleotide polymorphism (SNP) in the mu-opioid receptor 1 gene (OPRM1) differs with ethnicity. We assessed the distribution of this SNP in Korean women with breast cancer and compared it with that in women of other ethnicities with breast cancer. Distribution of SNP genotypes was as follows: 49.8% for AG genotype, 40.6% for AA genotype, and 9.6% for GG genotype. Logistic regression analysis showed a negative association between the presence of the G allele at position 118 of OPRM1 and breast cancer in the studied population (odds ratios [OR], 0.635; p=0.002). However, the AG and GG genotypes were not associated with breast cancer in the studied population (OR, 0.719; p=0.130). The proportions of the AG and GG genotypes of the OPRM1 SNP were higher in Korean women with breast cancer than in those of other ethnicities. PMID:27382398

  2. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord.

    PubMed

    Song, B; Marvizón, J C G

    2005-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the mu-opioid receptor, we measured mu-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced mu-opioid receptor internalization in half of the mu-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-D-aspartate (IC50=2 microM), and N-methyl-D-aspartate antagonists prevented this effect. mu-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-D-aspartate receptor activation. N-methyl-D-aspartate did not affect mu-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-D-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-D-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase mu-opioid receptor internalization in the absence of N-methyl-D-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked mu-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-D-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since mu-opioid receptors in the dorsal horn

  3. Direct association of Mu-opioid and NMDA glutamate receptors supports their cross-regulation: molecular implications for opioid tolerance.

    PubMed

    Garzón, Javier; Rodríguez-Muñoz, María; Sánchez-Blázquez, Pilar

    2012-09-01

    In the nervous system, the interaction of opioids like morphine and its derivatives, with the G protein-coupled Mu-opioid receptor (MOR) provokes the development of analgesic tolerance, as well as physical dependence. Tolerance implies that increasing doses of the drug are required to achieve the same effect, a phenomenon that contributes significantly to the social problems surrounding recreational opioid abuse. In recent years, our understanding of the mechanisms that control MOR function in the nervous system, and that eventually produce opioid tolerance, has increased greatly. Pharmacological studies have identified a number of signaling proteins involved in morphine-induced tolerance, including the N-methyl-D-aspartate acid glutamate receptor (NMDAR), nitric oxide synthase (NOS), protein kinase C (PKC), protein kinase A (PKA), calcium (Ca²⁺)/calmodulin (CaM)-dependent kinase II (CaMKII), delta-opioid receptor (DOR) and the regulators of G-protein signaling (RGS) proteins. There is general agreement on the critical role of the NMDAR/nNOS/CaMKII pathway in this process, which is supported by the recent demonstration of a physical association between MORs and NMDARs in post-synaptic structures. Indeed, it is feasible that treatments that diminish morphine tolerance may target distinct elements within the same regulatory MOR-NMDAR pathway. Accordingly, we propose a model that incorporates the most relevant signaling components implicated in opioid tolerance in which, certain signals originating from the activated MOR are perceived by the associated NMDAR, which in turn exerts a negative feedback effect on MOR signaling. MOR- and NMDAR-mediated signals work together in a sequential and interconnected manner to ultimately induce MOR desensitization. Future studies of these phenomena should focus on adding further components to this signaling pathway in order to better define the mechanism underlying MOR desensitization in neural cells. PMID:22920535

  4. Association of Smoking with Mu- Opioid Receptor Availability Before and During Naltrexone Blockade in Alcohol-Dependent Subjects

    PubMed Central

    Weerts, Elise M.; Wand, Gary S.; Kuwabara, Hiroto; Xu, Xiaoqiang; Frost, J.James; Wong, Dean F.; McCaul, Mary E.

    2012-01-01

    Persons with a history of alcohol dependence are more likely to use tobacco and to meet criteria for nicotine dependence compared to social drinkers or nondrinkers. The high levels of comorbidity of nicotine and alcohol use and dependence are thought to be related to interactions between nicotinic, opioid and dopamine receptors in mesolimbic regions. The current study examined whether individual differences in regional mu-opioid receptor (MOR) availability were associated with tobacco use, nicotine dependence, and level of nicotine craving in 25 alcohol dependent (AD) subjects. AD subjects completed an inpatient protocol, which included medically supervised alcohol withdrawal, monitored alcohol abstinence, transdermal nicotine maintenance (21 mg/day), and Positron Emission Tomography (PET) imaging using the MOR agonist [11C]-carfentanil (CFN) before (basal scan) and during treatment with 50 mg/day naltrexone (naltrexone scan). Subjects who had higher scores on the Fagerström Nicotine Dependence Test had significantly lower basal scan binding potential (BPND) across mesolimbic regions including the amygdala, cingulate, globus pallidus, thalamus and insula. Likewise, the number of cigarettes per day was negatively associated with basal scan BPND in mesolimbic regions Higher nicotine craving was significantly associated with lower BPND in amygdala, globus pallidus, putamen, thalamus and ventral striatum. Although blunted during naltrexone treatment, the negative association was maintained for nicotine dependence and cigarettes per day, but not for nicotine craving. These findings suggest that intensity of cigarette smoking and severity of nicotine dependence symptoms are systematically related to reduced BPND across multiple brain regions in AD subjects. PMID:23252742

  5. Dalargin and [Cys-(O2NH2)]2 analogues of enkephalins and their selectivity for mu opioid receptors.

    PubMed

    Pencheva, N; Ivancheva, C; Dimitrov, E; Bocheva, A; Radomirov, R

    1995-07-01

    1. Effects of the enkephalins Met-enk (M) and Leu-enk (L), of two newly synthesized analogues--[Cys-(O2NH2)]2-Met-enk (CM) and [Cys-(O2NH2)]2-Leu-enk (CL)--and of a hexapeptide--D-Ala2-Leu5-Arg6 (Dalargin; DL) on the spontaneous and electrically stimulated activity were examined with respect to their selectivity for the mu opioid receptors in the longitudinal layer of guinea pig ileum. 2. M and CM exerted relaxing and contractile effects on the spontaneous contractile activity while L, CL and DL produced only relaxation. The order of potency towards the relaxatory phase was DL > M > CM > L > CL and towards the contractile phase CM > M. 3. The effects of enkephalins on the spontaneous activity were naloxone and TTX sensitive except for the contractile phase of M and CM which persisted in the presence of TTX. NO was not involved in the neurotransmission of the relaxatory responses, while the blockade of alpha and beta adrenoceptors showed the participation of adrenergic mechanisms. Relaxation and contraction induced by enkephalins could not be directly attributed to cholinergic neurotransmission. 4. The naloxone-sensitive and concentration-dependent inhibitory effects of enkephalins and their analogues on the electrically stimulated cholinergic contractions were established. The order of the relative potency of opioids was: DL-3.8; M-1.0; L-0.4; CM-0.01; CL-0.005. 5. These data indicated that the D-Ala2 substitution and lengthening of the peptide chain by Arg6 in the molecule of L increased the potency at the mu opiate receptors, while the substitution in position 2 with Cys-(O2NH2) in the molecule of M and L yielded a less potent and selective mu agonists. PMID:7635255

  6. It’s MORe exciting than mu: crosstalk between mu opioid receptors and glutamatergic transmission in the mesolimbic dopamine system

    PubMed Central

    Chartoff, Elena H.; Connery, Hilary S.

    2014-01-01

    Opioids selective for the G protein-coupled mu opioid receptor (MOR) produce potent analgesia and euphoria. Heroin, a synthetic opioid, is considered one of the most addictive substances, and the recent exponential rise in opioid addiction and overdose deaths has made treatment development a national public health priority. Existing medications (methadone, buprenorphine, and naltrexone), when combined with psychosocial therapies, have proven efficacy in reducing aspects of opioid addiction. Unfortunately, these medications have critical limitations including those associated with opioid agonist therapies (e.g., sustained physiological dependence and opioid withdrawal leading to high relapse rates upon discontinuation), non-adherence to daily dosing, and non-renewal of monthly injection with extended-release naltrexone. Furthermore, current medications fail to ameliorate key aspects of addiction such as powerful conditioned associations that trigger relapse (e.g., cues, stress, the drug itself). Thus, there is a need for developing novel treatments that target neural processes corrupted with chronic opioid use. This requires a basic understanding of molecular and cellular mechanisms underlying effects of opioids on synaptic transmission and plasticity within reward-related neural circuits. The focus of this review is to discuss how crosstalk between MOR-associated G protein signaling and glutamatergic neurotransmission leads to immediate and long-term effects on emotional states (e.g., euphoria, depression) and motivated behavior (e.g., drug-seeking, relapse). Our goal is to integrate findings on how opioids modulate synaptic release of glutamate and postsynaptic transmission via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors in the nucleus accumbens and ventral tegmental area with the clinical (neurobehavioral) progression of opioid dependence, as well as to identify gaps in knowledge that can be addressed in future studies

  7. Mu opioid receptor up-regulation and participation in excitability of hippocampal pyramidal cell electrophysiology

    SciTech Connect

    Moudy, A.M.

    1988-01-01

    Chronic administration of opiate antagonists to rats results in up-regulation of their brain opioid receptors. Using subcellular fractionation techniques, brain opioid receptors were resolved into two membrane populations, one associated with synaptic plasma membranes (SPM) and the other enriched in smooth endoplasmic reticulum and Golgi (microsomes). This study addressed in part the question of whether an antagonist induces up-regulation uniformly in these two populations. Rats were administered naltrexone by subcutaneously implanted osmotic minipumps. Forebrain mu receptor levels were determined by homologous displacement of ({sup 3}H)D-ala{sup 2}-mePhe{sup 4}-gly-ol{sup 5}-enkephalin (DAGO) followed by computer estimation of binding parameters. Receptor levels in crude membranes rose 77% after treatment. Microsomes displayed a 92% increase, a two-fold greater change than in SPMs (51%). These results establish that naltrexone induces up-regulation of both membrane populations; and that microsomal and SPM receptors represent discrete populations of intracellular and cell surface sites, respectively. Binding experiments on isolated hippocampi also demonstrated up-regulation (71%) of mu receptors. To demonstrate up-regulation of opioid receptors electrophysiologically, hippocampal slices were prepared from rats which had been chronically treated with naltrexone. After superfusion with DAGO, these slices showed a 42% greater population spike output than controls in response to the same EPSP input. Hippocampi from animals treated for two weeks showed an additional increase in sensitivity. The results support a disinhibitory role for opioids in pyramidal cell hyper-excitability. More importantly, they demonstrate a significant physiological correlate to opioid receptor up-regulation.

  8. The Mu Opioid Receptor A118G Gene Polymorphism Moderates Effects of Trait Anger-Out on Acute Pain Sensitivity

    PubMed Central

    Bruehl, Stephen; Chung, Ok Y.; Burns, John W.

    2008-01-01

    Both trait anger-in (managing anger through suppression) and anger-out (managing anger through direct expression) are related to pain responsiveness, but only anger-out effects involve opioid mechanisms. Preliminary work suggested the effects of anger-out on post-operative analgesic requirements were moderated by the A118G single nucleotide polymorphism of the mu opioid receptor gene. This study further explored these potential genotype X phenotype interactions as they impact acute pain sensitivity. Genetic samples and measures of anger-in and anger-out were obtained in 87 subjects (from three studies) who participated in controlled laboratory acute pain tasks (ischemic, finger pressure, thermal). McGill Pain Questionnaire (MPQ) Sensory and Affective ratings for each pain task were standardized within studies, aggregated across pain tasks, and combined for analyses. Significant anger-out X A118G interactions were observed (p’s<.05). Simple effects tests for both pain measures revealed that whereas anger-out was nonsignificantly hyperalgesic in subjects homozygous for the wild-type allele, anger-out was significantly hypoalgesic in those with the variant G allele (p’s<.05). For the MPQ-Affective measure, this interaction arose both from low pain sensitivity in high anger-out subjects with the G allele and heightened pain sensitivity in low anger-out subjects with the G allele relative to responses in homozygous wild-type subjects. No genetic moderation was observed for anger-in, although significant main effects on MPQ-Affective ratings were noted (p<.005). Anger-in main effects were due to overlap with negative affect, but anger-out X A118G interactions were not, suggesting unique effects of expressive anger regulation. Results support opioid-related genotype X phenotype interactions involving trait anger-out. PMID:18579306

  9. Effects of defeat stress on behavioral flexibility in males and females: modulation by the mu-opioid receptor

    PubMed Central

    Laredo, Sarah A.; Steinman, Michael Q.; Robles, Cindee F.; Ferrer, Emilio; Ragen, Benjamin J.; Trainor, Brian C.

    2014-01-01

    Behavioral flexibility is a component of executive functioning that allows individuals to adapt to changing environmental conditions. Independent lines of research indicate that the mu opioid receptor (MOR) is an important mediator of behavioral flexibility and responses to psychosocial stress. The current study bridges these two lines of research and tests the extent to which social defeat and MOR affect behavioral flexibility and whether sex moderates these effects in California mice (Peromyscus californicus). Males and females assigned to social defeat or control conditions were tested in a Barnes maze. In males, defeat impaired behavioral flexibility but not acquisition. Female performance was unaffected by defeat. MOR binding in defeated and control mice in the orbitofrontal cortex (OFC), striatum, and hippocampus was examined via autoradiography. Stressed males had reduced MOR binding in the OFC whereas females were unaffected. The MOR antagonist beta-funaltrexamine (1 mg/kg) impaired performance in males naïve to defeat during the reversal phase but had no effect on females. Finally, we examined the effects of the MOR agonist morphine (2.5, 5 mg/kg) on stressed mice. As expected, morphine improved behavioral flexibility in stressed males. The stress-induced deficits in behavioral flexibility in males are consistent with a proactive coping strategy, including previous observations that stressed male California mice exhibit strong social approach and aggression. Our pharmacological data suggest that a down-regulation of MOR signaling in males may contribute to sex differences in behavioral flexibility following stress. This is discussed in the framework of coping strategies for individuals with mood disorders. PMID:25615538

  10. Functional mu opioid receptors are expressed in cholinergic interneurons of the rat dorsal striatum: territorial specificity and diurnal variation.

    PubMed

    Jabourian, Maritza; Venance, Laurent; Bourgoin, Sylvie; Ozon, Sylvie; Pérez, Sylvie; Godeheu, Gérard; Glowinski, Jacques; Kemel, Marie-Louise

    2005-06-01

    Striatal cholinergic interneurons play a crucial role in the control of movement as well as in motivational and learning aspects of behaviour. Neuropeptides regulate striatal cholinergic transmission and particularly activation of mu opioid receptor (MOR) inhibits acetylcholine (ACh) release in the dorsal striatum. In the present study we investigated whether this cholinergic transmission could be modulated by an enkephalin/MOR direct process. We show that mRNA and protein of MORs are expressed by cholinergic interneurons in the limbic/prefrontal territory but not by those in the sensorimotor territory of the dorsal striatum. These MORs are functional because potassium-evoked release of ACh from striatal synaptosomes was dose-dependently reduced by a selective MOR agonist, this effect being suppressed by a MOR antagonist. The MOR regulation of cholinergic interneurons presented a diurnal variation. (i) The percentage of cholinergic interneurons containing MORs that was 32% at the beginning of the light period (morning) increased to 80% in the afternoon. (ii) The MOR-mediated inhibition of synaptosomal ACh release was higher in the afternoon than in the morning. (iii) While preproenkephalin mRNA levels remained stable, enkephalin tissue content was the lowest (-32%) in the afternoon when the spontaneous (+35%) and the N-methyl-d-aspartate-evoked (+140%) releases of enkephalin (from microsuperfused slices) were the highest. Therefore, by acting on MORs present on cholinergic interneurons, endogenously released enkephalin reduces ACh release. This direct enkephalin/MOR regulation of cholinergic transmission that operates only in the limbic/prefrontal territory of the dorsal striatum might contribute to information processing in fronto-cortico-basal ganglia circuits. PMID:16026468

  11. Effects of defeat stress on behavioral flexibility in males and females: modulation by the mu-opioid receptor.

    PubMed

    Laredo, Sarah A; Steinman, Michael Q; Robles, Cindee F; Ferrer, Emilio; Ragen, Benjamin J; Trainor, Brian C

    2015-02-01

    Behavioral flexibility is a component of executive functioning that allows individuals to adapt to changing environmental conditions. Independent lines of research indicate that the mu opioid receptor (MOR) is an important mediator of behavioral flexibility and responses to psychosocial stress. The current study bridges these two lines of research and tests the extent to which social defeat and MOR affect behavioral flexibility and whether sex moderates these effects in California mice (Peromyscus californicus). Males and females assigned to social defeat or control conditions were tested in a Barnes maze. In males, defeat impaired behavioral flexibility but not acquisition. Female performance was unaffected by defeat. MOR binding in defeated and control mice in the orbitofrontal cortex (OFC), striatum and hippocampus was examined via autoradiography. Stressed males had reduced MOR binding in the OFC whereas females were unaffected. The MOR antagonist beta-funaltrexamine (1 mg/kg) impaired performance in males naïve to defeat during the reversal phase but had no effect on females. Finally, we examined the effects of the MOR agonist morphine (2.5 and 5 mg/kg) on stressed mice. As expected, morphine improved behavioral flexibility in stressed males. The stress-induced deficits in behavioral flexibility in males are consistent with a proactive coping strategy, including previous observations that stressed male California mice exhibit strong social approach and aggression. Our pharmacological data suggest that a down-regulation of MOR signaling in males may contribute to sex differences in behavioral flexibility following stress. This is discussed in the framework of coping strategies for individuals with mood disorders. PMID:25615538

  12. Analgesic tolerance of opioid agonists in mutant mu-opioid receptors expressed in sensory neurons following intrathecal plasmid gene delivery

    PubMed Central

    2013-01-01

    Background Phosphorylation sites in the C-terminus of mu-opioid receptors (MORs) are known to play critical roles in the receptor functions. Our understanding of their participation in opioid analgesia is mostly based on studies of opioid effects on mutant receptors expressed in in vitro preparations, including cell lines, isolated neurons and brain slices. The behavioral consequences of the mutation have not been fully explored due to the complexity in studies of mutant receptors in vivo. To facilitate the determination of the contribution of phosphorylation sites in MOR to opioid-induced analgesic behaviors, we expressed mutant and wild-type human MORs (hMORs) in sensory dorsal root ganglion (DRG) neurons, a major site for nociceptive (pain) signaling and determined morphine- and the full MOR agonist, DAMGO,-induced effects on heat-induced hyperalgesic behaviors and potassium current (IK) desensitization in these rats. Findings A mutant hMOR DNA with the putative phosphorylation threonine site at position 394 replaced by an alanine (T394A), i.e., hMOR-T, or a plasmid containing wild type hMOR (as a positive control) was intrathecally delivered. The plasmid containing GFP or saline was used as the negative control. To limit the expression of exogenous DNA to neurons of DRGs, a neuron-specific promoter was included in the plasmid. Following a plasmid injection, hMOR-T or hMOR receptors were expressed in small and medium DRG neurons. Compared with saline or GFP rats, the analgesic potency of morphine was increased to a similar extent in hMOR-T and hMOR rats. Morphine induced minimum IK desensitization in both rat groups. In contrast, DAMGO increased analgesic potency and elicited IK desensitization to a significantly less extent in hMOR-T than in hMOR rats. The development and extent of acute and chronic tolerance induced by repeated morphine or DAMGO applications were not altered by the T394A mutation. Conclusions These results indicate that phosphorylation of T394

  13. Cell-Autonomous Regulation of Mu-Opioid Receptor Recycling by Substance P

    PubMed Central

    Bowman, Shanna L.; Soohoo, Amanda L.; Shiwarski, Daniel J.; Schulz, Stefan; Pradhan, Amynah A.; Puthenveedu, Manojkumar A.

    2015-01-01

    SUMMARY How neurons coordinate and reprogram multiple neurotransmitter signals is an area of broad interest. Here, we show that substance P (SP), a neuropep-tide associated with inflammatory pain, reprograms opioid receptor recycling and signaling. SP, through activation of the neurokinin 1 (NK1R) receptor, increases the post-endocytic recycling of the muopioid receptor (MOR) in trigeminal ganglion (TG) neurons in an agonist-selective manner. SP-mediated protein kinase C (PKC) activation is both required and sufficient for increasing recycling of exogenous and endogenous MOR in TG neurons. The target of this cross-regulation is MOR itself, given that mutation of either of two PKC phosphorylation sites on MOR abolishes the SP-induced increase in recycling and resensitization. Furthermore, SP enhances the resensitization of fentanyl-induced, but not morphine-induced, antinociception in mice. Our results define a physiological pathway that cross-regulates opioid receptor recycling via direct modification of MOR and suggest a mode of homeo-static interaction between the pain and analgesic systems. PMID:25801029

  14. Role of the mu opioid receptor in opioid modulation of immune function

    PubMed Central

    Ninković, Jana; Roy, Sabita

    2014-01-01

    SUMMARY Endogenous opioids are synthesized in vivo in order to modulate pain mechanisms and inflammatory pathways. Endogenous and exogenous opioids mediate analgesia in response to painful stimuli by binding to opioid receptors on neuronal cells. However, wide distribution of opioid receptors on tissues and organ systems outside the CNS, such as the cells of the immune system, indicate that opioids are capable of exerting additional effects in the periphery, such as immunomodulation. The increased prevalence of infections in opioid abusers based epidemiological studies further highlights the immunosuppressive effects of opioids. In spite of their many debilitating side effects, prescription opioids remain a gold standard for treatment of chronic pain. Therefore, given the prevalence of opioid use and abuse, opioid mediated immune suppression presents a serious concern in our society today. It is imperative to understand the mechanisms by which exogenous opioids modulate immune processes. In this review we will discuss the role of opioid receptors and their ligands in mediating immune suppressive functions. We will summarize recent studies on direct and indirect opioid modulation of the cells of the immune system as well as the role of opioids in exacerbation of certain disease states. PMID:22170499

  15. Involvement of mu-opioid receptors in antinociception and inhibition of gastrointestinal transit induced by 7-hydroxymitragynine, isolated from Thai herbal medicine Mitragyna speciosa.

    PubMed

    Matsumoto, Kenjiro; Hatori, Yoshio; Murayama, Toshihiko; Tashima, Kimihito; Wongseripipatana, Sumphan; Misawa, Kaori; Kitajima, Mariko; Takayama, Hiromitsu; Horie, Syunji

    2006-11-01

    7-hydroxymitragynine, a constituent of the Thai herbal medicine Mitragyna speciosa, has been found to have a potent opioid antinociceptive effect. In the present study, we investigated the mechanism of antinociception and the inhibitory effect on gastrointestinal transit of 7-hydroxymitragynine, and compared its effects with those of morphine. When administered subcutaneously to mice, 7-hydroxymitragynine produced antinociceptive effects about 5.7 and 4.4 times more potent than those of morphine in the tail-flick (ED50=0.80 mg/kg) and hot-plate (ED50=0.93 mg/kg) tests, respectively. The antinociceptive effect of 7-hydroxymitragynine was significantly blocked by the mu1/mu2-opioid receptor antagonist beta-funaltrexamine hydrochloride (beta-FNA) and the mu1-opioid receptor-selective antagonist naloxonazine in both tests. Thus, 7-hydroxymitragynine acts predominantly on mu-opioid receptors, especially on mu1-opioid receptors. Isolated tissue studies further supported its specificity for the mu-opioid receptors. Further, 7-hydroxymintragynine dose-dependently (ED50=1.19 mg/kg, s.c.) and significantly inhibited gastrointestinal transit in mice, as morphine does. The inhibitory effect was significantly antagonized by beta-FNA pretreatment, but slightly antagonized by naloxonazine. The ED50 value of 7-hydroxymitragynine on gastrointestinal transit was larger than its antinociceptive ED50 value. On the other hand, morphine significantly inhibits gastrointestinal transit at a much smaller dose than its antinociceptive dose. These results suggest that mu-opioid receptor mechanisms mediate the antinociceptive effect and inhibition of gastrointestinal transit. This compound induced more potent antinociceptive effects and was less constipating than morphine. PMID:16978601

  16. Neonatal Administration of Thimerosal Causes Persistent Changes in Mu Opioid Receptors in the Rat Brain

    PubMed Central

    Olczak, Mieszko; Duszczyk, Michalina; Mierzejewski, Pawel; Bobrowicz, Teresa

    2010-01-01

    Thimerosal added to some pediatric vaccines is suspected in pathogenesis of several neurodevelopmental disorders. Our previous study showed that thimerosal administered to suckling rats causes persistent, endogenous opioid-mediated hypoalgesia. Here we examined, using immunohistochemical staining technique, the density of μ-opioid receptors (MORs) in the brains of rats, which in the second postnatal week received four i.m. injections of thimerosal at doses 12, 240, 1,440 or 3,000 μg Hg/kg. The periaqueductal gray, caudate putamen and hippocampus were examined. Thimerosal administration caused dose-dependent statistically significant increase in MOR densities in the periaqueductal gray and caudate putamen, but decrease in the dentate gyrus, where it was accompanied by the presence of degenerating neurons and loss of synaptic vesicle marker (synaptophysin). These data document that exposure to thimerosal during early postnatal life produces lasting alterations in the densities of brain opioid receptors along with other neuropathological changes, which may disturb brain development. PMID:20803069

  17. Neuropeptide FF-sensitive confinement of mu opioid receptor does not involve lipid rafts in SH-SY5Y cells

    SciTech Connect

    Mouledous, Lionel

    2008-08-15

    *: Mu opioid (MOP) receptor activation can be functionally modulated by stimulation of Neuropeptide FF 2 (NPFF{sub 2}) G protein-coupled receptors. Fluorescence recovery after photobleaching experiments have shown that activation of the NPFF{sub 2} receptor dramatically reduces the fraction of MOP receptors confined in microdomains of the plasma membrane of SH-SY5Y neuroblastoma cells. The aim of the present work was to assess if the direct observation of receptor compartmentation by fluorescence techniques in living cells could be related to indirect estimation of receptor partitioning in lipid rafts after biochemical fractionation of the cell. Our results show that MOP receptor distribution in lipid rafts is highly dependent upon the method of purification, questioning the interpretation of previous data regarding MOP receptor compartmentation. Moreover, the NPFF analogue 1DMe does not modify the distribution profile of MOP receptors, clearly demonstrating that membrane fractionation data do not correlate with direct measurement of receptor compartmentation in living cells.

  18. Opioid Peptidomimetics: Leads for the Design of Bioavailable Mixed Efficacy Mu Opioid Receptor (MOR) Agonist/Delta Opioid Receptor (DOR) Antagonist Ligands

    PubMed Central

    Mosberg, Henry I.; Yeomans, Larisa; Harland, Aubrie A.; Bender, Aaron M.; Sobczyk-Kojiro, Katarzyna; Anand, Jessica P.; Clark, Mary J.; Jutkiewicz, Emily M.; Traynor, John R.

    2013-01-01

    We have previously described opioid peptidomimetic, 1, employing a tetrahydroquinoline scaffold and modeled on a series of cyclic tetrapeptide opioid agonists. We have recently described modifications to these peptides that confer a mu opioid receptor (MOR) agonist, delta opioid receptor (DOR) antagonist profile, which has been shown to reduce the development of tolerance to the analgesic actions of MOR agonists. Several such bifunctional ligands have been reported, but none has been demonstrated to cross the blood brain barrier. Here we describe the transfer of structural features that evoked MOR agonist/DOR antagonist behavior in the cyclic peptides to the tetrahydroquinoline scaffold and show that the resulting peptidomimetics maintain the desired pharmacological profile. Further, the 4R diastereomer of 1 was fully efficacious and approximately equipotent to morphine in the mouse warm water tail withdrawal assay following intraperitoneal administration and thus a promising lead for the development of opioid analgesics with reduced tolerance. PMID:23419026

  19. [Interactions of peripheral mu-opioid receptors and K(ATP)-channels in regulation of cardiac electrical stability in ischemia, reperfusion, and postinfarction cardiosclerosis].

    PubMed

    Maslov, L N; Krylatov, A V; Naryzhaia, N V; Solenkova, N V; Lishmanov, A Iu; Bogomaz, S A; Gross, G J; Stefano, J B; Loktiushina, B A

    2002-07-01

    It has been shown that mu-opioid receptor stimulation by intravenous administration of the selective mu receptor agonist DALDA in a dose of 0.1 mg/kg prevented ischemic and reperfusion arrhythmias in rats subjected to coronary artery occlusion (10 min) and reperfusion (10 min), and also increased the ventricular fibrillation threshold in rats with postinfarction cardiac fibrosis. These effects were abolished by pre-treatment with the selective mu receptor antagonist CTAP in a dose of 0.5 mg/kg or by prior injection of the opioid receptor antagonist naloxone methiodide (2 mg/kg) which does not penetrate the blood-braib barrier. Both antagonists by themselves had no effect on the incidence of occlusion or reperfusion-induced arrhythmias or on the ventricular fibrillation threshold. Pre-treatment with ATP-sensitive K+ channel (KATP channel) blocker glibenclamide in a dose of 0.3 mg/kg completely abolished the antiarrhythmic effect of DALDA. We believe that DALDA prevents occurrence of electrical instability during ischemia and reperfusion and increases the ventricular fibrillation threshold in rats with postinfarction cardiac fibrosis via stimulation of peripheral mu-opioid receptor which appear to be coupled to the KATP channel. PMID:12238351

  20. Morphine-induced trafficking of a mu-opioid receptor interacting protein in rat locus coeruleus neurons.

    PubMed

    Jaremko, Kellie M; Thompson, Nicholas L; Reyes, Beverly A S; Jin, Jay; Ebersole, Brittany; Jenney, Christopher B; Grigson, Patricia S; Levenson, Robert; Berrettini, Wade H; Van Bockstaele, Elisabeth J

    2014-04-01

    Opiate addiction is a devastating health problem, with approximately 2million people currently addicted to heroin or non-medical prescription opiates in the United States alone. In neurons, adaptations in cell signaling cascades develop following opioid actions at the mu opioid receptor (MOR). A novel putative target for intervention involves interacting proteins that may regulate trafficking of MOR. Morphine has been shown to induce a re-distribution of a MOR-interacting protein Wntless (WLS, a transport molecule necessary for secretion of neurotrophic Wnt proteins), from cytoplasmic to membrane compartments in rat striatal neurons. Given its opiate-sensitivity and its well-characterized molecular and cellular adaptations to morphine exposure, we investigated the anatomical distribution of WLS and MOR in the rat locus coeruleus (LC)-norepinephrine (NE) system. Dual immunofluorescence microscopy was used to test the hypothesis that WLS is localized to noradrenergic neurons of the LC and that WLS and MOR co-exist in common LC somatodendritic processes, providing an anatomical substrate for their putative interactions. We also hypothesized that morphine would influence WLS distribution in the LC. Rats received saline, morphine or the opiate agonist [d-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO), and tissue sections through the LC were processed for immunogold-silver detection of WLS and MOR. Statistical analysis showed a significant re-distribution of WLS to the plasma membrane following morphine treatment in addition to an increase in the proximity of gold-silver labels for MOR and WLS. Following DAMGO treatment, MOR and WLS were predominantly localized within the cytoplasmic compartment when compared to morphine and control. In a separate cohort of rats, brains were obtained from saline-treated or heroin self-administering male rats for pulldown co-immunoprecipitation studies. Results showed an increased association of WLS and MOR following heroin exposure. As the

  1. Morphine-induced trafficking of a mu-opioid receptor interacting protein in rat locus coeruleus neurons

    PubMed Central

    Jaremko, Kellie M.; Thompson, Nicholas L.; Reyes, Beverly A. S.; Jin, Jay; Ebersole, Brittany; Jenney, Christopher B.; Grigson, Patricia S.; Levenson, Robert; Berrettini, Wade H.; Van Bockstaele, Elisabeth J.

    2014-01-01

    Opiate addiction is a devastating health problem, with approximately 2 million people currently addicted to heroin or non-medical prescription opiates in the United States alone. In neurons, adaptations in cell signaling cascades develop following opioid actions at the mu opioid receptor (MOR). A novel putative target for intervention involves interacting proteins that may regulate trafficking of MOR. Morphine has been shown to induce a re-distribution of a MOR-interacting protein Wntless (WLS, a transport molecule necessary for secretion of neurotrophic Wnt proteins), from cytoplasmic to membrane compartments in rat striatal neurons. Given its opiate-sensitivity and its well-characterized molecular and cellular adaptations to morphine exposure, we investigated the anatomical distribution of WLS and MOR in the rat locus coeruleus (LC)-norepinephrine (NE) system. Dual immunofluorescence microscopy was used to test the hypothesis that WLS is localized to noradrenergic neurons of the LC and that WLS and MOR co-exist in common LC somatodendritic processes, providing an anatomical substrate for their putative interactions. We also hypothesized that morphine would influence WLS distribution in the LC. Rats received saline, morphine or the opiate agonist [D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO), and tissue sections through the LC were processed for immunogold-silver detection of WLS and MOR. Statistical analysis showed a significant re-distribution of WLS to the plasma membrane following morphine treatment in addition to an increase in the proximity of gold-silver labels for MOR and WLS. Following DAMGO treatment, MOR and WLS were predominantly localized within the cytoplasmic compartment when compared to morphine and control. In a separate cohort of rats, brains were obtained from saline-treated or heroin self-administering male rats for pulldown co-immunoprecipitation studies. Results showed an increased association of WLS and MOR following heroin exposure. As

  2. /sup 125/I-FK 33-824: a selective probe for radioautographic labeling of mu opioid receptors in the brain

    SciTech Connect

    Moyse, E.; Pasquini, F.; Quirion, R.; Beaudet, A.

    1986-03-01

    The selectivity of the Met-enkephalin analog FK 33-824 (FK) for mu opioid receptors has been, over the years, a matter of controversy. We report here pharmacological and radioautographic data demonstrating that at nanomolar concentrations. /sup 125/I-FK interacts exclusively with mu sites. (1) Specific binding of /sup 125/I-FK to rat striatal membranes is totally inhibited by mu- and/or delta-preferring ligands according to monovalent, Michaelian kinetics, with a potency proportional to the affinity of competing drugs for mu receptors. (2) Unlabeled FK competes only at high concentration with the delta-selective ligand 3H-DPLPE and according to the same kinetics as the mu-selective agonist DAGO. (3) /sup 125/I-FK generates the same regional radioautographic labeling pattern as 3H-DAGO. We conclude that when used at nanomolar concentrations /sup 125/I-FK constitutes a selective probe for the radioautographic detection of mu opioid receptors at both light and electron microscopic levels.

  3. Mu opioid receptor in spermatozoa, eggs and larvae of gilthead sea bream (Sparus Aurata) and its involvement in stress related to aquaculture.

    PubMed

    Albrizio, Maria; Guaricci, Antonio C; Milano, Serena; Macrì, Francesco; Aiudi, Giulio

    2014-08-01

    In aquaculture, unfavourable conditions experienced during early development may have strong downstream effects on the adult phenotype and fitness. Sensitivity to stress, leading to disease, reduced growth and mortality, is higher in larvae than in adult fish. In this study, conducted on sea bream (Sparus aurata), we evidenced the presence of the mu opioid receptor in gametes and larvae at different developmental stages. Moreover, we evaluated the possibility of reducing the effects of artificially produced stress, altering temperature, salinity and pH, by naloxone (an opioid antagonist) and calcium. Results evidenced that mu opioid receptor is present in larvae and in gametes of both sexes and that, during larval growth, its expression level changes accordingly; furthermore, naloxone/calcium association is efficacious in increasing the survival period of treated larvae compared to controls. We conclude that in sea bream rearing, the use of naloxone/calcium against stress can improve fish farming techniques by reducing larval mortality and consequently increasing productivity. PMID:24338156

  4. Argon blocks the expression of locomotor sensitization to amphetamine through antagonism at the vesicular monoamine transporter-2 and mu-opioid receptor in the nucleus accumbens.

    PubMed

    David, H N; Dhilly, M; Degoulet, M; Poisnel, G; Meckler, C; Vallée, N; Blatteau, J-É; Risso, J-J; Lemaire, M; Debruyne, D; Abraini, J H

    2015-01-01

    We investigated the effects of the noble gas argon on the expression of locomotor sensitization to amphetamine and amphetamine-induced changes in dopamine release and mu-opioid neurotransmission in the nucleus accumbens. We found (1) argon blocked the increase in carrier-mediated dopamine release induced by amphetamine in brain slices, but, in contrast, potentiated the decrease in KCl-evoked dopamine release induced by amphetamine, thereby suggesting that argon inhibited the vesicular monoamine transporter-2; (2) argon blocked the expression of locomotor and mu-opioid neurotransmission sensitization induced by repeated amphetamine administration in a short-term model of sensitization in rats; (3) argon decreased the maximal number of binding sites and increased the dissociation constant of mu-receptors in membrane preparations, thereby indicating that argon is a mu-receptor antagonist; (4) argon blocked the expression of locomotor sensitization and context-dependent locomotor activity induced by repeated administration of amphetamine in a long-term model of sensitization. Taken together, these data indicate that argon could be of potential interest for treating drug addiction and dependence. PMID:26151922

  5. Design, Syntheses, and Biological Evaluation of 14-Heteroaromatic Substituted Naltrexone Derivatives: Pharmacological Profile Switch from Mu Opioid Receptor Selectivity to Mu/Kappa Opioid Receptor Dual Selectivity

    PubMed Central

    Yuan, Yunyun; Zaidi, Saheem A.; Elbegdorj, Orgil; Aschenbach, Lindsey C. K.; Li, Guo; Stevens, David L.; Scoggins, Krista L.; Dewey, William L.; Selley, Dana E.; Zhang, Yan

    2015-01-01

    Based on a mu opioid receptor (MOR) homology model and the “isosterism” concept, three generations of 14-heteroaromatically substituted naltrexone derivatives were designed, synthesized, and evaluated as potential MOR selective ligands. The first generation ligands appeared to be MOR selective, whereas the second and the third generation ones showed MOR/kappa opioid receptor (KOR) dual selectivity. Docking of ligands 2 (MOR selective) and 10 (MOR/KOR dual selective) to the three opioid receptor crystal structures revealed a non-conserved residue facilitated “hydrogen bonding network” that could be responsible for their distinctive selectivity profiles. The MOR/KOR dual selective ligand 10 showed no agonism and acted as a potent antagonist in the tail flick assay. It also produced less severe opioid withdrawal symptoms than naloxone in morphine dependent mice. In conclusion, ligand 10 may serve as a novel lead compound to develop MOR/KOR dual selective ligands, which might possess unique therapeutic value for opioid addiction treatment. PMID:24144240

  6. Mu-opioid receptor activation prevents apoptosis following serum withdrawal in differentiated SH-SY5Y cells and cortical neurons via phosphatidylinositol 3-kinase.

    PubMed

    Iglesias, M; Segura, M F; Comella, J X; Olmos, G

    2003-03-01

    Opioid peptides and alkaloids exert their effects via G protein-coupled receptors (GPCRs). It has been shown that, in addition to trophic factors, some GPCRs are able to activate the phosphatidylinositol 3-kinase/Akt (PI 3-K/Akt) signal transduction pathway, thus leading to cell survival. The aim of this study was to test whether activation of mu-opioid receptors has protective effects on serum withdrawal-induced cell death and to study the possible implication of PI 3-K in this process. In SH-SY5Y neuroblastoma cells fully differentiated by exposure to retinoic acid for five days, the enkephalin derivative selective mu-agonist DAMGO (0.1-2 microM) and the alkaloid morphine (0.1-10 microM) promoted cell survival after serum deprivation (MTT and trypan blue exclusion assays), without inducing cell proliferation. These effects were fully reversed by naloxone, by the selective mu-antagonist beta-funaltrexamine (beta-FNA) and also by the specific PI 3-K inhibitor LY294002. The two agonists stimulated Akt phosphorylation and the effect was also abolished by beta-FNA and by LY294002. In mouse primary cortical neurons, DAMGO reduced the percentage of apoptosis after 6, 12, 24 and 48 h of serum withdrawal; as determined by Hoechst staining. This effect was blocked by beta-FNA, by pre-treatment with pertussis toxin and by LY294002. DAMGO also stimulated Akt phosphorylation via PI 3-K in this primary neuronal culture. Together, these results indicate that stimulation of the mu-opioid receptor promotes neuronal survival in a G(i/o)-linked, PI 3-K-dependent signaling cascade and suggest that Akt may be a key downstream kinase involved in this anti-apoptotic effect. PMID:12646285

  7. Binding and structure-activity-relation of benzo[f]isoquinoline- and norcodeinone-derivatives at mu-opioid receptors in the rat cerebral cortex.

    PubMed Central

    Freissmuth, M.; Beindl, W.; Kratzel, M.

    1993-01-01

    1. We have probed the ligand binding site of the mu-opioid receptor using a series of isoquinoline- and norcodeinone-derivatives; in these morphine- and codeine-analogues, the position of the piperidine-nitrogen as well as its mobility is altered relative to that found in morphine. 2. The mu-receptor in rat cortical membranes was labelled with [3H]-naloxone and competition experiments were carried out in the absence and presence of Gpp(NH)p and NaCl: conditions, which are associated with affinity shifts for agonists whilst antagonist affinity remains unaffected. Moving the piperidine-nitrogen closer to the phenolic ring or reducing its mobility by incorporation into an additional ring drastically decreases the affinity. 3. In contrast, we find that the piperidine-nitrogen in a distal position is well tolerated provided that additional structural criteria, in particular a phenolic hydroxyl-group and a 6 carbon ring corresponding to ring C in morphine, are met. This assumption was verified by the synthesis of WB4/PH (4aR, 10bS, 11R)-10, 11-epoxy-1, 2, 3, 4, 5, 6-hexahydro-9-hydroxy-3-methyl-4a,10b-butano- benzo[f]isochinolin-12-on(10). This compound is an agonist with an affinity comparable to that of morphine. 4. We therefore conclude that both the mobility of the piperidine nitrogen of the ligand and of its counterpart anionic site in the ligand binding pocket of the mu-opioid receptor (presumably aspartic acid) are important determinants for fruitful interaction. The mobility of the anionic site is restricted in one direction but is sufficient to bridge the 2A distance that exists between the position of the nitrogen in morphine and WB4/PH. PMID:8306082

  8. Mu-Opioid (MOP) receptor mediated G-protein signaling is impaired in specific brain regions in a rat model of schizophrenia.

    PubMed

    Szűcs, Edina; Büki, Alexandra; Kékesi, Gabriella; Horváth, Gyöngyi; Benyhe, Sándor

    2016-04-21

    Schizophrenia is a complex mental health disorder. Clinical reports suggest that many patients with schizophrenia are less sensitive to pain than other individuals. Animal models do not interpret schizophrenia completely, but they can model a number of symptoms of the disease, including decreased pain sensitivities and increased pain thresholds of various modalities. Opioid receptors and endogenous opioid peptides have a substantial role in analgesia. In this biochemical study we investigated changes in the signaling properties of the mu-opioid (MOP) receptor in different brain regions, which are involved in the pain transmission, i.e., thalamus, olfactory bulb, prefrontal cortex and hippocampus. Our goal was to compare the transmembrane signaling mediated by MOP receptors in control rats and in a recently developed rat model of schizophrenia. Regulatory G-protein activation via MOP receptors were measured in [(35)S]GTPγS binding assays in the presence of a highly selective MOP receptor peptide agonist, DAMGO. It was found that the MOP receptor mediated activation of G-proteins was substantially lower in membranes prepared from the 'schizophrenic' model rats than in control animals. The potency of DAMGO to activate MOP receptor was also decreased in all brain regions studied. Taken together in our rat model of schizophrenia, MOP receptor mediated G-proteins have a reduced stimulatory activity compared to membrane preparations taken from control animals. The observed distinct changes of opioid receptor functions in different areas of the brain do not explain the augmented nociceptive threshold described in these animals. PMID:26946106

  9. Determination of the amino acid residue involved in [3H]beta-funaltrexamine covalent binding in the cloned rat mu-opioid receptor.

    PubMed

    Chen, C; Yin, J; Riel, J K; DesJarlais, R L; Raveglia, L F; Zhu, J; Liu-Chen, L Y

    1996-08-30

    We previously demonstrated that [3H]beta-funaltrexamine ([3H]beta-FNA) labeled the rat mu opioid receptor expressed in Chinese hamster ovary cells with high specificity, and [3H]beta-FNA-labeled receptors migrated as one broad band with a mass of 80 kDa. In this study, we determined the region and then the amino acid residue of the mu receptor involved in the covalent binding of [3H]beta-FNA. [3H]beta-FNA-labeled receptors were solubilized and purified to approximately 10% purity by immunoaffinity chromatography with antibodies against a C-terminal domain peptide. The site of covalent bond formation was determined to be within Ala206-Met243 by CNBr cleavage of partially purified labeled mu receptors and determinations of sizes of labeled receptor fragments. The amino acid residue of beta-FNA covalent incorporation was then determined by site-directed mutagenesis studies within this region. Mutation of Lys233 to Ala, Arg, His, and Leu completely eliminated covalent binding of [3H]beta-FNA, although these mutants bound beta-FNA with high affinity. Mutations of other amino acid residues did not affect covalent binding of [3H]beta-FNA. These results indicate that [3H]beta-FNA binds covalently to Lys233. Since [3H]beta-FNA is a rigid molecule, the information will be very useful for molecular modeling of interaction between morphinans and the mu receptor. PMID:8702924

  10. MOR Is Not Enough: Identification of Novel mu-Opioid Receptor Interacting Proteins Using Traditional and Modified Membrane Yeast Two-Hybrid Screens

    PubMed Central

    Jin, Jay; Wong, Victoria; Kittanakom, Saranya; Ferraro, Thomas N.; Stagljar, Igor; Levenson, Robert

    2013-01-01

    The mu-opioid receptor (MOR) is the G-protein coupled receptor primarily responsible for mediating the analgesic and rewarding properties of opioid agonist drugs such as morphine, fentanyl, and heroin. We have utilized a combination of traditional and modified membrane yeast two-hybrid screening methods to identify a cohort of novel MOR interacting proteins (MORIPs). The interaction between the MOR and a subset of MORIPs was validated in pulldown, co-immunoprecipitation, and co-localization studies using HEK293 cells stably expressing the MOR as well as rodent brain. Additionally, a subset of MORIPs was found capable of interaction with the delta and kappa opioid receptors, suggesting that they may represent general opioid receptor interacting proteins (ORIPS). Expression of several MORIPs was altered in specific mouse brain regions after chronic treatment with morphine, suggesting that these proteins may play a role in response to opioid agonist drugs. Based on the known function of these newly identified MORIPs, the interactions forming the MOR signalplex are hypothesized to be important for MOR signaling and intracellular trafficking. Understanding the molecular complexity of MOR/MORIP interactions provides a conceptual framework for defining the cellular mechanisms of MOR signaling in brain and may be critical for determining the physiological basis of opioid tolerance and addiction. PMID:23840749

  11. Preferential cytoplasmic localization of delta-opioid receptors in rat striatal patches: comparison with plasmalemmal mu-opioid receptors.

    PubMed

    Wang, H; Pickel, V M

    2001-05-01

    The activation of delta-opioid receptors (DORs) in the caudate-putamen nucleus (CPN) produces regionally distinct changes in motor functions, many of which are also influenced by opioids active at micro-opioid receptors (MORs). These actions most likely occur in MOR-enriched patch compartments in the CPN. To determine the functional sites for DOR activation and potential interactions involving MOR in these regions, immunoperoxidase and immunogold-silver labeling methods were applied reversibly for the ultrastructural localization of DOR and MOR in single rat brain sections containing patches of the CPN. DOR immunoreactivity was commonly seen within the cytoplasm of spiny and aspiny neurons, many of which also expressed MOR. In dendrites and spines, DOR labeling was preferentially localized to membranes of the smooth endoplasmic reticulum and spine apparatus, whereas MOR showed a prominent plasmalemmal distribution. DOR- and/or MOR-labeled spines received asymmetric, excitatory synapses, some of which showed notable perforations, suggesting the involvement of these receptors in activity-dependent synaptic plasticity. DORs were more frequently detected than were MORs within axon terminals that formed either asymmetric synapses with spine heads or symmetric synapses with spine necks. Our results suggest that in striatal patches, DORs, often in cooperation with MORs, play a direct modulatory role in controlling the postsynaptic excitability of spines, whereas presynaptic neurotransmitter release onto spines is mainly influenced by DOR activation. In comparison with MOR, the prevalent association of DOR with cytoplasmic organelles that are involved in intracellular trafficking of cell surface proteins suggests major differences in availability of these receptors to extracellular opioids. PMID:11312309

  12. Truncated G protein-coupled mu opioid receptor MOR-1 splice variants are targets for highly potent opioid analgesics lacking side effects.

    PubMed

    Majumdar, Susruta; Grinnell, Steven; Le Rouzic, Valerie; Burgman, Maxim; Polikar, Lisa; Ansonoff, Michael; Pintar, John; Pan, Ying-Xian; Pasternak, Gavril W

    2011-12-01

    Pain remains a pervasive problem throughout medicine, transcending all specialty boundaries. Despite the extraordinary insights into pain and its mechanisms over the past few decades, few advances have been made with analgesics. Most pain remains treated by opiates, which have significant side effects that limit their utility. We now describe a potent opiate analgesic lacking the traditional side effects associated with classical opiates, including respiratory depression, significant constipation, physical dependence, and, perhaps most important, reinforcing behavior, demonstrating that it is possible to dissociate side effects from analgesia. Evidence indicates that this agent acts through a truncated, six-transmembrane variant of the G protein-coupled mu opioid receptor MOR-1. Although truncated splice variants have been reported for a number of G protein-coupled receptors, their functional relevance has been unclear. Our evidence now suggests that truncated variants can be physiologically important through heterodimerization, even when inactive alone, and can comprise new therapeutic targets, as illustrated by our unique opioid analgesics with a vastly improved pharmacological profile. PMID:22106286

  13. Truncated G protein-coupled mu opioid receptor MOR-1 splice variants are targets for highly potent opioid analgesics lacking side effects

    PubMed Central

    Majumdar, Susruta; Grinnell, Steven; Le Rouzic, Valerie; Burgman, Maxim; Polikar, Lisa; Ansonoff, Michael; Pintar, John; Pan, Ying-Xian; Pasternak, Gavril W.

    2011-01-01

    Pain remains a pervasive problem throughout medicine, transcending all specialty boundaries. Despite the extraordinary insights into pain and its mechanisms over the past few decades, few advances have been made with analgesics. Most pain remains treated by opiates, which have significant side effects that limit their utility. We now describe a potent opiate analgesic lacking the traditional side effects associated with classical opiates, including respiratory depression, significant constipation, physical dependence, and, perhaps most important, reinforcing behavior, demonstrating that it is possible to dissociate side effects from analgesia. Evidence indicates that this agent acts through a truncated, six-transmembrane variant of the G protein-coupled mu opioid receptor MOR-1. Although truncated splice variants have been reported for a number of G protein-coupled receptors, their functional relevance has been unclear. Our evidence now suggests that truncated variants can be physiologically important through heterodimerization, even when inactive alone, and can comprise new therapeutic targets, as illustrated by our unique opioid analgesics with a vastly improved pharmacological profile. PMID:22106286

  14. Co-development of early adolescent alcohol use and depressive feelings: The role of the mu-opioid receptor A118G polymorphism.

    PubMed

    Kleinjan, Marloes; Rozing, Mayke; Engels, Rutger C M E; Verhagen, Maaike

    2015-08-01

    Alcohol use and depressive feelings are often related among early adolescents. However, the nature and underlying mechanisms of this association are not yet clear. The aim of this study was to investigate the co-development of alcohol use and depressive feelings over time and to examine the effects of the mu-opioid receptor (OPRM1) A118G genotype on such co-development. Data from a five-wave longitudinal, genetically informed survey study, with intervals of 4 months among a group of 739 normative early adolescents (12-13 years of age at baseline), were analyzed using a dual latent growth curve approach. OPRM1 status was evaluated from saliva-derived DNA samples. The results indicated a positive association between alcohol use and depressive feelings both at the initial levels and over time, indicating co-development in early adolescence. Compared to OPRM1 118G carriers, homozygous 118A carriers showed a greater increase in frequency of alcohol use and higher levels of depressive feelings over time. Evidence for co-development was only found within the group of homozygous 118A carriers, whereas in OPRM1 118G carriers the development of alcohol use and depressive feelings over time were not significantly associated. These results highlight the potential of OPRM1 as a common etiological factor for the development of alcohol use and depressive feelings in early adolescence. PMID:25215437

  15. An early granulocyte colony-stimulating factor treatment attenuates neuropathic pain through activation of mu opioid receptors on the injured nerve

    PubMed Central

    Liao, Ming-Feng; Yeh, Shin-Rung; Lo, Ai-Lun; Chao, Po-Kuan; Lee, Yun-Lin; Hung, Yu-Hui; Lu, Kwok-Tung; Ro, Long-Sun

    2016-01-01

    Several studies have shown that the mu opioid receptor (MOR) located in the peripheral nerves can be activated after nerve injury and that it attenuates peripheral nociceptive signals to the spinal dorsal horn. Various cytokines and phosphorylated-p38 (p-p38) activation in the dorsal horn also play an important role in neuropathic pain development. Granulocyte-colony stimulating factor (GCSF) is a growth factor that can stimulate granulocyte formation and has been shown to exert an analgesic effect on neuropathic pain through recruiting opioid-containing leukocytes to the injured nerve. However, the underlying mechanisms are not well understood. Herein, the results of behavior tests in addition to MOR levels in the injured sciatic nerve and the levels of p-p38 and various cytokines in the spinal dorsal horn were studied in vehicle-treated or GCSF-treated chronic constriction injured (CCI) rats at different time points (i.e., 1, 3, and 7 days, respectively) after nerve injury. The results showed that a single early systemic GCSF treatment after nerve injury can up-regulate MORs in the injured nerve, which can decrease peripheral nociceptive signals. Thereafter, those changes suppress the pro-inflammatory cytokine IL-6 but enhance the anti-inflammatory cytokine IL-4, followed by decreases in p-p38 in the dorsal horn, and thus further attenuate neuropathic pain. PMID:27180600

  16. An early granulocyte colony-stimulating factor treatment attenuates neuropathic pain through activation of mu opioid receptors on the injured nerve.

    PubMed

    Liao, Ming-Feng; Yeh, Shin-Rung; Lo, Ai-Lun; Chao, Po-Kuan; Lee, Yun-Lin; Hung, Yu-Hui; Lu, Kwok-Tung; Ro, Long-Sun

    2016-01-01

    Several studies have shown that the mu opioid receptor (MOR) located in the peripheral nerves can be activated after nerve injury and that it attenuates peripheral nociceptive signals to the spinal dorsal horn. Various cytokines and phosphorylated-p38 (p-p38) activation in the dorsal horn also play an important role in neuropathic pain development. Granulocyte-colony stimulating factor (GCSF) is a growth factor that can stimulate granulocyte formation and has been shown to exert an analgesic effect on neuropathic pain through recruiting opioid-containing leukocytes to the injured nerve. However, the underlying mechanisms are not well understood. Herein, the results of behavior tests in addition to MOR levels in the injured sciatic nerve and the levels of p-p38 and various cytokines in the spinal dorsal horn were studied in vehicle-treated or GCSF-treated chronic constriction injured (CCI) rats at different time points (i.e., 1, 3, and 7 days, respectively) after nerve injury. The results showed that a single early systemic GCSF treatment after nerve injury can up-regulate MORs in the injured nerve, which can decrease peripheral nociceptive signals. Thereafter, those changes suppress the pro-inflammatory cytokine IL-6 but enhance the anti-inflammatory cytokine IL-4, followed by decreases in p-p38 in the dorsal horn, and thus further attenuate neuropathic pain. PMID:27180600

  17. Methamphetamine-induced stereotypy correlates negatively with patch-enhanced prodynorphin and arc mRNA expression in the rat caudate putamen: the role of mu opioid receptor activation.

    PubMed

    Horner, Kristen A; Noble, Erika S; Gilbert, Yamiece E

    2010-06-01

    Amphetamines induce stereotypy, which correlates with patch-enhanced c-Fos expression the patch compartment of caudate putamen (CPu). Methamphetamine (METH) treatment also induces patch-enhanced expression of prodynorphin (PD), arc and zif/268 in the CPu. Whether patch-enhanced activation of any of these genes correlates with METH-induced stereotypy is unknown, and the factors that contribute to this pattern of expression are poorly understood. Activation of mu opioid receptors, which are expressed by the neurons of the patch compartment, may underlie METH-induced patch-enhanced gene expression and stereotypy. The current study examined whether striatal mu opioid receptor blockade altered METH-induced stereotypy and patch-enhanced gene expression, and if there was a correlation between the two responses. Animals were intrastriatally infused with the mu antagonist CTAP (10 microg/microl), treated with METH (7.5 mg/kg, s.c.), placed in activity chambers for 3h, and then sacrificed. CTAP pretreatment attenuated METH-induced increases in PD, arc and zif/268 mRNA expression and significantly reduced METH-induced stereotypy. Patch-enhanced PD and arc mRNA expression in the dorsolateral CPu correlated negatively with METH-induced stereotypy. These data indicate that mu opioid receptor activation contributes to METH-induced gene expression in the CPu and stereotypy, and that patch-enhanced PD and arc expression may be a homeostatic response to METH treatment. PMID:20298714

  18. The functional expression of mu opioid receptors on sensory neurons is developmentally regulated; morphine analgesia is less selective in the neonate.

    PubMed

    Nandi, Reema; Beacham, Daniel; Middleton, Jacqueta; Koltzenburg, Martin; Howard, Richard F; Fitzgerald, Maria

    2004-09-01

    Opioid requirements in neonatal patients are reported to be lower than older infants and this may be a reflection of the developmental regulation of opioid receptors. In this study we have investigated the postnatal regulation of Mu opioid receptor (MOR) function in both rat lumbar dorsal root ganglion (DRG) cultures and behavioural mechanical and thermal reflex tests in rat pups. Immunostaining with MOR and selective neurofilament (NF200) antibodies was combined with calcium imaging of MOR function in cultured neonatal and adult rat dorsal root ganglion cells. Calcium imaging showed that a significantly greater number of neonatal DRG neurons expressed functional MOR compared to adult (56.5+/-3.4 versus 39.9+/-1.5%, n=8, mean+/-SEM, P<0.001). This expression is confined to the large, neurofilament positive sensory neurons, while expression in small, nociceptive, neurofilament negative neurons remains unchanged. Sensory threshold testing in rat pups showed that the analgesic potency of systemic morphine to mechanical stimulation is significantly greater in the neonate and declines with postnatal age. Morphine analgesic potency in thermal nociceptive tests did not change with postnatal age. These experiments show that the MOR expressed on large DRG neurons in neonates are functional and are subject to postnatal developmental regulation. This changing functional receptor profile is consistent with greater morphine potency in mechanical, but not thermal, sensory tests in young animals. These results have important clinical implications for the use of morphine in neonates and provide a possible explanation for the differences in morphine requirements observed in the youngest patients. PMID:15327807

  19. A role for kappa-, but not mu-opioid, receptor activation in acute food deprivation-induced reinstatement of heroin seeking in rats.

    PubMed

    Sedki, Firas; Eigenmann, Karine; Gelinas, Jessica; Schouela, Nicholas; Courchesne, Shannon; Shalev, Uri

    2015-05-01

    Stress is considered to be one of the major triggers to drug relapse, even after prolonged periods of abstinence. In rats, the activation of stress-related brain systems, including corticotropin-releasing factor and norepinephrine, is critical for stress-induced reinstatement of extinguished drug seeking, an animal model for drug relapse. In addition, there are strong indications that activation of the endogenous opioid system is important for the effects of stress on drug seeking. More specifically, activation of the dynorphin/kappa opioid receptor (KOR) system is critically involved in the reinstatement of cocaine seeking following exposure to stressors, such as footshock, forced swimming or social stress. However, studies on the role of the dynorphin/KOR system in stress-induced reinstatement of heroin seeking are scarce. Here, rats were trained to self-administer heroin (0.1 mg/kg/infusion) for 10 days. Drug seeking was then extinguished and the rats were tested for acute (21 hours) food deprivation-induced reinstatement of heroin seeking. In two separate experiments, rats were injected with the mu-opioid receptor (MOR) antagonist, naltrexone (0.0, 1.0, 10.0 mg/kg; s.c.) or the KOR antagonist, norBNI (0.0, 1.0, 10.0 mg/kg; i.p.) before the reinstatement test. Naltrexone treatment did not affect stress-induced reinstatement. In contrast, treatment with norBNI dose-dependently attenuated food deprivation-induced reinstatement of heroin seeking. These results support the hypothesis that activation of KOR, but not MOR, is critically involved in stress-induced reinstatement of drug seeking. PMID:24725195

  20. Reversed-phase liquid chromatographic purification and isolation of a radio-iodinated selective probe for mu opioid receptors in the brain.

    PubMed

    Miller, M M; Gould, B E; Joshi, D; Bennett, H P; James, S; Billiar, R B

    1992-02-01

    A Guard-PAK precolumn system was used for the reversed-phase liquid chromatography purification of a small, synthetic radiolabeled opioid peptide, FK 33-824 (D-Ala2, methyl-phe4, Met (O)ol5 enkephalin) (FK). This procedure involves trace enrichment of iodinated peptide onto the precolumn while iodination reagents are not retained. Radioactive contamination of high-performance liquid chromatography columns and injectors is thus avoided. Precolumn chromatography has sufficient resolving power to separate not only labeled from unlabeled peptide but also mono- from di-iodinated peptide. Purified 125I-labeled FK (estimated specific activity 85.9-153.7 Ci/mmol) showed high specific binding to mouse corpus striatum, neocortex, cingulate cortex, nucleus accumbens septi, diagonal band of Broca, nucleus medialis septi, area preopticus magnocellularis, and the nucleus of the caudate/putamen. Radioligand binding was inhibited by both antagonists (naloxone and naltrexone); and agonists D-Ala2, N-methyl-phe4, gly-ol5-enkephalin [DAGO]; FK; and beta-endorphin at all concentrations tested (1 x 10(-8) to 1 x 10(-4) M). Adrenocorticotropin hormone (ACTH) did not block ligand binding at any concentration tested. Distribution of mu opioid receptors was analyzed by light microscopic autoradiography. Sections incubated with 125I-labeled FK in the presence of agonists and antagonists demonstrated decreasing ligand binding with increasing doses of competitor. ACTH did not block ligand binding at any concentration tested. HPLC analyses of ligand which had been iodinated 1.5 half lives before the date of the experiment demonstrated a single peak similar to that of freshly iodinated ligand. Similar binding kinetics and autoradiographic labeling patterns were observed as compared to those obtained with freshly iodinated peptide.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1314320

  1. Sex and age-dependent effects of a maternal junk food diet on the mu-opioid receptor in rat offspring.

    PubMed

    Gugusheff, Jessica R; Bae, Sung Eun; Rao, Alexandra; Clarke, Iain J; Poston, Lucilla; Taylor, Paul D; Coen, Clive W; Muhlhausler, Beverly S

    2016-03-15

    Perinatal junk food exposure increases the preference for palatable diets in juvenile and adult rat offspring. Previous studies have implicated reduced sensitivity of the opioid pathway in the programming of food preferences; however it is not known when during development these changes in opioid signalling first emerge. This study aimed to determine the impact of a maternal junk food (JF) diet on mu-opioid receptor (MuR) expression and ligand binding in two key regions of the reward pathway, the nucleus accumbens (NAc) and the ventral tegmental area (VTA) in rats during the early suckling (postnatal day (PND) 1 and 7) and late suckling/early post-weaning (PND 21 and 28) periods. Female rats were fed either a JF or a control diet for two weeks prior to mating and throughout pregnancy and lactation. MuR expression in the VTA was significantly reduced in female JF offspring on PND 21 and 28 (by 32% and 57% respectively, P<0.05), but not at earlier time points (PND 1 and 7). MuR ligand binding was also reduced (by 22%, P<0.05) in the VTA of female JF offspring on PND 28. No effects of perinatal junk food exposure on MuR mRNA expression or binding were detected at these time points in male offspring. These findings provide evidence that the opioid signalling system is a target of developmental programming by the end of the third postnatal week in females, but not in males. PMID:26718219

  2. Buprenorphine maintenance and mu-opioid receptor availability in the treatment of opioid use disorder: implications for clinical use and policy

    PubMed Central

    Greenwald, Mark K.; Comer, Sandra D.; Fiellin, David A.

    2014-01-01

    Background Sublingual formulations of buprenorphine (BUP) and BUP/naloxone have well-established pharmacokinetic and pharmacodynamic profiles, and are safe and effective for treating opioid use disorder. Since approvals of these formulations, their clinical use has increased. Yet, questions have arisen as to how BUP binding to mu-opioid receptors (μORs), the neurobiological target for this medication, relate to its clinical application. BUP produces dose- and time-related alterations of μOR availability but some clinicians express concern about whether doses higher than those needed to prevent opioid withdrawal symptoms are warranted, and policymakers consider limiting reimbursement for certain BUP dosing regimens. Methods We review scientific data concerning BUP-induced changes in μOR availability and their relationship to clinical efficacy. Results Withdrawal suppression appears to require ≤50% μOR availability, associated with BUP trough plasma concentrations ≥1 ng/mL; for most patients, this may require single daily BUP doses of 4-mg to defend against trough levels, or lower divided doses. Blockade of the reinforcing and subjective effects of typical doses of abused opioids require <20% μOR availability, associated with BUP trough plasma concentrations ≥3 ng/mL; for most individuals, this may require single daily BUP doses >16-mg, or lower divided doses. For individuals attempting to surmount this blockade with higher-than-usual doses of abused opioids, even larger BUP doses and <10% μOR availability would be required. Conclusion For these reasons, and given the complexities of studies on this issue and comorbid problems, we conclude that fixed, arbitrary limits on BUP doses in clinical care or limits on reimbursement for this care are unwarranted. PMID:25179217

  3. Mu opioid receptor knockdown in the substantia nigra/ventral tegmental area by synthetic small interfering RNA blocks the rewarding and locomotor effects of heroin

    PubMed Central

    Zhang, Yong; Landthaler, Markus; Schlussman, Stefan D.; Yuferov, Vadim; Ho, Ann; Tuschl, Thomas; Kreek, Mary Jeanne

    2014-01-01

    Mu opioid receptors (MOP-r) play an important role in the rewarding and locomotor stimulatory effects of heroin. The aim of the current study was to determine whether infusion of small interfering RNAs (siRNA) targeting MOP-r into the midbrain could knock down MOP-r mRNA and affect heroin-induced locomotor activity or heroin-induced conditioned place preference. Ten week old male C57BL/6J mice were surgically implanted bilaterally with guide cannulae directed between the substantia nigra and ventral tegmental area. After 4 days recovery, mice were infused bilaterally with siRNAs that target the MOP-r (2mM × 0.75 μl/side/day for 3 days) or control siRNA. Seven days after the last infusion, a procedure for conditioned place preference was begun with four heroin (3mg/kg i.p.) administration sessions alternating with four saline sessions. While heroin induced an increase in locomotor activity in all groups, siRNAs targeting specific regions of MOP-r significantly attenuated this effect. Of particular interest, mice infused with specific siRNAs targeting the MOP-r failed to develop and express conditioned place preference to heroin, or showed a significantly attenuated preference. These alterations in reward related behaviors are likely due to the reduction in MOP-r mRNA and protein, shown in separate studies by in situ hybridization and autoradiography using the same MOP-r- siRNA infusions. Taken together, these studies demonstrate the utility of siRNA in the neurobiological study of specific components of the reward system and should contribute to the study of other complex behaviors. PMID:18938225

  4. C7β-Methyl Analogues of the Orvinols: The Discovery of Kappa Opioid Antagonists with Nociceptin/Orphanin FQ Peptide (NOP) Receptor Partial Agonism and Low, or Zero, Efficacy at Mu Opioid Receptors

    PubMed Central

    2015-01-01

    Buprenorphine is a successful analgesic and treatment for opioid abuse, with both activities relying on its partial agonist activity at mu opioid receptors. However, there is substantial interest in its activities at the kappa opioid and nociceptin/orphanin FQ peptide receptors. This has led to an interest in developing compounds with a buprenorphine-like pharmacological profile but with lower efficacy at mu opioid receptors. The present article describes aryl ring analogues of buprenorphine in which the standard C20-methyl group has been moved to the C7β position, resulting in ligands with the desired profile. In particular, moving the methyl group has resulted in far more robust kappa opioid antagonist activity than seen in the standard orvinol series. Of the compounds synthesized, a number, including 15a, have a profile of interest for the development of drug abuse relapse prevention therapies or antidepressants and others (e.g., 8c), as analgesics with a reduced side-effect profile. PMID:25898137

  5. C7β-methyl analogues of the orvinols: the discovery of kappa opioid antagonists with nociceptin/orphanin FQ peptide (NOP) receptor partial agonism and low, or zero, efficacy at mu opioid receptors.

    PubMed

    Cueva, Juan Pablo; Roche, Christopher; Ostovar, Mehrnoosh; Kumar, Vinod; Clark, Mary J; Hillhouse, Todd M; Lewis, John W; Traynor, John R; Husbands, Stephen M

    2015-05-28

    Buprenorphine is a successful analgesic and treatment for opioid abuse, with both activities relying on its partial agonist activity at mu opioid receptors. However, there is substantial interest in its activities at the kappa opioid and nociceptin/orphanin FQ peptide receptors. This has led to an interest in developing compounds with a buprenorphine-like pharmacological profile but with lower efficacy at mu opioid receptors. The present article describes aryl ring analogues of buprenorphine in which the standard C20-methyl group has been moved to the C7β position, resulting in ligands with the desired profile. In particular, moving the methyl group has resulted in far more robust kappa opioid antagonist activity than seen in the standard orvinol series. Of the compounds synthesized, a number, including 15a, have a profile of interest for the development of drug abuse relapse prevention therapies or antidepressants and others (e.g., 8c), as analgesics with a reduced side-effect profile. PMID:25898137

  6. The Effect of the [mu]-Opioid Receptor Antagonist Naloxone on Extinction of Conditioned Fear in the Developing Rat

    ERIC Educational Resources Information Center

    Kim, Jee Hyun; Richardson, Rick

    2009-01-01

    Several recent studies report that neurotransmitters that are critically involved in extinction in adult rats are not important for extinction in young rats. Specifically, pretest injection of the [gamma]-aminobutryic acid (GABA) receptor inverse agonist FG7142 has no effect on extinction in postnatal day (P)17 rats, although it reverses…

  7. Induction of hyperphagia and carbohydrate intake by mu-opioid receptor stimulation in circumscribed regions of frontal cortex

    PubMed Central

    Mena, Jesus D.; Sadeghian, Ken; Baldo, Brian A.

    2011-01-01

    Frontal cortical regions are activated by food-associated stimuli, and this activation appears to be dysregulated in individuals with eating disorders. Nevertheless, frontal control of basic unconditioned feeding responses remains poorly understood. Here we show that hyperphagia can be driven by μ-opioid receptor stimulation in restricted regions of ventral medial prefrontal cortex (vmPFC) and orbitofrontal cortex. In both ad libitum-fed and food-restricted male Sprague-Dawley rats, bilateral infusions of the μ-opioid agonist, DAMGO, markedly increased intake of standard rat chow. When given a choice between palatable fat- versus carbohydrate enriched test diets, intra-vmPFC DAMGO infusions selectively increased carbohydrate intake, even in rats with a baseline fat preference. Rats also exhibited motor hyperactivity characterized by rapid switching between brief bouts of investigatory and ingestive behaviors. Intra-vmPFC DAMGO affected neither water intake nor non-specific oral behavior. Similar DAMGO infusions into neighboring areas of lateral orbital or anterior motor cortex had minimal effects on feeding. Neither stimulation of vmPFC-localized delta-opioid, kappa-opioid, dopaminergic, serotonergic, or noradrenergic receptors, nor antagonism of D1, 5HT1A, or alpha- or beta-adrenoceptors, reproduced the profile of DAMGO effects. Muscimol-mediated inactivation of the vmPFC, and intra-vmPFC stimulation of κ-opioid receptors or blockade of 5HT2A receptors, suppressed motor activity and increased feeding bout duration-a profile opposite to that seen with DAMGO. Hence, μ-opioid-induced hyperphagia and carbohydrate intake can be elicited with remarkable pharmacological and behavioral specificity from discrete subterritories of the frontal cortex. These findings may have implications for understanding affect-driven feeding and loss of restraint in eating disorders. PMID:21368037

  8. Effects of the Mu Opioid Receptor Polymorphism (OPRM1 A118G) on Pain Regulation, Placebo Effects and Associated Personality Trait Measures

    PubMed Central

    Peciña, Marta; Love, Tiffany; Stohler, Christian S; Goldman, David; Zubieta, Jon-Kar

    2015-01-01

    Mu-opioid receptors (MOPRs) are critically involved in the modulation of pain and analgesia, and represent a candidate mechanism for the development of biomarkers of pain conditions and their responses to treatment. To further understand the human implications of genetic variation within the opioid system in pain and opioid-mediated placebo responses, we investigated the association between the functional single-nucleotide polymorphism (SNP) in the μ-opioid receptor gene (OPRM1), A118G, and psychophysical responses, personality traits, and neurotransmitter systems (dopamine (DA), opioid) related to pain and placebo analgesia. OPRM1 G carriers, compared with AA homozygotes, showed an overall reduction of baseline μ-opioid receptor availability in regions implicated in pain and affective regulation. In response to a sustained painful stimulus, we found no effect of A118G on pain-induced endogenous opioid release. Instead, AA homozygotes showed a blunted DA response in the nucleus accumbens (NAc) in response to the pain challenge. After placebo administration, G carriers showed more pronounced mood disturbances and lower placebo-induced μ-opioid system activation in the anterior insula (aINS), the amygdala (AMY), the NAc, the thalamus (THA), and the brainstem, as well as lower levels of DA D2/3 activation in the NAc. At a trait level, G carriers reported higher NEO-Neuroticism scores; a personality trait previously associated with increased pain and lower placebo responses, which were negatively correlated with baseline μ-opioid receptor availability in the aINS and subgenual anterior cingulate cortex (sgACC). Our results demonstrate that the A118G OPRM1 polymorphism contributes to interindividual variations in the function of neurotransmitters responsive to pain (endogenous opioid and dopamine), as well as their regulation through cognitive-emotional influences in the context of therapeutic expectations, the so-called placebo effect. These effects are relevant to

  9. Low frequency genetic variants in the mu-opioid receptor (OPRM1) affect risk for addiction to heroin and cocaine

    PubMed Central

    Clarke, Toni-Kim; Crist, Richard C.; Kampman, Kyle M.; Dackis, Charles A.; Pettinati, Helen M.; O’Brien, Charles P.; Oslin, David W.; Ferraro, Thomas N.; Lohoff, Falk W.; Berrettini, Wade H.

    2013-01-01

    The μ-opioid receptor (MOR) binds exogenous and endogenous opioids and is known to mediate the rewarding effects of drugs of abuse. Numerous genetic studies have sought to identify common genetic variation in the gene encoding MOR (OPRM1) that affects risk for drug addiction. The purpose of this study was to examine the contribution of rare coding variants in OPRM1 to the risk for addiction. Rare and low frequency variants were selected using the National Heart Lung and Blood Institute –Exome Sequencing Project (NHLBI-ESP) database, which has screened the exomes of over 6500 individuals. Two SNPs (rs62638690 and rs17174794) were selected for genotyping in 1377 European American individuals addicted to heroin and/or cocaine. Two different SNPs (rs1799971 and rs17174801) were genotyped in 1238 African American individuals addicted to heroin and/or cocaine. Using the minor allele frequencies from the NHLBI-ESP dataset as a comparison group, case-control association analyses were performed. Results revealed an association between rs62638690 and cocaine and heroin addiction in European Americans (p=0.02; 95% C.I. 0.47 [0.24–0.92]). This study suggests a potential role for rare OPRM1 variants in addiction disorders and highlights an area worthy of future study. PMID:23454283

  10. mu-Opioid receptor stimulation in the nucleus accumbens elevates fatty tastant intake by increasing palatability and suppressing satiety signals.

    PubMed

    Katsuura, Yoshihiro; Heckmann, Jennifer A; Taha, Sharif A

    2011-07-01

    Infusion of a μ-opioid receptor (MOR) agonist into the nucleus accumbens (NAcc) drives voracious food intake, an effect hypothesized to occur through increased tastant palatability. While intake of many palatable foods is elevated by MOR stimulation, this manipulation has a preferential effect on fatty food ingestion. Consumption of high-fat foods is increased by NAcc MOR stimulation even in rats that prefer a carbohydrate-rich alternative under baseline conditions. This suggests that NAcc MOR stimulation may not simply potentiate palatability signals and raises the possibility that mechanisms mediating fat intake may be distinct from those underlying intake of other tastants. The present study was conducted to investigate the physiological mechanisms underlying the effects of NAcc MOR stimulation on fatty food intake. In experiment 1, we analyzed lick microstructure in rats ingesting Intralipid to identify the changes underlying feeding induced by infusion of a MOR-specific agonist into the NAcc. MOR stimulation in the NAcc core, but not shell, increased burst duration and first-minute licks, while simultaneously increasing the rate and duration of Intralipid ingestion. These results suggest that MOR activation in the core increases Intralipid palatability and attenuates inhibitory postingestive feedback. In experiment 2, we measured the effects of MOR stimulation in the NAcc core on consumption of nonnutritive olestra. A MOR-specific agonist dose dependently increased olestra intake, demonstrating that caloric signaling is not required for hyperphagia induced by NAcc MOR stimulation. Feeding induced by drug infusion in both experiments 1 and 2 was blocked by a MOR antagonist. In experiment 3, we determined whether MOR activation in the NAcc core could attenuate satiety-related signaling caused by infusion of the melanocortin agonist MTII into the third ventricle. Suppression of intake caused by MTII was reversed by MOR stimulation. Together, our results suggest

  11. Nitric oxide and histone deacetylases modulate cocaine-induced mu-opioid receptor levels in PC12 cells

    PubMed Central

    2012-01-01

    Background Cocaine exposure has been reported to alter central μ-opioid receptor (MOR) expression in vivo. The present study employed an in vitro cellular model to explore possible mechanisms that may be involved in this action of cocaine. Methods To assess the effects of cocaine on MOR levels, two treatment regimens were tested in PC12 cells: single continuous or multiple intermittent. MOR protein levels were assessed by western blot analysis and quantitative PCR was used to determine relative MOR mRNA expression levels. To evaluate the role of nitric oxide (NO) and histone acetylation in cocaine-induced MOR expression, cells were pre-treated with the NO synthase inhibitor Nω-nitro-L-arginine methylester (L-NAME) or the non-selective histone acetyltransferase inhibitor curcumin. Results Both cocaine treatment regimens significantly increased MOR protein levels and protein stability, but only multiple intermittent treatments increased MOR mRNA levels as well as c-fos mRNA levels and activator protein 1 binding activity. Both regimens increased NO production, and pre-treatment with L-NAME prevented cocaine-induced increases in MOR protein and mRNA levels. Single and multiple cocaine treatment regimens inhibited histone deacetylase activity, and pre-treatment with curcumin prevented cocaine-induced up-regulation of MOR protein expression. Conclusions In the PC12 cell model, both NO and histone deacetylase activity regulate cocaine-induced MOR expression at both the transcriptional and post-transcriptional levels. Based on these novel findings, it is hypothesized that epigenetic mechanisms are implicated in cocaine’s action on MOR expression in neurons. PMID:23079001

  12. Exposure to morphine-associated cues increases mu opioid receptor mRNA expression in the nucleus accumbens of Wistar Kyoto rats.

    PubMed

    Dennis, Torry S; Beck, Kevin D; Cominski, Tara P; Bobzean, Samara A M; Kuzhikandathil, Eldo V; Servatius, Richard J; Perrotti, Linda I

    2016-10-15

    The Wistar-Kyoto (WKY) rat has been proposed as a model of anxiety vulnerability as it exhibits pronounced behavioral inhibition, passive avoidance, exaggerated startle response, enhanced HPA-axis activation, and active avoidance that is resistant to extinction. Accumulating evidence suggests that WKY rats respond differently to rewarding stimuli when compared to outbred strains of rat. Conditioned responding to drug-associated cues is linked with alterations in the activation of mu opioid receptors (MOR) and kappa opioid receptors (KOR) in the nucleus accumbens (NAc). Furthermore, alterations in KOR expression/activation in the NAc of WKY rats are implicated in the regulation of some of the components that make up the unique behavioral phenotype of this strain. The purpose of this study was to extend upon previous work from our laboratory by investigating conditioned morphine reward in adult male WKY and SD rats, and to examine levels of KOR mRNA and MOR mRNA in the NAc at baseline and after acquisition of morphine CPP. Our results demonstrate that SD rats displayed morphine-induced CPP to each of the six doses of morphine tested (0.5, 1.25, 2.5, 5, 7.5, or 10mg/kg). Interestingly, WKY rats demonstrated CPP for only the 1.25, 2.5, and 5mg/kg doses, yet no preference at the lowest (0.5mg/kg) or highest (7.5 and 10mg/kg) doses. qPCR analysis of MOR and KOR in the NAc revealed no strain differences in basal levels of MOR, but higher levels of KOR in WKY rats compared to those of SD rats. Interestingly, after completion of the CPP task, WKY rats had overall higher levels of NAc MOR mRNA compared to SD rats; the initial basal differences in NAc KOR levels persisted without change due to CPP in either strain. These results demonstrate that the WKY rat exhibits a unique pattern of behavioral responding to morphine and implicates differences in NAc KOR signaling as a potential source of aversion to higher doses of morphine. Additionally, the CPP-induced upregulation of

  13. The effects of alcohol on the pharmacokinetics and pharmacodynamics of the selective mu-opioid receptor antagonist GSK1521498 in healthy subjects

    PubMed Central

    Ziauddeen, Hisham; Nathan, Pradeep J; Dodds, Chris; Maltby, Kay; Miller, Sam R; Waterworth, Dawn; Song, Kijoung; Warren, Liling; Hosking, Louise; Zucchetto, Mauro; Bush, Mark; Johnson, Lakshmi Vasist; Sarai, Bhopinder; Mogg, Karin; Bradley, Brendan P; Richards, Duncan B; Fletcher, Paul C; Bullmore, Edward T

    2013-01-01

    The mu-opioid system has a key role in hedonic and motivational processes critical to substance addiction. However, existing mu-opioid antagonists have had limited success as anti-addiction treatments. GSK1521498 is a selective and potent mu-opioid antagonist being developed for the treatment of overeating and substance addictions. In this study, 28 healthy participants were administered single doses of GSK1521498 20 mg, ethanol 0.5 g/kg body weight, or both in combination, in a double blind placebo controlled four-way crossover design. The primary objective was to determine the risk of significant adverse pharmacodynamic and pharmacokinetic (PK) interactions. The effects of GSK1521498 on hedonic and consummatory responses to alcohol and the attentional processing of alcohol-related stimuli, and their modulation by the OPRM1 A118G polymorphism were also explored. GSK1521498 20 mg was well tolerated alone and in combination with ethanol. There were mild transient effects of GSK1521498 on alertness and mood that were greater when it was combined with ethanol. These effects were not of clinical significance. There were no effects of GSK1521498 on reaction time, hedonic or consummatory responses. These findings provide encouraging safety and PK data to support continued development of GSK1521498 for the treatment of alcohol addiction. PMID:23934621

  14. Prohormone convertase 2 (PC2) null mice have increased mu opioid receptor levels accompanied by altered morphine-induced antinociception, tolerance and dependence.

    PubMed

    Lutfy, K; Parikh, D; Lee, D L; Liu, Y; Ferrini, M G; Hamid, A; Friedman, T C

    2016-08-01

    Chronic morphine treatment increases the levels of prohormone convertase 2 (PC2) in brain regions involved in nociception, tolerance and dependence. Thus, we tested if PC2 null mice exhibit altered morphine-induced antinociception, tolerance and dependence. PC2 null mice and their wild-type controls were tested for baseline hot plate latency, injected with morphine (1.25-10mg/kg) and tested for antinociception 30min later. For tolerance studies, mice were tested in the hot plate test before and 30min following morphine (5mg/kg) on day 1. Mice then received an additional dose so that the final dose of morphine was 10mg/kg on this day. On days 2-4, mice received additional doses of morphine (20, 40 and 80mg/kg on days 1, 2, 3, and 4, respectively). On day 5, mice were tested in the hot plate test before and 30min following morphine (5mg/kg). For withdrawal studies, mice were treated with the escalating doses of morphine (10, 20, 40 and 80mg/kg) for 4days, implanted with a morphine pellet on day 5 and 3 days later injected with naloxone (1mg/kg) and signs of withdrawal were recorded. Morphine dose-dependently induced antinociception and the magnitude of this response was greater in PC2 null mice. Tolerance to morphine was observed in wild-type mice and this phenomenon was blunted in PC2 null mice. Withdrawal signs were also reduced in PC2 null mice. Immunohistochemical studies showed up-regulation of the mu opioid receptor (MOP) protein expression in the periaqueductal gray area, ventral tegmental area, lateral hypothalamus, medial hypothalamus, nucleus accumbens, and somatosensory cortex in PC2 null mice. Likewise, naloxone specific binding was increased in the brains of these mice compared to their wild-type controls. The results suggest that the PC2-derived peptides may play a functional role in morphine-induced antinociception, tolerance and dependence. Alternatively, lack of opioid peptides led to up-regulation of the MOP and altered morphine

  15. REDUCED EXPRESSION OF THE MU OPIOID RECEPTOR IN SOME, BUT NOT ALL, BRAIN REGIONS IN MICE WITH Oprm1 A112G

    PubMed Central

    WANG, Y.-J.; HUANG, P.; UNG, A.; BLENDY, J. A.; LIU-CHEN, L.-Y.

    2013-01-01

    OPRM1 A118G is a common single nucleotide polymorphism (SNP) in the coding region of the human mu opioid receptor (MOPR) gene OPRM1. This SNP is associated with higher morphine doses required for postoperative analgesia as well as a variety of drug addiction phenotypes. A mouse model possessing the equivalent substitution (A112G) in the Oprm1 gene was generated to facilitate mechanistic studies. Mice homozygous for the G112 allele (G/G) displayed lower antinociception to morphine compared with those homozygous for A112 allele (A/A), similar to humans, suggesting that the mice are a good model to further characterize underlying factors contributing to phenotypes associated with this SNP. Here, we compared [3H]DAMGO binding to the MOPR in the brains of A/A and G/G mice using quantitative in vitro autoradiography. A/A mice exhibited higher [3H]DAMGO binding than G/G in the cingulate, motor, and insular cortices, nucleus accumbens core and shell, hypothalamus, thalamus, amygdala, periaqueductal gray, superficial gray of superior colliculus, and ventral tegmental area. No genotype differences were observed in somatosensory cortex, caudate putamen, and hippocampus. When males and females were examined separately, A/A mice showed higher [3H]DAMGO binding than G/G mice in more brain regions in males than in females. Radioligand binding using brain membranes also showed higher [3H]DAMGO binding in the cortex and thalamus in A/A mice than G/G mice but no genotype differences in the caudate putamen or hippocampus. Thus, the A112G SNP is associated with reduced MOPR expression in some, but not all, brain regions, and appears to have some sex differences. The elevated MOPR expression in periaqueductal gray and thalamus in A/A mice are consistent with their higher antinociceptive responses to morphine. The higher MOPR levels in nucleus accumbens and/or ventral tegmental area of A/A mice is consistent with the higher morphine-induced hyperactivity and locomotor sensitization

  16. Expression of EGFP-amino-tagged human mu opioid receptor in Drosophila Schneider 2 cells: a potential expression system for large-scale production of G-protein coupled receptors.

    PubMed

    Perret, Bénédicte G; Wagner, Renaud; Lecat, Sandra; Brillet, Karl; Rabut, Gwénaël; Bucher, Bernard; Pattus, Franc

    2003-09-01

    The G-protein coupled receptor (GPCR) human mu opioid receptor (hMOR) fused to the carboxy-terminus of the enhanced green fluorescent protein (EGFP) has been successfully and stably expressed in Drosophila Schneider 2 cells under the control of an inducible metallothionein promoter. Polyclonal cells expressing EGFPhMOR display high-affinity, saturable, and specific binding sites for the opioid antagonist diprenorphine. Competition studies with opioid agonists and antagonists defined the pharmacological profile of a mu opioid receptor similar to that observed in mammalian cells, suggesting proper folding of EGFPhMOR in a high-affinity state in Drosophila cells. The functionality of the fusion protein was demonstrated by the ability of agonist to reduce forskolin-stimulated cyclic AMP production and to induce [35S]GTPgammaS incorporation. The EGFPhMOR protein had the expected molecular weight (70kDa), as demonstrated by protein immunoblotting with anti-EGFP and anti-C-terminus hMOR antibodies. However, quantitative EGFP fluorescence intensity analysis revealed that the total level of expressed EGFPhMOR is 8-fold higher than the level of diprenorphine binding sites, indicating that part of the receptor is not in a high-affinity state. This may in part be due to a population of receptors localized in intracellular compartments, as shown by the distribution of fluorescence between the plasma membrane and the cell interior. This study shows that EGFP is a valuable and versatile tool for monitoring and quantifying expression levels as well as for optimizing and characterizing an expression system. Optimization of the Drosophila Schneider 2 cell expression system will allow large-scale purification of GPCRs, thus enabling structural studies to be undertaken. PMID:12963349

  17. General, kappa, delta and mu opioid receptor antagonists mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions.

    PubMed

    Miner, Patricia; Shimonova, Lyudmila; Khaimov, Arthur; Borukhova, Yaffa; Ilyayeva, Ester; Ranaldi, Robert; Bodnar, Richard J

    2012-03-14

    Food intake is significantly increased following administration of agonists of GABA and opioid receptors into the nucleus accumbens shell (NACs) and ventral tegmental area (VTA). GABA-A or GABA-B receptor antagonist pretreatment within the VTA or NACs differentially affects mu-opioid agonist-induced feeding elicited from the same site. Correspondingly, general or selective opioid receptor antagonist pretreatment within the VTA or NACs differentially affects GABA agonist-induced feeding elicited from the same site. Regional interactions have been evaluated in feeding studies by administering antagonists in one site prior to agonist administration in a second site. Thus, opioid antagonist-opioid agonist and GABA antagonist-GABA agonist feeding interactions have been identified between the VTA and NACs. However, pretreatment with GABA-A or GABA-B receptor antagonists in the VTA failed to affect mu opioid agonist-induced feeding elicited from the NACs, and correspondingly, these antagonists administered in the NACs failed to affect mu opioid-induced feeding elicited from the VTA. To evaluate whether regional and reciprocal VTA and NACs feeding interactions occur for opioid receptor modulation of GABA agonist-mediated feeding, the present study examined whether feeding elicited by the GABA-B agonist, baclofen microinjected into the NACs was dose-dependently blocked by pretreatment with general (naltrexone: NTX), mu (beta-funaltrexamine: BFNA), kappa (nor-binaltorphamine: NBNI) or delta (naltrindole: NTI) opioid antagonists in the VTA, and correspondingly, whether VTA baclofen-induced feeding was dose-dependently blocked by NACs pretreatment with NTX, BFNA, NBNI or NTI in rats. Bilateral pairs of cannulae aimed at the VTA and NACs were stereotaxically implanted in rats, and their food intakes were assessed following vehicle and baclofen (200 ng) in each site. Baclofen produced similar magnitudes of increased food intake following VTA and NACs treatment. Baclofen

  18. Changes in D1 but not D2 dopamine or mu-opioid receptor expression in limbic and motor structures after lateral hypothalamus electrical self-stimulation: A quantitative autoradiographic study.

    PubMed

    Simon, Maria J; Higuera-Matas, A; Roura-Martinez, D; Ucha, M; Santos-Toscano, R; Garcia-Lecumberri, C; Ambrosio, E; Puerto, A

    2016-01-01

    Intracranial self-stimulation (ICSS) of the lateral hypothalamus (LH) is involved in the activation of neuroanatomical systems that are also associated with the processing of natural and other artificial rewarding stimuli. Specific components of this behavior (hedonic impact, learning, and motor behavior) may involve changes in different neurotransmitters, such as dopamine and opioids. In this study, quantitative autoradiography was used to examine changes in mu-opioid and D1/D2-dopamine receptor expression in various anatomical regions related to the motor and mesolimbic reward systems after intracranial self-stimulation of the LH. Results of the behavioral procedure and subsequent radiochemical assays show selective changes in D1 but not D2 or mu receptors in Accumbens-Shell, Ventral Pallidum, Caudate-Putamen, and Medial Globus Pallidus. These findings are discussed in relation to the different psychobiological components of the appetitive motivational system, identifying some dissociation among them, particularly with respect to the involvement of the D1-dopamine subsystem (but not D2 or mu receptors) in goal-directed behaviors. PMID:26656274

  19. Pretreatment of rats with the irreversible mu-receptor antagonist, beta-FNA, fails to prevent naltrexone-induced upregulation of mu-opioid receptors.

    PubMed

    Rothman, R B; Long, J B; Bykov, V; Jacobson, A E; Rice, K C; Holaday, J W

    1990-09-01

    This study examined the effect of beta-funaltrexamine (beta-FNA), an irreversible mu-receptor antagonist, on naltrexone-induced upregulation of mu-(mu cx + mu nex) and delta nex-opioid receptors. [The subscripts 'cx' and 'nex' denote binding sites 'in' (cx) and 'not in' (nex) the opioid receptor complex.] Rats were treated according to the following protocol. Two naltrexone or two placebo pellets were implanted subcutaneously in a nylon mesh on day 1. and were removed intact on day 8. Rats were given either saline or 20 nmol of beta-FNA in 10 microliters of saline (i.c.v.) on days 1, 3, 5 and 6, 60 min prior to implantation of the pellet. On day 9 frozen lysed-P2 membranes were prepared for assay of mu binding sites. In other experiments, membranes were depleted of mu-receptors by pretreatment with the site-directed acylating agent 2-(4-ethoxybenzyl)-l-diethylaminoethyl-5-isothiocyanatobenzimid azole.HCl (BIT) for assay of delta nex binding sites, using [3H] [D-ala2, D-leu5]enkephalin. The results demonstrated that beta-FNA did not upregulate the mu binding sites and also did not prevent naltrexone-induced upregulation of mu binding sites. Both beta-FNA and naltrexone increased the Bmax of delta nex binding sites and their effects were additive. These data suggest that the mechanism(s) responsible for antagonist-induced upregulation of opioid receptors are more complex than previously appreciated. PMID:1963479

  20. Design, Synthesis, and Biological Evaluation of 17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4’-pyridyl)carboxamido]morphinan Derivatives as Peripheral Selective Mu Opioid Receptor Agents

    PubMed Central

    Yuan, Yunyun; Elbegdorj, Orgil; Chen, Jianyang; Akubathini, Shashidhar K.; Zhang, Feng; Stevens, David L.; Beletskaya, Irina O.; Scoggins, Krista L.; Zhang, Zhenxian; Gerk, Phillip M.; Selley, Dana E.; Akbarali, Hamid I.; Dewey, William L.; Zhang, Yan

    2012-01-01

    Peripheral selective mu opioid receptor (MOR) antagonists could alleviate the symptoms of opioid-induced constipation (OIC) without compromising the analgesic effect of opioids. However, a variety of adverse effects were associated with them, partially due to their relatively low MOR selectivity. NAP, a 6β-N-4'-pyridyl substituted naltrexamine derivative, was identified previously as a potent and highly selective MOR antagonist mainly acting within the peripheral nervous system. The noticeable diarrhea associated with it prompted the design and synthesis of its analogues in order to study its structure activity relationship. Among them, compound 8 showed improved pharmacological profiles compared to the original lead, acting mainly at peripheral while increasing the intestinal motility in morphine-pelleted mice (ED50=0.03 mg/kg). The slight decrease of the ED50 compared to the original lead was well compensated by the unobserved adverse effect. Hence, this compound seems to be a more promising lead to develop novel therapeutic agents toward OIC. PMID:23116124

  1. /sup 3/H)-(H-D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2) ((/sup 3/H)CTOP), a potent and highly selective peptide for mu opioid receptors in rat brain

    SciTech Connect

    Hawkins, K.N.; Knapp, R.J.; Lui, G.K.; Gulya, K.; Kazmierski, W.; Wan, Y.P.; Pelton, J.T.; Hruby, V.J.; Yamamura, H.I.

    1989-01-01

    The cyclic, conformationally restricted octapeptide (3H)-(H-D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2) ((3H)CTOP) was synthesized and its binding to mu opioid receptors was characterized in rat brain membrane preparations. Association rates (k+1) of 1.25 x 10(8) M-1 min-1 and 2.49 x 10(8) M-1 min-1 at 25 and 37 degrees C, respectively, were obtained, whereas dissociation rates (k-1) at the same temperatures were 1.93 x 10(-2) min-1 and 1.03 x 10(-1) min-1 at 25 and 37 degrees C, respectively. Saturation isotherms of (3H)CTOP binding to rat brain membranes gave apparent Kd values of 0.16 and 0.41 nM at 25 and 37 degrees C, respectively. Maximal number of binding sites in rat brain membranes were found to be 94 and 81 fmol/mg of protein at 25 and 37 degrees C, respectively. (3H)CTOP binding over a concentration range of 0.1 to 10 nM was best fit by a one site model consistent with binding to a single site. The general effect of different metal ions and guanyl-5'-yl-imidodiphosphate on (3H)CTOP binding was to reduce its affinity. High concentrations (100 mM) of sodium also produced a reduction of the apparent mu receptor density. Utilizing the delta opioid receptor specific peptide (3H)-(D-Pen2,D-Pen5)enkephalin, CTOP appeared to be about 2000-fold more specific for mu vs. delta opioid receptor than naloxone. Specific (3H)CTOP binding was inhibited by a large number of opioid or opiate ligands.

  2. Behavioral and Cellular Pharmacology Characterization of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3′-carboxamido)morphinan (NAQ) as a Mu Opioid Receptor Selective Ligand

    PubMed Central

    Zhang, Yan; Braithwaite, Amanda; Yuan, Yunyun; Streicher, John M.; Bilsky, Edward J.

    2014-01-01

    Mu opioid receptor (MOR) selective antagonists and partial agonists have been used for the treatment of opioid abuse and addiction. Our recent efforts on the identification of MOR antagonists have provided several novel leads displaying interesting pharmacological profiles. Among them, 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-[(3'-isoquinolyl)acetamido]morphinan (NAQ) showed sub-nanomolar binding affinity to the MOR with significant selectivity over the delta opioid receptor (DOR) and the kappa opioid receptor (KOR). Its central nervous system penetration capacity together with marginal agonism in the MOR–GTPγS binding assay made it a very interesting molecule for developing novel opioid abuse and addiction therapeutic agents. Therefore, further pharmacological characterization was conducted to fully understand its biological profile. At the molecular and cellular level, NAQ not only induced no translocation of β-arrestin2 to the MOR, but also efficaciously antagonized the effect of DAMGO in MOR-βarr2eGFP-U2OS cells in the β-arrestin2 recruitment assay. At the in vivo level, NAQ displayed a potent inhibition of the analgesic effect of morphine in the tail-flick assay (ID50 = 1.19 mg/kg). NAQ (10 mg/kg) also significantly decreased the hyper-locomotion induced by acute morphine without inducing any vertical jumps. Meanwhile NAQ precipitated lesser withdrawal symptoms in morphine dependent mice than naloxone. In conclusion, NAQ may represent a new chemical entity for opioid abuse and addiction treatment. PMID:24815322

  3. Increased mesolimbic cue-reactivity in carriers of the mu-opioid-receptor gene OPRM1 A118G polymorphism predicts drinking outcome: a functional imaging study in alcohol dependent subjects.

    PubMed

    Bach, Patrick; Vollsta Dt-Klein, Sabine; Kirsch, Martina; Hoffmann, Sabine; Jorde, Anne; Frank, Josef; Charlet, Katrin; Beck, Anne; Heinz, Andreas; Walter, Henrik; Sommer, Wolfgang H; Spanagel, Rainer; Rietschel, Marcella; Kiefer, Falk

    2015-08-01

    The endogenous opioid system is involved in the pathophysiology of alcohol-use disorders. Genetic variants of the opioid system alter neural and behavioral responses to alcohol. In particular, a single nucleotide polymorphism rs1799971 (A118G) in the mu-opioid receptor gene (OPRM1) is suggested to modulate alcohol-related phenotypes and neural response in the mesocorticolimbic dopaminergic system. Little is known about the clinical implications of these changes. The current study investigated the relationship of genotype effects on subjective and neural responses to alcohol cues and relapse in a sample of abstinent alcohol-dependent patients. Functional magnetic resonance imaging (fMRI) was used to investigate alcohol cue-reactivity and drinking outcome of 81 abstinent alcohol-dependent patients. G-allele carriers displayed increased fMRI cue-reactivity in the left dorsal striatum and bilateral insulae. Neural responses to alcohol cues in these brain regions correlated positively with subjective craving for alcohol and positive expectations of alcohol׳s effects. Moreover, alcohol cue-reactivity in the left dorsal striatum predicted time to first severe relapse. Current results show that alcohol-dependent G-allele carriers׳ increased cue-reactivity is associated with an increased relapse risk. This suggests that genotype effects on cue-reactivity might link the OPRM1 A118G risk allele with an increased relapse risk that was reported in earlier studies. From a clinical perspective, risk-allele carriers might benefit from treatments, such as neuro-feedback or extinction-based therapy that are suggested to reduce mesolimbic reactivity. PMID:25937240

  4. Knockdown of ventral tegmental area mu-opioid receptors in rats prevents effects of social defeat stress: Implications for amphetamine cross-sensitization, social avoidance, weight regulation and expression of brain-derived neurotrophic factor

    PubMed Central

    Johnston, Caitlin E.; Herschel, Daniel; Lasek, Amy W.; Hammer, Ronald P.; Nikulina, Ella M.

    2014-01-01

    Social defeat stress causes social avoidance and long-lasting cross-sensitization to psychostimulants, both of which are associated with increased brain-derived neurotrophic factor (BDNF) expression in the ventral tegmental area (VTA). Moreover, social stress upregulates VTA mu-opioid receptor (MOR) mRNA. In the VTA, MOR activation inhibits GABA neurons to disinhibit VTA dopamine neurons, thus providing a role for VTA MORs in the regulation of psychostimulant sensitization. The present study determined the effect of lentivirus-mediated MOR knockdown in the VTA on the consequences of intermittent social defeat stress, a salient and profound stressor in humans and rodents. Social stress exposure induced social avoidance and attenuated weight gain in animals with non-manipulated VTA MORs, but both these effects were prevented by VTA MOR knockdown. Rats with non-manipulated VTA MOR expression exhibited cross-sensitization to amphetamine challenge (1.0 mg/kg, i.p.), evidenced by a significant augmentation of locomotion. By contrast, knockdown of VTA MORs prevented stress-induced cross-sensitization without blunting the locomotor-activating effects of amphetamine. At the time point corresponding to amphetamine challenge, immunohistochemical analysis was performed to examine the effect of stress on VTA BDNF expression. Prior stress exposure increased VTA BDNF expression in rats with non-manipulated VTA MOR expression, while VTA MOR knockdown prevented stress-induced expression of VTA BDNF. Taken together, these results suggest that upregulation of VTA MOR is necessary for the behavioral and biochemical changes induced by social defeat stress. Elucidating VTA MOR regulation of stress effects on the mesolimbic system may provide new therapeutic targets for treating stress-induced vulnerability to substance abuse. PMID:25446676

  5. Opposite effects of delta and mu opioid receptor agonists on the in vitro release of substance P-like material from the rat spinal cord.

    PubMed

    Mauborgne, A; Lutz, O; Legrand, J C; Hamon, M; Cesselin, F

    1987-02-01

    Superfusion of slices from the dorsal half of the lumbar enlargement of rat spinal cord with Krebs-Henseleit medium supplemented with 30 microM bacitracin allowed the collection of substance P-like immunoreactive material (SPLI), which was released at a rate of approximately 10 pg/4 min. Tissue depolarization by an excess of K+ (30-60 mM) or veratridine (50 microM) induced a marked increase in SPLI outflow, provided that Ca2+ was present in the superfusing fluid. K+- or veratridine-induced SPLI overflow could be modulated in opposite directions by mu and delta opioid receptor agonists. Thus, the two preferential mu agonists Tyr-D-Ala-Gly-MePhe-Gly-ol (DAGO; 10 microM) and Tyr-D-Ala-Gly-MePhe-Met(O)5-OH (FK-33824; 0.1 microM) enhanced SPLI overflow from depolarized tissues, whereas the selective delta agonists Tyr-D-Thr-Gly-Phe-Leu-Thr (deltakephalin; 3 microM) and [2-D-penicillamine, 5-D-penicillamine]enkephalin (50 microM) reduced it. The effect of DAGO was antagonized by a low concentration (1 microM) of naloxone but not by the selective delta antagonist ICI-154129 (50 microM). In contrast, the latter drug prevented the inhibitory influence of delta agonists on K+-induced SPLI release. Complementary experiments with morphine (10 microM) and [2-D-alanine, 5-D-leucine]enkephalinamide (3 microM), in combination with 1 microM naloxone or 50 microM ICI-154129 for the selective blockade of mu or delta receptors, respectively, confirmed that the stimulation of mu receptors increased, whereas the stimulation of delta receptors reduced, SPLI overflow. The results suggest that, at the spinal level, and antinociceptive action of delta but not mu agonists might involve a presynaptic inhibition of substance P-containing primary afferent fibers. PMID:2432185

  6. Redoubling the ring size of an endomorphin-2 analog transforms a centrally acting mu-opioid receptor agonist into a pure peripheral analgesic.

    PubMed

    Piekielna, Justyna; De Marco, Rossella; Gentilucci, Luca; Cerlesi, Maria Camilla; Calo', Girolamo; Tömböly, Csaba; Artali, Roberto; Janecka, Anna

    2016-05-01

    The study reports the synthesis and biological evaluation of two opioid analogs, a monomer and a dimer, obtained as products of the solid-phase, side-chain to side-chain cyclization of the pentapeptide Tyr-d-Lys-Phe-Phe-AspNH2 . The binding affinities to the mu, delta, and kappa opioid receptors, as well as results obtained in a calcium mobilization functional assay are reported. Tyr-[d-Lys-Phe-Phe-Asp]2 -NH2 1 was a potent and selective full agonist of mu with sub-nanomolar affinity, while the dimer (Tyr-[d-Lys-Phe-Phe-Asp]2 -NH2 )2 2 showed a significant mixed mu/kappa affinity, acting as an agonist at the mu. Molecular docking computations were utilized to explain the ability of the dimeric cyclopeptide 2 to interact with the receptor. Interestingly, in spite of the increased ring size, the higher flexibility allowed 2 to fold and fit into the mu receptor binding pocket. Both cyclopeptides were shown to elicit strong antinociceptive activity after intraventricular injection but only cyclomonomer 1 was able to cross the blood-brain barrier. However, the cyclodimer 2 displayed a potent peripheral antinociceptive activity in a mouse model of visceral inflammatory pain. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 309-317, 2016. PMID:27038094

  7. Involvement of Mu Opioid Receptor Signaling in the Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis

    PubMed Central

    Eftekhar-Vaghefi, Shahrzad; Esmaeili-Mahani, Saeed; Elyasi, Leila; Abbasnejad, Mehdi

    2015-01-01

    Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamine-induced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma SH-SY5Y cell line as an in vitro model of Parkinson’s disease. Cell damage was induced by 150 μM 6-OHDA and the cells viability was examined by MTT assay. Intracellular calcium, reactive oxygen species and mitochondrial membrane potential were assessed by fluorescence spectrophotometry method. Immunoblot technique was used to evaluate cytochrome-c and activated caspase-3 as biochemical markers of apoptosis induction. Results: The data showed that 6-OHDA caused significant cell damage, loss of mitochondrial membrane potential and increase in intracellular reactive oxygen species and calcium levels as well as activated caspase-3 and cytochrome-c release. Incubation of SH-SY5Y cells with μ-opioid agonists, morphine and DAMGO, but not with δ-opioid agonist, DADLE, elicited protective effect and reduced biochemical markers of cell damage and death. Discussion: The results suggest that μ-opioid receptors signaling participate in the opioid neuroprotective effects against 6-OHDA-induced neurotoxicity. PMID:26904174

  8. Synthesis and evaluation of aryl-naloxamide opiate analgesics targeting truncated exon 11-associated mu opioid receptor (MOR-1) splice variants

    PubMed Central

    Majumdar, Susruta; Subrath, Joan; Le Rouzic, Valerie; Polikar, Lisa; Burgman, Maxim; Nagakura, Kuni; Ocampo, Julie; Haselton, Nathan; Pasternak, Anna R.; Grinnell, Steven; Pan, Ying-Xian; Pasternak, Gavril W.

    2012-01-01

    3-Iodobenzoylnaltrexamide 1 (IBNtxA) is a potent analgesic acting through a novel receptor target that lack many side-effects of traditional opiates composed, in part, of exon 11-associated truncated six transmembrane domain MOR-1 (6TM/E11) splice variants. To better understand the SAR of this drug target, a number of 4,5-epoxymorphinan analogs were synthesized. Results show the importance of a free 3-phenolic group, a phenyl ring at the 6 position, an iodine at the 3′ or 4′ position of the phenyl ring and an N-allyl or c-propylmethyl group to maintain high 6TM/E11 affinity and activity. 3-Iodobenzoylnaloxamide 15 (IBNalA) with a N-allyl group displayed lower delta opioid receptor affinity than its naltrexamine analog, was 10-fold more potent an analgesic than morphine, elicited no respiratory depression or physical dependence and only limited inhibition of gastrointestinal transit. Thus, the aryl-naloxamide scaffold can generate a potent analgesic acting through the 6TM/E11 sites with advantageous side-effect profile and greater selectivity. PMID:22734622

  9. Effects of a mu-opioid receptor agonist (codeine phosphate) on visuo-motor coordination and dynamic visual acuity in man.

    PubMed Central

    Bradley, C M; Nicholson, A N

    1986-01-01

    Effects of codeine (30, 60 and 90 mg) on visuo-motor coordination and dynamic visual acuity, together with critical flicker fusion, digit symbol substitution, complex reaction time and subjective assessments of mood, were studied from 0.75-2.0 h after ingestion by six healthy female adults. The study was double-blind and placebo controlled, and triprolidine (10 mg) was used as the active control. The effect on visuo-motor coordination was limited and was dose related and linear, and performance was altered on visuo-motor coordination with 60 and 90 mg codeine, and on dynamic visual acuity with 90 mg codeine (P less than 0.05). No other effect of codeine was detected. Modulated neuromuscular function is likely to be the common denominator of the changes in performance with codeine, though nausea, but not sedation, may be a contributory factor. It is possible that altered performance with codeine may involve interactions with different receptors than those which lead to sedation. PMID:3024689

  10. Elevated mu-opioid receptor expression in the nucleus of the solitary tract accompanies attenuated withdrawal signs after chronic low dose naltrexone in opiate-dependent rats.

    PubMed

    Van Bockstaele, E J; Rudoy, C; Mannelli, P; Oropeza, V; Qian, Y

    2006-02-15

    We previously described a decrease in withdrawal behaviors in opiate-dependent rats that were chronically treated with very low doses of naltrexone in their drinking water. Attenuated expression of withdrawal behaviors correlated with decreased c-Fos expression and intracellular signal transduction elements [protein kinase A regulatory subunit II (PKA) and phosphorylated cAMP response element binding protein (pCREB)] in brainstem noradrenergic nuclei. In this study, to determine whether similar cellular changes occurred in forebrain nuclei associated with drug reward, expressions of PKA and pCREB were analyzed in the ventral tegmental area, frontal cortex, striatum, and amygdala of opiate-treated rats that received low doses of naltrexone in their drinking water. No significant difference in PKA or pCREB was detected in these regions following drug treatment. To examine further the cellular mechanisms in noradrenergic nuclei that could underlie attenuated withdrawal behaviors following low dose naltrexone administration, the nucleus of the solitary tract (NTS) and locus coeruleus (LC) were examined for opioid receptor (OR) protein expression. Results showed a significant increase in muOR expression in the NTS of morphine-dependent rats that received low doses of naltrexone in their drinking water, and increases in muOR expression were also found to be dose dependent. Protein expression of muOR in the LC and deltaOR in either brain region remained unchanged. In conclusion, our previously reported decreases in c-Fos and PKA expression in the NTS following pretreatment with low doses of naltrexone may be partially explained by a greater inhibition of NTS neurons resulting from increased muOR expression in this region. PMID:16385558

  11. Mu Opioid Mediated Discriminative-Stimulus Effects of Tramadol: An Individual Subjects Analysis

    PubMed Central

    Strickland, Justin C.; Rush, Craig R.; Stoops, William W.

    2015-01-01

    Drug discrimination procedures use dose-dependent generalization, substitution, and pretreatment with selective agonists and antagonists to evaluate receptor systems mediating interoceptive effects of drugs. Despite the extensive use of these techniques in the nonhuman animal literature, few studies have used human subjects. Specifically, human studies have not routinely used antagonist administration as a pharmacological tool to elucidate the mechanisms mediating the discriminative stimulus effects of drugs. This study evaluated the discriminative-stimulus effects of tramadol, an atypical analgesic with monoamine and mu opioid activity. Three human subjects first learned to discriminate 100 mg tramadol from placebo. A range of tramadol doses (25 to 150 mg) and hydromorphone (4 mg) with and without naltrexone pretreatment (50 mg) were then administered to subjects after acquiring the discrimination. Tramadol produced dose-dependent increases in drug-appropriate responding and hydromorphone partially or fully substituted for tramadol in all subjects. These effects were attenuated by naltrexone. Individual subject records indicated a relationship between mu opioid activity (i.e., miosis) and drug discrimination performance. Our findings indicate that mu opioid activity may mediate the discriminative-stimulus effects of tramadol in humans. The correspondence of generalization, substitution, and pretreatment findings with the animal literature supports the neuropharmacological specificity of the drug discrimination procedure. PMID:25664525

  12. Truncated mu opioid GPCR variant involvement in opioid-dependent and opioid-independent pain modulatory systems within the CNS.

    PubMed

    Marrone, Gina F; Grinnell, Steven G; Lu, Zhigang; Rossi, Grace C; Le Rouzic, Valerie; Xu, Jin; Majumdar, Susruta; Pan, Ying-Xian; Pasternak, Gavril W

    2016-03-29

    The clinical management of severe pain depends heavily on opioids acting through mu opioid receptors encoded by the Oprm1 gene, which undergoes extensive alternative splicing. In addition to generating a series of prototypic seven transmembrane domain (7TM) G protein-coupled receptors (GPCRs), Oprm1 also produces a set of truncated splice variants containing only six transmembrane domains (6TM) through which selected opioids such as IBNtxA (3'-iodobenzoyl-6β-naltrexamide) mediate a potent analgesia without many undesirable effects. Although morphine analgesia is independent of these 6TM mu receptor isoforms, we now show that the selective loss of the 6TM variants in a knockout model eliminates the analgesic actions of delta and kappa opioids and of α2-adrenergic compounds, but not cannabinoid, neurotensin, or muscarinic drugs. These observations were confirmed by using antisense paradigms. Despite their role in analgesia, loss of the 6TM variants were not involved with delta opioid-induced seizure activity, aversion to the kappa drug U50, 488H, or α2-mediated hypolocomotion. These observations support the existence of parallel opioid and nonopioid pain modulatory systems and highlight the ability to dissociate unwanted delta, kappa1, and α2 actions from analgesia. PMID:26976581

  13. (/sup 3/H)(D-Ala2,NMePhe4,Gly-ol5)-enkephalin (mu-opioid) binding in beige-J mice

    SciTech Connect

    Raffa, R.B.; Baldy, W.J. Jr.; Shank, R.P.; Mathiasen, J.R.; Vaught, J.L.

    1988-05-01

    Tritiated (D-Ala2,NMePhe4,Gly-ol5)-enkephalin ((3H)DAGO) was used to examine mu-opioid receptor number and mu-ligand binding in brain synaptic membranes (P2 fraction) from C57BL/6J-bgJ/bgJ (beige-J) mice, a strain with combined deficiencies in immunological function (resembling Chediak-Higashi syndrome) and analgesic response to mu-opioid agonists such as morphine and DAGO. As controls, white mice, beige-J littermates (normally responsive to mu-opioid agonists), and a known mu-deficient strain (CXBK) were also examined. Neither the KD (0.47 to 0.49 nM) nor the Bmax (153 to 168 fmol/mg protein) determined for beige-J mice was significantly different from values determined for littermates or white mice. In contrast, the Bmax of CXBK mice (66 fmol/mg protein) was clearly less than that of the other strains. The analgesic defect of beige-J mice, therefore, is not likely due to an insufficient number of mu-opioid receptors, as it presumably is in CXBK mice. Carbachol (200 micrograms/ml), which partly corrects the analgesic defect of beige-J mice, had no effect on (3H)DAGO binding either acutely in vitro or chronically ex vivo after administration to beige-J mice for three weeks. Hence, the analgesic defect of beige-J mice appears to be due to some defect in the mu-opioid receptor-effector coupling mechanism or to some endogenous substance that inhibits binding of mu-opioid ligands to otherwise functional receptors.

  14. The competitive N-methyl-D-aspartate receptor antagonist (-)-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid (LY235959) potentiates the antinociceptive effects of opioids that vary in efficacy at the mu-opioid receptor.

    PubMed

    Allen, Richard M; Granger, Arthur L; Dykstra, Linda A

    2003-11-01

    (-)-6-Phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid (LY235959) is a competitive N-methyl-D-aspartate receptor antagonist shown to prevent the development of tolerance to the antinociceptive effects of morphine in rodents. Although administration of LY235959 alone generally does not produce antinociception, LY235959 potentiates the antinociceptive effects of morphine in squirrel monkeys. The present study was designed to determine whether LY235959 would potentiate the acute antinociceptive effects of morphine as well those of the opioid receptor agonists l-methadone, levorphanol, butorphanol, and buprenorphine. A squirrel monkey titration procedure was used in which shock (delivered to the tail) increased in intensity every 15 s (0.01-2.0 mA) in 30 increments. Five lever presses during any given 15-s shock period (fixed ratio 5) produced a 15-s shock-free period after which shock resumed at the next lower intensity. Morphine (0.3-3.0 mg/kg i.m.), l-methadone (0.1-0.56 mg/kg i.m.), levorphanol (0.1-1.0 mg/kg i.m.), butorphanol (1.0-10 mg/kg i.m.), and buprenorphine (0.01-0.03 mg/kg i.m.), but not LY235959 (0.1-1.0 mg/kg i.m.), dose and time dependently increased the intensity below which monkeys maintained shock 50% of the time (median shock level, MSL). LY235959 dose dependently potentiated the effect of each opioid agonist on MSL when concurrently administered to monkeys. Although LY235959 potentiated the antinociceptive effect of each opioid examined in a statistically significant manner, LY235959 seemed more potent and effective when combined with higher efficacy opioids. The present data suggest that the N-methyl-D-aspartate antagonist, LY235959, can potentiate the antinociceptive effects of a range of opioid receptor agonists independently of nonspecific motor effects. PMID:12975489

  15. Chronic exercise decreases sensitivity to mu opioids in female rats: correlation with exercise output.

    PubMed

    Smith, Mark A; Lyle, Megan A

    2006-09-01

    Aerobic exercise stimulates the release of endogenous opioid peptides and increases nociceptive (i.e., pain) threshold in a naloxone-reversible manner. During chronic exercise, sensitivity to the antinociceptive effects of morphine and other mu opioids decreases, leading some investigators to propose that exercise may lead to the development of cross-tolerance to exogenously administered opioid agonists. The purpose of the present study was to examine the effects of chronic exercise on sensitivity to mu opioids, and to determine if changes in opioid sensitivity during chronic exercise are correlated with exercise output. Eight female rats were obtained at weaning and housed in standard laboratory cages that did not permit any exercise beyond normal cage ambulation. Following 6 weeks under these conditions, opioids possessing a range of relative efficacies at the mu receptor (morphine, levorphanol, buprenorphine, butorphanol) were examined in a warm-water, tail-withdrawal procedure. Under sedentary conditions, all opioids produced dose-dependent increases in tail-withdrawal latencies, and high levels of antinociception were observed for all drugs. Following these tests, rats were reassigned to exercise conditions and transferred to cages equipped with running wheels. Under these conditions, rats ran an average of 7154 rev/day (7869 m/day), with a range across rats from 4501 to 10,164 rev/day (4951-11,180 m/day). Sensitivity to all four opioids decreased significantly during the exercise period, resulting in 2- to 5-fold decreases in the potency of morphine, levorphanol and buprenorphine, and decreases in the effectiveness of buprenorphine and butorphanol. When rats were returned to sedentary conditions, sensitivity to all four opioids increased significantly and returned to that observed prior to the exercise period. For all drugs, there was a positive correlation between exercise output and changes in opioid sensitivity between sedentary and exercise conditions

  16. Central HIV-1 Tat exposure elevates anxiety and fear conditioned responses of male mice concurrent with altered mu-opioid receptor-mediated G-protein activation and β-arrestin 2 activity in the forebrain.

    PubMed

    Hahn, Yun K; Paris, Jason J; Lichtman, Aron H; Hauser, Kurt F; Sim-Selley, Laura J; Selley, Dana E; Knapp, Pamela E

    2016-08-01

    Co-exposure to opiates and HIV/HIV proteins results in enhanced CNS morphological and behavioral deficits in HIV(+) individuals and in animal models. Opiates with abuse liability, such as heroin and morphine, bind preferentially to and have pharmacological actions through μ-opioid-receptors (MORs). The mechanisms underlying opiate-HIV interactions are not understood. Exposure to the HIV-1 transactivator of transcription (Tat) protein causes neurodegenerative outcomes that parallel many aspects of the human disease. We have also observed that in vivo exposure to Tat results in apparent changes in morphine efficacy, and thus have hypothesized that HIV proteins might alter MOR activation. To test our hypothesis, MOR-mediated G-protein activation was determined in neuroAIDS-relevant forebrain regions of transgenic mice with inducible CNS expression of HIV-1 Tat. G-protein activation was assessed by MOR agonist-stimulated [(35)S]guanosine-5'-O-(3-thio)triphosphate ([(35)S]GTPγS) autoradiography in brain sections, and in concentration-effect curves of MOR agonist-stimulated [(35)S]GTPγS binding in membranes isolated from specific brain regions. Comparative studies were done using the MOR-selective agonist DAMGO ([D-Ala(2), N-MePhe(4), Gly-ol]-enkephalin) and a more clinically relevant agonist, morphine. Tat exposure reduced MOR-mediated G-protein activation in an agonist, time, and regionally dependent manner. Levels of the GPCR regulatory protein β-arrestin-2, which is involved in MOR desensitization, were found to be elevated in only one affected brain region, the amygdala; amygdalar β-arrestin-2 also showed a significantly increased association with MOR by co-immunoprecipitation, suggesting decreased availability of MOR. Interestingly, this correlated with changes in anxiety and fear-conditioned extinction, behaviors that have substantial amygdalar input. We propose that HIV-1 Tat alters the intrinsic capacity of MOR to signal in response to agonist binding

  17. Mu-opioids activate phospholipase C in SH-SY5Y human neuroblastoma cells via calcium-channel opening.

    PubMed

    Smart, D; Smith, G; Lambert, D G

    1995-01-15

    We have recently reported that, in SH-SY5Y cells, mu-opioid receptor occupancy activates phospholipase C via a pertussis toxin-sensitive G-protein. In the present study we have further characterized the mechanisms involved in this process. Fentanyl (0.1 microM) caused a monophasic increase in inositol 1,4,5-trisphosphate mass formation, with a peak (20.5 +/- 3.6 pmol/mg of protein) at 15 s. Incubation in Ca(2+)-free buffer abolished this response, while Ca2+ replacement 1 min later restored the stimulation of inositol 1,4,5-trisphosphate formation (20.1 +/- 0.6 pmol/mg of protein). In addition, nifedipine (1 nM-0.1 mM), an L-type Ca(2+)-channel antagonist, caused a dose-dependent inhibition of inositol 1,4,5-trisphosphate formation, with an IC50 of 60.3 +/- 1.1 nM. Elevation of endogenous beta/gamma subunits by selective activation of delta-opioid and alpha 2 adrenoceptors failed to stimulate phospholipase C. Fentanyl also caused a dose-dependent (EC50 of 16.2 +/- 1.0 nM), additive enhancement of carbachol-induced inositol 1,4,5-trisphosphate formation. In summary, we have demonstrated that in SH-SY5Y cells activation of the mu-opioid receptor allows Ca2+ influx to activate phospholipase C. However, the possible role of this mechanism in the process of analgesia remains to be elucidated. PMID:7832776

  18. Mu Opioid Splice Variant MOR-1K Contributes to the Development of Opioid-Induced Hyperalgesia

    PubMed Central

    Oladosu, Folabomi A.; Conrad, Matthew S.; O’Buckley, Sandra C.; Rashid, Naim U.; Slade, Gary D.; Nackley, Andrea G.

    2015-01-01

    Background A subset of the population receiving opioids for the treatment of acute and chronic clinical pain develops a paradoxical increase in pain sensitivity known as opioid-induced hyperalgesia. Given that opioid analgesics are one of few treatments available against clinical pain, it is critical to determine the key molecular mechanisms that drive opioid-induced hyperalgesia in order to reduce its prevalence. Recent evidence implicates a splice variant of the mu opioid receptor known as MOR-1K in the emergence of opioid-induced hyperalgesia. Results from human genetic association and cell signaling studies demonstrate that MOR-1K contributes to decreased opioid analgesic responses and produces increased cellular activity via Gs signaling. Here, we conducted the first study to directly test the role of MOR-1K in opioid-induced hyperalgesia. Methods and Results In order to examine the role of MOR-1K in opioid-induced hyperalgesia, we first assessed pain responses to mechanical and thermal stimuli prior to, during, and following chronic morphine administration. Results show that genetically diverse mouse strains (C57BL/6J, 129S6, and CXB7/ByJ) exhibited different morphine response profiles with corresponding changes in MOR-1K gene expression patterns. The 129S6 mice exhibited an analgesic response correlating to a measured decrease in MOR-1K gene expression levels, while CXB7/ByJ mice exhibited a hyperalgesic response correlating to a measured increase in MOR-1K gene expression levels. Furthermore, knockdown of MOR-1K in CXB7/ByJ mice via chronic intrathecal siRNA administration not only prevented the development of opioid-induced hyperalgesia, but also unmasked morphine analgesia. Conclusions These findings suggest that MOR-1K is likely a necessary contributor to the development of opioid-induced hyperalgesia. With further research, MOR-1K could be exploited as a target for antagonists that reduce or prevent opioid-induced hyperalgesia. PMID:26270813

  19. Aminothiazolomorphinans with Mixed Kappa and Mu Opioid Activitya

    PubMed Central

    Zhang, Tangzhi; Yan, Zhaohua; Sromek, Anna; Knapp, Brian I.; Scrimale, Thomas; Bidlack, Jean M.; Neumeyer, John L.

    2011-01-01

    A series of N-substituted and N′-substituted aminothiazole-derived morphinans (5) were synthesized for expanding the structure-activity relationships of aminothiazolo-morphinans. Although their affinities were somewhat lower than their prototype aminothiazolo-N-cyclopropylmorphinan (3), 3-aminothiazole derivatives of cyclorphan (1) containing a primary amino group displayed high affinity and selectivity at the κ and μ opioid receptors. [35S]GTPγS binding assays showed that the aminothiazolomorphinans were κ agonists with mixed agonist and antagonist activity at the μ opioid receptor. These novel N′-monosubstituted aminothiazole-derived morphinans may be valuable for the development of drug abuse medications. PMID:21351746

  20. Hepatic changes in metabolic gene expression in old ghrelin and ghrelin receptor knockout mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ghrelin knockout (GKO) and ghrelin receptor (growth hormone secretagogue receptor) knockout (GHSRKO) mice exhibit enhanced insulin sensitivity, but the mechanism is unclear. Insulin sensitivity declines with age and is inversely associated with accumulation of lipid in liver, a key glucoregulatory ...

  1. Combination of cell culture assays and knockout mouse analyses for the study of opioid partial agonism.

    PubMed

    Ide, Soichiro; Minami, Masabumi; Sora, Ichiro; Ikeda, Kazutaka

    2010-01-01

    Nonselective opioid partial agonists, such as buprenorphine, butorphanol, and pentazocine, have been widely used as analgesics and for anti-addiction therapy. However, the precise molecular mechanisms underlying the therapeutic and rewarding effects of these drugs have not been clearly delineated. Recent success in developing mu-opioid receptor knockout (MOP-KO) mice has elucidated the molecular mechanisms underlying the effects of morphine and other opioids. We have revealed the in vivo roles of MOPs in the effects of opioid partial agonists by using MOP-KO mice for behavioral tests (e.g., several kinds of antinociceptive tests for analgesic effects, conditioned place preference test for dependence). The combination of the cell culture assays using cDNA for mu, delta, and kappa opioid receptors and the behavioral tests using MOP-KO mice has provided novel theories on the molecular mechanisms underlying the effects of opioid ligands, especially opioid partial agonists. PMID:20336435

  2. A Conditional Knockout Mouse Line of the Oxytocin Receptor

    PubMed Central

    Lee, Heon-Jin; Caldwell, Heather K.; Macbeth, Abbe H.; Tolu, Selen G.; Young, W. Scott

    2008-01-01

    Oxytocin plays important roles in reproductive physiology and various behaviors, including maternal behavior and social memory. Its receptor (Oxtr) is present in peripheral tissues and brain, so a conditional knockout (KO, −/−) would be useful to allow elimination of the receptor in specific sites at defined times. We created a line of mice in which loxP sites flank Oxtr coding sequence (floxed) enable Cre recombinase-mediated inactivation of the receptor. We expressed Cre recombinase in these mice either in all tissues (Oxtr−/−) or the forebrain (OxtrFB/FB) using the Ca2+/calmodulin-dependent protein kinase IIα promoter. The latter KO has reduced Oxtr binding beginning 21–28 d postnatally, leading to prominent reductions in the lateral septum, hippocampus, and ventral pallidum. The medial amygdala is spared, and there is significant retention of binding within the olfactory bulb and nucleus and neocortex. We did not observe any deficits in the general health, sensorimotor functions, anxiety-like behaviors, or sucrose intake in either Oxtr−/− or OxtrFB/FB mice. Females of both KO types deliver pups, but only the OxtrFB/FB mice are able to eject milk. Oxtr−/− males show impaired social memory for familiar females, whereas the OxtrFB/FB males appear to recognize their species but not individuals. Our results confirm the importance of oxytocin in social recognition and demonstrate that spatial and temporal inactivation of the Oxtr will enable finer understanding of the physiological, behavioral, and developmental roles of the receptor. PMID:18356275

  3. Social dominance in male vasopressin 1b receptor knockout mice.

    PubMed

    Caldwell, Heather K; Dike, Obianuju E; Stevenson, Erica L; Storck, Kathryn; Young, W Scott

    2010-07-01

    We have previously reported that mice with a targeted disruption of their vasopressin 1b receptor gene, Avpr1b, have mild impairments in social recognition and reduced aggression. The reductions in aggression are limited to social forms of aggression, i.e., maternal and inter-male aggression, while predatory aggression remains unaffected. To further clarify the role of the Avpr1b in the regulation of social behavior we first examined anxiety-like and depression-like behaviors in Avpr1b knockout (Avpr1b -/-) mice. We then went on to test the ability of Avpr1b -/- mice to form dominance hierarchies. No major differences were found between Avpr1b -/- and wildtype mice in anxiety-like behaviors, as measured using an elevated plus maze and an open field test, or depression-like behaviors, as measured using a forced swim test. In the social dominance study we found that Avpr1b -/- mice are able to form dominance hierarchies, though in early hierarchy formation dominant Avpr1b -/- mice display significantly more mounting behavior on Day 1 of testing compared to wildtype controls. Further, non-socially dominant Avpr1b -/- mice spend less time engaged in attack behavior than wildtype controls. These findings suggest that while Avpr1b -/- mice may be able to form dominance hierarchies they appear to employ alternate strategies. PMID:20298692

  4. Bone growth and turnover in progesterone receptor knockout mice.

    SciTech Connect

    Rickard, David J.; Iwaniec, Urszula T.; Evans, Glenda; Hefferan, Theresa E.; Hunter, Jaime C.; Waters, Katrina M.; Lydon, John P.; O'Malley, Bert W.; Khosla, Sundeep; Spelsberg, Thomas C.; Turner, Russell T.

    2008-05-01

    The role of progesterone receptor (PR) signaling in skeletal metabolism is controversial. To address whether signaling through the PR is necessary for normal bone growth and turnover, we performed histomorphometric and mCT analyses of bone from homozygous female PR knockout (PRKO) mice at 6, 12, and 26 weeks of age. These mice possess a null mutation of the PR locus, which blocks the gene expression of A and B isoforms of PR. Body weight gain, uterine weight gain and tibia longitudinal bone growth was normal in PRKO mice. In contrast, total and cortical bone mass were increased in long bones of post-pubertal (12 and 26-week-old) PRKO mice, whereas cancellous bone mass was normal in the tibia but increased in the humerus. The striking 57% decrease in cancellous bone from the proximal tibia metaphysis which occurred between 6 and 26 weeks in WT mice was abolished in PRKO mice. The improved bone balance in aging PRKO mice was associated with elevated bone formation and a tendency toward reduced osteoclast perimeter. Taken together, these findings suggest that PR signaling in mice attenuates the accumulation of cortical bone mass during adolescence and is required for early age-related loss of cancellous bone.

  5. Bone Growth and Turnover in Progesterone Receptor Knockout Mice

    PubMed Central

    Rickard, David J.; Iwaniec, Urszula T.; Evans, Glenda; Hefferan, Theresa E.; Hunter, Jamie C.; Waters, Katrina M.; Lydon, John P.; O’Malley, Bert W.; Khosla, Sundeep; Spelsberg, Thomas C.; Turner, Russell T.

    2008-01-01

    The role of progesterone receptor (PR) signaling in skeletal metabolism is controversial. To address whether signaling through the PR is necessary for normal bone growth and turnover, we performed histomorphometric and microcomputed tomography analyses of bone from homozygous female PR knockout (PRKO) mice at 6, 12, and 26 wk of age. These mice possess a null mutation of the PR locus, which blocks the gene expression of A and B isoforms of PR. Body weight gain, uterine weight gain, and tibia longitudinal bone growth were normal in PRKO mice. In contrast, total, cancellous, and cortical bone mass were increased in the humerus of 12-wk-old PRKO mice, whereas cortical and cancellous bone mass in the tibia was normal. At 26 wk of age, cancellous bone area in the proximal tibia metaphysis of PRKO mice was 153% greater than age matched wild-type mice. The improved cancellous bone balance in 6-month-old PRKO mice was associated with elevated bone formation and a tendency toward reduced osteoclast perimeter. Taken together, these findings suggest that PR signaling in mice is not essential for bone growth and turnover. However, at some skeletal sites, PR signaling attenuates the accumulation of cortical and cancellous bone mass during adolescence. PMID:18276762

  6. Fentanyl, an agonist at the mu opioid receptor, depresses pupillary unrest.

    PubMed

    Bokoch, Michael P; Behrends, Matthias; Neice, Andrew; Larson, Merlin D

    2015-05-01

    Pupillary unrest is a chaotic fluctuation in pupil size that is observed in darkness with the onset of drowsiness, and in ambient light. The mechanism of pupillary unrest in darkness as well as in ambient light is unknown but studies suggest that it is caused by fluctuating activity in the Edinger-Westphal (E.W.) nucleus. Neurons in the periaqueductal gray with oscillating firing patterns that are inhibitory to the E.W. nucleus have been described in the cat. We theorized that such oscillating neurons produce pupillary unrest in light and would be depressed by agents, such as opioids, known to depress inhibitory pathways in the midbrain. An infrared pupillometer was used to measure the effect of light on pupillary unrest in eight volunteer subjects, and on 20 patients scheduled for knee arthroscopy who received fentanyl as premedication. Pupillary unrest was quantified through spectral analysis of fast Fourier transforms. Sixteen-second measurements of pupil size at 33 Hz were filtered to eliminate blink artifacts and baseline drift. Pupillary unrest was augmented by excitation of the E.W. nucleus by light and was depressed by 40 ± 20% after the administration of the moderate dose of 1 mcg/kg of fentanyl. Recovery from the drug effect was observed. Based upon the data from this study we propose that pupillary unrest in light originates within oscillating inhibitory neurons that intermittently depress the E. W. nucleus. PMID:25737234

  7. INDUCTION OF MAMMARY GLAND DEVELOPMENT IN ESTROGEN RECEPTOR-ALPHA KNOCKOUT MICE

    EPA Science Inventory

    Mammary glands from the estrogen receptor knockout ( ERKO) mouse do not undergo ductal morphogenesis or alveolar development. Disrupted Er signaling may result in reduced estrogen-responsive gene products in the mammary gland or reduced mammotropic hormones that contribute t...

  8. Effects of D1 receptor knockout on fear and reward learning.

    PubMed

    Abraham, Antony D; Neve, Kim A; Lattal, K Matthew

    2016-09-01

    Dopamine signaling is involved in a variety of neurobiological processes that contribute to learning and memory. D1-like dopamine receptors (including D1 and D5 receptors) are thought to be involved in memory and reward processes, but pharmacological approaches have been limited in their ability to distinguish between D1 and D5 receptors. Here, we examine the effects of a specific knockout of D1 receptors in associative learning tasks involving aversive (shock) or appetitive (cocaine) unconditioned stimuli. We find that D1 knockout mice show similar levels of cued and contextual fear conditioning to WT controls following conditioning protocols involving one, two, or four shocks. D1 knockout mice show increased generalization of fear conditioning and extinction across contexts, revealed as increased freezing to a novel context following conditioning and decreased freezing to an extinguished cue during a contextual renewal test. Further, D1 knockout mice show mild enhancements in extinction following an injection of SKF81297, a D1/D5 receptor agonist, suggesting a role for D5 receptors in extinction enhancements induced by nonspecific pharmacological agonists. Finally, although D1 knockout mice show decreased locomotion induced by cocaine, they are able to form a cocaine-induced conditioned place preference. We discuss these findings in terms of the role of dopamine D1 receptors in general learning and memory processes. PMID:27423521

  9. Comparison of nociceptive behavior in prostaglandin E, F, D, prostacyclin and thromboxane receptor knockout mice.

    PubMed

    Popp, Laura; Häussler, Annett; Olliges, Anke; Nüsing, Rolf; Narumiya, Shuh; Geisslinger, Gerd; Tegeder, Irmgard

    2009-08-01

    Antagonist at specific prostaglandin receptors might provide analgesia with a more favourable toxicity profile compared with cyclooxygenase inhibitors. We analyzed nociceptive responses in prostaglandin D, E, F, prostacyclin and thromboxane receptor knockout mice and mice deficient of cyclooxygenase 1 or 2 to evaluate the contribution of individual prostaglandin receptors for heat, mechanical and formalin-evoked pain. None of the knockouts was uniformly protected from all of these pain stimuli but COX-1 and EP4 receptor knockouts presented with reduced heat pain and EP3 receptor and COX-2 knockout mice had reduced licking responses in the 2nd phase of the formalin assay. This was accompanied with reduced c-Fos immunoreactivity in the spinal cord dorsal horn in EP3 knockouts. Oppositely, heat pain sensitivity was increased in FP, EP1 and EP1+3 double mutant mice possibly due to a loss of FP or EP1 receptor mediated central control of thermal pain sensitivity. Deficiency of either EP2 or DP1 was associated with increased formalin-evoked flinching responses and c-Fos IR in dorsal horn neurons suggesting facilitated spinal cord pain reflex circuity. Thromboxane and prostacyclin receptor knockout mice showed normal pain behavior in all tests. The results suggest a differential, pain-stimulus and site-specific contribution of specific PG-receptors for the processing of the nociceptive stimuli, a differential modulation of nociceptive responses by COX-1 and COX-2 derived prostaglandins and compensatory and/or developmental adaptations in mice lacking specific PG receptors. PMID:18938093

  10. Impaired Social Behavior in 5-HT3A Receptor Knockout Mice

    PubMed Central

    Smit-Rigter, Laura A.; Wadman, Wytse J.; van Hooft, Johannes A.

    2010-01-01

    The 5-HT3 receptor is a ligand-gated ion channel expressed on interneurons throughout the brain. So far, analysis of the 5-HT3A knockout mouse revealed changes in nociceptive processing and a reduction in anxiety related behavior. Recently, it was shown that the 5-HT3 receptor is also expressed on Cajal-Retzius cells which play a key role in cortical development and that knockout mice lacking this receptor showed aberrant growth of the dendritic tree of cortical layer II/III pyramidal neurons. Other mouse models in which serotonergic signaling was disrupted during development showed similar morphological changes in the cortex, and in addition, also deficits in social behavior. Here, we subjected male and female 5-HT3A knockout mice and their non-transgenic littermates to several tests of social behavior. We found that 5-HT3A knockout mice display impaired social communication in the social transmission of food preference task. Interestingly, we showed that in the social interaction test only female 5-HT3A knockout mice spent less time in reciprocal social interaction starting after 5 min of testing. Moreover, we observed differences in preference for social novelty for male and female 5-HT3A knockout mice during the social approach test. However, no changes in olfaction, exploratory activity and anxiety were detected. These results indicate that the 5-HT3A knockout mouse displays impaired social behavior with specific changes in males and females, reminiscent to other mouse models in which serotonergic signaling is disturbed in the developing brain. PMID:21103015

  11. Normal Maternal Behavior, But Increased Pup Mortality, in Conditional Oxytocin Receptor Knockout Females

    PubMed Central

    Macbeth, Abbe H.; Stepp, Jennifer E.; Lee, Heon-Jin; Young, W. Scott; Caldwell, Heather K.

    2011-01-01

    Oxytocin (Oxt) and the Oxt receptor (Oxtr) are implicated in the onset of maternal behavior in a variety of species. Recently, we developed two Oxtr knockout lines: a total body knockout (Oxtr−/−) and a conditional Oxtr knockout (OxtrFB/FB) in which the Oxtr is lacking only in regions of the forebrain, allowing knockout females to potentially nurse and care for their biological offspring. In the current study, we assessed maternal behavior of postpartum OxtrFB/FB females toward their own pups and maternal behavior of virgin Oxtr−/− females toward foster pups and compared knockouts of both lines to wildtype (Oxtr+/+) littermates. We found that both Oxtr−/− and OxtrFB/FB females appear to have largely normal maternal behaviors. However, with first litters, approximately 40% of the OxtrFB/FB knockout dams experienced high pup mortality, compared to fewer than 10% of the Oxtr+/+ dams. We then went on to test whether or not this phenotype occurred in subsequent litters or when the dams were exposed to an environmental disturbance. We found that regardless of the degree of external disturbance, OxtrFB/FB females lost more pups on their first and second litters compared to wildtype females. Possible reasons for higher pup mortality in OxtrFB/FB females are discussed. PMID:20939667

  12. Serotonin receptor 1A knockout: An animal model of anxiety-related disorder

    PubMed Central

    Ramboz, Sylvie; Oosting, Ronald; Amara, Djamel Aït; Kung, Hank F.; Blier, Pierre; Mendelsohn, Monica; Mann, J. John; Brunner, Dani; Hen, René

    1998-01-01

    To investigate the contribution of individual serotonin (5-hydroxytryptamine; 5-HT) receptors to mood control, we have used homologous recombination to generate mice lacking specific serotonergic receptor subtypes. In the present report, we demonstrate that mice without 5-HT1A receptors display decreased exploratory activity and increased fear of aversive environments (open or elevated spaces). 5-HT1A knockout mice also exhibited a decreased immobility in the forced swim test, an effect commonly associated with antidepressant treatment. Although 5-HT1A receptors are involved in controlling the activity of serotonergic neurons, 5-HT1A knockout mice had normal levels of 5-HT and 5-hydroxyindoleacetic acid, possibly because of an up-regulation of 5-HT1B autoreceptors. Heterozygote 5-HT1A mutants expressed approximately one-half of wild-type receptor density and displayed intermediate phenotypes in most behavioral tests. These results demonstrate that 5-HT1A receptors are involved in the modulation of exploratory and fear-related behaviors and suggest that reductions in 5-HT1A receptor density due to genetic defects or environmental stressors might result in heightened anxiety. PMID:9826725

  13. Wheel running reduces high-fat diet intake, preference and mu-opioid agonist stimulated intake

    PubMed Central

    Liang, Nu-Chu; Bello, Nicholas T.; Moran, Timothy H.

    2015-01-01

    The ranges of mechanisms by which exercise affects energy balance remain unclear. One potential mechanism may be that exercise reduces intake and preference for highly palatable, energy dense fatty foods. The current study used a rodent wheel running model to determine whether and how physical activity affects HF diet intake/preference and reward signaling. Experiment 1 examined whether wheel running affected the ability of intracerebroventricular (ICV) µ opioid receptor agonist D-Ala2, NMe-Phe4, Glyol5-enkephalin (DAMGO) to increase HF diet intake. Experiment 2 examined the effects of wheel running on the intake of and preference for a previously preferred HF diet. We also assessed the effects of wheel running and diet choice on mesolimbic dopaminergic and opioidergic gene expression. Experiment 1 revealed that wheel running decreased the ability of ICV DAMGO administration to stimulate HF diet intake. Experiment 2 showed that wheel running suppressed weight gain and reduced intake and preference for a previously preferred HF diet. Furthermore, the mesolimbic gene expression profile of wheel running rats was different from that of their sedentary paired-fed controls but similar to that of sedentary rats with large HF diet consumption. These data suggest that alterations in preference for palatable, energy dense foods play a role in the effects of exercise on energy homeostasis. The gene expression results also suggest that the hedonic effects of exercise may substitute for food reward to limit food intake and suppress weight gain. PMID:25668514

  14. CB2 Cannabinoid Receptor Knockout in Mice Impairs Contextual Long-Term Memory and Enhances Spatial Working Memory

    PubMed Central

    Li, Yong; Kim, Jimok

    2016-01-01

    Neurocognitive effects of cannabinoids have been extensively studied with a focus on CB1 cannabinoid receptors because CB1 receptors have been considered the major cannabinoid receptor in the nervous system. However, recent discoveries of CB2 cannabinoid receptors in the brain demand accurate determination of whether and how CB2 receptors are involved in the cognitive effects of cannabinoids. CB2 cannabinoid receptors are primarily involved in immune functions, but also implicated in psychiatric disorders such as schizophrenia and depression. Here, we examined the effects of CB2 receptor knockout in mice on memory to determine the roles of CB2 receptors in modulating cognitive function. Behavioral assays revealed that hippocampus-dependent, long-term contextual fear memory was impaired whereas hippocampus-independent, cued fear memory was normal in CB2 receptor knockout mice. These mice also displayed enhanced spatial working memory when tested in a Y-maze. Motor activity and anxiety of CB2 receptor knockout mice were intact when assessed in an open field arena and an elevated zero maze. In contrast to the knockout of CB2 receptors, acute blockade of CB2 receptors by AM603 in C57BL/6J mice had no effect on memory, motor activity, or anxiety. Our results suggest that CB2 cannabinoid receptors play diverse roles in regulating memory depending on memory types and/or brain areas. PMID:26819779

  15. PROXIMAL GUT MUCOSAL EPITHELIAL HOMEOSTASIS IN AGED IL-1 TYPE I RECEPTOR KNOCKOUT MICE AFTER STARVATION

    PubMed Central

    Song, Juquan; Wolf, Steven E.; Wu, Xiao-Wu; Finnerty, Celeste C.; Herndon, David N.; Jeschke, Marc G.

    2010-01-01

    Background Previous studies have shown that starvation induces small bowel atrophy, and that atrophy diminishes with aging. In this experiment, we assessed whether starvation-induced atrophy of proximal gut mucosa is associated with the Interleukin-1 receptor (IL-1R) signaling pathway in aged mice. Materials and Methods Thirty 26-month-old IL-1R knockout mice and age-matched wild-type C57BL/6 mice were randomly divided into two groups: ad libitum fed and fasted. Mice were euthanized 12 or 48 hours after starvation. The proximal small bowel was harvested for morphologic analysis. Gut epithelial cell proliferation was detected using immunohistochemical staining for proliferating cell nuclear antigen (PCNA), and apoptosis was identified using terminal deoxyuridine nick-end labeling (TUNEL) staining. Results Aged IL-1R knockout mice were larger than aged-matched wild-type mice (p<0.05). Proximal gut mucosal height and mucosal cell number were not different between aged IL-1R knockout and wild-type groups. The apoptosis index in gut epithelial cells was higher in fed IL-1R knockout versus wild-type mice (p<0.05), while no significant difference in cell proliferation between both groups. Mucosal atrophy was induced in both aged IL-1R knockout and wild-type groups by starvation (p<0.05), however, aged IL-1R knockout mice experienced greater losses in proximal gut weight, mucosal length, and corresponding cell number than did wild-type mice at the 12-hour time point (p<0.05). The apoptosis index in gut epithelial cells significantly increased in both groups after starvation (p<0.05). Starvation decreased cell proliferation in IL-1R knockout mice (p<0.05), but not in wild-type mice. Conclusions The response in aged IL-1R knockout mice differs from wild-type mice in that starvation increases atrophy and is associated with decreased cell proliferation rather than increased apoptosis. PMID:20605606

  16. Cardiac-Specific Knockout of ETA Receptor Mitigates Paraquat-Induced Cardiac Contractile Dysfunction.

    PubMed

    Wang, Jiaxing; Lu, Songhe; Zheng, Qijun; Hu, Nan; Yu, Wenjun; Li, Na; Liu, Min; Gao, Beilei; Zhang, Guoyong; Zhang, Yingmei; Wang, Haichang

    2016-07-01

    Paraquat (1,1'-dim ethyl-4-4'-bipyridinium dichloride), a highly toxic quaternary ammonium herbicide widely used in agriculture, exerts potent toxic prooxidant effects resulting in multi-organ failure including the lung and heart although the underlying mechanism remains elusive. Recent evidence suggests possible involvement of endothelin system in paraquat-induced acute lung injury. This study was designed to examine the role of endothelin receptor A (ETA) in paraquat-induced cardiac contractile and mitochondrial injury. Wild-type (WT) and cardiac-specific ETA receptor knockout mice were challenged to paraquat (45 mg/kg, i.p.) for 48 h prior to the assessment of echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties, as well as apoptosis and mitochondrial damage. Levels of the mitochondrial proteins for biogenesis and oxidative phosphorylation including UCP2, HSP90 and PGC1α were evaluated. Our results revealed that paraquat elicited cardiac enlargement, mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic and end-diastolic diameters as well as reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca(2+) handling, overt apoptosis and mitochondrial damage. ETA receptor knockout itself failed to affect myocardial function, apoptosis, mitochondrial integrity and mitochondrial protein expression. However, ETA receptor knockout ablated or significantly attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) defect, apoptosis and mitochondrial damage. Taken together, these findings revealed that endothelin system in particular the ETA receptor may be involved in paraquat-induced toxic myocardial contractile anomalies possibly related to apoptosis and mitochondrial damage. PMID:26089164

  17. Prostanoids and inflammation: a new concept arising from receptor knockout mice.

    PubMed

    Narumiya, Shuh

    2009-10-01

    Prostanoids including various types of prostaglandins and thromboxanes are arachidonate metabolites produced and released in response to a variety of physiological and pathological stimuli and function to maintain the body homeostasis. Since cyclooxygenase, the enzyme initiating their biosynthesis, is inhibited by aspirin-like antipyretic, anti-inflammatory, and analgesic drugs, contribution of prostanoids to acute inflammation such as fever generation, pain sensitization, and inflammatory swelling has been recognized very early. On the other hand, since aspirin-like drugs generally show little effects on allergy and immunity, it has been believed that prostanoids play little roles in these processes. Prostanoids act on a family of G-protein-coupled receptors designated PGD receptor, PGE receptor subtypes EP1-EP4, PGF receptor, PGI receptor, and TX receptor to elicit their actions. Studies using mice deficient in each of these receptors have revealed that prostanoids indeed function in the above aspirin-sensitive processes. However, these studies have also revealed that prostanoids exert both pro-inflammatory and anti-inflammatory actions not only by acting as mediators of acute inflammation but also by regulating gene expression in mesenchymal and epithelial cells at inflammatory site. Such dual actions of prostanoids are frequently seen in immune and allergic reactions, where different type of prostanoids and their receptors often exert opposite actions in a single process. Thus, a new concept on the role of prostanoids in inflammation has arisen from studies using the receptor knockout mice. PMID:19609495

  18. Thyrotropin receptor knockout mice: studies on immunological tolerance to a major thyroid autoantigen.

    PubMed

    Pichurin, Pavel N; Pichurina, Oxana; Marians, Russell C; Chen, Chun-Rong; Davies, Terry F; Rapoport, Basil; McLachlan, Sandra M

    2004-03-01

    Graves' disease involves a breakdown in self-tolerance to the TSH receptor (TSHR). Central T cell tolerance is established by intrathymic deletion of immature T lymphocytes that bind with high affinity to peptides from autoantigens (like the TSHR) expressed ectopically in the thymus. In TSHR-knockout mice, tolerance cannot be induced to the TSHR, which should, therefore, be a foreign antigen for these animals. To test this hypothesis, TSHR-knockout mice and wild-type controls were vaccinated (three injections) with TSHR DNA or control DNA. TSHR antibodies, measured by ELISA, binding to TSHR-expressing eukaryotic cells, and TSH binding inhibition, developed in approximately 60% of TSHR-knockout mice, not significantly different from 80% in the wild-type mice. Antibody levels were also comparable in the two groups, and both strains recognized the same immunodominant linear antibody epitope at the amino terminus of the TSHR. Splenocyte responses to TSHR protein in culture, measured as interferon-gamma production, were similar in TSHR-knockout and wild-type mice. Moreover, T cells from both strains recognized the same two epitopes from a panel of 29 synthetic peptides encompassing the TSHR ectodomain and extracellular loops. This lack of difference in immune responses in TSHR-knockout and wild-type mice is unexpected and is contrary to observations in other induced animal models of autoimmunity. The importance of our finding is that the TSHR may not be similar to other model proteins used to define the concept of central immune tolerance. PMID:14630711

  19. Changes in the expression of neurotransmitter receptors in Parkin and DJ-1 knockout mice--A quantitative multireceptor study.

    PubMed

    Cremer, J N; Amunts, K; Schleicher, A; Palomero-Gallagher, N; Piel, M; Rösch, F; Zilles, K

    2015-12-17

    Parkinson's disease (PD) is a well-characterized neurological disorder with regard to its neuropathological and symptomatic appearance. At the genetic level, mutations of particular genes, e.g. Parkin and DJ-1, were found in human hereditary PD with early onset. Neurotransmitter receptors constitute decisive elements in neural signal transduction. Furthermore, since they are often altered in neurological and psychiatric diseases, receptors have been successful targets for pharmacological agents. However, the consequences of PD-associated gene mutations on the expression of transmitter receptors are largely unknown. Therefore, we studied the expression of 16 different receptor binding sites of the neurotransmitters glutamate, GABA, acetylcholine, adrenaline, serotonin, dopamine and adenosine by means of quantitative receptor autoradiography in Parkin and DJ-1 knockout mice. These knockout mice exhibit electrophysiological and behavioral deficits, but do not show the typical dopaminergic cell loss. We demonstrated differential changes of binding site densities in eleven brain regions. Most prominently, we found an up-regulation of GABA(B) and kainate receptor densities in numerous cortical areas of Parkin and DJ-1 knockout mice, as well as increased NMDA but decreased AMPA receptor densities in different brain regions of the Parkin knockout mice. The alterations of three different glutamate receptor types may indicate the potential relevance of the glutamatergic system in the pathogenesis of PD. Furthermore, the cholinergic M1, M2 and nicotinic receptors as well as the adrenergic α2 and the adenosine A(2A) receptors showed differentially increased densities in Parkin and DJ-1 knockout mice. Taken together, knockout of the PD-associated genes Parkin or DJ-1 results in differential changes of neurotransmitter receptor densities, highlighting a possible role of altered non-dopaminergic, and in particular of glutamatergic neurotransmission in PD pathogenesis. PMID

  20. Diacylglycerol Lipase α Knockout Mice Demonstrate Metabolic and Behavioral Phenotypes Similar to Those of Cannabinoid Receptor 1 Knockout Mice

    PubMed Central

    Powell, David R.; Gay, Jason P.; Wilganowski, Nathaniel; Doree, Deon; Savelieva, Katerina V.; Lanthorn, Thomas H.; Read, Robert; Vogel, Peter; Hansen, Gwenn M.; Brommage, Robert; Ding, Zhi-Ming; Desai, Urvi; Zambrowicz, Brian

    2015-01-01

    After creating >4,650 knockouts (KOs) of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1) KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase α or β (Dagla or Daglb), which catalyze biosynthesis of the endocannabinoid (EC) 2-arachidonoylglycerol (2-AG), or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild-type (WT) littermates; when data from multiple cohorts of adult mice were combined, body fat was 47 and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. By contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight (BW) similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride, and total cholesterol levels, and after glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: (1) the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; (2) in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and (3) small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower BW and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric side

  1. Diacylglycerol Lipase α Knockout Mice Demonstrate Metabolic and Behavioral Phenotypes Similar to Those of Cannabinoid Receptor 1 Knockout Mice.

    PubMed

    Powell, David R; Gay, Jason P; Wilganowski, Nathaniel; Doree, Deon; Savelieva, Katerina V; Lanthorn, Thomas H; Read, Robert; Vogel, Peter; Hansen, Gwenn M; Brommage, Robert; Ding, Zhi-Ming; Desai, Urvi; Zambrowicz, Brian

    2015-01-01

    After creating >4,650 knockouts (KOs) of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1) KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase α or β (Dagla or Daglb), which catalyze biosynthesis of the endocannabinoid (EC) 2-arachidonoylglycerol (2-AG), or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild-type (WT) littermates; when data from multiple cohorts of adult mice were combined, body fat was 47 and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. By contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight (BW) similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride, and total cholesterol levels, and after glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: (1) the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; (2) in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and (3) small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower BW and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric side

  2. Audiograms, gap detection thresholds, and frequency difference limens in cannabinoid receptor 1 knockout mice.

    PubMed

    Toal, Katrina L; Radziwon, Kelly E; Holfoth, David P; Xu-Friedman, Matthew A; Dent, Micheal L

    2016-02-01

    The cannabinoid receptor 1 (CB1R) is found at several stages in the auditory pathway, but its role in hearing is unknown. Hearing abilities were measured in CB1R knockout mice and compared to those of wild-type mice. Operant conditioning and the psychophysical Method of Constant Stimuli were used to measure audiograms, gap detection thresholds, and frequency difference limens in trained mice using the same methods and stimuli as in previous experiments. CB1R knockout mice showed deficits at frequencies above 8 kHz in their audiograms relative to wild-type mice. CB1R knockouts showed enhancements for detecting gaps in low-pass noisebursts relative to wild-type mice, but were similar for other noise conditions. Finally, the two groups of mice did not differ in their frequency discrimination abilities as measured by the frequency difference limens task. These experiments suggest that the CB1R is involved in auditory processing and lay the groundwork for future physiological experiments. PMID:26427583

  3. Compulsive behavior in the 5-HT2C receptor knockout mouse.

    PubMed

    Chou-Green, Jennifer M; Holscher, Todd D; Dallman, Mary F; Akana, Susan F

    2003-04-01

    The efficacy of serotonergic pharmacotherapy indicates that serotonin (5-HT) plays a role in the treatment, if not the etiology, of obsessive-compulsive disorder (OCD). While some clinical evidence implicates 5-HT(2C) receptors in this disorder, a definitive function has yet to be validated. We hypothesized that 5-HT(2C) receptor knockout (KO) mice may display compulsive-like behavior. This paper describes characterization of several distinct, highly organized behaviors in mice lacking functional 5-HT(2C) receptors, which supports a compulsive-like syndrome.Compulsive-like behavior was assessed in male 5-HT(2C) receptor KO and wildtype (WT) mice. Chewing of non-nutritive clay, chewing patterns on plastic-mesh screens, and the frequency of head dipping were measured. 5-HT(2C) receptor KO mice chewed more clay, produced a distinct pattern of "neat" chewing of plastic screens and exhibited reduced habituation of head dipping activity compared to WT mice. We conclude that the 5-HT(2C) receptor null mutant mouse provides a promising model of compulsive behavior and a means to further explore the role of 5-HT in OCD. PMID:12782219

  4. Knockout of insulin and IGF-1 receptors on vascular endothelial cells protects against retinal neovascularization

    PubMed Central

    Kondo, Tatsuya; Vicent, David; Suzuma, Kiyoshi; Yanagisawa, Masashi; King, George L.; Holzenberger, Martin; Kahn, C. Ronald

    2003-01-01

    Both insulin and IGF-1 have been implicated in control of retinal endothelial cell growth, neovascularization, and diabetic retinopathy. To precisely define the role of insulin and IGF-1 signaling in endothelium in these processes, we have used the oxygen-induced retinopathy model to study mice with a vascular endothelial cell–specific knockout of the insulin receptor (VENIRKO) or IGF-1 receptor (VENIFARKO). Following relative hypoxia, VENIRKO mice show a 57% decrease in retinal neovascularization as compared with controls. This is associated with a blunted rise in VEGF, eNOS, and endothelin-1. By contrast, VENIFARKO mice show only a 34% reduction in neovascularization and a very modest reduction in mediator generation. These data indicate that both insulin and IGF-1 signaling in endothelium play a role in retinal neovascularization through the expression of vascular mediators, with the effect of insulin being most important in this process. PMID:12813019

  5. GABAA-receptor modification in taurine transporter knockout mice causes striatal disinhibition

    PubMed Central

    Sergeeva, O A; Fleischer, W; Chepkova, A N; Warskulat, U; Häussinger, D; Siebler, M; Haas, H L

    2007-01-01

    The Striatum is involved in the regulation of movements and motor skills. We have shown previously, that the osmolyte and neuromodulator taurine plays a role in striatal plasticity. We demonstrate now that hereditary taurine deficiency in taurine-transporter knock-out (TAUT KO) mice results in disinhibition of striatal network activity, which can be corrected by taurine supplementation. Modification of GABAA but not glycine receptors (taurine is a ligand for both receptor types) underlies this disinhibition. Whole-cell recordings from acutely isolated as well as cultured striatal neurons revealed a decreased agonist sensitivity of the GABAA receptor in TAUT KO neurons in the absence of changes in the maximal GABA-evoked current amplitude. The striatal GABA level in TAUT KO mice was unchanged. The amplitude enhancement of spontaneous IPSCs by zolpidem was stronger in TAUT KO than in wild-type (WT) animals. Tonic inhibition was absent in striatal neurons under control conditions but was detected after incubation with the GABA-transaminase inhibitor vigabatrin: bicuculline induced a larger shift of baseline current in WT as compared to TAUT KO neurons. Lack of taurine leads to reduced sensitivity of synaptic and extrasynaptic GABAA receptors and consequently to disinhibition. These findings help in understanding neuropathologies accompanied by the loss of endogenous taurine, for instance in hepatic encephalopathy. PMID:17962336

  6. Distinct mixtures of muscarinic receptor subtypes mediate inhibition of noradrenaline release in different mouse peripheral tissues, as studied with receptor knockout mice

    PubMed Central

    Trendelenburg, Anne-Ulrike; Meyer, Angelika; Wess, Jürgen; Starke, Klaus

    2005-01-01

    The muscarinic heteroreceptors modulating noradrenaline release in atria, urinary bladder and vas deferens were previously studied in mice in which the M2 or the M4 muscarinic receptor genes had been disrupted. These experiments showed that these tissues possessed both M2 and non-M2 heteroreceptors. The analysis was now extended to mice in which either the M3, both the M2 and the M3, or both the M2 and the M4 genes had been disrupted (M3-knockout, M2/3-knockout and M2/4-knockout). Tissues were preincubated with 3H-noradrenaline and then stimulated electrically (20 pulses per 50 Hz). In wild-type atria, carbachol (0.01–100 μM) decreased the electrically evoked tritium overflow by maximally 60–78%. The maximum inhibition of carbachol was reduced to 57% in M3-knockout and to 23% in M2/4-knockout atria. Strikingly, the effect of carbachol was abolished in M2/3-knockout atria. In wild-type bladder, carbachol (0.01–100 μM) reduced the evoked tritium overflow by maximally 57–71%. This effect remained unchanged in the M3-knockout, but was abolished in the M2/4-knockout bladder. In wild-type vas deferens, carbachol (0.01–100 μM) reduced the evoked tritium overflow by maximally 34–48%. The maximum inhibition of carbachol was reduced to 40% in the M3-knockout and to 18% in the M2/4-knockout vas deferens. We conclude that the postganglionic sympathetic axons of mouse atria possess M2 and M3, those of the urinary bladder M2 and M4, and those of the vas deferens M2, M3 and M4 release-inhibiting muscarinic receptors. PMID:15965496

  7. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    SciTech Connect

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey

    2011-11-15

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemical changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and

  8. Effect of P2X7 receptor knockout on AQP-5 expression of type I alveolar epithelial cells.

    PubMed

    Ebeling, Georg; Bläsche, Robert; Hofmann, Falk; Augstein, Antje; Kasper, Michael; Barth, Kathrin

    2014-01-01

    P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis. PMID:24941004

  9. Effect of P2X7 Receptor Knockout on AQP-5 Expression of Type I Alveolar Epithelial Cells

    PubMed Central

    Ebeling, Georg; Bläsche, Robert; Hofmann, Falk; Augstein, Antje; Kasper, Michael; Barth, Kathrin

    2014-01-01

    P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis. PMID:24941004

  10. Food intake, tumor growth, and weight loss in EP2 receptor subtype knockout mice bearing PGE2-producing tumors

    PubMed Central

    Iresjö, Britt-Marie; Wang, Wenhua; Nilsberth, Camilla; Andersson, Marianne; Lönnroth, Christina; Smedh, Ulrika

    2015-01-01

    Previous studies in our laboratory have demonstrated that prostaglandin (PG) E2 is involved in anorexia/cachexia development in MCG 101 tumor-bearing mice. In the present study, we investigate the role of PGE receptor subtype EP2 in the development of anorexia after MCG 101 implantation in wild-type (EP2+/+) or EP2-receptor knockout (EP2−/−) mice. Our results showed that host absence of EP2 receptors attenuated tumor growth and development of anorexia in tumor-bearing EP2 knockout mice compared to tumor-bearing wild-type animals. Microarray profiling of the hypothalamus revealed a relative twofold change in expression of around 35 genes including mRNA transcripts coding for Phospholipase A2 and Prostaglandin D2 synthase (Ptgds) in EP2 receptor knockout mice compared to wild-type mice. Prostaglandin D2 synthase levels were increased significantly in EP2 receptor knockouts, suggesting that improved food intake may depend on altered balance of prostaglandin production in hypothalamus since PGE2 and PGD2 display opposing effects in feeding control. PMID:26197930

  11. Receptor for advanced glycation end products (RAGE) knockout reduces fetal dysmorphogenesis in murine diabetic pregnancy.

    PubMed

    Ejdesjö, Andreas; Brings, Sebastian; Fleming, Thomas; Fred, Rikard G; Nawroth, Peter P; Eriksson, Ulf J

    2016-07-01

    The receptor for Advanced Glycation End products (RAGE) is implicated in the pathogenesis of diabetic complications, but its importance in diabetic embryopathy is unclear. We therefore investigated the role of RAGE in diabetic embryopathy using streptozotocin induced diabetes in female wild type (WT) C57Bl/6N and RAGE knockout C57Bl/6N (RAGE(-/-)) mice, mated with control males of the same genotype. Maternal diabetes induced more fetal resorption and malformation (facial skeleton, neural tube) in the WT than in the RAGE(-/-) fetuses. Maternal plasma glucose and methylgyoxal concentrations, as well as embryonic N(ε)-carboxymethyl-lysine (CML) levels were increased to the same extent in diabetic WT and RAGE(-/-) pregnancy. However, maternal diabetes induced increased fetal hepatic isoprostane 8-iso-PGF2α levels (oxidative stress marker) and embryonic activation of NFκB in WT only (not in RAGE(-/-) embryos). The association between RAGE knockout and diminished embryonic dysmorphogenesis in diabetic pregnancy suggests that embryonic RAGE activation is involved in diabetic embryopathy. PMID:27109771

  12. Sex-dependence of anxiety-like behavior in cannabinoid receptor 1 (Cnr1) knockout mice.

    PubMed

    Bowers, Mallory E; Ressler, Kerry J

    2016-03-01

    Epidemiological data suggest women are at increased risk for developing anxiety and depression, although the mechanisms for this sex/gender difference remain incompletely understood. Pre-clinical studies have begun to investigate sex-dependent emotional learning and behavior in rodents, particularly as it relates to psychopathology; however, information about how gonadal hormones interact with the central nervous system is limited. We observe greater anxiety-like behavior in male mice with global knockout of the cannabinoid 1 receptor (Cnr1) compared to male, wild-type controls as measured by percent open arm entries on an elevated plus maze test. A similar increase in anxiety-like behavior, however, is not observed when comparing female Cnr1 knockouts to female wild-type subjects. Although, ovariectomy in female mice did not reverse this effect, both male and female adult mice with normative development were sensitive to Cnr1 antagonist-mediated increases in anxiety-like behavior. Together, these data support an interaction between sex, potentially mediated by gonadal hormones, and the endocannabinoid system at an early stage of development that is critical for establishing adult anxiety-like behavior. PMID:26684509

  13. Immune malfunction in the GPR39 zinc receptor of knockout mice: Its relationship to depressive disorder.

    PubMed

    Młyniec, Katarzyna; Trojan, Ewa; Ślusarczyk, Joanna; Głombik, Katarzyna; Basta-Kaim, Agnieszka; Budziszewska, Bogusława; Skrzeszewski, Jakub; Siwek, Agata; Holst, Birgitte; Nowak, Gabriel

    2016-02-15

    Depression is a serious psychiatric disorder affecting not only the monaminergic, glutamatergic, and GABAergic neurosystems, but also the immune system. Patients suffering from depression show disturbance in the immune parameters as well as increased susceptibility to infections. Zinc is well known as an anti-inflammatory agent, and its link with depression has been proved, zinc deficiency causing depression- and anxiety-like behavior with immune malfunction. It has been discovered that trace-element zinc acts as a neurotransmitter in the central nervous system via zinc receptor GPR39. In this study we investigated whether GPR39 knockout would cause depressive-like behavior as measured by the forced swim test, and whether these changes would coexist with immune malfunction. In GPR39 knockout mice versus a wild-type control we found: i) depressive-like behavior; ii) significantly reduced thymus weight; (iii) reduced cell viability of splenocytes; iv) reduced proliferative response of splenocytes; and v) increased IL-6 production of splenocytes after ConA stimulation and decreased IL-1b and IL-6 release after LPS stimulation. The results indicate depressive-like behavior in GPR39 KO animals with an immune response similar to that observed in depressive disorder. Here for the first time we show immunological changes under GPR39-deficient conditions. PMID:26857489

  14. Myeloid Deletion of α1AMPK Exacerbates Atherosclerosis in LDL Receptor Knockout (LDLRKO) Mice.

    PubMed

    Cao, Qiang; Cui, Xin; Wu, Rui; Zha, Lin; Wang, Xianfeng; Parks, John S; Yu, Liqing; Shi, Hang; Xue, Bingzhong

    2016-06-01

    Macrophage inflammation marks all stages of atherogenesis, and AMPK is a regulator of macrophage inflammation. We therefore generated myeloid α1AMPK knockout (MAKO) mice on the LDL receptor knockout (LDLRKO) background to investigate whether myeloid deletion of α1AMPK exacerbates atherosclerosis. When fed an atherogenic diet, MAKO/LDLRKO mice displayed exacerbated atherosclerosis compared with LDLRKO mice. To determine the underlying pathophysiological pathways, we characterized macrophage inflammation/chemotaxis and lipid/cholesterol metabolism in MAKO/LDLRKO mice. Myeloid deletion of α1AMPK increased macrophage inflammatory gene expression and enhanced macrophage migration and adhesion to endothelial cells. Remarkably, MAKO/LDLRKO mice also displayed higher composition of circulating chemotaxically active Ly-6C(high) monocytes, enhanced atherosclerotic plaque chemokine expression, and monocyte recruitment into plaques, leading to increased atherosclerotic plaque macrophage content and inflammation. MAKO/LDLRKO mice also exhibited higher plasma LDL and VLDL cholesterol content, increased circulating apolipoprotein B (apoB) levels, and higher liver apoB expression. We conclude that macrophage α1AMPK deficiency promotes atherogenesis in LDLRKO mice and is associated with enhanced macrophage inflammation and hypercholesterolemia and that macrophage α1AMPK may serve as a therapeutic target for prevention and treatment of atherosclerosis. PMID:26822081

  15. Enhanced self-administration of alcohol in muscarinic acetylcholine M4 receptor knockout mice.

    PubMed

    de la Cour, Cecilie; Sørensen, Gunnar; Wortwein, Gitta; Weikop, Pia; Dencker, Ditte; Fink-Jensen, Anders; Molander, Anna

    2015-01-01

    Modulation of cholinergic neurotransmission via nicotinic acetylcholine receptors is known to alter alcohol-drinking behavior. It is not known if muscarinic acetylcholine receptor subtypes have similar effects. The muscarinic M4 receptor is highly expressed in the brain reinforcement system and involved in regulation of cholinergic and dopaminergic transmission. Here we investigate, for the first time, the role of the M4 receptor in alcohol consumption using M4 knockout (M4(-/-)) and wild-type (M4(+/+)) mice. Experimentally naïve M4(-/-) and M4(+/+) mice were trained to orally self-administer 5%, 8% and 10% alcohol in 60min sessions, 6 days/week, after having undergone a standard sucrose fading training procedure on a fixed ratio schedule. The mice were further subjected to an extinction period followed by a 1 day reinstatement trial. M4(-/-) mice consumed more alcohol at 5% and 8% compared to their M4(+/+) littermates. The highest alcohol concentration used (10%) did not immediately result in divergent drinking patterns, but after 4 weeks of 10% alcohol self-administration, baseline levels as well as a pattern of M4(-/-) mice consuming more alcohol than their M4(+/+) controls were re-established. Moreover, the M4(-/-) mice displayed a reduced capacity to extinguish their alcohol-seeking behavior. Taken together, alcohol consumption is elevated in M4(-/-) mice, indicating that the M4 receptor is involved in mediating the reinforcing effects of alcohol. The M4 receptor should be further explored as a potential target for pharmacological (positive allosteric modulators or future agonists) treatment of alcohol use disorders. PMID:25445043

  16. Estrogens and Spermiogenesis: New Insights from Type 1 Cannabinoid Receptor Knockout Mice

    PubMed Central

    Cacciola, Giovanna; Chioccarelli, Teresa; Fasano, Silvia; Pierantoni, Riccardo; Cobellis, Gilda

    2013-01-01

    Spermatogenesis is a complex mechanism which allows the production of male gametes; it consists of mitotic, meiotic, and differentiation phases. Spermiogenesis is the terminal differentiation process during which haploid round spermatids undergo several biochemical and morphological changes, including extensive remodelling of chromatin and nuclear shape. Spermiogenesis is under control of endocrine, paracrine, and autocrine factors, like gonadotropins and testosterone. More recently, emerging pieces of evidence are suggesting that, among these factors, estrogens may have a role. To date, this is a matter of debate and concern because of the agonistic and antagonistic estrogenic effects that environmental chemicals may have on animal and human with damaging outcome on fertility. In this review, we summarize data which fuel this debate, with a particular attention to our recent results, obtained using type 1 cannabinoid receptor knockout male mice as animal model. PMID:24324492

  17. Thyrotoropin receptor knockout changes monoaminergic neuronal system and produces methylphenidate-sensitive emotional and cognitive dysfunction.

    PubMed

    Mouri, Akihiro; Hoshino, Yuta; Narusawa, Shiho; Ikegami, Keisuke; Mizoguchi, Hiroyuki; Murata, Yoshiharu; Yoshimura, Takashi; Nabeshima, Toshitaka

    2014-10-01

    Attention deficit/hyperactivity disorder (ADHD) has been reported in association with resistance to thyroid hormone, a disease caused by a mutation in the thyroid hormone receptor β (TRβ) gene. TRβ is a key protein mediating down-regulation of thyrotropin (TSH) expression by 3,3',5-tri-iodothyronine (T3), an active form of thyroid hormone. Dysregulation of TSH and its receptor (TSHR) is implicated in the pathophysiology of ADHD but the role of TSHR remains elusive. Here, we clarified a novel role for TSHR in emotional and cognitive functions related to monoaminergic nervous systems. TSHR knockout mice showed phenotypes of ADHD such as hyperactivity, impulsiveness, a decrease in sociality and increase in aggression, and an impairment of short-term memory and object recognition memory. Administration of methylphenidate (1, 5 and 10mg/kg) reversed impulsiveness, aggression and object recognition memory impairment. In the knockout mice, monoaminergic changes including decrease in the ratio of 3-methoxy-4-hydroxyphenylglycol/noradrenaline and increase in the ratio of homovanillic acid/dopamine were observed in some brain regions, accompanied by increase in the expression of noradrenaline transporter in the frontal cortex. When TSH was completely suppressed by the supraphysiological administration of T3 to the adult mice, some behavioral and neurological changes in TSHR KO mice were also observed, suggesting that these changes were not due to developmental hypothyroidism induced by the inactivation of TSHR but to the loss of the TSH-TSHR pathway itself. Taken together, the present findings suggest a novel role for TSHR in behavioral and neurological phenotypes of ADHD. PMID:25016105

  18. Upregulation of hepatic LDL transport by n-3 fatty acids in LDL receptor knockout mice.

    PubMed

    Vasandani, Chandna; Kafrouni, Abdallah I; Caronna, Antonella; Bashmakov, Yuriy; Gotthardt, Michael; Horton, Jay D; Spady, David K

    2002-05-01

    We determined the effects of dietary n-6 and n-3 polyunsaturated fatty acids (PUFA) on parameters of plasma lipoprotein and hepatic lipid metabolism in LDL receptor (LDLr) knockout mice. Dietary n-3 PUFA decreased the rate of appearance and increased the hepatic clearance of IDL/LDL resulting in a marked decrease in the plasma concentration of these particles. Dietary n-3 PUFA increased the hepatic clearance of IDL/LDL through a mechanism that appears to involve apolipoprotein (apo)E but is independent of the LDLr, the LDLr related protein (LRP), the scavenger receptor B1, and the VLDLr. The decreased rate of appearance of IDL/VLDL in the plasma of animals fed n-3 PUFA could be attributed to a marked decrease in the plasma concentration of precursor VLDL. Decreased plasma VLDL concentrations were due in part to decreased hepatic secretion of VLDL triglyceride and cholesteryl esters, which in turn was associated with decreased concentrations of these lipids in liver. Decreased hepatic triglyceride concentrations in animals fed n-3 PUFA were due in part to suppression of fatty acid synthesis as a result of a decrease in sterol regulatory element binding protein-1 (SREBP-1) expression and processing. In conclusion, these studies indicate that n-3 PUFA can markedly decrease the plasma concentration of apoB-containing lipoproteins and enhance hepatic LDL clearance through a mechanism that does not involve the LDLr pathway or LRP. PMID:11971949

  19. Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low density lipoprotein receptor knockout mice.

    PubMed

    Praticò, D; Tillmann, C; Zhang, Z B; Li, H; FitzGerald, G A

    2001-03-13

    The cyclooxygenase (COX) product, prostacyclin (PGI(2)), inhibits platelet activation and vascular smooth-muscle cell migration and proliferation. Biochemically selective inhibition of COX-2 reduces PGI(2) biosynthesis substantially in humans. Because deletion of the PGI(2) receptor accelerates atherogenesis in the fat-fed low density lipoprotein receptor knockout mouse, we wished to determine whether selective inhibition of COX-2 would accelerate atherogenesis in this model. To address this hypothesis, we used dosing with nimesulide, which inhibited COX-2 ex vivo, depressed urinary 2,3 dinor 6-keto PGF(1alpha) by approximately 60% but had no effect on thromboxane formation by platelets, which only express COX-1. By contrast, the isoform nonspecific inhibitor, indomethacin, suppressed platelet function and thromboxane formation ex vivo and in vivo, coincident with effects on PGI(2) biosynthesis indistinguishable from nimesulide. Indomethacin reduced the extent of atherosclerosis by 55 +/- 4%, whereas nimesulide failed to increase the rate of atherogenesis. Despite their divergent effects on atherogenesis, both drugs depressed two indices of systemic inflammation, soluble intracellular adhesion molecule-1, and monocyte chemoattractant protein-1 to a similar but incomplete degree. Neither drug altered serum lipids and the marked increase in vascular expression of COX-2 during atherogenesis. Accelerated progression of atherosclerosis is unlikely during chronic intake of specific COX-2 inhibitors. Furthermore, evidence that COX-1-derived prostanoids contribute to atherogenesis suggests that controlled evaluation of the effects of nonsteroidal anti-inflammatory drugs and/or aspirin on plaque progression in humans is timely. PMID:11248083

  20. Hypersomnolence and reduced activity in pan-leptin receptor knockout mice

    PubMed Central

    Wang, Yuping; He, Junyun; Kastin, Abba J.; Hsuchou, Hung; Pan, Weihong

    2013-01-01

    Excessive obesity correlates with hypersomnolence and impaired cognitive function, presumably induced by metabolic factors and cytokines. Production of the adipokine leptin correlates with the amount of adiposity, and leptin has been shown to promote sleep. To determine whether leptin plays a major role in the hypersomnolence of obesity, we measured sleep architecture in pan-leptin receptor knockout (POKO) mice that do not respond to leptin because of the production of a mutant, non-signaling receptor. The obese POKO mice had more non-rapid eye movement (NREM) sleep and less waking time than their littermate controls. This was mainly seen during the light span, although increased bouts of rapid eye movement (REM) sleep were also seen in the dark span. The increase of NREM sleep correlated with the extent of obesity. The POKO mice also had decreased locomotor activity and more immobility in the open field test, but there was no increase of forced immobility nor reduction of sucrose intake as would be seen in depression. The increased NREM sleep and reduced locomotor activity in the POKO mice suggest that it was obesity, rather than leptin signaling, that played a predominant role in altering sleep architecture and activity. PMID:23955775

  1. Orthotopic transplantation of LH receptor knockout and wild-type ovaries.

    PubMed

    Chudgar, Daksha; Lei, Zhenmin; Rao, Ch V

    2005-10-01

    Luteinizing hormone (LH) receptor knockout animals have an ovarian failure due to an arrest in folliculogenesis at the antral stage. As a result, the animals have an infertility phenotype. The present study was undertaken to determine whether this phenotype could be reversed by orthotopic transplantation of wild-type ovaries. The results revealed that transplanting wild-type ovaries into null animals did not result in resumption of estrus cycles. Although the number of different types of follicles increased, none progressed to ovulation. The serum hormone profiles improved, reflecting the ovarian changes. The wild-type animals with null ovaries also failed to cycle and their ovaries and serum hormone levels were more like null animals with their own ovaries. Although the lack of rescue of null ovaries placed into wild-type animals was predicted, the failure of wild-type ovaries placed in null animals was not, which could be due to chronic exposure of transplanted tissue to high circulating LH levels and also possibly due to altered internal milieu in null animals. These findings may have implications for potential future considerations of grafting normal donor ovaries into women who have an ovarian failure resulting from inactivating LH receptor mutations. PMID:15964032

  2. Memantine, an NMDA receptor antagonist, improves working memory deficits in DGKβ knockout mice.

    PubMed

    Kakefuda, Kenichi; Ishisaka, Mitsue; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2016-09-01

    Diacylglycerol kinase (DGK) β is a type 1 isozyme of the DGK family. We previously reported that DGKβ was deeply involved in neurite spine formation, and DGKβ knockout (KO) mice exhibited behavioral abnormalities concerning spine formation, such as cognitive, emotional, and attentional impairment. Moreover, some of these abnormalities were ameliorated by the administration of a mood stabilizer. However, there is no data about how memory-improving drugs used in the treatment of Alzheimer's disease affect DGKβ KO mice. In the present study, we evaluated the effect of an anti-Alzheimer's drug, memantine on the working memory deficit observed in DGKβ KO mice. In the Y-maze test, the administration of memantine significantly improved working memory of DGKβ KO mice. We also found that the expression levels of the NR2A and NR2B N-methyl-d-aspartate (NMDA) receptor subunits were increased in the prefrontal cortex, but decreased in the hippocampus of DGKβ KO mice. These altered expression levels of NR2 subunits might be related to the effect of an NMDA receptor antagonist, memantine. Taken together, these findings may support the hypothesis that DGKβ has a pivotal role in cognitive function. PMID:27495014

  3. Suppression of diet-induced atherosclerosis in low density lipoprotein receptor knockout mice overexpressing lipoprotein lipase.

    PubMed Central

    Shimada, M; Ishibashi, S; Inaba, T; Yagyu, H; Harada, K; Osuga, J I; Ohashi, K; Yazaki, Y; Yamada, N

    1996-01-01

    Lipoprotein lipase (LPL) is a key enzyme in the hydrolysis of triglyceride-rich lipoproteins. Conflicting results have been reported concerning its role in atherogenesis. To determine the effects of the overexpressed LPL on diet-induced atherosclerosis, we have generated low density lipoprotein receptor (LDLR) knockout mice that overexpressed human LPL transgene (LPL/LDLRKO) and compared their plasma lipoproteins and atherosclerosis with those in nonexpressing LDLR-knockout mice (LDLRKO). On a normal chow diet, LPL/LDLRKO mice showed marked suppression of mean plasma triglyceride levels (32 versus 236 mg/dl) and modest decrease in mean cholesterol levels (300 versus 386 mg/dl) as compared with LDLRKO mice. Larger lipoprotein particles of intermediate density lipoprotein (IDL)/LDL were selectively reduced in LPL/LDLRKO mice. On an atherogenic diet, both mice exhibited severe hypercholesterolemia. But, mean plasma cholesterol levels in LPL/ LDLRKO mice were still suppressed as compared with that in LDLRKO mice (1357 versus 2187 mg/dl). Marked reduction in a larger subfraction of IDL/LDL, which conceivably corresponds to remnant lipoproteins, was observed in the LPL/LDLRKO mice. LDLRKO mice developed severe fatty streak lesions in the aortic sinus after feeding with the atherogenic diet for 8 weeks. In contrast, mean lesion area in the LPL/LDLRKO mice was 18-fold smaller than that in LDLRKO mice. We suggest that the altered lipoprotein profile, in particular the reduced level of remnant lipoproteins, is mainly responsible for the protection by LPL against atherosclerosis. Images Fig. 1 Fig. 3 PMID:8692976

  4. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice

    PubMed Central

    Otten, Jeroen J. T.; de Jager, Saskia C. A.; Kavelaars, Annemieke; Seijkens, Tom; Bot, Ilze; Wijnands, Erwin; Beckers, Linda; Westra, Marijke M.; Bot, Martine; Busch, Matthias; Bermudez, Beatriz; van Berkel, Theo J. C.; Heijnen, Cobi J.; Biessen, Erik A. L.

    2013-01-01

    Leukocyte chemotaxis is deemed instrumental in initiation and progression of atherosclerosis. It is mediated by G-protein-coupled receptors (e.g., CCR2 and CCR5), the activity of which is controlled by G-protein-coupled receptor kinases (GRKs). In this study, we analyzed the effect of hematopoietic deficiency of a potent regulator kinase of chemotaxis (GRK2) on atherogenesis. LDL receptor-deficient (LDLr−/−) mice with heterozygous hematopoietic GRK2 deficiency, generated by bone marrow transplantation (n=15), displayed a dramatic attenuation of plaque development, with 79% reduction in necrotic core and increased macrophage content. Circulating monocytes decreased and granulocytes increased in GRK2+/− chimeras, which could be attributed to diminished granulocyte colony-forming units in bone marrow. Collectively, these data pointed to myeloid cells as major mediators of the impaired atherogenic response in GRK2+/− chimeras. LDLr−/− mice with macrophage/granulocyte-specific GRK2 deficiency (LysM-Cre GRK2flox/flox; n=8) failed to mimic the aforementioned phenotype, acquitting these cells as major responsible subsets for GRK2 deficiency-associated atheroprotection. To conclude, even partial hematopoietic GRK2 deficiency prevents atherosclerotic lesion progression beyond the fatty streak stage, identifying hematopoietic GRK2 as a potential target for intervention in atherosclerosis.—Otten, J. J. T., de Jager, S. C. A., Kavelaars, A., Seijkens, T., Bot, I., Wijnands, E., Beckers, L., Westra, M. M., Bot, M., Busch, M., Bermudez, B., van Berkel, T. J. C., Heijnen, C. J., Biessen, E. A. L. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice. PMID:23047899

  5. The in vivo respiratory phenotype of the adenosine A1 receptor knockout mouse.

    PubMed

    Heitzmann, Dirk; Buehler, Philipp; Schweda, Frank; Georgieff, Michael; Warth, Richard; Thomas, Joerg

    2016-02-01

    The nucleoside adenosine has been implicated in the regulation of respiration, especially during hypoxia in the newborn. In this study the role of adenosine A1 receptors for the control of respiration was investigated in vivo. To this end, respiration of unrestrained adult and neonatal adenosine A1 receptor knockout mice (A1R(-/-)) was measured in a plethysmographic device. Under control conditions (21% O2) and mild hypoxia (12-15% O2) no difference of respiratory parameters was observed between adult wildtype (A1R(+/+)) and A1R(-/-) mice. Under more severe hypoxia (6-10% O2) A1R(+/+) mice showed, after a transient increase of respiration, a decrease of respiration frequency (fR) and tidal volume (VT) leading to a decrease of minute volume (MV). This depression of respiration during severe hypoxia was absent in A1R(-/-) mice which displayed a stimulated respiration as indicated by the enhancement of MV by some 50-60%. During hypercapnia-hyperoxia (3-10% CO2/97-90 % O2), no obvious differences in respiration of A1R(-/-) and A1R(+/+) was observed. In neonatal mice, the respiratory response to hypoxia was surprisingly similar in both genotypes. However, neonatal A1R(-/-) mice appeared to have more frequently periods of apnea during hypoxia and in the post-hypoxic control period. In conclusion, these data indicate that the adenosine A1 receptor is an important molecular component mediating hypoxic depression in adult mice and it appears to stabilize respiration of neonatal mice. PMID:26593641

  6. Delayed procedural learning in α7-nicotinic acetylcholine receptor knockout mice

    PubMed Central

    Young, J. W.; Meves, J. M.; Tarantino, I. S.; Caldwell, S.; Geyer, M. A.

    2014-01-01

    The α7-nicotinic acetylcholine receptor (nAChR) has long been a procognitive therapeutic target to treat schizophrenia. Evidence on the role of this receptor in cognition has been lacking, however, in part due to the limited availability of suitable ligands. The behavior of α7-nAChR knockout (KO) mice has been examined previously, but cognitive assessments using tests with cross-species translatability have been limited to date. Here, we assessed the cognitive performance of α7-nAChR KO and wild-type (WT) littermate mice in the attentional set-shifting task of executive functioning, the radial arm maze test of spatial working memory span capacity and the novel object recognition test of short-term memory. The reward motivation of these mutants was assessed using the progressive ratio breakpoint test. In addition, we assessed the exploratory behavior and sensorimotor gating using the behavioral pattern monitor and prepulse inhibition, respectively. α7-nAChR KO mice exhibited normal set-shifting, but impaired procedural learning (rule acquisition) in multiple paradigms. Spatial span capacity, short-term memory, motivation for food, exploration and sensorimotor gating were all comparable to WT littermates. The data presented here support the notion that this receptor is important for such procedural learning, when patterns in the environment become clear and a rule is learned. In combination with the impaired attention observed previously in these mice, this finding suggests that agonist treatments should be examined in clinical studies of attention and procedural learning, perhaps in combination with cognitive behavioral therapy. PMID:21679297

  7. Tissue- and cell-specific functions of the androgen receptor revealed through conditional knockout models in mice.

    PubMed

    De Gendt, Karel; Verhoeven, Guido

    2012-04-16

    This review aims to evaluate the contribution of individual cell-selective knockout models to our current understanding of androgen action. Cre/loxP technology has allowed the generation of cell-selective knockout models targeting the androgen receptor (AR) in distinct putative target cells in a wide variety of organs and tissues including: testis, ovary, accessory sex tissues, muscle, bone, fat, liver, skin and myeloid tissue. In some androgen-regulated processes such as spermatogenesis and folliculogenesis this approach has lead to the identification of a key cellular mediator of androgen action (Sertoli and granulosa cells, respectively). In many target tissues, however, the final response to androgens appears to be more complex. Here, cell-selective knockout technology offers a platform upon which we can begin to unravel the more complex interplay and signaling pathways of androgens. A prototypic example is the analysis of mesenchymal-epithelial interactions in many accessory sex glands. Furthermore, for some actions of testosterone, in which part of the effect is mediated by the active metabolite 17β-estradiol, conditional knockout technology offers a novel strategy to study the relative contribution of AR and estrogen receptor-mediated signaling. The latter approach has already resulted in a better understanding of androgen action in brain and bone. Finally, cell-selective knockout technology has generated valuable models to search for AR-controlled molecular mediators of androgen action, a strategy that has successfully been applied to the study of androgen action in the testis and in the epididymis. Although some conditional knockout models have provided clear answers to physiologic questions, it should be noted that others have pointed to unexpected complexities or technical limitations confounding interpretation of the results. PMID:21871526

  8. DENDRITIC SPINE ALTERATIONS IN THE HIPPOCAMPUS AND PARIETAL CORTEX OF ALPHA7 NICOTINIC ACETYLCHOLINE RECEPTOR KNOCKOUT MICE

    PubMed Central

    Morley, B. J.; Mervis, R. F.

    2013-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is involved in higher cognitive and memory functions, and is associated with the etiology of neurological diseases involving cognitive decline, including Alzheimer’s disease (AD). We hypothesized that spine changes in the α7 knockout might help to explain the behavioral deficits observed in α7 knockout mice and prodromal hippocampal changes in AD. We quantified several measures of dendritic morphology in the CA1 region of the mouse hippocampus in Golgi-stained material from wildtype and α7 knockout mice at P24. The most significant difference was a 64% increase in thin (L-type) dendritic spines on the CA1 basilar tree in knockout mice (p < .05). There were small decreases in the number of in N-type (−15%), M-type (−14%) and D-type (−4%) spine densities. The CA1 basilar dendritic tree of knockout mice had significantly less branching in the regions nearthesoma in comparison with wildtype animals (p < .01), but not in the more distal branching. Changes in the configuration of CA1 basilar dendritic spines have been observed in a number of experimental paradigms, suggesting that basilar dendritic spines are highly plastic. One component of cognitive dysfunction may be through α7-modulated GABAergic interneurons synapsing on CA1 basal dendrites. PMID:23270857

  9. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice.

    PubMed

    Thomsen, Morgane; Caine, Simon Barak

    2016-04-01

    Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. PMID:26874213

  10. Combination effects of wild rice and phytosterols on prevention of atherosclerosis in LDL receptor knockout mice.

    PubMed

    Moghadasian, Mohammed H; Alsaif, Maha; Le, Khuong; Gangadaran, Surendiran; Masisi, Kabo; Beta, Trust; Shen, Garry X

    2016-07-01

    Dietary modifications including healthy eating constitute one of the first line strategies for prevention and treatment of atherosclerotic cardiovascular diseases (CVD), including atherosclerosis. In this study, we assessed anti-atherogenic effects of a combination of wild rice and phytosterols in low-density lipoprotein receptor knockout (LDL-r-KO) mice. Male LDL-r-KO mice were divided into four groups and fed with: (1) control diet; (2) the control diet containing 60% (w/w) wild rice; (3) the control diet containing 2% (w/w) phytosterols; or (4) the control diet containing both wild rice and phytosterols for 20weeks. All diets were supplemented with 0.06% (w/w) dietary cholesterol. Blood samples, hearts, and feces were collected and used for biochemical and histological examination. Consumption of 60% (w/w) wild rice in combination with 2% (w/w) phytosterols significantly reduced the size and severity of atherosclerotic lesions in the aortic roots as compared to those in the control group. This effect was associated with significant reductions in plasma total, LDL and VLDL cholesterol concentrations as well as an increase in fecal cholesterol excretion. In conclusion, the dietary combination of wild rice and phytosterols prevents atherogenesis in this animal model. Further investigations are needed to understand mechanisms of action and potential clinical outcome of such dietary intervention. PMID:27155919

  11. Lipodystrophy Due to Adipose Tissue-Specific Insulin Receptor Knockout Results in Progressive NAFLD.

    PubMed

    Softic, Samir; Boucher, Jeremie; Solheim, Marie H; Fujisaka, Shiho; Haering, Max-Felix; Homan, Erica P; Winnay, Jonathon; Perez-Atayde, Antonio R; Kahn, C Ronald

    2016-08-01

    Ectopic lipid accumulation in the liver is an almost universal feature of human and rodent models of generalized lipodystrophy and is also a common feature of type 2 diabetes, obesity, and metabolic syndrome. Here we explore the progression of fatty liver disease using a mouse model of lipodystrophy created by a fat-specific knockout of the insulin receptor (F-IRKO) or both IR and insulin-like growth factor 1 receptor (F-IR/IGFRKO). These mice develop severe lipodystrophy, diabetes, hyperlipidemia, and fatty liver disease within the first weeks of life. By 12 weeks of age, liver demonstrated increased reactive oxygen species, lipid peroxidation, histological evidence of balloon degeneration, and elevated serum alanine aminotransferase and aspartate aminotransferase levels. In these lipodystrophic mice, stored liver lipids can be used for energy production, as indicated by a marked decrease in liver weight with fasting and increased liver fibroblast growth factor 21 expression and intact ketogenesis. By 52 weeks of age, liver accounted for 25% of body weight and showed continued balloon degeneration in addition to inflammation, fibrosis, and highly dysplastic liver nodules. Progression of liver disease was associated with improvement in blood glucose levels, with evidence of altered expression of gluconeogenic and glycolytic enzymes. However, these mice were able to mobilize stored glycogen in response to glucagon. Feeding F-IRKO and F-IR/IGFRKO mice a high-fat diet for 12 weeks accelerated the liver injury and normalization of blood glucose levels. Thus, severe fatty liver disease develops early in lipodystrophic mice and progresses to advanced nonalcoholic steatohepatitis with highly dysplastic liver nodules. The liver injury is propagated by lipotoxicity and is associated with improved blood glucose levels. PMID:27207510

  12. Pyrrolo- and Pyridomorphinans: Non-selective opioid antagonists and delta opioid agonists/mu opioid partial agonists

    PubMed Central

    Kumar, V.; Clark, M.J.; Traynor, J.R.; Lewis, J.W.; Husbands, S.M.

    2014-01-01

    Opioid ligands have found use in a number of therapeutic areas, including for the treatment of pain and opiate addiction (using agonists) and alcohol addiction (using antagonists such as naltrexone and nalmefene). The reaction of imines, derived from the opioid ligands oxymorphone and naltrexone, with Michael acceptors leads to pyridomorphinans with structures similar to known pyrrolo- and indolomorphinans. One of the synthesized compounds, 5e, derived from oxymorphone had substantial agonist activity at delta opioid receptors but not at mu and/or kappa opioid receptors and in that sense profiled as a selective delta opioid receptor agonist. The pyridomorphinans derived from naltrexone and naloxone were all found to be non-selective potent antagonists and as such could have utility as treatments for alcohol abuse. PMID:24973818

  13. Pyrrolo- and pyridomorphinans: non-selective opioid antagonists and delta opioid agonists/mu opioid partial agonists.

    PubMed

    Kumar, V; Clark, M J; Traynor, J R; Lewis, J W; Husbands, S M

    2014-08-01

    Opioid ligands have found use in a number of therapeutic areas, including for the treatment of pain and opiate addiction (using agonists) and alcohol addiction (using antagonists such as naltrexone and nalmefene). The reaction of imines, derived from the opioid ligands oxymorphone and naltrexone, with Michael acceptors leads to pyridomorphinans with structures similar to known pyrrolo- and indolomorphinans. One of the synthesized compounds, 5e, derived from oxymorphone had substantial agonist activity at delta opioid receptors but not at mu and/or kappa opioid receptors and in that sense profiled as a selective delta opioid receptor agonist. The pyridomorphinans derived from naltrexone and naloxone were all found to be non-selective potent antagonists and as such could have utility as treatments for alcohol abuse. PMID:24973818

  14. Alterations in the expression of G-proteins and regulation of adenylate cyclase in human neuroblastoma SH-SY5Y cells chronically exposed to low-efficacy mu-opioids.

    PubMed

    Ammer, H; Schulz, R

    1993-10-01

    with low-nanomolar concentrations of guanosine 5'-[beta gamma- imido]triphosphate. Our data demonstrate that chronic treatment of SH-SY5Y cells with low-efficacy mu-opioids increases G-protein abundance, a phenomenon which might contribute to the biochemical mechanisms underlying opioid tolerance/dependence. PMID:8216227

  15. TAp73 knockout mice show morphological and functional nervous system defects associated with loss of p75 neurotrophin receptor.

    PubMed

    Niklison-Chirou, Maria Victoria; Steinert, Joern R; Agostini, Massimiliano; Knight, Richard A; Dinsdale, David; Cattaneo, Antonio; Mak, Tak W; Melino, Gerry

    2013-11-19

    Total and N-terminal isoform selective p73 knockout mice show a variety of central nervous system defects. Here we show that TAp73 is a transcriptional activator of p75 neurotrophin receptor (p75(NTR)) and that p75(NTR) mRNA and protein levels are strongly reduced in the central and peripheral nervous systems of p73 knockout mice. In parallel, primary cortical neurons from p73 knockout mice showed a reduction in neurite outgrowth and in nerve growth factor-mediated neuronal differentiation, together with reduced miniature excitatory postsynaptic current frequencies and behavioral defects. p73 null mice also have impairments in the peripheral nervous system with reduced thermal sensitivity, axon number, and myelin thickness. At least some of these morphological and functional impairments in p73 null cells can be rescued by p75(NTR) re-expression. Together, these data demonstrate that loss of p75(NTR) contributes to the neurological phenotype of p73 knockout mice. PMID:24190996

  16. Molecular hydrogen stabilizes atherosclerotic plaque in low-density lipoprotein receptor-knockout mice.

    PubMed

    Song, Guohua; Zong, Chuanlong; Zhang, Zhaoqiang; Yu, Yang; Yao, Shutong; Jiao, Peng; Tian, Hua; Zhai, Lei; Zhao, Hui; Tian, Shuyan; Zhang, Xiangjian; Wu, Yun; Sun, Xuejun; Qin, Shucun

    2015-10-01

    Hydrogen (H(2)) attenuates the development of atherosclerosis in mouse models. We aimed to examine the effects of H(2) on atherosclerotic plaque stability. Low-density lipoprotein receptor-knockout (LDLR(-/-)) mice fed an atherogenic diet were dosed daily with H(2) and/or simvastatin. In vitro studies were carried out in an oxidized-LDL (ox-LDL)-stimulated macrophage-derived foam cell model treated with or without H(2). H(2) or simvastatin significantly enhanced plaque stability by increasing levels of collagen, as well as reducing macrophage and lipid levels in plaques. The decreased numbers of dendritic cells and increased numbers of regulatory T cells in plaques further supported the stabilizing effect of H(2) or simvastatin. Moreover, H(2) treatment decreased serum ox-LDL level and apoptosis in plaques with concomitant inhibition of endoplasmic reticulum stress (ERS) and reduction of reactive oxygen species (ROS) accumulation in the aorta. In vitro, like the ERS inhibitor 4-phenylbutyric acid, H(2) inhibited ox-LDL- or tunicamycin (an ERS inducer)-induced ERS response and cell apoptosis. In addition, like the ROS scavenger N-acetylcysteine, H(2) inhibited ox-LDL- or Cu(2+) (an ROS inducer)-induced reduction in cell viability and increase in cellular ROS. Also, H(2) increased Nrf2 (NF-E2-related factor-2, an important factor in antioxidant signaling) activation and Nrf2 small interfering RNA abolished the protective effect of H(2) on ox-LDL-induced cellular ROS production. The inhibitory effects of H(2) on the apoptosis of macrophage-derived foam cells, which take effect by suppressing the activation of the ERS pathway and by activating the Nrf2 antioxidant pathway, might lead to an improvement in atherosclerotic plaque stability. PMID:26117323

  17. Impact of food restriction and cocaine on locomotion in ghrelin- and ghrelin-receptor knockout mice.

    PubMed

    Clifford, Shane; Zeckler, Rosie Albarran; Buckman, Sam; Thompson, Jeff; Hart, Nigel; Wellman, Paul J; Smith, Roy G

    2011-07-01

    Food restriction (FR) augments the behavioral and reinforcing effects of psychomotor stimulants such as cocaine or amphetamine; effects that may be related to the capacity of FR to increase plasma levels of ghrelin (GHR), a 28-amino acid orexigenenic peptide linked to activation of brain dopamine systems. The present study used wild-type (WT) mice or mutant mice sustaining knockout of either GHR [GHR((-/-)) ] or of the growth hormone secretagogue receptor [GHS-R((-/-)) ] and subjected to FR or not to evaluate the role of GHR and GHS-R in cocaine-stimulated locomotion. WT, GHR((-/-)) , and GHS-R((-/-)) mice were either restricted to 60% of baseline caloric intake or allowed to free-feed (FF). Mice were treated with 0, 1.25, 2.5 and 5.0 mg/kg cocaine on separate test days (in random dose order) and forward locomotion was recorded on each drug day for 45 minutes after drug dosing. Food (and water) was available immediately after (but not during) each activity test. For FF mice, there was no interaction between cocaine and GHR status on locomotion. FR-WT mice treated with saline exhibited significant increases in anticipatory locomotion (relative to FF-WT mice), whereas FR-GHS-R((-/-)) mice did not. Cocaine significantly increased locomotion in FR-GHR((-/-)) and FR-GHS-R((-/-)) mice to the levels noted in FR-WT mice. These results suggest that GHS-R activity, but not GHR activity, is required for FR to augment food-associated anticipatory locomotion, but do not support the contention that GHR pathways are required for the capacity of FR to augment the acute effect of cocaine on locomotion. PMID:21054685

  18. Opioid Receptors Mediate Direct Predictive Fear Learning: Evidence from One-Trial Blocking

    ERIC Educational Resources Information Center

    Cole, Sindy; McNally, Gavan P.

    2007-01-01

    Pavlovian fear learning depends on predictive error, so that fear learning occurs when the actual outcome of a conditioning trial exceeds the expected outcome. Previous research has shown that opioid receptors, including [mu]-opioid receptors in the ventrolateral quadrant of the midbrain periaqueductal gray (vlPAG), mediate such predictive fear…

  19. Determining Pharmacological Selectivity of the Kappa Opioid Receptor Antagonist LY2456302 Using Pupillometry as a Translational Biomarker in Rat and Human

    PubMed Central

    Witcher, Jennifer W.; Lowe, Stephen L.; Gonzales, Celedon R.; Weller, Mary Ann; Bell, Robert L.; Hart, John C.; Need, Anne B.; McKinzie, Jamie H.; Statnick, Michael A.; Suico, Jeffrey G.; McKinzie, David L.; Tauscher-Wisniewski, Sitra; Mitch, Charles H.; Stoltz, Randall R.; Wong, Conrad J.

    2015-01-01

    Background: Selective kappa opioid receptor antagonism is a promising experimental strategy for the treatment of depression. The kappa opioid receptor antagonist, LY2456302, exhibits ~30-fold higher affinity for kappa opioid receptors over mu opioid receptors, which is the next closest identified pharmacology. Methods: Here, we determined kappa opioid receptor pharmacological selectivity of LY2456302 by assessing mu opioid receptor antagonism using translational pupillometry in rats and humans. Results: In rats, morphine-induced mydriasis was completely blocked by the nonselective opioid receptor antagonist naloxone (3mg/kg, which produced 90% mu opioid receptor occupancy), while 100 and 300mg/kg LY2456302 (which produced 56% and 87% mu opioid receptor occupancy, respectively) only partially blocked morphine-induced mydriasis. In humans, fentanyl-induced miosis was completely blocked by 50mg naltrexone, and LY2456302 dose-dependently blocked miosis at 25 and 60mg (minimal-to-no blockade at 4–10mg). Conclusions: We demonstrate, for the first time, the use of translational pupillometry in the context of receptor occupancy to identify a clinical dose of LY2456302 achieving maximal kappa opioid receptor occupancy without evidence of significant mu receptor antagonism. PMID:25637376

  20. [Effect of P2X7 receptor knock-out on bone cancer pain in mice].

    PubMed

    Zhao, Xin; Liu, Hui-Zhu; Zhang, Yu-Qiu

    2016-06-25

    Cancer pain is one of the most common symptoms in patients with late stage cancer. Lung, breast and prostate carcinoma are the most common causes of pain from osseous metastasis. P2X7 receptor (P2X7R) is one of the subtypes of ATP-gated purinergic ion channel family, predominately distributed in microglia in the spinal cord. Activation of P2X7Rs in the spinal dorsal horn has been associated with release of proinflammatory cytokines from glial cells, causing increased neuronal excitability and exaggerated nociception. Mounting evidence implies a critical role of P2X7R in inflammatory and neuropathic pain. However, whether P2X7R is involved in cancer pain remains controversial. Here we established a bone cancer pain model by injecting the Lewis lung carcinoma cells into the femur bone marrow cavity of C57BL/6J wild-type mice (C57 WT mice) and P2X7R knockout mice (P2rx7(-/-) mice) to explore the role of P2X7R in bone cancer pain. Following intrafemur carcinoma inoculation, robust mechanical allodynia and thermal hyperalgesia in C57 WT mice were developed on day 7 and 14, respectively, and persisted for at least 28 days in the ipsilateral hindpaw of the affected limb. CatWalk gait analysis showed significant decreases in the print area and stand phase, and a significant increase in swing phase in the ipsilateral hindpaw on day 21 and 28 after carcinoma cells inoculation. Histopathological sections (hematoxylin and eosin stain) showed that the bone marrow of the affected femur was largely replaced by invading tumor cells, and the femur displayed medullary bone loss and bone destruction on day 28 after inoculation. Unexpectedly, no significant changes in bone cancer-induced hypersensitivity of pain behaviors were found in P2rx7(-/-) mice, and the changes of pain-related values in CatWalk gait analysis even occurred earlier in P2rx7(-/-) mice, as compared with C57 WT mice. Together with our previous study in rats that blockade of P2X7R significantly alleviated bone cancer

  1. Functional consequences of hippocampal neuronal ectopia in the apolipoprotein E receptor-2 knockout mouse

    PubMed Central

    Fish, Kenneth. N.; Krucker, Thomas

    2008-01-01

    Little is known about the impact ectopically located neurons have on the functional connectivity of local circuits. The ApoER2 knockout mouse has subtle cytoarchitectural disruptions, altered prepulse inhibition, and memory abnormalities. We evaluated this mouse mutant as a model to study the role ectopic neurons play in the manifestation of symptoms associated with brain diseases. We found that ectopic CA1 pyramidal and inhibitory neurons in the ApoER2 knockout hippocampus are organized into two distinct stratum pyramidale layers. In vitro analyses found that ApoER2 is not required for neurons to reach maturity in regards to dendritic arborization and synaptic structure density, and electrophysiological testing determined that neurons in both strata pyramidale are integrated into the hippocampal network. However, the presence of these two layers alters the spatiotemporal pattern of hippocampal activity, which may explain why ApoER2 knockout mice have selective cognitive dysfunctions that are revealed only under challenging conditions. PMID:18778775

  2. The transcobalamin receptor knockout mouse: a model for vitamin B12 deficiency in the central nervous system

    PubMed Central

    Lai, Shao-Chiang; Nakayama, Yasumi; Sequeira, Jeffrey M.; Wlodarczyk, Bogdan J.; Cabrera, Robert M.; Finnell, Richard H.; Bottiglieri, Teodoro; Quadros, Edward V.

    2013-01-01

    The membrane receptor (TCblR/CD320) for transcobalamin (TC)-bound cobalamin (Cbl) facilitates the cellular uptake of Cbl. A genetically modified mouse model involving ablation of the CD320 gene was generated to study the effects on cobalamin homeostasis. The nonlethal nature of this knockout and the lack of systemic cobalamin deficiency point to other mechanisms for cellular Cbl uptake in the mouse. However, severe cobalamin depletion in the central nervous system (CNS) after birth (P<0.01) indicates that TCblR is the only receptor responsible for Cbl uptake in the CNS. Metabolic Cbl deficiency in the brain was evident from the increased methylmalonic acid (P<0.01–0.04), homocysteine (P<0.01), cystathionine (P<0.01), and the decreased S-adenosylmethionine/S-adenosyl homocysteine ratio (P<0.01). The CNS pathology of Cbl deficiency seen in humans may not manifest in this mouse model; however, it does provide a model with which to evaluate metabolic pathways and genes affected.—Lai, S.-C., Nakayama, Y., Sequeira, J. M., Wlodarczyk, B. J., Cabrera, R. M., Finnell, R. H., Bottiglieri, T., Quadros, E. V. The transcobalamin receptor knockout mouse: a model for vitamin B12 deficiency in the central nervous system. PMID:23430977

  3. Data on Arc and Zif268 expression in the brain of the α-2A adrenergic receptor knockout mouse

    PubMed Central

    Sanders, Jeff

    2016-01-01

    The α2-adrenergic receptor (α2-AR) is widely distributed in the brain with distinct roles for α2-AR subtypes (A, B and C). In this article, data are provided on Activity Regulated Cytoskeleton Associated Protein (Arc) and Zif268 expression in the brain of the α2A-AR knockout (α2A-AR KO) mouse. These data are supplemental to an original research article examining Arc and Zif268 expression in rats injected with the α2-AR antagonist, RX821002 (http://dx.doi.org/10.1016/j.neulet.2015.12.002. [1]). PMID:26952134

  4. Data on Arc and Zif268 expression in the brain of the α-2A adrenergic receptor knockout mouse.

    PubMed

    Sanders, Jeff

    2016-06-01

    The α2-adrenergic receptor (α2-AR) is widely distributed in the brain with distinct roles for α2-AR subtypes (A, B and C). In this article, data are provided on Activity Regulated Cytoskeleton Associated Protein (Arc) and Zif268 expression in the brain of the α2A-AR knockout (α2A-AR KO) mouse. These data are supplemental to an original research article examining Arc and Zif268 expression in rats injected with the α2-AR antagonist, RX821002 (http://dx.doi.org/10.1016/j.neulet.2015.12.002. [1]). PMID:26952134

  5. Characterization of the retina in the alpha7 nicotinic acetylcholine receptor knockout mouse

    NASA Astrophysics Data System (ADS)

    Smith, Marci L.

    Acetylcholine receptors (AChRs) are involved in visual processing and are expressed by inner retinal neurons in all species studied to date (Keyser et al., 2000; Dmitrieva et al., 2007; Liu et al., 2009), but their distribution in the mouse retina remains unknown. Reductions in alpha7 nicotinic AChRs (nAChRs) are thought to contribute to memory and visual deficits observed in Alzheimer's and schizophrenia (Coyle et al., 1983; Nordberg et al., 1999; Leonard et al., 2006). However, the alpha7 nAChR knockout (KO) mouse has a mild phenotype (Paylor et al., 1998; Fernandes et al., 2006; Young et al., 2007; Origlia et al., 2012). The purpose of this study was to determine the expression of AChRs in wildtype (WT) mouse retina and to assess whether up-regulation of other AChRs in the alpha7 nAChR KO retina may explain the minimal deficits described in the KO mouse. Reverse-transcriptase PCR (RT-PCR) showed that mRNA transcripts for alpha2-7, alpha 9, alpha10, beta2-4 nAChR subunits and m1-m5 muscarinic AChR (mAChR) subtypes were present in WT murine retina. Western blot analysis confirmed the presence of alpha3-5, alpha9, and m1-m5 AChR proteins and immunohistochemical analysis demonstrated nAChR and mAChR proteins expressed by subsets of bipolar, amacrine and ganglion cells. This is the first reported expression of alpha9 and alpha10 nAChR transcripts and alpha9 nAChR proteins in the retina of any species. Quantitative RT-PCR (qPCR) showed changes in AChR transcript expression in the alpha7 nAChR KO mouse retina relative to WT. Within whole retina alpha2, alpha9, alpha10, beta4, m1 and m4 AChR transcripts were up-regulated, while alpha5 nAChR transcripts were down-regulated. However, cell populations showed subtle differences; m4 mAChR transcripts were up-regulated in the ganglion cell layer and outer portion of the inner nuclear layer (oINL),while beta4 nAChR transcript up-regulation was limited to the oINL. Surprisingly, alpha2, alpha9, beta4, m2 and m4 transcripts were

  6. Cannabinoid 1 receptor knockout mice display cold allodynia, but enhanced recovery from spared-nerve injury-induced mechanical hypersensitivity

    PubMed Central

    Piskoun, Boris; Russo, Lori; Norcini, Monica; Blanck, Thomas; Recio-Pinto, Esperanza

    2016-01-01

    Background The function of the Cannabinoid 1 receptor (CB1R) in the development of neuropathic pain is not clear. Mounting evidence suggest that CB1R expression and activation may contribute to pain. Cannabinoid 1 receptor knockout mice (CB1R−/−) generated on a C57Bl/6 background exhibit hypoalgesia in the hotplate assay and formalin test. These findings suggest that Cannabinoid 1 receptor expression mediates the responses to at least some types of painful stimuli. By using this mouse line, we sought to determine if the lack of Cannabinoid 1 receptor unveils a general hypoalgesic phenotype, including protection against the development of neuropathic pain. The acetone test was used to measure cold sensitivity, the electronic von Frey was used to measure mechanical thresholds before and after spared-nerve injury, and analysis of footprint patterns was conducted to determine if motor function is differentially affected after nerve-injury in mice with varying levels of Cannabinoid 1 receptor. Results At baseline, CB1R−/− mice were hypersensitive in the acetone test, and this phenotype was maintained after spared-nerve injury. Using calcium imaging of lumbar dorsal root ganglion (DRG) cultures, a higher percentage of neurons isolated from CB1R−/− mice were menthol sensitive relative to DRG isolated from wild-type (CB1R+/+) mice. Baseline mechanical thresholds did not differ among genotypes, and mechanical hypersensitivity developed similarly in the first two weeks following spared-nerve injury (SNI). At two weeks post-SNI, CB1R−/− mice recovered significantly from mechanical hypersensitivity, while the CB1R+/+ mice did not. Heterozygous knockouts (CB1R+/−) transiently developed cold allodynia only after injury, but recovered mechanical thresholds to a similar extent as the CB1R−/− mice. Sciatic functional indices, which reflect overall nerve health, and alternation coefficients, which indicate uniformity of strides, were not significantly different

  7. Kidney-specific reconstitution of the A1 adenosine receptor in A1 adenosine receptor knockout mice reduces renal ischemia–reperfusion injury

    PubMed Central

    Kim, Minjae; Chen, Sean W.C.; Park, Sang Won; Kim, Mihwa; D’Agati, Vivette D.; Yang, Jay; Lee, H. Thomas

    2009-01-01

    Genetic deletion of the adenosine A1 receptor (A1AR) increased renal injury following ischemia-reperfusion injury suggesting that receptor activation is protective in vivo. Here we tested this hypothesis by expressing the human-A1AR in A1AR knockout mice. Renal ischemia-reperfusion was induced in knockout mice 2 days after intrarenal injection of saline or a lentivirus encoding enhanced green fluorescent protein (EGFP) or EGFP-human-A1AR. We found that the latter procedure induced a robust expression of the reporter protein in the kidneys of knockout mice. Mice with kidney-specific human-A1AR reconstitution had significantly lower plasma creatinine, tubular necrosis, apoptosis, and tubular inflammation as evidenced by decreased leukocyte infiltration, pro-inflammatory cytokine, and intercellular adhesion molecule-1 expression in the kidney following injury compared to mice injected with saline or the control lentivirus. Additionally, there were marked disruptions of the proximal tubule epithelial filamentous (F)-actin cytoskeleton in both sets of control mice upon renal injury, whereas the reconstituted mice had better preservation of the renal tubule actin cytoskeleton, which co-localized with the human-A1ARs. Consistent with reduced renal injury, there was a significant increase in heat shock protein-27 expression, also co-localizing with the preserved F-actin cytoskeleton. Our findings suggest that selective expression of cytoprotective A1ARs in the kidney can attenuate renal injury. PMID:19190680

  8. (-)-Pentazocine induces visceral chemical antinociception, but not thermal, mechanical, or somatic chemical antinociception, in μ-opioid receptor knockout mice

    PubMed Central

    2011-01-01

    Background (-)-Pentazocine has been hypothesized to induce analgesia via the κ-opioid (KOP) receptor, although the involvement of other opioid receptor subtypes in the effects of pentazocine remains unknown. In this study, we investigated the role of the μ-opioid (MOP) receptor in thermal, mechanical, and chemical antinociception induced by (-)-pentazocine using MOP receptor knockout (MOP-KO) mice. Results (-)-Pentazocine-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice compared with wildtype mice. The results obtained from the (-)-pentazocine-induced mechanical and somatic chemical antinociception experiments, which used the hind-paw pressure and formalin tests, were similar to the results obtained from the thermal antinociception experiments in these mice. However, (-)-pentazocine retained its ability to induce significant visceral chemical antinociception, assessed by the writhing test, in homozygous MOP-KO mice, an effect that was completely blocked by pretreatment with nor-binaltorphimine, a KOP receptor antagonist. In vitro binding and cyclic adenosine monophosphate assays showed that (-)-pentazocine possessed higher affinity for KOP and MOP receptors than for δ-opioid receptors. Conclusions The present study demonstrated the abolition of the thermal, mechanical, and somatic chemical antinociceptive effects of (-)-pentazocine and retention of the visceral chemical antinociceptive effects of (-)-pentazocine in MOP-KO mice. These results suggest that the MOP receptor plays a pivotal role in thermal, mechanical, and somatic chemical antinociception induced by (-)-pentazocine, whereas the KOP receptor is involved in visceral chemical antinociception induced by (-)-pentazocine. PMID:21477373

  9. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor) in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    PubMed

    Sisay, Sofia; Pryce, Gareth; Jackson, Samuel J; Tanner, Carolyn; Ross, Ruth A; Michael, Gregory J; Selwood, David L; Giovannoni, Gavin; Baker, David

    2013-01-01

    Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim)) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen)) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim) mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some

  10. Genetic Background Can Result in a Marked or Minimal Effect of Gene Knockout (GPR55 and CB2 Receptor) in Experimental Autoimmune Encephalomyelitis Models of Multiple Sclerosis

    PubMed Central

    Jackson, Samuel J.; Tanner, Carolyn; Ross, Ruth A.; Michael, Gregory J.; Selwood, David L.; Giovannoni, Gavin; Baker, David

    2013-01-01

    Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2tm1Zim) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2Dgen) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some

  11. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism

    PubMed Central

    Chen, Wei; Zhang, Xiaoting; Birsoy, Kivanc; Roeder, Robert G.

    2010-01-01

    As conventional transcriptional factors that are activated in diverse signaling pathways, nuclear receptors play important roles in many physiological processes that include energy homeostasis. The MED1 subunit of the Mediator coactivator complex plays a broad role in nuclear receptor-mediated transcription by anchoring the Mediator complex to diverse promoter-bound nuclear receptors. Given the significant role of skeletal muscle, in part through the action of nuclear receptors, in glucose and fatty acid metabolism, we generated skeletal muscle-specific Med1 knockout mice. Importantly, these mice show enhanced insulin sensitivity and improved glucose tolerance as well as resistance to high-fat diet–induced obesity. Furthermore, the white muscle of these mice exhibits increased mitochondrial density and expression of genes specific to type I and type IIA fibers, indicating a fast-to-slow fiber switch, as well as markedly increased expression of the brown adipose tissue-specific UCP-1 and Cidea genes that are involved in respiratory uncoupling. These dramatic results implicate MED1 as a powerful suppressor in skeletal muscle of genetic programs implicated in energy expenditure and raise the significant possibility of therapeutical approaches for metabolic syndromes and muscle diseases through modulation of MED1–nuclear receptor interactions. PMID:20479251

  12. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    PubMed

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. PMID:26002078

  13. Interactive contribution of NK(1) and kinin receptors to the acute inflammatory oedema observed in response to noxious heat stimulation: studies in NK(1) receptor knockout mice.

    PubMed

    Rawlingson, A; Gerard, N P; Brain, S D

    2001-12-01

    1. Scald injury in Sv129+C57BL/6 mice induced a temperature and time dependent oedema formation as calculated by the extravascular accumulation of [(125)I]-albumin. Oedema formation was suppressed in NK(1) knockout mice compared to wildtypes at 10 (P<0.01) and 30 min (P<0.001). However, at 60 min a similar degree of extravasation was observed in the two groups. 2. Kinin B(1) (des-Arg(10) Hoe 140; 1 micromol kg(-1)) and B(2) (Hoe 140; 100 nmol kg(-1)) antagonists caused an inhibition of oedema in wildtype mice at 10 and 30 min (P<0.001), but not at 60 min or at 30 min in NK(1) receptor knockout mice. 3. The inhibition of thermic oedema by des-Arg(10) Hoe 140 was reversed by des-Arg(9) bradykinin (0.1 micromol kg(-1); P<0.01) and also observed with a second B(1) receptor antagonist (des-Arg(9) Leu(8) bradykinin; 3 micromol kg(-1); P<0.01). Furthermore des-Arg(10) Hoe 140 had no effect on capsaicin (200 microg ear(-1)) ear oedema, but this was significantly reduced with Hoe 140 (P<0.05). 4. Scalding induced a large neutrophil accumulation at 4 h, as assessed by myeloperoxidase assay (P<0.001). This was not suppressed by NK(1) receptor deletion or kinin antagonists. 5. These results confirm an essential role for the NK(1) receptor in mediating the early, but not the delayed phase of oedema formation or neutrophil accumulation in response to scalding. The results also demonstrate a pivotal link between the kinins and sensory nerves in the microvascular response to burn injury, and for the first time show a rapid involvement of the B(1) receptor in murine skin. PMID:11739258

  14. Phenotypic screening of hepatocyte nuclear factor (HNF) 4-{gamma} receptor knockout mice

    SciTech Connect

    Gerdin, Anna Karin; Surve, Vikas V.; Joensson, Marie; Bjursell, Mikael; Edenro, Anne; Schuelke, Meint; Saad, Alaa; Bjurstroem, Sivert; Lundgren, Elisabeth Jensen; Snaith, Michael; Fransson-Steen, Ronny; Toernell, Jan; Bohlooly-Y, Mohammad . E-mail: mohammad.bohlooly@astrazeneca.com

    2006-10-20

    Using the mouse as a model organism in pharmaceutical research presents unique advantages as its physiology in many ways resembles the human physiology, it also has a relatively short generation time, low breeding and maintenance costs, and is available in a wide variety of inbred strains. The ability to genetically modify mouse embryonic stem cells to generate mouse models that better mimic human disease is another advantage. In the present study, a comprehensive phenotypic screening protocol is applied to elucidate the phenotype of a novel mouse knockout model of hepatocyte nuclear factor (HNF) 4-{gamma}. HNF4-{gamma} is expressed in the kidneys, gut, pancreas, and testis. First level of the screen is aimed at general health, morphologic appearance, normal cage behaviour, and gross neurological functions. The second level of the screen looks at metabolic characteristics and lung function. The third level of the screen investigates behaviour more in-depth and the fourth level consists of a thorough pathological characterisation, blood chemistry, haematology, and bone marrow analysis. When compared with littermate wild-type mice (HNF4-{gamma}{sup +/+}), the HNF4-{gamma} knockout (HNF4-{gamma}{sup -/-}) mice had lowered energy expenditure and locomotor activity during night time that resulted in a higher body weight despite having reduced intake of food and water. HNF4-{gamma}{sup -/-} mice were less inclined to build nest and were found to spend more time in a passive state during the forced swim test.

  15. Toll-like receptor 4 knockout alleviates paraquat-induced cardiomyocyte contractile dysfunction through an autophagy-dependent mechanism.

    PubMed

    Wang, Shuyi; Zhu, Xiaoling; Xiong, Lize; Zhang, Yingmei; Ren, Jun

    2016-08-22

    Paraquat, a quarternary nitrogen herbicide, is a toxic prooxidant leading to multi-organ failure including the heart although the underlying mechanism remains poorly understood. This study was designed to examine the role of the innate proinflammatory mediator toll-like receptor 4 (TLR4) in paraquat-induced cardiac contractile anomalies and the underlying mechanisms involved with a focus on autophagy, a conservative machinery governing protein and organelle degradation and recycling for cardiac homeostasis. Wild-type (WT) and TLR4 knockout (TLR4(-/-)) mice were challenged with paraquat (45mg/kg, i.p.) for 48h. Paraquat challenge did not affect mRNA levels of TLR2, TLR4 and TLR9 in WT mice nor did paraquat treatment alter TREM-1 levels. Paraquat challenge elicited cardiac mechanical defects including compromised cardiomyocyte contractile function, intracellular Ca(2+) handling, and overt autophagy as manifested by increased LC3BII-to-LC3BI ratio, Atg5, Atg7 and p62 levels. Interestingly, TLR4 knockout significantly attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) derangement as well as alterations of autophagy markers. Paraquat-elicited changes in cardiac autophagy markers (LC3BII, LC3BII-to-LC3BI ratio and p62) were augmented by lysosomal inhibition using bafilomycin A1 in WT mice. TLR4 knockout significantly attenuated or negated paraquat-elicited increase in LC3BII, LC3BII-to-LC3BI ratio and p62 levels in the presence of lysosomal inhibition. In addition, paraquat challenge promoted phosphorylation of AMPK while suppressing the phosphorylation of mTOR and ULK1 (the autophagy inhibitory Ser(757)), the effects of which were significantly attenuated by TLR4 ablation. In vitro study revealed that AMPK activation using AICAR or mTOR inhibition using rapamycin effectively negated the beneficial cardiomyocyte mechanical effects of TLR4 inhibition (CLI-095) against paraquat toxicity, supporting a permissive role for AMPK-mTOR in TLR4 inhibition

  16. Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy

    PubMed Central

    Kohlmeier, Kristi A.; Tyler, Christopher J.; Kalogiannis, Mike; Ishibashi, Masaru; Kristensen, Morten P.; Gumenchuk, Iryna; Chemelli, Richard M.; Kisanuki, Yaz Y.; Yanagisawa, Masashi; Leonard, Christopher S.

    2013-01-01

    Orexin neuropeptides influence multiple homeostatic functions and play an essential role in the expression of normal sleep-wake behavior. While their two known receptors (OX1 and OX2) are targets for novel pharmacotherapeutics, the actions mediated by each receptor remain largely unexplored. Using brain slices from mice constitutively lacking either receptor, we used whole-cell and Ca2+ imaging methods to delineate the cellular actions of each receptor within cholinergic [laterodorsal tegmental nucleus (LDT)] and monoaminergic [dorsal raphe (DR) and locus coeruleus (LC)] brainstem nuclei—where orexins promote arousal and suppress REM sleep. In slices from OX−/−2 mice, orexin-A (300 nM) elicited wild-type responses in LDT, DR, and LC neurons consisting of a depolarizing current and augmented voltage-dependent Ca2+ transients. In slices from OX−/−1 mice, the depolarizing current was absent in LDT and LC neurons and was attenuated in DR neurons, although Ca2+-transients were still augmented. Since orexin-A produced neither of these actions in slices lacking both receptors, our findings suggest that orexin-mediated depolarization is mediated by both receptors in DR, but is exclusively mediated by OX1 in LDT and LC neurons, even though OX2 is present and OX2 mRNA appears elevated in brainstems from OX−/−1 mice. Considering published behavioral data, these findings support a model in which orexin-mediated excitation of mesopontine cholinergic and monoaminergic neurons contributes little to stabilizing spontaneous waking and sleep bouts, but functions in context-dependent arousal and helps restrict muscle atonia to REM sleep. The augmented Ca2+ transients produced by both receptors appeared mediated by influx via L-type Ca2+ channels, which is often linked to transcriptional signaling. This could provide an adaptive signal to compensate for receptor loss or prolonged antagonism and may contribute to the reduced severity of narcolepsy in single receptor

  17. Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ghrelin and the ghrelin receptor (GH secretagogue receptor, GHS-R) are believed to have important roles in energy homeostasis. We describe results from the first studies to be conducted in congenic (N10) adult ghrelin(-/-) and Ghsr(-/-) mice under conditions of both positive (high-fat diet) and nega...

  18. Different subtypes of opioid receptors have different affinities for G-proteins.

    PubMed

    Polastron, J; Jauzac, P

    1994-05-01

    In this work, we have characterized the opioid receptor expressed by the human neuroblastoma cell line SK-N-BE and compared its hydrodynamic behaviour with those of well known opioid receptors: mu-opioid receptor of rabbit cerebellum and delta-opioid receptor of the hybrid cell line NG 108-15. Human neuroblastoma cell line SK-N-BE expresses a substantial amount of opioid receptors (200-300 fmoles/mg of protein). Pharmacological characterization suggests an heterogenous population of receptors and the presence of two delta subtypes which are, at least partially, negatively coupled with adenylate cyclase via a Gi protein. These receptors exist under two different molecular forms and, in this respect, strikingly contrast with the archetypic delta receptors of NG 108-15 hybrid cell line which show only a high molecular weight form and appear more tightly coupled with the G protein. Hydrodynamic behaviour of SK-N-BE opioid receptors is reminiscent of the profile observed with the rabbit cerebellum mu-opioid receptor. This observation is consistent with the presence of two delta-opioid receptors subtypes, one of which exhibiting properties close to those of mu opioid receptors. Taken overall, our results suggest that different types and subtypes of opioid receptors, even if they are coupled to the same inhibitory G protein, are more or less tightly coupled with their transduction proteins and that closely related opioid receptors can form allosterically interacting complexes. PMID:7920183

  19. Dysfunctional Presynaptic M2 Receptors in the Presence of Chronically High Acetylcholine Levels: Data from the PRiMA Knockout Mouse

    PubMed Central

    Mohr, Franziska; Krejci, Eric; Zimmermann, Martina; Klein, Jochen

    2015-01-01

    The muscarinic M2 receptor (M2R) acts as a negative feedback regulator in central cholinergic systems. Activation of the M2 receptor limits acetylcholine (ACh) release, especially when ACh levels are increased because acetylcholinesterase (AChE) activity is acutely inhibited. Chronically high ACh levels in the extracellular space, however, were reported to down-regulate M2R to various degrees. In the present study, we used the PRiMA knockout mouse which develops severely reduced AChE activity postnatally to investigate ACh release, and we used microdialysis to investigate whether the function of M2R to reduce ACh release in vivo was impaired in adult PRiMA knockout mice. We first show that striatal and hippocampal ACh levels, while strongly increased, still respond to AChE inhibitors. Infusion or injection of oxotremorine, a muscarinic M2 agonist, reduced ACh levels in wild-type mice but did not significantly affect ACh levels in PRiMA knockout mice or in wild-type mice in which ACh levels were artificially increased by infusion of neostigmine. Scopolamine, a muscarinic antagonist, increased ACh levels in wild-type mice receiving neostigmine, but not in wild-type mice or in PRiMA knockout mice. These results demonstrate that M2R are dysfunctional and do not affect ACh levels in PRiMA knockout mice, likely because of down-regulation and/or loss of receptor-effector coupling. Remarkably, this loss of function does not affect cognitive functions in PRiMA knockout mice. Our results are discussed in the context of AChE inhibitor therapy as used in dementia. PMID:26506622

  20. Hippocampal place cell responses to distal and proximal cue manipulations in dopamine D2 receptor-knockout mice.

    PubMed

    Nguyen, Chien Le; Tran, Anh Hai; Matsumoto, Jumpei; Hori, Etsuro; Uwano, Teruko; Ono, Taketoshi; Nishijo, Hisao

    2014-06-01

    The human hippocampus is critical for learning and memory. In rodents, hippocampal pyramidal neurons fire in a location-specific manner and form relational representations of environmental cues. The important roles of dopaminergic D1 receptors in learning and in hippocampal neural synaptic plasticity in novel environments have been previously shown. However, the roles of D2 receptors in hippocampal neural plasticity in response to novel and familiar spatial stimuli remain unclear. In order to clarify this issue, we recorded from hippocampal neurons in dopamine D2 receptor-knockout (D2R-KO) mice and their wild-type (WT) littermates during manipulations of distinct spatial cues in familiar and novel environments. Here, we report that D2R-KO mice showed substantial deficits in place-cell properties (number of place cells, intra-field firing rates, spatial tuning, and spatial coherence). Furthermore, although place cells in D2R-KO mice responded to manipulations of distal and proximal cues in both familiar and novel environments in a manner that was similar to place cells in WT mice, place fields were less stable in the D . The axes represent the differences between the peak and the valley of each waveform of EL2 and EL3.2R-KO mice in the familiar environment, but not in the novel environment. The present results suggested that D2 receptors in the hippocampus are important for place response stability. The place-cell properties of D2R-KO mice were similar to aged animals, suggesting that the alterations of place-cell properties in aged animals might be ascribed partly to alterations in the D2R in the HF of aged animals. PMID:24747614

  1. Specific regions display altered grey matter volume in μ-opioid receptor knockout mice: MRI voxel-based morphometry

    PubMed Central

    Sasaki, Kazumasu; Sumiyoshi, Akira; Nonaka, Hiroi; Kasahara, Yoshiyuki; Ikeda, Kazutaka; Hall, F Scott; Uhl, George R; Watanabe, Masahiko; Kawashima, Ryuta; Sora, Ichiro

    2015-01-01

    BACKGROUND AND PURPOSE μ Opioid receptor knockout (MOP-KO) mice display several behavioural differences from wild-type (WT) littermates including differential responses to nociceptive stimuli. Brain structural changes have been tied to behavioural alterations noted in transgenic mice with targeting of different genes. Hence, we assess the brain structure of MOP-KO mice. EXPERIMENTAL APPROACH Magnetic resonance imaging (MRI) voxel-based morphometry (VBM) and histological methods were used to identify structural differences between extensively backcrossed MOP-KO mice and WT mice. KEY RESULTS MOP-KO mice displayed robust increases in regional grey matter volume in olfactory bulb, several hypothalamic nuclei, periaqueductal grey (PAG) and several cerebellar areas, most confirmed by VBM analysis. The largest increases in grey matter volume were detected in the glomerular layer of the olfactory bulb, arcuate nucleus of hypothalamus, ventrolateral PAG (VLPAG) and cerebellar regions including paramedian and cerebellar lobules. Histological analyses confirm several of these results, with increased VLPAG cell numbers and increased thickness of the olfactory bulb granule cell layer and cerebellar molecular and granular cell layers. CONCLUSIONS AND IMPLICATIONS MOP deletion causes previously undescribed structural changes in specific brain regions, but not in all regions with high MOP receptor densities (e.g. thalamus, nucleus accumbens) or that exhibit adult neurogenesis (e.g. hippocampus). Volume differences in hypothalamus and PAG may reflect behavioural changes including hyperalgesia. Although the precise relationship between volume change and MOP receptor deletion was not determined from this study alone, these findings suggest that levels of MOP receptor expression may influence a broader range of neural structure and function in humans than previously supposed. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity

  2. The endogenous opioid system in cocaine addiction: what lessons have opioid peptide and receptor knockout mice taught us?

    PubMed Central

    Yoo, Ji Hoon; Kitchen, Ian; Bailey, Alexis

    2012-01-01

    Cocaine addiction has become a major concern in the UK as Britain tops the European ‘league table’ for cocaine abuse. Despite its devastating health and socio-economic consequences, no effective pharmacotherapy for treating cocaine addiction is available. Identifying neurochemical changes induced by repeated drug exposure is critical not only for understanding the transition from recreational drug use towards compulsive drug abuse but also for the development of novel targets for the treatment of the disease and especially for relapse prevention. This article focuses on the effects of chronic cocaine exposure and withdrawal on each of the endogenous opioid peptides and receptors in rodent models. In addition, we review the studies that utilized opioid peptide or receptor knockout mice in order to identify and/or clarify the role of different components of the opioid system in cocaine-addictive behaviours and in cocaine-induced alterations of brain neurochemistry. The review of these studies indicates a region-specific activation of the µ-opioid receptor system following chronic cocaine exposure, which may contribute towards the rewarding effect of the drug and possibly towards cocaine craving during withdrawal followed by relapse. Cocaine also causes a region-specific activation of the κ-opioid receptor/dynorphin system, which may antagonize the rewarding effect of the drug, and at the same time, contribute to the stress-inducing properties of the drug and the triggering of relapse. These conclusions have important implications for the development of effective pharmacotherapy for the treatment of cocaine addiction and the prevention of relapse. PMID:22428846

  3. Decreased Incentive Motivation Following Knockout or Acute Blockade of the Serotonin Transporter: Role of the 5-HT2C Receptor.

    PubMed

    Browne, Caleb J; Fletcher, Paul J

    2016-09-01

    Acute pharmacological elevation of serotonin (5-hydroxytryptamine; 5-HT) activity decreases operant responding for primary reinforcers, suggesting that 5-HT reduces incentive motivation. The mechanism by which 5-HT alters incentive motivation is unknown, but parallel evidence that 5-HT2C receptor agonists also reduce responding for primary reinforcers implicates this receptor as a potential candidate. These experiments examined whether chronic and acute disruptions of serotonin transporter (SERT) activity altered incentive motivation, and whether the 5-HT2C receptor mediated the effects of elevated 5-HT on behavior. To assess incentive motivation, we measured responding for three different reinforcers: a primary reinforcer (saccharin), a conditioned reinforcer (CRf), and an unconditioned sensory reinforcer (USRf). In the chronic condition, responding was compared between SERT knockout (SERT-KO) mice and their wild-type littermates. In the acute condition, responding was examined in wild-type mice following treatment with 10 or 20 mg/kg citalopram, or its vehicle. The ability of the selective 5-HT2C antagonist SB 242084 to prevent the effects of SERT-KO and citalopram on responding was subsequently examined. Both SERT-KO and citalopram reduced responding for saccharin, a CRf, and a USRf. Treatment with SB 242084 enhanced responding for a CRf and a USRf in SERT-KO mice and blocked the effects of citalopram on CRf and USRf responding. However, SB 242084 was unable to prevent the effects of SERT-KO or citalopram on responding for saccharin. These results support a powerful inhibitory function for 5-HT in the control of incentive motivation, and indicate that the 5-HT2C receptor mediates these effects of 5-HT in a reinforcer-dependent manner. PMID:27125304

  4. Role of endogenous prostacyclin in gastric ulcerogenic and healing responses--a study using IP-receptor knockout mice.

    PubMed

    Takeuchi, K; Kato, S; Ogawa, Y; Kanatsu, K; Umeda, M

    2001-01-01

    Endogenous prostaglandins (PGs) play an important role in the cytoprotective and healing responses in the stomach, by altering various functions, i.e., an increase of the mucosal blood flow, yet the role of prostacyclin (PGI(2)) and its receptor (IP-receptor) in these responses remains unclarified. In the present study, we used IP-receptor knockout mice [IP (-/-)] and examined the importance of IP-receptors in gastric ulcerogenic, cytoprotective and healing responses in these animals. The studies included the ulcerogenic response to cold-restraint stress, the cytoprotective response to a mild irritant (20 mM taurocholate: TC) and capsaicin, and the healing response of chronic gastric ulcers induced by thermo-cauterization. We first checked the absence of IP-receptors by examining the effect of cicaprost (a PGI(2) agonist, topical mucosal application) on gastric mucosal blood flow and found that this agent increased the mucosal blood flow in wild-type [WT (+/+)] mice but not in IP (+/-) mice. Cold-restraint stress (4 h) induced gastric lesions in both groups of mice, but the severity of damage was significantly greater in IP (-/-) mice. Prior p.o. administration of both TC and capsaicin exhibited a marked cytoprotection against HCl/ethanol-induced gastric damage in WT (+/+) mice, both responses being significantly mitigated in the presence of indomethacin. The adaptive cytoprotection induced by TC was similarly observed in IP (-/-) mice, while the capsaicin protection was totally attenuated in the animals lacking IP receptors. On the other hand, the healing of gastric ulcers was significantly delayed by daily administration of indomethacin in WT (+/+) mice. However, this process was not altered in IP (-/-) mice. These results suggest that endogenous PGI(2) is involved in the gastric ulcerogenic response to stress, but not in the healing of pre-existing gastric ulcers. In addition, PGI(2) and its receptors may play a crucial role in capsaicin-induced gastric

  5. The transcobalamin receptor knockout mouse: a model for vitamin B12 deficiency in the central nervous system.

    PubMed

    Lai, Shao-Chiang; Nakayama, Yasumi; Sequeira, Jeffrey M; Wlodarczyk, Bogdan J; Cabrera, Robert M; Finnell, Richard H; Bottiglieri, Teodoro; Quadros, Edward V

    2013-06-01

    The membrane receptor (TCblR/CD320) for transcobalamin (TC)-bound cobalamin (Cbl) facilitates the cellular uptake of Cbl. A genetically modified mouse model involving ablation of the CD320 gene was generated to study the effects on cobalamin homeostasis. The nonlethal nature of this knockout and the lack of systemic cobalamin deficiency point to other mechanisms for cellular Cbl uptake in the mouse. However, severe cobalamin depletion in the central nervous system (CNS) after birth (P<0.01) indicates that TCblR is the only receptor responsible for Cbl uptake in the CNS. Metabolic Cbl deficiency in the brain was evident from the increased methylmalonic acid (P<0.01-0.04), homocysteine (P<0.01), cystathionine (P<0.01), and the decreased S-adenosylmethionine/S-adenosyl homocysteine ratio (P<0.01). The CNS pathology of Cbl deficiency seen in humans may not manifest in this mouse model; however, it does provide a model with which to evaluate metabolic pathways and genes affected. PMID:23430977

  6. Genetic manipulation to analyze pheromone responses: knockouts of multiple receptor genes.

    PubMed

    Ishii, Tomohiro

    2013-01-01

    Gene targeting in the mouse is an essential technique to study gene function in vivo. Multigene families encoding vomeronasal receptor (VR) type 1 and type 2 consist of ~300 intact genes, which are clustered at multiple loci in the mouse genome. To understand the function of VRs and neurons expressing a particular VR in vivo, individual endogenous receptor genes can be manipulated by conventional gene targeting to create loss-of-function mutations or to visualize neurons and their axons expressing the VR. Multiple receptor genes in a cluster can also be deleted simultaneously by chromosome engineering, allowing analysis of function of a particular VR subfamily. Here, we describe protocols for conventional gene targeting and chromosome engineering for deleting a large genomic region in mouse embryonic stem (ES) cells. PMID:24014359

  7. Retention of NMDA receptor NR2 subunits in the lumen of endoplasmic reticulum in targeted NR1 knockout mice

    PubMed Central

    Fukaya, Masahiro; Kato, Akira; Lovett, Chanel; Tonegawa, Susumu; Watanabe, Masahiko

    2003-01-01

    Glutamate is a major excitatory neurotransmitter in the mammalian central nervous system, and the N-methyl-d-aspartate-selective glutamate receptor (NR) consisting of the NR1 subunit and an NR2 or NR3 subunit plays crucial roles in synaptic transmission, plasticity, and learning and memory. By using a knockout mouse strain, in which the NR1 gene deletion is primarily targeted to the CA1 pyramidal cells of the hippocampus, we investigated the in vivo effect of the loss of the NR1 subunit on the cellular expression and intracellular distribution of the NR2 subunits. The NR1 gene deletion had no apparent effect on the levels of NR2A or NR2B mRNA but led to severe reductions of NR2A and NR2B protein in dendrites of CA1 pyramidal cells. This reduced dendritic distribution of the NR2 subunits accompanied their robust accumulation in perikarya, where they were condensed in the lumen of the endoplasmic reticulum as electron-dense granules. These granules were also observed in CA1 pyramidal cells of the control mice but they were much fewer and contained no detectable levels of the NR2 subunit. The effect of the NR1 knockout on intracellular localization of the NR2 subunits was specific in that no such effect was observed for the GluR1 and PSD-95, two other major postsynaptic proteins. These results suggest that the NR1 subunit plays a crucial role in the release of the NR2 subunit from the endoplasmic reticulum in hippocampal pyramidal cells in vivo, and when the NR1 subunit is unavailable, the NR2 subunits are retained and aggregate into intracisternal granules. PMID:12676993

  8. Long-term effects of diazepam treatment of epileptic GABAA receptor beta3 subunit knockout mouse in early life.

    PubMed

    Liljelund, Patricia; Ferguson, Carolyn; Homanics, Gregg; Olsen, Richard W

    2005-01-01

    The knockout mouse for the beta3 subunit of the GABAA receptor exhibits spontaneous epilepsy and hyperactivity, and has been proposed as a model for the severe developmental disorder, Angelman's syndrome, which is known to be of genetic origin. We have used this mutant to test an approach of therapeutic intervention prior to seizure onset by daily injection with diazepam during either the first or second postnatal week. Results showed differences between postnatal week 1 and week 2 injections both acutely, with respect to sedative effects, and in long-term outcome, with respect to EEG and behavioral tests measured at 12-14 weeks of age. The EEG of control mice remained unaffected under all conditions, but the EEG of beta3 (-/-) injected with diazepam in week 1 was worsened, showing increased oscillatory activity at 5-6Hz, and more myoclonic jerks, particularly among males. For beta3 (-/-) injected with diazepam in week 2, the EEG was normalized in half the mice but worsened similarly to week 1 in the other half. Neonatal diazepam injection had a long-term normalizing effect on behavior of beta3 (-/-) mice injected in week 1, but diazepam treatment in week 2 did not affect the hyperactive and circling behavior characteristic of the beta3 knockout mouse. Diazepam treatment in postnatal week 2 significantly decreased anxiety in the adult beta3 group. Diazepam treatment in both postnatal weeks 1 and 2 improved the motor coordination of beta3 (-/-) on the rotarod, although performance of control mice injected with diazepam in postnatal week 2 was significantly impaired. The observed long-term outcome of neonatal diazepam injections may result from interference with developmental processes, and shows that enhancing GABAergic activity with diazepam during the period where GABA can be excitatory can produce narrow stage-related effects on brain development. PMID:16168624

  9. Altered mnemonic functions and resistance to NMDA receptor antagonism by forebrain conditional knockout of glycine transporter 1

    PubMed Central

    Singer, Philipp; Yee, Benjamin K.; Feldon, Joram; Iwasato, Takuji; Itohara, Shigeyoshi; Grampp, Thomas; Prenosil, George; Benke, Dietmar; Möhler, Hanns; Boison, Detlev

    2009-01-01

    Converging evidence from pharmacological and molecular studies has led to the suggestion that inhibition of glycine transporter 1 (GlyT1) constitutes an effective means to boost N-methyl-D-aspartate receptor (NMDAR) activity by increasing the extra-cellular concentration of glycine in the vicinity of glutamatergic synapses. However, the precise extent and limitation of this approach to alter cognitive function, and therefore its potential as a treatment strategy against psychiatric conditions marked by cognitive impairments, remains to be fully examined. Here, we generated mutant mice lacking GlyT1 in the entire forebrain including neurons and glia. This conditional knockout system allows a more precise examination of GlyT1 down-regulation in the brain on behaviour and cognition. The mutation was highly effective in attenuating the motor-stimulating effect of acute NMDAR blockade by phencyclidine, although no appreciable elevation in NMDAR-mediated EPSC was observed in the hippocampus. Enhanced cognitive performance was observed in spatial working memory and object recognition memory while spatial reference memory and associative learning remained unaltered. These findings provide further credence for the potential cognitive enhancing effects of brain GlyT1 inhibition. At the same time, they indicated potential phenotypic differences when compared with other constitutive and conditional GlyT1 knockout lines, and highlighted the possibility of a functional divergence between the neuronal and glia subpopulations of GlyT1 in the regulation of learning and memory processes. The relevance of this distinction to the design of future GlyT1 blockers as therapeutic tools in the treatment of cognitive disorders remains to be further investigated. PMID:19332109

  10. Peripheral benzodiazepine receptor/translocator protein global knock-out mice are viable with no effects on steroid hormone biosynthesis.

    PubMed

    Tu, Lan N; Morohaku, Kanako; Manna, Pulak R; Pelton, Susanne H; Butler, W Ronald; Stocco, Douglas M; Selvaraj, Vimal

    2014-10-01

    Translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is a mitochondrial outer membrane protein implicated as essential for cholesterol import to the inner mitochondrial membrane, the rate-limiting step in steroid hormone biosynthesis. Previous research on TSPO was based entirely on in vitro experiments, and its critical role was reinforced by an early report that claimed TSPO knock-out mice were embryonic lethal. In a previous publication, we examined Leydig cell-specific TSPO conditional knock-out mice that suggested TSPO was not required for testosterone production in vivo. This raised controversy and several questions regarding TSPO function. To examine the definitive role of TSPO in steroidogenesis and embryo development, we generated global TSPO null (Tspo(-/-)) mice. Contrary to the early report, Tspo(-/-) mice survived with no apparent phenotypic abnormalities and were fertile. Examination of adrenal and gonadal steroidogenesis showed no defects in Tspo(-/-) mice. Adrenal transcriptome comparison of gene expression profiles showed that genes involved in steroid hormone biosynthesis (Star, Cyp11a1, and Hsd3b1) were unchanged in Tspo(-/-) mice. Adrenocortical ultrastructure illustrated no morphological alterations in Tspo(-/-) mice. In an attempt to correlate our in vivo findings to previously used in vitro models, we also determined that siRNA knockdown or the absence of TSPO in different mouse and human steroidogenic cell lines had no effect on steroidogenesis. These findings directly refute the dogma that TSPO is indispensable for steroid hormone biosynthesis and viability. By amending the current model, this study advances our understanding of steroidogenesis with broad implications in biology and medicine. PMID:24936060

  11. Synthetic and Receptor Signaling Explorations of the Mitragyna Alkaloids: Mitragynine as an Atypical Molecular Framework for Opioid Receptor Modulators.

    PubMed

    Kruegel, Andrew C; Gassaway, Madalee M; Kapoor, Abhijeet; Váradi, András; Majumdar, Susruta; Filizola, Marta; Javitch, Jonathan A; Sames, Dalibor

    2016-06-01

    Mu-opioid receptor agonists represent mainstays of pain management. However, the therapeutic use of these agents is associated with serious side effects, including potentially lethal respiratory depression. Accordingly, there is a longstanding interest in the development of new opioid analgesics with improved therapeutic profiles. The alkaloids of the Southeast Asian plant Mitragyna speciosa, represented by the prototypical member mitragynine, are an unusual class of opioid receptor modulators with distinct pharmacological properties. Here we describe the first receptor-level functional characterization of mitragynine and related natural alkaloids at the human mu-, kappa-, and delta-opioid receptors. These results show that mitragynine and the oxidized analogue 7-hydroxymitragynine, are partial agonists of the human mu-opioid receptor and competitive antagonists at the kappa- and delta-opioid receptors. We also show that mitragynine and 7-hydroxymitragynine are G-protein-biased agonists of the mu-opioid receptor, which do not recruit β-arrestin following receptor activation. Therefore, the Mitragyna alkaloid scaffold represents a novel framework for the development of functionally biased opioid modulators, which may exhibit improved therapeutic profiles. Also presented is an enantioselective total synthesis of both (-)-mitragynine and its unnatural enantiomer, (+)-mitragynine, employing a proline-catalyzed Mannich-Michael reaction sequence as the key transformation. Pharmacological evaluation of (+)-mitragynine revealed its much weaker opioid activity. Likewise, the intermediates and chemical transformations developed in the total synthesis allowed the elucidation of previously unexplored structure-activity relationships (SAR) within the Mitragyna scaffold. Molecular docking studies, in combination with the observed chemical SAR, suggest that Mitragyna alkaloids adopt a binding pose at the mu-opioid receptor that is distinct from that of classical opioids. PMID

  12. Presence of a truncated form of the vitamin D receptor (VDR) in a strain of VDR-knockout mice.

    PubMed

    Bula, Craig M; Huhtakangas, Johanna; Olivera, Christopher; Bishop, June E; Norman, Anthony W; Henry, Helen L

    2005-12-01

    As part of our studies on the membrane-initiated actions of 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] and its localization in caveolae membrane fractions, we used a vitamin D receptor (VDR)-knockout (KO) mouse model to study the binding of [(3)H]-1alpha,25(OH)(2)D(3) in the presumed absence of the VDR. In this mouse model, known as the Tokyo strain, the second exon of the VDR gene, which encodes the first of the two zinc fingers responsible for DNA binding, was removed, and the resulting animals have been considered to be VDR-null mice. To our surprise, several tissues in these KO mice showed significant (5-50% of that seen in wild-type animals) specific binding of [(3)H]-1alpha,25(OH)(2)D(3) in nuclear and caveolae membrane fractions. The dissociation constants of this binding in samples from VDR-KO and wild-type mice were indistinguishable. RT-PCR analysis of intestinal mRNA from the VDR-KO animals revealed an mRNA that lacks exon 2 but contains exons 3-9 plus two 5'-untranslated exons. Western analysis of intestinal extracts from VDR-KO mice showed a protein of a size consistent with the use of Met52 as the translational start site. Transfection of a plasmid construct containing the sequence encoding the human analog of this truncated form of the receptor, VDR(52-C), into Cos-1 cells showed that this truncated form of the receptor retains full [(3)H]-1alpha,25(OH)(2)D(3) binding ability. This same construct was inactive in transactivation assays using the osteocalcin promoter in CV1 cells. Thus, we have determined that this widely used strain of the VDR-KO mouse can express a form of the VDR that can bind ligand but not activate gene transcription. PMID:16150907

  13. Receptor reserve reflects differential intrinsic efficacy associated with opioid diastereomers.

    PubMed

    Carliss, Richard D S; Keefer, James F; Perschke, Scott; Welch, Sandra; Rich, Thomas C; Weissman, Arthur D

    2009-05-01

    Structure-activity relationships built around receptor binding or cell-based assays are designed to reveal physiochemical differences between ligands. We hypothesized that agonist receptor reserve may provide a unique approach to distinguish structurally-related agonists exhibiting similar functional characteristics. An intracellular calcium activation assay in Chinese Hamster Ovary (CHO) cells expressing cloned human mu-opioid receptors was developed. We examined two isomers exhibiting indistinguishable receptor binding and in vitro potency profiles. Oxymorphone, a clinically-available congener of codeine has at least two active diastereomeric metabolites (6alpha- and 6beta-oxymorphols) found to be similar for mu-opioid receptor binding affinity (K(d) = 15 versus 14 nM) and calcium activation (EC(50) = 22 versus 14 nM). Calcium activation was then inhibited in CHO cells in a concentration-dependent manner using the irreversible mu-opioid receptor antagonist, beta-funaltrexamine (beta-FNA). Under these conditions, approximately 10-fold greater receptor reserve was found for 6alpha-oxymorphol compared to 6beta-oxymorphol. This difference between the oxymorphols corresponded to a rank order of intrinsic efficacy (Emax): DAMGO > oxymorphone = 6alpha-oxymorphol = oxycodone > 6beta-oxymorphol. In addition, 6alpha-oxymorphol exhibited greater relative potency than the 6beta-oxymorphol in mouse tail-flick, hot-plate and phenylquinone writhing antinociceptive assays, regardless of route of administration. Thus the beta-FNA/calcium model provides a novel, cell-based approach to distinguish structurally related mu-opioid agonists, and in the specific case of the oxymorphols, receptor reserve differences provided a means to bridge functional in vitro and in vivo models. PMID:19463265

  14. Knockout of Angiotensin AT2 receptors accelerates healing but impairs quality

    PubMed Central

    Faghih, Mahya; Hosseini, Sayed M.; Smith, Barbara; Ansari, Amir Mehdi.; Lay, Frank; Ahmed, Ali Karim; Inagami, Tedashi; Marti, Guy P.; Harmon, John W.; Walston, Jeremy D.; Abadir, Peter M.

    2015-01-01

    Wounds are among the most common, painful, debilitating and costly conditions in older adults. Disruption of the angiotensin type 1 receptors (AT1R), has been associated with impaired wound healing, suggesting a critical role for AT1R in this repair process. Biological functions of angiotensin type 2 receptors (AT2R) are less studied. We investigated effects of genetically disrupting AT2R on rate and quality of wound healing. Our results suggest that AT2R effects on rate of wound closure depends on the phase of wound healing. We observed delayed healing during early phase of wound healing (inflammation). An accelerated healing rate was seen during later stages (proliferation and remodeling). By day 12, fifty percent of AT2R−/− mice had complete wound closure as compared to none in either C57/BL6 or AT1R−/− mice. There was a significant increase in AT1R, TGFβ1 and TGFβ2 expression during the proliferative and remodeling phases in AT2R−/− mice. Despite the accelerated closure rate, AT2R−/− mice had more fragile healed skin. Our results suggest that in the absence of AT2R, wound healing rate is accelerated, but yielded worse skin quality. Elucidating the contribution of both of the angiotensin receptors may help fine tune future intervention aimed at wound repair in older individuals. PMID:26727887

  15. Deletion of the UT receptor gene results in the selective loss of urotensin-II contractile activity in aortae isolated from UT receptor knockout mice.

    PubMed

    Behm, David J; Harrison, Stephen M; Ao, Zhaohui; Maniscalco, Kristeen; Pickering, Susan J; Grau, Evelyn V; Woods, Tina N; Coatney, Robert W; Doe, Christopher P A; Willette, Robert N; Johns, Douglas G; Douglas, Stephen A

    2003-05-01

    1 Urotensin-II (U-II) is among the most potent mammalian vasoconstrictors identified and may play a role in the aetiology of essential hypertension. Currently, only one mouse U-II receptor (UT) gene has been cloned. It is postulated that this protein is solely responsible for mediating U-II-induced vasoconstriction. 2 This hypothesis has been investigated in the present study, which assessed basal haemodynamics and vascular reactivity to hU-II in wild-type (UT((+/+))) and UT receptor knockout (UT((-/-))) mice. 3 Basal left ventricular end-diastolic and end-systolic volumes/pressures, stroke volumes, mean arterial blood pressures, heart rates, cardiac outputs and ejection fractions in UT((+/+)) mice and in UT((-/-)) mice were similar. 4 Relative to UT((+/+)) mouse isolated thoracic aorta, where hU-II was a potent spasmogen (pEC(50)=8.26+/-0.08) that evoked relatively little vasoconstriction (17+/-2% 60 mM KCl), vessels isolated from UT((-/-)) mice did not respond to hU-II. However, in contrast, the superior mesenteric artery isolated from both the genotypes did not contract in the presence of hU-II. Reactivity to unrelated vasoconstrictors (phenylephrine, endothelin-1, KCl) and endothelium-dependent/independent vasodilator agents (carbachol, sodium nitroprusside) was similar in the aorta and superior mesenteric arteries isolated from both the genotypes. 5 The present study is the first to directly link hU-II-induced vasoconstriction with the UT receptor. Deletion of the UT receptor gene results in loss of hU-II contractile action with no 'nonspecific' alterations in vascular reactivity. However, as might be predicted based on the limited contractile efficacy recorded in vitro, the contribution that hU-II and its receptor make to basal systemic haemodynamics appears to be negligible in this species. PMID:12770952

  16. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    SciTech Connect

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Gopez, V.; Delis, F.; Michaelides, M.; Grand, D.K.; Wang, G.-J.; Kunos, G.; Volkow, N.D.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.

  17. Cholesterol-Induced Hepatic Inflammation Does Not Underlie the Predisposition to Insulin Resistance in Dyslipidemic Female LDL Receptor Knockout Mice

    PubMed Central

    Gruben, Nanda; Funke, Anouk; Kloosterhuis, Niels J.; Schreurs, Marijke; Sheedfar, Fareeba; Havinga, Rick; Houten, Sander M.; van de Sluis, Bart; Kuivenhoven, Jan Albert; Koonen, Debby P. Y.; Hofker, Marten H.

    2015-01-01

    Chronic inflammation is considered a causal risk factor predisposing to insulin resistance. However, evidence is accumulating that inflammation confined to the liver may not be causal to metabolic dysfunction. To investigate this, we assessed if hepatic inflammation explains the predisposition towards insulin resistance in low-density lipoprotein receptor knock-out (Ldlr−/−) mice. For this, wild type (WT) and Ldlr−/− mice were fed a chow diet, a high fat (HF) diet, or a high fat, high cholesterol (HFC) diet for 2 weeks. Plasma lipid levels were elevated in chow-fed Ldlr−/− mice compared to WT mice. Although short-term HF or HFC feeding did not result in body weight gain and adipose tissue inflammation, dyslipidemia was worsened in Ldlr−/− mice compared to WT mice. In addition, dyslipidemic HF-fed Ldlr−/− mice had a higher hepatic glucose production rate than HF-fed WT mice, while peripheral insulin resistance was unaffected. This suggests that HF-fed Ldlr−/− mice suffered from hepatic insulin resistance. While HFC-fed Ldlr−/− mice displayed the anticipated increased hepatic inflammation, this did neither exacerbate systemic nor hepatic insulin resistance. Therefore, our results show that hepatic insulin resistance is unrelated to cholesterol-induced hepatic inflammation in Ldlr−/− mice, indicating that hepatic inflammation may not contribute to metabolic dysfunction per se. PMID:25815343

  18. Metabolic alterations due to caloric restriction and every other day feeding in normal and growth hormone receptor knockout mice.

    PubMed

    Westbrook, Reyhan; Bonkowski, Michael S; Arum, Oge; Strader, April D; Bartke, Andrzej

    2014-01-01

    Mutations causing decreased somatotrophic signaling are known to increase insulin sensitivity and extend life span in mammals. Caloric restriction and every other day (EOD) dietary regimens are associated with similar improvements to insulin signaling and longevity in normal mice; however, these interventions fail to increase insulin sensitivity or life span in growth hormone receptor knockout (GHRKO) mice. To investigate the interactions of the GHRKO mutation with caloric restriction and EOD dietary interventions, we measured changes in the metabolic parameters oxygen consumption (VO2) and respiratory quotient produced by either long-term caloric restriction or EOD in male GHRKO and normal mice. GHRKO mice had increased VO2, which was unaltered by diet. In normal mice, EOD diet caused a significant reduction in VO2 compared with ad libitum (AL) mice during fed and fasted conditions. In normal mice, caloric restriction increased both the range of VO2 and the difference in minimum VO2 between fed and fasted states, whereas EOD diet caused a relatively static VO2 pattern under fed and fasted states. No diet significantly altered the range of VO2 of GHRKO mice under fed conditions. This provides further evidence that longevity-conferring diets cause major metabolic changes in normal mice, but not in GHRKO mice. PMID:23833202

  19. Oxytocin receptor and Mecp2 308/Y knockout mice exhibit altered expression of autism-related social behaviors.

    PubMed

    Pobbe, Roger L H; Pearson, Brandon L; Blanchard, D Caroline; Blanchard, Robert J

    2012-12-01

    The development of tasks measuring behaviors specific to the three major symptom categories for autism makes it possible to differentiate mouse models of autism spectrum disorders (ASD) in terms of changes in these specific categories. Prior studies indicate that BTBR T+tf/J mice, the strain that has been evaluated most extensively, show autism-relevant changes in all three symptom categories; reciprocal social interactions; communication; and repetitive, ritualized behaviors. This report reviews the behaviors of oxytocin receptor (Oxtr) and Mecp2(308/Y) wild-type (WT) and knockout (KO) mice, in a number of tests specifically designed to provide information on behaviors that may show functional parallels to the core symptoms of ASD. Oxtr KO mice show robust decreases in reciprocal social interactions, and reduced levels of communication, but no changes in repetitive, ritualized behaviors; whereas Mecp2(308/Y) KO mice show a slight but consistent enhancement of social behavior and communication, and no changes in repetitive, ritualized behaviors. This data base, although small, strongly indicates that mouse models can sort the diagnostic symptoms of autism, and suggests that biological and physiological analyses of these strains may be capable of providing differential information on the brain systems involved in particular symptoms of this disorder. Profiles of behavioral changes in other mouse models of ASD should provide additional specificity in the search for biomarkers associated with particular ASD symptoms and symptom clusters. PMID:22406388

  20. Knockout of fractalkine receptor Cx3cr1 does not alter disease or microglial activation in prion-infected mice.

    PubMed

    Striebel, James F; Race, Brent; Carroll, James A; Phillips, Katie; Chesebro, Bruce

    2016-06-01

    Microglial activation is a hallmark of the neuroimmunological response to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and prion disease. The CX3C chemokine axis consists of fractalkine (CX3CL1) and its receptor (CX3CR1); these are expressed by neurons and microglia respectively, and are known to modulate microglial activation. In prion-infected mice, both Cx3cr1 and Cx3cl1 are altered, suggesting a role in disease. To investigate the influence of CX3C axis signalling on prion disease, we infected Cx3cr1 knockout (Cx3cr1-KO) and control mice with scrapie strains 22L and RML. Deletion of Cx3cr1 had no effect on development of clinical signs or disease incubation period. In addition, comparison of brain tissue from Cx3cr1-KO and control mice revealed no significant differences in cytokine levels, spongiosis, deposition of disease-associated prion protein or microglial activation. Thus, microglial activation during prion infection did not require CX3C axis signalling. PMID:26935332

  1. Autoradiographic localization of mu and delta opioid receptors in the mesocorticolimbic dopamine system

    SciTech Connect

    Dilts, R.P. Jr.

    1989-01-01

    In vitro autoradiographic techniques were coupled with selective chemical lesions of the A10 dopamine cells and intrinsic perikarya of the region to delineate the anatomical localization of mu and delta opioid receptors, as well as, neurotensin receptors. Mu opioid receptors were labeled with {sup 125}I-DAGO. Delta receptors were labeled with {sup 125}I-DPDPE. Neurotensin receptors were labeled with {sup 125}I-NT3. Unilateral lesions of the dopamine perikarya were produced by injections of 6-OHDA administered in the ventral mesencephalon. Unilateral lesions of intrinsic perikarya were induced by injections of quinolinic acid in to the A10 dopamine cell region. Unilateral lesions produced with 6-OHDA resulted in the loss of neurotensin receptors in the A10 region and within the terminal fields. Mu opioid receptors were unaffected by this treatment, but delta opioid receptors increased in the contralateral striatum and nucleus accumbens following 6-OHDA administration. Quinolinic acid produced a reduction of mu opioid receptors within the A10 region with a concomitant reduction in neurotensin receptors in both the cell body region and terminal fields. These results are consistent with a variety of biochemical and behavioral data which suggest the indirect modulation of dopamine transmission by the opioids. In contrast these results strongly indicate a direct modulation of the mesolimbic dopamine system by neurotensin.

  2. Endothelial cell-specific aryl hydrocarbon receptor knockout mice exhibit hypotension mediated, in part, by an attenuated angiotensin II responsiveness

    PubMed Central

    Agbor, Larry N.; Elased, Khalid M.; Walker, Mary K.

    2011-01-01

    Hypotension in aryl hydrocarbon receptor knockout mice (ahr−/−) is mediated, in part, by a reduced contribution of angiotensin (Ang) II to basal blood pressure (BP). Since AHR is highly expressed in endothelial cells (EC), we hypothesized that EC-specific ahr−/− (ECahr−/−) mice would exhibit a similar phenotype. We generated ECahr−/− mice by crossing AHR floxed mice (ahrfx/fx) to mice expressing Cre recombinase driven by an EC-specific promoter. BP was assessed by radiotelemetry prior to and following an acute injection of Ang II or chronic treatment with an angiotensin converting enzyme inhibitor (ACEi). ECahr−/− mice were hypotensive (ECahr+/+: 116.1 ± 1.4; ECahr−/−: 107.4 ± 2.0 mmHg, n=11, p<0.05) and exhibited significantly different responses to Ang II and ACEi. While Ang II increased BP in both genotypes, the increase was sustained in ECahr+/+, whereas the increase in ECahr−/− mice steadily declined. Area under the curve analysis showed that Ang II-induced increase in diastolic BP (DBP) over 30 min was significantly lower in ECahr−/− mice (ECahr+/+ 1297 ± 223 mmHg/30 min; ECahr−/−AUC: 504 ± 138 mmHg/30 min, p<0.05). In contrast, while ACEi decreased BP in both genotypes, the subsequent rise in DBP after treatment was significantly delayed in the ECahr−/− mice. ECahr−/− mice also exhibited reduced vascular and adipose Ang II type 1 receptor (AT1R) expression, and reduced aortic Ang II-dependent vasoconstriction in the presence of vascular adipose. Taken together these data suggest that hypotension in ECahr−/− mice results from reduced vascular responsiveness to Ang II that is influenced by AT1R expression and adipose. PMID:21684261

  3. Increased Activation of the Wnt/β-Catenin Pathway in Spontaneous Hepatocellular Carcinoma Observed in Farnesoid X Receptor Knockout Mice

    PubMed Central

    Wolfe, Andy; Thomas, Ann; Edwards, Genea; Jaseja, Reshma; Guo, Grace L.

    2011-01-01

    Farnesoid X receptor (FXR), the primary bile acid-sensing nuclear receptor, also is known for its anticancer properties. It is known that FXR deficiency in mice results in spontaneous hepatocellular carcinoma (HCC), but the mechanisms are not completely understood. We report that sustained activation of the Wnt/β-catenin pathway is associated with spontaneous HCC in FXR-knockout (KO) mice. HCC development was studied in FXR-KO mice at 3, 8, and 14 months of age. No tumors were observed at either 3 or 8 months, but the presence of HCC was observed in 100% of the FXR-KO mice at the age of 14 months. Further analysis revealed no change in β-catenin activation in the livers of 3-month-old FXR-KO mice, but a moderate increase was observed in 8-month-old FXR-KO mice. β-Catenin activation further increased significantly in 14-month-old tumor-bearing mice. Further analysis revealed that two independent mechanisms might be involved in β-catenin activation in the livers of FXR-KO mice. Activation of canonical Wnt signaling was evident as indicated by increased Wnt4 and dishevelled expression along with glycogen synthase kinase-3β inactivation. We also observed decreased expression of E-cadherin, a known regulator of β-catenin, in FXR-KO mice. The decrease in E-cadherin expression was accompanied by increased expression of its transcriptional repressor, Snail. Consistent with the increased HCC in FXR-KO mice, we observed a significant decrease in FXR expression and activity in human HCC samples. Taken together, these data indicate that a temporal increase in the activation of Wnt/β-catenin is observed during spontaneous HCC development in FXR-KO mice and is potentially critical for tumor development. PMID:21430080

  4. The role of RXFP2 in mediating androgen-induced inguinoscrotal testis descent in LH receptor knockout mice

    PubMed Central

    Yuan, F P; Li, X; Lin, J; Schwabe, C; Büllesbach, E E; Rao, C V; Lei, Z M

    2011-01-01

    LH receptor knockout (LhrKO) male mice exhibit a bilateral cryptorchidism resulting from a developmental defect in the gubernaculum during the inguinoscrotal phase of testis descent, which is corrected by testosterone replacement therapy (TRT). In vivo and in vitro experiments were conducted to investigate the roles of the androgen receptor (AR) and RXFP2 signals in regulation of gubernacular development in LhrKO animals. This study demonstrated that AR and RXFP2 proteins were expressed in the gubernaculum during the entire postnatal period. TRT normalized gubernacular RXFP2 protein levels inLhrKO mice. Organ and primary cell cultures of gubernacula showed that 5α-dihydrotestosterone (DHT) upregulated the expression of Rxfp2 which was abolished by the addition of an AR antagonist, flutamide. A single s.c. testosterone injection also led to a significant increase in Rxfp2 mRNA levels in a time-dependent fashion in LhrKO animals. DHT, natural and synthetic insulin-like peptide 3 (INSL3), or relaxin alone did not affect proliferation of gubernacular mesenchymal cells, while co-treatments of DHT with either INSL3 or relaxin resulted in an increase in cell proliferation, and they also enhanced the mesenchymal cell differentiation toward the myogenic pathway, which included a decrease in a mesenchymal cell marker, CD44 and the expression of troponin. These effects were attenuated by the addition of flutamide, siRNA-mediated Rxfp2 knockdown, or by an INSL3 antagonist. Co-administration of an INSL3 antagonist curtailed TRT-induced inguinoscrotal testis descent in LhrKO mice. Our findings indicate that the RXFP2 signaling pathway plays an important role in mediating androgen action to stimulate gubernaculum development during inguinoscrotal testis descent. PMID:20154177

  5. Progesterone receptor knockout mice have an improved glucose homeostasis secondary to -cell proliferation

    NASA Astrophysics Data System (ADS)

    Picard, Frédéric; Wanatabe, Mitsuhiro; Schoonjans, Kristina; Lydon, John; O'Malley, Bert W.; Auwerx, Johan

    2002-11-01

    Gestational diabetes coincides with elevated circulating progesterone levels. We show that progesterone accelerates the progression of diabetes in female db/db mice. In contrast, RU486, an antagonist of the progesterone receptor (PR), reduces blood glucose levels in both female WT and db/db mice. Furthermore, female, but not male, PR-/- mice had lower fasting glycemia than PR+/+ mice and showed higher insulin levels on glucose injection. Pancreatic islets from female PR-/- mice were larger and secreted more insulin consequent to an increase in -cell mass due to an increase in -cell proliferation. These findings demonstrate an important role of progesterone signaling in insulin release and pancreatic function and suggest that it affects the susceptibility to diabetes.

  6. Autophagy downregulation contributes to insulin resistance mediated injury in insulin receptor knockout podocytes in vitro

    PubMed Central

    Xin, Wei; Li, Zhaoping; Chen, Liyong

    2016-01-01

    It is unknown whether autophagy activity is altered in insulin resistant podocytes and whether autophagy could be a therapeutic target for diabetic nephropathy (DN). Here we used shRNA transfection to knockdown the insulin receptor (IR) gene in cultured human immortalized podocytes as an in vitro insulin resistant model. Autophagy related proteins LC3, Beclin, and p62 as well as nephrin, a podocyte injury marker, were assessed using western blot and immunofluorescence staining. Our results show that autophagy is suppressed when podocytes lose insulin sensitivity and that treatment of rapamycin, an mTOR specific inhibitor, could attenuate insulin resistance induced podocytes injury via autophagy activation. The present study deepens our understanding of the role of autophagy in the pathogenesis of DN. PMID:27077005

  7. Abnormal Mitochondrial Function and Impaired Granulosa Cell Differentiation in Androgen Receptor Knockout Mice

    PubMed Central

    Wang, Ruey-Sheng; Chang, Heng-Yu; Kao, Shu-Huei; Kao, Cheng-Heng; Wu, Yi-Chen; Yeh, Shuyuan; Tzeng, Chii-Reuy; Chang, Chawnshang

    2015-01-01

    In the ovary, the paracrine interactions between the oocyte and surrounded granulosa cells are critical for optimal oocyte quality and embryonic development. Mice lacking the androgen receptor (AR−/−) were noted to have reduced fertility with abnormal ovarian function that might involve the promotion of preantral follicle growth and prevention of follicular atresia. However, the detailed mechanism of how AR in granulosa cells exerts its effects on oocyte quality is poorly understood. Comparing in vitro maturation rate of oocytes, we found oocytes collected from AR−/− mice have a significantly poor maturating rate with 60% reached metaphase II and 30% remained in germinal vesicle breakdown stage, whereas 95% of wild-type AR (AR+/+) oocytes had reached metaphase II. Interestingly, we found these AR−/− female mice also had an increased frequency of morphological alterations in the mitochondria of granulosa cells with reduced ATP generation (0.18 ± 0.02 vs. 0.29 ± 0.02 µM/mg protein; p < 0.05) and aberrant mitochondrial biogenesis. Mechanism dissection found loss of AR led to a significant decrease in the expression of peroxisome proliferator-activated receptor γ (PPARγ) co-activator 1-β (PGC1-β) and its sequential downstream genes, nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM), in controlling mitochondrial biogenesis. These results indicate that AR may contribute to maintain oocyte quality and fertility via controlling the signals of PGC1-β-mediated mitochondrial biogenesis in granulosa cells. PMID:25941928

  8. Dopamine-dependent CB1 receptor dysfunction at corticostriatal synapses in homozygous PINK1 knockout mice.

    PubMed

    Madeo, G; Schirinzi, T; Maltese, M; Martella, G; Rapino, C; Fezza, F; Mastrangelo, N; Bonsi, P; Maccarrone, M; Pisani, A

    2016-02-01

    Recessive mutations in the PTEN-induced putative kinase 1 (PINK1) gene cause early-onset Parkinson's disease (PD). We investigated the interaction between endocannabinoid (eCB) and dopaminergic transmission at corticostriatal synapses in PINK1 deficient mice. Whole-cell patch-clamp and conventional recordings of striatal medium spiny neurons (MSNs) were made from slices of PINK1(-/-), heterozygous PINK1(+/-) mice and wild-type littermates (PINK1(+/+)). In PINK1(+/+) mice, CB1 receptor (CB1R) activation reduced spontaneous excitatory postsynaptic currents (sEPSCs). Likewise, CB1R agonists (ACEA, WIN55,212-3 and HU210) induced a dose-dependent reduction of cortically-evoked excitatory postsynaptic potential (eEPSP) amplitude. While CB1R agonists retained their inhibitory effect in heterozygous PINK1(+/-) mice, conversely, in PINK1(-/-) mice they failed to modulate sEPSC amplitude. Similarly, CB1R activation failed to reduce eEPSP amplitude in PINK1(-/-) mice. Parallel biochemical measurements revealed no significant difference in the levels of the two main eCBs, 2-arachidonoylglycerol (2-AG) and anandamide (AEA) in PINK1(-/-) striata. Similarly, no change was observed in the enzymatic activity of both fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), responsible for eCB hydrolysis. Instead, a significant reduction of binding ability of CB1R agonists was found in PINK1(-/-) mice. Notably, the CB1R-dependent inhibition of synaptic activity was restored either by amphetamine or after chronic treatment with the D2 dopamine receptor agonist quinpirole. Additionally, CB1R binding activity returned to control levels after chronic pretreatment with quinpirole. Consistent with the hypothesis of a close interplay with dopaminergic neurotransmission, our findings show a CB1R dysfunction at corticostriatal synapses in PINK1(-/-), but not in PINK1(+/-) mice, and provide a mechanistic link to the distinct plasticity deficits observed in both genotypes. PMID

  9. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    SciTech Connect

    Li, Guodong; Kong, Bo; Zhu, Yan; Zhan, Le; Williams, Jessica A.; Tawfik, Ossama; Kassel, Karen M.; Luyendyk, James P.; Wang, Li; Guo, Grace L.

    2013-10-15

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR{sup −/−} and SHP{sup −/−} mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR{sup −/−} mice and therefore, increased SHP expression in FXR{sup −/−} mice reduces liver tumorigenesis. To test this hypothesis, we generated FXR{sup −/−} mice with overexpression of SHP in hepatocytes (FXR{sup −/−}/SHP{sup Tg}) and determined the contribution of SHP in HCC development in FXR{sup −/−} mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR{sup −/−} mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR{sup −/−} mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency.

  10. Antidepressant-like Effects of Buprenorphine are Mediated by Kappa Opioid Receptors.

    PubMed

    Falcon, Edgardo; Browne, Caroline A; Leon, Rosa M; Fleites, Vanessa C; Sweeney, Rachel; Kirby, Lynn G; Lucki, Irwin

    2016-08-01

    Previous studies have identified potential antidepressant effects of buprenorphine (BPN), a drug with high affinity for mu opioid receptor (MORs) and kappa opioid receptors (KORs) and some affinity at delta opioid receptor (DOR) and opioid receptor-like 1 (ORL-1) receptors. Therefore, these studies examined which opioid receptors were involved in BPN's effects on animal behavior tests sensitive to antidepressant drugs. The acute effects of BPN were tested in the forced swim test (FST) using mice with genetic deletion of individual opioid receptors or after pharmacological blockade of receptors. For evaluating the effects of BPN on chronic stress, separate groups of mice were exposed to unpredictable chronic mild stress (UCMS) for 3 weeks and treated with BPN for at least 7 days before behavioral assessment and subsequent measurement of Oprk1, Oprm1, and Pdyn mRNA expression in multiple brain regions. BPN did not reduce immobility in mice with KOR deletion or after pretreatment with norbinaltorphimine, even though desipramine remained effective. In contrast, BPN reduced immobility in MOR and DOR knockout mice and in mice pretreated with the ORL-1 antagonist JTC-801. UCMS reduced sucrose preference, decreased time in the light side of the light/dark box, increased immobility in the FST and induced region-specific alterations in Oprk1, Oprm1, and PDYN mRNA expression in the frontal cortex and striatum. All of these changes were normalized following BPN treatment. The KOR was identified as a key player mediating the effects of BPN in tests sensitive to antidepressant drugs in mice. These studies support further development of BPN as a novel antidepressant. PMID:26979295

  11. β-arrestin-2 regulates NMDA receptor function in spinal lamina II neurons and duration of persistent pain.

    PubMed

    Chen, Gang; Xie, Rou-Gang; Gao, Yong-Jing; Xu, Zhen-Zhong; Zhao, Lin-Xia; Bang, Sangsu; Berta, Temugin; Park, Chul-Kyu; Lay, Mark; Chen, Wei; Ji, Ru-Rong

    2016-01-01

    Mechanisms of acute pain transition to chronic pain are not fully understood. Here we demonstrate an active role of β-arrestin 2 (Arrb2) in regulating spinal cord NMDA receptor (NMDAR) function and the duration of pain. Intrathecal injection of the mu-opioid receptor agonist [D-Ala(2), NMe-Phe(4), Gly-ol(5)]-enkephalin produces paradoxical behavioural responses: early-phase analgesia and late-phase mechanical allodynia which requires NMDAR; both phases are prolonged in Arrb2 knockout (KO) mice. Spinal administration of NMDA induces GluN2B-dependent mechanical allodynia, which is prolonged in Arrb2-KO mice and conditional KO mice lacking Arrb2 in presynaptic terminals expressing Nav1.8. Loss of Arrb2 also results in prolongation of inflammatory pain and neuropathic pain and enhancement of GluN2B-mediated NMDA currents in spinal lamina IIo not lamina I neurons. Finally, spinal over-expression of Arrb2 reverses chronic neuropathic pain after nerve injury. Thus, spinal Arrb2 may serve as an intracellular gate for acute to chronic pain transition via desensitization of NMDAR. PMID:27538456

  12. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice

    SciTech Connect

    Harrill, Joshua A.; Hukkanen, Renee R.; Lawson, Marie; Martin, Greg; Gilger, Brian; Soldatow, Valerie; LeCluyse, Edward L.; Budinsky, Robert A.; Rowlands, J. Craig; Thomas, Russell S.

    2013-10-15

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expression of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in vascular

  13. Sigma 1 receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding.

    PubMed

    Kim, Felix J; Kovalyshyn, Ivanka; Burgman, Maxim; Neilan, Claire; Chien, Chih-Cheng; Pasternak, Gavril W

    2010-04-01

    sigma Ligands modulate opioid actions in vivo, with agonists diminishing morphine analgesia and antagonists enhancing the response. Using human BE(2)-C neuroblastoma cells that natively express opioid receptors and human embryonic kidney (HEK) cells transfected with a cloned mu opioid receptor, we now demonstrate a similar modulation of opioid function, as assessed by guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTP gamma S) binding, by sigma(1) receptors. sigma Ligands do not compete opioid receptor binding. Administered alone, neither sigma agonists nor antagonists significantly stimulated [(35)S]GTP gamma S binding. Yet sigma receptor selective antagonists, but not agonists, shifted the EC(50) of opioid-induced stimulation of [(35)S]GTP gamma S binding by 3- to 10-fold to the left. This enhanced potency was seen without a change in the efficacy of the opioid, as assessed by the maximal stimulation of [(35)S]GTP gamma S binding. sigma(1) Receptors physically associate with mu opioid receptors, as shown by coimmunoprecipitation studies in transfected HEK cells, implying a direct interaction between the proteins. Thus, sigma receptors modulate opioid transduction without influencing opioid receptor binding. RNA interference knockdown of sigma(1) in BE(2)-C cells also potentiated mu opioid-induced stimulation of [(35)S]GTP gamma S binding. These modulatory actions are not limited to mu and delta opioid receptors. In mouse brain membrane preparations, sigma(1)-selective antagonists also potentiated both opioid receptor and muscarinic acetylcholine receptor-mediated stimulation of [(35)S]GTP gamma S binding, suggesting a broader role for sigma receptors in modulating G-protein-coupled receptor signaling. PMID:20089882

  14. Development of schemas revealed by prior experience and NMDA receptor knock-out

    PubMed Central

    Dragoi, George; Tonegawa, Susumu

    2013-01-01

    Prior experience accelerates acquisition of novel, related information through processes like assimilation into mental schemas, but the underlying neuronal mechanisms are poorly understood. We investigated the roles that prior experience and hippocampal CA3 N-Methyl-D-aspartate receptor (NMDAR)-dependent synaptic plasticity play in CA1 place cell sequence encoding and learning during novel spatial experiences. We found that specific representations of de novo experiences on linear environments were formed on a framework of pre configured network activity expressed in the preceding sleep and were rapidly, flexibly adjusted via NMDAR-dependent activity. This prior experience accelerated encoding of subsequent experiences on contiguous or isolated novel tracks, significantly decreasing their NMDAR-dependence. Similarly, de novo learning of an alternation task was facilitated by CA3 NMDARs; this experience accelerated subsequent learning of related tasks, independent of CA3 NMDARs, consistent with a schema-based learning. These results reveal the existence of distinct neuronal encoding schemes which could explain why hippocampal dysfunction results in anterograde amnesia while sparing recollection of old, schema-based memories. DOI: http://dx.doi.org/10.7554/eLife.01326.001 PMID:24327561

  15. Altered enteroendocrine cell expression in T cell receptor alpha chain knock-out mice.

    PubMed

    Rubin, D C; Zhang, H; Qian, P; Lorenz, R G; Hutton, K; Peters, M G

    2000-10-15

    Mice lacking T cell receptor alpha chain (TCRalpha(-/-)) develop inflammation of the colon. We have examined the effect of this inflammation on the colonic epithelium by studying markers of epithelial cuff, enteroendocrine, and immune cell differentiation. Using immunohistochemical techniques, colons were compared in normal C57/BL6 and murine TCR alpha(-/-) mice aged 2 and 3 weeks and 3-11 months. TCR alpha(-/-) mice aged 3-11 months had histologic evidence of inflammation with increased expression of CD45, CD4+, CD8+, and B220+ cells and a decrease in expression of IgA+ cells. There was a decrease in the number of cholecystokinin, serotonin, and neurotensin enteroendocrine expressing cells in the colon of TCR alpha(-/-) mice. These changes were not present in 2-3-week-old suckling/weaning mice. In contrast, peptide tyrosine tyrosine (PYY), glucagon-like peptide-1, and gastrin expression did not change and small intestinal enteroendocrine cells remained unaltered. The change in colonic enteroendocrine cell expression appears to be a specific response, since only a subset of these cells was altered, and the epithelium was intact by histologic analysis. The absence of functional T cells in TCR alpha(-/-) colon has a marked effect on differentiation of a specific subpopulation of enteroendocrine cells, prior to loss of integrity of the epithelium. PMID:11054861

  16. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice.

    PubMed

    Harrill, Joshua A; Hukkanen, Renee R; Lawson, Marie; Martin, Greg; Gilger, Brian; Soldatow, Valerie; Lecluyse, Edward L; Budinsky, Robert A; Rowlands, J Craig; Thomas, Russell S

    2013-10-15

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague-Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expression of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ~30-45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. PMID:23859880

  17. Knockout of NMDA-receptors from parvalbumin interneurons sensitizes to schizophrenia-related deficits induced by MK-801.

    PubMed

    Bygrave, A M; Masiulis, S; Nicholson, E; Berkemann, M; Barkus, C; Sprengel, R; Harrison, P J; Kullmann, D M; Bannerman, D M; Kätzel, D

    2016-01-01

    It has been suggested that a functional deficit in NMDA-receptors (NMDARs) on parvalbumin (PV)-positive interneurons (PV-NMDARs) is central to the pathophysiology of schizophrenia. Supportive evidence come from examination of genetically modified mice where the obligatory NMDAR-subunit GluN1 (also known as NR1) has been deleted from PV interneurons by Cre-mediated knockout of the corresponding gene Grin1 (Grin1(ΔPV) mice). Notably, such PV-specific GluN1 ablation has been reported to blunt the induction of hyperlocomotion (a surrogate for psychosis) by pharmacological NMDAR blockade with the non-competitive antagonist MK-801. This suggests PV-NMDARs as the site of the psychosis-inducing action of MK-801. In contrast to this hypothesis, we show here that Grin1(ΔPV) mice are not protected against the effects of MK-801, but are in fact sensitized to many of them. Compared with control animals, Grin1(ΔPV)mice injected with MK-801 show increased stereotypy and pronounced catalepsy, which confound the locomotor readout. Furthermore, in Grin1(ΔPV)mice, MK-801 induced medial-prefrontal delta (4 Hz) oscillations, and impaired performance on tests of motor coordination, working memory and sucrose preference, even at lower doses than in wild-type controls. We also found that untreated Grin1(ΔPV)mice are largely normal across a wide range of cognitive functions, including attention, cognitive flexibility and various forms of short-term memory. Taken together these results argue against PV-specific NMDAR hypofunction as a key starting point of schizophrenia pathophysiology, but support a model where NMDAR hypofunction in multiple cell types contribute to the disease. PMID:27070406

  18. Knockout of NMDA-receptors from parvalbumin interneurons sensitizes to schizophrenia-related deficits induced by MK-801

    PubMed Central

    Bygrave, A M; Masiulis, S; Nicholson, E; Berkemann, M; Barkus, C; Sprengel, R; Harrison, P J; Kullmann, D M; Bannerman, D M; Kätzel, D

    2016-01-01

    It has been suggested that a functional deficit in NMDA-receptors (NMDARs) on parvalbumin (PV)-positive interneurons (PV-NMDARs) is central to the pathophysiology of schizophrenia. Supportive evidence come from examination of genetically modified mice where the obligatory NMDAR-subunit GluN1 (also known as NR1) has been deleted from PV interneurons by Cre-mediated knockout of the corresponding gene Grin1 (Grin1ΔPV mice). Notably, such PV-specific GluN1 ablation has been reported to blunt the induction of hyperlocomotion (a surrogate for psychosis) by pharmacological NMDAR blockade with the non-competitive antagonist MK-801. This suggests PV-NMDARs as the site of the psychosis-inducing action of MK-801. In contrast to this hypothesis, we show here that Grin1ΔPV mice are not protected against the effects of MK-801, but are in fact sensitized to many of them. Compared with control animals, Grin1ΔPVmice injected with MK-801 show increased stereotypy and pronounced catalepsy, which confound the locomotor readout. Furthermore, in Grin1ΔPVmice, MK-801 induced medial-prefrontal delta (4 Hz) oscillations, and impaired performance on tests of motor coordination, working memory and sucrose preference, even at lower doses than in wild-type controls. We also found that untreated Grin1ΔPVmice are largely normal across a wide range of cognitive functions, including attention, cognitive flexibility and various forms of short-term memory. Taken together these results argue against PV-specific NMDAR hypofunction as a key starting point of schizophrenia pathophysiology, but support a model where NMDAR hypofunction in multiple cell types contribute to the disease. PMID:27070406

  19. Receptor-selective IL-4 mutein modulates inflammatory vascular cell phenotypes and attenuates atherogenesis in apolipoprotein E-knockout mice.

    PubMed

    Lin, Yanhui; Chen, Zhiheng; Kato, Seiya

    2015-08-01

    The therapeutic potential of interleukin-4-mediated immunomodulation has not been proven in atherogenesis. Type I IL-4 receptor consists of IL-4Rα and a common γ chain, whereas type II IL-4R is a heterodimer of IL-4Rα and IL-13Rα1. Reportedly, the human IL-4 mutein IL-4/R121E is able to act as an IL-4RI-specific agonist. Here, we investigated the effect of receptor-specific IL-4 mutein on vascular cell phenotypes and atherogenesis. Initially, a plasmid expressing murine IL-4/Q116E, analogous to human IL-4/R121E, was transfected to vascular lineage cells in-vitro. IL-4/Q116E induced the activation of STAT6 in b.End3 endothelial cells, Mm1 macrophages, and splenocytes isolated from C57BL6/J (B6) mice, but it failed to activate STAT6 in SMC and J774.1 macrophages. IL-4/Q116E induced the expression of vascular cell adhesion protein-1 in b.End3 cells but not in SMC. IL-4/Q116E did not exhibit pro-inflammatory actions in either macrophage cell line. Splenocytes were also infected with an adenovirus vector expressing IL-4/Q116E (AdIL-4/Q116E). Enzyme-linked immunosorbent assay for interferon-γ, IL-10 and IL-13 revealed that AdIL-4/Q116E-infected splenocytes showed Th2 deviation. Th2 deviation and M2 marker up-regulation were further revealed in ex-vivo assays using the splenocytes isolated from AdIL-4/Q116E-infected apolipoprotein-E knockout (ApoEKO) mice. Finally, adenoviral induction of IL-4/Q116E, but not wild type IL-4, double mutein IL-4/Q116D/Y119D or control β-galactosidase, significantly attenuated in-vivo atherogenesis of ApoEKO mice. Our data suggest that IL-4 signaling plays a pivotal role in the regulation of vascular cell phenotypes, and atherogenesis. The IL-4RI-selective mutein IL-4/Q116E may have therapeutic potential in vascular diseases. PMID:26093164

  20. Toll-like receptor 4 knockout ameliorates neuroinflammation due to lung-brain interaction in mechanically ventilated mice.

    PubMed

    Chen, Ting; Chen, Chang; Zhang, Zongze; Zou, Yufeng; Peng, Mian; Wang, Yanlin

    2016-08-01

    Toll-like receptor 4 (TLR4) is a crucial receptor in the innate immune system, and increasing evidence supports its role in inflammation, stress, and tissue injury, including injury to the lung and brain. We aimed to investigate the effects of TLR4 on neuroinflammation due to the lung-brain interaction in mechanically ventilated mice. Male wild-type (WT) C57BL/6 and TLR4 knockout (TLR4 KO) mice were divided into three groups: (1) control group (C): spontaneous breathing; (2) anesthesia group (A): spontaneous breathing under anesthesia; and (3) mechanical ventilation group (MV): 6h of MV under anesthesia. The behavioral responses of mice were tested with fear conditioning tests. The histological changes in the lung and brain were assessed using hematoxylin-eosin (HE) staining. The level of TLR4 mRNA in tissue was measured using reverse transcription-polymerase chain reaction (RT-PCR). The levels of inflammatory cytokines were measured with an enzyme-linked immunosorbent assay (ELISA). Microgliosis, astrocytosis, and the TLR4 immunoreactivity in the hippocampus were measured by double immunofluorescence. MV mice exhibited impaired cognition, and this impairment was less severe in TLR4 KO mice than in WT mice. In WT mice, MV increased TLR4 mRNA expression in the lung and brain. MV induced mild lung injury, which was prevented in TLR4 KO mice. MV mice exhibited increased levels of inflammatory cytokines, increased microglia and astrocyte activation. Microgliosis was alleviated in TLR4 KO mice. MV mice exhibited increased TLR4 immunoreactivity, which was expressed in microglia and astrocytes. These results demonstrate that TLR4 is involved in neuroinflammation due to the lung-brain interaction and that TLR4 KO ameliorates neuroinflammation due to lung-brain interaction after prolonged MV. In addition, Administration of a TLR4 antagonist (100μg/mice) to WT mice also significantly attenuated neuroinflammation of lung-brain interaction due to prolonged MV. TLR4 antagonism

  1. Estrogen receptor transcription and transactivation: Estrogen receptor knockout mice: what their phenotypes reveal about mechanisms of estrogen action.

    PubMed

    Curtis Hewitt, S; Couse, J F; Korach, K S

    2000-01-01

    Natural, synthetic and environmental estrogens have numerous effects on the development and physiology of mammals. Estrogen is primarily known for its role in the development and functioning of the female reproductive system. However, roles for estrogen in male fertility, bone, the circulatory system and immune system have been established by clinical observations regarding sex differences in pathologies, as well as observations following menopause or castration. The primary mechanism of estrogen action is via binding and modulation of activity of the estrogen receptors (ERs), which are ligand-dependent nuclear transcription factors. ERs are found in highest levels in female tissues critical to reproduction, including the ovaries, uterus, cervix, mammary glands and pituitary gland. Since other affected tissues have extremely low levels of ER, indirect effects of estrogen, for example induction of pituitary hormones that affect the bone, have been proposed. The development of transgenic mouse models that lack either estrogen or ER have proven to be valuable tools in defining the mechanisms by which estrogen exerts its effects in various systems. The aim of this article is to review the mouse models with disrupted estrogen signaling and describe the associated phenotypes. PMID:11250727

  2. Attenuated Stress Response to Acute Restraint and Forced Swimming Stress in Arginine Vasopressin 1b Receptor Subtype (Avpr1b) Receptor Knockout Mice and Wild-Type Mice Treated with a Novel Avpr1b Receptor Antagonist

    PubMed Central

    Roper, J A; Craighead, M; O’Carroll, A-M; Lolait, S J

    2010-01-01

    Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors. PMID:20846299

  3. Modification of female and male social behaviors in estrogen receptor beta knockout mice by neonatal maternal separation

    PubMed Central

    Tsuda, Mumeko C.; Yamaguchi, Naoko; Nakata, Mariko; Ogawa, Sonoko

    2014-01-01

    Maternal separation (MS) is an animal model mimicking the effects of early life stress on the development of emotional and social behaviors. Recent studies revealed that MS stress increased social anxiety levels in female mice and reduced peri-pubertal aggression in male mice. Estrogen receptor (ER) β plays a pivotal role in the regulation of stress responses and anxiety-related and social behaviors. Behavioral studies using ERβ knockout (βERKO) mice reported increased social investigation and decreased social anxiety in βERKO females, and elevated aggression levels in βERKO males compared to wild-type (WT) mice. In the present study, using βERKO and WT mice, we examined whether ERβ contributes to MS effects on anxiety and social behaviors. βERKO and WT mice were separated from their dam daily (4 h) from postnatal day 1–14 and control groups were left undisturbed. First, MS and ERβ gene deletion individually increased anxiety-related behaviors in the open field test, but only in female mice. Anxiety levels were not further modified in βERKO female mice subjected to MS stress. Second, βERKO female mice showed higher levels of social investigation compared with WT in the social investigation test and long-term social preference test. However, MS greatly reduced social investigation duration and elevated number of stretched approaches in WT and βERKO females in the social investigation test, suggesting elevated levels of social anxiety in both genotypes. Third, peri-pubertal and adult βERKO male mice were more aggressive than WT mice as indicated by heightened aggression duration. On the other hand, MS significantly decreased aggression duration in both genotypes, but only in peri-pubertal male mice. Altogether, these results suggest that βERKO mice are sensitive to the adverse effects of MS stress on subsequent female and male social behaviors, which could then have overrode the ERβ effects on female social anxiety and male aggression. PMID:25228857

  4. Knockout of Toll-Like Receptors 2 and 4 Prevents Renal Ischemia-Reperfusion-Induced Cardiac Hypertrophy in Mice

    PubMed Central

    Trentin-Sonoda, Mayra; da Silva, Rogério Cirino; Kmit, Fernanda Vieira; Abrahão, Mariana Vieira; Monnerat Cahli, Gustavo; Brasil, Guilherme Visconde; Muzi-Filho, Humberto; Silva, Paulo André; Tovar-Moll, Fernanda Freire; Vieyra, Adalberto; Medei, Emiliano; Carneiro-Ramos, Marcela Sorelli

    2015-01-01

    We investigated whether the pathways linked to Toll-like receptors 2 and 4 (TLRs) are involved in renal ischemia-reperfusion (I/R)-induced cardiac hypertrophy. Wild type (WT) C57BL/6J, TLR2-/- and TLR4-/- mice were subjected to left kidney ischemia for 60 min followed by reperfusion for 5, 8, 12 and 15 days. Proton density magnetic resonance showed alterations in the injured kidney from WT mice, together with signs of parenchymal edema and higher levels of vimentin mRNA, accompanied by: (i) small, but significant, increase in serum urea after 24 h, (ii) 100% increase in serum creatinine at 24 h. A serum peak of inflammatory cytokines occurred after 5 days of reperfusion. Heart weight/body weight and heart weight/tibia length ratios increased after 12 and 15 days of reperfusion, respectively. Cardiac hypertrophy markers, B-type natriuretic peptide (BNP) and α-actin, left ventricle mass, cardiac wall thickness and myocyte width increased after 15 days of reperfusion, together with longer QTc and action potential duration. Cardiac TLRs, MyD88, HSP60 and HSP70 mRNA levels also increased. After 15 days of reperfusion, absence of TLRs prevented cardiac hypertrophy, as reflected by similar values of left ventricular cardiac mass and heart weight/body weight ratio compared to the transgenic Sham. Renal tissular injury also ameliorated in both knockout mice, as revealed by the comparison of their vimentin mRNA levels with those found in the WT on the same day after I/R. The I/R TLR2-/- group had TNF-α, IFN-γ and IL-1β levels similar to the non-I/R group, whereas the TLR4-/- group conserved the p-NF-κB/NF- κB ratio contrasting with that found in TLR2-/-. We conclude: (i) TLRs are involved in renal I/R-induced cardiac hypertrophy; (ii) absence of TLRs prevents I/R-induced cardiac hypertrophy, despite renal lesions seeming to evolve towards those of chronic disease; (iii) TLR2 and TLR4 selectively regulate the systemic inflammatory profile and NF- κB activation. PMID

  5. Characterization of kappa opioid receptor mediated, dynorphin-stimulated [35S]GTPγS binding in mouse striatum for the evaluation of selective KOR ligands in an endogenous setting.

    PubMed

    Zhou, Lei; Stahl, Edward L; Lovell, Kimberly M; Frankowski, Kevin J; Prisinzano, Thomas E; Aubé, Jeffrey; Bohn, Laura M

    2015-12-01

    Differential modulation of kappa opioid receptor (KOR) signaling has been a proposed strategy for developing therapies for drug addiction and depression by either activating or blocking this receptor. Hence, there have been significant efforts to generate ligands with diverse pharmacological properties including partial agonists, antagonists, allosteric modulators as well as ligands that selectively activate some pathways while not engaging others (biased agonists). It is becoming increasingly evident that G protein coupled receptor signaling events are context dependent and that what may occur in cell based assays may not be fully indicative of signaling events that occur in the naturally occurring environment. As new ligands are developed, it is important to assess their signaling capacity in relevant endogenous systems in comparison to the performance of endogenous agonists. Since KOR is considered the cognate receptor for dynorphin peptides we have evaluated the selectivity profiles of dynorphin peptides in wild-type (WT), KOR knockout (KOR-KO), and mu opioid receptor knockout (MOR-KO) mice using [35S]GTPγS binding assay in striatal membrane preparations. We find that while the small molecule KOR agonist U69,593, is very selective for KOR, dynorphin peptides promiscuously stimulate G protein signaling in striatum. Furthermore, our studies demonstrate that norBNI and 5'GNTI are highly nonselective antagonists as they maintain full potency and efficacy against dynorphin signaling in the absence of KOR. Characterization of a new KOR antagonist, which may be more selective than NorBNI and 5'GNTI, is presented using this approach. PMID:26160155

  6. Differential action of methamphetamine on tyrosine hydroxylase and dopamine transport in the nigrostriatal pathway of μ-opioid receptor knockout mice.

    PubMed

    Park, Sang Won; He, Zhi; Shen, Xine; Roman, Richard J; Ma, Tangeng

    2012-06-01

    Extensive anatomical and functional interactions exist between central dopaminergic and opioidergic systems and both systems are proposed to be targets for amphetamine-like drugs. We have previously reported that μ-opioid receptor (μ-OR) knockout mice are resistant to the loss of dopamine in the striatum and the development of behavioral sensitization induced by repeated methamphetamine (METH) treatment. The present study assessed whether METH-treated μ-OR knockout mice exhibit a differential response of the expression of dopamine transporter and tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine synthesis and maintaining dopamine levels. Mice daily received intraperitoneal injection of METH (0, 0.6, 2.5, or 10 mg/kg) for 7 days and sacrificed on day 11 (4 days after the last injection). The expression of TH protein in the striatum and the levels of TH mRNA and number of TH positive neurons in the substantia nigra were reduced in wild-type mice treated with METH (2.5 and 10 mg/kg), but not in the μ-OR knockout mice. In contrast, METH exposure at the highest dose (10 mg/kg) reduced dopamine transporter levels in both strains of mice. These results suggest that the μ-OR contributes to METH-induced loss of dopamine and behavioral sensitization by decreasing the expression of TH. PMID:22329540

  7. GABA(A) receptor subunit alteration-dependent diazepam insensitivity in the cerebellum of phospholipase C-related inactive protein knockout mice.

    PubMed

    Mizokami, Akiko; Tanaka, Hiroto; Ishibashi, Hitoshi; Umebayashi, Hisanori; Fukami, Kiyoko; Takenawa, Tadaomi; Nakayama, Keiichi I; Yokoyama, Takeshi; Nabekura, Junichi; Kanematsu, Takashi; Hirata, Masato

    2010-07-01

    The GABA(A) receptor, a pentamer composed predominantly of alpha, beta, and gamma subunits, mediates fast inhibitory synaptic transmission. We have previously reported that phospholipase C-related inactive protein (PRIP) is a modulator of GABA(A) receptor trafficking and that knockout (KO) mice exhibit a diazepam-insensitive phenotype in the hippocampus. The alpha subunit affects diazepam sensitivity; alpha1, 2, 3, and 5 subunits assemble with any form of beta and the gamma2 subunits to produce diazepam-sensitive receptors, whereas alpha4 or alpha6/beta/gamma2 receptors are diazepam-insensitive. Here, we investigated how PRIP is implicated in the diazepam-insensitive phenotype using cerebellar granule cells in animals expressing predominantly the alpha6 subunit. The expression of alpha1/beta/gamma2 diazepam-sensitive receptors was decreased in the PRIP-1 and 2 double KO cerebellum without any change in the total number of benzodiazepine-binding sites as assessed by radioligand-binding assay. Since levels of the alpha6 subunit were increased, the alpha1/beta/gamma2 receptors might be replaced with alpha6 subunit-containing receptors. Then, we further performed autoradiographic and electrophysiologic analyses. These results suggest that the expression of alpha6/delta receptors was decreased in cerebellar granule neurons, while that of alpha6/gamma2 receptors was increased. PRIP-1 and 2 double KO mice exhibit a diazepam-insensitive phenotype because of a decrease in diazepam-sensitive (alpha1/gamma2) and increase in diazepam-insensitive (alpha6/gamma2) GABA(A) receptors in the cerebellar granule cells. PMID:20412381

  8. Conditional knockout of the leptin receptor in the colonic epithelium revealed the local effects of leptin receptor signaling in the progression of colonic tumors in mice.

    PubMed

    Higurashi, Takuma; Endo, Hiroki; Uchiyama, Takashi; Uchiyama, Shiori; Yamada, Eiji; Ohkubo, Hidenori; Sakai, Eiji; Takahashi, Hirokazu; Maeda, Shin; Wada, Koichiro; Natsumeda, Yutaka; Hippo, Yoshitaka; Nakajima, Atsushi; Nakagama, Hitoshi

    2014-09-01

    Leptin, secreted by the adipose tissue and known to be related to obesity, is considered to be involved in the onset and progression of colorectal cancer. However, the exact role of leptin in colorectal carcinogenesis is still unclear, as several controversial reports have been published on the various systemic effects of leptin. The aim of this study was to clarify the local and precise roles of leptin receptor (LEPR)-mediated signaling in colonic carcinogenesis using intestinal epithelium-specific LEPRb conditional knockout (cKO) mice. We produced and used colonic epithelium-specific LEPRb cKO mice to investigate the carcinogen-induced formation of aberrant crypt foci (ACF) and tumors in the colon, using their littermates as control. There were no differences in the body weight or systemic condition between the control and cKO mice. The tumor sizes and number of large-sized tumors were significantly lower in the cKO mice as compared with those in the control mice. On the other hand, there was no significant difference in the proliferative activity of the normal colonic epithelial cells or ACF formation between the control and cKO mice. In the control mice, marked increase of the LEPRb expression level was observed in the colonic tumors as compared with that in the normal epithelium; furthermore, signal transducer and activator of transcription (STAT3) was activated in the tumor cells. These findings suggest that STAT3 is one of the important molecules downstream of LEPRb, and LEPRb/STAT3 signaling controls tumor cell proliferation. We demonstrated the importance of local/regional LEPR-mediated signaling in colorectal carcinogenesis. PMID:24958593

  9. Morphine drives internal ribosome entry site-mediated hnRNP K translation in neurons through opioid receptor-dependent signaling

    PubMed Central

    Lee, Pin-Tse; Chao, Po-Kuan; Ou, Li-Chin; Chuang, Jian-Ying; Lin, Yen-Chang; Chen, Shu-Chun; Chang, Hsiao-Fu; Law, Ping-Yee; Loh, Horace H.; Chao, Yu-Sheng; Su, Tsung-Ping; Yeh, Shiu-Hwa

    2014-01-01

    Heterogeneous nuclear ribonucleoprotein K (hnRNP K) binds to the promoter region of mu-opioid receptor (MOR) to regulate its transcriptional activity. How hnRNP K contributes to the analgesic effects of morphine, however, is largely unknown. We provide evidence that morphine increases hnRNP K protein expression via MOR activation in rat primary cortical neurons and HEK-293 cells expressing MORs, without increasing mRNA levels. Using the bicistronic reporter assay, we examined whether morphine-mediated accumulation of hnRNP K resulted from translational control. We identified potential internal ribosome entry site elements located in the 5′ untranslated regions of hnRNP K transcripts that were regulated by morphine. This finding suggests that internal translation contributes to the morphine-induced accumulation of hnRNP K protein in regions of the central nervous system correlated with nociceptive and antinociceptive modulatory systems in mice. Finally, we found that down-regulation of hnRNP K mediated by siRNA attenuated morphine-induced hyperpolarization of membrane potential in AtT20 cells. Silencing hnRNP K expression in the spinal cord increased nociceptive sensitivity in wild-type mice, but not in MOR-knockout mice. Thus, our findings identify the role of translational control of hnRNP K in morphine-induced analgesia through activation of MOR. PMID:25361975

  10. Role of histamine H1-receptor on behavioral states and wake maintenance during deficiency of a brain activating system: A study using a knockout mouse model.

    PubMed

    Parmentier, Régis; Zhao, Yan; Perier, Magali; Akaoka, Hideo; Lintunen, Minnamaija; Hou, Yiping; Panula, Pertti; Watanabe, Takeshi; Franco, Patricia; Lin, Jian-Sheng

    2016-07-01

    Using knockout (KO) mice lacking the histamine (HA)-synthesizing enzyme (histidine decarboxylase, HDC), we have previously shown the importance of histaminergic neurons in maintaining wakefulness (W) under behavioral challenges. Since the central actions of HA are mediated by several receptor subtypes, it remains to be determined which one(s) could be responsible for such a role. We have therefore compared the cortical-EEG, sleep and W under baseline conditions or behavioral/pharmacological stimuli in littermate wild-type (WT) and H1-receptor KO (H1-/-) mice. We found that H1-/- mice shared several characteristics with HDC KO mice, i.e. 1) a decrease in W after lights-off despite its normal baseline daily amount; 2) a decreased EEG slow wave sleep (SWS)/W power ratio; 3) inability to maintain W in response to behavioral challenges demonstrated by a decreased sleep latency when facing various stimuli. These effects were mediated by central H1-receptors. Indeed, in WT mice, injection of triprolidine, a brain-penetrating H1-receptor antagonist increased SWS, whereas ciproxifan (H3-receptor antagonist/inverse agonist) elicited W; all these injections had no effect in H1-/- mice. Finally, H1-/- mice showed markedly greater changes in EEG power (notably in the 0.8-5 Hz band) and sleep-wake cycle than in WT mice after application of a cholinergic antagonist or an indirect agonist, i.e., scopolamine or physostigmine. Hence, the role of HA in wake-promotion is largely ensured by H1-receptors. An upregulated cholinergic system may account for a quasi-normal daily amount of W in HDC or H1-receptor KO mice and likely constitutes a major compensatory mechanism when the brain is facing deficiency of an activating system. This article is part of the Special Issue entitled 'Histamine Receptors'. PMID:26723880

  11. Knockout of the BK β4-subunit promotes a functional coupling of BK channels and ryanodine receptors that mediate a fAHP-induced increase in excitability.

    PubMed

    Wang, Bin; Bugay, Vladislav; Ling, Ling; Chuang, Hui-Hsui; Jaffe, David B; Brenner, Robert

    2016-08-01

    BK channels are large-conductance calcium- and voltage-activated potassium channels with diverse properties. Knockout of the accessory BK β4-subunit in hippocampus dentate gyrus granule neurons causes BK channels to change properties from slow-gated type II channels to fast-gated type I channels that sharpen the action potential, increase the fast afterhyperpolarization (fAHP) amplitude, and increase spike frequency. Here we studied the calcium channels that contribute to fast-gated BK channel activation and increased excitability of β4 knockout neurons. By using pharmacological blockers during current-clamp recording, we find that BK channel activation during the fAHP is dependent on ryanodine receptor activation. In contrast, L-type calcium channel blocker (nifedipine) affects the BK channel-dependent repolarization phase of the action potential but has no effect on the fAHP. Reducing BK channel activation during the repolarization phase with nifedipine, or during the fAHP with ryanodine, indicated that it is the BK-mediated increase of the fAHP that confers proexcitatory effects. The proexcitatory role of the fAHP was corroborated using dynamic current clamp. Increase or decrease of the fAHP amplitude during spiking revealed an inverse relationship between fAHP amplitude and interspike interval. Finally, we show that the seizure-prone ryanodine receptor gain-of-function (R2474S) knockin mice have an unaltered repolarization phase but larger fAHP and increased AP frequency compared with their control littermates. In summary, these results indicate that an important role of the β4-subunit is to reduce ryanodine receptor-BK channel functional coupling during the fAHP component of the action potential, thereby decreasing excitability of dentate gyrus neurons. PMID:27146987

  12. Enkephalin levels and the number of neuropeptide Y-containing interneurons in the hippocampus are decreased in female cannabinoid-receptor 1 knock-out mice.

    PubMed

    Rogers, Sophie A; Kempen, Tracey A Van; Pickel, Virginia M; Milner, Teresa A

    2016-05-01

    Drug addiction requires learning and memory processes that are facilitated by activation of cannabinoid-1 (CB1) and opioid receptors in the hippocampus. This involves activity-dependent synaptic plasticity that is partially regulated by endogenous opioid (enkephalin and dynorphin) and non-opioid peptides, specifically cholecystokinin, parvalbumin and neuropeptide Y, the neuropeptides present in inhibitory interneurons that co-express CB1 or selective opioid receptors. We tested the hypothesis that CB1 receptor expression is a determinant of the availability of one or more of these peptide modulators in the hippocampus. This was achieved by quantitatively analyzing the immunoperoxidase labeling for each of these neuropeptide in the dorsal hippocampus of female wild-type (CB1+/+) and cannabinoid receptor 1 knockout (CB1-/-) C57/BL6 mice. The levels of Leu(5)-enkephalin-immunoreactivity were significantly reduced in the hilus of the dentate gyrus and in stratum lucidum of CA3 in CB1-/- mice. Moreover, the numbers of neuropeptide Y-immunoreactive interneurons in the dentate hilus were significantly lower in the CB1-/- compared to wild-type mice. However, CB1+/+ and CB1-/- mice did not significantly differ in expression levels of either dynorphin or cholecystokinin, and showed no differences in numbers of parvalbumin-containing interneurons. These findings suggest that the cannabinoid and opioid systems have a nuanced, regulatory relationship that could affect the balance of excitation and inhibition in the hippocampus and thus processes such as learning that rely on this balance. PMID:27012427

  13. Effect of AVE 0991 angiotensin-(1-7) receptor agonist treatment on elemental and biomolecular content and distribution in atherosclerotic plaques of apoE-knockout mice

    NASA Astrophysics Data System (ADS)

    Kowalska, J.; Gajda, M.; Jawień, J.; Kwiatek, W. M.; Appel, K.; Dumas, P.

    2013-12-01

    Gene-targeted apolipoprotein E-knockout (apoE-KO) mice display early and highly progressive vascular lesions containing lipid deposits and they became a reliable animal model to study atherosclerosis. The aim of the present study was to investigate the effect of AVE 0991 angiotensin-(1-7) receptor agonist on the distribution of selected pro- and anti- inflammatory elements as well as biomolecules in atherosclerotic plaques of apoE-knockout mice. Synchrotron radiation-based X-ray fluorescence (micro-XRF) and Fourier Transform Infrared (micro-FTIR) microspectroscopies were applied. Two-month-old apoE-KO mice were fed for following four months diet supplemented with AVE 0991 (0.58 μmol/kg b.w. per day). Histological sections of ascending aortas were analyzed spectroscopically. The distribution of P, Ca, Fe and Zn were found to correspond with histological structure of the lesion. Significantly lower contents of P, Ca, Zn and significantly higher content of Fe were observed in animals treated with AVE 0991. Biomolecular analysis showed lower lipids saturation level and lower lipid to protein ratio in AVE 0991 treated group. Protein secondary structure was studied according to the composition of amide I band (1660 cm-1) and it demonstrated higher proportion of β-sheet structure as compared to α-helix in both studied groups.

  14. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets.

    PubMed

    Awata, Hiroko; Watanabe, Takahito; Hamanaka, Yoshitaka; Mito, Taro; Noji, Sumihare; Mizunami, Makoto

    2015-01-01

    Elucidation of reinforcement mechanisms in associative learning is an important subject in neuroscience. In mammals, dopamine neurons are thought to play critical roles in mediating both appetitive and aversive reinforcement. Our pharmacological studies suggested that octopamine and dopamine neurons mediate reward and punishment, respectively, in crickets, but recent studies in fruit-flies concluded that dopamine neurons mediates both reward and punishment, via the type 1 dopamine receptor Dop1. To resolve the discrepancy between studies in different insect species, we produced Dop1 knockout crickets using the CRISPR/Cas9 system and found that they are defective in aversive learning with sodium chloride punishment but not appetitive learning with water or sucrose reward. The results suggest that dopamine and octopamine neurons mediate aversive and appetitive reinforcement, respectively, in crickets. We suggest unexpected diversity in neurotransmitters mediating appetitive reinforcement between crickets and fruit-flies, although the neurotransmitter mediating aversive reinforcement is conserved. This study demonstrates usefulness of the CRISPR/Cas9 system for producing knockout animals for the study of learning and memory. PMID:26521965

  15. Secretin receptor-knockout mice are resistant to high-fat diet-induced obesity and exhibit impaired intestinal lipid absorption.

    PubMed

    Sekar, Revathi; Chow, Billy K C

    2014-08-01

    Secretin, a classical gastrointestinal hormone released from S cells in response to acid and dietary lipid, regulates pleiotropic physiological functions, such as exocrine pancreatic secretion and gastric motility. Subsequent to recently proposed revisit on secretin's metabolic effects, we have confirmed lipolytic actions of secretin during starvation and discovered a hormone-sensitive lipase-mediated mechanistic pathway behind. In this study, a 12 wk high-fat diet (HFD) feeding to secretin receptor-knockout (SCTR(-/-)) mice and their wild-type (SCTR(+/+)) littermates revealed that, despite similar food intake, SCTR(-/-) mice gained significantly less weight (SCTR(+/+): 49.6±0.9 g; SCTR(-/-): 44.7±1.4 g; P<0.05) and exhibited lower body fat content. These SCTR(-/-) mice have corresponding alleviated HFD-associated hyperleptinemia and improved glucose/insulin tolerance. Further analyses indicate that SCTR(-/-) have impaired intestinal fatty acid absorption while having similar energy expenditure and locomotor activity. Reduced fat absorption in the intestine is further supported by lowered postprandial triglyceride concentrations in circulation in SCTR(-/-) mice. In jejunal cells, transcript and protein levels of a key fat absorption regulator, cluster of differentiation 36 (CD36), was reduced in knockout mice, while transcript of Cd36 and fatty-acid uptake in isolated enterocytes was stimulated by secretin. Based on our findings, a novel positive feedback pathway involving secretin and CD36 to enhance intestinal lipid absorption is being proposed. PMID:24769669

  16. Knockout crickets for the study of learning and memory: Dopamine receptor Dop1 mediates aversive but not appetitive reinforcement in crickets

    PubMed Central

    Awata, Hiroko; Watanabe, Takahito; Hamanaka, Yoshitaka; Mito, Taro; Noji, Sumihare; Mizunami, Makoto

    2015-01-01

    Elucidation of reinforcement mechanisms in associative learning is an important subject in neuroscience. In mammals, dopamine neurons are thought to play critical roles in mediating both appetitive and aversive reinforcement. Our pharmacological studies suggested that octopamine and dopamine neurons mediate reward and punishment, respectively, in crickets, but recent studies in fruit-flies concluded that dopamine neurons mediates both reward and punishment, via the type 1 dopamine receptor Dop1. To resolve the discrepancy between studies in different insect species, we produced Dop1 knockout crickets using the CRISPR/Cas9 system and found that they are defective in aversive learning with sodium chloride punishment but not appetitive learning with water or sucrose reward. The results suggest that dopamine and octopamine neurons mediate aversive and appetitive reinforcement, respectively, in crickets. We suggest unexpected diversity in neurotransmitters mediating appetitive reinforcement between crickets and fruit-flies, although the neurotransmitter mediating aversive reinforcement is conserved. This study demonstrates usefulness of the CRISPR/Cas9 system for producing knockout animals for the study of learning and memory. PMID:26521965

  17. Dysregulation of dopamine-dependent mechanisms as a determinant of hypertension: studies in dopamine receptor knockout mice

    PubMed Central

    Zeng, Chunyu; Armando, Ines; Luo, Yingjin; Eisner, Gilbert M.; Felder, Robin A.; Jose, Pedro A.

    2014-01-01

    Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones/humoral factors, such as aldosterone, angiotensin, catecholamines, endothelin, oxytocin, prolactin pro-opiomelancortin, reactive oxygen species, renin, and vasopressin. Dopamine receptors are classified into D1-like (D1 and D5) and D2-like (D2, D3, and D4) subtypes based on their structure and pharmacology. In recent years, mice deficient in one or more of the five dopamine receptor subtypes have been generated, leading to a better understanding of the physiological role of each of the dopamine receptor subtypes. This review summarizes the results from studies of various dopamine receptor mutant mice on the role of individual dopamine receptor subtypes and their interactions with other G protein-coupled receptors in the regulation of blood pressure. PMID:18083900

  18. Activity profiles of dalargin and its analogues in mu-, delta- and kappa-opioid receptor selective bioassays.

    PubMed

    Pencheva, N; Pospisek, J; Hauzerova, L; Barth, T; Milanov, P

    1999-10-01

    1. To elucidate the structural features ensuring action of [D-Ala2, Leu5]-enkephalyl-Arg (dalargin), a series of dalargin analogues were tested for their effectiveness in depressing electrically-evoked contractions of the guinea-pig myenteric plexus-longitudinal muscle preparations (mu- and kappa-opioid receptors) and the vasa deferentia of the hamster (delta-opioid receptors), mouse (mu-, delta- and kappa-opioid receptors), rat (similar to mu-opioid receptors) and rabbit (kappa-opioid receptors). The naloxone KB values in the myenteric plexus were also obtained. 2. [L-Ala2]-dalargin was 19 times less potent than dalargin, and its pharmacological activity was peptidase-sensitive. The ratio of delta-activity to mu-activity for [L-Ala2]-dalargin was 6.78, and KB was 7.9 nM. This emphasizes the role that D-configuration of Ala2 plays in determining the active folding of dalargin molecule as well as in conferring resistance to peptidases. 3. [Met5]-dalargin was equipotent to dalargin in the myenteric plexus, but was more potent in the vasa deferentia of hamster and mouse (KB=5.5 nM). Leu5 and the interdependence of Leu5 and D-Ala2 are of importance for the selectivity of dalargin for mu-opioid receptors. 4. Dalarginamide was more potent and selective for mu-opioid receptors than dalargin, whilst dalarginethylamide, though equipotent to dalarginamide in the myenteric plexus, was more potent at delta-opioid receptors (KB=5.0 nM). [D-Phe4]-dalarginamide and N-Me-[D-Phe4]-dalarginamide were inactive indicating the contribution of L-configuration of Phe4 to the pharmacological potency of dalargin. 5. N-Me-[L-Phe4]-dalarginamide possessed the highest potency and selectivity for mu-opioid receptors (the ratio of delta-activity to mu-activity was 0.00053; KB=2.6 nM). The CONH2 terminus combined with the N-methylation of L-Phe4 increased the potency and selectivity of dalargin for mu-opioid receptors. PMID:10516634

  19. Rescue of Obesity-Induced Infertility in Female Mice due to a Pituitary-Specific Knockout of the Insulin Receptor (IR)

    PubMed Central

    Brothers, Kathryn J.; Wu, Sheng; DiVall, Sara A.; Messmer, Marcus R.; Kahn, C. Ronald; Miller, Ryan S.; Radovick, Sally; Wondisford, Fredric E.; Wolfe, Andrew

    2010-01-01

    Summary Obesity is associated with insulin resistance in metabolic tissues such as adipose, liver, and muscle, but it is unclear whether non-classical target tissues, such as those of the reproductive axis, are also insulin resistant. To determine if the reproductive axis maintains insulin sensitivity in obesity in vivo, murine models of diet-induced obesity with and without intact insulin signaling in pituitary gonadotrophs were created. Diet-induced obese wild type female mice (WT DIO) were infertile and experienced a robust increase in luteinizing hormone (LH) after gonadotropin releasing hormone (GnRH) or insulin stimulation. By contrast, both lean and obese mice with a pituitary-specific knockout of the insulin receptor (PitIRKO) exhibited reproductive competency, indicating that insulin signaling in the pituitary is required for the reproductive impairment seen in diet-induced obesity and that the gonadotroph maintains insulin sensitivity in a setting of peripheral insulin resistance. PMID:20816095

  20. Impact of Omega-6 Polyunsaturated Fatty Acid:Eicosapentaenoic acid (EPA)+Docosahexaenoic Acid (DHA) Ratios in LDL Receptor Knockout (LDLr-/-) Mice on Atherosclerotic Lesion Formation and Elicited Peritoneal Macrophage Inflamm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Very long chain omega-3 fatty acids have been associated with decreased risk of CVD. LDL receptor knockout mice were used to assess the effect of different omega-6:EPA+DHA ratios on atherosclerotic lesion formation and elicited peritoneal macrophage inflammatory response. Methods and R...

  1. μ Opioid Receptor Expression after Morphine Administration Is Regulated by miR-212/132 Cluster

    PubMed Central

    Garcia-Concejo, Adrian; Jimenez-Gonzalez, Ada; Rodríguez, Raquel E.

    2016-01-01

    Since their discovery, miRNAs have emerged as a promising therapeutical approach in the treatment of several diseases, as demonstrated by miR-212 and its relation to addiction. Here we prove that the miR-212/132 cluster can be regulated by morphine, through the activation of mu opioid receptor (Oprm1). The molecular pathways triggered after morphine administration also induce changes in the levels of expression of oprm1. In addition, miR-212/132 cluster is actively repressing the expression of mu opioid receptor by targeting a sequence in the 3’ UTR of its mRNA. These findings suggest that this cluster is closely related to opioid signaling, and function as a post-transcriptional regulator, modulating morphine response in a dose dependent manner. The regulation of miR-212/132 cluster expression is mediated by MAP kinase pathway, CaMKII-CaMKIV and PKA, through the phosphorylation of CREB. Moreover, the regulation of both oprm1 and of the cluster promoter is mediated by MeCP2, acting as a transcriptional repressor on methylated DNA after prolonged morphine administration. This mechanism explains the molecular signaling triggered by morphine as well as the regulation of the expression of the mu opioid receptor mediated by morphine and the implication of miR-212/132 in these processes. PMID:27380026

  2. The low density lipoprotein receptor-related protein 1: Unique tissue-specific functions revealed by selective gene knockout studies

    PubMed Central

    Lillis, Anna P.; Van Duyn, Lauren B.; Murphy-Ullrich, Joanne E.; Strickland, Dudley K.

    2008-01-01

    The low-density lipoprotein (LDL) receptor-related protein (originally called LRP, but now referred to as LRP1) is a large endocytic receptor that is widely expressed in several tissues. LRP1 is a member of the LDL receptor family that plays diverse roles in various biological processes including lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes and cellular entry of bacterial toxins and viruses. Deletion of the LRP1 gene leads to lethality in mice, revealing a critical, but as of yet, undefined role in development. Tissue-specific gene deletion studies reveal an important contribution of LRP1 in the vasculature, central nervous system, in macrophages and in adipocytes. Three important properties of LRP1 dictate its diverse role in physiology: first, its ability to recognize more than thirty distinct ligands; second, its ability to bind a large number of cytoplasmic adaptor proteins via determinants located on its cytoplasmic domain in a phosphorylation-specific manner; and third, its ability to associate with and modulate the activity of other transmembrane receptors such as integrins and receptor tyrosine kinases. PMID:18626063

  3. High Affinity Dopamine D3 Receptor (D3R)-Selective Antagonists Attenuate Heroin Self-Administration in Wild-Type but not D3R Knockout Mice.

    PubMed

    Boateng, Comfort A; Bakare, Oluyomi M; Zhan, Jia; Banala, Ashwini K; Burzynski, Caitlin; Pommier, Elie; Keck, Thomas M; Donthamsetti, Prashant; Javitch, Jonathan A; Rais, Rana; Slusher, Barbara S; Xi, Zheng-Xiong; Newman, Amy Hauck

    2015-08-13

    The dopamine D3 receptor (D3R) is a promising target for the development of pharmacotherapeutics to treat substance use disorders. Several D3R-selective antagonists are effective in animal models of drug abuse, especially in models of relapse. Nevertheless, poor bioavailability, metabolic instability, and/or predicted toxicity have impeded success in translating these drug candidates to clinical use. Herein, we report a series of D3R-selective 4-phenylpiperazines with improved metabolic stability. A subset of these compounds was evaluated for D3R functional efficacy and off-target binding at selected 5-HT receptor subtypes, where significant overlap in SAR with D3R has been observed. Several high affinity D3R antagonists, including compounds 16 (Ki = 0.12 nM) and 32 (Ki = 0.35 nM), showed improved metabolic stability compared to the parent compound, PG648 (6). Notably, 16 and the classic D3R antagonist SB277011A (2) were effective in reducing self-administration of heroin in wild-type but not D3R knockout mice. PMID:26203768

  4. Expression of key regulators of mitochondrial biogenesis in growth hormone receptor knockout (GHRKO) mice is enhanced but is not further improved by other potential life-extending interventions.

    PubMed

    Gesing, Adam; Masternak, Michal M; Wang, Feiya; Joseph, Anna-Maria; Leeuwenburgh, Christiaan; Westbrook, Reyhan; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Bartke, Andrzej

    2011-10-01

    Mitochondrial biogenesis is essential for cell viability. Growth hormone receptor knockout (GHRKO), calorie restriction, and surgical visceral fat removal constitute experimental interventions to delay aging and increase life span. We examined the expression of known regulators of mitochondriogenesis: peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), adenosine monophosphate (AMP)-activated protein kinase (AMPK), sirtuin-1 (SIRT-1) and sirtuin-3 (SIRT-3), endothelial nitric oxide synthase (eNOS), nuclear respiratory factor-1, mitochondrial transcription factor A (TFAM), and mitofusin-2 (MFN-2) in the skeletal muscles and hearts of control and calorie-restricted female GHRKO mice and in the kidneys of male GHRKOs after visceral fat removal or sham surgery. Expression of PGC-1α in skeletal muscles, AMPK, SIRT-1, SIRT-3, eNOS, and MFN-2 in the heart and PGC-1α, AMPK, SIRT-3, eNOS, and MFN-2 in kidneys was increased in GHRKO mice but was not affected by calorie restriction or visceral fat removal. GHRKO mice have increased expression of key regulators of mitochondriogenesis, which is not improved further by calorie restriction or visceral fat removal. PMID:21788651

  5. Toll-like receptor 4 (Tlr4) knockout rats produced by transcriptional activator-like effector nuclease- (TALEN)-mediated gene inactivation

    PubMed Central

    Ferguson, Carolyn; McKay, Matthew; Harris, R. Adron; Homanics, Gregg E.

    2013-01-01

    Genetically engineered mice are a valuable resource for studies of the behavioral effects of ethanol. However, for some behavioral tests of ethanol action, the rat is a superior model organism. Production of genetically engineered rats has been severely hampered due to technical limitations. Here we utilized a promising new technique for efficient site-specific gene modification to create a novel gene knockout rat line. This approach is based on Transcriptional Activator-Like Effector Nucleases (TALENs). TALENs function in pairs and bind DNA in a sequence-specific manner. Upon binding to the target sequence, a functional nuclease is reconstituted that creates double-stranded breaks in the DNA that are efficiently repaired by non-homologous end joining. This error-prone process often results in deletions of varying lengths at the targeted locus. The toll-like receptor 4 (Tlr4) gene was selected for TALEN-mediated gene inactivation. Tlr4 has been implicated in ethanol-induced neuroinflammation and neurodegeneration, as well as multiple ethanol-induced behavioral effects. To generate Tlr4 knockout rats, a pair of TALEN constructs was created that specifically target Exon 1 immediately downstream of the start of translation. TALEN mRNAs were microinjected into the cytoplasm of one-cell Wistar rat embryos. Of 13 live-born pups that resulted, one harbored a mutation in Exon 1 of Tlr4. The mutated allele consisted of a 13 base-pair deletion that was predicted to create a frameshift mutation after amino acid 25. This founder rat successfully transmitted the mutation to F1 offspring. Heterozygous F1 offspring were interbred to produce homozygous F2 animals. Homozygous mutants expressed the 13-bp deletion in Tlr4 mRNA. In contrast to control rats that produced a robust increase in plasma tumor necrosis factor alpha in response to a lipopolysaccharide challenge, homozygous rats had a markedly attenuated response. Thus, the mutant Tlr4 allele generated by TALEN-mediated gene

  6. Altered mnemonic functions and resistance to N-METHYL-d-Aspartate receptor antagonism by forebrain conditional knockout of glycine transporter 1.

    PubMed

    Singer, P; Yee, B K; Feldon, J; Iwasato, T; Itohara, S; Grampp, T; Prenosil, G; Benke, D; Möhler, H; Boison, D

    2009-06-30

    Converging evidence from pharmacological and molecular studies has led to the suggestion that inhibition of glycine transporter 1 (GlyT1) constitutes an effective means to boost N-methyl-d-aspartate receptor (NMDAR) activity by increasing the extra-cellular concentration of glycine in the vicinity of glutamatergic synapses. However, the precise extent and limitation of this approach to alter cognitive function, and therefore its potential as a treatment strategy against psychiatric conditions marked by cognitive impairments, remain to be fully examined. Here, we generated mutant mice lacking GlyT1 in the entire forebrain including neurons and glia. This conditional knockout system allows a more precise examination of GlyT1 downregulation in the brain on behavior and cognition. The mutation was highly effective in attenuating the motor-stimulating effect of acute NMDAR blockade by phencyclidine, although no appreciable elevation in NMDAR-mediated excitatory postsynaptic currents (EPSC) was observed in the hippocampus. Enhanced cognitive performance was observed in spatial working memory and object recognition memory while spatial reference memory and associative learning remained unaltered. These findings provide further credence for the potential cognitive enhancing effects of brain GlyT1 inhibition. At the same time, they indicated potential phenotypic differences when compared with other constitutive and conditional GlyT1 knockout lines, and highlighted the possibility of a functional divergence between the neuronal and glia subpopulations of GlyT1 in the regulation of learning and memory processes. The relevance of this distinction to the design of future GlyT1 blockers as therapeutic tools in the treatment of cognitive disorders remains to be further investigated. PMID:19332109

  7. Genetic knockout of the α7 nicotinic acetylcholine receptor gene alters hippocampal long-term potentiation in a background strain-dependent manner.

    PubMed

    Freund, Ronald K; Graw, Sharon; Choo, Kevin S; Stevens, Karen E; Leonard, Sherry; Dell'Acqua, Mark L

    2016-08-01

    Reduced α7 nicotinic acetylcholine receptor (nAChR) function is linked to impaired hippocampal-dependent sensory processing and learning and memory in schizophrenia. While knockout of the Chrna7 gene encoding the α7nAChR on a C57/Bl6 background results in changes in cognitive measures, prior studies found little impact on hippocampal synaptic plasticity in these mice. However, schizophrenia is a multi-genic disorder where complex interactions between specific genetic mutations and overall genetic background may play a prominent role in determining phenotypic penetrance. Thus, we compared the consequences of knocking out the α7nAChR on synaptic plasticity in C57/Bl6 and C3H mice, which differ in their basal α7nAChR expression levels. Homozygous α7 deletion in C3H mice, which normally express higher α7nAChR levels, resulted in impaired long-term potentiation (LTP) at hippocampal CA1 synapses, while C3H α7 heterozygous mice maintained robust LTP. In contrast, homozygous α7 deletion in C57 mice, which normally express lower α7nAChR levels, did not alter LTP, as had been previously reported for this strain. Thus, the threshold of Chrna7 expression required for LTP may be different in the two strains. Measurements of auditory gating, a hippocampal-dependent behavioral paradigm used to identify schizophrenia-associated sensory processing deficits, was abnormal in C3H α7 knockout mice confirming that auditory gating also requires α7nAChR expression. Our studies highlight the importance of genetic background on the regulation of synaptic plasticity and could be relevant for understanding genetic and cognitive heterogeneity in human studies of α7nAChR dysfunction in mental disorders. PMID:27233215

  8. Myeloid Cell-Specific ABCA1 Deletion Has Minimal Impact on Atherogenesis in Atherogenic Diet-Fed LDL Receptor Knockout Mice

    PubMed Central

    Bi, Xin; Zhu, Xuewei; Gao, Chuan; Shewale, Swapnil; Cao, Qiang; Liu, Mingxia; Boudyguina, Elena; Gebre, Abraham K.; Wilson, Martha D.; Brown, Amanda L.; Parks, John S.

    2014-01-01

    Objective Transplantation studies suggest that bone marrow (BM) cell ABCA1 protects against atherosclerosis development. However, the in vivo impact of macrophage ABCA1 expression on atherogenesis is not fully understood because BM contains other leukocytes and hematopoietic stem and progenitor cells. Myeloid-specific ABCA1 knockout (MSKO) mice in the LDL receptor knockout (LDLrKO) C57BL/6 background were developed to address this question. Approach and Results Chow-fed MSKO/LDLrKO (DKO) vs. LDLrKO (SKO) mice had similar plasma lipid concentrations, but atherogenic diet (AD)-fed DKO mice had reduced plasma VLDL/LDL concentrations resulting from decreased hepatic VLDL triglyceride secretion. Resident peritoneal macrophages from AD-fed DKO vs. SKO mice had significantly higher cholesterol content, but similar proinflammatory gene expression. Atherosclerosis extent was similar between genotypes after 10–16 wks of AD, but increased modestly in DKO mice by 24 wks of AD. Lesional macrophage content was similar, likely due to higher monocyte flux through aortic root lesions in DKO vs. SKO mice. After transplantation of DKO or SKO BM into SKO mice and 16 wk of AD feeding, atherosclerosis extent was similar and plasma apoB lipoproteins was reduced in mice receiving DKO BM. When differences in plasma VLDL/LDL concentrations were minimized by maintaining mice on chow for 24 wks, DKO mice had modest, but significantly more, atherosclerosis compared to SKO mice. Conclusions Myeloid cell ABCA1 increases hepatic VLDL triglyceride secretion and plasma VLDL/LDL concentrations in AD-fed LDLrKO mice, offsetting its atheroprotective role in decreasing macrophage cholesterol content, resulting in minimal increase in atherosclerosis. PMID:24833800

  9. Insulin and insulin-like growth factor-I (IGF-I) receptor phosphorylation in µ-calpain knockout mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous cellular processes are controlled by insulin and IGF-I signaling pathways. Due to previous work in our laboratories, we hypothesized that insulin (IR) and type 1 IGF-I (IGF-IR) receptor signaling is decreased due to increased protein tyrosine phosphatase 1B (PTP1B) activity. C57BL/6J mice...

  10. Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stunning complexity of the resident microbiota and the intricate pathways of microbial and host interactions provide a massive adaptive capacity for mammals. In this addendum we reflect on our recent publication on Toll-like receptor 2 deficiency related colonic mucosal epigenetic, immunologic a...

  11. Targeted overexpression of the human urotensin receptor transgene in smooth muscle cells: effect of UT antagonism in ApoE knockout mice fed with Western diet.

    PubMed

    Papadopoulos, Panayiota; Bousette, Nicolas; Al-Ramli, Wisam; You, Zhipeng; Behm, David J; Ohlstein, Eliot H; Harrison, Stephen M; Douglas, Stephen A; Giaid, Adel

    2009-06-01

    Urotensin II (UII) and its receptor UT are upregulated in the pathological setting of various cardiovascular diseases including atherosclerosis. However, their exact role in atherosclerosis remains to be determined. In the present study we used four strains of mice; wild-type (WT), UT(+) (a transgenic strain expressing human UT driven by the alpha-smooth muscle-specific, SM22, promoter), ApoE knockout (ko), and UT(+)/ApoE ko. All animals were fed high fat diet for 12 weeks. Western blot analysis revealed a significant increase in aortic UT expression in UT(+) relative to WT mice (P<0.05). Aortas of ApoE ko mice expressed comparable UT protein level to that of UT(+). Immunohistochemistry revealed the presence of strong expression of UT and UII proteins in the atheroma of UT(+), ApoE ko and UT(+)/ApoE ko mice, particularly in foam cells. Serum cholesterol and triglyceride levels were significantly increased in ApoE ko and in UT(+)/ApoE ko but not in UT(+) mice when compared to WT mice (P<0.0001). Analysis of aortas showed a significant increase in atherosclerotic lesion in the UT(+), ApoE ko and UT(+)/ApoE ko compared to WT mice (P<0.05). Oral administration of the UT receptor antagonist SB-657510A (30 microg/Kg/day gavage) for 10 weeks in a group of ApoE ko mice fed on high fat diet resulted in a significant reduction of lesion (P<0.001). SB-657510A also significantly reduced ACAT-1 protein expression in the atherosclerotic lesion of ApoE ko mice (P<0.05). The present findings demonstrate an important role for UT in the pathogenesis of atherosclerosis. The use of UT receptor antagonists may provide a beneficial tool in the management of this debilitating disease process. PMID:19111831

  12. Aggravation of Chronic Stress Effects on Hippocampal Neurogenesis and Spatial Memory in LPA1 Receptor Knockout Mice

    PubMed Central

    Castilla-Ortega, Estela; Hoyo-Becerra, Carolina; Pedraza, Carmen; Chun, Jerold; Rodríguez De Fonseca, Fernando; Estivill-Torrús, Guillermo; Santín, Luis J.

    2011-01-01

    Background The lysophosphatidic acid LPA1 receptor regulates plasticity and neurogenesis in the adult hippocampus. Here, we studied whether absence of the LPA1 receptor modulated the detrimental effects of chronic stress on hippocampal neurogenesis and spatial memory. Methodology/Principal Findings Male LPA1-null (NULL) and wild-type (WT) mice were assigned to control or chronic stress conditions (21 days of restraint, 3 h/day). Immunohistochemistry for bromodeoxyuridine and endogenous markers was performed to examine hippocampal cell proliferation, survival, number and maturation of young neurons, hippocampal structure and apoptosis in the hippocampus. Corticosterone levels were measured in another a separate cohort of mice. Finally, the hole-board test assessed spatial reference and working memory. Under control conditions, NULL mice showed reduced cell proliferation, a defective population of young neurons, reduced hippocampal volume and moderate spatial memory deficits. However, the primary result is that chronic stress impaired hippocampal neurogenesis in NULLs more severely than in WT mice in terms of cell proliferation; apoptosis; the number and maturation of young neurons; and both the volume and neuronal density in the granular zone. Only stressed NULLs presented hypocortisolemia. Moreover, a dramatic deficit in spatial reference memory consolidation was observed in chronically stressed NULL mice, which was in contrast to the minor effect observed in stressed WT mice. Conclusions/Significance These results reveal that the absence of the LPA1 receptor aggravates the chronic stress-induced impairment to hippocampal neurogenesis and its dependent functions. Thus, modulation of the LPA1 receptor pathway may be of interest with respect to the treatment of stress-induced hippocampal pathology. PMID:21980482

  13. Hyperammonaemia in V1a vasopressin receptor knockout mice caused by the promoted proteolysis and reduced intrahepatic blood volume.

    PubMed

    Hiroyama, Masami; Aoyagi, Toshinori; Fujiwara, Yoko; Oshikawa, Sayuri; Sanbe, Atsushi; Endo, Fumio; Tanoue, Akito

    2007-06-15

    An analysis of arginine-vasopressin (AVP) V1a receptor-deficient (V1aR-/-) mice revealed that glucose homeostasis and lipid metabolism were altered in the mutant mice. Here, we used V1aR-/- mice to investigate whether the deficiency of the V1a receptor, which led to altered insulin sensitivity, affected protein metabolism. The serum 3-methylhistidine levels were increased in V1aR-/- mice under feeding conditions, indicating that proteolysis was enhanced in muscle tissue from V1aR-/- mice. Furthermore, serum amino acid profiling revealed that the amino acid levels, including glycogenic and branched-chain amino acids, were reduced in V1aR-/- mice. In addition, an alanine-loading test showed that gluconeogenesis was enhanced in V1aR-/- mice. Blood ammonia, which is a by-product of amino acid catabolism, was two times higher in V1aR-/- mice without hepatopathy under the feeding and fasting conditions than in wild-type mice. Amino acid profiling also revealed that the amino acid pattern was not typical of a urea-cycle enzymatic disorder. An ammonia tolerance test and an indocyanine green elimination test showed that V1aR-/- mice had lower ammonia clearance due to a decreased intrahepatic circulating blood volume. Metabolic acidosis, including lactic- and keto-acidosis, was not observed in V1aR-/- mice. These results provide evidence that proteolysis promotes the production of glucose in the muscles of V1aR-/- mice and that hyperammonaemia is caused by promoted protein catabolism and reduced intrahepatic blood volume. Thus, our study with V1aR-/- mice indicates that AVP plays a physiological role via the V1a receptor in regulating both protein catabolism and glucose homeostasis. PMID:17379633

  14. Aberrant in Vivo T Helper Type 2 Cell Response and Impaired Eosinophil Recruitment in Cc Chemokine Receptor 8 Knockout Mice

    PubMed Central

    Chensue, Stephen W.; Lukacs, Nicholas W.; Yang, Tong-Yuan; Shang, Xiaozhou; Frait, Kirsten A.; Kunkel, Steven L.; Kung, Ted; Wiekowski, Maria T.; Hedrick, Joseph A.; Cook, Donald N.; Zingoni, Alessandra; Narula, Satwant K.; Zlotnik, Albert; Barrat, Franck J.; O'Garra, Anne; Napolitano, Monica; Lira, Sergio A.

    2001-01-01

    Chemokine receptors transduce signals important for the function and trafficking of leukocytes. Recently, it has been shown that CC chemokine receptor (CCR)8 is selectively expressed by Th2 subsets, but its functional relevance is unclear. To address the biological role of CCR8, we generated CCR8 deficient (−/−) mice. Here we report defective T helper type 2 (Th2) immune responses in vivo in CCR8−/− mice in models of Schistosoma mansoni soluble egg antigen (SEA)-induced granuloma formation as well as ovalbumin (OVA)- and cockroach antigen (CRA)-induced allergic airway inflammation. In these mice, the response to SEA, OVA, and CRA showed impaired Th2 cytokine production that was associated with aberrant type 2 inflammation displaying a 50 to 80% reduction in eosinophils. In contrast, a prototypical Th1 immune response, elicited by Mycobacteria bovis purified protein derivative (PPD) was unaffected by CCR8 deficiency. Mechanistic analyses indicated that Th2 cells developed normally and that the reduction in eosinophil recruitment was likely due to systemic reduction in interleukin 5. These results indicate an important role for CCR8 in Th2 functional responses in vivo. PMID:11238588

  15. Gene knockout of nuclear progesterone receptor provides insights into the regulation of ovulation by LH signaling in zebrafish

    PubMed Central

    Tang, Haipei; Liu, Yun; Li, Jianzhen; Yin, Yike; Li, Gaofei; Chen, Yu; Li, Shuisheng; Zhang, Yong; Lin, Haoran; Liu, Xiaochun; Cheng, Christopher H. K.

    2016-01-01

    It is well established that the luteinizing hormone surge triggers ovulation, a dynamic process leading to the release of the mature oocyte from the ovarian follicle. But how this process controlled by LH signaling remains largely unknown in non-mammalian species. In this study, we investigated the roles of nuclear progesterone receptor (npr) in LH-induced ovulation. Our results indicate that the nuclear progesterone receptor serves as an important mediator of LH action on ovulation. This conclusion is based on the following results: (1) the expression level of npr peaks at the full-grown stage of the follicles; (2) the expression of npr is stimulated by LH signaling in vitro and in vivo; and (3) the npr null females are infertile due to ovulation defects. Moreover, we further show that LH signaling could induce ptger4b expression in an npr-dependent manner, and blockage of Ptger4b could also block hCG-induced ovulation. Collectively, our results not only demonstrate that npr serves an indispensable role in mediating the action of LH on ovulation in zebrafish, but also provide insights into the molecular mechanisms of the regulation of ovulation in fish. PMID:27333837

  16. Gene knockout of nuclear progesterone receptor provides insights into the regulation of ovulation by LH signaling in zebrafish.

    PubMed

    Tang, Haipei; Liu, Yun; Li, Jianzhen; Yin, Yike; Li, Gaofei; Chen, Yu; Li, Shuisheng; Zhang, Yong; Lin, Haoran; Liu, Xiaochun; Cheng, Christopher H K

    2016-01-01

    It is well established that the luteinizing hormone surge triggers ovulation, a dynamic process leading to the release of the mature oocyte from the ovarian follicle. But how this process controlled by LH signaling remains largely unknown in non-mammalian species. In this study, we investigated the roles of nuclear progesterone receptor (npr) in LH-induced ovulation. Our results indicate that the nuclear progesterone receptor serves as an important mediator of LH action on ovulation. This conclusion is based on the following results: (1) the expression level of npr peaks at the full-grown stage of the follicles; (2) the expression of npr is stimulated by LH signaling in vitro and in vivo; and (3) the npr null females are infertile due to ovulation defects. Moreover, we further show that LH signaling could induce ptger4b expression in an npr-dependent manner, and blockage of Ptger4b could also block hCG-induced ovulation. Collectively, our results not only demonstrate that npr serves an indispensable role in mediating the action of LH on ovulation in zebrafish, but also provide insights into the molecular mechanisms of the regulation of ovulation in fish. PMID:27333837

  17. Androgen Receptor (AR) Physiological Roles in Male and Female Reproductive Systems: Lessons Learned from AR-Knockout Mice Lacking AR in Selective Cells1

    PubMed Central

    Chang, Chawnshang; Lee, Soo Ok; Wang, Ruey-Sheng; Yeh, Shuyuan; Chang, Ta-Min

    2013-01-01

    ABSTRACT Androgens/androgen receptor (AR) signaling is involved primarily in the development of male-specific phenotypes during embryogenesis, spermatogenesis, sexual behavior, and fertility during adult life. However, this signaling has also been shown to play an important role in development of female reproductive organs and their functions, such as ovarian folliculogenesis, embryonic implantation, and uterine and breast development. The establishment of the testicular feminization (Tfm) mouse model exploiting the X-linked Tfm mutation in mice has been a good in vivo tool for studying the human complete androgen insensitivity syndrome, but this mouse may not be the perfect in vivo model. Mouse models with various cell-specific AR knockout (ARKO) might allow us to study AR roles in individual types of cells in these male and female reproductive systems, although discrepancies are found in results between labs, probably due to using various Cre mice and/or knocking out AR in different AR domains. Nevertheless, no doubt exists that the continuous development of these ARKO mouse models and careful studies will provide information useful for understanding AR roles in reproductive systems of humans and may help us to develop more effective and more specific therapeutic approaches for reproductive system-related diseases. PMID:23782840

  18. Similarities in the behavior and molecular deficits in the frontal cortex between the neurotensin receptor subtype 1 knockout mice and chronic phencyclidine-treated mice: relevance to schizophrenia.

    PubMed

    Li, Zhimin; Boules, Mona; Williams, Katrina; Gordillo, Andres; Li, Shuhua; Richelson, Elliott

    2010-11-01

    Much evidence suggests that targeting the neurotensin (NT) system may provide a novel and promising treatment for schizophrenia. Our recent work shows that: NTS1 knockout (NTS1(-/-)) mice may provide a potential animal model for studying schizophrenia by investigating the effect of deletion NTS1 receptor on amphetamine-induced hyperactivity and neurochemical changes. The data indicate a hyper-dopaminergic state similar to the excessive striatal DA activity reported in schizophrenia. The present study was done to determine if NTS1(-/-) mice also have similar changes in behavior, in prefrontal neurotransmitters, and in protein expression, as observed in wild type (WT) mice treated with the psychotomimetic phencylclidine (PCP), an animal model for schizophrenia. Our results showed many similarities between untreated NTS1(-/-) mice and WT mice chronically treated with PCP (as compared with untreated WT mice): 1) lower PCP-induced locomotor activity; 2) similar avolition-like behavior in forced-swim test and tail suspension test; 3) lower prefrontal glutamate levels; 4) less PCP-induced dopamine release in medial prefrontal cortex (mPFC); and 5) down-regulation of mRNA and protein for DA D(1), DA D(2), and NMDAR2A in mPFC. Therefore, these data strengthen the hypothesis that the NTS1(-/-) mouse is an animal model of schizophrenia, particularly for the dysfunction of the prefrontal cortex. In addition, after chronic PCP administration, the DA D(1) receptor was up-regulated in NTS1(-/-) mice, results which suggest a possible interaction of NTS1/DA D(1) in mPFC contributing to chronic PCP-induced schizophrenia-like signs. PMID:20659557

  19. Automated pipeline to analyze non-contact infrared images of the paraventricular nucleus specific leptin receptor knock-out mouse model

    NASA Astrophysics Data System (ADS)

    Diaz Martinez, Myriam; Ghamari-Langroudi, Masoud; Gifford, Aliya; Cone, Roger; Welch, E. B.

    2015-03-01

    Evidence of leptin resistance is indicated by elevated leptin levels together with other hallmarks of obesity such as a defect in energy homeostasis.1 As obesity is an increasing epidemic in the US, the investigation of mechanisms by which leptin resistance has a pathophysiological impact on energy is an intensive field of research.2 However, the manner in which leptin resistance contributes to the dysregulation of energy, specifically thermoregulation,3 is not known. The aim of this study was to investigate whether the leptin receptor expressed in paraventricular nucleus (PVN) neurons plays a role in thermoregulation at different temperatures. Non-contact infrared (NCIR) thermometry was employed to measure surface body temperature (SBT) of nonanesthetized mice with a specific deletion of the leptin receptor in the PVN after exposure to room (25 °C) and cold (4 °C) temperature. Dorsal side infrared images of wild type (LepRwtwt/sim1-Cre), heterozygous (LepRfloxwt/sim1-Cre) and knock-out (LepRfloxflox/sim1-Cre) mice were collected. Images were input to an automated post-processing pipeline developed in MATLAB to calculate average and maximum SBTs. Linear regression was used to evaluate the relationship between sex, cold exposure and leptin genotype with SBT measurements. Findings indicate that average SBT has a negative relationship to the LepRfloxflox/sim1-Cre genotype, the female sex and cold exposure. However, max SBT is affected by the LepRfloxflox/sim1-Cre genotype and the female sex. In conclusion this data suggests that leptin within the PVN may have a neuroendocrine role in thermoregulation and that NCIR thermometry combined with an automated imaging-processing pipeline is a promising approach to determine SBT in non-anesthetized mice.

  20. Aryl hydrocarbon receptor knockout rats are insensitive to the pathological effects of repeated oral exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    PubMed

    Harrill, Joshua A; Layko, Debra; Nyska, Abraham; Hukkanen, Renee R; Manno, Rosa Anna; Grassetti, Andrea; Lawson, Marie; Martin, Greg; Budinsky, Robert A; Rowlands, J Craig; Thomas, Russell S

    2016-06-01

    Sustained activation of the aryl hydrocarbon receptor (AHR) is believed to be the initial key event in AHR receptor-mediated tumorigenesis in the rat liver. The role of AHR in mediating pathological changes in the liver prior to tumor formation was investigated in a 4-week, repeated-dose study using adult female wild-type (WT) and AHR knockout (AHR-KO) rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Beginning at 8 weeks of age, AHR-KO and WT rats were dosed by oral gavage with varying concentrations of TCDD (0, 3, 22, 100, 300 and 1000 ng kg(-1)  day(-1) ). Lung, liver and thymus histopathology, hematology, serum chemistry and the distribution of TCDD in liver and adipose tissue were examined. Treatment-related increases in the severity of liver and thymus pathology were observed in WT, but not AHR-KO rats. In the liver, these included hepatocellular hypertrophy, bile duct hyperplasia, multinucleated hepatocytes and inflammatory cell foci. A loss of cellularity in the thymic cortex and thymic atrophy was observed. Treatment-related changes in serum chemistry parameters were also observed in WT, but not AHR-KO rats. Finally, dose-dependent accumulation of TCDD was observed primarily in the liver of WT rats and primarily in the adipose tissue of AHR-KO rats. The results suggest that AHR activation is the initial key event underlying the progression of histological effects leading to liver tumorigenesis following TCDD treatment. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26278112

  1. Ultrasonic Vocalizations Induced by Sex and Amphetamine in M2, M4, M5 Muscarinic and D2 Dopamine Receptor Knockout Mice

    PubMed Central

    Wang, Haoran; Liang, Shuyin; Burgdorf, Jeffrey; Wess, Jurgen; Yeomans, John

    2008-01-01

    Adult mice communicate by emitting ultrasonic vocalizations (USVs) during the appetitive phases of sexual behavior. However, little is known about the genes important in controlling call production. Here, we study the induction and regulation of USVs in muscarinic and dopaminergic receptor knockout (KO) mice as well as wild-type controls during sexual behavior. Female mouse urine, but not female rat or human urine, induced USVs in male mice, whereas male urine did not induce USVs in females. Direct contact of males with females is required for eliciting high level of USVs in males. USVs (25 to120 kHz) were emitted only by males, suggesting positive state; however human-audible squeaks were produced only by females, implying negative state during male-female pairing. USVs were divided into flat and frequency-modulated calls. Male USVs often changed from continuous to broken frequency-modulated calls after initiation of mounting. In M2 KO mice, USVs were lost in about 70–80% of the mice, correlating with a loss of sexual interaction. In M5 KO mice, mean USVs were reduced by almost 80% even though sexual interaction was vigorous. In D2 KOs, the duration of USVs was extended by 20%. In M4 KOs, no significant differences were observed. Amphetamine dose-dependently induced USVs in wild-type males (most at 0.5 mg/kg i.p.), but did not elicit USVs in M5 KO or female mice. These studies suggest that M2 and M5 muscarinic receptors are needed for male USV production during male-female interactions, likely via their roles in dopamine activation. These findings are important for the understanding of the neural substrates for positive affect. PMID:18382674

  2. Altered ultrastructure, density and cathepsin K expression in bone of female muscarinic acetylcholine receptor M3 knockout mice.

    PubMed

    Lips, Katrin Susanne; Kneffel, Mathias; Willscheid, Fee; Mathies, Frank Martin; Kampschulte, Marian; Hartmann, Sonja; Panzer, Imke; Dürselen, Lutz; Heiss, Christian; Kauschke, Vivien

    2015-11-01

    High frequency of osteoporosis is found in postmenopausal women where several molecular components were identified to be involved in bone loss that subsequently leads to an increased fracture risk. Bone loss has already been determined in male mice with gene deficiency of muscarinic acetylcholine receptor M3 (M3R-KO). Here we asked whether bone properties of female 16-week old M3R-KO present similarities to osteoporotic bone loss by means of biomechanical, radiological, electron microscopic, cell- and molecular biological methods. Reduced biomechanical strength of M3R-KO correlated with cortical thickness and decreased bone mineral density (BMD). Femur and vertebrae of M3R-KO demonstrated a declined trabecular bone volume, surface, and a higher trabecular pattern factor and structure model index (SMI) compared to wild type (WT) mice. In M3R-KO, the number of osteoclasts as well as the cathepsin K mRNA expression was increased. Osteoclasts of M3R-KO showed an estimated increase in cytoplasmic vesicles. Further, histomorphometrical analysis revealed up-regulation of alkaline phosphatase. Osteoblasts and osteocytes showed a swollen cytoplasm with an estimated increase in the amount of rough endoplasmatic reticulum and in case of osteocytes a reduced pericellular space. Thus, current results on bone properties of 16-week old female M3R-KO are related to postmenopausal osteoporotic phenotype. Stimulation and up-regulation of muscarinic acetylcholine receptor subtype M3 expression in osteoblasts might be a possible new option for prevention and therapy of osteoporotic fractures. Pharmacological interventions and the risk of side effects have to be determined in upcoming studies. PMID:26002583

  3. Induction of Fatal Inflammation in LDL Receptor and ApoA-I Double-Knockout Mice Fed Dietary Fat and Cholesterol

    PubMed Central

    Zabalawi, Manal; Bhat, Shaila; Loughlin, Tara; Thomas, Michael J.; Alexander, Eric; Cline, Mark; Bullock, Bill; Willingham, Mark; Sorci-Thomas, Mary G.

    2003-01-01

    Atherogenic response to dietary fat and cholesterol challenge was evaluated in mice lacking both the LDL receptor (LDLr−/−) and apoA-I (apoA-I−/−) gene, LDLr−/−/apoA-I−/− or double-knockout mice. Gender- and age-matched LDLr−/−/apoA-I−/− mice were fed a diet consisting of 0.1% cholesterol and 10% palm oil for 16 weeks and compared to LDLr−/− mice or single-knockout mice. The LDLr−/− mice showed a 6- to 7-fold increase in total plasma cholesterol (TPC) compared to their chow-fed mice counterparts, while LDLr−/−/apoA-I−/− mice showed only a 2- to 3-fold increase in TPC compared to their chow-fed controls. This differential response to the atherogenic diet was unanticipated, since chow-fed LDLr−/− and LDLr−/−/apoA-I−/− mice began the study with similar LDL levels and differed primarily in their HDL concentration. The 6-fold diet-induced increase in TPC observed in the LDLr−/− mice occurred mainly in VLDL/LDL and not in HDL. Mid-study plasma samples taken after 8 weeks of diet feeding showed that LDLr−/− mice had TPC concentrations approximately 60% of their 16-week level, while the LDLr−/−/apoA-I−/− mice had reached 100% of their 16-week TPC concentration after only 8 weeks of diet. Male LDLr−/− mice showed similar aortic cholesterol levels to male LDLr−/−/apoA-I−/− mice despite a 4-fold higher VLDL/LDL concentration in the LDLr−/− mice. A direct comparison of the severity of aortic atherosclerosis between female LDLr−/− and LDLr−/−/apoA-I−/− mice was compromised due to the loss of female LDLr−/−/apoA-I−/− mice between 10 and 14 weeks into the study. Diet-fed female and, with time, male LDLr−/−/apoA-I−/− mice suffered from severe ulcerated cutaneous xanthomatosis. This condition, combined with a complete depletion of adrenal cholesterol, manifested in fatal wasting of the affected mice. In conclusion, LDLr−/− and LDLr−/−/apoA-I−/− mice showed

  4. Adipose tissue deficiency results in severe hyperlipidemia and atherosclerosis in the low-density lipoprotein receptor knockout mice.

    PubMed

    Wang, Mengyu; Gao, Mingming; Liao, Jiawei; Qi, Yanfei; Du, Ximing; Wang, Yuhui; Li, Ling; Liu, George; Yang, Hongyuan

    2016-05-01

    Adipose tissue can store over 50% of whole-body cholesterol; however, the physiological role of adipose tissue in cholesterol metabolism and atherogenesis has not been directly assessed. Here, we examined lipoprotein metabolism and atherogenesis in a unique mouse model of severe lipodystrophy: the Seipin(-/-) mice, and also in mice deficient in both low-density lipoprotein receptor (Ldlr) and Seipin: the Ldlr(-/-)Seipin(-/-) mice. Plasma cholesterol was moderately increased in the Seipin(-/-) mice when fed an atherogenic diet. Strikingly, plasma cholesterol reached ~6000 mg/dl in the Seipin(-/-)Ldlr(-/-) mice on an atherogenic diet, as compared to ~1000 mg/dl in the Ldlr(-/-) mice on the same diet. The Seipin(-/-)Ldlr(-/-) mice also developed spontaneous atherosclerosis on chow diet and severe atherosclerosis on an atherogenic diet. Rosiglitazone treatment significantly reduced the hypercholesterolemia of the Seipin(-/-)Ldlr(-/-) mice, and also alleviated the severity of atherosclerosis. Our results provide direct evidence, for the first time, that the adipose tissue plays a critical role in the clearance of plasma cholesterol. Our results also reveal a previously unappreciated strong link between adipose tissue and LDLR in plasma cholesterol metabolism. PMID:26921684

  5. Prenatal minocycline treatment alters synaptic protein expression, and rescues reduced mother call rate in oxytocin receptor-knockout mice.

    PubMed

    Miyazaki, Shinji; Hiraoka, Yuichi; Hidema, Shizu; Nishimori, Katsuhiko

    2016-04-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired communication, difficulty in companionship, repetitive behaviors and restricted interests. Recent studies have shown amelioration of ASD symptoms by intranasal administration of oxytocin and demonstrated the association of polymorphisms in the oxytocin receptor (Oxtr) gene with ASD patients. Deficient pruning of synapses by microglial cells in the brain has been proposed as potential mechanism of ASD. Other researchers have shown specific activation of microglial cells in brain regions related to sociality in patients with ASD. Although the roles of Oxtr and microglia in ASD are in the spotlight, the relationship between them remains to be elucidated. In this study, we found abnormal activation of microglial cells and a reduction of postsynaptic density protein PSD95 expression in the Oxtr-deficient brain. Moreover, pharmacological inhibition of microglia during development can alter the expression of PSD95 and ameliorate abnormal mother-infant communication in Oxtr-deficient mice. Our results suggest that microglial abnormality is a potential mechanism of the development of Oxt/Oxtr mediated ASD-like phenotypes. PMID:26926566

  6. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model.

    PubMed

    Baquedano, Eva; Burgos-Ramos, Emma; Canelles, Sandra; González-Rodríguez, Agueda; Chowen, Julie A; Argente, Jesús; Barrios, Vicente; Valverde, Angela M; Frago, Laura M

    2016-05-01

    Insulin receptor substrate-2-deficient (IRS2(-/-)) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2(-/-) mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2(-/-) mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2(-/-) mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2(-/-) mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  7. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    PubMed Central

    Canelles, Sandra; Argente, Jesús; Barrios, Vicente

    2016-01-01

    ABSTRACT Insulin receptor substrate-2-deficient (IRS2−/−) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  8. New knockout model confirms a role for androgen receptors in regulating anxiety-like behaviors and HPA response in mice.

    PubMed

    Chen, Chieh V; Brummet, Jennifer L; Lonstein, Joseph S; Jordan, Cynthia L; Breedlove, S Marc

    2014-03-01

    Men are less likely than women to suffer from anxiety disorders. Because gonadal hormones play a crucial role in many behavioral sex differences, they may underlie sex differences in human anxiety. In rodents, testosterone (T) exerts anxiolytic effects via the androgen receptor (AR): we found that male mice with a naturally-occurring mutation rendering the AR dysfunctional, referred to as spontaneous testicular feminization mutation (sTfm), showed more anxiety-like behaviors than wildtype (WT) males. Here, we used Cre-lox recombination technology to create another dysfunctional allele for AR. These induced Tfm (iTfm) animals also displayed more anxiety-like behaviors than WTs. We further found that AR-modulation of these behaviors interacts with circadian phase. When tested in the resting phase, iTfms appeared more anxious than WTs in the open field, novel object and elevated plus maze tests, but not the light/dark box. However, when tested during the active phase (lights off), iTfms showed more anxiety-related behavior than WTs in all four tests. Finally, we confirmed a role of T acting via AR in regulating HPA axis activity, as WT males with T showed a lower baseline and overall corticosterone response, and a faster return to baseline following mild stress than did WT males without T or iTfms. These findings demonstrate that this recombined AR allele is a valuable model for studying androgenic modulation of anxiety, that the anxiolytic effects of AR in mice are more prominent in the active phase, and that HPA axis modulation by T is AR dependent. PMID:24440052

  9. Epididymal Hypo-Osmolality Induces Abnormal Sperm Morphology and Function in the Estrogen Receptor Alpha Knockout Mouse1

    PubMed Central

    Joseph, Avenel; Shur, Barry D.; Ko, CheMyong; Chambon, Pierre; Hess, Rex A.

    2010-01-01

    Estrogen receptor-alpha (ESR1) is highly expressed in the efferent ductules of all species studied as well as in the epididymal epithelium in mice and other select species. Male mice lacking ESR1 (Esr1KO) are infertile, but transplantation studies demonstrated that Esr1KO germ cells are capable of fertilization when placed in a wild-type reproductive tract. These results suggest that extratesticular regions, such as the efferent ductules and epididymis, are the major source of pathological changes in Esr1KO males. Previous studies have shown alterations in ion and fluid transporters in the efferent duct and epididymal epithelia of Esr1KO males, leading to misregulation of luminal fluid pH. To determine the effect of an altered epididymal milieu on Esr1KO sperm, we assayed sperm morphology in the different regions of the epididymis. Sperm recovered from the epididymis exhibited abnormal flagellar coiling and increased incidence of spontaneous acrosome reactions, both of which are consistent with exposure to abnormal epididymal fluid. Analysis of the epididymal fluid revealed that the osmolality of the Esr1KO fluid was reduced relative to wild type, consistent with prior reports of inappropriate fluid absorption from the efferent ductules. This, along with the finding that morphological defects increased with transit through the epididymal duct, suggests that the anomalies in sperm are a consequence of the abnormal luminal environment. Consistent with this, incubating Esr1KO sperm in a more wild-type-like osmotic environment significantly rescued the abnormal flagellar coiling. This work demonstrates that Esr1KO mice exhibit an abnormal fluid environment in the lumen of the efferent ducts and epididymis, precluding normal sperm maturation and instead resulting in progressive deterioration of sperm that contributes to infertility. PMID:20130266

  10. Angiotensin receptor-1A knockout leads to hydronephrosis not associated with a loss of pyeloureteric peristalsis in the mouse renal pelvis.

    PubMed

    Nguyen, Michael J; Hashitani, Hikaru; Lang, Richard J

    2016-05-01

    The action of angiotensin II (AngII) on the Ca(2+) signals driving pyeloureteric peristalsis was investigated using both conventional and angiotensin receptor (ATr) ATr1A and ATr2 knockout ((-/-)) mice. Contractility in the renal pelvis of adult ATr1A(-/-) and ATr2(-/-) mice was compared to their respective wildtype (ATr1A(+/+) and ATr2(+/+)) controls of the same genetic background (FVB/N and C57Bl/6 respectively) using video microscopy. The effects of AngII on the Ca(2+) signals in typical and atypical smooth muscle cells (TSMCs and ASMCs, respectively) within the pelvic wall of conventional mice were recorded using Fluo-4 Ca(2+) imaging. Compared to ATr1A(+/+) , ATr2(+/+) and ATr2(-/-) mice, kidneys of the ATr1A(-/-) mouse were mildly-to-severely hydronephrotic, associated with an enlarged calyx, an atrophic papilla and a hypoplastic renal pelvis. Contraction frequencies in the renal pelvis of moderately hydronephrotic ATr1A(-/-) and unaffected ATr2(-/-) mice were not significantly different from their ATr1A(+/+), ATr2(+/+) controls. No contractions were observed in severely-hydronephrotic ATr1A(-/-) kidneys. AngII increased the spontaneous contraction frequency of the renal pelvis in ATr1A(+/+), ATr2(+/+) and ATr2(-/-) mice, but had little effect on the contractions in the mildly-hydronephrotic ATr1A(-/-) renal pelvis. The ATr1 blocker, candesartan prevented the positive chronotropic effects of AngII. AngII increased the frequency and synchronicity of Ca(2+) transients in both TSMCs and ASMCs. It was concluded that the hydronephrosis observed in ATr1A(-/-) mouse kidneys does not arise from a failure in the development of the essential pacemaker and contractile machinery driving pyeloureteric peristalsis. PMID:26876143

  11. High Fat High Cholesterol Diet (Western Diet) Aggravates Atherosclerosis, Hyperglycemia and Renal Failure in Nephrectomized LDL Receptor Knockout Mice: Role of Intestine Derived Lipopolysaccharide

    PubMed Central

    Ghosh, Siddhartha S.; Righi, Samuel; Krieg, Richard; Kang, Le; Carl, Daniel; Wang, Jing; Massey, H. Davis; Sica, Domenic A.; Gehr, Todd W. B.; Ghosh, Shobha

    2015-01-01

    A high fat meal, frequently known as western diet (WD), exacerbates atherosclerosis and diabetes. Both these diseases are frequently associated with renal failure. Recent studies have shown that lipopolysaccharide (LPS) leaks into the circulation from the intestine in the setting of renal failure and after WD. However, it is not clear how renal function and associated disorders are affected by LPS. This study demonstrates that circulatory LPS exacerbates renal insufficiency, atherosclerosis and glucose intolerance. Renal insufficiency was induced by 2/3 nephrectomy in LDL receptor knockout mice. Nx animals were given normal diet (Nx) or WD (Nx+WD). The controls were sham operated animals on normal diet (control) and WD (WD). To verify if LPS plays a role in exaggerating renal insufficiency, polymyxin (PM), a known LPS antagonist, and curcumin (CU), a compound known to ameliorate chronic kidney disease (CKD), was given to Nx animals on western diet (Nx+WD+PM and Nx+WD+CU, respectively). Compared to control, all other groups displayed increased circulatory LPS. The Nx+WD cohort had the highest levels of LPS. Nx group had significant renal insufficiency and glucose intolerance but not atherosclerosis. WD had intense atherosclerosis and glucose intolerance but it did not show signs of renal insufficiency. Compared to other groups, Nx+WD had significantly higher cytokine expression, macrophage infiltration in the kidney, renal insufficiency, glucose intolerance and atherosclerosis. PM treatment blunted the expression of cytokines, deterioration of renal function and associated disorders, albeit not to the levels of Nx, and was significantly inferior to CU. PM is a non-absorbable antibiotic with LPS binding properties, hence its beneficial effect can only be due to its effect within the GI tract. We conclude that LPS may not cause renal insufficiency but can exaggerate kidney failure and associated disorders following renal insufficiency. PMID:26580567

  12. High Fat High Cholesterol Diet (Western Diet) Aggravates Atherosclerosis, Hyperglycemia and Renal Failure in Nephrectomized LDL Receptor Knockout Mice: Role of Intestine Derived Lipopolysaccharide.

    PubMed

    Ghosh, Siddhartha S; Righi, Samuel; Krieg, Richard; Kang, Le; Carl, Daniel; Wang, Jing; Massey, H Davis; Sica, Domenic A; Gehr, Todd W B; Ghosh, Shobha

    2015-01-01

    A high fat meal, frequently known as western diet (WD), exacerbates atherosclerosis and diabetes. Both these diseases are frequently associated with renal failure. Recent studies have shown that lipopolysaccharide (LPS) leaks into the circulation from the intestine in the setting of renal failure and after WD. However, it is not clear how renal function and associated disorders are affected by LPS. This study demonstrates that circulatory LPS exacerbates renal insufficiency, atherosclerosis and glucose intolerance. Renal insufficiency was induced by 2/3 nephrectomy in LDL receptor knockout mice. Nx animals were given normal diet (Nx) or WD (Nx+WD). The controls were sham operated animals on normal diet (control) and WD (WD). To verify if LPS plays a role in exaggerating renal insufficiency, polymyxin (PM), a known LPS antagonist, and curcumin (CU), a compound known to ameliorate chronic kidney disease (CKD), was given to Nx animals on western diet (Nx+WD+PM and Nx+WD+CU, respectively). Compared to control, all other groups displayed increased circulatory LPS. The Nx+WD cohort had the highest levels of LPS. Nx group had significant renal insufficiency and glucose intolerance but not atherosclerosis. WD had intense atherosclerosis and glucose intolerance but it did not show signs of renal insufficiency. Compared to other groups, Nx+WD had significantly higher cytokine expression, macrophage infiltration in the kidney, renal insufficiency, glucose intolerance and atherosclerosis. PM treatment blunted the expression of cytokines, deterioration of renal function and associated disorders, albeit not to the levels of Nx, and was significantly inferior to CU. PM is a non-absorbable antibiotic with LPS binding properties, hence its beneficial effect can only be due to its effect within the GI tract. We conclude that LPS may not cause renal insufficiency but can exaggerate kidney failure and associated disorders following renal insufficiency. PMID:26580567

  13. The two-receptor model of lipoprotein clearance: tests of the hypothesis in "knockout" mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins.

    PubMed Central

    Ishibashi, S; Herz, J; Maeda, N; Goldstein, J L; Brown, M S

    1994-01-01

    Apolipoprotein E (apoE) is hypothesized to mediate lipoprotein clearance by binding to two receptors: (i) the low density lipoprotein receptor (LDLR) and (ii) a chylomicron remnant receptor. To test this hypothesis, we have compared plasma lipoproteins in mice that are homozygous for targeted disruptions of the genes for apoE [apoE(-/-)], the LDLR [LDLR(-/-)], and both molecules [poE(-/-); LDLR(-/-)]. On a normal chow diet, apoE(-/-) mice had higher mean plasma cholesterol levels than LDLR(-/-) mice (579 vs. 268 mg/dl). Cholesterol levels in the apoE(-/-); LDLR(-/-) mice were not significantly different from those in the apoE(-/-) mice. LDLR(-/-) mice had a relatively isolated elevation in plasma LDL, whereas apoE(-/-) mice had a marked increase in larger lipoproteins corresponding to very low density lipoproteins and chylomicron remnants. The lipoprotein pattern in apoE(-/-); LDLR(-/-) mice resembled that of apoE(-/-) mice. The LDLR(-/-) mice had a marked elevation in apoB-100 and a modest increase in apoB-48. In contrast, the apoE(-/-) mice had a marked elevation in apoB-48 but not in apoB-100. The LDLR(-/-); apoE(-/-) double homozygotes had marked elevations of both apolipoproteins. The observation that apoB-48 increases more dramatically with apoE deficiency than with LDLR deficiency supports the notion that apoE binds to a second receptor in addition to the LDLR. This conclusion is also supported by the observation that superimposition of a LDLR deficiency onto an apoE deficiency [apoE(-/-); LDLR(-/-) double homozygotes] does not increase hypercholesterolemia beyond the level observed with apoE deficiency alone. Images PMID:8183926

  14. Small-molecule nociceptin receptor agonist ameliorates mast cell activation and pain in sickle mice.

    PubMed

    Vang, Derek; Paul, Jinny A; Nguyen, Julia; Tran, Huy; Vincent, Lucile; Yasuda, Dennis; Zaveri, Nurulain T; Gupta, Kalpna

    2015-12-01

    Treatment of pain with morphine and its congeners in sickle cell anemia is suboptimal, warranting the need for analgesics devoid of side effects, addiction and tolerance liability. Small-molecule nociceptin opioid receptor ligands show analgesic efficacy in acute and chronic pain models. We show that AT-200, a high affinity nociceptin opioid receptor agonist with low efficacy at the mu opioid receptor, ameliorated chronic and hypoxia/reoxygenation-induced mechanical, thermal and deep tissue/musculoskeletal hyperalgesia in HbSS-BERK sickle mice. The antinociceptive effect of AT-200 was antagonized by SB-612111, a nociceptin opioid receptor antagonist, but not naloxone, a non-selective mu opioid receptor antagonist. Daily 7-day treatment with AT-200 did not develop tolerance and showed a sustained anti-nociceptive effect, which improved over time and led to reduced plasma serum amyloid protein, neuropeptides, inflammatory cytokines and mast cell activation in the periphery. These data suggest that AT-200 ameliorates pain in sickle mice via the nociceptin opioid receptor by reducing inflammation and mast cell activation without causing tolerance. Thus, nociceptin opioid receptor agonists are promising drugs for treating pain in sickle cell anemia. PMID:26294734

  15. Small-molecule nociceptin receptor agonist ameliorates mast cell activation and pain in sickle mice

    PubMed Central

    Vang, Derek; Paul, Jinny A.; Nguyen, Julia; Tran, Huy; Vincent, Lucile; Yasuda, Dennis; Zaveri, Nurulain T.; Gupta, Kalpna

    2015-01-01

    Treatment of pain with morphine and its congeners in sickle cell anemia is suboptimal, warranting the need for analgesics devoid of side effects, addiction and tolerance liability. Small-molecule nociceptin opioid receptor ligands show analgesic efficacy in acute and chronic pain models. We show that AT-200, a high affinity nociceptin opioid receptor agonist with low efficacy at the mu opioid receptor, ameliorated chronic and hypoxia/reoxygenation-induced mechanical, thermal and deep tissue/musculoskeletal hyperalgesia in HbSS-BERK sickle mice. The antinociceptive effect of AT-200 was antagonized by SB-612111, a nociceptin opioid receptor antagonist, but not naloxone, a non-selective mu opioid receptor antagonist. Daily 7-day treatment with AT-200 did not develop tolerance and showed a sustained anti-nociceptive effect, which improved over time and led to reduced plasma serum amyloid protein, neuropeptides, inflammatory cytokines and mast cell activation in the periphery. These data suggest that AT-200 ameliorates pain in sickle mice via the nociceptin opioid receptor by reducing inflammation and mast cell activation without causing tolerance. Thus, nociceptin opioid receptor agonists are promising drugs for treating pain in sickle cell anemia. PMID:26294734

  16. Oleylphosphocholine (OlPC) arrests Cryptosporidium parvum growth in vitro and prevents lethal infection in interferon gamma receptor knock-out mice

    PubMed Central

    Sonzogni-Desautels, Karine; Renteria, Axel E.; Camargo, Fabio V.; Di Lenardo, Thomas Z.; Mikhail, Alexandre; Arrowood, Michael J.; Fortin, Anny; Ndao, Momar

    2015-01-01

    Cryptosporidium parvum is a species of protozoa that causes cryptosporidiosis, an intestinal disease affecting many mammals including humans. Typically, in healthy individuals, cryptosporidiosis is a self-limiting disease. However, C. parvum can cause a severe and persistent infection that can be life-threatening for immunocompromised individuals, such as AIDS patients. As there are no available treatments for these patients that can cure the disease, there is an urgent need to identify treatment options. We tested the anti-parasitic activity of the alkylphosphocholine oleylphosphocholine (OlPC), an analog of miltefosine, against C. parvum in in vitro and in vivo studies. In vitro experiments using C. parvum infected human ileocecal adenocarcinoma cells (HCT-8 cells) showed that OlPC has an EC50 of 18.84 nM. Moreover, no cell toxicity has been seen at concentrations ≤50 μM. C57BL/6 interferon gamma receptor knock-out mice, were infected by gavage with 4000 C. parvum oocysts on Day 0. Oral treatments, with OlPC, miltefosine, paromomycin or PBS, began on Day 3 post-infection for 10 days. Treatment with OlPC, at 40 mg/kg/day resulted in 100% survival, complete clearance of parasite in stools and a 99.9% parasite burden reduction in the intestines at Day 30. Doses of 30 and 20 mg/kg/day also demonstrated an increased survival rate and a dose-dependent parasite burden reduction. Mice treated with 10 mg/kg/day of miltefosine resulted in 50% survival at Day 30. In contrast, control mice, treated with PBS or 100 mg/kg/day of paromomycin, died or had to be euthanized between Days 6 and 13 due to severe illness. Results of parasite burden were obtained by qPCR and cross-validated by both flow cytometry of stool oocysts and histological sections of the ileum. Together, our results strongly support that OlPC represents a potential candidate for the treatment of C. parvum infections in immunocompromised patients. PMID:26441906

  17. Altered serotonin and dopamine metabolism in the CNS of serotonin 5-HT(1A) or 5-HT(1B) receptor knockout mice.

    PubMed

    Ase, A R; Reader, T A; Hen, R; Riad, M; Descarries, L

    2000-12-01

    Measurements of serotonin (5-HT), dopamine (DA), and noradrenaline, and of 5-HT and DA metabolites, were obtained by HPLC from 16 brain regions and the spinal cord of 5-HT(1A) or 5-HT(1B) knockout and wild-type mice of the 129/Sv strain. In 5-HT(1A) knockouts, 5-HT concentrations were unchanged throughout, but levels of 5-HT metabolites were higher than those of the wild type in dorsal/medial raphe nuclei, olfactory bulb, substantia nigra, and locus coeruleus. This was taken as an indication of increased 5-HT turnover, reflecting an augmented basal activity of midbrain raphe neurons and consequent increase in their somatodendritic and axon terminal release of 5-HT. It provided a likely explanation for the increased anxious-like behavior observed in 5-HT(1A) knockout mice. Concomitant increases in DA content and/or DA turnover were interpreted as the result of a disinhibition of DA, whereas increases in noradrenaline concentration in some territories of projection of the locus coeruleus could reflect a diminished activity of its neurons. In 5-HT(1B) knockouts, 5-HT concentrations were lower than those of the wild type in nucleus accumbens, locus coeruleus, spinal cord, and probably also several other territories of 5-HT innervation. A decrease in DA, associated with increased DA turnover, was measured in nucleus accumbens. These changes in 5-HT and DA metabolism were consistent with the increased aggressiveness and the supersensitivity to cocaine reported in 5-HT(1B) knockout mice. Thus, markedly different alterations in CNS monoamine metabolism may contribute to the opposite behavioral phenotypes of these two knockouts. PMID:11080193

  18. Role of ω-hydroxylase in adenosine-mediated aortic response through MAP kinase using A2A-receptor knockout mice.

    PubMed

    Ponnoth, Dovenia S; Nayeem, Mohammed A; Kunduri, Swati S; Tilley, Stephen L; Zeldin, Darryl C; Ledent, Catherine; Mustafa, S Jamal

    2012-02-15

    Previously, we have shown that A(2A) adenosine receptor (A(2A)AR) knockout mice (KO) have increased contraction to adenosine. The signaling mechanism(s) for A(2A)AR is still not fully understood. In this study, we hypothesize that, in the absence of A(2A)AR, ω-hydroxylase (Cyp4a) induces vasoconstriction through mitogen-activated protein kinase (MAPK) via upregulation of adenosine A(1) receptor (A(1)AR) and protein kinase C (PKC). Organ bath and Western blot experiments were done using isolated aorta from A(2A)KO and corresponding wild-type (WT) mice. Isolated aortic rings from WT and A(2A)KO mice were precontracted with submaximal dose of phenylephrine (10(-6) M), and concentration responses for selective A(1)AR, A(2A)AR agonists, angiotensin II and cytochrome P-450-epoxygenase, 20-hydroxyeicosatrienoic acid (20-HETE) PKC, PKC-α, and ERK1/2 inhibitors were obtained. 2-p-(2-Carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680, A(2A)AR agonist) induced concentration-dependent relaxation in WT, which was blocked by methylsulfonyl-propargyloxyphenylhexanamide (cytochrome P-450-epoxygenase inhibitor; 10(-5) M) and also with removal of endothelium. A(1) agonist, 2-chloro-N(6)-cyclopentyladenosine (CCPA) produced higher contraction in A(2A)KO aorta than WT (49.2 ± 8.5 vs. 27 ± 5.9% at 10(-6) M, P < 0.05). 20-HETE produced higher contraction in A(2A)KO than WT (50.6 ± 8.8 vs. 21.1 ± 3.3% at 10(-7) M, P < 0.05). Contraction to CCPA in WT and A(2A)KO aorta was inhibited by PD-98059 (p42/p44 MAPK inhibitor; 10(-6) M), chelerythrine chloride (nonselective PKC blocker; 10(-6) M), Gö-6976 (selective PKC-α inhibitor; 10(-7) M), and HET0016 (20-HETE inhibitor; 10(-5) M). Also, contraction to 20-HETE in WT and A(2A)KO aorta was inhibited by PD-98059 and Gö-6976. Western blot analysis indicated the upregulation of A(1)AR, Cyp4a, PKC-α, and phosphorylated-ERK1/2 in A(2A)KO compared with WT (P < 0.05), while expression of Cyp2c29 was

  19. Ligands for opioid and sigma-receptors improve cardiac electrical stability in rat models of post-infarction cardiosclerosis and stress.

    PubMed

    Lishmanov YuB; Maslov, L N; Naryzhnaya, N V; Tam, S W

    1999-01-01

    The effects of the extremely selective mu-opioid receptor agonist, [D-Arg2,Lys4]-dermorphin-(1-4)-amide (DALDA), the mu-opioid receptor agonist morphine, the mu/delta agonist D-Ala2, Leu5, Arg6-enkephalin (dalargin), the kappa-opioid receptor agonist spiradoline, and the sigma1-receptor antagonist DuP 734 on ventricular fibrillation threshold (VFT) was investigated in an experimental post-infarction cardiosclerosis model and an immobilization stress-induced model in rats. Both models produced a significant decrease in VFT. The postinfarction cardiosclerosis-induced decrease in VFT was significantly reversed by intravenous administration of dalargin (0.1 mg/kg), DALDA (0.1 mg/kg), or morphine HCl (1.5 mg/kg). Pretreatment with naloxone (0.2 mg/kg) completely eliminated the increase in cardiac electrical stability produced by DALDA. Both spiradoline (8 mg/kg, i.p.) and DuP 734 (1 mg/kg, i.p.) produced a significant increase in VFT in rats with post-infarction cardiosclerosis. This effect of spiradoline was blocked by nor-binaltorphimine. The immobilization stress-induced decrease in VFT was significantly reversed by administration of either DALDA, spiradoline or DuP 734. In conclusion, activation of either mu- or kappa1-opioid receptors or blockade of sigma1-receptors reversed the decrease in VFT in both cardiac compromised models. Since DALDA and dalargin essentially do not cross blood brain barriers, their effects on VFT may be mediated through peripheral mu-opioid receptors. PMID:10403501

  20. Regulation of opioid receptors by cocaine.

    PubMed

    Unterwald, E M

    2001-06-01

    Cocaine is a widely abused psychostimulant. Its direct actions include inhibition of dopamine, serotonin, and norepinephrine reuptake into presynaptic nerve terminals, thereby potentiating the actions of these transmitters in the synapse. A variety of studies have demonstrated that cocaine can also have profound effects on the endogenous opioid system. Compelling evidence points to the importance of mu opioid receptors in human cocaine addiction and craving. Animal studies support these findings and demonstrate that chronic cocaine administration can result in alterations in opioid receptor expression and function as measured by changes in critical signal transduction pathways. This chapter reviews studies on the regulation of opioid receptors as the result of exposure to cocaine. PMID:11458541

  1. Morphine-induced desensitization and down-regulation at mu-receptors in 7315C pituitary tumor cells

    SciTech Connect

    Puttfarcken, P.S.; Cox, B.M. )

    1989-01-01

    Pituitary 7315c tumor cells maintained in culture were treated with varying concentrations of morphine from 10 nM to 300 {mu}M, for periods of five or forty-eight hours. The ability of the mu-opioid receptor agonist, DAMGO, to inhibit forskolin-stimulated adenylyl cyclase in washed membrane preparations from the treated cells was compared with its activity in membranes from cells incubated in the absence of added morphine. In the same membrane preparations, the number and affinity of mu-opioid receptors was estimated by measurements of ({sup 3}H)diprenorphine binding. After 5 hr of treatment with morphine concentrations of 100 nM or higher, a significant reduction in inhibition of adenylyl cyclase by DAMGO was observed. Little further loss of agonist activity was observed when the incubations were extended to 48 hr. After 5 hr of morphine treatment, there was no change in either the number of receptors, or their affinity for ({sup 3}H)diprenorphine. However after 48 hr of morphine treatment, greater than 25% reductions in receptor number were apparent with morphine pretreatment concentrations of 10 {mu}M or higher. These results suggest that opioid tolerance in this system is primarily associated with a reduced ability of agonist-occupied receptor to activate the effector system. Receptor down-regulation was not necessary for loss of agonist response, although a reduction in receptor number occurred after exposure to high concentrations of morphine for periods longer than 5hr.

  2. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems.

    PubMed

    Toll, Lawrence; Bruchas, Michael R; Calo', Girolamo; Cox, Brian M; Zaveri, Nurulain T

    2016-04-01

    The NOP receptor (nociceptin/orphanin FQ opioid peptide receptor) is the most recently discovered member of the opioid receptor family and, together with its endogenous ligand, N/OFQ, make up the fourth members of the opioid receptor and opioid peptide family. Because of its more recent discovery, an understanding of the cellular and behavioral actions induced by NOP receptor activation are less well developed than for the other members of the opioid receptor family. All of these factors are important because NOP receptor activation has a clear modulatory role on mu opioid receptor-mediated actions and thereby affects opioid analgesia, tolerance development, and reward. In addition to opioid modulatory actions, NOP receptor activation has important effects on motor function and other physiologic processes. This review discusses how NOP pharmacology intersects, contrasts, and interacts with the mu opioid receptor in terms of tertiary structure and mechanism of receptor activation; location of receptors in the central nervous system; mechanisms of desensitization and downregulation; cellular actions; intracellular signal transduction pathways; and behavioral actions with respect to analgesia, tolerance, dependence, and reward. This is followed by a discussion of the agonists and antagonists that have most contributed to our current knowledge. Because NOP receptors are highly expressed in brain and spinal cord and NOP receptor activation sometimes synergizes with mu receptor-mediated actions and sometimes opposes them, an understanding of NOP receptor pharmacology in the context of these interactions with the opioid receptors will be crucial to the development of novel therapeutics that engage the NOP receptor. PMID:26956246

  3. The multiple facets of opioid receptor function: implications for addiction

    PubMed Central

    Lutz, Pierre-Eric; Kieffer, Brigitte L.

    2013-01-01

    Addiction is characterized by altered reward processing, disrupted emotional responses and poor decision-making. Beyond a central role in drug reward, increasing evidence indicate that opioid receptors are more generally involved in all these processes. Recent studies establish the mu opioid receptor as a main player in social reward, which attracts increasing attention in psychiatric research. There is growing interest in blocking the kappa opioid receptor to prevent relapse, and alleviate the negative affect of withdrawal. The delta opioid receptor emerges as a potent mood enhancer, whose involvement in addiction is less clear. All three opioid receptors are likely implicated in addiction-depression comorbidity, and understanding of their roles in cognitive deficits associated to drug abuse is only beginning. PMID:23453713

  4. Antitussive activity of Withania somnifera and opioid receptors.

    PubMed

    Nosálová, Gabriela; Sivová, Veronika; Ray, Bimalendu; Fraňová, Soňa; Ondrejka, Igor; Flešková, Dana

    2015-01-01

    Arabinogalactan is a polysaccharide isolated from the roots of the medicinal plant Withania somnifera L. It contains 65% arabinose and 18% galactose. The aim of the present study was to evaluate the antitussive activity of arabinogalactan in conscious, healthy adult guinea pigs and the role of the opioid pathway in the antitussive action. A polysaccharide extract was given orally in a dose of 50 mg/kg. Cough was induced by an aerosol of citric acid in a concentration 0.3 mol/L, generated by a jet nebulizer into a plethysmographic chamber. The intensity of cough response was defined as the number of cough efforts counted during a 3-min exposure to the aerosol. The major finding was that arabinogalactan clearly suppressed the cough reflex; the suppression was comparable with that of codeine that was taken as a reference drug. The involvement of the opioid system was tested with the use of a blood-brain barrier penetrable, naloxone hydrochloride, and non-penetrable, naloxone methiodide, to distinguish between the central and peripheral mu-opioid receptor pathways. Both opioid antagonists acted to reverse the arabinogalactan-induced cough suppression; the reversion was total over time with the latter antagonist. We failed to confirm the presence of a bronchodilating effect of the polysaccharide, which could be involved in its antitussive action. We conclude that the polysaccharide arabinogalactan from Withania somnifera has a distinct antitussive activity consisting of cough suppression and that this action involves the mu-opioid receptor pathways. PMID:25252908

  5. Activity of new NOP receptor ligands in a rat peripheral mononeuropathy model: Potentiation of Morphine anti-allodynic activity by NOP receptor antagonists

    PubMed Central

    Khroyan, Taline V.; Polgar, Willma E.; Orduna, Juan; Jiang, Faming; Olsen, Cris; Toll, Lawrence; Zaveri, Nurulain T.

    2009-01-01

    The effect of new NOP receptor agonists and antagonists in the rat chronic constriction injury model was investigated. Intraperitoneally administered NOP receptor agonist SR14150 and antagonists SR16430 and SR14148, had no effect on mechanical allodynia when given alone. The nonselective NOP/mu-opioid receptor agonist SR16435, however, produced an anti-allodynic response, similar to morphine and reversible by naloxone. Notably, co-administration of the NOP receptor antagonists potentiated the anti-allodynic activity of both morphine and SR16435. Increased levels of the NOP receptor are implicated in the reduced efficacy of morphine in neuropathic pain. Our results suggest the utility of NOP receptor antagonists for potentiating opioid efficacy in chronic pain. PMID:19285491

  6. Differential effects of exercise on brain opioid receptor binding and activation in rats.

    PubMed

    Arida, Ricardo Mario; Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Cavalheiro, Esper Abrão; Zavala-Tecuapetla, Cecilia; Brand, Serge; Rocha, Luisa

    2015-01-01

    Physical exercise stimulates the release of endogenous opioid peptides supposed to be responsible for changes in mood, anxiety, and performance. Exercise alters sensitivity to these effects that modify the efficacy at the opioid receptor. Although there is evidence that relates exercise to neuropeptide expression in the brain, the effects of exercise on opioid receptor binding and signal transduction mechanisms downstream of these receptors have not been explored. Here, we characterized the binding and G protein activation of mu opioid receptor, kappa opioid receptor or delta opioid receptor in several brain regions following acute (7 days) and chronic (30 days) exercise. As regards short- (acute) or long-term effects (chronic) of exercise, overall, higher opioid receptor binding was observed in acute-exercise animals and the opposite was found in the chronic-exercise animals. The binding of [(35) S]GTPγS under basal conditions (absence of agonists) was elevated in sensorimotor cortex and hippocampus, an effect more evident after chronic exercise. Divergence of findings was observed for mu opioid receptor, kappa opioid receptor, and delta opioid receptor receptor activation in our study. Our results support existing evidence of opioid receptor binding and G protein activation occurring differentially in brain regions in response to diverse exercise stimuli. We characterized the binding and G protein activation of mu, kappa, and delta opioid receptors in several brain regions following acute (7 days) and chronic (30 days) exercise. Higher opioid receptor binding was observed in the acute exercise animal group and opposite findings in the chronic exercise group. Higher G protein activation under basal conditions was noted in rats submitted to chronic exercise, as visible in the depicted pseudo-color autoradiograms. PMID:25330347

  7. Effects of D-4F on Vasodilation and Vessel Wall Thickness in Hypercholesterolemic LDL Receptor Null and LDL receptor/ApoA-I Double Knockout Mice on Western Diet

    PubMed Central

    Ou, Jingsong; Wang, Jingli; Xu, Hao; Ou, Zhijun; Sorci-Thomas, Mary G.; Jones, Deron W.; Signorino, Paul; Densmore, John C.; Kaul, Sushma; Oldham, Keith T.; Pritchard, Kirkwood A.

    2005-01-01

    Previously we showed L-4F, a novel apolipoprotein A-I (apoA-I) mimetic, improved vasodilation in two dissimilar models of vascular disease; hypercholesterolemic low-density lipoprotein (LDL) receptor null (Ldlr −/−) mice and transgenic sickle cell disease mice. Here we determine the mechanisms by which D-4F improves vasodilation and arterial wall thickness in hypercholesterolemic Ldlr −/− mice and Ldlr −/−/apoA-I null (apoA-I −/−), double knockout mice. Ldlr −/− and Ldlr −/−/apoA-I −/− mice were fed western diet (WD) ± D-4F. Oral D-4F restored endothelium- and eNOS-dependent vasodilation in direct relationship to duration of treatments and reduced wall thickness in as little as 2 weeks in vessels with pre-existing disease in Ldlr −/− mice. D-4F had no effect on total or HDL cholesterol concentrations but reduced proinflammatory HDL levels. D-4F had no effect on plasma myeloperoxidase (MPO) concentrations but reduced MPO association with apoA-I as well as 3-nitrotyrosine in apoA-I. D-4F increased endothelium- and eNOS-dependent vasodilation in Ldlr −/−/apoA-I −/− mice but did not reduce wall thickness as it had in Ldlr −/− mice. Vascular endothelial cells were treated with 22-hydroxycholesterol (22-OHC) ± L-4F. 22-OHC decreased nitric oxide (•NO) and increased superoxide anion (O2 •−) production and increased ABCA-1 and collagen expression. L-4F restored •NO and O2 •− balance, had little effect on ABCA-1 expression but reduced collagen expression. These data demonstrate that although D-4F restores vascular endothelial cell and eNOS function to increase vasodilation, HDL containing apoA-I, or at least some critical concentration of the anti-atherogenic lipoprotein, is required for D-4F to decrease vessel wall thickness. PMID:16224061

  8. In vivo SPECT and ex vivo autoradiographic brain imaging of the novel selective CB1 receptor antagonist radioligand [125I]SD7015 in CB1 knock-out and wildtype mouse.

    PubMed

    Máthé, Domokos; Horváth, Ildikó; Szigeti, Krisztián; Donohue, Sean R; Pike, Victor W; Jia, Zisheng; Ledent, Catherine; Palkovits, Miklós; Freund, Tamás F; Halldin, Christer; Gulyás, Balázs

    2013-02-01

    We aimed to evaluate the novel high-affinity and relatively lipophilic CB(1) receptor (CB(1)R) antagonist radioligand [(125)I]SD7015 for SPECT imaging of CB(1)Rs in vivo using the multiplexed multipinhole dedicated small animal SPECT/CT system, NanoSPECT/CT(PLUS) (Mediso, Budapest, Hungary), in knock-out CB(1) receptor knock-out (CB(1)R-/-) and wildtype mice. In order to exclude possible differences in cerebral blood flow between the two types of animals, HMPAO SPECT scans were performed, whereas in order to confirm the brain uptake differences of the radioligand between knock-out mice and wildtype mice, in vivo scans were complemented with ex vivo autoradiographic measurements using the brains of the same animals. With SPECT/CT imaging, we measured the brain uptake of radioactivity, using %SUV (% standardised uptake values) in CB(1)R-/- mice (n=3) and C57BL6 wildtype mice (n=7) under urethane anaesthesia after injecting [(125)I]SD7015 intravenously or intraperitoneally. The Brookhaven Laboratory mouse MRI atlas was fused to the SPECT/CT images by using a combination of rigid and non-rigid algorithms in the Mediso Fusion™ (Mediso, Budapest, Hungary) and VivoQuant (inviCRO, Boston, MA, USA) softwares. Phosphor imager plate autoradiography (ARG) was performed on 4 μm-thin cryostat sections of the excised brains. %SUV was 8.6±3.6 (average±SD) in CB(1)R-/- mice and 22.1±12.4 in wildtype mice between 2 and 4 h after injection (p<0.05). ARG of identically taken sections from wildtype mouse brain showed moderate radioactivity uptake when compared with the in vivo images, with a clear difference between grey matter and white matter, whereas ARG in CB(1)R(-/-) mice showed practically no radioactivity uptake. [(125)I]SD7015 enters the mouse brain in sufficient amount to enable SPECT imaging. Brain radioactivity distribution largely coincides with that of the known CB(1)R expression pattern in rodent brain. We conclude that [(125)I]SD7015 should be a useful SPECT

  9. In vivo SPECT and ex vivo autoradiographic brain imaging of the novel selective CB1 receptor antagonist radioligand [125I]SD7015 in CB1 knock-out and wildtype mouse

    PubMed Central

    Máthé, Domokos; Horváth, Ildikó; Szigeti, Krisztián; Donohue, Sean R.; Pike, Victor W.; Jia, Zisheng; Ledent, Catherine; Palkovits, Miklós; Freund, Tamás F.; Halldin, Christer; Gulyás, Balázs

    2014-01-01

    We aimed to evaluate the novel high-affinity and relatively lipophilic CB1 receptor (CB1R) antagonist radioligand [125I]SD7015 for SPECT imaging of CB1Rs in vivo using the multiplexed multipinhole dedicated small animal SPECT/CT system, NanoSPECT/CTPLUS (Mediso, Budapest, Hungary), in knock-out CB1 receptor knock-out (CB1R-/-) and wildtype mice. In order to exclude possible differences in cerebral blood flow between the two types of animals, HMPAO SPECT scans were performed, whereas in order to confirm the brain uptake differences of the radioligand between knock-out mice and wildtype mice, in vivo scans were complemented with ex vivo autoradiographic measurements using the brains of the same animals. With SPECT/CT imaging, we measured the brain uptake of radioactivity, using %SUV (% standardised uptake values) in CB1R-/- mice (n = 3) and C57BL6 wildtype mice (n = 7) under urethane anaesthesia after injecting [125I]SD7015 intravenously or intraperitoneally. The Brookhaven Laboratory mouse MRI atlas was fused to the SPECT/CT images by using a combination of rigid and non-rigid algorithms in the Mediso Fusion™ (Mediso, Budapest, Hungary) and VivoQuant (inviCRO, Boston, MA, USA) softwares. Phosphor imager plate autoradiography (ARG) was performed on 4 μm-thin cryostat sections of the excised brains. %SUV was 8.6 ± 3.6 (average ± SD) in CB1R-/- mice and 22.1 ± 12.4 in wildtype mice between 2 and 4 h after injection (p < 0.05). ARG of identically taken sections from wildtype mouse brain showed moderate radioactivity uptake when compared with the in vivo images, with a clear difference between grey matter and white matter, whereas ARG in CB1R(-/-) mice showed practically no radioactivity uptake. [125I]SD7015 enters the mouse brain in sufficient amount to enable SPECT imaging. Brain radioactivity distribution largely coincides with that of the known CB1R expression pattern in rodent brain. We conclude that [125I]SD7015 should be a useful SPECT radioligand for

  10. mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5

    PubMed Central

    Mock, Ulrike; Machowicz, Rafał; Hauber, Ilona; Horn, Stefan; Abramowski, Pierre; Berdien, Belinda; Hauber, Joachim; Fehse, Boris

    2015-01-01

    Homozygosity for a natural deletion variant of the HIV-coreceptor molecule CCR5, CCR5Δ32, confers resistance toward HIV infection. Allogeneic stem cell transplantation from a CCR5Δ32-homozygous donor has resulted in the first cure from HIV (‘Berlin patient’). Based thereon, genetic disruption of CCR5 using designer nucleases was proposed as a promising HIV gene-therapy approach. Here we introduce a novel TAL-effector nuclease, CCR5-Uco-TALEN that can be efficiently delivered into T cells by mRNA electroporation, a gentle and truly transient gene-transfer technique. CCR5-Uco-TALEN mediated high-rate CCR5 knockout (>90% in PM1 and >50% in primary T cells) combined with low off-target activity, as assessed by flow cytometry, next-generation sequencing and a newly devised, very convenient gene-editing frequency digital-PCR (GEF-dPCR). GEF-dPCR facilitates simultaneous detection of wild-type and gene-edited alleles with remarkable sensitivity and accuracy as shown for the CCR5 on-target and CCR2 off-target loci. CCR5-edited cells were protected from infection with HIV-derived lentiviral vectors, but also with the wild-type CCR5-tropic HIV-1BaL strain. Long-term exposure to HIV-1BaL resulted in almost complete suppression of viral replication and selection of CCR5-gene edited T cells. In conclusion, we have developed a novel TALEN for the targeted, high-efficiency knockout of CCR5 and a useful dPCR-based gene-editing detection method. PMID:25964300

  11. Mechanisms in Knockout Reactions

    NASA Astrophysics Data System (ADS)

    Bazin, D.; Charity, R. J.; de Souza, R. T.; Famiano, M. A.; Gade, A.; Henzl, V.; Henzlova, D.; Hudan, S.; Lee, J.; Lukyanov, S.; Lynch, W. G.; McDaniel, S.; Mocko, M.; Obertelli, A.; Rogers, A. M.; Sobotka, L. G.; Terry, J. R.; Tostevin, J. A.; Tsang, M. B.; Wallace, M. S.

    2009-06-01

    We report the first detailed study of the relative importance of the stripping and diffraction mechanisms involved in nucleon knockout reactions, by the use of a coincidence measurement of the residue and fast proton following one-proton knockout reactions. The measurements used the S800 spectrograph in combination with the HiRA detector array at the NSCL. Results for the reactions Be9(C9,B8+X)Y and Be9(B8,Be7+X)Y are presented and compared with theoretical predictions for the two reaction mechanisms calculated using the eikonal model. The data show a clear distinction between the stripping and diffraction mechanisms and the measured relative proportions are very well reproduced by the reaction theory. This agreement adds support to the results of knockout reaction analyses and their applications to the spectroscopy of rare isotopes.

  12. Specific Activation of A3, A2A and A1 Adenosine Receptors in CD73-Knockout Mice Affects B16F10 Melanoma Growth, Neovascularization, Angiogenesis and Macrophage Infiltration

    PubMed Central

    Koszałka, Patrycja; Gołuńska, Monika; Urban, Aleksandra; Stasiłojć, Grzegorz; Stanisławowski, Marcin; Majewski, Marceli; Składanowski, Andrzej C.; Bigda, Jacek

    2016-01-01

    CD73 (ecto-5'-nucleotidase), a cell surface enzyme hydrolyzing AMP to adenosine, was lately demonstrated to play a direct role in tumor progression including regulation of tumor vascularization. It was also shown to stimulate tumor macrophage infiltration. Interstitial adenosine, accumulating in solid tumors due to CD73 enzymatic activity, is recognized as a main mediator regulating the production of pro- and anti-angiogenic factors, but the engagement of specific adenosine receptors in tumor progression in vivo is still poorly researched. We have analyzed the role of high affinity adenosine receptors A1, A2A, and A3 in B16F10 melanoma progression using specific agonists (CCPA, CGS-21680 and IB-MECA, respectively). We limited endogenous extracellular adenosine background using CD73 knockout mice treated with CD73 chemical inhibitor, AOPCP (adenosine α,β-methylene 5’-diphosphate). Activation of any adenosine receptor significantly inhibited B16F10 melanoma growth but only at its early stage. At 14th day of growth, the decrease in tumor neovascularization and MAPK pathway activation induced by CD73 depletion was reversed by all agonists. Activation of A1AR primarily increased angiogenic activation measured by expression of VEGF-R2 on tumor blood vessels. However, mainly A3AR activation increased both the microvessel density and expression of pro-angiogenic factors. All agonists induced significant increase in macrophage tumor infiltration, with IB-MECA being most effective. This effect was accompanied by substantial changes in cytokines regulating macrophage polarization between pro-inflammatory and pro-angiogenic phenotype. Our results demonstrate an evidence that each of the analyzed receptors has a specific role in the stimulation of tumor angiogenesis and confirm significantly more multifaceted role of adenosine in its regulation than was already observed. They also reveal previously unexplored consequences to extracellular adenosine signaling depletion in

  13. D2 dopamine receptors colocalize regulator of G-protein signaling 9-2 (RGS9-2) via the RGS9 DEP domain, and RGS9 knock-out mice develop dyskinesias associated with dopamine pathways.

    PubMed

    Kovoor, Abraham; Seyffarth, Petra; Ebert, Jana; Barghshoon, Sami; Chen, Ching-Kang; Schwarz, Sigrid; Axelrod, Jeffrey D; Cheyette, Benjamin N R; Simon, Melvin I; Lester, Henry A; Schwarz, Johannes

    2005-02-23

    Regulator of G-protein signaling 9-2 (RGS9-2), a member of the RGS family of G GTPase accelerating proteins, is expressed specifically in the striatum, which participates in antipsychotic-induced tardive dyskinesia and in levodopa-induced dyskinesia. We report that RGS9 knock-out mice develop abnormal involuntary movements when inhibition of dopaminergic transmission is followed by activation of D2-like dopamine receptors (DRs). These abnormal movements resemble drug-induced dyskinesia more closely than other rodent models. Recordings from striatal neurons of these mice establish that activation of D2-like DRs abnormally inhibits glutamate-elicited currents. We show that RGS9-2, via its DEP domain (for Disheveled, EGL-10, Pleckstrin homology), colocalizes with D2DRs when coexpressed in mammalian cells. Recordings from oocytes coexpressing D2DR or the m2 muscarinic receptor and G-protein-gated inward rectifier potassium channels show that RGS9-2, via its DEP domain, preferentially accelerates the termination of D2DR signals. Thus, alterations in RGS9-2 may be a key factor in the pathway leading from D2DRs to the side effects associated with the treatment both of psychoses and Parkinson's disease. PMID:15728856

  14. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    SciTech Connect

    Ryu, Min Sook; Woo, Min-Yeong; Kwon, Daeho; Hong, Allen E.; Song, Kye Yong; Park, Sun; Lim, In Kyoung

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.

  15. Behavioral effects of a synthetic agonist selective for nociceptin/orphanin FQ peptide receptors in monkeys.

    PubMed

    Ko, Mei-Chuan; Woods, James H; Fantegrossi, William E; Galuska, Chad M; Wichmann, Jürgen; Prinssen, Eric P

    2009-08-01

    Behavioral effects of a nonpeptidic NOP (nociceptin/orphanin FQ Peptide) receptor agonist, Ro 64-6198, have not been studied in primate species. The aim of the study was to verify the receptor mechanism underlying the behavioral effects of Ro 64-6198 and to systematically compare behavioral effects of Ro 64-6198 with those of a mu-opioid receptor agonist, alfentanil, in monkeys. Both Ro 64-6198 (0.001-0.06 mg/kg, s.c.) and alfentanil (0.001-0.06 mg/kg, s.c.) produced antinociception against an acute noxious stimulus (50 degrees C water) and capsaicin-induced allodynia. An NOP receptor antagonist, J-113397 (0.01-0.1 mg/kg, s.c.), dose-dependently produced rightward shifts of the dose-response curve of Ro 64-6198-induced antinociception. The apparent pA(2) value of J-113397 was 8.0. Antagonist studies using J-113397 and naltrexone revealed that Ro 64-6198 produced NOP receptor-mediated antinociception independent of mu-opioid receptors. In addition, alfentanil dose-dependently produced respiratory depression and itch/scratching responses, but antinociceptive doses of Ro 64-6198 did not produce such effects. More important, Ro 64-6198 did not produce reinforcing effects comparable with those of alfentanil, cocaine, or methohexital under self-administration procedures in monkeys. These results provide the first functional evidence that the activation of NOP receptors produces antinociception without reinforcing effects in primates. Non-peptidic NOP receptor agonists may have therapeutic value as novel analgesics without abuse liability in humans. PMID:19279568

  16. Mechanisms in knockout reactions

    NASA Astrophysics Data System (ADS)

    Bazin, D.; Charity, R. J.; de Souza, R. T.; Famiano, M. A.; Gade, A.; Henzl, V.; Henzlova, D.; Hudan, S.; Lee, J.; Lukyanov, S.; Lynch, W. G.; McDaniel, S.; Mocko, M.; Obertelli, A.; Rogers, A. M.; Sobotka, L. G.; Terry, J. R.; Tostevin, J. A.; Tsang, M. B.; Wallace, M. S.

    2009-10-01

    We report on the first detailed study of the mechanisms involved in knockout reactions, via a coincidence measurement of the residue and fast proton in one-proton knockout reactions, using the S800 spectrograph in combination with the HiRA detector array at the NSCL. Results on the reactions ^9Be(^9C,^8B+X)Y and ^9Be(^8B,^7Be+X)Y are presented. They are compared with theoretical predictions for both the diffraction (elastic breakup) and stripping (inelastic breakup) reaction mechanisms, as calculated in the eikonal model. The data shows a clear distinction between the two reaction mechanisms, and the observed respective proportions are very well reproduced by the reaction theory. This agreement supports the results of knockout reaction analyses and their applications to the spectroscopy of rare isotopes. In particular, this add considerable support to the use of the eikonal model as a quantitative tool, able, for example, to determine single-particle spectroscopic strengths in rare isotopes.

  17. Prolonged Monoacylglycerol Lipase Blockade Causes Equivalent Cannabinoid Receptor Type 1 Receptor–Mediated Adaptations in Fatty Acid Amide Hydrolase Wild-Type and Knockout Mice

    PubMed Central

    Kinsey, Steven G.; Ignatowska-Jankowska, Bogna; Ramesh, Divya; Abdullah, Rehab A.; Tao, Qing; Booker, Lamont; Long, Jonathan Z.; Selley, Dana E.; Cravatt, Benjamin F.; Lichtman, Aron H.

    2014-01-01

    Complementary genetic and pharmacological approaches to inhibit monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), the primary hydrolytic enzymes of the respective endogenous cannabinoids 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine, enable the exploration of potential therapeutic applications and physiologic roles of these enzymes. Complete and simultaneous inhibition of both FAAH and MAGL produces greatly enhanced cannabimimetic responses, including increased antinociception, and other cannabimimetic effects, far beyond those seen with inhibition of either enzyme alone. While cannabinoid receptor type 1 (CB1) function is maintained following chronic FAAH inactivation, prolonged excessive elevation of brain 2-AG levels, via MAGL inhibition, elicits both behavioral and molecular signs of cannabinoid tolerance and dependence. Here, we evaluated the consequences of a high dose of the MAGL inhibitor JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate; 40 mg/kg] given acutely or for 6 days in FAAH(−/−) and (+/+) mice. While acute administration of JZL184 to FAAH(−/−) mice enhanced the magnitude of a subset of cannabimimetic responses, repeated JZL184 treatment led to tolerance to its antinociceptive effects, cross-tolerance to the pharmacological effects of Δ9-tetrahydrocannabinol, decreases in CB1 receptor agonist–stimulated guanosine 5′-O-(3-[35S]thio)triphosphate binding, and dependence as indicated by rimonabant-precipitated withdrawal behaviors, regardless of genotype. Together, these data suggest that simultaneous elevation of both endocannabinoids elicits enhanced cannabimimetic activity but MAGL inhibition drives CB1 receptor functional tolerance and cannabinoid dependence. PMID:24849924

  18. Proestrous compared to diestrous wildtype, but not estrogen receptor beta knockout, mice have better performance in the spontaneous alternation and object recognition tasks and reduced anxiety-like behavior in the elevated plus and mirror maze

    PubMed Central

    Walf, Alicia A.; Koonce, Carolyn; Manley, Kevin; Frye, Cheryl A.

    2008-01-01

    17β-Estradiol (E2) may influence cognitive and/or affective behavior in part via the β isoform of the estrogen receptor (ERβ). Endocrine status and behavior in cognitive (object recognition, T-maze), anxiety (open field, elevated plus maze, mirror maze, emergence), and motor/coordination (rotarod, activity chamber) tasks of proestrous and diestrous wildtype (WT) and ERβ knockout (βERKO) mice was examined. Proestrous (WT or βERKO), versus diestrous, mice had higher E2 and progestin levels in plasma, hippocampus, and cortex. The only effect of genotype on hormone levels was for corticosterone, such that βERKO mice had higher concentrations of corticosterone than did WT mice. Proestrous WT, but not βERKO, mice had improved performance in the object recognition (greater percentage of time with novel object) and T-maze tasks (greater percentage of spontaneous alternations) and less anxiety-like behavior in the plus maze (increased duration on open arms) and mirror chamber task (increased duration in mirror) than did diestrous mice. This pattern was not seen in the rotarod, open field, or activity monitor, suggesting effects may be specific to affective and cognitive behavior, rather than motor behavior/coordination. Thus, enhanced performance in cognitive tasks and anti-anxiety-like behavior of proestrous mice may require actions of ERβ in the hippocampus and/or cortex. PMID:18926853

  19. Immunization of knock-out α/β interferon receptor mice against lethal bluetongue infection with a BoHV-4-based vector expressing BTV-8 VP2 antigen.

    PubMed

    Franceschi, Valentina; Capocefalo, Antonio; Calvo-Pinilla, Eva; Redaelli, Marco; Mucignat-Caretta, Carla; Mertens, Peter; Ortego, Javier; Donofrio, Gaetano

    2011-04-01

    New effective tools for vaccine strategies are necessary to limit the spread of bluetongue, an insect-transmitted viral disease of domestic and wild ruminants. In the present study, BoHV-4-based vector cloned as a bacterial artificial chromosome (BAC) was engineered to express the bluetongue virus (BTV) immune-dominant glycoprotein VP2 provided of a heterologous signal peptide to its amino terminal and a trans-membrane domain to its carboxyl terminal (IgK-VP2gDtm), to allow the VP2 expression targeting to the cell membrane fraction. Based on adult α/β interferon receptor knockout (IFNAR(-/-)) mice, a newly generated bluetongue laboratory animal model, a pre-challenge experiment was performed to test BoHV-4 safety on such immune-compromised animal. BoHV-4 infected IFNAR(-/-) mice did not show clinical signs even following the inoculation of BoHV-4 intra-cerebrally, although many areas of the brain got transduced. IFNAR(-/-) mice intraperitoneally inoculated twice with BoHV-4-A-IgK-VP2gDtm at different time points developed serum neutralizing antibodies against BTV and showed a strongly reduced viremia and a longer survival time when challenged with a lethal dose of BTV-8. The data acquired in this pilot study validate BoHV-4-based vector as a safe and effective heterologous antigen carrier/producer for the formulation of enhanced recombinant immunogens for the vaccination against lethal bluetongue. PMID:21320537

  20. Alterations of gene expression of sodium channels in dorsal root ganglion neurons of estrogen receptor knockout (ERKO) mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).

    PubMed

    Ding, Haixia; Wang, Qiang; Liu, Jingli; Qian, Wenyi; Wang, Wenjuan; Wang, Jun; Gao, Rong; Xiao, Hang

    2012-08-01

    Estrogen receptors (ERα and ERβ) mediate the neuroprotection of estrogens against MPTP-induced striatal dopamine (DA) depletion. Pain is an important and distressing symptom in Parkinson's disease (PD). Voltage-gated sodium channels in sensory neurons are involved in the development of neuropathic pain. In this study, MPTP caused changes in nociception and alterations of gene expression of voltage-gated sodium channels in dorsal root ganglion (DRG) neurons in ER knockout (ERKO) mice were investigated. We found that administration of MPTP (11 mg/kg) to WT mice led to an extensive depletion of DA and its two metabolites, αERKO mice were observed to be more susceptible to MPTP toxicity than βERKO or WT mice. In addition, we found that the mRNA levels of TTX-S and TTX-R sodium channel subtypes were differentially affected in MPTP-treated WT animals. The MPTP-induced up-regulation of Nav1.1 and Nav1.9, down-regulation of Nav1.6 in DRG neurons may be through ERβ, up-regulation of Nav1.7 and down-regulation of Nav1.8 are dependent on both ERα and ERβ. Therefore, the MPTP-induced alterations of gene expression of sodium channels in DRG neurons could be an important mechanism to affect excitability and nociceptive thresholds, and the ERs appear to play a role in nociception in PD. PMID:22371119

  1. TRAIL-Death Receptor 4 Signaling via Lysosome Fusion and Membrane Raft Clustering In Coronary Arterial Endothelial Cells: Evidence from ASM Knockout Mice

    PubMed Central

    Li, Xiang; Han, Wei-Qing; Boini, Krishna M.; Xia, Min; Zhang, Yang; Li, Pin-Lan

    2012-01-01

    Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) and its receptor death receptor 4 (DR4) have been implicated in the development of endothelial dysfunction and atherosclerosis. However, the signaling mechanism mediating DR4 activation and leading to endothelial injury remains unclear. We recently demonstrated that ceramide production via hydrolysis of membrane sphingomyelin by acid sphingomyelinase (ASM) results in membrane raft (MRs) clustering and formation of important redox signaling platforms, which play a crucial role in amplifying redox signaling in endothelial cells leading to endothelial dysfunction. The present study aims to investigate whether TRAIL triggers MR clustering via lysosome fusion and ASM activation, thereby conducting transmembrane redox signaling and changing endothelial function. Using confocal microscopy, we found that TRAIL induced MR clustering and its co-localization with DR4 in coronary arterial endothelial cells (CAECs) isolated from wild-type (Smpd1+/+) mice. Further, TRAIL triggered ASM translocation, ceramide production and NADPH oxidase aggregation in MR clusters in Smpd1+/+ CAECs, whereas these observations were not found in Smpd1−/− CAECs. Moreover, ASM deficiency reduced TRAIL-induced O2−· production in CAECs and abolished TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries. By measuring fluorescence resonance energy transfer (FRET), we found that Lamp-1 (lysosome membrane marker protein) and ganglioside GM1 (MR marker) were trafficking together in Smpd1+/+ CAECs, which was absent in Smpd1−/− CAECs. Consistently, fluorescence imaging of living cells with specific lysosome probes demonstrated that TRAIL-induced lysosome fusion with membrane was also absent in Smpd1−/− CAECs. Taken together, these results suggest that ASM is essential for TRAIL-induced lysosomal trafficking and fusion with membrane and formation of MR redox signaling platforms, which may

  2. Double P2X2/P2X3 Purinergic Receptor Knockout Mice Do Not Taste NaCl or the Artificial Sweetener SC45647

    PubMed Central

    Eddy, Meghan C.; Eschle, Benjamin K.; Barrows, Jennell; Hallock, Robert M.; Finger, Thomas E.

    2009-01-01

    The P2X ionotropic purinergic receptors, P2X2 and P2X3, are essential for transmission of taste information from taste buds to the gustatory nerves. Mice lacking both P2X2 and P2X3 purinergic receptors (P2X2/P2X3Dbl−/−) exhibit no taste-evoked activity in the chorda tympani and glossopharyngeal nerves when stimulated with taste stimuli from any of the 5 classical taste quality groups (salt, sweet, sour, bitter, and umami) nor do the mice show taste preferences for sweet or umami, or avoidance of bitter substances (Finger et al. 2005. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science. 310[5753]:1495–1499). Here, we compare the ability of P2X2/P2X3Dbl−/− mice and P2X2/P2X3Dbl+/+ wild-type (WT) mice to detect NaCl in brief-access tests and conditioned aversion paradigms. Brief-access testing with NaCl revealed that whereas WT mice decrease licking at 300 mM and above, the P2X2/P2X3Dbl−/− mice do not show any change in lick rates. In conditioned aversion tests, P2X2/P2X3Dbl−/− mice did not develop a learned aversion to NaCl or the artificial sweetener SC45647, both of which are easily avoided by conditioned WT mice. The inability of P2X2/P2X3Dbl−/− mice to show avoidance of these taste stimuli was not due to an inability to learn the task because both WT and P2X2/P2X3Dbl−/− mice learned to avoid a combination of SC45647 and amyl acetate (an odor cue). These data suggest that P2X2/P2X3Dbl−/− mice are unable to respond to NaCl or SC45647 as taste stimuli, mirroring the lack of gustatory nerve responses to these substances. PMID:19833661

  3. Activation of IKK/NF-κB provokes renal inflammatory responses in guanylyl cyclase/natriuretic peptide receptor-A gene-knockout mice

    PubMed Central

    Das, Subhankar; Periyasamy, Ramu

    2012-01-01

    The present study was aimed at determining the consequences of the disruption of guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) gene (Npr1) on proinflammatory responses of nuclear factor kappa B, inhibitory kappa B kinase, and inhibitory kappa B alpha (NF-κB, IKK, IκBα) in the kidneys of mutant mice. The results showed that the disruption of Npr1 enhanced the renal NF-κB binding activity by 3.8-fold in 0-copy (−/−) mice compared with 2-copy (+/+) mice. In parallel, IKK activity and IκBα protein phosphorylation were increased by 8- and 11-fold, respectively, in the kidneys of 0-copy mice compared with wild-type mice. Interestingly, IκBα was reduced by 80% and the expression of proinflammatory cytokines and renal fibrosis were significantly enhanced in 0-copy mice than 2-copy mice. Treatment of 0-copy mice with NF-κB inhibitors andrographolide, pyrrolidine dithiocarbamate, and etanercept showed a substantial reduction in renal fibrosis, attenuation of proinflammatory cytokines gene expression, and significantly reduced IKK activity and IkBα phosphorylation. These findings indicate that the systemic disruption of Npr1 activates the renal NF-κB pathways in 0-copy mice, which transactivates the expression of various proinflammatory cytokines to initiate renal remodeling; however, inhibition of NF-κB pathway repairs the abnormal renal pathology in mutant mice. PMID:22318993

  4. Interactions between hepatic Mrp4 and Sult2a as revealed by the constitutive androstane receptor and Mrp4 knockout mice.

    PubMed

    Assem, Mahfoud; Schuetz, Erin G; Leggas, Markos; Sun, Daxi; Yasuda, Kazuto; Reid, Glen; Zelcer, Noam; Adachi, Masashi; Strom, Stephen; Evans, Ronald M; Moore, David D; Borst, Piet; Schuetz, John D

    2004-05-21

    The ABC transporter, Mrp4, transports the sulfated steroid DHEA-s, and sulfated bile acids interact with Mrp4 with high affinity. Hepatic Mrp4 levels are low, but increase under cholestatic conditions. We therefore inferred that up-regulation of Mrp4 during cholestasis is a compensatory mechanism to protect the liver from accumulation of hydrophobic bile acids. We determined that the nuclear receptor CAR is required to coordinately up-regulate hepatic expression of Mrp4 and an enzyme known to sulfate hydroxy-bile acids and steroids, Sult2a1. CAR activators increased Mrp4 and Sult2a1 expression in primary human hepatocytes and HepG2, a human liver cell line. Sult2a1 was down-regulated in Mrp4-null mice, further indicating an inter-relation between Mrp4 and Sult2a1 gene expression. Based on the hydrophilic nature of sulfated bile acids and the Mrp4 capability to transport sulfated steroids, our findings suggest that Mrp4 and Sult2a1 participate in an integrated pathway mediating elimination of sulfated steroid and bile acid metabolites from the liver. PMID:15004017

  5. Activation of G protein by opioid receptors: role of receptor number and G-protein concentration.

    PubMed

    Remmers, A E; Clark, M J; Alt, A; Medzihradsky, F; Woods, J H; Traynor, J R

    2000-05-19

    The collision-coupling model for receptor-G-protein interaction predicts that the rate of G-protein activation is dependent on receptor density, but not G-protein levels. C6 cells expressing mu- or delta-opioid receptors, or SH-SY5Y cells, were treated with beta-funaltrexamine (mu) or naltrindole-5'-isothiocyanate (delta) to decrease receptor number. The time course of full or partial agonist-stimulated ¿35SGTPgammaS binding did not vary in C6 cell membranes containing <1-25 pmol/mg mu-opioid receptor, or 1. 4-4.3 pmol/mg delta-opioid receptor, or in SHSY5Y cells containing 0. 16-0.39 pmol/mg receptor. The association of ¿35SGTPgammaS binding was faster in membranes from C6mu cells than from C6delta cells. A 10-fold reduction in functional G-protein, following pertussis toxin treatment, lowered the maximal level of ¿35SGTPgammaS binding but not the association rate. These data indicate a compartmentalization of opioid receptors and G protein at the cell membrane. PMID:10822058

  6. Effect of long-term ingestion of weakly oxidised flaxseed oil on biomarkers of oxidative stress in LDL-receptor knockout mice.

    PubMed

    Nogueira, M S; Kessuane, M C; Lobo Ladd, A A B; Lobo Ladd, F V; Cogliati, B; Castro, I A

    2016-07-01

    The effect of oxidised fatty acids on atherosclerosis progression is controversial. Thus, our objective was to evaluate the effect of long-term consumption of weakly oxidised PUFA from flaxseed oil on oxidative stress biomarkers of LDL-receptor(-/-) mice. To test our hypothesis, mice were separated into three groups. The first group received a high-fat diet containing fresh flaxseed oil (CONT-), the second was fed the same diet prepared using heated flaxseed oil (OXID), and the third group received the same diet containing fresh flaxseed oil and had diabetes induced by streptozotocin (CONT+). Oxidative stress, aortic parameters and non-alcoholic fatty liver disease were assessed. After 3 months, plasma lipid profile, glucose levels, body weight, energy intake and dietary intake did not differ among groups. Likewise, oxidative stress, plasma malondialdehyde (MDA), hepatic MDA expressed as nmol/mg portion (ptn) and antioxidant enzymes did not differ among the groups. Hepatic linoleic acid, α-linolenic acid, arachidonic acid and EPA acid declined in the OXID and CONT+ groups. Aortic wall thickness, lumen and diameter increased only in the OXID group. OXID and CONT+ groups exhibited higher concentrations of MDA, expressed as μmol/mg ptn per %PUFA, when compared with the CONT- group. Our results suggest that ingestion of oxidised flaxseed oil increases hepatic MDA concentration and is potentially pro-atherogenic. In addition, the mean MDA value observed in all groups was similar to those reported in other studies that used xenobiotics as oxidative stress inducers. Thus, the diet applied in this study represents an interesting model for further research involving antioxidants. PMID:27197628

  7. Effects of chemokine receptor signalling on cognition-like, emotion-like and sociability behaviours of CCR6 and CCR7 knockout mice.

    PubMed

    Jaehne, E J; Baune, B T

    2014-03-15

    Inflammation is regarded as an important mechanism of neuropsychiatric disorders. Chemokines, which are a part of the immune system, have effects on various aspects of brain function, but little is known about their effects on behaviour. We have compared the cognition-like behaviour (learning and spatial memory) of CCR6(-/-) and CCR7(-/-) mice with wild type (WT) C57BL/6 mice, in the Barnes maze, as well as a range of other behaviours, including exploratory, anxiety and depression-like behaviour, using a battery of tests. Levels of cytokines TNF-α, IL-1β and IL-6 were also measured. In the Barnes maze, CCR7(-/-) mice were shown to take longer to learn the location of the escape box on the 1st of 4 days of training. In the behavioural battery, CCR6(-/-) mice showed higher locomotor activity and lower anxiety in the open field test, and a lack of preference for social novelty in a sociability test. CCR7(-/-) mice behaved much like WT mice, although showed higher anxiety in Elevated Zero Maze. While baseline saccharin preference in a 2-bottle choice test, a test for anhedonia depression-like behaviour, was equal in all strains at baseline, weekly tests showed that both CCR6(-/-) and CCR7(-/-) mice developed a decreased preference for saccharin compared to WT over time. There were no differences between strains in any of the cytokines measured. These results suggest that chemokine receptors may play a role in cognition and learning behaviour, as well as anxiety and other behaviours, although the biological mechanisms are still unclear. PMID:24333375

  8. Gene-specific alterations of hepatic nuclear receptor regulated gene expression by ligand activation or hepatocyte-selective knockout inhibition of RXRα signaling during inflammation

    PubMed Central

    Kosters, Astrid; Tian, Feng; Wan, Yvonne Yu-Jie; Karpen, Saul J.

    2013-01-01

    Background Inflammation leads to transcriptional downregulation of many hepatic genes, particulary those activated by RXRα-heterodimers. Inflammation-mediated reduction of nuclear RXRα levels is a main factor in reduced nuclear receptor (NR)–regulated hepatic gene expression, eventually leading to cholestasis and liver damage. Aim To investigate roles for RXRα in hepatic gene expression during inflammation, using two complementary mouse models: ligand–activation of RXRα, and in mice expressing hepatocyte-specific expression of RXRα missing its DNA-binding-domain (DBD; hs-RxrαΔex4−/−) Methods To activate RXRα, mice were gavage-fed with LG268 or vehicle for 5 days. To inhibit RXRα function, hs-RxrαΔex4−/− were used. All mice were IP-injected with LPS or saline for 16 hrs prior to analysis of hepatic RNA, protein and NR-DNA binding. Results LG268-treatment attenuated the LPS-mediated reductions of several RXRα-regulated genes, coinciding with maintained RXRα occupancy in both Bsep and Ostβ promoters. Lacking full hepatocyte-RXRα function (hs-RxrαΔex4−/− mice) led to enhancement of LPS-mediated changes in gene expression, but surprisingly, maintenance of RNA levels of some RXRα-regulated genes. Investigations revealed that Hs-Rxrα−/− hepatocytes expressed an internally-truncated, ~44 kDa, RXRα-form. DNA-binding capacity of NR-heterodimers was equivalent in wt and hs-RxrαΔex4−/− livers, but reduced by LPS in both. ChIP-QPCR revealed reduced RXRα occupancy to the Bsep RXRα:FXR site was reduced, but not absent, in hs-RxrαΔex4−/− livers. Conclusions There are differential regulatory roles for hepatic RXRα, both in basal and inflammatory states, suggesting new and complex multi-domain roles for RXRα in regulating hepatic gene expression. Moreover, there is an unexpected non-obligate role for the DBD of RXRα. PMID:22098603

  9. Scalable Production of Highly Sensitive Nanosensors Based on Graphene Functionalized with a Designed G Protein-Coupled Receptor

    NASA Astrophysics Data System (ADS)

    Lerner, Mitchell B.; Matsunaga, Felipe; Han, Gang Hee; Hong, Sung Ju; Xi, Jin; Crook, Alexander; Perez-Aguilar, Jose Manuel; Park, Yung Woo; Saven, Jeffery G.; Liu, Renyu; Johnson, A. T. Charlie

    2014-05-01

    We have developed a novel, all-electronic biosensor for opioids that consists of an engineered mu opioid receptor protein, with high binding affinity for opioids, chemically bonded to a graphene field-effect transistor to read out ligand binding. A variant of the receptor protein that provided chemical recognition was computationally redesigned to enhance its solubility and stability in an aqueous environment. A shadow mask process was developed to fabricate arrays of hundreds of graphene transistors with average mobility of ~1500 cm2 V-1 s-1 and yield exceeding 98%. The biosensor exhibits high sensitivity and selectivity for the target naltrexone, an opioid receptor antagonist, with a detection limit of 10 pg/mL.

  10. The antinociceptive effects of ferulic acid on neuropathic pain: involvement of descending monoaminergic system and opioid receptors.

    PubMed

    Xu, Ying; Lin, Dan; Yu, Xuefeng; Xie, Xupei; Wang, Liqun; Lian, Lejing; Fei, Ning; Chen, Jie; Zhu, Naping; Wang, Gang; Huang, Xianfeng; Pan, Jianchun

    2016-04-12

    Neuropathic pain can be considered as a form of chronic stress that may share common neuropathological mechanism between pain and stress-related depression and respond to similar treatment. Ferulic acid (FA) is a major active component of angelica sinensis and has been reported to exert antidepressant-like effects; however, it remains unknown whether FA ameliorate chronic constriction injury (CCI)-induced neuropathic pain and the involvement of descending monoaminergic system and opioid receptors. Chronic treatment with FA (20, 40 and 80 mg/kg) ameliorated mechanical allodynia and thermal hyperalgesia in von Frey hair and hot plate tasks, accompanied by increasing spinal noradrenaline (NA) and serotonin (5-HT) levels. Subsequent study suggested that treatment of CCI animals with 40 and 80 mg/kg FA also inhibited spinal MAO-A levels. FA's effects on mechanical allodynia or thermal hyperalgesiawas blocked by 6-hydroxydopamine (6-OHDA) or p-chlorophenylalanine (PCPA) via pharmacological depletion of spinal noradrenaline or serotonin. Moreover, the anti-allodynic action of FA on mechanical stimuli was prevented by pre-treatment with beta2-adrenoceptor antagonist ICI 118,551, or by the delta-opioid receptor antagonist naltrindole. While the anti-hyperalgesia on thermal stimuli induced by FA was blocked by pre-treatment with 5-HT1A receptor antagonist WAY-100635, or with the irreversible mu-opioid receptor antagonist beta-funaltrexamine. These results suggest that the effect of FA on neuropathic pain is potentially mediated via amelioration of the descending monoaminergic system that coupled with spinal beta2- and 5-HT1A receptors and the downstream delta- and mu-opioid receptors differentially. PMID:26967251

  11. Central kappa opioid receptor-evoked changes in renal function in conscious rats: participation of renal nerves.

    PubMed

    Kapusta, D R; Obih, J C

    1993-10-01

    The present investigations examined the cardiovascular and renal responses produced by central nervous system stimulation of kappa opioid receptors by the selective kappa opioid receptor agonist, U-50488H, in conscious Sprague-Dawley rats. Administration of U-50488H (1 microgram total) into the lateral cerebroventricle produced a profound diuretic and antinatriuretic response. In addition, concurrent with the decrease in urinary sodium excretion, i.c.v. U-50488H elicited an increase in renal sympathetic nerve activity. The increases in urine flow rate and renal sympathetic nerve activity and the decrease in urinary sodium excretion produced by U-50488H were completely prevented in rats that had undergone pretreatment with the selective kappa opioid receptor antagonist, nor-binaltorphimine. In contrast, in animals that had undergone irreversible mu opioid receptor blockade with the selective mu opioid receptor antagonist, beta-funaltrexamine, central U-50488H administration elicited similar diuretic and antinatriuretic responses as observed in intact naive animals. In further studies, the antinatriuretic response produced by i.c.v. U-50488H was completely abolished in rats that had undergone chronic bilateral renal denervation, a technique used to remove the influence of the renal sympathetic nerves. Glomerular filtration rates and effective renal plasma flows were not altered by i.c.v. administration of U-50488H in intact or renal denervated animals. Together, these studies provide evidence for the role of central kappa opioid receptor mechanisms in the regulation of urinary sodium and water excretion. Moreover, these studies indicate that the changes in renal sodium handling produced by central kappa opioid agonists result from an action of these compounds to modulate sympathetic neural outflow to the kidneys. PMID:8229746

  12. The antinociceptive effects of ferulic acid on neuropathic pain: involvement of descending monoaminergic system and opioid receptors

    PubMed Central

    Xu, Ying; Lin, Dan; Yu, Xuefeng; Xie, Xupei; Wang, Liqun; Lian, Lejing; Fei, Ning; Chen, Jie; Zhu, Naping; Wang, Gang; Huang, Xianfeng; Pan, Jianchun

    2016-01-01

    Neuropathic pain can be considered as a form of chronic stress that may share common neuropathological mechanism between pain and stress-related depression and respond to similar treatment. Ferulic acid (FA) is a major active component of angelica sinensis and has been reported to exert antidepressant-like effects; however, it remains unknown whether FA ameliorate chronic constriction injury (CCI)-induced neuropathic pain and the involvement of descending monoaminergic system and opioid receptors. Chronic treatment with FA (20, 40 and 80 mg/kg) ameliorated mechanical allodynia and thermal hyperalgesia in von Frey hair and hot plate tasks, accompanied by increasing spinal noradrenaline (NA) and serotonin (5-HT) levels. Subsequent study suggested that treatment of CCI animals with 40 and 80 mg/kg FA also inhibited spinal MAO-A levels. FA's effects on mechanical allodynia or thermal hyperalgesiawas blocked by 6-hydroxydopamine (6-OHDA) or p-chlorophenylalanine (PCPA) via pharmacological depletion of spinal noradrenaline or serotonin. Moreover, the anti-allodynic action of FA on mechanical stimuli was prevented by pre-treatment with beta2-adrenoceptor antagonist ICI 118,551, or by the delta-opioid receptor antagonist naltrindole. While the anti-hyperalgesia on thermal stimuli induced by FA was blocked by pre-treatment with 5-HT1A receptor antagonist WAY-100635, or with the irreversible mu-opioid receptor antagonist beta-funaltrexamine. These results suggest that the effect of FA on neuropathic pain is potentially mediated via amelioration of the descending monoaminergic system that coupled with spinal beta2- and 5-HT1A receptors and the downstream delta- and mu-opioid receptors differentially. PMID:26967251

  13. 5-HT1A and 5-HT1B receptors control the firing of serotoninergic neurons in the dorsal raphe nucleus of the mouse: studies in 5-HT1B knock-out mice.

    PubMed

    Evrard, A; Laporte, A M; Chastanet, M; Hen, R; Hamon, M; Adrien, J

    1999-11-01

    The characteristics of the spontaneous firing of serotoninergic neurons in the dorsal raphe nucleus and its control by serotonin (5-hydroxytryptamine, 5-HT) receptors were investigated in wild-type and 5-HT1B knock-out (5-HT1B-/-) mice of the 129/Sv strain, anaesthetized with chloral hydrate. In both groups of mice, 5-HT neurons exhibited a regular activity with an identical firing rate of 0.5-4.5 spikes/s. Intravenous administration of the 5-HT reuptake inhibitor citalopram or the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced a dose-dependent inhibition of 5-HT neuronal firing which could be reversed by the selective 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohe xane carboxamide (WAY 100635). Both strains were equally sensitive to 8-OH-DPAT (ED50 approximately 6.3 microgram/kg i.v.), but the mutants were less sensitive than wild-type animals to citalopram (ED50 = 0.49 +/- 0.02 and 0.28 +/- 0.01 mg/kg i.v., respectively, P < 0.05). This difference could be reduced by pre-treatment of wild-type mice with the 5-HT1B/1D antagonist 2'-methyl-4'-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphenyl-4-carbox yli c acid [4-methoxy-3-(4-methyl-piperazine-1-yl)-phenyl]amide (GR 127935), and might be accounted for by the lack of 5-HT1B receptors and a higher density of 5-HT reuptake sites (specifically labelled by [3H]citalopram) in 5-HT1B-/- mice. In wild-type but not 5-HT1B-/- mice, the 5-HT1B agonists 3-(1,2,5, 6-tetrahydro-4-pyridyl)-5-propoxypyrrolo[3,2-b]pyridine (CP 94253, 3 mg/kg i.v.) and 5-methoxy-3-(1,2,3, 6-tetrahydropyridin-4-yl)-1H-indole (RU 24969, 0.6 mg/kg i.v.) increased the firing rate of 5-HT neurons (+22.4 +/- 2.8% and +13.7 +/- 6.0%, respectively, P < 0.05), and this effect could be prevented by the 5-HT1B antagonist GR 127935 (1 mg/kg i.v.). Altogether, these data indicate that in the mouse, the firing of 5-HT neurons in the dorsal raphe nucleus is under both an inhibitory control through 5-HT1A

  14. Knockout beyond the dripline

    SciTech Connect

    Bonaccorso, A.; Charity, R. J.; Kumar, R.; Salvioni, G.

    2015-02-24

    In this contribution, we will describe neutron and proton removal from {sup 9}C and {sup 7}Be which are two particularly interesting nuclei entering the nucleo-synthesis pp-chain [1, 2]. Neutron and proton removal reactions have been used in the past twenty years to probe the single-particle structure of exotic nuclei. The core parallel-momentum distribution can give information on the angular momentum and spin of the nucleon initial state while the total removal cross section is sensitive to the asymptotic part of the initial wave function and also to the reaction mechanism. Because knockout is a peripheral reaction from which the Asymptotic Normalization Constant (ANC) of the single-particle wave function can be extracted, it has been used as an indirect method to obtain the rate of reactions like {sup 8}B(p,γ){sup 9}C or {sup 7}Be(p,γ){sup 8}B. Nucleon removal has recently been applied by the HiRA collaboration [3] to situations in which the remaining “core” is beyond the drip line, such as {sup 8}C and {sup 6}Be, unbound by one or more protons, and whose excitation-energy spectrum can be obtained by the invariant-mass method. By gating on the ground-state peak, “core” parallel-momentum distributions and total knockout cross sections have been obtained similar to previous studies with well-bound “cores”. In addition for each projectile, knock out to final bound states has also been obtained in several cases. We will report on the theoretical description and comparison to this experimental data for a few cases for which advances in the accuracy of the transfer-to-the continuum model [4, 5] have been made [6]. These include the use, when available, of “ab-initio” overlaps for the initial state [7] and in particular their ANC values [8]. Also, the construction of a nucleus-target folding potential for the treatment of the core-target S-matrix [9] using for the cores “ab-initio” densities [10] and state-of-the-art n−{sup 9}Be optical

  15. Gal knockout and beyond.

    PubMed

    Zhong, R

    2007-01-01

    Recently, Galalpha1-3Galbeta1-4GlcNAc (Gal) knockout (k/o) pigs have been developed using genetic cloning technologies. This remarkable achievement has generated great enthusiasm in xenotransplantation studies. This review summarizes the current status of nonhuman primate experiments using Gal k/o pig organs. Briefly, when Gal k/o pig organs are transplanted into primates, hyperacute rejection does not occur. Although graft survival has been prolonged up to a few months in some cases, the overall results were not better than those using Gal-positive pig organs with human complement regulatory protein transgenes. Gal k/o pig kidneys rapidly developed rejection which was associated with increased anti-non-Gal antibodies. Although the precise mechanisms of Gal k/o pig organ rejection are not clear, it could result from incomplete deletion of Gal, up-regulation of new antigen (non-Gal antigen) and/or production of non-Gal antibodies. Future work in xenotransplantation should place emphasis on further modification of donors, such as combining human complement regulatory genes with Gal k/o, deleting non-Gal antigens and adding protective/surviving genes or a gene that inhibits coagulation. Induction of donor-specific T- and B-cell tolerance and promotion of accommodation are also warranted. PMID:17227553

  16. Proteasome involvement in agonist-induced down-regulation of mu and delta opioid receptors.

    PubMed

    Chaturvedi, K; Bandari, P; Chinen, N; Howells, R D

    2001-04-13

    This study investigated the mechanism of agonist-induced opioid receptor down-regulation. Incubation of HEK 293 cells expressing FLAG-tagged delta and mu receptors with agonists caused a time-dependent decrease in opioid receptor levels assayed by immunoblotting. Pulse-chase experiments using [(35)S]methionine metabolic labeling indicated that the turnover rate of delta receptors was accelerated 5-fold following agonist stimulation. Inactivation of functional G(i) and G(o) proteins by pertussis toxin-attenuated down-regulation of the mu opioid receptor, while down-regulation of the delta opioid receptor was unaffected. Pretreatment of cells with inhibitors of lysosomal proteases, calpain, and caspases had little effect on mu and delta opioid receptor down-regulation. In marked contrast, pretreatment with proteasome inhibitors attenuated agonist-induced mu and delta receptor down-regulation. In addition, incubation of cells with proteasome inhibitors in the absence of agonists increased steady-state mu and delta opioid receptor levels. Immunoprecipitation of mu and delta opioid receptors followed by immunoblotting with ubiquitin antibodies suggested that preincubation with proteasome inhibitors promoted accumulation of polyubiquitinated receptors. These data provide evidence that the ubiquitin/proteasome pathway plays a role in agonist-induced down-regulation and basal turnover of opioid receptors. PMID:11152677

  17. Role of kappa and delta opioid receptors in mediating morphine-induced antinociception in morphine tolerant infant rats

    PubMed Central

    Stoller, Dawn C.; Sim-Selley, Laura J.; Smith, Forrest L.

    2011-01-01

    We have previously noted that the antinociceptive efficacy of morphine was significantly decreased in rat pups chronically infused with morphine from implanted osmotic minipumps. In this study, morphine was fully efficacious (i.e., 100% maximum possible effect, %MPE) in the 52 ºC tail-immersion test after a 72-h infusion from implanted saline-filled osmotic minipumps. However, administration of up to 1000 mg/kg s.c. morphine failed to elicit greater than a 27% MPE in rats infused with morphine at 2 mg/kg/h. Morphine was more efficacious when the water bath temperature was decreased to 49 ºC. Experiments were conducted to determine the mechanisms whereby chronic morphine administration leads to a decrease in antinociceptive efficacy. The kappa-opioid antagonist nor-binalorphimine completely blocked the antinociceptive effects of morphine in morphine-infused rat pups. The kappa agonist U50,488 elicited antinociception however, the requirement to use higher doses in morphine- than saline-infused rats indicates that kappa cross-tolerance was present. Thus, in tolerant rats the antinociceptive effects of high doses of morphine appear to be mediated through kappa-opioid receptors. The delta-opioid antagonist naltrindole was inactive in both treatment groups. DAMGO-stimulated [35S]GTPγS and [3H]naloxone binding reveal that the anatomical distribution of the mu-opioid receptor was consistent with that of the adult rat brain. In adult rats, the mu-opioid receptor is desensitized during morphine tolerance. However, desensitization was not evident in P17 rats based on the lack of significant decreases in [35S]GTPγS binding. Furthermore, [3H]naloxone binding indicated a lack of mu receptor downregulation in morphine-tolerant rat pups. PMID:17300766

  18. In Vivo Interaction of Steroid Receptor Coactivator (SRC)-1 and the Activation Function-2 Domain of the Thyroid Hormone Receptor (TR) β in TRβ E457A Knock-In and SRC-1 Knockout mice

    PubMed Central

    Alonso, Manuela; Goodwin, Charles; Liao, XiaoHui; Ortiga-Carvalho, Tania; Machado, Danielle S.; Wondisford, Fredric E.; Refetoff, Samuel; Weiss, Roy E.

    2009-01-01

    The activation function-2 (AF-2) domain of the thyroid hormone (TH) receptor (TR)-β is a TH-dependent binding site for nuclear coactivators (NCoA), which modulate TH-dependent gene transcription. In contrast, the putative AF-1 domain is a TH-independent region interacting with NCoA. We determined the specificity of the AF-2 domain and NCoA interaction by evaluating thyroid function in mice with combined disruption of the AF-2 domain in TRβ, due to a point mutation (E457A), and deletion of one of the NCoAs, steroid receptor coactivator (SRC)-1. The E457A mutation was chosen because it abolishes NCoA recruitment in vitro while preserving normal TH binding and corepressor interactions resulting in resistance to TH. At baseline, disruption of SRC-1 in the homozygous knock-in (TRβE457A/E457A) mice worsened the degree of resistance to TH, resulting in increased serum T4 and TSH. During TH deprivation, disruption of AF-2 and SRC-1 resulted in a TSH rise 50% of what was seen when AF-2 alone was removed, suggesting that SRC-1 was interacting outside of the AF-2 domain. Therefore, 1) during TH deprivation, SRC-1 is necessary for activating the hypothalamic-pituitary-thyroid axis; 2) ligand-dependent repression of TSH requires an intact AF-2; and 3) SRC-1 may interact with the another region of the TRβ or the TRα to regulate TH action in the pituitary. This report demonstrates the dual interaction of NCoA in vivo: the TH-independent up-regulation possibly through another domain and TH-dependent down-regulation through the AF-2 domain. PMID:19406944

  19. In vivo interaction of steroid receptor coactivator (SRC)-1 and the activation function-2 domain of the thyroid hormone receptor (TR) beta in TRbeta E457A knock-in and SRC-1 knockout mice.

    PubMed

    Alonso, Manuela; Goodwin, Charles; Liao, Xiaohui; Ortiga-Carvalho, Tania; Machado, Danielle S; Wondisford, Fredric E; Refetoff, Samuel; Weiss, Roy E

    2009-08-01

    The activation function-2 (AF-2) domain of the thyroid hormone (TH) receptor (TR)-beta is a TH-dependent binding site for nuclear coactivators (NCoA), which modulate TH-dependent gene transcription. In contrast, the putative AF-1 domain is a TH-independent region interacting with NCoA. We determined the specificity of the AF-2 domain and NCoA interaction by evaluating thyroid function in mice with combined disruption of the AF-2 domain in TRbeta, due to a point mutation (E457A), and deletion of one of the NCoAs, steroid receptor coactivator (SRC)-1. The E457A mutation was chosen because it abolishes NCoA recruitment in vitro while preserving normal TH binding and corepressor interactions resulting in resistance to TH. At baseline, disruption of SRC-1 in the homozygous knock-in (TRbeta(E457A/E457A)) mice worsened the degree of resistance to TH, resulting in increased serum T(4) and TSH. During TH deprivation, disruption of AF-2 and SRC-1 resulted in a TSH rise 50% of what was seen when AF-2 alone was removed, suggesting that SRC-1 was interacting outside of the AF-2 domain. Therefore, 1) during TH deprivation, SRC-1 is necessary for activating the hypothalamic-pituitary-thyroid axis; 2) ligand-dependent repression of TSH requires an intact AF-2; and 3) SRC-1 may interact with the another region of the TRbeta or the TRalpha to regulate TH action in the pituitary. This report demonstrates the dual interaction of NCoA in vivo: the TH-independent up-regulation possibly through another domain and TH-dependent down-regulation through the AF-2 domain. PMID:19406944

  20. Gi-protein-coupled 5-HT1B/D receptor agonist sumatriptan induces type I hyperalgesic priming.

    PubMed

    Araldi, Dioneia; Ferrari, Luiz F; Levine, Jon D

    2016-08-01

    We have recently described a novel form of hyperalgesic priming (type II) induced by agonists at two clinically important Gi-protein-coupled receptors (Gi-GPCRs), mu-opioid and A1-adenosine. Like mu-opioids, the antimigraine triptans, which act at 5-HT1B/D Gi-GPCRs, have been implicated in pain chronification. We determined whether sumatriptan, a prototypical 5-HT1B/D agonist, produces type II priming. Characteristic of hyperalgesic priming, intradermal injection of sumatriptan (10 ng) induced a change in nociceptor function such that a subsequent injection of prostaglandin-E2 (PGE2) induces prolonged mechanical hyperalgesia. However, onset to priming was delayed 3 days, characteristic of type I priming. Also characteristic of type I priming, a protein kinase Cε, but not a protein kinase A inhibitor attenuated the prolongation phase of PGE2 hyperalgesia. The prolongation of PGE2 hyperalgesia was also permanently reversed by intradermal injection of cordycepin, a protein translation inhibitor. Also, hyperalgesic priming did not occur in animals pretreated with pertussis toxin or isolectin B4-positive nociceptor toxin, IB4-saporin. Finally, as observed for other agonists that induce type I priming, sumatriptan did not induce priming in female rats. The prolongation of PGE2 hyperalgesia induced by sumatriptan was partially prevented by coinjection of antagonists for the 5-HT1B and 5-HT1D, but not 5-HT7, serotonin receptors and completely prevented by coadministration of a combination of the 5-HT1B and 5-HT1D antagonists. Moreover, the injection of selective agonists, for 5-HT1B and 5-HT1D receptors, also induced hyperalgesic priming. Our results suggest that sumatriptan, which signals through Gi-GPCRs, induces type I hyperalgesic priming, unlike agonists at other Gi-GPCRs, which induce type II priming. PMID:27075428

  1. RSK2 Signaling in Medial Habenula Contributes to Acute Morphine Analgesia

    PubMed Central

    Darcq, Emmanuel; Befort, Katia; Koebel, Pascale; Pannetier, Solange; Mahoney, Megan K; Gaveriaux-Ruff, Claire; Hanauer, André; Kieffer, Brigitte L

    2012-01-01

    It has been established that mu opioid receptors activate the ERK1/2 signaling cascade both in vitro and in vivo. The Ser/Thr kinase RSK2 is a direct downstream effector of ERK1/2 and has a role in cellular signaling, cell survival growth, and differentiation; however, its role in biological processes in vivo is less well known. Here we determined whether RSK2 contributes to mu-mediated signaling in vivo. Knockout mice for the rsk2 gene were tested for main morphine effects, including analgesia, tolerance to analgesia, locomotor activation, and sensitization to this effect, as well as morphine withdrawal. The deletion of RSK2 reduced acute morphine analgesia in the tail immersion test, indicating a role for this kinase in mu receptor-mediated nociceptive processing. All other morphine effects and adaptations to chronic morphine were unchanged. Because the mu opioid receptor and RSK2 both show high density in the habenula, we specifically downregulated RSK2 in this brain metastructure using an adeno-associated-virally mediated shRNA approach. Remarkably, morphine analgesia was significantly reduced, as observed in the total knockout animals. Together, these data indicate that RSK2 has a role in nociception, and strongly suggest that a mu opioid receptor–RSK2 signaling mechanism contributes to morphine analgesia at the level of habenula. This study opens novel perspectives for both our understanding of opioid analgesia, and the identification of signaling pathways operating in the habenular complex. PMID:22218090

  2. Desensitization of G protein-coupled receptors and neuronal functions.

    PubMed

    Gainetdinov, Raul R; Premont, Richard T; Bohn, Laura M; Lefkowitz, Robert J; Caron, Marc G

    2004-01-01

    G protein-coupled receptors (GPCRs) have proven to be the most highly favorable class of drug targets in modern pharmacology. Over 90% of nonsensory GPCRs are expressed in the brain, where they play important roles in numerous neuronal functions. GPCRs can be desensitized following activation by agonists by becoming phosphorylated by members of the family of G protein-coupled receptor kinases (GRKs). Phosphorylated receptors are then bound by arrestins, which prevent further stimulation of G proteins and downstream signaling pathways. Discussed in this review are recent progress in understanding basics of GPCR desensitization, novel functional roles, patterns of brain expression, and receptor specificity of GRKs and beta arrestins in major brain functions. In particular, screening of genetically modified mice lacking individual GRKs or beta arrestins for alterations in behavioral and biochemical responses to cocaine and morphine has revealed a functional specificity in dopamine and mu-opioid receptor regulation of locomotion and analgesia. An important and specific role of GRKs and beta arrestins in regulating physiological responsiveness to psychostimulants and morphine suggests potential involvement of these molecules in certain brain disorders, such as addiction, Parkinson's disease, mood disorders, and schizophrenia. Furthermore, the utility of a pharmacological strategy aimed at targeting this GPCR desensitization machinery to regulate brain functions can be envisaged. PMID:15217328

  3. RAPID HETEROLOGOUS DESENSITIZATION OF ANTINOCICEPTIVE ACTIVITY BETWEEN MU OR DELTA OPIOID RECEPTORS AND CHEMOKINE RECEPTORS IN RATS

    PubMed Central

    Chen, Xiaohong; Geller, Ellen B.; Rogers, Thomas J.; Adler, Martin W.

    2007-01-01

    Previous studies have shown pretreatment with chemokines CCL5/RANTES (100 ng) or CXCL12/SDF-1alpha (100 ng) injected into the periaqueductal grey (PAG) region of the brain, 30 minutes (min) before the mu opioid agonist DAMGO (400 ng), blocked the antinociception induced by DAMGO in the in vivo cold water tail-flick (CWT) antinociceptive test in rats. In the present experiments, we tested whether the action of other agonists at mu and delta opioid receptors is blocked when CCL5/RANTES or CXCL12/SDF-1alpha is administered into the PAG 30 min before, or co-administered with, opioid agonists in the CWT assay. The results showed that (1) CXCL12/SDF-1alpha (100 ng, PAG) or CCL5/RANTES (100 ng, PAG), given 30 min before the opioid agonist morphine, or selective delta opioid receptor agonist DPDPE, blocked the antinociceptive effect of these drugs; (2) CXCL12/SDF-1alpha (100 ng, PAG) or CCL5/RANTES (100 ng, PAG), injected at the same time as DAMGO or DPDPE, significantly reduced the antinociceptive effect induced by these drugs. These results demonstrate that the heterologous desensitization is rapid between the mu or delta opioid receptors and either CCL5/RANTES receptor CCR5 or CXCL12/SDF-1alpha receptor CXCR4 in vivo, but the effect is greater if the chemokine is administered before the opioid. PMID:17049756

  4. delta-Opioid receptors are more efficiently coupled to adenylyl cyclase than to L-type Ca(2+) channels in transfected rat pituitary cells.

    PubMed

    Prather, P L; Song, L; Piros, E T; Law, P Y; Hales, T G

    2000-11-01

    Opioid receptors often couple to multiple effectors within the same cell. To examine potential mechanisms that contribute to the specificity by which delta-receptors couple to distinct intracellular effectors, we stably transfected rat pituitary GH(3) cells with cDNAs encoding for delta-opioid receptors. In cells transfected with a relatively low delta-receptor density of 0.55 pmol/mg of protein (GH(3)DOR), activation of delta-receptors produced inhibition of adenylyl cyclase activity but was unable to alter L-type Ca(2+) current. In contrast, activation of delta-receptors in a clone that contained a higher density of delta-receptors (2.45 pmol/mg of protein) and was also coexpressed with mu-opioid receptors (GH(3)MORDOR), resulted in not only the expected inhibition of adenylyl cyclase activity but also produced inhibition of L-type Ca(2+) current. The purpose of the present study was to determine whether these observations resulted from differences in delta-opioid receptor density between clones or interaction between delta- and mu-opioid receptors to allow the activation of different G proteins and signaling to Ca(2+) channels. Using the delta-opioid receptor alkylating agent SUPERFIT, reduction of available delta-opioid receptors in GH(3)MORDOR cells to a density similar to that of delta-opioid receptors in the GH(3)DOR clone resulted in abolishment of coupling to Ca(2+) channels, but not to adenylyl cyclase. Furthermore, although significantly greater amounts of all G proteins were activated by delta-opioid receptors in GH(3)MORDOR cells, delta-opioid receptor activation in GH(3)DOR cells resulted in coupling to the identical pattern of G proteins seen in GH(3)MORDOR cells. These findings suggest that different threshold densities of delta-opioid receptors are required to activate critical amounts of G proteins needed to produce coupling to specific effectors and that delta-opioid receptors couple more efficiently to adenylyl cyclase than to L-type Ca(2

  5. Looking for the role of cannabinoid receptor heteromers in striatal function.

    PubMed

    Ferré, Sergi; Goldberg, Steven R; Lluis, Carme; Franco, Rafael

    2009-01-01

    The introduction of two concepts, "local module" and "receptor heteromer", facilitates the understanding of the role of interactions between different neurotransmitters in the brain. In artificial cell systems, cannabinoid CB(1) receptors form receptor heteromers with dopamine D2, adenosine A2A and mu opioid receptors. There is indirect but compelling evidence for the existence of the same CB1 receptor heteromers in striatal local modules centered in the dendritic spines of striatal GABAergic efferent neurons, particularly at a postsynaptic location. Their analysis provides new clues for the role of endocannabinoids in striatal function, which cannot only be considered as retrograde signals that inhibit neurotransmitter release. Recent studies using a new method to detect heteromerization of more than two proteins, which consists of sequential BRET-FRET (SRET) analysis, has demonstrated that CB1, D2 and A2A receptors can form heterotrimers in transfected cells. It is likely that functional CB1-A2A-D2 receptor heteromers can be found where they are highly co-expressed, in the dendritic spines of GABAergic enkephalinergic neurons. The functional properties of these multiple receptor heteromers and their role in striatal function need to be determined. PMID:18691604

  6. Differential desensitization of mu- and delta- opioid receptors in selected neural pathways following chronic morphine treatment.

    PubMed Central

    Noble, F.; Cox, B. M.

    1996-01-01

    -mediated inhibition without modification of mu-opioid receptor-mediated inhibition was observed. An indirect mechanism probably involving dopaminergic systems is proposed to explain the desensitization of delta-mediated responses and the lack of mu-opioid receptor desensitization after chronic morphine treatment in caudate putamen and nucleus accumbens. 7. These results suggest that adaptive responses occurring during chronic morphine administration are not identical in all opiate-sensitive neural populations. PMID:8825358

  7. Differential receptor binding characteristics of consecutive phenylalanines in micro-opioid specific peptide ligand endomorphin-2.

    PubMed

    Honda, Takeshi; Shirasu, Naoto; Isozaki, Kaname; Kawano, Michiaki; Shigehiro, Daiki; Chuman, Yoshiro; Fujita, Tsugumi; Nose, Takeru; Shimohigashi, Yasuyuki

    2007-06-01

    Endogenous opioid peptides consist of a conserved amino acid residue of Phe(3) and Phe(4), although their binding modes for opioid receptors have not been elucidated in detail. Endomorphin-2, which is highly selective and specific for the mu opioid receptor, possesses two Phe residues at the consecutive positions 3 and 4. In order to clarify the role of Phe(3) and Phe(4) in binding to the mu receptor, we synthesized a series of analogs in which Phe(3) and Phe(4) were replaced by various amino acids. It was found that the aromaticity of the Phe-beta-phenyl groups of Phe(3) and Phe(4) is a principal determinant of how strongly it binds to the receptor, although better molecular hydrophobicity reinforces the activity. The receptor binding subsites of Phe(3) and Phe(4) of endomorphin-2 were found to exhibit different structural requirements. The results suggest that [Trp(3)]endomorphin-2 (native endomorphin-1) and endomorphin-2 bind to different receptor subclasses. PMID:17395470

  8. Endocytosis as a Biological Response in Receptor Pharmacology: Evaluation by Fluorescence Microscopy

    PubMed Central

    Varela, María J.; de la Rocha, Arlet M. Acanda; Fernandez-Troyano, Juan C.; Barreiro, R. Belén; Lopez-Gimenez, Juan F.

    2015-01-01

    The activation of G-protein coupled receptors by agonist compounds results in diverse biological responses in cells, such as the endocytosis process consisting in the translocation of receptors from the plasma membrane to the cytoplasm within internalizing vesicles or endosomes. In order to functionally evaluate endocytosis events resulted from pharmacological responses, we have developed an image analysis method –the Q-Endosomes algorithm– that specifically discriminates the fluorescent signal originated at endosomes from that one observed at the plasma membrane in images obtained from living cells by fluorescence microscopy. Mu opioid (MOP) receptor tagged at the carboxy-terminus with yellow fluorescent protein (YFP) and permanently expressed in HEK293 cells was used as experimental model to validate this methodology. Time-course experiments performed with several agonists resulted in different sigmoid curves depending on the drug used to initiate MOP receptor endocytosis. Thus, endocytosis resulting from the simultaneous activation of co-expressed MOP and serotonin 5-HT2C receptors by morphine plus serotonin was significantly different, in kinetics as well as in maximal response parameters, from the one caused by DAMGO, sufentanyl or methadone. Therefore, this analytical tool permits the pharmacological characterization of receptor endocytosis in living cells with functional and temporal resolution. PMID:25849355

  9. Developmental Divergence of Sleep-Wake Patterns in Orexin Knockout and Wild-Type Mice

    PubMed Central

    Coleman, Cassandra M.; Johnson, Eric D.; Shaw, Cynthia

    2008-01-01

    Narcolepsy, a disorder characterized by fragmented bouts of sleep and wakefulness during the day and night as well as cataplexy, has been linked in humans and non-human animals to the functional integrity of the orexinergic system. Adult orexin knockout mice and dogs with a mutation of the orexin receptor exhibit symptoms that mirror those seen in narcoleptic humans. As with narcolepsy, infant sleep-wake cycles in humans and rats are highly fragmented, with consolidated bouts of sleep and wakefulness developing gradually. Based on these common features of narcoleptics and infants, we hypothesized that the development of sleep-wake fragmentation in orexin knockout mice would be expressed as a developmental divergence between knockouts and wild-types, with the knockouts lagging behind the wild-types. We tested this hypothesis by recording the sleep-wake patterns of infant orexin knockout and wild-type mice across the first three postnatal weeks. Both knockouts and wild-types exhibited age-dependent, and therefore orexin-independent, quantitative and qualitative changes in sleep-wake patterning. At 3 weeks of age, however, by which time the sleep and wake bouts of the wild-types had consolidated further, the knockouts lagged behind the wild-types and exhibited significantly more bout fragmentation. These findings suggest the possibility that the fragmentation of behavioral states that characterizes narcolepsy in adults reflects reversion back toward the more fragmented sleep-wake patterns that characterize infancy. PMID:17284193

  10. Generation of conditional knockout mice.

    PubMed

    Sakamoto, Kazuhito; Gurumurthy, Channabasavaiah B; Wagner, Kay-Uwe

    2014-01-01

    Conditional knockout mouse models are powerful tools to examine the biological and molecular function(s) of genes in specific tissues. The general procedure to generate such genetically engineered mouse models consists of three main steps. The first step is to find the appropriate genomic clone of the gene of interest and to design the cloning and Southern blot strategies. The second step is the cloning of the gene-targeting vector with all its essential components including positive and negative selection cassettes and the insertion of LoxP sites. Although conventional methods are still being widely used for DNA cloning, we describe in this book chapter the use of λ Red phage-based homologous recombination in Escherichia coli to capture the genomic DNA of the gene of interest and to assemble the gene-targeting vector. This new method provides several advantages as it does not require the presence of restriction sites within the gene of interest to insert LoxP-flanked DNA fragments. In the final step, the gene-targeting vector is transferred into embryonic stem (ES) cells, and successfully targeted ES cell clones are injected into mouse blastocysts to generate conditional knockout mice. PMID:25064096

  11. Engineered G protein coupled receptors reveal independent regulation of internalization, desensitization and acute signaling

    PubMed Central

    Scearce-Levie, Kimberly; Lieberman, Michael D; Elliott, Heather H; Conklin, Bruce R

    2005-01-01

    Background The physiological regulation of G protein-coupled receptors, through desensitization and internalization, modulates the length of the receptor signal and may influence the development of tolerance and dependence in response to chronic drug treatment. To explore the importance of receptor regulation, we engineered a series of Gi-coupled receptors that differ in signal length, degree of agonist-induced internalization, and ability to induce adenylyl cyclase superactivation. All of these receptors, based on the kappa opioid receptor, were modified to be receptors activated solely by synthetic ligands (RASSLs). This modification allows us to compare receptors that have the same ligands and effectors, but differ only in desensitization and internalization. Results Removal of phosphorylation sites in the C-terminus of the RASSL resulted in a mutant that was resistant to internalization and less prone to desensitization. Replacement of the C-terminus of the RASSL with the corresponding portion of the mu opioid receptor eliminated the induction of AC superactivation, without disrupting agonist-induced desensitization or internalization. Surprisingly, removal of phosphorylation sites from this chimera resulted in a receptor that is constitutively internalized, even in the absence of agonist. However, the receptor still signals and desensitizes in response to agonist, indicating normal G-protein coupling and partial membrane expression. Conclusions These studies reveal that internalization, desensitization and adenylyl cyclase superactivation, all processes that decrease chronic Gi-receptor signals, are independently regulated. Furthermore, specific mutations can radically alter superactivation or internalization without affecting the efficacy of acute Gi signaling. These mutant RASSLs will be useful for further elucidating the temporal dynamics of the signaling of G protein-coupled receptors in vitro and in vivo. PMID:15707483

  12. Enhanced Long-Term and Impaired Short-Term Spatial Memory in GluA1 AMPA Receptor Subunit Knockout Mice: Evidence for a Dual-Process Memory Model

    ERIC Educational Resources Information Center

    Sanderson, David J.; Good, Mark A.; Skelton, Kathryn; Sprengel, Rolf; Seeburg, Peter H.; Rawlins, J. Nicholas P.; Bannerman, David M.

    2009-01-01

    The GluA1 AMPA receptor subunit is a key mediator of hippocampal synaptic plasticity and is especially important for a rapidly-induced, short-lasting form of potentiation. GluA1 gene deletion impairs hippocampus-dependent, spatial working memory, but spares hippocampus-dependent spatial reference memory. These findings may reflect the necessity of…

  13. Central delta-opioid receptor interactions and the inhibition of reflex urinary bladder contractions in the rat.

    PubMed

    Dray, A; Nunan, L; Wire, W

    1985-07-01

    The in vivo effects of a number of opioid agonists and antagonists were studied on the spontaneous reflex contractions of the urinary bladder recorded isometrically in the rat anesthetized with urethane. All substances were administered into the central nervous system by the intracereboventricular (i.c.v.) or spinal intrathecal (i.t.) route. The conformationally restricted enkephalin analogues [2-D-penicillamine, 5-L-cysteine] enkephalin (DPLCE), [2-D-penicillamine, 5-L-penicillamine] enkephalin (DPLPE) and [2-D-penicillamine, 5-D-penicillamine] enkephalin (DPDPE) produced dose-related inhibition of reflex bladder contractions when administered by the i.c.v. or i.t. route. Both the novel delta-opioid receptor antagonist ICI 154,129 (200-600 micrograms) [N,N-bisallyl-Tyr-Gly-Gly-Psi-(CH2S)-Phe-Leu-OH) and ICI 174,864 (1-3 micrograms) [N,N-dially-Tyr-Aib-Aib-Phe-Leu-OH: Aib = alpha-aminoisobutyric acid] attenuated or abolished the effects of DPLCE, DPLPE and DPDPE when administered by the i.c.v. or i.t. route. The antagonism observed was selective since the equipotent inhibition produced by the mu-opioid receptor agonist [D-Ala2, Me-Phe4, Gly(ol)5] enkephalin (DAGO) was unaffected. Overall, ICI 154,129 was considerably weaker than ICI 174,864 and both antagonists inhibited bladder activity at doses higher than those required to demonstrate delta-receptor antagonism. Further studies of the agonistic effect of ICI 174,864 showed that it was insensitive to low doses of naloxone (2 micrograms, i.c.v. or i.t.) but could be abolished by higher (10-15 micrograms) doses of naloxone. These observations suggested that the agonistic effect of ICI 174,864 was not mediated by mu-opioid receptor. beta-Endorphin (0.2-1.0 micrograms, i.c.v.) inhibited bladder contractions but following recovery from this effect, appeared to prevent the expression of delta-receptor antagonism by ICI 174,864. In addition a previously subthreshold dose of ICI 174,864 now exhibited marked agonistic

  14. Comparison of [Dmt1]DALDA and DAMGO in binding and G protein activation at mu, delta, and kappa opioid receptors.

    PubMed

    Zhao, Guo-Min; Qian, Xuanxuan; Schiller, Peter W; Szeto, Hazel H

    2003-12-01

    [Dmt1]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2; Dmt = 2',6'-dimethyltyrosine) binds with high affinity and selectivity to the mu opioid receptor and is a surprisingly potent and long-acting analgesic, especially after intrathecal administration. In an attempt to better understand the unique pharmacological profile of [Dmt1]DALDA, we have prepared [3H][Dmt1]DALDA and compared its binding properties with that of [3H]DAMGO ([d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin). Kinetic studies revealed rapid association of [3H][Dmt1]DALDA when incubated with mouse brain membranes (K+1 = 0.155 nM(-1) min(-1)). Dissociation of [3H][Dmt1]DALDA was also rapid (K(-1) = 0.032 min(-1)) and indicated binding to a single site. [3H][Dmt1]DALDA binds with very high affinity to human mu opioid receptor (hMOR) (Kd = 0.199 nM), and Kd and Bmax were reduced by sodium but not Gpp(NH)p [guanosine 5'-(beta,gamma-imido)triphosphate]. Similar Kd values were obtained in brain and spinal cord tissues and SH-SY5Y cells. The hMOR:hDOR (human delta opioid receptor) selectivity of [Dmt1]DALDA ( approximately 10,000) is 8-fold higher than DAMGO. However, [Dmt1]DALDA is less selective than DAMGO against hKOR (human kappa opioid receptor) (26-versus 180-fold). The Ki values for a number of opioid ligands were generally higher when determined by competitive displacement binding against [3H][Dmt1]DALDA compared with [3H]DAMGO, with the exception of Dmt1-substituted peptide analogs. All Dmt1 analogs showed much higher affinity for the mu receptor than corresponding Tyr1 analogs. [35S]GTPgammaS (guanosine 5'-O -(3-[35S]thio)triphosphate) binding showed that [Dmt1]DALDA and DAMGO are full agonists at hMOR and hDOR but are only partial agonists at hKOR. The very high affinity and selectivity of [3H][Dmt1]DALDA for the mu receptor, together with its very low nonspecific binding (10-15%) and metabolic stability, make [3H][Dmt1]DALDA an ideal radioligand for labeling mu receptors. PMID:14534366

  15. Differential Stability of the Crystallographic Interfaces of Mu- and Kappa-Opioid Receptors

    PubMed Central

    Johnston, Jennifer M.; Filizola, Marta

    2014-01-01

    The recent mu-opioid receptor (MOPr) and kappa-opioid receptor (KOPr) crystal structures have inspired hypotheses of physiologically relevant dimerization contacts, specifically: a closely packed interface involving transmembrane (TM) helices TM5 and TM6, and a less compact interface, involving TM1, TM2, and helix 8 (H8). While the former was only found in MOPr crystals, similar arrangements of the latter were identified for both KOPr and MOPr. The relevance of these interfaces outside of a crystal lattice is called into question by the possibility that they might be influenced by the specific crystallization conditions. In this study, we have employed umbrella sampling molecular dynamics simulations of coarse-grained representations of the interacting MOPr or KOPr crystallographic structures, in the absence of the T4 lysozyme, and in an explicit lipid-water environment, to determine the strength of receptor dimerization at the different crystallographic interfaces. We note that the shape of the interface plays a dominant role in the strength of the interaction, and the pattern of contacting residues defines the shape of the potential of mean force. This information can be used to guide experiments aimed at exploring the role of dimerization in opioid receptor function. PMID:24651466

  16. Opioid receptor selectivity profile change via isosterism for 14-O-substituted naltrexone derivatives.

    PubMed

    Zhang, Yan; Elbegdorj, Orgil; Yuan, Yunyun; Beletskaya, Irina O; Selley, Dana E

    2013-07-01

    Isosterism is commonly used in drug discovery and development to address stability, selectivity, toxicity, pharmacokinetics, and efficacy issues. A series of 14-O-substituted naltrexone derivatives were identified as potent mu opioid receptor (MOR) antagonists with improved selectivity over the kappa opioid receptor (KOR) and the delta opioid receptor (DOR), compared to naltrexone. Since esters are not metabolically very stable under typical physiological conditions, their corresponding amide analogs were thus synthesized and biologically evaluated. Unlike their isosteres, most of these novel ligands seem to be dually selective for the MOR and the KOR over the DOR. The restricted flexibility of the amide bond linkage might be responsible for their altered selectivity profile. However, the majority of the 14-N-substituted naltrexone derivatives produced marginal or no MOR stimulation in the (35)S-GTP[γS] assay, which resembled their ester analogs. The current study thus indicated that the 14-substituted naltrexone isosteres are not bioisosteres since they have distinctive pharmacological profile with the regard to their opioid receptor binding affinity and selectivity. PMID:23721804

  17. Apolipoprotein E knockout as the basis for mouse models of dyslipidemia-induced neuropathy.

    PubMed

    Hinder, Lucy M; Vincent, Andrea M; Hayes, John M; McLean, Lisa L; Feldman, Eva L

    2013-01-01

    Dyslipidemia has been identified as an important pathogenic risk factor for diabetic neuropathy, but current animal models do not adequately reproduce the lipid profile observed in human diabetics (increased triglycerides with an elevated LDL-cholesterol and reduced HDL-cholesterol). High fat feeding of mice produces hyperlipidemia, but mice are resistant to increases in the LDL to HDL ratio, reducing the potential for peripheral lipid deposits to impact neuropathy, as is postulated to occur in human subjects. Genetic manipulations provide an alternative approach to reproducing a neuropathic plasma lipid profile. Based on findings from the atherosclerosis literature, we began with knockout of ApoE. Since knockout of ApoE alone only partially mimics the human diabetic lipid profile, we examined the impact of its combination with a well-characterized model of type 2 diabetes exhibiting neuropathy, the db/db mouse. We added further gene manipulations to increase hyperlipidemia by using mice with both ApoE and ApoB48 knockout on the ob/+ (leptin mutation) mice. In all of these models, we found that either the db/db or ob/ob genotypes had increased body weight, hyperlipidemia, hyperglycemia, and evidence of neuropathy compared with the control groups (db/+ or ob/+, respectively). We found that ApoE knockout combined with leptin receptor knockout produced a lipid profile most closely modeling human dyslipidemia that promotes neuropathy. ApoE knockout combined with additional ApoB48 and leptin knockout produced similar changes of smaller magnitude, but, notably, an increase in HDL-cholesterol. Our data suggest that the overall effects of ApoE knockout, either directly upon nerve structure and function or indirectly on lipid metabolism, are insufficient to significantly alter the course of diabetic neuropathy. Although these models ultimately do not deliver optimal lipid profiles for translational diabetic neuropathy research, they do present glycemic and lipid profile

  18. Studying TGF-beta superfamily signaling by knockouts and knockins.

    PubMed

    Chang, H; Lau, A L; Matzuk, M M

    2001-06-30

    The transforming growth factor beta (TGF-beta) superfamily has profound effects on many aspects of animal development. In the last decade, our laboratory and others have performed in vivo functional studies on multiple components of the TGF-beta superfamily signal transduction pathway, including upstream ligands, transmembrane receptors, receptor-associated proteins and downstream Smad proteins. We have taken gene knockout approaches to generate null alleles of the genes of interest, as well as a gene knockin approach to replace the mature region of one TGF-beta superfamily ligand with another. We found that activin betaB, expressed in the spatiotemporal pattern of activin betaA, can function as a hypomorphic allele of activin betaA and rescue the craniofacial defects and neonatal lethal phenotype of activin betaA-deficient mice. With the knockout approach, we have shown that the expression pattern of a component in the TGF-beta superfamily signal transduction cascade does not necessarily predict its in vivo function. Two liver-specific activins, activin betaC and activin betaE are dispensable for liver development, regeneration and function, whereas ubiquitously expressed Smad5 has specific roles in the development of multiple embryonic and extraembryonic tissues. PMID:11451570

  19. Microarray analysis of E9.5 reduced folate carrier (RFC1; Slc19a1) knockout embryos reveals altered expression of genes in the cubilin-megalin multiligand endocytic receptor complex

    PubMed Central

    Gelineau-van Waes, Janee; Maddox, Joyce R; Smith, Lynette M; van Waes, Michael; Wilberding, Justin; Eudy, James D; Bauer, Linda K; Finnell, Richard H

    2008-01-01

    Background The reduced folate carrier (RFC1) is an integral membrane protein and facilitative anion exchanger that mediates delivery of 5-methyltetrahydrofolate into mammalian cells. Adequate maternal-fetal transport of folate is necessary for normal embryogenesis. Targeted inactivation of the murine RFC1 gene results in post-implantation embryolethality, but daily folic acid supplementation of pregnant dams prolongs survival of homozygous embryos until mid-gestation. At E10.5 RFC1-/- embryos are developmentally delayed relative to wildtype littermates, have multiple malformations, including neural tube defects, and die due to failure of chorioallantoic fusion. The mesoderm is sparse and disorganized, and there is a marked absence of erythrocytes in yolk sac blood islands. The identification of alterations in gene expression and signaling pathways involved in the observed dysmorphology following inactivation of RFC1-mediated folate transport are the focus of this investigation. Results Affymetrix microarray analysis of the relative gene expression profiles in whole E9.5 RFC1-/- vs. RFC1+/+ embryos identified 200 known genes that were differentially expressed. Major ontology groups included transcription factors (13.04%), and genes involved in transport functions (ion, lipid, carbohydrate) (11.37%). Genes that code for receptors, ligands and interacting proteins in the cubilin-megalin multiligand endocytic receptor complex accounted for 9.36% of the total, followed closely by several genes involved in hematopoiesis (8.03%). The most highly significant gene network identified by Ingenuity™ Pathway analysis included 12 genes in the cubilin-megalin multiligand endocytic receptor complex. Altered expression of these genes was validated by quantitative RT-PCR, and immunohistochemical analysis demonstrated that megalin protein expression disappeared from the visceral yolk sac of RFC1-/- embryos, while cubilin protein was widely misexpressed. Conclusion Inactivation of

  20. Gender Interacts with Opioid Receptor Polymorphism A118G and Serotonin Receptor Polymorphism -1438 A/G on Speed-Dating Success.

    PubMed

    Wu, Karen; Chen, Chuansheng; Moyzis, Robert K; Greenberger, Ellen; Yu, Zhaoxia

    2016-09-01

    We examined an understudied but potentially important source of romantic attraction-genetics-using a speed-dating paradigm. The mu opioid receptor (OPRM1) polymorphism A118G (rs1799971) and the serotonin receptor (HTR2A) polymorphism -1438 A/G (rs6311) were studied because they have been implicated in social affiliation. Guided by the social role theory of mate selection and prior genetic evidence, we examined these polymorphisms' gender-specific associations with speed-dating success (i.e., date offers, mate desirability). A total of 262 single Asian Americans went on speed-dates with members of the opposite gender and completed interaction questionnaires about their partners. Consistent with our prediction, significant gender-by-genotype interactions were found for speed-dating success. Specifically, the minor variant of A118G (G-allele), which has been linked to submissiveness/social sensitivity, predicted greater speed-dating success for women, whereas the minor variant of -1438 A/G (G-allele), which has been linked to leadership/social dominance, predicted greater speed-dating success for men. For both polymorphisms, reverse "dampening" effects of minor variants were found for opposite-gender counterparts. These results support previous research on the importance of the opioid and serotonergic systems in social affiliation, indicating that their influence extends to dating success, with opposite, yet gender-norm consistent, effects for men and women. PMID:27193909

  1. Nascent structure-activity relationship study of a diastereomeric series of kappa opioid receptor antagonists derived from CJ-15,208.

    PubMed

    Dolle, Roland E; Michaut, Mathieu; Martinez-Teipel, Blanca; Seida, Pamela R; Ajello, Christopher W; Muller, Alison L; DeHaven, Robert N; Carroll, Patrick J

    2009-07-01

    Cyclic tetrapeptide c[Phe-pro-Phe-trp] 2, a diastereomer of CJ-15,208 (1), was identified as a potent dual kappa/mu opioid receptor antagonist devoid of delta opioid receptor affinity against cloned human receptors: K(i) (2)=3.8nM (kappa), 30nM (mu); IC(50) ([(35)S]GTPgammaS binding)=140nM (kappa), 21nM (mu). The d-tryptophan residue rendered 2 ca. eightfold and fourfold more potent at kappa and mu, respectively, than the corresponding l-configured tryptophan in the natural product 1. Phe analogs 3-10, designed to probe the effect of substituents on receptor affinity and selectivity, possessed K(i) values ranging from 14 to 220nM against the kappa opioid receptor with mu/kappa ratios of 0.45-3.0. An alanine scan of 2 yielded c[Ala-pro-Phe-trp] 12, an analog equipotent to 2. Agents 2 and 12 were pure antagonists in vitro devoid of agonist activity. Ac-pro-Phe-trp-Phe-NH(2)16 and Ac-Phe-trp-Phe-pro-NH(2)17 two of the eight possible acyclic peptides derived from 1 and 2, were selective, modestly potent mu ligands: K(i) (16)=340nM (mu); K(i) (17)=360nM (mu). PMID:19464172

  2. Proton Knock-Out in Hall A

    SciTech Connect

    Kees de Jager

    2002-06-01

    Proton knock-out is studied in a broad program in Hall A at Jefferson Lab. The first experiment performed in Hall A studied the {sup 16}O(e,e'p) reaction. Since then proton knock-out experiments have studied a variety of aspects of that reaction, from single-nucleon properties to its mechanism, such as final-state interactions and two-body currents, in nuclei from {sup 2}H to {sup 16}O. In this review the results of this program will be summarized and an outlook given of future accomplishments.

  3. Analgesia produced by exposure to 2450-MHz radiofrequency radiation (RFR) is mediated by brain mu- and kappa-opioid receptors

    SciTech Connect

    Salomon, G.; Park, E.J.; Quock, R.M. )

    1992-02-26

    This study was conducted to identify the opioid receptor subtype(s) responsible for RFR-induced analgesia. Male Swiss Webster mice, 20-25 g, were exposed to 20 mW/cm{sup 2} RFR in a 2,450-MHz waveguide system for 10 min, then tested 15 min later in the abdominal constriction paradigm which detects {mu}- and {kappa}-opioid activity. Immediately following RFR exposure, different groups of mice were pretreated intracerebroventricularly with different opioid receptor blockers with selectivity for {mu}- or {kappa}-opioid receptors. Results show that RFR-induced analgesia was attenuated by higher but not lower doses of the non-selective antagonist naloxone, but the selective {mu}-opioid antagonist {beta}-funaltrexamine and by the selective {kappa}-opioid antagonist norbinaltorphimine. RFR-induced analgesia was also reduced by subcutaneous pretreatment with 5.0 mg/kg of the {mu}-/{kappa}-opioid antagonist({minus})-5,9-diethyl-{alpha}-5,9-dialkyl-2{prime}-hydroxy-6,7-benzomorphan(MR-2266). These findings suggest that RFR-induced analgesia may be mediated by both {mu}- and {kappa}-opioid mechanisms.

  4. Sex-related differences in mechanical nociception and antinociception produced by mu- and kappa-opioid receptor agonists in rats.

    PubMed

    Barrett, Andrew C; Smith, Eric S; Picker, Mitchell J

    2002-10-01

    Previous studies indicate that in antinociceptive procedures employing thermal, chemical and electrical stimuli, opioids are generally more potent in male than female rodents. The purpose of the present study was to examine nociception and opioid antinociception in male and female rats using a mechanical nociceptive stimulus. Results indicated that males had a higher threshold for nociception, and in tests in which a constant pressure was applied to the hindpaw, the paw withdrawal latencies were consistently longer in males. Opioids with activity at the mu receptor, including levorphanol, morphine, dezocine, buprenorphine, butorphanol and nalbuphine, were generally more potent and/or effective in males. In contrast, sex differences were not consistently observed with the kappa-opioid receptor agonists spiradoline, (5,7,8b)-N-methyl-N[2-1(1-pyrrolidinyl),1-oxaspiro[4,5]dec-8-yl benzeneacetamide (U69593), trans-(+/-)-3,4-dichloro-N-methyl-[2-(1-pyrrolidinyl)-cyclohexyl]benzeneacetamide (U50488), enadoline, ethylketocyclazocine, and nalorphine. These findings suggest that males and females differ in their responsiveness to mechanical nociception and that sex differences in sensitivity to kappa-, but not mu-, opioid receptor agonists are specific to certain nociceptive stimulus modalities. PMID:12354566

  5. Functional evidence for multiple receptor activation by kappa-ligands in the inhibition of spinal nociceptive reflexes in the rat.

    PubMed Central

    Herrero, J. F.; Headley, P. M.

    1993-01-01

    1. The evidence for kappa-receptor heterogeneity is equivocal. We have now investigated this question by comparing the effects of five putatively selective kappa-agonists. The parameters examined were: the relative potencies in depressing hindlimb flexor muscle reflexes to noxious pinch stimuli in both spinalized and sham-spinalized rats; the reversibility of these effects by naloxone; and the effects on blood pressure. 2. Two types of drug effect was discriminated. One drug group, represented by U-50,488, U-69,593 and PD-117,302, had a potency ratio between sham and spinalized rats approximately 10 fold lower than the other group, which comprised GR103545 and CI-977. 3. Under sham-spinalized conditions, CI-977 and GR103545 at high doses caused only sub-maximal reductions of spinal reflexes. U-50,488 was still active when superimposed on these high doses of GR103545. 4. Naloxone reversed all effects, but different doses were required between compounds, with GR103545 taking some 20 times higher doses of naloxone to cause reversal than did U-50,488. 5. The effects on mean arterial pressure were opposite between groups. 6. The results imply that more than one type of naloxone-sensitive non-mu opioid receptor must be involved in mediating these complex actions of ligands that have been claimed to be selective for kappa-receptors. PMID:8220893

  6. Delayed liver regeneration after partial hepatectomy in adiponectin knockout mice

    SciTech Connect

    Ezaki, Hisao; Yoshida, Yuichi; Saji, Yukiko; Takemura, Takayo; Fukushima, Juichi; Matsumoto, Hitoshi; Kamada, Yoshihiro; Wada, Akira; Igura, Takumi; Kihara, Shinji; Funahashi, Tohru; Shimomura, Iichiro; Tamura, Shinji; Kiso, Shinichi Hayashi, Norio

    2009-01-02

    We previously demonstrated that adiponectin has anti-fibrogenic and anti-inflammatory effects in the liver of mouse models of various liver diseases. However, its role in liver regeneration remains unclear. The aim of this study was to determine the role of adiponectin in liver regeneration. We assessed liver regeneration after partial hepatectomy in wild-type (WT) and adiponectin knockout (KO) mice. We analyzed DNA replication and various signaling pathways involved in cell proliferation and metabolism. Adiponectin KO mice exhibited delayed DNA replication and increased lipid accumulation in the regenerating liver. The expression levels of peroxisome proliferator-activated receptor (PPAR) {alpha} and carnitine palmitoyltransferase-1 (CPT-1), a key enzyme in mitochondrial fatty acid oxidation, were decreased in adiponectin KO mice, suggesting possible contribution of altered fat metabolism to these phenomena. Collectively, the present results highlight a new role for adiponectin in the process of liver regeneration.

  7. ROLES OF OPIOID RECEPTOR SUBTYPES IN MEDIATING ALCOHOL SEEKING INDUCED BY DISCRETE CUES AND CONTEXT

    PubMed Central

    Marinelli, Peter W.; Funk, Douglas; Harding, Stephen; Li, Zhaoxia; Juzytsch, Walter; Lê, A.D.

    2009-01-01

    The aim of this study was to assess the effects of selective blockade of the delta (DOP) or mu opioid (MOP) receptors on alcohol seeking induced by discrete cues and context. In Experiment 1, rats were trained to self-administer alcohol in an environment with distinct sensory properties. After extinction in a different context with separate sensory properties, rats were tested for context-induced renewal in the original context following treatment with the DOP receptor antagonist naltrindole (0 – 15-mg/kg, IP) or the MOP receptor antagonist CTOP (0 – 3-µg/kg ICV). In a separate set of experiments, reinstatement was tested with the presentation of a discrete light+tone cue previously associated with alcohol delivery, following extinction without the cue. In Experiment 2, the effects of naltrindole (0 – 5-mg/kg, IP) or CTOP (0 – 3-µg/kg µg ICV) were assessed. For context-induced renewal, 7.5-mg/kg naltrindole reduced responding without affecting locomotor activity. Both doses of CTOP attenuated responding in the first 15 min of the renewal test session; however, total responses did not differ at the end of the session. For discrete cue-induced reinstatement, 1 and 5-mg/kg naltrindole attenuated responding, but CTOP had no effect. We conclude that while DOP receptors mediate alcohol seeking induced by discrete cues and context, MOP receptors may play a modest role only in context-induced renewal. These findings point to a differential involvement of opioid receptor subtypes in the effects of different kinds of conditioned stimuli on alcohol seeking, and support a more prominent role for DOP receptors. PMID:19686472

  8. Role of preoptic opioid receptors in the body temperature reduction during hypoxia.

    PubMed

    Scarpellini, Carolina da Silveira; Gargaglioni, Luciane H; Branco, Luis G S; Bícego, Kênia C

    2009-08-25

    Evidence indicates that endogenous opioids play a role in body temperature (Tb) regulation in mammals but no data exist about the involvement of the specific opioid receptors, mu, kappa and delta, in the reduction of Tb induced by hypoxia. Thus, we investigated the participation of these opioid receptors in the anteroventral preoptic region (AVPO) in hypoxic decrease of Tb. To this end, Tb of unanesthetized Wistar rats was monitored by temperature data loggers before and after intra-AVPO microinjection of the selective kappa-opioid receptor antagonist nor-binaltorphimine dihydrochloride (nor-BNI; 0.1 and 1.0 microg/100 nL/animal), the selective mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 cyclic (CTAP; 0.1 and 1.0 microg/100 nL/animal), and the selective delta-opioid receptor antagonist Naltrindole (0.06 and 0.6 microg/100 nL/animal) or saline (vehicle, 100 nL/animal), during normoxia and hypoxia (7% inspired O2). Under normoxia, no effect of opioid antagonists on Tb was observed. Hypoxia induced Tb to reduce in vehicle group, a response that was inhibited by the microinjection intra-AVPO of nor-BNI. In contrast, CTAP and Naltrindole did not change Tb during hypoxia but caused a longer latency for the return of Tb to the normoxic values just after low O2 exposure. Our results indicate the kappa-opioid receptor in the AVPO is important for the reduction of Tb during hypoxia while the mu and delta receptors are involved in the increase of Tb during normoxia post-hypoxia. PMID:19545549

  9. Increased adiposity on normal diet, but decreased susceptibility to diet-induced obesity in μ-opioid receptor-deficient mice

    PubMed Central

    Zuberi, Aamir R.; Townsend, Leigh; Patterson, Laurel; Zheng, Huiyuan; Berthoud, Hans-Rudi

    2008-01-01

    The mu-opioid receptor encoded by the Oprm1 gene plays a crucial role in the mediation of food reward and drug-induced positive reinforcement, but its genetic deletion has been shown to provide food intake-independent, partial protection from diet-induced obesity. We hypothesized that mu-opioid receptor-deficient mice would show an even greater, intake-dependent, resistance to high fat diet-induced obesity if the diet comprises a sweet component. We generated an F2 population by crossing the heterozygous offspring of homozygous female Oprm1-/- mice (on a mixed C57BL/6 and BALB/c genetic background) with male inbred C57BL/6 mice. Groups of genotyped wildtype (WT) and homozygous mutant (KO) males and females were fed either control chow or a high caloric palatable diet consisting of sweet, liquid chocolate-flavored Ensure together with a solid high fat diet. Food intake, body weight, and body composition was measured over a period of 16 weeks. Unexpectedly, male, and to a lesser extent female, KO mice fed chow for the entire period showed progressively increased body weight and adiposity while eating significantly more chow. In contrast, when exposed to the sweet plus high-fat diet, male, and to a lesser extent female, KO mice gained significantly less body weight and fat mass compared to WT mice when using chow fed counterparts for reference values. Male KO mice consumed 33% less of the sweet liquid diet but increased intake of high-fat pellets, so that total calorie intake was not different from WT animals. These results demonstrate a dissociation of the role of μ-opioid receptors in the control of adiposity for different diets and sex. On a bland diet, normal receptor function appears to confer a slightly catabolic predisposition, but on a highly palatable diet, it confers an anabolic metabolic profile, favoring fat accretion. Because of the complexity of μ-opioid gene regulation and tissue distribution, more selective and targeted approaches will be necessary

  10. Pharmacogenomic study of the role of the nociceptin/orphanin FQ receptor and opioid receptors in diabetic hyperalgesia.

    PubMed

    Rutten, Kris; Tzschentke, Thomas M; Koch, Thomas; Schiene, Klaus; Christoph, Thomas

    2014-10-15

    Targeting functionally independent receptors may provide synergistic analgesic effects in neuropathic pain. To examine the interdependency between different opioid receptors (µ-opioid peptide [MOP], δ-opioid peptide [DOP] and κ-opioid peptide [KOP]) and the nociceptin/orphanin FQ peptide (NOP) receptor in streptozotocin (STZ)-induced diabetic polyneuropathy, nocifensive activity was measured using a hot plate test in wild-type and NOP, MOP, DOP and KOP receptor knockout mice in response to the selective receptor agonists Ro65-6570, morphine, SNC-80 and U50488H, or vehicle. Nocifensive activity was similar in non-diabetic wild-type and knockout mice at baseline, before agonist or vehicle administration. STZ-induced diabetes significantly increased heat sensitivity in all mouse strains, but MOP, DOP and KOP receptor knockouts showed a smaller degree of hyperalgesia than wild-type mice and NOP receptor knockouts. For each agonist, a significant antihyperalgesic effect was observed in wild-type diabetic mice (all P<0.05 versus vehicle); the effect was markedly attenuated in diabetic mice lacking the cognate receptor compared with wild-type diabetic mice. Morphine was the only agonist that demonstrated near-full antihyperalgesic efficacy across all non-cognate receptor knockouts. Partial or near-complete reductions in efficacy were observed with Ro65-6570 in DOP and KOP receptor knockouts, with SNC-80 in NOP, MOP and KOP receptor knockouts, and with U50488H in NOP and DOP receptor knockouts. There was no evidence of NOP and MOP receptor interdependency in response to selective agonists for these receptors. These findings suggest that concurrent activation of NOP and MOP receptors, which showed functional independence, may yield an effective and favorable therapeutic analgesic profile. PMID:25169429

  11. Design, Syntheses, and Pharmacological Characterization of 17-Cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3′-carboxamido)morphinan Analogues as Opioid Receptor Ligands

    PubMed Central

    Yuan, Yunyun; Zaidi, Saheem A.; Stevens, David L.; Scoggins, Krista L.; Mosier, Philip D.; Kellogg, Glen E.; Dewey, William L.; Selley, Dana E.; Zhang, Yan

    2015-01-01

    A series of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3′-carboxamido)morphinan (NAQ) analogues were synthesized and pharmacologically characterized to study their structure-activity relationship at the mu opioid receptor (MOR). The competition binding assay showed two-atom spacer and aromatic side chain were optimal for MOR selectivity. Meanwhile, substitutions at the 1′- and/or 4′-position of the isoquinoline ring retained or improved MOR selectivity over the kappa opioid receptor while still possessing above 20-fold MOR selectivity over the delta opioid receptor. In contrast, substitutions at the 6′-and/or 7′-position of the isoquinoline ring reduced MOR selectivity as well as MOR efficacy. Among this series of ligands, compound 11 acted as an antagonist when challenged with morphine in warm-water tail immersion assay and produced less significant withdrawal symptoms compared to naltrexone in morphine-pelleted mice. Compound 11 also antagonized the intracellular Ca2+ increase induced by DAMGO. Molecular dynamics simulation studies of 11 in three opioid receptors indicated orientation of the 6’-nitro group varied significantly in the different “address” domains of the receptors and played a crucial role in the observed binding affinities and selectivity. Collectively, the current findings provide valuable insights for future development of NAQ-based MOR selective ligands. PMID:25783191

  12. Design, syntheses, and pharmacological characterization of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3'-carboxamido)morphinan analogues as opioid receptor ligands.

    PubMed

    Yuan, Yunyun; Zaidi, Saheem A; Stevens, David L; Scoggins, Krista L; Mosier, Philip D; Kellogg, Glen E; Dewey, William L; Selley, Dana E; Zhang, Yan

    2015-04-15

    A series of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3'-carboxamido)morphinan (NAQ) analogues were synthesized and pharmacologically characterized to study their structure-activity relationship at the mu opioid receptor (MOR). The competition binding assay showed two-atom spacer and aromatic side chain were optimal for MOR selectivity. Meanwhile, substitutions at the 1'- and/or 4'-position of the isoquinoline ring retained or improved MOR selectivity over the kappa opioid receptor while still possessing above 20-fold MOR selectivity over the delta opioid receptor. In contrast, substitutions at the 6'- and/or 7'-position of the isoquinoline ring reduced MOR selectivity as well as MOR efficacy. Among this series of ligands, compound 11 acted as an antagonist when challenged with morphine in warm-water tail immersion assay and produced less significant withdrawal symptoms compared to naltrexone in morphine-pelleted mice. Compound 11 also antagonized the intracellular Ca(2+) increase induced by DAMGO. Molecular dynamics simulation studies of 11 in three opioid receptors indicated orientation of the 6'-nitro group varied significantly in the different 'address' domains of the receptors and played a crucial role in the observed binding affinities and selectivity. Collectively, the current findings provide valuable insights for future development of NAQ-based MOR selective ligands. PMID:25783191

  13. Modulation of Ca2+ channels by opioid receptor antagonists in mesenteric arterial smooth muscle cells of rats in hemorrhagic shock.

    PubMed

    Kai, Li; Wang, Zhong-Feng; Hu, De-Yao; Shi, Yu-Liang; Liu, Liang-Ming

    2002-10-01

    The effects of hemorrhagic shock on Ba currents ( ) via Ca channels and the regulation of the channels in the vascular hyporesponse stage of hemorrhagic shock by opioid receptor antagonists were examined by using the whole-cell recording of patch-clamp technique in mesenteric arterial smooth muscle cells of rats. The results showed that hemorrhagic shock induced an inhibition of Ca channels in the cells; 10 micro M of naloxone and 100 n of naltrindole, nor-binaltorphimine, and beta-funaltrexamine increased the in the cells of rats in shock. After inhibition of protein kinase C by using 1-(5-isoquindinesulfonyl)-2-methylpiperazine via electrodes, the enhancement of by the antagonists was not observed. These results suggested that the inhibition of Ca channel induced by hemorrhagic shock was mediated by delta-, kappa-, and mu -opioid receptors in the cells and may be partly responsible for vascular hyporesponse. The enhancement of was mediated by activation of protein kinase C and may be responsible for the antagonist-caused improvement in the response of resistance arteries to vasoactive stimulants at the decompensatory stage of hemorrhagic shock. PMID:12352325

  14. Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury

    PubMed Central

    Stedman, Catherine A. M.; Liddle, Christopher; Coulter, Sally A.; Sonoda, Junichiro; Alvarez, Jacqueline G. A.; Moore, David D.; Evans, Ronald M.; Downes, Michael

    2005-01-01

    Cholestasis is associated with accumulation of bile acids and lipids, and liver injury. The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic nuclear receptors that coordinate protective hepatic responses to potentially toxic stimuli, including bile acids. We investigated the role of these receptors in the regulation of bile acid and lipid metabolism in a bile duct ligation (BDL) model of cholestasis applied to receptor knockout mice. Hepatic damage from bile acid accumulation was increased in both CAR knockout (CARKO) and PXR knockout mice, but bile acid concentrations were lower in CARKO mice. High-density lipoprotein (HDL) cholesterol was elevated in CARKO mice, and serum total cholesterol increased less in CARKO or PXR knockout mice than WT mice after BDL. Gene expression analysis of the BDL knockout animals demonstrated that, in response to cholestasis, PXR and CAR both repressed and induced the specific hepatic membrane transporters Oatp-c (organic anion transporting polypeptide C) and Oatp2 (Na+-dependent organic anion transporter 2), respectively. Induction of the xenobiotic transporter multidrug resistance protein 1 in cholestasis was independent of either PXR or CAR, in contrast to the known pattern of induction of multidrug resistance protein 1 by xenobiotics. These results demonstrate that CAR and PXR influence cholesterol metabolism and bile acid synthesis, as well as multiple detoxification pathways, and suggest their potential role as therapeutic targets for the treatment of cholestasis and lipid disorders. PMID:15684063

  15. Synaptic actions of neuropeptide FF in the rat parabrachial nucleus: interactions with opioid receptors.

    PubMed

    Chen, X; Zidichouski, J A; Harris, K H; Jhamandas, J H

    2000-08-01

    The pontine parabrachial nucleus (PBN) receives both opioid and Neuropeptide FF (NPFF) projections from the lower brain stem and/or the spinal cord. Because of this anatomical convergence and previous evidence that NPFF displays both pro- and anti-opioid activities, this study examined the synaptic effects of NPFF in the PBN and the mechanisms underlying these effects using an in vitro brain slice preparation and the nystatin-perforated patch-clamp recording technique. Under voltage-clamp conditions, NPFF reversibly reduced the evoked excitatory postsynaptic currents (EPSCs) in a dose-dependent fashion. This effect was not accompanied by apparent changes in the holding current, the current-voltage relationship or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-induced inward currents in the PBN cells. When a paired-pulse protocol was used, NPFF increased the ratio of these synaptic currents. Analysis of miniature EPSCs showed that NPFF caused a rightward shift in the frequency-distribution curve, whereas the amplitude-distribution curve remained unchanged. Collectively, these experiments indicate that NPFF reduces the evoked EPSCs through a presynaptic mechanism of action. The synaptic effects induced by NPFF (5 microM) could not be blocked by the specific mu-opioid receptor antagonist, D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (1 microM), but application of delta-opioid receptor antagonist Tyr-Tic-Phe-Phe (5 microM) almost completely prevented effects of NPFF. Moreover, the delta-opioid receptor agonist, Deltorphin (1 microM), mimicked the effects as NPFF and also occluded NPFF's actions on synaptic currents. These results indicate that NPFF modulates excitatory synaptic transmission in the PBN through an interaction with presynaptic delta-opioid receptors. These observations provide a cellular basis for NPFF enhancement of the antinociceptive effects consequent to central activation of delta-opioid receptors. PMID:10938301

  16. ( sup 3 H)(D-PEN sup 2 , D-PEN sup 5 ) enkephalin binding to delta opioid receptors on intact neuroblastoma-glioma (NG 108-15) hybrid cells

    SciTech Connect

    Knapp, R.J.; Yamamura, H.I. )

    1990-01-01

    ({sup 3}H)(D-Pen{sup 2}, D-Pen{sup 5})enkephalin binding to intact NG 108-15 cells has been measured under physiological conditions of temperature and medium. The dissociation constant, receptor density, and Hill slope values measured under these conditions are consistent with values obtained by others using membranes prepared from these cells. Kinetic analysis of the radioligand binding to these cells show biphasic association and monophasic dissociation processes suggesting the presence of different receptor affinity states for the agonist. The data show that the binding affinity of ({sup 3}H)(D-Pen{sup 2}, D-Pen{sup 5})enkephalin under physiological conditions is not substantially different to that measured in 50 mM Tris buffer using cell membrane fractions. Unlike DPDPE, the {mu} opioid agonists morphine, normorphine, PL-17, and DAMGO, have much lower affinity for the {delta} receptor measured under these conditions than is observed by studies using 50 mM Tris buffer. The results described here suggest that this assay may serve as a useful model of {delta} opioid receptor binding in vivo.

  17. Roles of different subtypes of opioid receptors in mediating the ventrolateral orbital cortex opioid-induced inhibition of mirror-neuropathic pain in the rat.

    PubMed

    Zhao, M; Wang, J Y; Jia, H; Tang, J S

    2007-02-23

    Previous studies have demonstrated that opioid receptors in the prefrontal ventrolateral orbital cortex (VLO) are involved in anti-nociception. The aim of this current study was to examine whether opioid receptors in the VLO have effects on the hypersensitivity induced by contralateral L5 and L6 spinal nerve ligation (SNL), termed as mirror neuropathic pain (MNP) in the male rat. Morphine (1.0, 2.5, 5.0 microg) microinjected into the VLO contralateral to the SNL depressed the mechanical paw withdrawal assessed by von Frey filaments and the cold plate (4 degrees C)-induced paw lifting in a dose-dependent manner on the side without SNL. These effects were antagonized by microinjection of the non-selective opioid receptor antagonist naloxone (1.0 mug) into the same VLO site. Microinjection of endomorphin-1 (5.0 microg), a highly selective mu-opioid receptor agonist, and [d-Ala(2), d-Leu(5)]-enkephalin (DADLE, 10 microg), a delta-/mu-receptor agonist, also depressed the MNP. The effects of both drugs were blocked by selective mu-receptor antagonist beta-funaltrexamine (beta-FNA, 3.75 microg), but the effect of the DADLE was not influenced by the selective delta-receptor antagonist naltrindole (5.0 microg). Microinjection of the kappa-opioid receptor agonist spiradoline mesylate salt (U-62066) (100 microg) had no effect on the MNP. These results suggest that the VLO is involved in opioid-induced inhibition of the MNP and the effect is mediated by mu- (but not delta- and kappa-) opioid receptors. PMID:17184926

  18. Knockout Mice Challenge our Concepts of Glucose Homeostasis and the Pathogenesis of Diabetes

    PubMed Central

    2003-01-01

    A central component of type 2 diabetes and the metabolic syndrome is insulin resistance. Insulin exerts a multifaceted and highly integrated series of actions via its intracellular signaling systems. Generation of mice carrying null mutations of the genes encoding proteins in the insulin signaling pathway provides a unique approach to determining the role of individual proteins in the molecular mechanism of insulin action and the pathogenesis of insulin resistance and diabetes. The role of the four major insulin receptor substrates (IRS1-4) in insulin and IGF-1 signaling have been examined by creating mice with targeted gene knockouts. Each produces a unique phenotype, indicating the complementary role of these signaling components. Combined heterozygous defects often produce synergistic or epistatic effects, although the final severity of the phenotype depends on the genetic background of the mice. Conditional knockouts of the insulin receptor have also been created using the Cre-lox system. These tissue specific knockouts have provide unique insights into the control of glucose homeostasis and the pathogenesis of type 2 diabetes, and have led to development of new hypotheses about the nature of the insulin action and development of diabetes. PMID:15061645

  19. Identification of opioid receptor subtypes in antinociceptive actions of supraspinally-administered mitragynine in mice.

    PubMed

    Thongpradichote, S; Matsumoto, K; Tohda, M; Takayama, H; Aimi, N; Sakai, S; Watanabe, H

    1998-01-01

    Mitragynine (MG), a major alkaloidal constituent extracted from the plant Mitragyna speciosa Korth, is known to exert an opioid-like activity. Our previous study showed the involvement of opioid systems in the antinociceptive activity of MG in the tail-pinch and hot-plate tests in mice. In the present study, to clarify the opioid receptor subtypes involved in the antinociceptive action of MG, we investigated the effects of selective antagonists for mu-, delta- and kappa- opioid receptors on antinociception caused by the intracerebroventricular (i.c.v.) injection of MG in the tail-pinch and hot-plate tests in mice. The coadministration of a selective mu-opioid antagonist, cyprodime (1-10 microg, i.c.v.) and the pretreatment with a selective mu1-opioid antagonist naloxonazine (1-3 microg, i.c.v.) significantly antagonized the antinociceptive activities of MG (10 microg, i.c.v.) and morphine (MOR, 3 microg, i.c.v.) in the tail-pinch and hot-plate tests. Naltrindole (1-5 ng, i.c.v.), a selective delta-opioid antagonist, also blocked the effects of MG (10 microg, i.c.v.) without affecting MOR (3 microg, i.c.v.) antinociception. Nor-binaltorphimine, a selective kappa-opioid antagonist, significantly attenuated MG (10 microg, i.c.v.) antinociception in the tail-pinch test but not in the hot-plate test at the dose (1 microg, i.c.v.) that antagonized the antinociceptive effects of the selective kappa-opioid agonist U50,488H in both tests, while it had no effect on MOR antinociception in either tests. These results suggest that antinociception caused by i.c.v. MG is dominantly mediated by mu- and delta-opioid receptor subtypes, and that the selectivity of MG for the supraspinal opioid receptor subtypes differs from that of MOR in mice. PMID:9585164

  20. K Basins floor sludge retrieval system knockout pot basket fuel burn accident

    SciTech Connect

    HUNT, J.W.

    1998-11-11

    The K Basins Sludge Retrieval System Preliminary Hazard Analysis Report (HNF-2676) identified and categorized a series of potential accidents associated with K Basins Sludge Retrieval System design and operation. The fuel burn accident was of concern with respect to the potential release of contamination resulting from a runaway chemical reaction of the uranium fuel in a knockout pot basket suspended in the air. The unmitigated radiological dose to an offsite receptor from this fuel burn accident is calculated to be much less than the offsite risk evaluation guidelines for anticipated events. However, because of potential radiation exposure to the facility worker, this accident is precluded with a safety significant lifting device that will prevent the monorail hoist from lifting the knockout pot basket out of the K Basin water pool.

  1. Clues to VIP function from knockout mice.

    PubMed

    Hamidi, S A; Szema, A M; Lyubsky, S; Dickman, K G; Degene, A; Mathew, S M; Waschek, J A; Said, S I

    2006-07-01

    We have taken advantage of the availability of vasoactive intestinal polypeptide (VIP) knockout (KO) mice to examine the possible influence of deletion of the VIP gene on: (a) airway reactivity and airway inflammation, as indicators of bronchial asthma; (b) mortality from endotoxemia, a model of septic shock; and (c) the pulmonary circulation. VIP KO mice showed: (a) airway hyperresponsiveness to the cholinergic agonist methacholine, as well as peribronchial and perivascular inflammation; (b) a greater susceptibility to death from endotoxemia; and (c) evidence suggestive of pulmonary hypertension. PMID:16888146

  2. Universal statistics of the knockout tournament

    NASA Astrophysics Data System (ADS)

    Baek, Seung Ki; Yi, Il Gu; Park, Hye Jin; Kim, Beom Jun

    2013-11-01

    We study statistics of the knockout tournament, where only the winner of a fixture progresses to the next. We assign a real number called competitiveness to each contestant and find that the resulting distribution of prize money follows a power law with an exponent close to unity if the competitiveness is a stable quantity and a decisive factor to win a match. Otherwise, the distribution is found narrow. The existing observation of power law distributions in various kinds of real sports tournaments therefore suggests that the rules of those games are constructed in such a way that it is possible to understand the games in terms of the contestants' inherent characteristics of competitiveness.

  3. The σ1 Receptor Engages the Redox-Regulated HINT1 Protein to Bring Opioid Analgesia Under NMDA Receptor Negative Control

    PubMed Central

    Rodríguez-Muñoz, María; Sánchez-Blázquez, Pilar; Herrero-Labrador, Raquel; Martínez-Murillo, Ricardo; Merlos, Manuel; Vela, José Miguel

    2015-01-01

    Abstract Aims: The in vivo pharmacology of the sigma 1 receptor (σ1R) is certainly complex; however, σ1R antagonists are of therapeutic interest, because they enhance mu-opioid receptor (MOR)-mediated antinociception and reduce neuropathic pain. Thus, we investigated whether the σ1R is involved in the negative control that glutamate N-methyl-d-aspartate acid receptors (NMDARs) exert on opioid antinociception. Results: The MOR C terminus carries the histidine triad nucleotide-binding protein 1 (HINT1) coupled to the regulator of G-protein signaling RGSZ2-neural nitric oxide synthase assembly. Activated MORs stimulate the production of nitric oxide (NO), and the redox zinc switch RGSZ2 converts this signal into free zinc ions that are required to recruit the redox sensor PKCγ to HINT1 proteins. Then, PKCγ impairs HINT1-RGSZ2 association and enables σ1R-NR1 interaction with MOR-HINT1 complexes to restrain opioid signaling. The inhibition of NOS or the absence of σ1Rs prevents HINT1-PKCγ interaction, and MOR-NMDAR cross-regulation fails. The σ1R antagonists transitorily remove the binding of σ1Rs to NR1 subunits, facilitate the entrance of negative regulators of NMDARs, likely Ca2+-CaM, and prevent NR1 interaction with HINT1, thereby impairing the negative feedback of glutamate on opioid analgesia. Innovation: A redox-regulated process situates MOR signaling under NMDAR control, and in this context, the σ1R binds to the cytosolic C terminal region of the NMDAR NR1 subunit. Conclusion: The σ1R antagonists enhance opioid analgesia in naïve mice by releasing MORs from the negative influence of NMDARs, and they also reset antinociception in morphine tolerant animals. Moreover, σ1R antagonists alleviate neuropathic pain, probably by driving the inhibition of up-regulated NMDARs. Antioxid. Redox Signal. 22, 799–818. PMID:25557043

  4. Altered Reward Circuitry in the Norepinephrine Transporter Knockout Mouse

    PubMed Central

    Hall, F. Scott; Uhl, George R.; Bearer, Elaine L.; Jacobs, Russell E.

    2013-01-01

    Synaptic levels of the monoamine neurotransmitters dopamine, serotonin, and norepinephrine are modulated by their respective plasma membrane transporters, albeit with a few exceptions. Monoamine transporters remove monoamines from the synaptic cleft and thus influence the degree and duration of signaling. Abnormal concentrations of these neuronal transmitters are implicated in a number of neurological and psychiatric disorders, including addiction, depression, and attention deficit/hyperactivity disorder. This work concentrates on the norepinephrine transporter (NET), using a battery of in vivo magnetic resonance imaging techniques and histological correlates to probe the effects of genetic deletion of the norepinephrine transporter on brain metabolism, anatomy and functional connectivity. MRS recorded in the striatum of NET knockout mice indicated a lower concentration of NAA that correlates with histological observations of subtle dysmorphisms in the striatum and internal capsule. As with DAT and SERT knockout mice, we detected minimal structural alterations in NET knockout mice by tensor-based morphometric analysis. In contrast, longitudinal imaging after stereotaxic prefrontal cortical injection of manganese, an established neuronal circuitry tracer, revealed that the reward circuit in the NET knockout mouse is biased toward anterior portions of the brain. This is similar to previous results observed for the dopamine transporter (DAT) knockout mouse, but dissimilar from work with serotonin transporter (SERT) knockout mice where Mn2+ tracings extended to more posterior structures than in wildtype animals. These observations correlate with behavioral studies indicating that SERT knockout mice display anxiety-like phenotypes, while NET knockouts and to a lesser extent DAT knockout mice display antidepressant-like phenotypic features. Thus, the mainly anterior activity detected with manganese-enhanced MRI in the DAT and NET knockout mice is likely indicative of

  5. Proteomic Analysis of Loricrin Knockout Mouse Epidermis.

    PubMed

    Rice, Robert H; Durbin-Johnson, Blythe P; Ishitsuka, Yosuke; Salemi, Michelle; Phinney, Brett S; Rocke, David M; Roop, Dennis R

    2016-08-01

    The crosslinked envelope of the mammalian epidermal corneocyte serves as a scaffold for assembly of the lipid barrier of the epidermis. Thus, deficient envelope crosslinking by keratinocyte transglutaminase (TGM1) is a major cause of the human autosomal recessive congenital ichthyoses characterized by barrier defects. Expectations that loss of some envelope protein components would also confer an ichthyosis phenotype have been difficult to demonstrate. To help rationalize this observation, the protein profile of epidermis from loricrin knockout mice has been compared to that of wild type. Despite the mild phenotype of the knockout, some 40 proteins were incorporated into envelope material to significantly different extents compared to those of wild type. Nearly half were also incorporated to similarly altered extents into the disulfide bonded keratin network of the corneocyte. The results suggest that loss of loricrin alters their incorporation into envelopes as a consequence of protein-protein interactions during cell maturation. Mass spectrometric protein profiling revealed that keratin 1, keratin 10, and loricrin are prominent envelope components and that dozens of other proteins are also components. This finding helps rationalize the potential formation of functional envelopes, despite loss of a single component, due to the availability of many alternative transglutaminase substrates. PMID:27418529

  6. Environmental enrichment induces behavioural disturbances in neuropeptide Y knockout mice

    PubMed Central

    Reichmann, Florian; Wegerer, Vanessa; Jain, Piyush; Mayerhofer, Raphaela; Hassan, Ahmed M.; Fröhlich, Esther E.; Bock, Elisabeth; Pritz, Elisabeth; Herzog, Herbert; Holzer, Peter; Leitinger, Gerd

    2016-01-01

    Environmental enrichment (EE) refers to the provision of a complex and stimulating housing condition which improves well-being, behaviour and brain function of laboratory animals. The mechanisms behind these beneficial effects of EE are only partially understood. In the current report, we describe a link between EE and neuropeptide Y (NPY), based on findings from NPY knockout (KO) mice exposed to EE. Relative to EE-housed wildtype (WT) animals, NPY KO mice displayed altered behaviour as well as molecular and morphological changes in amygdala and hippocampus. Exposure of WT mice to EE reduced anxiety and decreased central glucocorticoid receptor expression, effects which were absent in NPY KO mice. In addition, NPY deletion altered the preference of EE items, and EE-housed NPY KO mice responded to stress with exaggerated hyperthermia, displayed impaired spatial memory, had higher hippocampal brain-derived neurotrophic factor mRNA levels and altered hippocampal synaptic plasticity, effects which were not seen in WT mice. Accordingly, these findings suggest that NPY contributes to the anxiolytic effect of EE and that NPY deletion reverses the beneficial effects of EE into a negative experience. The NPY system could thus be a target for “enviromimetics”, therapeutics which reproduce the beneficial effects of enhanced environmental stimulation. PMID:27305846

  7. Environmental enrichment induces behavioural disturbances in neuropeptide Y knockout mice.

    PubMed

    Reichmann, Florian; Wegerer, Vanessa; Jain, Piyush; Mayerhofer, Raphaela; Hassan, Ahmed M; Fröhlich, Esther E; Bock, Elisabeth; Pritz, Elisabeth; Herzog, Herbert; Holzer, Peter; Leitinger, Gerd

    2016-01-01

    Environmental enrichment (EE) refers to the provision of a complex and stimulating housing condition which improves well-being, behaviour and brain function of laboratory animals. The mechanisms behind these beneficial effects of EE are only partially understood. In the current report, we describe a link between EE and neuropeptide Y (NPY), based on findings from NPY knockout (KO) mice exposed to EE. Relative to EE-housed wildtype (WT) animals, NPY KO mice displayed altered behaviour as well as molecular and morphological changes in amygdala and hippocampus. Exposure of WT mice to EE reduced anxiety and decreased central glucocorticoid receptor expression, effects which were absent in NPY KO mice. In addition, NPY deletion altered the preference of EE items, and EE-housed NPY KO mice responded to stress with exaggerated hyperthermia, displayed impaired spatial memory, had higher hippocampal brain-derived neurotrophic factor mRNA levels and altered hippocampal synaptic plasticity, effects which were not seen in WT mice. Accordingly, these findings suggest that NPY contributes to the anxiolytic effect of EE and that NPY deletion reverses the beneficial effects of EE into a negative experience. The NPY system could thus be a target for "enviromimetics", therapeutics which reproduce the beneficial effects of enhanced environmental stimulation. PMID:27305846

  8. Role of Mu and Delta Opioid Receptors in the Nucleus Accumbens in Cocaine-Seeking Behavior

    PubMed Central

    Simmons, Diana; Self, David W.

    2009-01-01

    Previous studies suggest that opioid receptors in the ventral tegmental area (VTA), but not the nucleus accumbens (NAc), play a role in relapse to drug-seeking behavior. However, environmental stimuli that elicit relapse also release the endogenous opioid β-endorphin in the NAc. Using a within–session extinction/reinstatement paradigm in rats that self-administer cocaine, we found that NAc infusions of the mu opioid receptor (MOR) agonist DAMGO moderately reinstated responding on the cocaine-paired lever at low doses (1.0–3.0 ng/side), whereas the delta opioid receptor (DOR) agonist DPDPE induced greater responding at higher doses (300–3000 ng/side) that also enhanced inactive lever responding. Using doses of either agonist that induced responding on only the cocaine-paired lever, we found that DAMGO-induced responding was blocked selectively by pretreatment with the MOR antagonist CTAP, while DPDPE-induced responding was selectively blocked by the DOR antagonist naltrindole. Cocaine-primed reinstatement was blocked by intra-NAc CTAP but not naltrindole, indicating a role for endogenous MOR-acting peptides in cocaine-induced reinstatement of cocaine-seeking behavior. In this regard, intra-NAc infusions of β-endorphin (100–1000 ng/side) induced marked cocaine-seeking behavior, an effect blocked by intra-NAc pretreatment with the MOR but not DOR antagonist. Conversely, cocaine seeking elicited by the enkephalinase inhibitor thiorphan (1–10 μg/side) was blocked by naltrindole but not CTAP. MOR stimulation in more dorsal caudate-putamen sites was ineffective, while DPDPE infusions induced cocaine seeking. Together, these findings establish distinct roles for MOR and DOR in cocaine relapse, and suggest that NAc MOR could be an important therapeutic target to neutralize the effects of endogenous β-endorphin release on cocaine relapse. PMID:19279569

  9. Dynorphin activation of kappa opioid receptor reduces neuronal excitability in the paraventricular nucleus of mouse thalamus.

    PubMed

    Chen, Zhiheng; Tang, Yamei; Tao, Huai; Li, Cunyan; Zhang, Xianghui; Liu, Yong

    2015-10-01

    It has been reported that kappa opioid receptor (KOR) is expressed in the paraventricular nucleus of thalamus (PVT), a brain region associated with arousal, drug reward and stress. Although intra-PVT infusion of KOR agonist was found to inhibit drug-seeking behavior, it is still unclear whether endogenous KOR agonists directly regulate PVT neuron activity. Here, we investigated the effect of the endogenous KOR agonist dynorphin-A (Dyn-A) on the excitability of mouse PVT neurons at different developmental ages. We found Dyn-A strongly inhibited PVT neurons through a direct postsynaptic hyperpolarization. Under voltage-clamp configuration, Dyn-A evoked an obvious outward current in majority of neurons tested in anterior PVT (aPVT) but only in minority of neurons in posterior PVT (pPVT). The Dyn-A current was abolished by KOR antagonist nor-BNI, Ba(2+) and non-hydrolyzable GDP analogue GDP-β-s, indicating that Dyn-A activates KOR and opens G-protein-coupled inwardly rectifying potassium channels in PVT neurons. More interestingly, by comparing Dyn-A currents in aPVT neurons of mice at various ages, we found Dyn-A evoked significant larger current in aPVT neurons from mice around prepuberty and early puberty stage. In addition, KOR activation by Dyn-A didn't produce obvious desensitization, while mu opioid receptor (MOR) activation induced obvious desensitization of mu receptor itself and also heterologous desensitization of KOR in PVT neurons. Together, our findings indicate that Dyn-A activates KOR and inhibits aPVT neurons in mice at various ages especially around puberty, suggesting a possible role of KOR in regulating aPVT-related brain function including stress response and drug-seeking behavior during adolescence. PMID:26056031

  10. CRISPR-Mediated Triple Knockout of SLAMF1, SLAMF5 and SLAMF6 Supports Positive Signaling Roles in NKT Cell Development

    PubMed Central

    Huang, Bonnie; Gomez-Rodriguez, Julio; Preite, Silvia; Garrett, Lisa J.; Harper, Ursula L.; Schwartzberg, Pamela L.

    2016-01-01

    The SLAM family receptors contribute to diverse aspects of lymphocyte biology and signal via the small adaptor molecule SAP. Mutations affecting SAP lead to X-linked lymphoproliferative syndrome Type 1, a severe immunodysregulation characterized by fulminant mononucleosis, dysgammaglobulinemia, and lymphoproliferation/lymphomas. Patients and mice having mutations affecting SAP also lack germinal centers due to a defect in T:B cell interactions and are devoid of invariant NKT (iNKT) cells. However, which and how SLAM family members contribute to these phenotypes remains uncertain. Three SLAM family members: SLAMF1, SLAMF5 and SLAMF6, are highly expressed on T follicular helper cells and germinal center B cells. SLAMF1 and SLAMF6 are also implicated in iNKT development. Although individual receptor knockout mice have limited iNKT and germinal center phenotypes compared to SAP knockout mice, the generation of multi-receptor knockout mice has been challenging, due to the genomic linkage of the genes encoding SLAM family members. Here, we used Cas9/CRISPR-based mutagenesis to generate mutations simultaneously in Slamf1, Slamf5 and Slamf6. Genetic disruption of all three receptors in triple-knockout mice (TKO) did not grossly affect conventional T or B cell development and led to mild defects in germinal center formation post-immunization. However, the TKO worsened defects in iNKT cells development seen in SLAMF6 single gene-targeted mice, supporting data on positive signaling and potential redundancy between these receptors. PMID:27258160

  11. Erythropoiesis and Blood Pressure Are Regulated via AT1 Receptor by Distinctive Pathways

    PubMed Central

    Kato, Hideki; Ishida, Junji; Matsusaka, Taiji; Ishimaru, Tomohiro; Tanimoto, Keiji; Sugiyama, Fumihiro; Yagami, Ken-ichi; Nangaku, Masaomi; Fukamizu, Akiyoshi

    2015-01-01

    The renin–angiotensin system (RAS) plays a central role in blood pressure regulation. Although clinical and experimental studies have suggested that inhibition of RAS is associated with progression of anemia, little evidence is available to support this claim. Here we report that knockout mice that lack angiotensin II, including angiotensinogen and renin knockout mice, exhibit anemia. The anemia of angiotensinogen knockout mice was rescued by angiotensin II infusion, and rescue was completely blocked by simultaneous administration of AT1 receptor blocker. To genetically determine the responsible receptor subtype, we examined AT1a, AT1b, and AT2 knockout mice, but did not observe anemia in any of them. To investigate whether pharmacological AT1 receptor inhibition recapitulates the anemic phenotype, we administered AT1 receptor antagonist in hypotensive AT1a receptor knockout mice to inhibit the remaining AT1b receptor. In these animals, hematocrit levels barely decreased, but blood pressure further decreased to the level observed in angiotensinogen knockout mice. We then generated AT1a and AT1b double-knockout mice to completely ablate the AT1 receptors; the mice finally exhibited the anemic phenotype. These results provide clear evidence that although erythropoiesis and blood pressure are negatively controlled through the AT1 receptor inhibition in vivo, the pathways involved are complex and distinct, because erythropoiesis is more resistant to AT1 receptor inhibition than blood pressure control. PMID:26107632

  12. Universal statistics of the knockout tournament

    PubMed Central

    Baek, Seung Ki; Yi, Il Gu; Park, Hye Jin; Kim, Beom Jun

    2013-01-01

    We study statistics of the knockout tournament, where only the winner of a fixture progresses to the next. We assign a real number called competitiveness to each contestant and find that the resulting distribution of prize money follows a power law with an exponent close to unity if the competitiveness is a stable quantity and a decisive factor to win a match. Otherwise, the distribution is found narrow. The existing observation of power law distributions in various kinds of real sports tournaments therefore suggests that the rules of those games are constructed in such a way that it is possible to understand the games in terms of the contestants' inherent characteristics of competitiveness. PMID:24217406

  13. Ppp2ca knockout in mice spermatogenesis.

    PubMed

    Pan, Xiaoyun; Chen, Xia; Tong, Xin; Tang, Chao; Li, Jianmin

    2015-04-01

    Protein phosphatase 2A (PP2A) is a ubiquitous serine/threonine phosphatase involved in meiosis, mitosis, sperm capacitation, and apoptosis. Abberant activity of PP2A has been associated with a number of diseases. The homolog PPP2CA and PPP2CB can each function as the phosphatase catalytic subunit generally referred to as PP2AC. We generated a Ppp2ca conditional knockout (CKO) in C57BL/6J mice. Exon 2 of Ppp2ca was knocked out in a spatial or temporal-specific manner in primordial germ cells at E12.5. This Ppp2ca-null mutation caused infertility in male C57BL/6J mice. These CKO mice provide a powerful tool to study the mechanisms of Ppp2ca in development and disease. PMID:25628439

  14. Normal gonadotropin production and fertility in gonadotrope-specific Bmpr1a knockout mice.

    PubMed

    Zhou, Xiang; Wang, Ying; Ongaro, Luisina; Boehm, Ulrich; Kaartinen, Vesa; Mishina, Yuji; Bernard, Daniel J

    2016-06-01

    Pituitary follicle-stimulating hormone (FSH) synthesis is regulated by transforming growth factorβsuperfamily ligands, most notably the activins and inhibins. Bone morphogenetic proteins (BMPs) also regulate FSHβ subunit (Fshb) expression in immortalized murine gonadotrope-like LβT2 cells and in primary murine or ovine primary pituitary cultures. BMP2 signals preferentially via the BMP type I receptor, BMPR1A, to stimulate murine Fshb transcription in vitro Here, we used a Cre-lox approach to assess BMPR1A's role in FSH synthesis in mice in vivo Gonadotrope-specific Bmpr1a knockout animals developed normally and had reproductive organ weights comparable with those of controls. Knockouts were fertile, with normal serum gonadotropins and pituitary gonadotropin subunit mRNA expression. Cre-mediated recombination of the floxed Bmpr1a allele was efficient and specific, as indicated by PCR analysis of diverse tissues and isolated gonadotrope cells. Furthermore, BMP2 stimulation of inhibitor of DNA binding 3 expression was impaired in gonadotropes isolated from Bmpr1a knockout mice, confirming the loss of functional receptor protein in these cells. Treatment of purified gonadotropes with small-molecule inhibitors of BMPR1A (and the related receptors BMPR1B and ACVR1) suppressed Fshb mRNA expression, suggesting that an autocrine BMP-like molecule might regulate FSH synthesis. However, deletion of Bmpr1a and Acvr1 in cultured pituitary cells did not alter Fshb expression, indicating that the inhibitors had off-target effects. In sum, BMPs or related ligands acting via BMPR1A or ACVR1 are unlikely to play direct physiological roles in FSH synthesis by murine gonadotrope cells. PMID:27029473

  15. Positron emission tomography and functional characterization of a complete PBR/TSPO knockout.

    PubMed

    Banati, Richard B; Middleton, Ryan J; Chan, Ronald; Hatty, Claire R; Kam, Winnie Wai-Ying; Quin, Candice; Graeber, Manuel B; Parmar, Arvind; Zahra, David; Callaghan, Paul; Fok, Sandra; Howell, Nicholas R; Gregoire, Marie; Szabo, Alexander; Pham, Tien; Davis, Emma; Liu, Guo-Jun

    2014-01-01

    The evolutionarily conserved peripheral benzodiazepine receptor (PBR), or 18-kDa translocator protein (TSPO), is thought to be essential for cholesterol transport and steroidogenesis, and thus life. TSPO has been proposed as a biomarker of neuroinflammation and a new drug target in neurological diseases ranging from Alzheimer's disease to anxiety. Here we show that global C57BL/6-Tspo(tm1GuWu(GuwiyangWurra))-knockout mice are viable with normal growth, lifespan, cholesterol transport, blood pregnenolone concentration, protoporphyrin IX metabolism, fertility and behaviour. However, while the activation of microglia after neuronal injury appears to be unimpaired, microglia from (GuwiyangWurra)TSPO knockouts produce significantly less ATP, suggesting reduced metabolic activity. Using the isoquinoline PK11195, the ligand originally used for the pharmacological and structural characterization of the PBR/TSPO, and the imidazopyridines CLINDE and PBR111, we demonstrate the utility of (GuwiyangWurra)TSPO knockouts to provide robust data on drug specificity and selectivity, both in vitro and in vivo, as well as the mechanism of action of putative TSPO-targeting drugs. PMID:25406832

  16. Positron emission tomography and functional characterization of a complete PBR/TSPO knockout

    PubMed Central

    Banati, Richard B.; Middleton, Ryan J.; Chan, Ronald; Hatty, Claire R.; Wai-Ying Kam, Winnie; Quin, Candice; Graeber, Manuel B.; Parmar, Arvind; Zahra, David; Callaghan, Paul; Fok, Sandra; Howell, Nicholas R.; Gregoire, Marie; Szabo, Alexander; Pham, Tien; Davis, Emma; Liu, Guo-Jun

    2014-01-01

    The evolutionarily conserved peripheral benzodiazepine receptor (PBR), or 18-kDa translocator protein (TSPO), is thought to be essential for cholesterol transport and steroidogenesis, and thus life. TSPO has been proposed as a biomarker of neuroinflammation and a new drug target in neurological diseases ranging from Alzheimer’s disease to anxiety. Here we show that global C57BL/6-Tspotm1GuWu(GuwiyangWurra)-knockout mice are viable with normal growth, lifespan, cholesterol transport, blood pregnenolone concentration, protoporphyrin IX metabolism, fertility and behaviour. However, while the activation of microglia after neuronal injury appears to be unimpaired, microglia from GuwiyangWurraTSPO knockouts produce significantly less ATP, suggesting reduced metabolic activity. Using the isoquinoline PK11195, the ligand originally used for the pharmacological and structural characterization of the PBR/TSPO, and the imidazopyridines CLINDE and PBR111, we demonstrate the utility of GuwiyangWurraTSPO knockouts to provide robust data on drug specificity and selectivity, both in vitro and in vivo, as well as the mechanism of action of putative TSPO-targeting drugs. PMID:25406832

  17. The alcohol-induced locomotor stimulation and accumbal dopamine release is suppressed in ghrelin knockout mice.

    PubMed

    Jerlhag, Elisabet; Landgren, Sara; Egecioglu, Emil; Dickson, Suzanne L; Engel, Jörgen A

    2011-06-01

    Ghrelin, the first endogenous ligand for the type 1A growth hormone secretagogue receptor (GHS-R1A), plays a role in energy balance, feeding behavior, and reward. Previously, we showed that pharmacologic and genetic suppression of the GHS-R1A attenuates the alcohol-induced stimulation, accumbal dopamine release, and conditioned place preference as well as alcohol consumption in mice, implying that the GHS-R1A is required for alcohol reward. The present study further elucidates the role of ghrelin for alcohol-induced dopamine release in nucleus accumbens and locomotor stimulation by means of ghrelin knockout mice. We found that the ability of alcohol to increase accumbal dopamine release in wild-type mice is not observed in ghrelin knockout mice. Furthermore, alcohol induced a locomotor stimulation in the wild-type mice and ghrelin knockout mice; however, the locomotor stimulation in homozygote mice was significantly lower than in the wild-type mice. The present series of experiments suggest that endogenous ghrelin may be required for the ability of alcohol to activate the mesolimbic dopamine system. PMID:21145690

  18. The effect of PDIA3 gene knockout on the mucosal immune function in IBS rats

    PubMed Central

    Zhuang, Zhao-Meng; Wang, Xiao-Teng; Zhang, Lu; Tao, Li-Yuan; Lv, Bin

    2015-01-01

    Objective: To observe the changes of intestinal inflammation on PDIA3 gene knockout IBS rats and its effect on immune function. Methods: 36 SD rats were randomly divided into four groups: the control group (n = 8); IBS- empty virus group (IBS-GFP, which); IBS-PDIA3 knockout group (n = 12); IBS- the control group (n = 12). After modeling, colon and ileocecal tissue pathology in each group were observed separately. Changes of immune and inflammatory markers were measured. At the same time, ultrastructural changes in each group were observed by electron microscopy. Results: Compared with the IBS control group, inflammation was reduced significantly in IBS-PDIA3 knockout group. IgE, IL-4 and IL-9 and the level of intestinal trypsin type were decreased significantly. Furthermore, mast cell degranulation and PAR 2 receptor reduced significantly. Conclusion: PDIA3 may play an important role in the development of IBS by mediating through immune responses of mucosal abnormalities. However, the mechanism needs to be confirmed in further study. PMID:26221224

  19. G Protein Beta 5 Is Targeted to D2-Dopamine Receptor-Containing Biochemical Compartments and Blocks Dopamine-Dependent Receptor Internalization

    PubMed Central

    Octeau, J. Christopher; Schrader, Joseph M.; Masuho, Ikuo; Sharma, Meenakshi; Aiudi, Christopher; Chen, Ching-Kang; Kovoor, Abraham; Celver, Jeremy

    2014-01-01

    G beta 5 (Gbeta5, Gβ5) is a unique G protein β subunit that is thought to be expressed as an obligate heterodimer with R7 regulator of G protein signaling (RGS) proteins instead of with G gamma (Gγ) subunits. We found that D2-dopamine receptor (D2R) coexpression enhances the expression of Gβ5, but not that of the G beta 1 (Gβ1) subunit, in HEK293 cells, and that the enhancement of expression occurs through a stabilization of Gβ5 protein. We had previously demonstrated that the vast majority of D2R either expressed endogenously in the brain or exogenously in cell lines segregates into detergent-resistant biochemical fractions. We report that when expressed alone in HEK293 cells, Gβ5 is highly soluble, but is retargeted to the detergent-resistant fraction after D2R coexpression. Furthermore, an in-cell biotin transfer proximity assay indicated that D2R and Gβ5 segregating into the detergent-resistant fraction specifically interacted in intact living cell membranes. Dopamine-induced D2R internalization was blocked by coexpression of Gβ5, but not Gβ1. However, the same Gβ5 coexpression levels had no effect on agonist-induced internalization of the mu opioid receptor (MOR), cell surface D2R levels, dopamine-mediated recruitment of β-arrestin to D2R, the amplitude of D2R-G protein coupling, or the deactivation kinetics of D2R-activated G protein signals. The latter data suggest that the interactions between D2R and Gβ5 are not mediated by endogenously expressed R7 RGS proteins. PMID:25162404

  20. G protein beta 5 is targeted to D2-dopamine receptor-containing biochemical compartments and blocks dopamine-dependent receptor internalization.

    PubMed

    Octeau, J Christopher; Schrader, Joseph M; Masuho, Ikuo; Sharma, Meenakshi; Aiudi, Christopher; Chen, Ching-Kang; Kovoor, Abraham; Celver, Jeremy

    2014-01-01

    G beta 5 (Gbeta5, Gβ5) is a unique G protein β subunit that is thought to be expressed as an obligate heterodimer with R7 regulator of G protein signaling (RGS) proteins instead of with G gamma (Gγ) subunits. We found that D2-dopamine receptor (D2R) coexpression enhances the expression of Gβ5, but not that of the G beta 1 (Gβ1) subunit, in HEK293 cells, and that the enhancement of expression occurs through a stabilization of Gβ5 protein. We had previously demonstrated that the vast majority of D2R either expressed endogenously in the brain or exogenously in cell lines segregates into detergent-resistant biochemical fractions. We report that when expressed alone in HEK293 cells, Gβ5 is highly soluble, but is retargeted to the detergent-resistant fraction after D2R coexpression. Furthermore, an in-cell biotin transfer proximity assay indicated that D2R and Gβ5 segregating into the detergent-resistant fraction specifically interacted in intact living cell membranes. Dopamine-induced D2R internalization was blocked by coexpression of Gβ5, but not Gβ1. However, the same Gβ5 coexpression levels had no effect on agonist-induced internalization of the mu opioid receptor (MOR), cell surface D2R levels, dopamine-mediated recruitment of β-arrestin to D2R, the amplitude of D2R-G protein coupling, or the deactivation kinetics of D2R-activated G protein signals. The latter data suggest that the interactions between D2R and Gβ5 are not mediated by endogenously expressed R7 RGS proteins. PMID:25162404

  1. Methylnaltrexone Injection

    MedlinePlus

    ... injection is used to treat constipation caused by opioid (narcotic) pain medications in patients with advanced illnesses ... a class of medications called peripherally acting mu-opioid receptor antagonists. It works by protecting the bowel ...

  2. Alvimopan

    MedlinePlus

    ... a class of medications called peripherally acting mu-opioid receptor antagonists. It works by protecting the bowel from the constipation effects of opioid (narcotic) medications that are used to treat pain ...

  3. Protease inhibitor-induced nausea and vomiting is attenuated by a peripherally acting, opioid-receptor antagonist in a rat model

    PubMed Central

    Yuan, Chun-Su; Wang, Chong-Zhi; Mehendale, Sangeeta R; Aung, Han H; Foo, Adela; Israel, Robert J

    2009-01-01

    Background Protease inhibitors such as ritonavir can cause nausea and vomiting which is the most common reason for discontinuation. Rats react to nauseous and emetic stimuli by increasing their oral intake of non-nutritive substances like kaolin, known as pica behavior. In this study, we evaluated the effects of methylnaltrexone, a peripherally acting mu-opioid receptor antagonist that does not affect analgesia, on ritonavir-induced nausea and vomiting in a rat pica model. Results We observed that 24 to 48 hr after administration of oral ritonavir 20 mg/kg, kaolin consumption increased significantly in rats (P < 0.01). This increase was attenuated by pretreatment with an intraperitoneal injection of methylnaltrexone (0.3–3.0 mg/kg) in a dose dependent manner (P < 0.01) and also with naloxone (0.1–0.3 mg/kg) (P < 0.01). The areas under the curve for kaolin intake from time 0 to 120 hr were significantly reduced after administration of the opioid antagonists. Food intake was not significantly affected. Plasma naltrexone levels were measured after methylnaltrexone injection, and no detectable levels were found, indicating that methylnaltrexone was not demethylated in our experimental paradigm. Conclusion These results suggest that methylnaltrexone may have potential clinical utility in reducing nausea and vomiting in HIV patients who take ritonavir. PMID:19698111

  4. Modulation of silent and constitutively active nociceptin/orphanin FQ receptors by potent receptor antagonists and Na+ ions in rat sympathetic neurons.

    PubMed

    Mahmoud, Saifeldin; Margas, Wojciech; Trapella, Claudio; Caló, Girolamo; Ruiz-Velasco, Victor

    2010-05-01

    pharmacology and allosteric regulation by Na(+). Data are also presented demonstrating that heterologously expressed mu opioid receptors in sympathetic neurons are similarly modulated. PMID:20159949

  5. Dual effect of trimebutine on contractility of the guinea pig ileum via the opioid receptors.

    PubMed

    Taniyama, K; Sano, I; Nakayama, S; Matsuyama, S; Takeda, K; Yoshihara, C; Tanaka, C

    1991-12-01

    Preparations of longitudinal muscle attached to myenteric plexus from guinea pig ileum were used to observe the effect of trimebutine on intestinal motility. Electrical stimulation at 0.2 Hz and 5 Hz produced contraction mediated by the release of acetylcholine in the preparations. The response to low-frequency stimulation (0.2 Hz) was inhibited by trimebutine (10(-8)-10(-5) mol/L), and the response to high-frequency stimulation (5 Hz) was enhanced by the drug at low concentrations (10(-8)-10(-7) mol/L) and inhibited by high concentrations (10(-6)-10(-5) mol/L). This enhancement was mimicked by [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin, and was antagonized by naloxone but not by MR2266. Enhancement by trimebutine was inhibited by yohimbine. Trimebutine (greater than or equal to 10(-8) mol/L) inhibited stimulation (5 Hz)-evoked release of norepinephrine, and the trimebutine effect was antagonized by naloxone but not by MR2266. Low concentrations of trimebutine inhibit norepinephrine release via the mu-opioid receptor and enhance intestinal motility by preventing the adrenergic inhibition of acetylcholine release. Inhibition by trimebutine was antagonized either by naloxone or MR2266. High concentrations of trimebutine may inhibit acetylcholine release via the mu- and kappa-opioid receptors, after which the intestinal motility is inhibited. Trimebutine at further high concentrations (greater than 10(-5) mol/L) contracted single smooth muscle cells from the circular muscle layers but not from the longitudinal muscle layers. The usual dose of trimebutine may exert dual effect on the intestinal motility indirectly through cholinergic and adrenergic neurons without direct effect on the smooth muscle. PMID:1659547

  6. Human Knockout Carriers: Dead, Diseased, Healthy, or Improved?

    PubMed Central

    Narasimhan, Vagheesh M.; Xue, Yali; Tyler-Smith, Chris

    2016-01-01

    Whole-genome and whole-exome sequence data from large numbers of individuals reveal that we all carry many variants predicted to inactivate genes (knockouts). This discovery raises questions about the phenotypic consequences of these knockouts and potentially allows us to study human gene function through the investigation of homozygous loss-of-function carriers. Here, we discuss strategies, recent results, and future prospects for large-scale human knockout studies. We examine their relevance to studying gene function, population genetics, and importantly, the implications for accurate clinical interpretations. PMID:26988438

  7. Theoretical knock-outs on biological networks.

    PubMed

    Miranda, Pedro J; de S Pinto, Sandro E; Baptista, Murilo S; La Guardia, Giuliano G

    2016-08-21

    In this work we redefine the concept of biological importance and how to compute it, based on a model of complex networks and random walk. We call this new procedure, theoretical knock-out (KO). The proposed method generalizes the procedure presented in a recent study about Oral Tolerance. To devise this method, we make two approaches: algebraically and algorithmically. In both cases we compute a vector on an asymptotic state, called flux vector. The flux is given by a random walk on a directed graph that represents a biological phenomenon. This vector gives us the information about the relative flux of walkers on a vertex which represents a biological agent. With two vector of this kind, we can calculate the relative mean error between them by averaging over its coefficients. This quantity allows us to assess the degree of importance of each vertex of a complex network that evolves in time and has experimental background. We find out that this procedure can be applied in any sort of biological phenomena in which we can know the role and interrelationships of its agents. These results also provide experimental biologists to predict the order of importance of biological agents on a mounted complex network. PMID:27188251

  8. Generation of ER{alpha}-floxed and knockout mice using the Cre/LoxP system

    SciTech Connect

    Antonson, P.; Omoto, Y.; Humire, P.; Gustafsson, J.-A.

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer ER{alpha} floxed and knockout mice were generated. Black-Right-Pointing-Pointer Disruption of the ER{alpha} gene results in sterility in both male and female mice. Black-Right-Pointing-Pointer ER{alpha}{sup -/-} mice have ovaries with hemorrhagic follicles and hypoplastic uterus. Black-Right-Pointing-Pointer Female ER{alpha}{sup -/-} mice develop obesity. -- Abstract: Estrogen receptor alpha (ER{alpha}) is a nuclear receptor that regulates a range of physiological processes in response to estrogens. In order to study its biological role, we generated a floxed ER{alpha} mouse line that can be used to knock out ER{alpha} in selected tissues by using the Cre/LoxP system. In this study, we established a new ER{alpha} knockout mouse line by crossing the floxed ER{alpha} mice with Cre deleter mice. Here we show that genetic disruption of the ER{alpha} gene in all tissues results in sterility in both male and female mice. Histological examination of uterus and ovaries revealed a dramatically atrophic uterus and hemorrhagic cysts in the ovary. These results suggest that infertility in female mice is the result of functional defects of the reproductive tract. Moreover, female knockout mice are hyperglycemic, develop obesity and at the age of 4 months the body weight of these mice was more than 20% higher compared to wild type littermates and this difference increased over time. Our results demonstrate that ER{alpha} is necessary for reproductive tract development and has important functions as a regulator of metabolism in females.

  9. Salty taste deficits in CALHM1 knockout mice.

    PubMed

    Tordoff, Michael G; Ellis, Hillary T; Aleman, Tiffany R; Downing, Arnelle; Marambaud, Philippe; Foskett, J Kevin; Dana, Rachel M; McCaughey, Stuart A

    2014-07-01

    Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein-coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste-related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH(4)Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000 mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH(4)Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt. PMID:24846212

  10. Male contraception via simultaneous knockout of α1A-adrenoceptors and P2X1-purinoceptors in mice

    PubMed Central

    White, Carl W.; Choong, Yan-Ting; Short, Jennifer L.; Exintaris, Betty; Malone, Daniel T.; Allen, Andrew M.; Evans, Richard J.; Ventura, Sabatino

    2013-01-01

    Therapeutic targets for male contraception are associated with numerous problems due to their focus on disrupting spermatogenesis or hormonal mechanisms to produce dysfunctional sperm. Here we describe the dual genetic deletion of α1A-adrenergic G protein-coupled receptors (adrenoceptors) and P2X1-purinoceptor ligand gated ion channels in male mice, thereby blocking sympathetically mediated sperm transport through the vas deferens during the emission phase of ejaculation. This modification produced 100% infertility without effects on sexual behavior or function. Sperm taken from the cauda epididymides of double knockout mice were microscopically normal and motile. Furthermore, double knockout sperm were capable of producing normal offspring following intracytoplasmic sperm injection into wild-type ova and implantation of the fertilized eggs into foster mothers. Blood pressure and baroreflex function was reduced in double knockout mice, but no more than single knockout of α1A-adrenoceptors alone. These results suggest that this autonomic method of male contraception appears free of major physiological and behavioral side effects. In addition, they provide conclusive proof of concept that pharmacological antagonism of the P2X1-purinoceptor and α1A-adrenoceptor provides a safe and effective therapeutic target for a nonhormonal, readily reversible male contraceptive. PMID:24297884

  11. Male contraception via simultaneous knockout of α1A-adrenoceptors and P2X1-purinoceptors in mice.

    PubMed

    White, Carl W; Choong, Yan-Ting; Short, Jennifer L; Exintaris, Betty; Malone, Daniel T; Allen, Andrew M; Evans, Richard J; Ventura, Sabatino

    2013-12-17

    Therapeutic targets for male contraception are associated with numerous problems due to their focus on disrupting spermatogenesis or hormonal mechanisms to produce dysfunctional sperm. Here we describe the dual genetic deletion of α1A-adrenergic G protein-coupled receptors (adrenoceptors) and P2X1-purinoceptor ligand gated ion channels in male mice, thereby blocking sympathetically mediated sperm transport through the vas deferens during the emission phase of ejaculation. This modification produced 100% infertility without effects on sexual behavior or function. Sperm taken from the cauda epididymides of double knockout mice were microscopically normal and motile. Furthermore, double knockout sperm were capable of producing normal offspring following intracytoplasmic sperm injection into wild-type ova and implantation of the fertilized eggs into foster mothers. Blood pressure and baroreflex function was reduced in double knockout mice, but no more than single knockout of α1A-adrenoceptors alone. These results suggest that this autonomic method of male contraception appears free of major physiological and behavioral side effects. In addition, they provide conclusive proof of concept that pharmacological antagonism of the P2X1-purinoceptor and α1A-adrenoceptor provides a safe and effective therapeutic target for a nonhormonal, readily reversible male contraceptive. PMID:24297884

  12. Establishment and phenotypic analysis of an Mstn knockout rat.

    PubMed

    Gu, Hao; Cao, Yong; Qiu, Bin; Zhou, Zhiqiang; Deng, Ran; Chen, Zhuang; Li, Rongfeng; Li, Xueling; Wei, Qiang; Xia, Xianzhu; Yong, Weidong

    2016-08-12

    Myostatin (Mstn) is an inhibitor of myogenesis, regulating the number and size of skeletal myocytes. In addition to its myogenic regulatory function, Mstn plays important roles in the development of adipose tissues and in metabolism. In the present study, an Mstn knockout rat model was generated using the zinc finger nuclease (ZFN) technique in order to further investigate the function and mechanism of Mstn in metabolism. The knockout possesses a frame shift mutation resulting in an early termination codon and a truncated peptide of 109 amino acids rather than the full 376 amino acids. The absence of detectable mRNA confirmed successful knockout of Mstn. Relative to wild-type (WT) littermates, Knockout (KO) rats exhibited significantly greater body weight, body circumference, and muscle mass. However, no significant differences in grip force was observed, indicating that Mstn deletion results in greater muscle mass but not greater muscle fiber strength. Additionally, KO rats were found to possess less body fat relative to WT littermates, which is consistent with previous studies in mice and cattle. The aforementioned results indicate that Mstn knockout increases muscle mass while decreasing fat content, leading to observed increases in body weight and body circumference. The Mstn knockout rat model provides a novel means to study the role of Mstn in metabolism and Mstn-related muscle hypertrophy. PMID:27289021

  13. Impaired conditioned taste aversion learning in spinophilin knockout mice.

    PubMed

    Stafstrom-Davis, C A; Ouimet, C C; Feng, J; Allen, P B; Greengard, P; Houpt, T A

    2001-01-01

    Plasticity in dendritic spines may underlie learning and memory. Spinophilin, a protein enriched in dendritic spines, has the properties of a scaffolding protein and is believed to regulate actin cytoskeletal dynamics affecting dendritic spine morphology. It also binds protein phosphatase-1 (PP-1), an enzyme that regulates dendritic spine physiology. In this study, we tested the role of spinophilin in conditioned taste aversion learning (CTA) using transgenic spinophilin knockout mice. CTA is a form of associative learning in which an animal rejects a food that has been paired previously with a toxic effect (e.g., a sucrose solution paired with a malaise-inducing injection of lithium chloride). Acquisition and extinction of CTA was tested in spinophilin knockout and wild-type mice using taste solutions (sucrose or sodium chloride) or flavors (Kool-Aid) paired with moderate or high doses of LiCl (0.15 M, 20 or 40 mL/kg). When sucrose or NaCl solutions were paired with a moderate dose of LiCl, spinophilin knockout mice were unable to learn a CTA. At the higher dose, knockout mice acquired a CTA but extinguished more rapidly than wild-type mice. A more salient flavor stimulus (taste plus odor) revealed similar CTA learning at both doses of LiCl in both knockouts and wild types. Sensory processing in the knockouts appeared normal because knockout mice and wild-type mice expressed identical unconditioned taste preferences in two-bottle tests, and identical lying-on-belly responses to acute LiCl. We conclude that spinophilin is a candidate molecule required for normal CTA learning. PMID:11584074

  14. Autoradiographic comparison of the distribution of the neutral endopeptidase enkephalinase and of. mu. and delta opioid receptors in rat brain

    SciTech Connect

    Waksman, G.; Hamel, E.; Fournie-Zaluski, M.C.; Roques, B.P.

    1986-03-01

    The neutral endopeptidase EC 3.4.24.11, also designated enkephalinase, has been visualized by in vitro autoradiography using the tritiated inhibitor (/sup 3/H)-N-((2RS)-3-hydroxyaminocarbonyl-2-benzyl-1-oxopropyl)glycine, ((/sup 3/H)HACBO-Gly). Specific binding of (/sup 3/H)HACBO-Gly corresponding to 85% of the total binding to brain slices was inhibited by 1 ..mu..M thiorphan, a selective inhibitor of enkephalinase, but remained unchanged in the presence of captopril, a selective inhibitor of angiotensin-converting enzyme. Very high levels of (/sup 3/H)HACBO-Gly binding were found in the choroid plexus and the substantia nigra. High levels were present in the caudate putamen, globus pallidus, nucleus accumbens, olfactory tubercle, and in the substantia gelatinosa of the spinal cord. The distribution of enkephalinase was compared to that of ..mu.. and delta opioid receptors, selectively labeled with (/sup 3/H)Tyr-D-Ala-Gly-MePhe-glycinol and (/sup 3/H)Try-D-Thr-Gly-Phe-Leu-Thr, respectively. In the caudate putamen, (/sup 3/H)HACBO-Gly binding overlapped the clustered ..mu.. sites but appeared more closely related to the diffusely distributed delta sites. The association of enkephalinase with delta and ..mu.. opioid receptors in these areas is consistent with the observed role of the enzyme in regulating the effects of opioid peptides in striatal dopamine release and analgesia, respectively. Except for the choroid plexus and the cerebellum, the close similarity observed in numerous rat brain areas between the distribution of enkephalinase and that of ..mu.. and/ or delta opioid binding sites could account for most of the pharmacological effects elicited by enkephalinase inhibitors.

  15. Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies

    PubMed Central

    Befort, Katia

    2015-01-01

    The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides (enkephalins, endorphins, and dynorphins). The endogenous cannabinoid system comprises lipid neuromodulators (endocannabinoids), enzymes for their synthesis and their degradation and two well-characterized receptors, cannabinoid receptors CB1 and CB2. These systems play a major role in the control of pain as well as in mood regulation, reward processing and the development of addiction. Both opioid and cannabinoid receptors are coupled to G proteins and are expressed throughout the brain reinforcement circuitry. Extending classical pharmacology, research using genetically modified mice has provided important progress in the identification of the specific contribution of each component of these endogenous systems in vivo on reward process. This review will summarize available genetic tools and our present knowledge on the consequences of gene knockout on reinforced behaviors in both systems, with a focus on their potential interactions. A better understanding of opioid–cannabinoid interactions may provide novel strategies for therapies in addicted individuals. PMID:25698968

  16. Spatiotemporal Alterations in Primary Odorant Representations in Olfactory Marker Protein Knockout Mice

    PubMed Central

    Kass, Marley D.; Moberly, Andrew H.; McGann, John P.

    2013-01-01

    Olfactory marker protein (OMP) is highly and selectively expressed in primary olfactory sensory neurons (OSNs) across species, but its physiological function remains unclear. Previous studies in the olfactory epithelium suggest that it accelerates the neural response to odorants and may modulate the odorant-selectivity of OSNs. Here we used a line of gene-targeted mice that express the fluorescent exocytosis indicator synaptopHluorin in place of OMP to compare spatiotemporal patterns of odorant-evoked neurotransmitter release from OSNs in adult mice that were heterozygous for OMP or OMP-null. We found that these patterns, which constitute the primary neural representation of each odorant, developed more slowly during the odorant presentation in OMP knockout mice but eventually reached the same magnitude as in heterozygous mice. In the olfactory bulb, each glomerulus receives synaptic input from a subpopulation of OSNs that all express the same odor receptor and thus typically respond to a specific subset of odorants. We observed that in OMP knockout mice, OSNs innervating a given glomerulus typically responded to a broader range of odorants than in OMP heterozygous mice and thus each odorant evoked synaptic input to a larger number of glomeruli. In an olfactory habituation task, OMP knockout mice behaved differently than wild-type mice, exhibiting a delay in their onset to investigate an odor stimulus during its first presentation and less habituation to that stimulus over repeated presentations. These results suggest that the actions of OMP in olfactory transduction carry through to the primary sensory representations of olfactory stimuli in adult mice in vivo. PMID:23630588

  17. Cathepsin K knockout alleviates aging-induced cardiac dysfunction

    PubMed Central

    Hua, Yinan; Robinson, Timothy J; Cao, Yongtao; Shi, Guo-Ping; Ren, Jun; Nair, Sreejayan

    2015-01-01

    Aging is a major risk factor for cardiovascular disease. It has previously been shown that protein levels of cathepsin K, a lysosomal cysteine protease, are elevated in the failing heart and that genetic ablation of cathepsin K protects against pressure overload-induced cardiac hypertrophy and contractile dysfunction. Here we test the hypothesis that cathepsin K knockout alleviates age-dependent decline in cardiac function. Cardiac geometry, contractile function, intracellular Ca2+ properties, and cardiomyocyte apoptosis were evaluated using echocardiography, fura-2 technique, immunohistochemistry, Western blot and TUNEL staining, respectively. Aged (24-month-old) mice exhibited significant cardiac remodeling (enlarged chamber size, wall thickness, myocyte cross-sectional area, and fibrosis), decreased cardiac contractility, prolonged relengthening along with compromised intracellular Ca2+ release compared to young (6-month-old) mice, which were attenuated in the cathepsin K knockout mice. Cellular markers of senescence, including cardiac lipofuscin, p21 and p16, were lower in the aged-cathepsin K knockout mice compared to their wild-type counterpart. Mechanistically, cathepsin K knockout mice attenuated an age-induced increase in cardiomyocyte apoptosis and nuclear translocation of mitochondrial apoptosis-inducing factor (AIF). In cultured H9c2 cells, doxorubicin stimulated premature senescence and apoptosis. Silencing of cathepsin K blocked the doxorubicin-induced translocation of AIF from the mitochondria to the nuclei. Collectively, these results suggest that cathepsin K knockout attenuates age-related decline in cardiac function via suppressing caspase-dependent and caspase-independent apoptosis. PMID:25692548

  18. Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle.

    PubMed

    Daimon, Takaaki; Uchibori, Miwa; Nakao, Hajime; Sezutsu, Hideki; Shinoda, Tetsuro

    2015-08-01

    Insect juvenile hormones (JHs) prevent precocious metamorphosis and allow larvae to undergo multiple rounds of status quo molts. However, the roles of JHs during the embryonic and very early larval stages have not been fully understood. We generated and characterized knockout silkworms (Bombyx mori) with null mutations in JH biosynthesis or JH receptor genes using genome-editing tools. We found that embryonic growth and morphogenesis are largely independent of JHs in Bombyx and that, even in the absence of JHs or JH signaling, pupal characters are not formed in first- or second-instar larvae, and precocious metamorphosis is induced after the second instar at the earliest. We also show by mosaic analysis that a pupal specifier gene broad, which is dramatically up-regulated in the late stage of the last larval instar, is essential for pupal commitment in the epidermis. Importantly, the mRNA expression level of broad, which is thought to be repressed by JHs, remained at very low basal levels during the early larval instars of JH-deficient or JH signaling-deficient knockouts. Therefore, our study suggests that the long-accepted paradigm that JHs maintain the juvenile status throughout larval life should be revised because the larval status can be maintained by a JH-independent mechanism in very early larval instars. We propose that the lack of competence for metamorphosis during the early larval stages may result from the absence of an unidentified broad-inducing factor, i.e., a competence factor. PMID:26195792

  19. Hesr