Science.gov

Sample records for mukaiyama aldol reactions

  1. Mukaiyama Aldol Reactions in Aqueous Media

    PubMed Central

    Kitanosono, Taku; Kobayashi, Shū

    2013-01-01

    Mukaiyama aldol reactions in aqueous media have been surveyed. While the original Mukaiyama aldol reactions entailed stoichiometric use of Lewis acids in organic solvents under strictly anhydrous conditions, Mukaiyama aldol reactions in aqueous media are not only suitable for green sustainable chemistry but are found to produce singular phenomena. These findings led to the discovery of a series of water-compatible Lewis acids such as lanthanide triflates in 1991. Our understanding on these beneficial effects in the presence of water will be deepened through the brilliant examples collected in this review. 1 Introduction 2 Rate Enhancement by Water in the Mukaiyama Aldol Reaction 3 Lewis Acid Catalysis in Aqueous or Organic Solvents 3.1 Water-Compatible Lewis Acids 4 Lewis-Base Catalysis in Aqueous or Organic Solvents 5 The Mukaiyama Aldol Reactions in 100% Water 6 Asymmetric Catalysts in Aqueous Media and Water 7 Conclusions and Perspective PMID:24971045

  2. Stereoselectivity in (Acyloxy)borane-Catalyzed Mukaiyama Aldol Reactions.

    PubMed

    Lee, Joshua M; Zhang, Xin; Norrby, Per-Ola; Helquist, Paul; Wiest, Olaf

    2016-07-01

    The origin of diastereo- and enantioselectivity in a Lewis acid-catalyzed Mukaiyama aldol reaction is investigated using a combination of dispersion corrected DFT calculations and transition state force fields (TSFF) developed using the quantum guided molecular mechanics (Q2MM) method. The reaction proceeds via a closed transition structure involving a nontraditional hydrogen bond that is 3.3 kJ/mol lower in energy than the corresponding open transition structure. The correct prediction of the diastereoselectivity of a Mukaiyama aldol reaction catalyzed by the conformationally flexible Yamamoto chiral (acyloxy) borane (CAB) requires extensive conformational sampling at the transition structure, which is achieved using a Q2MM-derived TSFF, followed by DFT calculations of the low energy conformational clusters. Finally, a conceptual model for the rationalization of the observed diastereo- and enantioselectivity of the reaction using a closed transition state model is proposed. PMID:27247023

  3. CALIX[6]ARENE DERIVATIVES BEARING SULFONATE AND ALKYL GROUPS AS SURFACTANTS IN SC(OTF)3-CATALYZED MUKAIYAMA ALDOL REACTIONS IN WATER. (R822668)

    EPA Science Inventory

    Abstract

    Amphiphilic calix[6]arene derivatives 1a¯b were found to be efficient surfactants for Sc(OTf)3-catalyzed Mukaiyama aldol reaction of silyl enol ethers with aldehydes in water. The results indicated t...

  4. The Mukaiyama aldol reaction of in situ generated nitrosocarbonyl compounds: selective C-N bond formation and N-O bond cleavage in one-pot for α-amination of ketones.

    PubMed

    Ramakrishna, Isai; Grandhi, Gowri Sankar; Sahoo, Harekrishna; Baidya, Mahiuddin

    2015-09-21

    A practical protocol for the α-amination of ketones (up to 99% yield) has been developed via the Mukaiyama aldol reaction of in situ generated nitrosocarbonyl compounds. The reaction with silyl enol ethers having a disilane (-SiMe2TMS) backbone proceeded not only with perfect N-selectivity but concomitant N-O bond cleavage was also accomplished. Such a cascade of C-N bond formation and N-O bond cleavage in a single step was heretofore unknown in the field of nitrosocarbonyl chemistry. A very high diastereoselectivity (dr = 19 : 1) was accomplished using (-)-menthol derived chiral nitrosocarbonyl compounds. PMID:26245149

  5. Stereoselective Synthesis of Highly Functionalized α-Diazo-β-ketoalkanoates via Catalytic Onepot Mukaiyama-Aldol Reactions

    PubMed Central

    Zhou, Lei; Doyle, Michael P.

    2010-01-01

    Methyl diazoacetoacetate undergoes zinc triflate catalyzed condensation with a broad selection of aldehydes to produce δ-siloxy-α-diazo-β-ketoalkanoates in good yield, and δ-hydroxy-α-diazo-β-ketoalkanoates are formed with high diastereoselectivity in reactions with α-diazo-β-ketopentanoate promoted by dibutylboron triflate. PMID:20102172

  6. THE EFFECTS OF AROMATIC AND ALIPHATIC ANIONIC SURFACTANTS ON SC(OTF)3-CATALYZED MUKAIYAMA ALDOL REACTION IN WATER. (R822668)

    EPA Science Inventory

    Abstract

    Aromatic (2c and 2d) and aliphatic (2a and 2b) anionic surfactants were employed in Sc(OTf)3-catalyzed aldol reactions of some labile silyl enol ethers (3a and

  7. Sequential hydroformylation/aldol reactions: versatile and controllable access to functionalised carbocycles from unsaturated carbonyl compounds.

    PubMed

    Keränen, Mark D; Kot, Kinga; Hollmann, Christoph; Eilbracht, Peter

    2004-11-21

    Three different modes of hydroformylation/aldol reaction sequences involving either acid-catalysed aldol reactions, Mukaiyama aldol addition of pre-formed enolsilanes or aldol addition of in situ generated boron enolates can be applied to unsaturated ketones and ketoesters to afford the corresponding carbocyclic aldol adducts in good yields proceeding through the intermediate activated ketoaldehydes. In selected cases, complimentary, synthetically useful diastereoselectivities were observed in the products. PMID:15534717

  8. Organolanthanide reagents and the Mukaiyama reaction

    SciTech Connect

    Gong, L.

    1989-01-01

    The bis(pentamethylcyclopentadienyl) lutetium halide complex ((C/sub 5/Me/sub 5/)/sub 2/LuCl/center dot/THF) was synthesized and characterized. The crystal structure of this complex shows that the Lu is at the center of a distorted tetrahedron consisting of the centroids of two cyclopentadienyl rings, the oxygen atom of a tetrahydrofuran molecule and a chlorine atom. /sup 1/H NMR studies of toluene-d/sub 8/ solutions of (C/sub 5/Me/sub 5/LuCl(THF) + THF, (TMS/sub 2/CP)/sub 2/LuCl(THF) + THF, and (MeCp)/sub 2/LuCl(THF) + THF at various temperatures showed exchange processes between co- ordinated THF and free THF with average values of ..delta..G/sup ne/ of 13.0 /+-/ 0.3 kcal/mol, 11.1 /+-/ 0.1 kcal/mol and <11 kcal/mol at 0/degree/C, respectively. It has been found that under the influence of a catalytic amount (1--5 mol %) of (TMS/sub 2/Cp)/sub 2/YbCl dimer, silyl enol ethers (R/sub 1/R/sub 2/C = C(OR/sub 3/)OSiMe/sub 3/)) react with benzaldehyde smoothly in dichloromethane at room temperature, giving >99% of the aldol silyl ether (isolated yield: 90%) within 3 h. At /minus/78/degrees/C, the reaction gives kinetically controlled diastereoselectivity, which was not observed in the TiCl/sub 4/-mediated aldol reaction. The use of organoytterbium enolates shows promise result with respect to increased stereoselectivity, and indicates the importance of the bulky ligands on the metal center. In addition, Yb(III) species can retard retroaldol reaction owing to its mild Lewis acidity. 118 refs., 14 figs., 30 tabs.

  9. Catalytic, enantioselective, vinylogous aldol reactions.

    PubMed

    Denmark, Scott E; Heemstra, John R; Beutner, Gregory L

    2005-07-25

    In 1935, R. C. Fuson formulated the principle of vinylogy to explain how the influence of a functional group may be felt at a distant point in the molecule when this position is connected by conjugated double-bond linkages to the group. In polar reactions, this concept allows the extension of the electrophilic or nucleophilic character of a functional group through the pi system of a carbon-carbon double bond. This vinylogous extension has been applied to the aldol reaction by employing "extended" dienol ethers derived from gamma-enolizable alpha,beta-unsaturated carbonyl compounds. Since 1994, several methods for the catalytic, enantioselective, vinylogous aldol reaction have appeared, with which varying degrees of regio- (site), enantio-, and diastereoselectivity can be attained. In this Review, the current scope and limitations of this transformation, as well as its application in natural product synthesis, are discussed. PMID:15940727

  10. Enantioselective aldol reactions with masked fluoroacetates.

    PubMed

    Saadi, Jakub; Wennemers, Helma

    2016-03-01

    Despite the growing importance of organofluorines as pharmaceuticals and agrochemicals, the stereoselective introduction of fluorine into many prominent classes of natural products and chemotherapeutic agents is difficult. One long-standing unsolved challenge is the enantioselective aldol reaction of fluoroacetate to enable access to fluorinated analogues of medicinally relevant acetate-derived compounds, such as polyketides and statins. Herein we present fluoromalonic acid halfthioesters as biomimetic surrogates of fluoroacetate and demonstrate their use in highly stereoselective aldol reactions that proceed under mild organocatalytic conditions. We also show that the methodology can be extended to formal aldol reactions with fluoroacetaldehyde and consecutive aldol reactions. The synthetic utility of the fluorinated aldol products is illustrated by the synthesis of a fluorinated derivative of the top-selling drug atorvastatin. The results show the prospects of the method for the enantioselective introduction of fluoroacetate to access a wide variety of highly functionalized fluorinated compounds. PMID:26892561

  11. Enantioselective aldol reactions with masked fluoroacetates

    NASA Astrophysics Data System (ADS)

    Saadi, Jakub; Wennemers, Helma

    2016-03-01

    Despite the growing importance of organofluorines as pharmaceuticals and agrochemicals, the stereoselective introduction of fluorine into many prominent classes of natural products and chemotherapeutic agents is difficult. One long-standing unsolved challenge is the enantioselective aldol reaction of fluoroacetate to enable access to fluorinated analogues of medicinally relevant acetate-derived compounds, such as polyketides and statins. Herein we present fluoromalonic acid halfthioesters as biomimetic surrogates of fluoroacetate and demonstrate their use in highly stereoselective aldol reactions that proceed under mild organocatalytic conditions. We also show that the methodology can be extended to formal aldol reactions with fluoroacetaldehyde and consecutive aldol reactions. The synthetic utility of the fluorinated aldol products is illustrated by the synthesis of a fluorinated derivative of the top-selling drug atorvastatin. The results show the prospects of the method for the enantioselective introduction of fluoroacetate to access a wide variety of highly functionalized fluorinated compounds.

  12. Diastereoselective synthesis of tetrahydrofurans via mead reductive cyclization of keto-beta-lactones derived from the tandem Mukaiyama aldol lactonization (TMAL) process.

    PubMed

    Mitchell, T Andrew; Romo, Daniel

    2007-11-23

    The development of a diastereoselective, three-step strategy for the construction of substituted tetrahydrofurans from alkenyl aldehydes based on the tandem Mukaiyama aldol-lactonization process and Mead reductive cyclization of keto beta-lactones is reported. Stereochemical outcomes of the TMAL process are consistent with models established for Lewis acid-mediated additions to alpha-benzyloxy and beta-silyloxy aldehydes while reductions of the five-membered oxocarbenium ions are consistent with Woerpel's models. Further rationalization for observed high diastereoselectivity in reductions of alpha-silyloxy 5-membered oxocarbenium ions based on stereoelectronic effects are posited. A diagnostic trend for coupling constants of gamma-benzyloxy beta-lactones was observed that should enable assignment of the relative configuration of these systems. PMID:17973527

  13. Diastereoselective Synthesis of Tetrahydrofurans via Mead Reductive Cyclization of Keto-β-Lactones Derived from the Tandem Mukaiyama Aldol Lactonization (TMAL) Process

    PubMed Central

    Mitchell, T. Andrew; Romo, Daniel

    2008-01-01

    The development of a diastereoselective, three-step strategy for the construction of substituted tetrahydrofurans from alkenyl aldehydes based on the tandem Mukaiyama aldol-lactonization process and Mead reductive cyclization of keto β-lactones is reported. Stereochemical outcomes of the TMAL process are consistent with models established for Lewis acid-mediated additions to α-benzyloxy and β-silyloxy aldehydes while reductions of the five-membered oxocarbenium ions are consistent with Woerpel’s models. Further rationalization for observed high diastereoselectivity in reductions of α-silyloxy 5-membered oxocarbenium ions based on stereoelectronic effects are posited. A diagnostic trend for coupling constants of γ-benzyloxy β-lactones was observed that should enable assignment of the relative configuration of these systems. PMID:17973527

  14. Stereodefined Acyclic Polysubstituted Silyl Ketene Aminals: Asymmetric Formation of Aldol Products with Quaternary Carbon Stereocenters.

    PubMed

    Nairoukh, Zackaria; Marek, Ilan

    2015-11-23

    The regio- and stereoselective formation of stereodefined polysubstituted silyl ketene aminals is easily achieved through selective combined carbometalation-oxidation-silylation reactions. These substrates are ideal candidates for Mukaiyama aldol reactions with aliphatic aldehydes as they give the aldol products with a quaternary carbon stereocenter α to the carbonyl groups in outstanding diastereoselectivities. PMID:26448575

  15. Unraveling the Concerted Reaction Mechanism of the Noncatalyzed Mukaiyama Reaction between C,O,O-Tris(trimethylsilyl)ketene Acetal and Aldehydes Using Density Functional Theory.

    PubMed

    Hadj Mohamed, Slim; Trabelsi, Mahmoud; Champagne, Benoît

    2016-07-21

    The uncatalyzed Mukaiyama aldol reaction between C,O,O-tris(trimethylsilyl)ketene acetal and aldehydes bearing alkyl, vinyl, and aromatic substituents has been studied theoretically using density functional theory with the M06-2X exchange-correlation functional. These DFT calculations mostly demonstrate that (i) the syn product is both kinetically and thermodynamically favored, (ii) the diastereoselectivity of the uncatalyzed reaction is larger than observed for the reaction catalyzed by HgI2 and it is inverted with respect to the latter, (iii) solvents with larger dielectric constants increase the activation barrier but reduce the diastereoselectivity, (iv) the concerted reaction is preferred over the stepwise reaction, and (v) the OSiMe3 group in geminal lowers the activation barrier and increases the energy of reaction. Analyzing the concerted mechanism unravels four types of cyclic transition states, two pro-anti and two pro-syn. Then, the relative energy of the most stable transition state of each type as well as of the corresponding anti and syn products shows that the syn reaction path is located at lower Gibbs enthalpy than the anti reaction path for all substituents. PMID:27322012

  16. Asymmetric Aldol-Tishchenko Reaction of Sulfinimines.

    PubMed

    Foley, Vera M; McSweeney, Christina M; Eccles, Kevin S; Lawrence, Simon E; McGlacken, Gerard P

    2015-11-20

    Methods for the preparation of 1,3-amino alcohols and their derivatives containing two stereogenic centers usually involve a two-step installation of the chiral centers. An aldol-Tishchenko reaction of chiral sulfinimines which involves the first reported reduction of a C═N in this type of reaction is described. Two and even three chiral centers can be installed in one synthetic step, affording anti-1,3-amino alcohols in good diastereo- and enantioselectivity. PMID:26528888

  17. Thermodynamically driven, syn-selective vinylogous aldol reaction of tetronamides.

    PubMed

    Karak, Milandip; Barbosa, Luiz C A; Acosta, Jaime A M; Sarotti, Ariel M; Boukouvalas, John

    2016-06-01

    A stereoselective vinylogous aldol reaction of N-monosubstituted tetronamides with aldehydes is described. The procedure is simple and scalable, works well with both aromatic and aliphatic aldehydes, and affords mainly the corresponding syn-aldol adducts. In many cases, the latter are obtained essentially free of their anti-isomers (dr > 99 : 1) in high yields (70-90%). Experimental and computational studies suggest that the observed diastereoselectivity arises through anti-syn isomer interconversion, enabled by an iterative retro-aldol/aldol reaction. PMID:27163151

  18. A Powerful Chiral Phosphoric Acid Catalyst for Enantioselective Mukaiyama-Mannich Reactions.

    PubMed

    Zhou, Fengtao; Yamamoto, Hisashi

    2016-07-25

    A new BINOL-derived chiral phosphoric acid bearing 2,4,6-trimethyl-3,5-dinitrophenyl substituents at the 3,3'-positions was developed. The utility of this chiral phosphoric acid is demonstrated by a highly enantioselective (ee up to >99 %) and diastereoselective (syn/anti up to >99:1) asymmetric Mukaiyama-Mannich reaction of imines with a wide range of ketene silyl acetals. Moreover, this method was successfully applied to the construction of vicinal tertiary and quaternary stereogenic centers with excellent diastereo- and enantioselectivity. Significantly, BINOL-derived N-triflyl phosphoramide constitutes a complementary catalyst system that allows the title reaction to be applied to more challenging imines without an N-(2-hydroxyphenyl) moiety. PMID:27265881

  19. Asymmetric Aldol Reaction with Formaldehyde: a Challenging Process.

    PubMed

    Meninno, Sara; Lattanzi, Alessandra

    2016-08-01

    The asymmetric aldol reaction with formaldehyde is a fundamental carbon-carbon bond-forming reaction in organic synthesis, as well as in the quest of the origin of life, as it is thought to have been the first "molecular brick" involved in the synthetic path to complex sugars. Products of aldol reactions, i.e., the β-hydroxy carbonyl compounds, are versatile building blocks used to access a great variety of functionalised molecules. The employment of formaldehyde, as a C1 symmetric electrophile, in aldol reactions can be likely considered the most challenging, yet simplest, process to introduce a hydroxymethyl group in an asymmetric fashion. In this account, an overview of the progress achieved in the asymmetric metal- and organocatalysed aldol reaction, using readily available formalin or paraformaldehyde sources, is illustrated. Our recent contribution to this area, with the application of asymmetric hydroxymethylation in cascade processes for the synthesis of γ-butyrolactones, is also shown. PMID:27328802

  20. Investigating Ionic Effects Applied to Water Based Organocatalysed Aldol Reactions

    PubMed Central

    Delaney, Joshua P.; Henderson, Luke C.

    2011-01-01

    Saturated aqueous solutions of various common salts were examined for their effect on aqueous aldol reactions catalysted by a highly active C2-symmetric diprolinamide organocatalyst developed in our laboratory. With respect to the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde, deionised water was always a superior medium to salt solutions though some correlation to increasing anion size and depression in enantiomeric excess could be observed. Additionally, the complete inhibition of catalyst activity observed when employing tap water could be alleviated by the inclusion of ethylenediaminetetraacetate (EDTA) into the aqueous media prior to reaction initiation. Extension of these reaction conditions demonstrated that these ionic effects vary on a case-to-case basis depending on the ketone/aldehyde combination. PMID:22272120

  1. Functionalized multi-walled carbon nanotubes in an aldol reaction

    NASA Astrophysics Data System (ADS)

    Chronopoulos, D. D.; Kokotos, C. G.; Karousis, N.; Kokotos, G.; Tagmatarchis, N.

    2015-01-01

    The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction between acetone and 4-nitrobenzaldehyde was evaluated for the first time, showing to proceed almost quantitatively in aqueous media. Furthermore, several amino-modified MWCNTs were prepared and examined in the particular aldol reaction. These new hybrid materials exhibited an enhanced catalytic activity in water, contrasting with the pristine MWCNTs as well as the parent organic molecule, which failed to catalyze the reaction efficiently. Furthermore, the modified MWCNTs proved to catalyze the aldol reaction even after three repetitive cycles. Overall, a green approach for the aldol reaction is presented, where water can be employed as the solvent and modified MWCNTs can be used as catalysts, which can be successfully recovered and reused, while their catalytic activity is retained.The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction

  2. SF5-Enolates in Ti(IV)-Mediated Aldol Reactions.

    PubMed

    Ponomarenko, Maksym V; Grabowsky, Simon; Pal, Rumpa; Röschenthaler, Gerd-Volker; Fokin, Andrey A

    2016-08-01

    The F···Ti bonding in the transition structures determines high trans- and syn-diastereoselectivities for aldol reactions of SF5-acetates with aldehydes in the presence of TiCl4 in the non-nucleophilic solvent CH2Cl2. Such bonding is canceled in nucleophilic solvents where opposite cis-stereochemistry is observed. The potential of thus obtained stereoisomeric SF5-aryl acrylates as dipolarophiles in the preparation of SF5-containing heterocycles is demonstrated. PMID:27384450

  3. Acetylphosphonate as a Surrogate of Acetate or Acetamide in Organocatalyzed Enantioselective Aldol Reactions

    PubMed Central

    Guang, Jie; Guo, Qunsheng

    2012-01-01

    Highly enantioselective aldol reactions of acetylphosphonates and activated carbonyl compounds was realized with cinchona alkaloid derived catalysts, in which the acetylphosphonate was directly used as an enolate precursor for the first time. The aldol product obtained was converted in situ to its corresponding ester or amide through methanolysis or aminolysis. The overall process may be viewed as formal highly enantioselective acetate or acetamide aldol reactions, which are very difficult to achieve directly with organocatalytic methods. PMID:22650245

  4. Method of carbon chain extension using novel aldol reaction

    DOEpatents

    Silks, Louis A; Gordon, John C; Wu, Ruilan; Hangson, Susan Kloek

    2013-08-13

    Method of producing C.sub.8-C.sub.15 hydrocarbons comprising providing a ketone starting material; providing an aldol starting material comprising hydroxymethylfurfural; mixing the ketone starting material and the aldol starting material in a reaction in the presence of a proline-containing catalyst selected from the group consisting of Zn(Pro).sub.2, Yb(Pro).sub.2, and combinations thereof, or a catalyst having one of the structures (I), (II) or (III), and in the presence of a solvent, wherein the solvent comprises water and is substantially free of organic solvents, where (I), (II) and (III) respectively are: ##STR00001## where R.sub.1 is a C.sub.1-C.sub.6 alkyl moiety, X=(OH) and n=2. ##STR00002## In (III), X may be CH.sub.2, sulfur or selenium, M may be Zn, Mg, or a lanthanide, and R.sub.1 and R.sub.2 each independently may be a methyl, ethyl, phenyl moiety.

  5. Method of carbon chain extension using novel aldol reaction

    DOEpatents

    Silks, Louis A; Gordon, John C; Wu, Ruilan; Hanson, Susan Kloek

    2013-07-30

    Method of producing C.sub.8-C.sub.15 hydrocarbons. comprising providing a ketone starting material; providing an aldol starting material comprising chloromethylfurfural; mixing the ketone starting material and the aldol starting material in a reaction in the presence of a proline-containing catalyst selected from the group consisting of Zn(Pro).sub.2, Yb(Pro).sub.3, and combinations thereof, or a catalyst having one of the structures (I), (II) or (III), and in the presence of a solvent, wherein the solvent comprises water and is substantially free of organic solvents, where (I), (II) and (III) respectively are: ##STR00001## where R.sub.1 is a C.sub.1-C.sub.6 alkyl moiety, X=(OH) and n=2. ##STR00002## In (III), X may be CH.sub.2, sulfur or selenium, M may be Zn, Mg, or a lanthanide, and R.sub.1 and R.sub.2 each independently may be a methyl, ethyl, phenyl moiety.

  6. Highly efficient asymmetric aldol reaction in brine using a fluorous sulfonamide organocatalyst.

    PubMed

    Miura, Tsuyoshi; Kasuga, Hikaru; Imai, Kie; Ina, Mariko; Tada, Norihiro; Imai, Nobuyuki; Itoh, Akichika

    2012-03-21

    A fluorous organocatalyst promotes direct asymmetric aldol reactions of aromatic aldehydes with ketones in brine to afford the corresponding anti-aldol products in high yield with up to 96% ee. Fluorous organocatalyst can be readily recovered by solid phase extraction using fluorous silica gel and reused without purification. PMID:22331195

  7. Enantiomerically pure bithiophene diphosphine oxides as catalysts for direct double aldol reactions.

    PubMed

    Genoni, Andrea; Benaglia, Maurizio; Rossi, Sergio; Celentano, Giuseppe

    2013-10-01

    The direct aldol reaction between aryl methyl ketones with aromatic aldehydes in the presence of tetrachlorosilane and a catalytic amount of a chiral bithiophene diphosphine oxide was studied; the product of double aldol addition was isolated as diacetate in good diastereoselectivity (up to 95:5) and enantioselectivities up to 91%. The reaction with heteroaromatic aldehydes was also investigated leading to the corresponding 1,3 diols, in some cases with excellent stereoselectivities. PMID:23744602

  8. Tandem Catalysis of an Aldol-'Click' Reaction System within a Molecular Hydrogel.

    PubMed

    Araújo, Marco; Muñoz Capdevila, Iván; Díaz-Oltra, Santiago; Escuder, Beatriu

    2016-01-01

    A heterogeneous supramolecular catalytic system for multicomponent aldol-'click' reactions is reported. The copper(I) metallohydrogel functionalized with a phenyltriazole fragment was able to catalyze the multicomponent reaction between phenylacetylene, p-nitrobenzaldehyde, and an azide containing a ketone moiety, obtaining the corresponding aldol products in good yields. A possible mechanistic pathway responsible for this unexpected catalytic behavior has been proposed. PMID:27338313

  9. Divergent Outcomes of Carbene Transfer Reactions from Dirhodium- and Copper-Based Catalysts Separately or in Combination

    PubMed Central

    Xu, Xinfang; Hu, Wen-Hao; Zavalij, Peter Y.; Doyle, Michael P.

    2014-01-01

    The use of copper and rhodium catalysts separately and in combination directs reactions between vinyldiazoacetates 3 and cinnamaldehydes 2 to from formal [4+3]-cycloaddition (epoxidation followed by Cope rearrangement), intramolecular cyclopropanation, and Mukaiyama-aldol reactions selectively and in high yield. PMID:25097911

  10. Domino Michael-Michael and Aldol-Aldol Reactions: Diastereoselective Synthesis of Functionalized Cyclohexanone Derivatives Containing Quaternary Carbon Center.

    PubMed

    Ghorai, Manas K; Halder, Sandipan; Das, Subhomoy

    2015-10-01

    A simple strategy for the synthesis of highly functionalized cyclohexanone derivatives containing an all-carbon quaternary center from α-(aryl/alkyl)methylidene-β-keto esters or β-diketones via a K-enolate mediated domino Michael-Michael reaction sequence with moderate to good yield and excellent diastereoselectivity (de > 99%) is described. Interestingly, Li-base mediated reaction of α-arylmethylidene-β-diketones affords functionalized 3,5-dihydroxy cyclohexane derivatives as the kinetically controlled products via a domino aldol-aldol reaction sequence with excellent diastereoselectivity. Li-enolates of the β-keto esters or β-diketones undergo facile domino Michael-Michael reaction with nitro-olefins to afford the corresponding nitrocyclohexane derivatives in good yields and excellent diastereoselectivity (de > 99%). The formation of the products and the observed stereoselectivity were explained by plausible mechanisms and supported by extensive computational study. An asymmetric version of the protocol was explored with (L)-menthol derived nonracemic substrates, and the corresponding nonracemic cyclohexanone derivatives containing an all-carbon quaternary center were obtained with excellent stereoselectivity (de, ee > 99%). PMID:26334184

  11. A NOVEL CHIRAL GALLIUM LEWIS ACID CATALYST WITH SEMI-CROWN LIGAND IN AQUEOUS ASYMMETRIC MUKAIYAMA ALDOL REACTIONS. (R828129)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  12. Developing novel organocatalyzed aldol reactions for the enantioselective synthesis of biologically active molecules

    PubMed Central

    Bhanushali, Mayur; Zhao, Cong-Gui

    2011-01-01

    Aldol reaction is one of the most important methods for the formation of carbon-carbon bonds. Because of its significance and usefulness, asymmetric versions of this reaction have been realized with different approaches in the past. Over the last decade, the area of organocatalysis has made significant progresses. As one of most studied reactions in organocatalyses, organocatalyzed aldol reaction has emerged as a powerful tool for the synthesis of a large number of useful products in optically enriched forms. In this review, we summarize our efforts on the development of novel organocatalyzed aldol reactions for the enantioselective synthesis of biological active molecules. Literatures closely related to our studies are also covered. PMID:21918584

  13. A Tandem Michael-Aldol Reaction Sequence: An Undergraduate Research Organic Experiment.

    ERIC Educational Resources Information Center

    Coutlangus, Marilyn L.; And Others

    1989-01-01

    Presents a short reaction sequence that allows the student to determine by spectroscopic methods the constitution and stereochemistry of the reaction products. Reports the interpretations needed to illustrate the usefulness of the spectroscopic method. Notes the products of the Michael-Aldol reaction have not been reported in the literature. (MVL)

  14. Rapid and Efficient Functionalized Ionic Liquid-Catalyzed Aldol Condensation Reactions Associated with Microwave Irradiation

    PubMed Central

    Wang, Chang; Liu, Jing; Leng, Wenguang; Gao, Yanan

    2014-01-01

    Five quaternary ammonium ionic liquid (IL) and two tetrabutylphosphonium ILs were prepared and characterized. An environmentally benign and convenient functionalized ionic liquid catalytic system was thus explored in the aldol condensation reactions of aromatic aldehydes with acetone. The aldol reactions proceeded more efficiently through microwave-assisted heating than through conventional thermal heating. The yield of products obtained under microwave heating for 30 min was approximately 90%, and the ILs can be recovered and reused at least five times without apparent loss of activity. In addition, this catalytic system can be successfully extended to the Henry reactions. PMID:24445262

  15. Highly active copper-network catalyst for the direct aldol reaction.

    PubMed

    Ohta, Hidetoshi; Uozumi, Yasuhiro; Yamada, Yoichi M A

    2011-09-01

    The development of a highly active solid-phase catechol-copper network catalyst for direct aldol reaction is described. The catalyst was prepared from an alkyl-chain-linked bis(catechol) and a copper(II) complex. The direct aldol reaction between carbonyl compounds (aldehydes and ketones) and methyl isocyanoacetate was carried out using 0.1-1 mol% [Cu] catalyst to give the corresponding oxazolines at yields of up to 99% and a trans/cis ratio of >99:1. The catalyst was reused with no loss of catalytic activity. A plausible reaction pathway is also described. PMID:21751405

  16. α-Hydroxyallylsilanes as propionaldehyde enolate equivalents and their use toward iterative aldol reactions.

    PubMed

    Ruiz, Johal; Murthy, Akondi Srirama; Roisnel, Thierry; Chandrasekhar, Srivari; Grée, René

    2015-02-20

    Smooth and efficient reaction conditions have been found for the transformation of protected β-hydroxyacylsilanes into the corresponding aldehydes. This opens a new route to iterative aldol reactions, and it has been used for the synthesis of fragments of several bioactive natural products. PMID:25636066

  17. Bifunctional Brønsted Base Catalyzes Direct Asymmetric Aldol Reaction of α-Keto Amides.

    PubMed

    Echave, Haizea; López, Rosa; Palomo, Claudio

    2016-03-01

    The first enantioselective direct cross-aldol reaction of α-keto amides with aldehydes, mediated by a bifunctional ureidopeptide-based Brønsted base catalyst, is described. The appropriate combination of a tertiary amine base and an aminal, and urea hydrogen-bond donor groups in the catalyst structure promoted the exclusive generation of the α-keto amide enolate which reacted with either non-enolizable or enolizable aldehydes to produce highly enantioenriched polyoxygenated aldol adducts without side-products resulting from dehydration, α-keto amide self-condensation, aldehyde enolization, and isotetronic acid formation. PMID:26835655

  18. ALDOL- AND MANNICH-TYPE REACTIONS VIA IN SITU OLEFIN MIGRATION IN IONIC LIQUID

    EPA Science Inventory


    An aldol-type and a Mannich-type reaction via the cross-coupling of aldehydes and imines with allylic alcohols catalyzed by RuCl2(PPh3)3 was developed with ionic liquid as the solvent. The solvent/catalyst system could be reused for at least five times with no loss of reactiv...

  19. RUTHENIUM-CATALYZED TANDEM OLEFIN MIGRATION-ALDOL AND MANNICH-TYPE REACTIONS IN IONIC LIQUID.

    EPA Science Inventory

    In the presence of a catalytic amount of RuCl2(PPh3)3, a cross-coupling of 3-buten-2-ol with aldehydes and imines was developed via a tandem olefin migration--aldol--Mannich reaction in bmim[PF6]. With In(OAc)3 as a co-catalyst, a-vinylbenzyl alcohol and aldehydes underwent sim...

  20. Enantioselective synthesis of (-)-chloramphenicol via silver-catalysed asymmetric isocyanoacetate aldol reaction.

    PubMed

    Franchino, Allegra; Jakubec, Pavol; Dixon, Darren J

    2016-01-01

    The highly enantio- and diastereoselective aldol reaction of isocyanoacetates catalysed by Ag2O and cinchona-derived amino phosphines applied to the synthesis of (-)- and (+)-chloramphenicol is described. The concise synthesis showcases the utility of this catalytic asymmetric methodology for the preparation of bioactive compounds possessing α-amino-β-hydroxy motifs. PMID:26510469

  1. The stereoselective synthesis of α-amino aldols starting from terminal alkynes.

    PubMed

    Miura, Tomoya; Nakamuro, Takayuki; Hiraga, Kentaro; Murakami, Masahiro

    2014-09-18

    A new procedure for the stereoselective synthesis of syn α-amino β-oxy ketones is reported. It consists of two steps; in the first step, α-amino silyl enol ethers having a (Z) geometry are prepared from 1-alkynes via 1-sulfonyl-1,2,3-triazoles. In the second step, the silyl enol ethers undergo the TiCl4-mediated Mukaiyama aldol reaction with aldehydes to produce α-amino β-oxy ketones with excellent syn-selectivity. PMID:25068433

  2. Stereoselective titanium-mediated aldol reactions of a chiral lactate-derived ethyl ketone with ketones.

    PubMed

    Alcoberro, Sandra; Gómez-Palomino, Alejandro; Solà, Ricard; Romea, Pedro; Urpí, Fèlix; Font-Bardia, Mercè

    2014-01-17

    Aldol reactions of titanium enolates of lactate-derived ethyl ketone 1 with other ketones proceed in a very efficient and stereocontrolled manner provided that a further equivalent of TiCl4 is added to the reacting mixture. The scope of these reactions encompasses simple ketones such as acetone or cyclohexanone as well as other ketones that contain potential chelating groups such as pyruvate esters or α- and β-hydroxy ketones. PMID:24372372

  3. Origins of stereoselectivity in intramolecular aldol reactions catalyzed by cinchona amines.

    PubMed

    Lam, Yu-Hong; Houk, K N

    2015-02-11

    The intramolecular aldol condensation of 4-substituted heptane-2,6-diones leads to chiral cyclohexenones. The origins of the enantioselectivities of this reaction, disclosed by List et al. using a cinchona alkaloid-derived primary amine (cinchona amine) organocatalyst, have been determined with dispersion-corrected density functional theory (DFT). The stereocontrol hinges on the chair preference of the substrate-enamine intermediate and the conformational preferences of a hydrogen-bonded nine-membered aldol transition state containing eight heavy atoms. The conformations of the hydrogen-bonded ring in the various stereoisomeric transition structures have been analyzed in detail and shown to closely resemble the conformers of cyclooctane. A model of stereoselectivity is proposed for the cinchona amine catalysis of this reaction. The inclusion of Grimme's dispersion corrections in the DFT calculations (B3LYP-D3(BJ)) substantially improves the agreement of the computed energetics and experiment, attesting to the importance of dispersion effects in stereoselectivity. PMID:25629689

  4. Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

    PubMed

    Lewis, Jennifer D; Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-08-17

    Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions. PMID:26138135

  5. Cooperative Effects Between Arginine and Glutamic Acid in the Amino Acid-Catalyzed Aldol Reaction.

    PubMed

    Valero, Guillem; Moyano, Albert

    2016-08-01

    Catalysis of the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde by mixtures of L-Arg and of L-Glu in wet dimethyl sulfoxide (DMSO) takes place with higher enantioselectivity (up to a 7-fold enhancement in the anti-aldol for the 1:1 mixture) than that observed when either L-Glu or L-Arg alone are used as the catalysts. These results can be explained by the formation of a catalytically active hydrogen-bonded complex between both amino acids, and demonstrate the possibility of positive cooperative effects in catalysis by two different α-amino acids. Chirality 28:599-605, 2016. © 2016 Wiley Periodicals, Inc. PMID:27362554

  6. Solvent-Induced Reversal of Activities between Two Closely Related Heterogeneous Catalysts in the Aldol Reaction

    SciTech Connect

    Kandel, Kapil; Althaus, Stacey M; Peeraphatdit, Chorthip; Kobayashi, Takeshi; Trewyn, Brian G; Pruski, Marek; Slowing, Igor I

    2013-01-11

    The relative rates of the aldol reaction catalyzed by supported primary and secondary amines can be inverted by 2 orders of magnitude, depending on the use of hexane or water as a solvent. Our analyses suggest that this dramatic shift in the catalytic behavior of the supported amines does not involve differences in reaction mechanism, but is caused by activation of imine to enamine equilibria and stabilization of iminium species. The effects of solvent polarity and acidity were found to be important to the performance of the catalytic reaction. This study highlights the critical role of solvent in multicomponent heterogeneous catalytic processes.

  7. From allylic alcohols to aldols through a new nickel-mediated tandem reaction: synthetic and mechanistic studies.

    PubMed

    Cuperly, David; Petrignet, Julien; Crévisy, Christophe; Grée, René

    2006-04-12

    Nickel hydride type complexes have been successfully developed as catalysts for the tandem isomerization-aldolization reaction of allylic alcohols with aldehydes. Optimization of the reaction conditions has shown that a cocatalyst, such as MgBr2, has a very positive effect on the kinetics of the reaction and in the yields of aldols. Under such optimized conditions {[NiHCl(dppe)] + MgBr(2) at 3-5 mol %)}, this reaction affords the aldols in good to excellent yields. It is a full-atom-economy-type reaction that occurs under mild conditions. Furthermore, it has a broad scope for the allylic alcohols and it is compatible with a wide range of aldehydes, including very bulky derivatives. The reaction is completely regioselective, but it exhibits a low stereoselectivity, except for allylic alcohols with a bulky substituent at the carbinol center. The use of chiral nonracemic catalysts was not successful, affording only racemic compounds. However, it was possible to use asymmetric synthesis for the preparation of optically active aldols. Various mechanistic studies have been performed using, for instance, a deuterated alcohol or a deuterated catalyst. They gave strong support to a mechanism involving first a transition-metal-mediated isomerization of the allylic alcohol into the free enol, followed by the addition of the latter intermediate onto the aldehyde in an "hydroxyl-carbonyl-ene" type reaction. These results confirm that allylic alcohols can be considered as new and useful partners in the development of the aldol reaction. PMID:16506253

  8. Kinetics of acid-catalyzed aldol condensation reactions of aliphatic aldehydes

    NASA Astrophysics Data System (ADS)

    Casale, Mia T.; Richman, Aviva R.; Elrod, Matthew J.; Garland, Rebecca M.; Beaver, Melinda R.; Tolbert, Margaret A.

    Field observations of atmospheric aerosols have established that organic compounds compose a large fraction of the atmospheric aerosol mass. However, the physical/chemical pathway by which organic compounds are incorporated into atmospheric aerosols remains unclear. The potential role of acid-catalyzed reactions of organic compounds on acidic aerosols has been explored as a possible chemical pathway for the incorporation of organic material into aerosols. In the present study, ultraviolet-visible (UV-vis) spectroscopy was used to monitor the kinetics of formation of the products of the acid-catalyzed aldol condensation reaction of a range of aliphatic aldehydes (C 2-C 8). The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature. While the kinetic data are generally consistent with previous laboratory reports of aldehyde reactivity in various sulfuric acid media, the aldol condensation reactions involving aliphatic aldehydes do not appear fast enough to be responsible for significant transfer of organic material into atmospheric aerosols.

  9. One-Pot Domino Aldol Reaction of Indium Enolates Affording 6-Deoxy-α-D,L-altropyranose Derivatives: Synthesis, Mechanism, and Computational Results.

    PubMed

    Cinar, M Emin; Schmittel, Michael

    2015-08-21

    The domino-aldol-aldol-hemiacetal-reaction cascade of indium and other group 13 metal enolates furnished 6-deoxy-α-D,L-altropyranose derivatives in up to 99% yield under thermodynamic control. At lower temperature and thus under kinetic control, the reaction proceeded in a much less diastereoselective manner. The changeover from kinetic to thermodynamic control operating in this multistep domino-aldol-aldol-hemiacetal protocol was used for probing the efficiency of DFT computations. Calculations at the B3LYP/6-31G(d)/LANL2DZ level provided a mechanistic picture in full agreement with the experimental outcome. PMID:26258596

  10. From allylic alcohols to aldols by using iron carbonyls as catalysts: computational study on a novel tandem isomerization-aldolization reaction.

    PubMed

    Branchadell, Vicenç; Crévisy, Christophe; Grée, René

    2004-11-01

    The tandem isomerization-aldolization reaction between allyl alcohol and formaldehyde mediated by [Fe(CO)3] was studied with the density functional B3LYP method. Starting from the key [(enol)Fe(CO)3] complex, several reaction paths for the reaction with formaldehyde were explored. The results show that the most favorable reaction path involves first an enol/allyl alcohol ligand-exchange process followed by direct condensation of formaldehyde with the free enol. During this process, formation of the new C-C bond takes place simultaneously with a proton transfer between the enol and the aldehyde. Therefore, the role of [Fe(CO)3] is to catalyze the allyl alcohol to enol isomerization affording the free enol, which adds to the aldehyde in a carbonyl-ene type reaction. Similar results were obtained for the reaction between allyl alcohol and acetaldehyde. PMID:15472940

  11. An asymmetric assembly of spirooxindole dihydropyranones through a direct enantioselective organocatalytic vinylogous aldol-cyclization cascade reaction of 3-alkylidene oxindoles with isatins.

    PubMed

    Han, Jeng-Liang; Chang, Chia-Hao

    2016-02-01

    A highly enantioselective organocatalytic vinylogous aldol-cyclization cascade reaction of 3-alkylidene oxindoles to isatins has been achieved by using bifunctional organocatalysts. The unexpected intramolecular lactonization which follows the initial aldol reaction, leading to the cleavage of the oxindole ring and generation of enantioenriched spirooxindole dihydropyranones in good to excellent yields with high enantioselectivities. PMID:26728396

  12. Nanosheet-enhanced asymmetric induction of chiral α-amino acids in catalytic aldol reaction.

    PubMed

    Zhao, Li-Wei; Shi, Hui-Min; Wang, Jiu-Zhao; He, Jing

    2012-11-26

    An efficient ligand design strategy towards boosting asymmetric induction was proposed, which simply employed inorganic nanosheets to modify α-amino acids and has been demonstrated to be effective in vanadium-catalyzed epoxidation of allylic alcohols. Here, the strategy was first extended to zinc-catalyzed asymmetric aldol reaction, a versatile bottom-up route to make complex functional compounds. Zinc, the second-most abundant transition metal in humans, is an environment-friendly catalytic center. The strategy was then further proved valid for organocatalyzed metal-free asymmetric catalysis, that is, α-amino acid catalyzed asymmetric aldol reaction. Visible improvement of enantioselectivity was experimentally achieved irrespective of whether the nanosheet-attached α-amino acids were applied as chiral ligands together with catalytic Zn(II) centers or as chiral catalysts alone. The layered double hydroxide nanosheet was clearly found by theoretical calculations to boost ee through both steric and H-bonding effects; this resembles the role of a huge and rigid substituent. PMID:23074138

  13. Lewis base activation of Lewis acids: catalytic, enantioselective vinylogous aldol addition reactions.

    PubMed

    Denmark, Scott E; Heemstra, John R

    2007-07-20

    The generality of Lewis base catalyzed, Lewis acid mediated, enantioselective vinylogous aldol addition reactions has been investigated. The combination of silicon tetrachloride and chiral phosphoramides is a competent catalyst for highly selective additions of a variety of alpha,beta-unsaturated ketone-, 1,3-diketone-, and alpha,beta-unsaturated amide-derived dienolates to aldehydes. These reactions provided high levels of gamma-site selectivity for a variety of substitution patterns on the dienyl unit. Both ketone- and morpholine amide-derived dienol ethers afforded high enantio- and diastereoselectivity in the addition to conjugated aldehydes. Although alpha,beta-unsaturated ketone-derived dienolate did not react with aliphatic aldehydes, alpha,beta-unsaturated amide-derived dienolates underwent addition at reasonable rates affording high yields of vinylogous aldol product. The enantioselectivities achieved with the morpholine derived-dienolate in the addition to aliphatic aldehydes was the highest afforded to date with the silicon tetrachloride-chiral phosphoramide system. Furthermore, the ability to cleanly convert the morpholine amide to a methyl ketone was demonstrated. PMID:17583959

  14. Enantioselective Construction of Spirocyclic Oxindole Derivatives with Multiple Stereocenters via an Organocatalytic Michael/Aldol/Hemiacetalization Cascade Reaction.

    PubMed

    Zhu, Luyi; Chen, Qiliang; Shen, Dan; Zhang, Weihao; Shen, Cong; Zeng, Xiaofei; Zhong, Guofu

    2016-05-20

    An efficient organocatalytic Michael/aldol/hemiacetalization cascade reaction for construction of enantioenriched spirocyclic oxindoles fused with tetrahydropyrane has been developed. The desired highly functionalized 5',6'-dihydro-2'H,4'H-spiro[indoline-3,3'-pyran]-2-one derivatives containing multiple stereogenic centers were obtained in moderate to high chemical yields and with high stereoselectivities. PMID:27145022

  15. Asymmetric Synthesis of CF3- and Indole-Containing Thiochromanes via a Squaramide-Catalyzed Michael-Aldol Reaction.

    PubMed

    Zhu, Yuanyuan; Dong, Zhenghao; Cheng, Xin; Zhong, Xiaoling; Liu, Xiaolin; Lin, Li; Shen, Zhiqiang; Yang, Peiju; Li, Yuan; Wang, Hailin; Yan, Wenjin; Wang, Kairong; Wang, Rui

    2016-08-01

    A Michael-aldol reaction of 2-mercaptobenzaldehyde with β-indole-β-CF3 enones catalyzed by a squaramide has been realized. The method affords a series of 2-CF3-2-indole-substituted thiochromanes featuring a CF3-containing quaternary stereocenter in excellent yields, diastereoselectivities, and enantioselectivities. PMID:27390924

  16. Lanthanide triflates as water-tolerant Lewis acids. Activation of commercial formaldehyde solution and use in the aldol reaction of silyl enol ethers with aldehydes in aqueous media

    SciTech Connect

    Kobayashi, Shue; Hachiya, Iwao

    1994-07-01

    The catalytic effects of lanthanide triflates in the hydroxymethylation and the aldol reaction of silyl enol ethers (w/aldehydes). The rare earth triflates served as Lewis acid catalysts in the aqueous reaction medium.

  17. Organocatalytic Asymmetric Synthesis of Functionalized 1,3,5-Triarylpyrrolidin-2-ones via an Aza-Michael/Aldol Domino Reaction

    PubMed Central

    Joie, Céline; Deckers, Kristina; Enders, Dieter

    2014-01-01

    The organocatalytic asymmetric synthesis of functionalized 1,3,5-triarylpyrrolidin-2-ones bearing three contiguous stereocenters through an aza-Michael/aldol domino reaction of α-ketoamides with α,β-unsaturated aldehydes is described. The domino products were further derivatized by aldehyde olefination under one-pot conditions. The reaction proceeds with excellent diastereoselectivities (>20:1) and good to excellent enantioselectivities (60–96% ee). PMID:25278634

  18. Kinetics of Acid-Catalyzed Aldol Condensation Reactions of Aliphatic Aldehydes

    NASA Astrophysics Data System (ADS)

    Elrod, M. J.; Casale, M. T.; Richman, A. R.; Beaver, M. R.; Garland, R. M.; Tolbert, M. A.

    2006-12-01

    While it is well established that organic compounds compose a large fraction of the atmospheric aerosol mass, the mechanisms through which organics are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds with carbonyl groups have recently been suggested as important pathways for transfer of volatile organics into acidic aerosols. In the present study, ultraviolet-visible (UV-Vis) spectroscopy was used to monitor the kinetics of formation of the products of the aldol condensation reaction of a range of aliphatic aldehydes (C2-C8) The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature.

  19. Aldol Reactions of Axially Chiral 5-Methyl-2-(o-aryl)imino-3-(o-aryl)-thiazolidine-4-ones.

    PubMed

    Erol Gunal, Sule; Dogan, Ilknur

    2016-01-01

    Axially chiral 5-methyl-2-(o-aryl)imino-3-(o-aryl)-thiazolidine-4-ones have been subjected to aldol reactions with benzaldehyde to produce secondary carbinols which have been found to be separable by HPLC on a chiral stationary phase. Based on the reaction done on a single enantiomer resolved via a chromatographic separation from a racemic mixture of 5-methyl-2-(α-naphthyl)imino-3-(α-naphthyl)-thiazolidine-4-one by HPLC on a chiral stationary phase, the aldol reaction was shown to proceed via an enolate intermediate. The axially chiral enolate of the thiazolidine-4-one was found to shield one face of the heterocyclic ring rendering face selectivity with respect to the enolate. The selectivities observed at C-5 of the ring varied from none to 11.5:1 depending on the size of the ortho substituent. Although the aldol reaction proceeded with a lack of face selectivity with respect to benzaldehyde, recrystallization returned highly diastereomerically enriched products. PMID:27322237

  20. Expedient synthesis of C-aryl carbohydrates by consecutive biocatalytic benzoin and aldol reactions.

    PubMed

    Hernández, Karel; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Pohl, Martina; Clapés, Pere

    2015-02-16

    The introduction of aromatic residues connected by a C-C bond into the non-reducing end of carbohydrates is highly significant for the development of innovative structures with improved binding affinity and selectivity (e.g., C-aril-sLex). In this work, an expedient asymmetric "de novo" synthetic route to new aryl carbohydrate derivatives based on two sequential stereoselectively biocatalytic carboligation reactions is presented. First, the benzoin reaction of aromatic aldehydes to dimethoxyacetaldehyde is conducted, catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I. Then, the α-hydroxyketones formed are reduced by using NaBH4 yielding the anti diol. After acetal hydrolysis, the aldol addition of dihydroxyacetone, hydroxyacetone, or glycolaldehyde catalyzed by the stereocomplementary D-fructose-6-phosphate aldolase and L-rhamnulose-1-phosphate aldolase is performed. Both aldolases accept unphosphorylated donor substrates, avoiding the need of handling the phosphate group that the dihydroxyacetone phosphate-dependent aldolases require. In this way, 6-C-aryl-L-sorbose, 6-C-aryl-L-fructose, 6-C-aryl-L-tagatose, and 5-C-aryl-L-xylose derivatives are prepared by using this methodology. PMID:25640727

  1. Copper-catalyzed retro-aldol reaction of β-hydroxy ketones or nitriles with aldehydes: chemo- and stereoselective access to (E)-enones and (E)-acrylonitriles.

    PubMed

    Zhang, Song-Lin; Deng, Zhu-Qin

    2016-07-26

    A copper-catalyzed transfer aldol type reaction of β-hydroxy ketones or nitriles with aldehydes is reported, which enables chemo- and stereoselective access to (E)-α,β-unsaturated ketones and (E)-acrylonitriles. A key step of the in situ copper(i)-promoted retro-aldol reaction of β-hydroxy ketones or nitriles is proposed to generate a reactive Cu(i) enolate or cyanomethyl intermediate, which undergoes ensuing aldol condensation with aldehydes to deliver the products. This reaction uses 1.2 mol% Cu(IPr)Cl (IPr denotes 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) as the catalyst in the presence of 6.0 mol% NaOtBu cocatalyst at room temperature or 70 °C. A range of aryl and heteroaryl aldehydes as well as acrylaldehydes are compatible with many useful functional groups being tolerated. Under the mild and weakly basic conditions, competitive Cannizzaro-type reaction of benzaldehydes and side reactions of base-sensitive functional groups can be effectively suppressed, which show synthetic advantages of this reaction compared to classic aldol reactions. The synthetic potential of this reaction is further demonstrated by the one-step synthesis of biologically active quinolines and 1,8-naphthyridine in excellent yields (up to 91%). Finally, a full catalytic cycle for this reaction has been constructed using DFT computational studies in the context of a retro-aldol/aldol two-stage mechanism. A rather flat reaction energy profile is found indicating that both stages are kinetically facile, which is consistent with the mild reaction conditions. PMID:27397647

  2. One-Pot Synthesis of (S)-Baclofen via Aldol Condensation of Acetaldehyde with Diphenylprolinol Silyl Ether Mediated Asymmetric Michael Reaction as a Key Step.

    PubMed

    Hayashi, Yujiro; Sakamoto, Daisuke; Okamura, Daichi

    2016-01-01

    An efficient asymmetric total synthesis of (S)-baclofen was accomplished via a one-pot operation from commercially available materials using sequential reactions, such as aldol condensation of acetaldehyde, diphenylprolinol silyl ether mediated asymmetric Michael reaction of nitromethane, Kraus-Pinnick oxidation, and Raney Ni reduction. Highly enantioenriched baclofen was obtained in one pot with a good yield over four reactions. PMID:26636719

  3. Lewis base activation of Lewis acids. Vinylogous aldol addition reactions of conjugated N,O-silyl ketene acetals to aldehydes.

    PubMed

    Denmark, Scott E; Heemstra, John R

    2006-02-01

    N,O-Silyl dienyl ketene acetals derived from unsaturated morpholine amides have been developed as highly useful reagents for vinylogous aldol addition reactions. In the presence of SiCl4 and the catalytic action of chiral phosphoramide (R,R)-3, N,O-silyl dienyl ketene acetal 8 undergoes high-yielding and highly site-selective addition to a wide variety of aldehydes with excellent enantioselectivity. Of particular note is the high yields and selectivities obtained from aliphatic aldehydes. Low catalyst loadings (2-5 mol %) can be employed. The morpholine amide serves as a useful precursor for further synthetic manipulation. PMID:16433495

  4. Synthesis of dibenzoxepine lactams via a Cu-catalyzed one-pot etherification/aldol condensation cascade reaction: application toward the total synthesis of aristoyagonine.

    PubMed

    Lim, Hye Sun; Choi, Young Lok; Heo, Jung-Nyoung

    2013-09-20

    A general synthesis of dibenzoxepine lactams has been developed using a one-pot Cu-catalyzed etherification/aldol condensation cascade reaction. The reaction of 4-hydroxyisoindolin-1-one with a wide range of 2-bromobenzaldehydes in the presence of a copper catalyst provided various aristoyagonine derivatives in good yields. PMID:24000941

  5. A highly efficient solvent-free asymmetric direct aldol reaction organocatalyzed by recoverable (S)-binam-L-prolinamides. ESI-MS evidence of the enamine-iminium formation.

    PubMed

    Guillena, Gabriela; Hita, Maria del Carmen; Nájera, Carmen; Viózquez, Santiago F

    2008-08-01

    Recoverable (S(a))-binam-L-prolinamide in combination with benzoic acid is used as catalysts in the direct aldol reaction between cycloalkyl, alkyl, and alpha-functionalized ketones and aldehydes under solvent-free reaction conditions. Three different methods are assayed: simple conventional magnetic stirring, magnetic stirring after previous dissolution in THF and evaporation, and ball mill technique. These procedures allow one to reduce not only the amount of required ketone to 2 equiv but also the reaction time to give the aldol products with regio-, diastereo-, and enantioselectivities comparable to those in organic or aqueous solvents. Generally anti-isomers are mainly obtained with enantioselectivities up to 97%. The reaction can be carried out under these conditions also using aldehydes as nucleophiles, yielding after in situ reduction of the aldol products the corresponding chiral 1,3-diols with moderate to high enantioselectivities mainly as anti-isomers. The aldol reaction has been studied by the use of positive ESI-MS technique, providing the evidence of the formation of the corresponding enamine-iminium intermediates. PMID:18598088

  6. Aldol reactions of the trans-o-hydroxybenzylidenepyruvate hydratase-aldolase (tHBP-HA) from Pseudomonas fluorescens N3.

    PubMed

    Sello, Guido; Di Gennaro, Patrizia

    2013-08-01

    In this paper, a recombinant trans-o-hydroxybenzylidenepyruvate hydratase-aldolase (tHBP-HA) of Pseudomonas fluorescens N3 was used as a new catalyst for aldol condensation reactions. The reaction of some aldehydes with a different electronic activation catalyzed by tHBP-HA is presented and discussed together with some hints on the product structure. The enzyme is strictly pyruvate-dependent but uses different aldehydes as acceptors. The structure of the products is highly dependent on the electronic characteristics of the aldehyde. The results are interesting for both their synthetic importance and the mechanism of the formation of the products. Not only the products obtained and the recognition power are reported, but also some characteristics of its mechanism are analyzed. The results clearly show that the enzyme is efficiently prepared, purified, and stored, that it recognizes many different substrates, and that the products depend on the substrate electronic nature. PMID:23722948

  7. Role of pseudoephedrine as chiral auxiliary in the "acetate-type" aldol reaction with chiral aldehydes; asymmetric synthesis of highly functionalized chiral building blocks.

    PubMed

    Ocejo, Marta; Carrillo, Luisa; Vicario, Jose L; Badía, Dolores; Reyes, Efraim

    2011-01-21

    We have studied in depth the aldol reaction between acetamide enolates and chiral α-heterosubstituted aldehydes using pseudoephedrine as chiral auxiliary under double stereodifferentiation conditions, showing that high diastereoselectivities can only be achieved under the matched combination of reagents and provided that the α-heteroatom-containing substituent of the chiral aldehyde is conveniently protected. Moreover, the obtained highly functionalized aldols have been employed as very useful starting materials for the stereocontrolled preparation of other interesting compounds and chiral building blocks such as pyrrolidines, indolizidines, and densely functionalized β-hydroxy and β-amino ketones using simple and high-yielding methodologies. PMID:21188970

  8. A syn-Selective Aza-Aldol Reaction of Boron Aza-Enolates Generated from N-Sulfonyl-1,2,3-Triazoles and 9-BBN-H.

    PubMed

    Miura, Tomoya; Nakamuro, Takayuki; Miyakawa, Sho; Murakami, Masahiro

    2016-07-18

    A syn-selective aza-aldol reaction of boron aza-enolates, generated from N-sulfonyl-1,2,3-triazoles and 9-BBN-H, is reported. It provides a sequential one-pot procedure for the stereoselective construction of 1,3-amino alcohols, having contiguous stereocenters, starting from terminal alkynes. PMID:27258810

  9. TANDEM BIS-ALDOL REACTION OF KETONES: A FACILE ONE-POT SYNTHESIS OF 1,3-DIOXANES IN AQUEOUS MEDIUM

    EPA Science Inventory

    A novel tandem bis-aldol reaction of ketone with paraformaldehyde catalyzed by polystyrenesulfonic acid in aqueous medium delivers 1,3-dioxanes in high yield. This one pot, operationally simple microwave-assisted synthetic protocol proceeds efficiently in water in the absence of ...

  10. (16) O/(18) O Exchange of Aldehydes and Ketones caused by H2 (18) O in the Mechanistic Investigation of Organocatalyzed Michael, Mannich, and Aldol Reactions.

    PubMed

    Hayashi, Yujiro; Mukaiyama, Takasuke; Benohoud, Meryem; Gupta, Nishant R; Ono, Tsuyoshi; Toda, Shunsuke

    2016-04-18

    Organocatalyzed Michael, Mannich, and aldol reactions of aldehydes or ketones, as nucleophiles, have triggered several discussions regarding their reaction mechanism. H2 (18) O has been utilized to determine if the reaction proceeds through an enamine or enol mechanism by monitoring the ratio of (18) O incorporated into the final product. In this communication, we describe the risk of H2 (18) O as an evaluation tool for this mechanistic investigation. We have demonstrated that exchange of (16) O/(18) O occurs in the aldehyde or ketone starting material, caused by the presence of H2 (18) O and amine catalysts, before the Michael, Mannich, and aldol reactions proceed. Because the newly generated (18) O starting aldehydes or ketones and (16) O water affect the incorporation ratio of (18) O in the final product, the use of H2 (18) O would not be appropriate to distinguish the mechanism of these organocatalyzed reactions. PMID:26841358

  11. Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions.

    PubMed

    Szekrenyi, Anna; Garrabou, Xavier; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Clapés, Pere

    2015-09-01

    The preparation of multifunctional chiral molecules can be greatly simplified by adopting a route via the sequential catalytic assembly of achiral building blocks. The catalytic aldol assembly of prebiotic compounds into stereodefined pentoses and hexoses is an as yet unmet challenge. Such a process would be of remarkable synthetic utility and highly significant with regard to the origin of life. Pursuing an expedient enzymatic approach, here we use engineered D-fructose-6-phosphate aldolase from Escherichia coli to prepare a series of three- to six-carbon aldoses by sequential one-pot additions of glycolaldehyde. Notably, the pertinent selection of the aldolase variant provides control of the sugar size. The stereochemical outcome of the addition was also altered to allow the synthesis of L-glucose and related derivatives. Such engineered biocatalysts may offer new routes for the straightforward synthesis of natural molecules and their analogues that circumvent the intricate enzymatic pathways forged by evolution. PMID:26291944

  12. Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions

    NASA Astrophysics Data System (ADS)

    Szekrenyi, Anna; Garrabou, Xavier; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Clapés, Pere

    2015-09-01

    The preparation of multifunctional chiral molecules can be greatly simplified by adopting a route via the sequential catalytic assembly of achiral building blocks. The catalytic aldol assembly of prebiotic compounds into stereodefined pentoses and hexoses is an as yet unmet challenge. Such a process would be of remarkable synthetic utility and highly significant with regard to the origin of life. Pursuing an expedient enzymatic approach, here we use engineered D-fructose-6-phosphate aldolase from Escherichia coli to prepare a series of three- to six-carbon aldoses by sequential one-pot additions of glycolaldehyde. Notably, the pertinent selection of the aldolase variant provides control of the sugar size. The stereochemical outcome of the addition was also altered to allow the synthesis of L-glucose and related derivatives. Such engineered biocatalysts may offer new routes for the straightforward synthesis of natural molecules and their analogues that circumvent the intricate enzymatic pathways forged by evolution.

  13. Double stereodifferentiation in the "acetate-type" aldol reaction with garner's aldehyde. Stereocontrolled synthesis of polyhydroxylated gamma-amino carbonyl compounds.

    PubMed

    Vicario, Jose L; Rodriguez, Mónica; Badía, Dolores; Carrillo, Luisa; Reyes, Efraim

    2004-09-01

    [reaction: see text] The aldol reaction of acetamide enolates with protected chiral alpha-amino-beta-hydroxy aldehyde 1 (Garner's aldehyde) has been performed in a stereocontrolled way under double stereodifferentiation conditions using pseudoephedrine as the additional chiral information source attached to the enolate reagent. In addition, the obtained adduct has been transformed into other valuable chiral building blocks such as gamma-amino-beta,delta-dihydroxy acids, esters, and ketones. PMID:15330615

  14. A cinchona alkaloid catalyzed enantioselective sulfa-Michael/aldol cascade reaction of isoindigos: construction of chiral bispirooxindole tetrahydrothiophenes with vicinal quaternary spirocenters.

    PubMed

    Gui, Yong-Yuan; Yang, Jian; Qi, Liang-Wen; Wang, Xiao; Tian, Fang; Li, Xiao-Nian; Peng, Lin; Wang, Li-Xin

    2015-06-14

    A cinchona alkaloid catalyzed diastereoselective and enantioselective sulfa-Michael/aldol cascade reaction between 1,4-dithiane-2,5-diol and isoindigos has been successfully developed to afford the highly congested bispirooxindole tetrahydrothiophenes with vicinal quaternary spirocenters in high yields (up to 91%), excellent diastereoselectivities (up to >20 : 1 dr), and good enantioselectivities (up to 98% ee). Some synthetic transformations of the reaction products were also studied. PMID:25974840

  15. Concise Enantioselective Synthesis of Oxygenated Steroids via Sequential Copper(II)-Catalyzed Michael Addition/Intramolecular Aldol Cyclization Reactions

    PubMed Central

    Cichowicz, Nathan R.; Kaplan, Will; Khomutnyk, Yaroslav; Bhattarai, Bijay; Sun, Zhankui; Nagorny, Pavel

    2015-01-01

    A new scalable enantioselective approach to functionalized oxygenated steroids is described. This strategy is based on chiral bis(oxazoline) copper(II) complex-catalyzed enantioselective and diastereoselective Michael reactions of cyclic ketoesters and enones to install vicinal quaternary and tertiary stereocenters. In addition, the utility of copper(II) salts as highly active catalysts for the Michael reactions of traditionally unreactive ββ′-enones and substituted ββ′-ketoesters that results in unprecedented Michael adducts containing vicinal all-carbon quaternary centers is also demonstrated. The Michael adducts subsequently undergo base-promoted diastereoselective aldol cascade reactions resulting in the natural or unnatural steroid skeletons. The experimental and computational studies suggest that the torsional strain effects arising from the presence of the Δ5-unsaturation are key controling elements for the formation of the natural cardenolide scaffold. The described method enables expedient generation of polycyclic molecules including modified steroidal scaffolds as well as challenging-to-synthesize Hajos-Parrish and Wieland-Miescher ketones. PMID:26491886

  16. The Aldol Addition and Condensation: The Effect of Conditions on Reaction Pathway

    ERIC Educational Resources Information Center

    Crouch, R. David; Richardson, Amie; Howard, Jessica L.; Harker, Rebecca L.; Barker, Kathryn H.

    2007-01-01

    The reaction of a ketone and an aldehyde in aqueous Na[subscript 2]CO[subscript 2] is described. This experiment is performed in the absence of strong bases or organic solvents and offers the opportunity for students to observe the critical role that reaction temperature and base strength have in determining the product of the base-mediated…

  17. Brønsted acid mediated N-O bond cleavage for α-amination of ketones through the aromatic nitroso aldol reaction.

    PubMed

    Ramakrishna, Isai; Sahoo, Harekrishna; Baidya, Mahiuddin

    2016-02-11

    A Brønsted acid mediated N-O bond cleavage for α-amination of ketones has been developed through the nitroso aldol reaction of less-reactive aromatic nitroso compounds and silyl enol ethers having a disilane (-SiMe2TMS) backbone. This transformation is operationally simple and scalable, offering structurally diverse α-amino ketones in high yields (up to 98%) with complete regioselectivity. It represents a mechanistically unique and rare example of a metal-free N-O bond cleavage process. PMID:26810365

  18. Direct synthesis of C-glycosides from unprotected 2-N-acyl-aldohexoses via aldol condensation-oxa-Michael reactions with unactivated ketones.

    PubMed

    Johnson, Sherida; Tanaka, Fujie

    2016-01-01

    C-glycosides are important compounds as they are used as bioactive molecules and building blocks. We have developed methods to concisely synthesize C-glycosides from unprotected 2-N-acyl-aldohexoses and unactivated ketones; we designed aldol-condensation-oxa-Michael addition reactions catalyzed by amine-based catalysts using additives. Depending on the conditions used, C-glycosides were stereoselectively obtained. Our methods allowed the C-C bond formations at the anomeric centers of unprotected carbohydrates under mild conditions to lead the C-glycosides in atom- and step-economical ways. PMID:26565955

  19. Evidence for the formation of an enamine species during aldol and Michael-type addition reactions promiscuously catalyzed by 4-oxalocrotonate tautomerase.

    PubMed

    Poddar, Harshwardhan; Rahimi, Mehran; Geertsema, Edzard M; Thunnissen, Andy-Mark W H; Poelarends, Gerrit J

    2015-03-23

    The enzyme 4-oxalocrotonate tautomerase (4-OT), which has a catalytic N-terminal proline residue (Pro1), can promiscuously catalyze various carbon-carbon bond-forming reactions, including aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde, and Michael-type addition of acetaldehyde to a wide variety of nitroalkenes to yield valuable γ-nitroaldehydes. To gain insight into how 4-OT catalyzes these unnatural reactions, we carried out exchange studies in D2 O, and X-ray crystallography studies. The former established that H-D exchange within acetaldehyde is catalyzed by 4-OT and that the Pro1 residue is crucial for this activity. The latter showed that Pro1 of 4-OT had reacted with acetaldehyde to give an enamine species. These results provide evidence of the mechanism of the 4-OT-catalyzed aldol and Michael-type addition reactions in which acetaldehyde is activated for nucleophilic addition by Pro1-dependent formation of an enamine intermediate. PMID:25728471

  20. Application of a new tandem isomerization-aldolization reaction of allylic alcohols to the synthesis of three diastereoisomers of (2R)-1,2-O-isopropylidene-4-methylpentane-1,2,3,5-tetraol.

    PubMed

    Cuperly, David; Crévisy, Christophe; Grée, René

    2003-08-01

    The tandem isomerization-aldolization reaction of (2R)-1,2-O-isopropylidene-4-penten-1,2,3-triol 3 and formaldehyde gives a mixture of two aldol products 2a and 2b. The stereoselective reduction of each compound by l-Selectride affords two diastereoisomers of (2R)-1,2-O-Isopropylidene-4-methylpentane-1,2,3,5-tetraol while a third diastereoisomer is obtained by stereoselective reduction with Me(4)NHB(OAc)(3). PMID:12895076

  1. Microwave-Assisted Esterification of N-Acetyl-L-Phenylalanine Using Modified Mukaiyama's Reagents: A New Approach Involving Ionic Liquids

    PubMed Central

    Zhao, Hua; Song, Zhiyan; Cowins, Janet V.; Olubajo, Olarongbe

    2008-01-01

    Inspired by the concept of ionic liquids (ILs), this study modified the original Mukaiyama's reagent, 2-chloro-1-methylpyridinium iodide (m.p. 200-dec), from ionic solid into liquids by changing its anion. The esterification of N-acetyl-L-phenylalanine was investigated as a model reaction. The microwave irradiation was more effective in esterifying N-acetyl-L-phenylalanine than the conventional reflux method. The original Mukaiyama's reagent was modified into ILs through manipulating its anion. However, only non-nucleophilic anions (such as EtSO4– and Tf2N–) were favorable since nucleophilic ones (such as CF3COO– and CH3COO–) could exchange with chlorine resulting in non-reactive coupling reagents. Two modified Mukaiyama's compounds (i.e. hydrophilic [2-ClMePy][EtSO4] and hydrophobic [2-ClMePy][Tf2N]) have been identified as the best ILtype coupling reagents. The esterification reaction was greatly enhanced by using 1- methylimidazole as the base instead of conventional toxic tertiary amines, and by using excess amount of alcohols as solvents instead of dichloromethane. Overall, the method reported is effective and ‘greener’. PMID:19325717

  2. Steady-state kinetics and inhibition studies of the aldol condensation reaction catalyzed by bovine liver and Escherichia coli 2-keto-4-hydroxyglutarate aldolase.

    PubMed

    Grady, S R; Wang, J K; Dekker, E E

    1981-04-28

    Two sensitive assays, one which fluorometrically measures only the L isomer of 2-keto-4-hydroxyglutarate after decarboxylation to L-malate and the other which spectrophotometrically determines both enantiomers by reductive amination with glutamate dehydrogenase, are described. By use of these assays, the steady-state kinetics of the aldol condensation of pyruvate with glyoxylate, as catalyzed by 2-keto-4-hydroxyglutarate aldolase from either bovine liver or Escherichia coli, were studied as was the inhibition of this reaction by glyoxylate and other anions. For the E. coli aldolase, double-reciprocal plots are linear except at high (above 5 mM) glyoxylate concentrations; apparent Km values increase with increasing concentrations of the fixed substrate. The data are consistent with an ordered reaction sequence. Inhibition by halides follows the lyotropic or Hofmeister series. Esters are not good inhibitors; mono-, di-, and tricarboxylic acids are increasingly inhibitory. Of the substrate analogues tested, hydroxypyruvate is the most potent inhibitor. Inhibition studies with citrate, acetaldehyde, and glyoxylate (all competitive inhibitors) suggest there are two domains at the active site-the Schiff base forming lysyl residue which interacts with carbonyl analogues (like acetaldehyde) and a center of positive charge which binds anions (like citrate). In contrast to the bacterial enzyme, liver 2-keto-4-hydroxyglutarate aldolase is inhibited in a competitive manner by much lower concentrations (0.1 mM or even lower) of glyoxylate. Many salts and some carboxylic acids activate the liver enzyme. Similarly, substrate analogues like 2-ketobutyrate and fluoropyruvate are mild activators; no effect is seen with acetaldehyde. Besides glyoxylate, only glyoxal, 2-ketoglutarate, and hydroxypyruvate inhibit the aldol condensation reaction. A uniform value of 1 is found for the number of inhibitor molecules bound per active site of either liver or E. coli 2-keto-4-hydroxyglutarate

  3. Tandem Rh(i)-catalyzed [(5+2)+1] cycloaddition/aldol reaction for the construction of linear triquinane skeleton: total syntheses of (+/-)-hirsutene and (+/-)-1-desoxyhypnophilin.

    PubMed

    Jiao, Lei; Yuan, Changxia; Yu, Zhi-Xiang

    2008-04-01

    A tandem reaction involving a Rh(I)-catalyzed two-component [(5+2)+1] cycloaddition and an aldol condensation has been developed to construct the tricyclo[6.3.0.02,6]undecane skeleton and its heteroatom-imbedded analogues. Meanwhile, this method has been successfully applied to natural product synthesis for the first time. The present strategy enables a straightforward approach to the natural linear triquinane skeleton, as demonstrated by concise and step economical syntheses of hirsutene and 1-desoxy-hypnophilin, whereby the linear triquinane core is diastereoselectively established in one manipulation with correct placement of all stereocenters, including two quarternary centers. This first application of the Rh(I)-catalyzed [(5+2)+1] cycloaddition in natural product synthesis highlights the efficiency of this methodology for constructing complex fused ring systems. PMID:18335933

  4. A Brønsted Acid-Amino Acid as a Synergistic Catalyst for Asymmetric List-Lerner-Barbas Aldol Reactions.

    PubMed

    Ramachary, Dhevalapally B; Shruthi, Kodambahalli S

    2016-03-18

    Herein, for the first time, a combination of L-amino acid, (R)-5,5-dimethyl thiazolidinium-4-carboxylate (L-DMTC) with simple Brønsted acid TFA is reported as the suitable synergistic catalyst for the List-Lerner-Barbas aldol (LLB-A) reaction of less reactive 2-azidobenzaldehydes with various ketones at ambient temperature to furnish the optically active functionalized (2-azidophenyl)alcohols with very good yields, dr's, and ee's. This method gives first time access to the novel azido-containing multifunctional compounds, which are applicable in material to medicinal chemistry. Chiral functionalized (2-azidophenyl)alcohols were transformed into different molecular scaffolds in good yields with high selectivity through Lewis acid mediated NaBH4 reduction, aza-Wittig and Staudinger reaction (azide reduction), followed by oxidative cyclizations, allenone synthesis, and click reaction, respectively. Chiral LLB-A products might become suitable starting materials for the total synthesis of natural products, ingredients, and inhibitors in medicinal chemistry. The mechanistic synergy of L-DMTC with TFA to increase the rate and selectivity of LLB-A reaction in DMSO-D6 is explained with the controlled and online NMR experiments. PMID:26907463

  5. The Complete Mechanism of an Aldol Condensation.

    PubMed

    Perrin, Charles L; Chang, Kuei-Lin

    2016-07-01

    Although aldol condensation is one of the most important organic reactions, capable of forming new C-C bonds, its mechanism has never been fully established. We now conclude that the rate-limiting step in the base-catalyzed aldol condensation of benzaldehydes with acetophenones, to produce chalcones, is the final loss of hydroxide and formation of the C═C bond. This conclusion is based on a study of the partitioning ratios of the intermediate ketols and on the solvent kinetic isotope effects, whereby the condensations are faster in D2O than in H2O, regardless of substitution. PMID:27281298

  6. Scope and mechanism of the highly stereoselective metal-mediated domino aldol reactions of enolates with aldehydes.

    PubMed

    Cinar, M Emin; Engelen, Bernward; Panthöfer, Martin; Deiseroth, Hans-Jörg; Schlirf, Jens; Schmittel, Michael

    2016-01-01

    A one-pot transformation, which involves the reaction of ketones with aldehydes in the presence of metal halides to furnish tetrahydro-2H-pyran-2,4-diols in a highly diastereoselective manner, is investigated thoroughly by experiments and computations. The reaction was also successfully implemented on a flow micro reactor system. PMID:27340472

  7. Scope and mechanism of the highly stereoselective metal-mediated domino aldol reactions of enolates with aldehydes

    PubMed Central

    Engelen, Bernward; Panthöfer, Martin; Deiseroth, Hans-Jörg; Schlirf, Jens

    2016-01-01

    Summary A one-pot transformation, which involves the reaction of ketones with aldehydes in the presence of metal halides to furnish tetrahydro-2H-pyran-2,4-diols in a highly diastereoselective manner, is investigated thoroughly by experiments and computations. The reaction was also successfully implemented on a flow micro reactor system. PMID:27340472

  8. A Multistep Organocatalysis Experiment for the Undergraduate Organic Laboratory: An Enantioselective Aldol Reaction Catalyzed by Methyl Prolinamide

    ERIC Educational Resources Information Center

    Wade, Edmir O.; Walsh, Kenneth E.

    2011-01-01

    In recent years, there has been an explosion of research concerning the area of organocatalysis. A multistep capstone laboratory project that combines traditional reactions frequently found in organic laboratory curriculums with this new field of research is described. In this experiment, the students synthesize a prolinamide-based organocatalyst…

  9. Asymmetric, Three-Component, One-Pot Synthesis of Spiropyrazolones and 2,5-Chromenediones from Aldol Condensation/NHC-Catalyzed Annulation Reactions.

    PubMed

    Wang, Lei; Li, Sun; Chauhan, Pankaj; Hack, Daniel; Philipps, Arne R; Puttreddy, Rakesh; Rissanen, Kari; Raabe, Gerhard; Enders, Dieter

    2016-04-01

    A novel one-pot, three-component diastereo- and enantioselective synthesis of spiropyrazolones has been developed involving the aldol condensation of an enal to generate α,β-unsaturated pyrazolones, which react with a second equivalent of enal through an N-heterocyclic carbene (NHC)-catalyzed [3+2] annulation. The desired spirocyclopentane pyrazolones are obtained in moderate to good yields and good to excellent stereoselectivities. Alternatively, starting from cyclic 1,3-diketones, 2,5-chromenediones are available through [2+4] annulation. PMID:26864437

  10. Aldol Condensation Products and Polyacetals in Organic Films Formed from Reactions of Propanal in Sulfuric Acid at Upper Troposphere/Lower Stratosphere (UT/LS) Aerosol Acidities

    NASA Astrophysics Data System (ADS)

    Bui, J. V. H.; Perez-Montano, S.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.; Van Wyngarden, A. L.

    2015-12-01

    Aerosols in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt. %) which is highly reflective towards UV and visible radiation. However, airborne measurements have shown that these particles may also contain a significant amount of organic material. Experiments combining organics (propanal, glyoxal and/or methylglyoxal) with sulfuric acid at concentrations typical of UT/LS aerosols produced highly colored surface films (and solutions) that have the potential to impact chemical, optical and/or cloud-forming properties of aerosols. In order to assess the potential for such films to impact aerosol chemistry or climate properties, experiments were performed to identify the chemical processes responsible for film formation. Surface films were analyzed via Attenuated Total Reflectance-FTIR and Nuclear Magnetic Resonance spectroscopies and are shown to consist primarily of aldol condensation products and cyclic and linear polyacetals, the latter of which are likely responsible for separation from the aqueous phase.

  11. Computational Catalysis Using the Artificial Force Induced Reaction Method.

    PubMed

    Sameera, W M C; Maeda, Satoshi; Morokuma, Keiji

    2016-04-19

    The artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy is an automatic approach to explore all important reaction paths of complex reactions. Most traditional methods in computational catalysis require guess reaction paths. On the other hand, the AFIR approach locates local minima (LMs) and transition states (TSs) of reaction paths without a guess, and therefore finds unanticipated as well as anticipated reaction paths. The AFIR method has been applied for multicomponent organic reactions, such as the aldol reaction, Passerini reaction, Biginelli reaction, and phase-transfer catalysis. In the presence of several reactants, many equilibrium structures are possible, leading to a number of reaction pathways. The AFIR method in the GRRM strategy determines all of the important equilibrium structures and subsequent reaction paths systematically. As the AFIR search is fully automatic, exhaustive trial-and-error and guess-and-check processes by the user can be eliminated. At the same time, the AFIR search is systematic, and therefore a more accurate and comprehensive description of the reaction mechanism can be determined. The AFIR method has been used for the study of full catalytic cycles and reaction steps in transition metal catalysis, such as cobalt-catalyzed hydroformylation and iron-catalyzed carbon-carbon bond formation reactions in aqueous media. Some AFIR applications have targeted the selectivity-determining step of transition-metal-catalyzed asymmetric reactions, including stereoselective water-tolerant lanthanide Lewis acid-catalyzed Mukaiyama aldol reactions. In terms of establishing the selectivity of a reaction, systematic sampling of the transition states is critical. In this direction, AFIR is very useful for performing a systematic and automatic determination of TSs. In the presence of a comprehensive description of the transition states, the selectivity of the reaction can be calculated more accurately

  12. Illustrating the Utility of X-Ray Crystallography for Structure Elucidation through a Tandem Aldol Condensation/Diels-Alder Reaction Sequence

    ERIC Educational Resources Information Center

    Hoang, Giang T.; Kubo, Tomohiro; Young, Victor G., Jr.; Kautzky, Jacob A.; Wissinger, Jane E.

    2015-01-01

    Two introductory organic chemistry laboratory experiments are described based on the Diels-Alder reaction of 2,3,4,5-tetraphenylcyclopentadienone, which is synthesized prior to or in a one-pot reaction, with styrene. Students are presented with three possible products, the "endo" and "exo" diastereomers and the decarbonylated…

  13. Discovery-Oriented Approach To Organic Synthesis: Tandem Aldol Condensation-Michael Addition Reactions. Identifying Diastereotopic Hydrogens in an Achiral Molecule by NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wachter-Jurcsak, Nanette; Reddin, Kendra

    2001-09-01

    We have found a beautiful example of anisochrony of diastereotopic acyclic methylene hydrogens in a symmetric diketone, synthesized by techniques traditionally performed in an introductory organic laboratory course. Synthesis of the diketone is high-yielding and easy to carry out, and the products can be directly isolated with a good degree of purity with no need of further manipulation. The reaction can be accomplished in a single laboratory session.

  14. Stereoselective Arene-Forming Aldol Condensation: Synthesis of Configurationally Stable Oligo-1,2-naphthylenes.

    PubMed

    Lotter, Dominik; Neuburger, Markus; Rickhaus, Michel; Häussinger, Daniel; Sparr, Christof

    2016-02-18

    Structurally well-defined oligomers are fundamental for the functionality of natural molecular systems and key for the design of synthetic counterparts. Herein, we describe a strategy for the efficient synthesis of individual stereoisomers of 1,2-naphthylene oligomers by iterative building block additions and consecutive stereoselective arene-forming aldol condensation reactions. The catalyst-controlled atropoenantioselective and the substrate-controlled atropodiastereoselective aldol condensation reaction provide structurally distinct ter- and quaternaphthalene stereoisomers, which represent configurationally stable analogues of otherwise stereodynamic, helically shaped ortho-phenylenes. PMID:26799152

  15. Iron-catalyzed vinylogous aldol condensation of Biginelli products and its application toward pyrido[4,3-d]pyrimidinones.

    PubMed

    Zhang, Lianqiang; Zhang, Zhiguo; Liu, Qingfeng; Liu, Tongxin; Zhang, Guisheng

    2014-03-01

    A novel iron-catalyzed vinylogous aldol condensation of Biginelli products with aryl aldehydes has been developed for the syntheses of potential bioactive (E)-6-arylvinyl-dihydropyrimidin-2(1H)-ones. These materials are valuable synthetic precursors to drug-like pyrido[4,3-d]pyrimidine derivatives. The amide group at the 5-position of the dihydropyrimidin-2(1H)-ones played an important role in the vinylogous aldol condensation reaction. PMID:24517724

  16. A Study on the Base–Catalyzed Reverse Vinylogous Aldol Reaction of (4aβ,5β)-4,4a,5,6,7,8-Hexahydro-5-hydroxy-1,4a-dimethylnaphthalen-2(3H)-one under Robinson Annulation Conditions

    PubMed Central

    Payette, Joshua N.; Honda, Tadashi; Yoshizawa, Hidenori; Favaloro, Frank G.; Gribble, Gordon W.

    2008-01-01

    We have proposed a pathway of the base–catalyzed reverse vinylogous aldol reaction of (−)-(4aβ,5β)-4,4a,5,6,7,8-hexahydro-5-hydroxy-1,4a-dimethylnaphthalen-2(3H)-one ((−)-8) under Robinson annulation conditions. For confirmation, 4-(2,6-dimethyl-3-oxocyclohex-1-enyl)butanal (11) and 4-(2,6-dimethyl-5-oxocyclohex-1-enyl)butanal (12), both of which potentially produce enolate I, were synthesized regioselectively. Unexpectedly, 11 gave a complex mixture including only a trace amount of (±)-8 (less than 5% yield) under these basic conditions. To the contrary, 12 cleanly afforded (±)-8 in 66% yield. This result provides evidence for our proposed mechanism of the above reaction. PMID:16388674

  17. Asymmetric total synthesis of smyrindiol employing an organocatalytic aldol key step

    PubMed Central

    Fronert, Jeanne; Bisschops, Tom; Boeck, Florian

    2012-01-01

    Summary The first organocatalytic asymmetric synthesis of smyrindiol, by using an (S)-proline catalyzed enantioselective intramolecular aldol reaction as the key step, is described. Smyrindiol was synthesized from commercially available 2,4-dihydroxybenzaldehyde in 15 steps, with excellent stereoselectivity (de = 99%, ee = 99%). In the course of this total synthesis a new and mild coumarin assembly was developed. PMID:23019438

  18. Aldol Condensation of Volatile Carbonyl Compounds in Acidic Aerosols

    NASA Astrophysics Data System (ADS)

    Noziere, B.; Esteve, W.

    2003-12-01

    Reactions of volatile organic compounds in acidic aerosols have been shown recently to be potentially important for organic aerosol formation and growth. Aldol condensation, the acid-catalyzed polymerization of carbonyl compounds, is a likely candidate to enhance the flux of organic matter from the gas phase to the condensed phase in the atmosphere. Until now these reactions have only been characterized for conditions relevant to synthesis (high acidities and liquid phase systems) and remote from atmospheric ones. In this work, the uptake of gas-phase acetone and 2,4\\-pentanedione by sulfuric acid solutions has been measured at room temperature using a Rotated Wetted Wall Reactor coupled to a Mass Spectrometer. The aldol condensation rate constants for 2,4\\-pentanedione measured so far for sulfuric acid solutions between 96 and 70 % wt. display a variation with acidity in agreement with what predicted in the organic chemical literature. The values of these constants, however, are much lower than expected for this compound, and comparable to the ones of acetone. Experiments are underway to complete this study to lower acidities and understand the discrepancies with the predicted reactivity.

  19. Synthesis of the Cores of Hypocrellin and Shiraiachrome: Diastereoselective 1,8-Diketone Aldol Cyclization

    PubMed Central

    O’Brien, Erin M.; Li, Jingxian; Carroll, Patrick J.

    2009-01-01

    Intramolecular 1,8-diketone aldol reactions were studied as a tool for the construction of the 7-membered rings of hypocrellin and shiraiachrome. Conditions were identified to obtain the relative stereochemistries present in the two natural products with excellent diastereoselectivity. In addition, a nine-membered ring congener, which has yet to be observed in nature, formed with high selectivity when a hindered amine was used in conjunction with silazide bases. PMID:19894740

  20. A diastereoselective, nucleophile-promoted aldol-lactonization of ketoacids leading to bicyclic-β-lactones.

    PubMed

    Liu, Gang; Shirley, Morgan E; Romo, Daniel

    2012-03-01

    An improved, tandem acid activation/aldol-lactonization process is described. This more practical protocol shortens reaction times for the construction of bicyclic β-lactones from ketoacids and implements the use of commercially available reagents p-toluenesulfonyl chloride (p-TsCl) as activator and 4-dimethylaminopyridine (4-DMAP) as nucleophilic promoter (Lewis base). Substrates with β-substituents, with respect to the carboxylic acid, consistently showed excellent levels of diastereoselectivity during the bis-cyclization event. PMID:22260519

  1. Enzyme-Catalyzed Asymmetric Domino Thia-Michael/Aldol Condensation Using Pepsin.

    PubMed

    Xiang, Yang; Song, Jian; Zhang, Yong; Yang, Da-Cheng; Guan, Zhi; He, Yan-Hong

    2016-07-15

    The novel catalytic promiscuity of pepsin from porcine gastric mucosa for the asymmetric catalysis of the domino thia-Michael/aldol condensation reaction in MeCN and buffer was discovered for the first time. Broad substrate specificity was tested, and a series of corresponding products were obtained with enantioselectivities of up to 84% ee. This specific catalysis was demonstrated by using recombinant pepsin and control experiments with denatured and inhibited pepsin. The reaction was also shown to occur in the active site by site-directed mutagenesis (the Asp32Ala mutant of pepsin), and a possible mechanism was proposed. PMID:27348476

  2. Light-absorbing aldol condensation products in acidic aerosols: Spectra, kinetics, and contribution to the absorption index

    NASA Astrophysics Data System (ADS)

    Nozière, Barbara; Esteve, William

    The radiative properties of aerosols that are transparent to light in the near-UV and visible, such as sulfate aerosols, can be dramatically modified when mixed with absorbing material such as soot. In a previous work we had shown that the aldol condensation of carbonyl compounds produces light-absorbing compounds in sulfuric acid solutions. In this work we report the spectroscopic and kinetic parameters necessary to estimate the effects of these reactions on the absorption index of sulfuric acid aerosols in the atmosphere. The absorption spectra obtained from the reactions of six different carbonyl compounds (acetaldehyde, acetone, propanal, butanal, 2-butanone, and trifluoroacetone) and their mixtures were compared over 190-1100 nm. The results indicated that most carbonyl compounds should be able to undergo aldol condensation. The products are oligomers absorbing light in the 300-500 nm region where few other compounds absorb, making them important for the radiative properties of aerosols. Kinetic experiments in 96-75 wt% H 2SO 4 solutions and between 273 and 314 K gave an activation energy for the rate constant of formation of the aldol products of acetaldehyde of -(70±15) kJ mol -1 in 96 wt% solution and showed that the effect of acid concentration was exponential. A complete expression for this rate constant is proposed where the absolute value in 96 wt% H 2SO 4 and at 298 K is scaled to the Henry's law coefficient for acetaldehyde and the absorption cross-section for the aldol products assumed in this work. The absorption index of stratospheric sulfuric acid aerosols after a 2-year residence time was estimated to 2×10 -4, optically equivalent to a content of 0.5% of soot and potentially significant for the radiative forcing of these aerosols and for satellite observations in channels where the aldol products absorb.

  3. Cu/MgAl(2)O(4) as bifunctional catalyst for aldol condensation of 5-hydroxymethylfurfural and selective transfer hydrogenation.

    PubMed

    Pupovac, Kristina; Palkovits, Regina

    2013-11-01

    Copper supported on mesoporous magnesium aluminate has been prepared as noble-metal-free solid catalyst for aldol condensation of 5-hydroxymethylfurfural with acetone, followed by hydrogenation of the aldol condensation products. The investigated mesoporous spinels possess high activity as solid-base catalysts. Magnesium aluminate exhibits superior activity compared to zinc and cobalt-based aluminates, reaching full conversion and up to 81 % yield of the 1:1 aldol product. The high activity can be correlated to a higher concentration of basic surface sites on magnesium aluminate. Applying continuous regeneration, the catalysts can be recycled without loss of activity. Focusing on the subsequent hydrogenation of aldol condensation products, Cu/MgAl2 O4 allows a selective hydrogenation and CO bond cleavage, delivering 3-hydroxybutyl-5-methylfuran as the main product with up to 84 % selectivity avoiding ring saturation. Analysis of the hydrogenation activity reveals that the reaction proceeds in the following order: CC>CO>CO cleavage>ring hydrogenation. Comparable activity and selectivity can be also achieved utilizing 2-propanol as solvent in the transfer hydrogenation, providing the possibility for partial recycling of acetone and optimization of the hydrogen management. PMID:24038987

  4. Total Synthesis of the Spirocyclic Imine Marine Toxin (−)-Gymnodimine and an Unnatural C4-Epimer

    PubMed Central

    Kong, Ke; Moussa, Ziad; Lee, Changsuk

    2011-01-01

    The first total synthesis of the marine toxin (−)-gymnodimine (1) has been accomplished in a convergent manner. A highly diastereo- and enantioselective exo-Diels–Alder reaction catalyzed by a bis-oxazoline Cu(II) catalyst enabled rapid assembly of the spirocyclic core of gymnodimine. The preparation of the tetrahydrofuran fragment utilized a chiral auxiliary based anti-aldol reaction. Two major fragments, spirolactam 56 and tetrahydrofuran 55, were then coupled through an efficient Nozaki–Hiyama–Kishi reaction. An unconventional, ambient temperature t-BuLi-initiated intramolecular Barbier reaction of alkyl iodide 64 was employed to form the macrocycle. A late stage vinylogous Mukaiyama aldol addition of a silyloxyfuran to a complex cyclohexanone 83 appended the butenolide and a few additional steps provided (−)-gymnodimine (1). A diastereomer of the natural product was also synthesized, C4-epi-gymnodimine (90), derived from the vinylogous Mukaiyama aldol addition. PMID:22023219

  5. Total synthesis of the spirocyclic imine marine toxin (-)-gymnodimine and an unnatural C4-epimer.

    PubMed

    Kong, Ke; Moussa, Ziad; Lee, Changsuk; Romo, Daniel

    2011-12-14

    The first total synthesis of the marine toxin (-)-gymnodimine (1) has been accomplished in a convergent manner. A highly diastereo- and enantioselective exo-Diels-Alder reaction catalyzed by a bis-oxazoline Cu(II) catalyst enabled rapid assembly of the spirocyclic core of gymnodimine. The preparation of the tetrahydrofuran fragment utilized a chiral auxiliary based anti-aldol reaction. Two major fragments, spirolactam 56 and tetrahydrofuran 55, were then coupled through an efficient Nozaki-Hiyama-Kishi reaction. An unconventional, ambient temperature t-BuLi-initiated intramolecular Barbier reaction of alkyl iodide 64 was employed to form the macrocycle. A late stage vinylogous Mukaiyama aldol addition of a silyloxyfuran to a complex cyclohexanone 83 appended the butenolide, and a few additional steps provided (-)-gymnodimine (1). A diastereomer of the natural product was also synthesized, C4-epi-gymnodimine (90), derived from the vinylogous Mukaiyama aldol addition. PMID:22023219

  6. Molecular Dynamics Simulations of Aldol Condensation Catalyzed by Alkylamine-Functionalized Crystalline Silica Surfaces.

    PubMed

    Kim, Ki Chul; Moschetta, Eric G; Jones, Christopher W; Jang, Seung Soon

    2016-06-22

    Molecular dynamics simulations are performed to investigate the cooperatively catalyzed aldol condensation between acetone and 4-nitrobenzaldehyde on alkylamine (or alkylenamine)-grafted silica surfaces, focusing on the mechanism of the catalytic activation of the acetone and 4-nitrobenzaldehyde by the acidic surface silanols followed by the nucleophilic attack of the basic amine functional group toward the activated reactant. From the analysis of the correlations between the catalytically active acid-base sites and reactants, it is concluded that the catalytic cooperativity of the acid-base pair can be affected by two factors: (1) the competition between the silanol and the amine (or enamine) to form a hydrogen bond with a reactant and (2) the flexibility of the alkylamine (or alkylenamine) backbone. Increasing the flexibility of the alkylamine facilitates the nucleophilic attack of the amine on the reactants. From the molecular dynamics simulations, it is found that C3 propylamine and C4 butylamine linkers exhibit the highest probability of reaction, which is consistent with the experimental observation that the activity of the aldol reaction on mesoporous silica depends on the length of alkylamine grafted on the silica surface. This simulation work serves as a pioneering study demonstrating how the molecular simulation approach can be successfully employed to investigate the cooperative catalytic activity of such bifunctional acid-base catalysts. PMID:27238580

  7. A Green Enantioselective Aldol Condensation for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Bennett, George D.

    2006-01-01

    A number of laboratory exercises for the organic chemistry curriculum that emphasize enantioselective synthesis of the aldol condensation which involves the proline-catalyzed condensation between acetone and isobutyraldehyde are explored. The experiment illustrates some of the trade-offs involved in green chemistry like the use of acetone in large…

  8. Engineering the donor selectivity of D-fructose-6-phosphate aldolase for biocatalytic asymmetric cross-aldol additions of glycolaldehyde.

    PubMed

    Szekrenyi, Anna; Soler, Anna; Garrabou, Xavier; Guérard-Hélaine, Christine; Parella, Teodor; Joglar, Jesús; Lemaire, Marielle; Bujons, Jordi; Clapés, Pere

    2014-09-22

    D-Fructose-6-phosphate aldolase (FSA) is a unique catalyst for asymmetric cross-aldol additions of glycolaldehyde. A combination of a structure-guided approach of saturation mutagenesis, site-directed mutagenesis, and computational modeling was applied to construct a set of FSA variants that improved the catalytic efficiency towards glycolaldehyde dimerization up to 1800-fold. A combination of mutations in positions L107, A129, and A165 provided a toolbox of FSA variants that expand the synthetic possibilities towards the preparation of aldose-like carbohydrate compounds. The new FSA variants were applied as highly efficient catalysts for cross-aldol additions of glycolaldehyde to N-carbobenzyloxyaminoaldehydes to furnish between 80-98 % aldol adduct under optimized reaction conditions. Donor competition experiments showed high selectivity for glycolaldehyde relative to dihydroxyacetone or hydroxyacetone. These results demonstrate the exceptional malleability of the active site in FSA, which can be remodeled to accept a wide spectrum of donor and acceptor substrates with high efficiency and selectivity. PMID:25146467

  9. Catalytic Aldol-Cyclization Cascade of 3-Isothiocyanato Oxindoles with α-Ketophosphonates for the Enantioselective Synthesis of β-Amino-α-hydroxyphosphonates.

    PubMed

    Kayal, Satavisha; Mukherjee, Santanu

    2015-11-01

    A cascade aldol-cyclization reaction between 3-isothiocyanato oxindoles and α-ketophosphonates has been developed for the synthesis of β-amino-α-hydroxyphosphonate derivatives. Catalyzed by a quinine-based tertiary amino-thiourea derivative, this reaction delivers 2-thioxooxazolidinyl phosphonates based on a spirooxindole scaffold bearing two contiguous quaternary stereogenic centers in high yields with excellent diastereo- (up to >20:1 dr) and enantioselectivities (up to >99:1 er). PMID:26512732

  10. Convergent fabrication of a nanoporous two-dimensional carbon network from an aldol condensation on metal surfaces

    NASA Astrophysics Data System (ADS)

    Landers, John; Chérioux, Frédéric; De Santis, Maurizio; Bendiab, Nedjma; Lamare, Simon; Magaud, Laurence; Coraux, Johann

    2014-12-01

    We report a convergent surface polymerization reaction scheme on Au(111), based on a triple aldol condensation, yielding a carbon-rich, covalent nanoporous two-dimensional network. The reaction is not self-poisoning and proceeds up to a full surface coverage. The deposited precursor molecules 1, 3, 5-tri(4’-acetylphenyl) first form supramolecular assemblies that are converted to the porous covalent network upon heating. The formation and structure of the network and of the intermediate steps are studied with scanning tunneling microscopy, Raman spectroscopy and density functional theory.

  11. One-pot aldol condensation and hydrodeoxygenation of biomass-derived carbonyl compounds for biodiesel synthesis.

    PubMed

    Faba, Laura; Díaz, Eva; Ordóñez, Salvador

    2014-10-01

    Integrating reaction steps is of key interest in the development of processes for transforming lignocellulosic materials into drop-in fuels. We propose a procedure for performing the aldol condensation (reaction between furfural and acetone is taken as model reaction) and the total hydrodeoxygenation of the resulting condensation adducts in one step, yielding n-alkanes. Different combinations of catalysts (bifunctional catalysts or mechanical mixtures), reaction conditions, and solvents (aqueous and organic) have been tested for performing these reactions in an isothermal batch reactor. The results suggest that the use of bifunctional catalysts and aqueous phase lead to an effective integration of both reactions. Therefore, selectivities to n-alkanes higher than 50% were obtained using this catalyst at typical hydrogenation conditions (T=493 K, P=4.5 MPa, 24 h reaction time). The use of organic solvent, carbonaceous supports, or mechanical mixtures of monofunctional catalysts leads to poorer results owing to side effects; mainly, hydrogenation of reactants and adsorption processes. PMID:25088473

  12. Substrate inhibition in the heterogeneous catalyzed aldol condensation: A mechanistic study of supported organocatalysts

    SciTech Connect

    Kandel, Kapil; Althaus, Stacey M.; Peeraphatdit, Chorthip; Kobayashi, Takeshi; Trewyn, Brian G.; Pruski, Marek; Slowing, Igor I.

    2012-05-23

    In this study, we demonstrate how materials science can be combined with the established methods of organic chemistry to find mechanistic bottlenecks and redesign heterogeneous catalysts for improved performance. By using solid-state NMR, infrared spectroscopy, surface and kinetic analysis, we prove the existence of a substrate inhibition in the aldol condensation catalyzed by heterogeneous amines. We show that modifying the structure of the supported amines according to the proposed mechanism dramatically enhances the activity of the heterogeneous catalyst. We also provide evidence that the reaction benefits significantly from the surface chemistry of the silica support, which plays the role of a co-catalyst, giving activities up to two orders of magnitude larger than those of homogeneous amines. This study confirms that the optimization of a heterogeneous catalyst depends as much on obtaining organic mechanistic information as it does on controlling the structure of the support.

  13. Copper-catalyzed one-pot denitrogenative-dehydrogenative-decarboxylative coupling of β-ketoacids with trifluorodiazoethane: facile access to trifluoromethylated aldol products.

    PubMed

    Xiong, Heng-Ying; Yang, Zhen-Yan; Chen, Zhen; Zeng, Jun-Liang; Nie, Jing; Ma, Jun-An

    2014-07-01

    A novel copper-catalyzed one-pot cross-coupling of β-ketoacids with in situ generated trifluorodiazoethane has been developed. This reaction provides a direct and efficient method, in which one C-C bond and one C-O bond were formed in a carbenoid center with concomitant denitrogenation-dehydrogenation-decarboxylation, to afford trifluoromethylated aldol products. In several preliminary experiments, good to high enantioselectivities were also obtained. PMID:24889186

  14. Diastereoselective Synthesis of Biheterocyclic Tetrahydrothiophene Derivatives via Base-Catalyzed Cascade Michael-Aldol [3 + 2] Annulation of 1,4-Dithiane-2,5-diol with Maleimides.

    PubMed

    Zhong, Yuan; Ma, Shixiong; Li, Bai; Jiang, Xianxing; Wang, Rui

    2015-07-01

    A highly diastereoselective intermolecular [3 + 2] annulation of 1,4-dithiane-2,5-diol to maleimides has been developed by using DABCO as a catalyst, which provides a series of highly functionalized biheterocyclic tetrahydrothiophene derivatives containing tetrahydrothiophene and pyrolidine backbones in excellent yields and diastereoselectivities (up to 98% yield and >20:1 d.r.). The cascade Michael-aldol reaction is capable of tolerating organic solvents as well as water. PMID:26035462

  15. Engineering stereocontrol into an aldolase-catalysed reaction.

    PubMed

    Lamble, Henry J; Danson, Michael J; Hough, David W; Bull, Steven D

    2005-01-01

    A novel thermostable aldolase has been developed for synthetic application, and substrate engineering has been used to induce stereocontrol into aldol reactions of this naturally-promiscuous enzyme. PMID:15614394

  16. Rational nanoconjugation improves biocatalytic performance of enzymes: aldol addition catalyzed by immobilized rhamnulose-1-phosphate aldolase.

    PubMed

    Ardao, Inés; Comenge, Joan; Benaiges, M Dolors; Álvaro, Gregorio; Puntes, Víctor F

    2012-04-17

    Gold nanoparticles (AuNPs) are attractive materials for the immobilization of enzymes due to several advantages such as high enzyme loading, absence of internal diffusion limitations, and Brownian motion in solution, compared to the conventional immobilization onto porous macroscopic supports. The affinity of AuNPs to different groups present at the protein surface enables direct enzyme binding to the nanoparticle without the need of any coupling agent. Enzyme activity and stability appear to be improved when the biocatalyst is immobilized onto AuNPs. Rhamnulose-1-phosphate aldolase (RhuA) was selected as model enzyme for the immobilization onto AuNPs. The enzyme loading was characterized by four different techniques: surface plasmon resonance (SPR) shift and intensity, dynamic light scattering (DLS), and transmission electron microscopy (TEM). AuNPs-RhuA complexes were further applied as biocatalyst of the aldol addition reaction between dihydroxyacetone phosphate (DHAP) and (S)-Cbz-alaninal during two reaction cycles. In these conditions, an improved reaction yield and selectivity, together with a fourfold activity enhancement were observed, as compared to soluble RhuA. PMID:22428999

  17. Mineral catalysis of a potentially prebiotic aldol condensation

    NASA Technical Reports Server (NTRS)

    De Graaf, R. M.; Visscher, J.; Xu, Y.; Arrhenius, G.; Schwartz, A. W.

    1998-01-01

    Minerals may have played a significant role in chemical evolution. In the course of investigating the chemistry of phosphonoacetaldehyde (PAL), an analogue of glycolaldehyde phosphate, we have observed a striking case of catalysis by the layered hydroxide mineral hydrotalcite ([Mg2Al(OH)6][Cl.nH2O]). In neutral or moderately basic aqueous solutions, PAL is unreactive even at a concentration of 0.1 M. In the presence of a large excess of NaOH (2 M), the compound undergoes aldol condensation to produce a dimer containing a C3-C4 double-bond. In dilute neutral solutions and in the presence of the mineral, however, condensation takes place rapidly, to produce a dimer which is almost exclusively the C2-C3 unsaturated product.

  18. Mathematical model for aldol addition catalyzed by two D-fructose-6-phosphate aldolases variants overexpressed in E. coli.

    PubMed

    Sudar, Martina; Findrik, Zvjezdana; Vasić-Rački, Durđa; Clapés, Pere; Lozano, Carles

    2013-09-10

    Two D-fructose-6-phosphate aldolase variants namely, single variant FSA A129S and double variant FSA A129S/A165G, were used as catalysts in the aldol addition of dihydroxyacetone (DHA) to N-Cbz-3-aminopropanal. Mathematical model for reaction catalyzed by both enzymes, consisting of kinetic and mass balance equations, was developed. Kinetic parameters were estimated from the experimental data gathered by using the initial reaction rate method. The model was validated in the batch and continuously operated ultrafiltration membrane reactor (UFMR). The same type of kinetic model could be applied for both enzymes. The operational stability of the aldolases was assessed by measuring enzyme activity during the experiments. FSA A129S/A165G had better operational stability in the batch reactor (half-life time 26.7 h) in comparison to FSA A129S (half-life time 5.78 h). Both variants were unstable in the continuously operated UFMR in which half-life times were 1.99 and 3.64 h for FSA A129S and FSA A129S/A165G, respectively. PMID:23876482

  19. Aldol addition of dihydroxyacetone to N-Cbz-3-aminopropanal catalyzed by two aldolases variants in microreactors.

    PubMed

    Sudar, Martina; Findrik, Zvjezdana; Vasić-Rački, Durđa; Clapés, Pere; Lozano, Carles

    2013-06-10

    Aldol addition of dihydroxyacetone to N-Cbz-3-aminopropanal catalyzed by two d-fructose-6-phosphate aldolase variants, FSA A129S and FSA A129S/A165G, overexpressed in Escherichia coli was studied in microreactors. The presence of organic solvent was necessary due to poor solubility of N-Cbz-3-aminopropanal in water. Hence, three co-solvents were evaluated: ethyl acetate, acetonitrile and dimethylformamide (DMF). The influence of these solvents and their concentration on the enzyme activity was independently tested and it was found that all solvents significantly reduce the activity of FSA depending on their concentration. The reaction was carried out in three different microreactors; two without and one with micromixers. By increasing enzyme concentration, it was possible to achieve higher substrate conversion at lower residence time. Enzyme activity measured at the outlet flow of the microreactor at different residence time revealed that enzymes are more stable at lower residence times due to shorter time of exposure to organic solvent. The reaction in the batch reactor was compared with the results in microreactor with micromixers. Volume productivity was more than three fold higher in microreactor with micromixers than in the batch reactor for both aldolases. It was found to be 0.88Md(-1) and 0.80Md(-1) for FSA A129S and FSA A129S/A165G, respectively. PMID:23683703

  20. Catalytic addition methods for the synthesis of functionalized diazoacetoacetates and application to the construction of highly substituted cyclobutanones.

    PubMed

    Doyle, Michael P; Kundu, Kousik; Russell, Albert E

    2005-11-10

    [reaction: see text] Methyl 3-(trialkylsilanyloxy)-2-diazo-3-butenoate undergoes Lewis acid-catalyzed Mukaiyama aldol addition with aromatic and aliphatic aldehydes in the presence of low catalytic amounts of Lewis acids in nearly quantitative yields. Scandium(III) triflate is the preferred catalyst and, notably, addition proceeds without decomposition of the diazo moiety. Diazoacetoacetate products from reactions with aromatic aldehydes undergo rhodium(II)-catalyzed ring closure to cyclobutanones with high diastereocontrol. Examples of complimentary Mannich-type addition reactions with imines are reported. PMID:16268530

  1. The effect of the distance between acidic site and basic site immobilized on mesoporous solid on the activity in catalyzing aldol condensation

    NASA Astrophysics Data System (ADS)

    Yu, Xiaofang; Yu, Xiaobo; Wu, Shujie; Liu, Bo; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-02-01

    Acid-base bifunctional heterogeneous catalysts containing carboxylic and amine groups, which were immobilized at defined distance from one another on the mesoporous solid were synthesized by immobilizing lysine onto carboxyl-SBA-15. The obtained materials were characterized by X-ray diffraction (XRD), N 2 adsorption, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron micrographs (SEM), transmission electron micrographs (TEM), elemental analysis, and back titration. Proximal-C-A-SBA-15 with a proximal acid-base distance was more active than maximum-C-A-SBA-15 with a maximum acid-base distance in aldol condensation reaction between acetone and various aldehydes. It appears that the distance between acidic site and basic site immobilized on mesoporous solid should be an essential factor for catalysis optimization.

  2. Synthesis of acylsilanes via nickel-catalyzed reactions of α-hydroxyallylsilanes.

    PubMed

    Reddy, Gangireddy PavanKumar; Reddy, J Satyanarayana; Das, Saibal; Roisnel, Thierry; Yadav, Jhillu S; Chandrasekhar, Srivari; Grée, René

    2013-04-01

    The redox isomerization processes and tandem isomerization-aldolization reactions, mediated by nickel catalysts, offer new versatile entries to acylsilanes. For the second reaction, high diastereoselectivities, up to 98:2, have been obtained with bulky substituents on silicon. PMID:23517341

  3. ALDOL REACTION VIA IN SITU OLEFIN MIGRATION IN WATER. (R828129)

    EPA Science Inventory

    Mingwen Wang and Chao-Jun LiCorresponding Author Contact Information

    Department of Chemistry, Tulane University, Ne...

  4. ALDOL- AND MANNICH-TYPE REACTIONS VIA IN SITU OLEFIN MIGRATION IN IONIC LIQUID. (R828129)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  5. An Exercise on Structure Elucidation Based on a Tricky Aldol Reaction

    ERIC Educational Resources Information Center

    Sierra, Manuel Gonzalez; Pellegrinet, Silvina C.; Colombo, Maria I.; Ruveda, Edmundo A.

    2008-01-01

    An exercise on structure elucidation for advanced undergraduate students is described. To determine the structure of an unknown product, students are required to use spectra together with an organic chemistry mechanism. This exercise exemplifies the procedure commonly used in research, thus helping students develop problem-solving skills. In…

  6. A DFT analysis of thermal decomposition reactions important to natural products.

    PubMed

    Setzer, William N

    2010-07-01

    The thermal decomposition reactions of several important natural flavor and fragrance chemicals have been investigated using density functional theory (DFT, B3LYP/6-31G*). Retro-aldol reactions of glucose, fructose, hernandulcin, epihernandulcin, [3]-gingerol, and [4]-isogingerol; retro-carbonyl-ene reactions of isopulegol, lavandulol, isolyratol, and indicumenone; and pyrolytic syn elimination reactions of linalyl acetate, alpha-terpinyl acetate, and bornyl acetate, have been carried out. The calculations indicate activation enthalpies of around 30 kcal/mol for the retro-aldol reactions and for retro-carbonyl-ene reactions, comparable to pericyclic reactions such as the Cope rearrangement and electrocyclic reactions, and therefore important reactions at elevated temperatures (e.g., boiling aqueous solutions, gas-chromatograph injection ports). Activation enthalpies for pyrolytic eliminations are around 40 kcal/mol and are unlikely to occur during extraction or GC analysis. PMID:20734926

  7. Stereoselective Arene-Forming Aldol Condensation: Synthesis of Axially Chiral Aromatic Amides.

    PubMed

    Fäseke, Vincent C; Sparr, Christof

    2016-06-13

    The increasing awareness of the importance of amide atropisomers prompts the development of novel strategies for their selective preparation. Described herein is a method for the enantioselective synthesis of atropisomeric aromatic amides by an amine-catalyzed arene-forming aldol condensation. The high reactivity of the glyoxylic amide substrates enables a remarkably efficient construction of a new aromatic ring, which proceeds within minutes at ambient temperature to afford products with excellent stereoselectivity. The high rotational barriers of the reduced products highlight the utility of this stable, spatially organized chiral scaffold. PMID:27166995

  8. Practical synthesis of the C-ring precursor of paclitaxel from 3-methoxytoluene.

    PubMed

    Fukaya, Keisuke; Yamaguchi, Yu; Watanabe, Ami; Yamamoto, Hiroaki; Sugai, Tomoya; Sugai, Takeshi; Sato, Takaaki; Chida, Noritaka

    2016-04-01

    The practical synthesis of the C-ring precursor of paclitaxel starting from 3-methoxytoluene is described. Lipase-catalyzed kinetic resolution of a substituted cyclohexane-1,2-diol, derived from 3-methoxytoluene in three steps, successfully afforded a desired enantiomer with >99% ee, which was transformed to a cyclohexenone. 1,4-Addition of a vinyl metal species, followed by Mukaiyama aldol reaction with formalin in the presence of a Lewis acid provided the known C-ring precursor of paclitaxel in a 10 g scale. PMID:26860468

  9. From vinyl pyranoses to carbasugars by an iron-catalyzed reaction complementary to classical Ferrier carbocyclization.

    PubMed

    Mac, Dinh Hung; Samineni, Ramesh; Petrignet, Julien; Srihari, Pabbaraja; Chandrasekhar, Srivari; Yadav, Jhillu Singh; Grée, René

    2009-08-21

    Starting from vinyl pyranoses an iron-catalyzed tandem isomerization-intramolecular aldolization reaction was developed to prepare cyclohexenone derivatives bearing substituents on the double bond, and it has been applied in a short synthesis of 4-epi-gabosines A and B, from d-glucose. PMID:19641820

  10. Analysis of UDP-D-apiose/UDP-D-xylose synthase-catalyzed conversion of UDP-D-apiose phosphonate to UDP-D-xylose phosphonate: implications for a retroaldol-aldol mechanism.

    PubMed

    Choi, Sei-hyun; Mansoorabadi, Steven O; Liu, Yung-nan; Chien, Tun-Cheng; Liu, Hung-wen

    2012-08-29

    UDP-D-apiose/UDP-D-xylose synthase (AXS) catalyzes the conversion of UDP-D-glucuronic acid to UDP-D-apiose and UDP-D-xylose. An acetyl-protected phosphonate analogue of UDP-D-apiose was synthesized and used in an in situ HPLC assay to demonstrate for the first time the ability of AXS to interconvert the two reaction products. Density functional theory calculations provided insight into the energetics of this process and the apparent inability of AXS to catalyze the conversion of UDP-D-xylose to UDP-D-apiose. The data suggest that this observation is unlikely to be due to an unfavorable equilibrium but rather results from substrate inhibition by the most stable chair conformation of UDP-D-xylose. The detection of xylose cyclic phosphonate as the turnover product reveals significant new details about the AXS-catalyzed reaction and supports the proposed retroaldol-aldol mechanism of catalysis. PMID:22830643

  11. Dynamic Kinetic Resolution Enabled by Intramolecular Benzoin Reaction: Synthetic Applications and Mechanistic Insights.

    PubMed

    Zhang, Guoxiang; Yang, Shuang; Zhang, Xiaoyan; Lin, Qiqiao; Das, Deb K; Liu, Jian; Fang, Xinqiang

    2016-06-29

    The highly enantio-, diastereo-, and regioselective dynamic kinetic resolution of β-ketoesters and 1,3-diketones was achieved via a chiral N-heterocyclic carbene catalyzed intramolecular cross-benzoin reaction. A variety of tetralone derivatives bearing two contiguous stereocenters and multiple functionalities were liberated in moderate to excellent yields and with high levels of stereoselectivity (>95% ee and >20:1 dr in most cases). In addition, the excellent regioselectivity control for aryl/alkyl 1,3-diketones, and the superior electronic differentiation of 1,3-diarylketones were highlighted. Moreover, a set of new mechanistic rationale that differs with the currently widely accepted understanding of intramolecular benzoin reactions was established to demonstrate the superior preference of benzoin over aldol transformation: (1) A coexistence of competitive aldol and benzoin reactions was detected, but a retro-aldol-irreversible benzoin process performs a vital role in the generation of predominant benzoin products. (2) The most essential role of an N-electron-withdrawing substituent in triazolium catalysts was revealed to be accelerating the rate of the benzoin transformation, rather than suppressing the aldol process through reducing the inherent basicity of the catalyst. PMID:27270409

  12. Theory and Modeling of Asymmetric Catalytic Reactions.

    PubMed

    Lam, Yu-Hong; Grayson, Matthew N; Holland, Mareike C; Simon, Adam; Houk, K N

    2016-04-19

    Modern density functional theory and powerful contemporary computers have made it possible to explore complex reactions of value in organic synthesis. We describe recent explorations of mechanisms and origins of stereoselectivities with density functional theory calculations. The specific functionals and basis sets that are routinely used in computational studies of stereoselectivities of organic and organometallic reactions in our group are described, followed by our recent studies that uncovered the origins of stereocontrol in reactions catalyzed by (1) vicinal diamines, including cinchona alkaloid-derived primary amines, (2) vicinal amidophosphines, and (3) organo-transition-metal complexes. Two common cyclic models account for the stereoselectivity of aldol reactions of metal enolates (Zimmerman-Traxler) or those catalyzed by the organocatalyst proline (Houk-List). Three other models were derived from computational studies described in this Account. Cinchona alkaloid-derived primary amines and other vicinal diamines are venerable asymmetric organocatalysts. For α-fluorinations and a variety of aldol reactions, vicinal diamines form enamines at one terminal amine and activate electrophilically with NH(+) or NF(+) at the other. We found that the stereocontrolling transition states are cyclic and that their conformational preferences are responsible for the observed stereoselectivity. In fluorinations, the chair seven-membered cyclic transition states is highly favored, just as the Zimmerman-Traxler chair six-membered aldol transition state controls stereoselectivity. In aldol reactions with vicinal diamine catalysts, the crown transition states are favored, both in the prototype and in an experimental example, shown in the graphic. We found that low-energy conformations of cyclic transition states occur and control stereoselectivities in these reactions. Another class of bifunctional organocatalysts, the vicinal amidophosphines, catalyzes the (3 + 2) annulation

  13. Improvement on the catalytic performance of Mg-Zr mixed oxides for furfural-acetone aldol condensation by supporting on mesoporous carbons.

    PubMed

    Faba, Laura; Díaz, Eva; Ordóñez, Salvador

    2013-03-01

    A new procedure for improving the performance of the most common catalysts used in aqueous-phase aldol condensation (Mg-Zr mixed oxides) reactions is presented. This reaction is of interest for upgrading carbohydrate feedstocks. The procedure involves supporting Mg-Zr oxides on non-microporous carbonaceous materials, such as carbon nanofibers (CNFs) or high-surface-area graphites (HSAGs), using either incipient wetness or coprecipitation procedures. The use of HSAGs together with the coprecipitation method provides the best performance. Results obtained for the cross-condensation of acetone and furfural at 323 K reveal that the catalyst performance is greatly improved compared to the bulk oxides (96.5 % conversion vs. 81.4 % with the bulk oxide; 87.8 % selectivity for C13 and C8 adducts vs. 76.2 % with the bulk oxide). This difference is even more prominent in terms of rates per catalytically active basic site (four and seven times greater for C8 and C13 adducts, respectively). The improved performance is explained in terms of a more appropriate basic site distribution and by greater interaction of the reactants with the carbon surface. In addition, deactivation behavior of the catalyst is improved by tuning the morphology of the carbonaceous support. An important enhancement of the catalytic stability can be obtained selecting a HSAG with an appropriate pore diameter. With HSAG100 the activity decreased by less than 20 % between successive reaction cycles and the selectivity for the condensation products remained almost unaltered. The decrease is greater than 80 % for the bulk oxides tested at these conditions, with important increases in the selectivity for by-product formation. PMID:23362138

  14. Quantum mechanical investigations on the role of neutral and negatively charged enamine intermediates in organocatalyzed reactions

    NASA Astrophysics Data System (ADS)

    Hubin, Pierre O.; Jacquemin, Denis; Leherte, Laurence; Vercauteren, Daniel P.

    2014-04-01

    The proline-catalyzed aldol reaction is the seminal example of asymmetric organocatalysis. Previous theoretical and experimental studies aimed at identifying its mechanism in order to rationalize the outcome of this reaction. Here, we focus on key steps with modern first principle methods, i.e. the M06-2X hybrid exchange-correlation functional combined to the solvation density model to account for environmental effects. In particular, different pathways leading to the formation of neutral and negatively charged enamine intermediates are investigated, and their reactivity towards two electrophiles, i.e. an aldehyde and a benzhydrylium cation, are compared. Regarding the self-aldol reaction, our calculations confirm that the neutral enamine intermediate is more reactive than the negatively charged one. For the reaction with benzhydrylium cations however, the negatively charged enamine intermediate is more reactive.

  15. Acid-catalyzed reactions of hexanal on sulfuric acid particles: Identification of reaction products

    NASA Astrophysics Data System (ADS)

    Garland, Rebecca M.; Elrod, Matthew J.; Kincaid, Kristi; Beaver, Melinda R.; Jimenez, Jose L.; Tolbert, Margaret A.

    While it is well established that organics compose a large fraction of the atmospheric aerosol mass, the mechanisms through which organics are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds with carbonyl groups have recently been suggested as important pathways for transfer of volatile organics into acidic aerosols. In the present study, we use the aerodyne aerosol mass spectrometer (AMS) to probe the uptake of gas-phase hexanal into ammonium sulfate and sulfuric acid aerosols. While both deliquesced and dry non-acidic ammonium sulfate aerosols showed no organic uptake, the acidic aerosols took up substantial amounts of organic material when exposed to hexanal vapor. Further, we used 1H-NMR, Fourier transform infrared (FTIR) spectroscopy and GC-MS to identify the products of the acid-catalyzed reaction of hexanal in acidic aerosols. Both aldol condensation and hemiacetal products were identified, with the dominant reaction products dependent upon the initial acid concentration of the aerosol. The aldol condensation product was formed only at initial concentrations of 75-96 wt% sulfuric acid in water. The hemiacetal was produced at all sulfuric acid concentrations studied, 30-96 wt% sulfuric acid in water. Aerosols up to 88.4 wt% organic/11.1 wt% H 2SO 4/0.5 wt% water were produced via these two dimerization reaction pathways. The UV-VIS spectrum of the isolated aldol condensation product, 2-butyl 2-octenal, extends into the visible region, suggesting these reactions may impact aerosol optical properties as well as aerosol composition. In contrast to previous suggestions, no polymerization of hexanal or its products was observed at any sulfuric acid concentration studied, from 30 to 96 wt% in water.

  16. Azlactone Reaction Developments.

    PubMed

    de Castro, Pedro P; Carpanez, Arthur G; Amarante, Giovanni W

    2016-07-18

    Azlactones (also known as oxazolones) are heterocycles usually employed in the stereoselective synthesis of α,α-amino acids, heterocycles and natural products. The versatility of the azlactone scaffold arises from the numerous reactive sites, allowing its application in a diversity of transformations. This review aims to cover classical and recent applications of oxazolones, especially those involving stereoselective processes. After a short introduction on their structures and intrinsic reactivities, dynamic kinetic resolution (DKR) processes as well as reactions involving stereoselective formation of a new σ C-C bond, such as alkylation/allylation/arylation, aldol, ene, Michael and Mannich reactions will be exposed. Additionally, cycloadditions, Steglich rearrangement and sulfenylation reactions will also be discussed. Recent developments of the well-known Erlenmeyer azlactones will be described. For the most examples, the proposed mechanism, activation modes and/or key reaction intermediates will be exposed to rationalize both the final product and the observed stereochemistry. Finally, this review gives an overview of the synthetic utility of oxazolones. PMID:27245128

  17. Divergent Synthesis of Multisubstituted Tetrahydrofurans and Pyrrolidines via Intramolecular Aldol-type Trapping of Onium Ylide Intermediates.

    PubMed

    Jing, Changcheng; Xing, Dong; Gao, Lixin; Li, Jia; Hu, Wenhao

    2015-12-21

    This paper reports a divergent strategy for the synthesis of multisubstituted tetrahydrofurans and pyrrolidines, starting from easily accessible β-hydroxyketones or β-aminoketones to react with diazo compounds. Under Rh(II) catalysis, this transformation is proposed to proceed through a metal-carbene-induced oxonium ylide or ammonium ylide formation followed by an intramolecular aldol-type trapping of these active intermediates. A series of highly substituted tetrahydrofurans and pyrrolidines are synthesized in high yields with good to excellent diastereoselectivities. Preliminary biological evaluations revealed that both types of heterocycles show good PTP1B inhibitory activities. PMID:26592374

  18. A Base-Catalyzed, Domino Aldol/hetero-Diels-Alder Synthesis of Tricyclic Pyrano[3,4-c]chromenes in Glycerol.

    PubMed

    Parmar, Bhagyashri D; Sutariya, Tushar R; Brahmbhatt, Gaurangkumar C; Parmar, Narsidas J; Kant, Rajni; Gupta, Vivek K

    2016-06-17

    The domino aldol/hetero-Diels-Alder synthesis of some new tricyclic pyrano[3,4-c]chromene derivatives has been achieved successfully after assembling a variety of acyclic or cyclic monoketones with prenyl ether-tethered aldehydes in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene in glycerol at 120 °C. The hitherto unreported stereochemical outcome of this synthetic sequence was studied and established on the basis of single-crystal X-ray diffraction data and 2D NMR NOESY spectroscopy along with the isolation and characterization of the intermediate Aldol condensation product. PMID:27171909

  19. Recent developments in enzyme promiscuity for carbon-carbon bond-forming reactions.

    PubMed

    Miao, Yufeng; Rahimi, Mehran; Geertsema, Edzard M; Poelarends, Gerrit J

    2015-04-01

    Numerous enzymes have been found to catalyze additional and completely different types of reactions relative to the natural activity they evolved for. This phenomenon, called catalytic promiscuity, has proven to be a fruitful guide for the development of novel biocatalysts for organic synthesis purposes. As such, enzymes have been identified with promiscuous catalytic activity for, one or more, eminent types of carbon-carbon bond-forming reactions like aldol couplings, Michael(-type) additions, Mannich reactions, Henry reactions, and Knoevenagel condensations. This review focuses on enzymes that promiscuously catalyze these reaction types and exhibit high enantioselectivities (in case chiral products are obtained). PMID:25598537

  20. Molecular Mechanism by which One Enzyme Catalyzes Two Reactions

    NASA Astrophysics Data System (ADS)

    Nishimasu, Hiroshi; Fushinobu, Shinya; Wakagi, Takayoshi

    Unlike ordinary enzymes, fructose-1,6-bisphosphate (FBP) aldolase/phosphatase (FBPA/P) catalyzes two distinct reactions : (1) the aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate to FBP, and (2) the dephosphorylation of FBP to fructose-6-phosphate. We solved the crystal structures of FBPA/P in complex with DHAP (its aldolase form) and FBP (its phosphatase form). The crystal structures revealed that FBPA/P exhibits the dual activities through a dramatic conformational change in the active-site architecture. Our findings expand the conventional concept that one enzyme catalyzes one reaction.

  1. RUTHENIUM-CATALYZED TANDEM OLEFIN MIGRATION-ALDOL AND MANNICH-TYPE REACTIONS IN WATER AND PROTIC SOLVENT. (R828129)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. Synthesis and Characterization of Aldol Condensation Products from Unknown Aldehydes and Ketones: An Inquiry-Based Experiment in the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Angelo, Nicholas G.; Henchey, Laura K.; Waxman, Adam J.; Canary, James W.; Arora, Paramjit S.; Wink, Donald

    2007-01-01

    An experiment for the undergraduate chemistry laboratory in which students perform the aldol condensation on an unknown aldehyde and an unknown ketone is described. The experiment involves the use of techniques such as TLC, column chromatography, and recrystallization, and compounds are characterized by [to the first power]H NMR, GC-MS, and FTIR.…

  3. Gallium(III)- and calcium(II)-catalyzed Meyer-Schuster rearrangements followed by intramolecular aldol condensation or endo-Michael addition.

    PubMed

    Presset, M; Michelet, B; Guillot, R; Bour, C; Bezzenine-Lafollée, S; Gandon, V

    2015-03-28

    The first gallium- and calcium-catalyzed Meyer-Schuster rearrangements are described. Under substrate control, the incipient conjugated ketones can be trapped intramolecularly by β-keto esters or amides to yield cyclic products after aldol condensation or endo-Michael addition. An interesting additive effect that promotes the latter tandem process with calcium has been found. PMID:25503868

  4. Catalytic, asymmetric, aldol/O-conjugate addition sequence for the construction of highly substituted furanoids.

    PubMed

    Calter, Michael A; Korotkov, Alexander

    2015-03-20

    A new method for the enantioselective synthesis of highly functionalized dihydrofurans has been developed. This process, related to the interrupted Feist-Bénary reaction, involves the reaction of 2-ene 1,4-diketones with dimedone in the presence of bis(cinchona alkaloid)pyrimidine catalysts to afford dihydrofuran products in excellent yields and high diastereo- and enantioselectivities. PMID:25739895

  5. An Entry to Curcuphenol/Elvirol Core Structures via a Retro-Aldol Procedure

    PubMed Central

    Plano, María F.; Labadie, Guillermo R.; Jacob, Melissa R.; Tekwani, Babu L.; Cravero, Raquel M.

    2013-01-01

    Curcuphenol/elvirol analogues, the naturally occurring bisabolane sesquiterpenes were prepared in six steps from alkyl α-tetralones employing an aromatization reaction of cyclic dienone precursors and olefination of the key aldehyde intermediates. The in vitro antifungal activities of 6a, 6b, 6d and 6g are also reported. PMID:21674782

  6. Pd/NbOPO₄ multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans.

    PubMed

    Xia, Qi-Neng; Cuan, Qian; Liu, Xiao-Hui; Gong, Xue-Qing; Lu, Guan-Zhong; Wang, Yan-Qin

    2014-09-01

    Great efforts have been made to convert renewable biomass into transportation fuels. Herein, we report the novel properties of NbO(x)-based catalysts in the hydrodeoxygenation of furan-derived adducts to liquid alkanes. Excellent activity and stability were observed with almost no decrease in octane yield (>90% throughout) in a 256 h time-on-stream test. Experimental and theoretical studies showed that NbO(x) species play the key role in C-O bond cleavage. As a multifunctional catalyst, Pd/NbOPO4 plays three roles in the conversion of aldol adducts into alkanes: 1) The noble metal (in this case Pd) is the active center for hydrogenation; 2) NbO(x) species help to cleave the C-O bond, especially of the tetrahydrofuran ring; and 3) a niobium-based solid acid catalyzes the dehydration, thus enabling the quantitative conversion of furan-derived adducts into alkanes under mild conditions. PMID:25045056

  7. 'Super Silyl' Group for Diastereoselective Sequential Reactions: Access to Complex Chiral Architecture in One Pot

    SciTech Connect

    Boxer, Matthew B.; Yamamoto, Hisashi

    2008-04-02

    We have shown that the tris(trimethylsilyl)silyl (TTMSS) silyl enol ether of acetaldehyde undergoes aldehyde cross-aldol reactions with high selectivity and the extremely low catalyst loading (0.05 mol % of HNTf{sub 2}) allows for one-pot sequential reactions where acidic or basic nucleophiles can be subsequently added. Various ketone-derived silyl enol ethers, Grignard reagents, and dienes succeeded, generating relatively complex molecular architectures in a single step. This represents the first case where, in a single pot, highly acidic conditions followed by very basic conditions were tolerated to give products with high diastereoselectivities and good yields.

  8. Design of chiral urea-quaternary ammonium salt hybrid catalysts for asymmetric reactions of glycine Schiff bases†

    PubMed Central

    Tiffner, Maximilian; Novacek, Johanna; Busillo, Alfonso; Gratzer, Katharina; Massa, Antonio; Waser, Mario

    2015-01-01

    Bifunctional chiral urea-containing quaternary ammonium salts can be straightforwardly synthesised in good yield and with high structural diversity via a scalable and operationally simple highly telescoped sequence starting from trans-1,2-cyclohexanediamine. These novel hybrid catalysts were systematically investigated for their potential to control glycine Schiff bases in asymmetric addition reactions. It was found that Michael addition reactions and the herein presented aldol-initiated cascade reaction can be carried out to provide enantiomeric ratios up to 95 : 5 and good yields under mild conditions at room temperature. PMID:26504516

  9. An aromatic ion platform for enantioselective Brønsted acid catalysis.

    PubMed

    Gheewala, Chirag D; Collins, Bridget E; Lambert, Tristan H

    2016-02-26

    Chiral acid catalysts are useful for the synthesis of enantioenriched small molecules, but the standard catalysts require laborious and expensive preparations. Here, we describe a chiral Brønsted acid prepared in one step from naturally occurring (-)-menthol and readily available 1,2,3,4,5-pentacarbomethoxycyclopentadiene. Aromatic stabilization serves as a key contributing factor to the potent acidity of the resulting compound, which is shown to catalyze both Mukaiyama-Mannich and oxocarbenium aldol reactions with high efficiency and enantioselectivity. Catalyst loadings as low as 0.01 mole percent and preparative scalability (25 grams) are demonstrated. Alternative amide catalysts are also shown to be promising platforms. In addition to proton catalysis, a chiral anion pathway is demonstrated to be viable with this catalyst system. PMID:26917768

  10. Synthesis of octitols and the respective amino-derivatives from 'organo-aldols'.

    PubMed

    Łęczycka, Katarzyna; Chaciak, Bartosz; Cieplak, Maciej; Cmoch, Piotr; Jarosz, Sławomir

    2015-02-11

    Two diastereoisomeric keto-octoses, obtained in the reaction of 2,3:4,5-diacetone-D-arabinose with protected dihydroxyacetone catalyzed with L- or D-proline, were converted into octitols by stereoselective reduction of the carbonyl group with zinc borohydride and final deprotection. The study on the preparation of the respective amino-derivatives by reductive amination of these organo-adducts is presented; stereochemical aspects of these processes are discussed. PMID:25130931

  11. Application of the intramolecular isomerisation-aldolisation from allylic alcohols and allylic silyl ethers to the synthesis of indanones and indenones.

    PubMed

    Petrignet, Julien; Roisnel, Thierry; Grée, René

    2007-01-01

    A new access to indanones was discovered through a one-step nickel or iron-mediated transposition of 2-hydroxyisobenzofurans. Starting from the corresponding silylenol ethers, a new one-pot tandem isomerisation-Mukaiyama aldol process was also developed. These versatile strategies will be useful for the preparation of various types of indanones and indenones. PMID:17579904

  12. Linked strategy for the production of fuels via formose reaction.

    PubMed

    Deng, Jin; Pan, Tao; Xu, Qing; Chen, Meng-Yuan; Zhang, Ying; Guo, Qing-Xiang; Fu, Yao

    2013-01-01

    Formose reaction converts formaldehyde to carbohydrates. We found that formose reaction can be used linking the biomass gasification with the aqueous-phase processing (APP) to produce liquid transportation fuel in three steps. First, formaldehyde from syn-gas was converted to triose. This was followed by aldol condensation and dehydration to 4-hydroxymethylfurfural (4-HMF). Finally, 4-HMF was hydrogenated to produce 2,4-dimethylfuran (2,4-DMF) or C(9)-C(15) branched-chain alkanes as liquid transportation fuels. In the linked strategy, high energy-consuming pretreatment as well as expensive and polluting hydrolysis of biomass were omitted, but the high energy recovery of APP was inherited. In addition, the hexoketoses via formose reaction could be converted to HMFs directly without isomerization. A potential platform molecule 4-HMF was formed simultaneously in APP. PMID:23393625

  13. Linked strategy for the production of fuels via formose reaction

    PubMed Central

    Deng, Jin; Pan, Tao; Xu, Qing; Chen, Meng-Yuan; Zhang, Ying; Guo, Qing-Xiang; Fu, Yao

    2013-01-01

    Formose reaction converts formaldehyde to carbohydrates. We found that formose reaction can be used linking the biomass gasification with the aqueous-phase processing (APP) to produce liquid transportation fuel in three steps. First, formaldehyde from syn-gas was converted to triose. This was followed by aldol condensation and dehydration to 4-hydroxymethylfurfural (4-HMF). Finally, 4-HMF was hydrogenated to produce 2,4-dimethylfuran (2,4-DMF) or C9-C15 branched-chain alkanes as liquid transportation fuels. In the linked strategy, high energy-consuming pretreatment as well as expensive and polluting hydrolysis of biomass were omitted, but the high energy recovery of APP was inherited. In addition, the hexoketoses via formose reaction could be converted to HMFs directly without isomerization. A potential platform molecule 4-HMF was formed simultaneously in APP. PMID:23393625

  14. Effects of water on reactions for waste treatment, organic synthesis, and bio-refinery in sub- and supercritical water.

    PubMed

    Akizuki, Makoto; Fujii, Tatsuya; Hayashi, Rumiko; Oshima, Yoshito

    2014-01-01

    Current research analyzing the effects of water in the field of homogeneous and heterogeneous reactions of organics in sub- and supercritical water are reviewed in this article. Since the physical properties of water (e.g., density, ion product and dielectric constants) can affect the reaction rates and mechanisms of various reactions, understanding the effects that water can have is important in controlling reactions. For homogeneous reactions, the effects of water on oxidation, hydrolysis, aldol condensation, Beckman rearrangement and biomass refining were introduced including recent experimental results up to 100 MPa using special pressure-resistance equipment. For heterogeneous reactions, the effects of ion product on acid/base-catalyzed reactions, such as hydrothermal conversion of biomass-related compounds, organic synthesis in the context of bio-refinery, and hydration of olefins were described and how the reaction paths are controlled by the concentration of water and hydrogen ions was summarized. PMID:23867097

  15. Stereoselective Synthesis of Functionalized Pyrrolidines by the Diverted N-H Insertion Reaction of Metallocarbenes with β-Aminoketone Derivatives.

    PubMed

    Nicolle, Simon M; Lewis, William; Hayes, Christopher J; Moody, Christopher J

    2016-03-01

    A highly stereoselective route to functionalized pyrrolidines by the metal-catalyzed diverted N-H insertion of a range of diazocarbonyl compounds with β-aminoketone derivatives is described. A number of catalysts (rhodium(II) carboxylate dimers, copper(I) triflate, and an iron(III) porphyrin) are shown to promote the process under mild conditions to give a wide range of highly substituted proline derivatives. The reaction starts as a metallocarbene N-H insertion but is diverted by an intermolecular aldol reaction. PMID:26847664

  16. Studies on self-assembly phenomena of hydrophilization of microporous polypropylene membrane by acetone aldol condensation products: New separator for high-power alkaline batteries

    NASA Astrophysics Data System (ADS)

    Ciszewski, Aleksander; Rydzyńska, Bożena

    Commercial hydrophobic polypropylene (PP) membranes were modified by a novel chemical method. This procedure consists of two steps. In the first step, the virgin hydrophobic PP membrane is saturated with acetone; in the second step, the filled membrane is dipped in aqueous KOH solution (d = 1.28 g cm -3), i.e. in the electrolyte typical for the nickel-cadmium cell. This two-step procedure starts the aldol condensation process of acetone and its products accumulated and adsorbed onto walls of micropores make the membrane hydrophilic. The presented method provided the hydrophilic PP membrane, persistent and soaked with KOH solution with electrolytic resistance of 23-29 mΩ cm 2. This result was compared with the data obtained with commercial hydrophilic membranes: Celgard 3501 and Cellophane. The aldol condensation process of acetone was monitored using the HPLC-ES-MS technique, and modified PP membranes were evaluated by FT-IR and SEM measurements. With the above-mentioned membrane as a separator, nickel-cadmium cells showed good high-rate performance.

  17. Analysis of transition state stabilization by non-covalent interactions in the Houk-List model of organocatalyzed intermolecular Aldol additions using functional-group symmetry-adapted perturbation theory.

    PubMed

    Bakr, Brandon W; Sherrill, C David

    2016-04-21

    Rational design of catalysts would be aided by a better understanding of how non-covalent interactions stabilize transition states. Here, we apply the newly-developed Functional-Group Symmetry-Adapted Perturbation Theory (F-SAPT) to quantify non-covalent interactions in transition states of the proline-catalyzed intermolecular aldol reaction between benzaldehyde and cyclohexanone, according to the Houk-List mechanism [Bahmanyar et al., J. Am. Chem. Soc., 2003, 125, 2475]. A recent re-examination of this organocatalytic reaction by Rzepa and co-workers [Armstrong et al., Chem. Sci., 2014, 5, 2057] used electron density analysis to identify three key non-covalent interactions thought to influence stereoselectivity: (1) a favorable electrostatic interaction (originally identified by Houk and List) between the NCH(δ+) group of the enamine intermediate and the (δ-)O[double bond, length as m-dash]C of benzaldehyde; (2) a C-H/π interaction between the cyclohexene group of the enamine intermediate and the benzaldehyde phenyl ring; (3) a stabilizing contact between an ortho-hydrogen of the phenyl and an oxygen of the carboxylic acid group of the enamine. These three interactions have been directly computed using F-SAPT, which confirms the stabilizing interaction between an ortho-hydrogen and the carboxylic acid in the (S,S) and (R,S) transition state stereoisomers. F-SAPT analysis also finds stabilizing dispersion and electrostatic interactions due to a C-H/π interaction between the cyclohexene and phenyl groups in the (S,S) and (R,R) transition states. However, unfavorable exchange-repulsion cancels the attractive terms that favor these stereoisomers. Surprisingly, the interaction thought to be most important for stereoselectivity, the NCH(δ+)(δ-)O[double bond, length as m-dash]C interaction, is actually found to be repulsive due to the negative charge on the nitrogen. Hence, our results indicate that geometric analysis and/or density-based analysis does not

  18. Total Synthesis of Δ(12) -Prostaglandin J3 : Evolution of Synthetic Strategies to a Streamlined Process.

    PubMed

    Nicolaou, K C; Pulukuri, Kiran Kumar; Yu, Ruocheng; Rigol, Stephan; Heretsch, Philipp; Grove, Charles I; Hale, Christopher R H; ElMarrouni, Abdelatif

    2016-06-13

    The total synthesis of Δ(12) -prostaglandin J3 (Δ(12) -PGJ3 , 1), a reported leukemia stem cell ablator, through a number of strategies and tactics is described. The signature cross-conjugated dienone structural motif of 1 was forged by an aldol reaction/dehydration sequence from key building blocks enone 13 and aldehyde 14, whose lone stereocenters were generated by an asymmetric Tsuji-Trost reaction and an asymmetric Mukaiyama aldol reaction, respectively. During this program, a substituent-governed regioselectivity pattern for the Rh-catalyzed C-H functionalization of cyclopentenes and related olefins was discovered. The evolution of the synthesis of 1 from the original strategy to the final streamlined process proceeded through improvements in the construction of both fragments 13 and 14, exploration of the chemistry of the hitherto underutilized chiral lactone synthon 57, and a diastereoselective alkylation of a cyclopentenone intermediate. The described chemistry sets the stage for large-scale production of Δ(12) -PGJ3 and designed analogues for further biological and pharmacological studies. PMID:27187634

  19. Hydroxyapatite catalyzed aldol condensation: Synthesis, spectral linearity, antimicrobial and insect antifeedant activities of some 2,5-dimethyl-3-furyl chalcones

    NASA Astrophysics Data System (ADS)

    Subramanian, M.; Vanangamudi, G.; Thirunarayanan, G.

    2013-06-01

    A series of 2,5-dimethyl-3-furyl chalcones [2E-1-(2,5-dimethyl-3-furyl)-3-(substituted phenyl)-2-propen-1-ones] have been synthesized by Hydrotalcite catalyzed aldol condensation between 3-acetyl-2,5-dimethylfuron and substituted benzaldehydes. Yields of chalcones are more than 80%. These chalcones were characterized by their physical constants and spectral data. The group frequencies of infrared ν(cm-1) of CO s-cis and s-trans, CH in-plane and out of plane, CHdbnd CH out of plane, lbond2 Cdbnd Crbond2 out of plane modes, NMR chemical shifts δ(ppm) of Hα, Hβ, CO, Cα and Cβ of these chalcones were correlated with Hammett substituent constants, F and R parameters using single and multi-regression analyses. From the results of statistical analyses, the effects of substituents on the group frequencies are explained. Antibacterial, antifungal and insect antifeedant activities of these chalcones have been studied.

  20. Vapor-phase reaction of acetophenone with methanol or dimethyl carbonate on magnesium oxide and magnesium phosphates

    SciTech Connect

    Aramendia, M.A.; Borau, V.; Jimenez, C.; Marinas, J.M.; Romero, F.J.

    1999-04-01

    The vapor-phase reaction of acetophenone with methanol on magnesium oxide, various magnesium phosphates, and combinations of the two types of catalysts was studied. The process was found to involve the Meerwein-Ponndorf-Verley reaction, aldol condensations, dehydrations, and hydrogenations. The presence of basic sites is indispensable for the reaction to develop; however, acid sites also play an active role. The selectivity for each reaction product depends on the particular catalyst used. The total conversion is maximal with the catalysts containing the largest populations of acid and basic sites. Also, catalysts with large numbers of acid sites exhibit an increased selectivity towards the corresponding alkenes. The use of dimethyl carbonate instead of methanol alters the reaction selectivity to an extent dependent on the particular catalyst and operating conditions. However, this also results in markedly decreased total conversion in some instances.

  1. Three-Component Glycolate Michael Reactions of Enolates, Silyl Glyoxylates, and α,β-Enones

    PubMed Central

    Schmitt, Daniel C.; Malow, Ericka J.; Johnson, Jeffrey S.

    2012-01-01

    Silyl glyoxylates react with enolates and enones to afford either glycolate aldol or Michael adducts. Product identity is controlled by the countercation associated with the enolate. Reformatsky nucleophiles in the presence of additional Zn(OTf)2 result in aldol coupling (A), while lithium enolates provide the Michael coupling (B). Deprotonation of the aldol product A with LDA induces equilibration to form the minor diastereomer of Michael product B. This observation suggests that formation of the major diastereomer of Michael product B does not occur via an aldol/retro-aldol/Michael sequence. PMID:22394389

  2. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2014-11-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, Attenuated Total Reflectance-Fourier Transform Infrared and 1H Nuclear Magnetic Resonance spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene, which was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence for products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal

  3. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2015-04-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt%) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  4. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    PubMed Central

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2016-01-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40–80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  5. Synthesis of two subunits of the macrolide domain of the immunosuppressive agent sanglifehrin a and assembly of a macrolactone precursor. application of masamune anti-aldol condensation.

    PubMed

    Suttisintong, Khomson; White, James D

    2015-02-20

    Asymmetric anti-aldol coupling of a norephedrine-derived ester with an α-chiral aldehyde was used to synthesize a carboxylic acid representing the C13-C19 segment of the macrocyclic domain present in the immunosuppressive agent sanglifehrin A. Felkin addition set configuration at the C14-C17 stereotetrad in this unit in which hydroxyl functions at C15 and C17 were masked as an internal ketal. The carboxyl group of this segment was coupled to the N-terminus of the tripeptide portion (C1-N12) of sanglifehrin A macrolactone to assemble the C1-C19 domain. Synthesis of the C20-C25 subunit of sanglifehrin A containing a (23S) alcohol was completed via asymmetric allylation of (E)-3-iodo-2-methylprop-2-enal followed by oxidative cleavage of the terminal vinyl appendage and a Takai olefination with pinacol dichloromethylboronate. Esterification of this alcohol with a C1-C19 carboxylic acid furnished an open C1-C25 macrolactone precursor, but this substance failed to undergo macrocyclization via intramolecular Suzuki-Miyaura coupling. PMID:25584782

  6. Organic reactions increasing the absorption index of atmospheric sulfuric acid aerosols

    NASA Astrophysics Data System (ADS)

    Nozière, B.; Esteve, W.

    2005-02-01

    Unlike most environments present at Earth's surface atmospheric aerosols can be favorable to organic reactions. Among them, the acid-catalyzed aldol condensation of aldehydes and ketones produces light-absorbing compounds. In this work the increase of the absorption index of sulfuric acid solutions 50-96 wt. % resulting from the uptake of gas-phase acetaldehyde, acetone, and 2-butanone (methyl ethyl ketone), has been measured in the near UV and visible range. Our results indicate that the absorption index between 200 and 500 nm for stratospheric sulfuric aerosols exposed to 100 pptV of acetaldehyde (1 pptV = 10-12 v/v) would increase by four orders of magnitude over a two-year lifetime. Rough estimates based on previous radiative calculations suggest that this reaction could result in an increase of the radiative forcing of sulfate aerosols of the order of 0.01 W m-2, and that these processes are worth further investigation.

  7. Investigation of thermochemistry associated with the carbon-carbon coupling reactions of furan and furfural using ab initio methods.

    PubMed

    Liu, Cong; Assary, Rajeev S; Curtiss, Larry A

    2014-06-26

    Upgrading furan and small oxygenates obtained from the decomposition of cellulosic materials via formation of carbon-carbon bonds is critical to effective conversion of biomass to liquid transportation fuels. Simulation-driven molecular level understanding of carbon-carbon bond formation is required to design efficient catalysts and processes. Accurate quantum chemical methods are utilized here to predict the reaction energetics for conversion of furan (C4H4O) to C5-C8 ethers and the transformation of furfural (C5H6O2) to C13-C26 alkanes. Furan can be coupled with various C1 to C4 low molecular weight carbohydrates obtained from the pyrolysis via Diels-Alder type reactions in the gas phase to produce C5-C8 cyclic ethers. The computed reaction barriers for these reactions (∼25 kcal/mol) are lower than the cellulose activation or decomposition reactions (∼50 kcal/mol). Cycloaddition of C5-C8 cyclo ethers with furans can also occur in the gas phase, and the computed activation energy is similar to that of the first Diels-Alder reaction. Furfural, obtained from biomass, can be coupled with aldehydes or ketones with α-hydrogen atoms to form longer chain aldol products, and these aldol products can undergo vapor phase hydrocycloaddition (activation barrier of ∼20 kcal/mol) to form the precursors of C26 cyclic hydrocarbons. These thermochemical studies provide the basis for further vapor phase catalytic studies required for upgrading of furans/furfurals to longer chain hydrocarbons. PMID:24902118

  8. Enantio- and Diastereoselective Formal Hetero-Diels-Alder Reactions of Trifluoromethylated Enones Catalyzed by Chiral Primary Amines.

    PubMed

    Lin, Yong-Jun; Du, Li-Na; Kang, Tai-Ran; Liu, Quan-Zhong; Chen, Ze-Qin; He, Long

    2015-08-10

    Enantioselective formal hetero-Diels-Alder reactions of trifluoromethylated enones and 2-amino-1,3-butadienes generated in situ from aliphatic acyclic enones and chiral primary amines are reported. The corresponding tetrahydropyran-4-ones are formed in up to 94 % yield and with up to 94 % ee. The reaction was carried out through a stepwise mechanism, including initial aminocatalytic aldol condensation of 2-amino-1,3-butadiene to the trifluoromethylated carbonyl group followed by an intramolecular oxa-Michael addition. Both NMR investigation and theoretical calculations on the transition state indicate that the protonated tertiary amine could effectively activate the carbonyl group of the trifluoromethyl ketone to promote the addition process through hydrogen-bonding interaction of N-H⋅⋅⋅F and N-H⋅⋅⋅O simultaneously, and thus provide a chiral environment for the approach of amino-1,3-butadienes to the activated trifluoromethyl ketone, resulting in high enantioselectivity. PMID:26179273

  9. Markers of heterogeneous reaction products in α-pinene ozone secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Czoschke, Nadine M.; Jang, Myoseon

    A gas chromatograph iontrap mass spectrometer (GC-ITMS) was used to analyze the gas-and particle-phase products of α-pinene ozone oxidation in the presence of three different inorganic seed aerosols: sodium chloride, ammonium sulfate only, and ammonium sulfate with sulfuric acid. Products of α-pinene ozone oxidation common to the literature showed little difference in gas or particle-phase concentrations between seed types within the precision of the measurements even though significantly different aerosol yields were found between seed types. Small amounts of ring-opening products of four-membered cyclic oxygenates and markers of aldol condensation products were tentatively identified in the particle-phase for all seed types. These tentatively identified products are thought to be the result of acid-catalyzed heterogeneous reactions in the particle-phase or during sampling processes or analysis. The mechanisms for their formation are also proposed in this study.

  10. Synergistic Effects in Bimetallic Palladium-Copper Catalysts Improve Selectivity in Oxygenate Coupling Reactions.

    PubMed

    Goulas, Konstantinos A; Sreekumar, Sanil; Song, Yuying; Kharidehal, Purnima; Gunbas, Gorkem; Dietrich, Paul J; Johnson, Gregory R; Wang, Y C; Grippo, Adam M; Grabow, Lars C; Gokhale, Amit A; Toste, F Dean

    2016-06-01

    Condensation reactions such as Guerbet and aldol are important since they allow for C-C bond formation and give higher molecular weight oxygenates. An initial study identified Pd-supported on hydrotalcite as an active catalyst for the transformation, although this catalyst showed extensive undesirable decarbonylation. A catalyst containing Pd and Cu in a 3:1 ratio dramatically decreased decarbonylation, while preserving the high catalytic rates seen with Pd-based catalysts. A combination of XRD, EXAFS, TEM, and CO chemisorption and TPD revealed the formation of CuPd bimetallic nanoparticles with a Cu-enriched surface. Finally, density functional theory studies suggest that the surface segregation of Cu atoms in the bimetallic alloy catalyst produces Cu sites with increased reactivity, while the Pd sites responsible for unselective decarbonylation pathways are selectively poisoned by CO. PMID:27195582

  11. Hydrolysis/dehydration/aldol-condensation/hydrogenation of lignocellulosic biomass and biomass-derived carbohydrates in the presence of Pd/WO3-ZrO2 in a single reactor.

    PubMed

    Dedsuksophon, W; Faungnawakij, K; Champreda, V; Laosiripojana, N

    2011-01-01

    Hydrolysis/dehydration/aldol-condensation/hydrogenation of lignocellulosic-biomass (corncobs) and biomass-derived carbohydrates (tapioca flour) to produce water-soluble C5-C15 compounds was developed in a single reactor system. WO3-ZrO2 efficiently catalyzed the hydrolysis/dehydration of these feedstocks to 5-hydroxymethylfurfural and furfural, while the impregnation of WO3-ZrO2 with Pd allowed sequential aldolcondensation/hydrogenation of these furans to C5-C15 compounds. The highest C5-C15 yields of 14.8-20.3% were observed at a hydrolysis/dehydration temperature of 573 K for 5 min, an aldol-condensation temperature of 353 K for 30 h, and a hydrogenation temperature of 393 K for 6 h. The C5-C15 yield from tapioca flour was higher than that from corncobs (20.3% compared to 14.8%). Tapioca flour produced more C6/C9/C15, whereas corncobs generated more C5/C8/C13 compounds due to the presence of hemicellulose in the corncobs. These water-soluble organic compounds can be further converted to liquid alkanes with high cetane numbers for replacing diesel fuel in transportation applications. PMID:20934873

  12. Umpolung Reactions of α-Imino Esters: Useful Methods for the Preparation of α-Amino Acid Frameworks.

    PubMed

    Mizota, Isao; Shimizu, Makoto

    2016-04-01

    This paper summarizes our recent efforts toward the development of tandem reactions utilizing umpolung reactions of α-imino esters. A highly diastereoselective tandem N-alkylation-Mannich reaction of α-imino esters was developed. A tandem N-alkylation-addition reaction of α-imino esters derived from ethyl glyoxylate with various aldehydes proceeded to give 1,2-amino alcohols. The same reaction also proceeded efficiently using a novel flow system comprising two connected microreactors. Novel syntheses of α-quaternary alkynyl amino esters and allenoates were developed through the use of umpolung N-addition to β,γ-alkynyl α-imino esters, followed by regioselective acylation. In addition, a highly regioselective tandem N-alkylation-vinylogous aldol reaction of β,γ-alkenyl α-imino esters was discovered. N-Alkylation of α-iminophosphonates followed by a Horner-Wadsworth-Emmons reaction with aldehydes occurred to afford enamines, which can be used in a four-component coupling reaction with methyl vinyl ketone. α-N-Acyloxyimino esters served as highly efficient substrates for the N,N,C-trialkylation reaction to introduce various nucleophiles at the imino nitrogen and carbon atoms. PMID:26833635

  13. Drug Reactions

    MedlinePlus

    Most of the time, medicines make our lives better. They reduce aches and pains, fight infections, and control problems such as high blood pressure or diabetes. But medicines can also cause unwanted reactions. One problem is ...

  14. Adsorption and Reaction of Acetaldehyde on Stoichiometric and Defective SrTiO₃(100) Surfaces

    SciTech Connect

    Wang, Li Q.; Ferris, Kim F.; Azad, Samina; Engelhard, Mark H.; Peden, Charles HF.

    2004-02-05

    The adsorption and reaction of acetaldehyde (CH{sub 3}CHO), on stoichiometric (TiO{sub 2}-terminated) and reduced SrTiO{sub 3}(100) surfaces, have been investigated using temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). Acetaldehyde adsorbs molecularly on the stoichiometric SrTiO{sub 3}(100) surface that contains predominantly Ti{sup 4+} cations. The Ti{sup 4+} sites on the stoichiometric SrTiO{sub 3}(100) surface are not sufficiently active for surface reactions such as aldol condensation, as opposed to the Ti{sup 4+} ions on the TiO{sub 2}(001) surface. However, decomposition and redox reactions of acetaldehyde occur in the presence of surface defects created by Ar{sup +} sputtering. The decomposition products following reactions of acetaldehyde on the defective surface include H{sub 2}, C{sub 2}H{sub 4}, CO, C{sub 4}H{sub 6}, and C{sub 4}H{sub 8}. Reductive coupling, to produce C{sub 2}H{sub 4} and C{sub 4}H{sub 8} is the main reaction pathway for decomposition of acetaldehyde on the sputter reduced SrTiO{sub 3}(100) surface.

  15. Synthesis and Biological Evaluation of Lactimidomycin and Its Analogues.

    PubMed

    Larsen, Brian J; Sun, Zhankui; Lachacz, Eric; Khomutnyk, Yaroslav; Soellner, Matthew B; Nagorny, Pavel

    2015-12-21

    The studies culminating in the total synthesis of the glutarimide-containing eukaryote translation elongation inhibitor lactimidomycin are described. The optimized synthetic route features a Zn(II)-mediated intramolecular Horner-Wadsworth-Emmons (HWE) reaction resulting in a highly stereoselective formation of the strained 12-membered macrolactone of lactimidomycin on a 423 mg scale. The presence of the E,Z-diene functionality was found to be key for effective macrocyclizations as a complete removal of these unsaturation units resulted in exclusive formation of the dimer rather than monocyclic enoate. The synthetic route features a late-stage installation of the glutarimide functionality via an asymmetric catalytic Mukaiyama aldol reaction, which allows for a quick generation of lactimidomycin homolog 55 containing two additional carbons in the glutarimide side chain. Similar to lactimidomycin, this analog was found to possess cytotoxicity against MDA-MB-231 breast cancer cells (GI50 =1-3 μM) using in vitro 2D and 3D assays. Although lactimidomycin was found to be the most potent compound in terms of anticancer activity, 55 as well as truncated analogues 50-52 lacking the glutarimide side-chain were found to be significantly less toxic against human mammary epithelial cells. PMID:26577990

  16. Drug Reactions

    MedlinePlus

    ... using any of these products. Some types of food may also cause adverse drug reactions. For example, grapefruit and grapefruit juice, as well as alcohol and caffeine, may affect how drugs work. Every time your doctor ... interactions with any foods or beverages. What about medicines I've used ...

  17. Glucose and fructose decomposition in subcritical and supercritical water: Detailed reaction pathway, mechanisms, and kinetics

    SciTech Connect

    Kabyemela, B.M.; Adschiri, T.; Malaluan, R.M.; Arai, K.

    1999-08-01

    The authors are developing a new catalyst-free process of cellulose decomposition in supercritical water. In their initial study on the cellulose decomposition in supercritical water, the main products of cellulose decomposition were found to be oligomers of glucose (cellobiose, cellotriose, etc.) and glucose at short residence times (400 C, 25 MPa, 0.05 s). The kinetics of glucose at these conditions can be useful in understanding the reaction pathways of cellulose. Experiments were performed on the products of glucose decomposition at short residence times to elucidate the reaction pathways and evaluate kinetics of glucose and fructose decomposition in sub- and supercritical water. The conditions were a temperature of 300--400 C and pressure of 25--40 MPa for extremely short residence times between 0.02 and 2 s. The products of glucose decomposition were fructose, a product of isomerization, 1,6-anhydroglucose, a product of dehydration, and erythrose and glyceraldehyde, products of C-C bond cleavage. Fructose underwent reactions similar to glucose except that it did not form 1,6-anhydroglucose and isomerization to glucose is negligible. The mechanism for the products formed from C-C bond cleavage could be explained by reverse aldol condensation and the double-bond rule of the respective enediols formed during the Lobry de Bruyn Alberda van Ekenstein transformation. The differential equations resulting from the proposed pathways were fit to experimental results to obtain the kinetic rate constants.

  18. The Reactions of Acetone with the Surfaces of Uranium Dioxide Single Crystal and Thin Film

    SciTech Connect

    King,R.; Senanayake, S.; Chong, S.; Idriss, H.

    2007-01-01

    The reaction of acetone, as an example of a carbonyl compound, is studied over UO2 (1 1 1) single crystal and thin film surfaces. Over the stoichiometric single crystal surface, acetone is molecularly and weakly adsorbed with a computed activation energy for desorption in the range of 95-65 kJ/mol with pre-exponential factors between 1011 and 1013 s-1. On the contrary, acetone reacts very strongly on the O-defected single crystal and thin film surfaces. In addition to total decomposition evidence of aldolization and cyclization reactions were seen. The thin film of UO2 was studied by synchrotron light, providing high resolution photoelectron spectroscopy in the core level, and high sensitivity in the both the core and valence band regions. The U5f line was considerably enhanced at grazing angle when compared to that obtained at normal angle for the O-defected surface, showing that the surface is more reduced than the next layers. The U 4f lines indicated the presence of U cations in lower oxidation states than +4 for the O-defected surface. These lines were considerably attenuated upon adsorption of acetone, due to surface oxidation by C{double_bond}O bond dissociation. The reaction pathway for acetone on the O-defected surface is presented, and compared to that of the previously studied acetaldehyde molecule.

  19. Common inorganic ions are efficient catalysts for organic reactions in atmospheric aerosols and other natural environments

    NASA Astrophysics Data System (ADS)

    Nozière, B.; Dziedzic, P.; Córdova, A.

    2009-01-01

    In this work, inorganic ammonium ions, NH4+, and carbonate ions, CO32-, are reported for the first time as catalysts for organic reactions in atmospheric aerosols and other natural environments at the Earth's surface. These reactions include the formation of C-C and C-O bonds by aldol condensation and acetal formation, and reveal a new aspect of the interactions between organic and inorganic materials in natural environments. The catalytic properties of inorganic ammonium ions, in particular, were not previously known in chemistry. The reactions were found to be as fast in tropospheric ammonium sulfate composition as in concentrated sulfuric acid. The ubiquitous presence and large concentrations of ammonium ions in tropospheric aerosols would make of ammonium catalysis a main consumption pathway for organic compounds in these aerosols, while acid catalysis would have a minor contribution. In particular, ammonium catalysis would account quantitatively for the aging of carbonyl compounds into secondary ''fulvic'' compounds in tropospheric aerosols, a transformation affecting the optical properties of these aerosols. In general, ammonium catalysis is likely to be responsible for many observations previously attributed to acid catalysis in the troposphere.

  20. Adsorption and Reaction of Acetaldehyde on Stoichiometric and Defective SrTiO{sub 3}(100) Surfaces

    SciTech Connect

    Wang, Li Q.; Ferris, Kim F.; Azad, Samina; Engelhard, Mark H.; Peden, Charles HF.

    2004-02-05

    The adsorption and reaction of acetaldehyde (CH{sub 3}CHO), on stoichiometric (TiO{sub 2}-terminated) and reduced SrTiO{sub 3}(100) surfaces, have been investigated using temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). Acetaldehyde adsorbs molecularly on the stoichiometric SrTiO{sub 3}(100) surface that contains predominantly Ti{sup 4+} cations. The Ti{sup 4+} sites on the stoichiometric SrTiO{sub 3}(100) surface are not sufficiently active for surface reactions such as aldol condensation, as opposed to the Ti{sup 4+} ions on the TiO{sub 2}(001) surface. However, decomposition and redox reactions of acetaldehyde occur in the presence of surface defects created by Ar{sup +} sputtering. The decomposition products following reactions of acetaldehyde on the defective surface include H{sub 2}, C{sub 2}H{sub 4}, CO, C{sub 4}H{sub 6} and C{sub 4}H{sub 8}. Reductive coupling, to produce C{sub 2}H{sub 4} and C{sub 4}H{sub 8}, is the main reaction pathway for decomposition of acetaldehyde on the sputter reduced SrTiO{sub 3}(100) surface.

  1. Enantioselective Total Synthesis of (-)-Pironetin

    PubMed Central

    Crimmins, Michael T.; Dechert, Anne-Marie R.

    2009-01-01

    The enantioselective total synthesis of pironetin has been achieved in 11 steps from known aldehyde 2. The synthesis relies on the formation of 5 out of 6 stereocenters through titanium mediated iterative aldol reactions. Key steps in this synthesis include an acetal aldol reaction to establish the stereochemistry at C8 and C9, an acetate aldol reaction, and “Evans” syn aldol reaction. PMID:19281219

  2. Formation of Lactic Acid from Cellulosic Biomass by Alkaline Hydrothermal Reaction

    NASA Astrophysics Data System (ADS)

    Yan, X.; Jini, F.; Kishita, A.; Enomoto, H.; Tohji, K.

    2008-02-01

    Glucose, as a model compound of cellulosic biomass, was used as a test material. Ca(OH)2 and NaOH were selected as alkali. Results showed that both NaOH and Ca(OH)2, can promote the formation of lactic acid in a hydrothermal reaction of glucose. In the case of the addition of NaOH, lactic acid was obtained with a good yield of 27% based on a carbon base at 300 °C for 60 s with a NaOH concentration of 2.5 M. In the case of the addition of Ca(OH)2, the highest yield of lactic acid is 20%, which occurred at 300 °C for 60 s with a Ca(OH)2 concentration of 0.32 M. The formation mechanisms of lactic acid from glucose were also discussed according to intermediate products identified. Lactic acid may be generated via formaldehyde, glycolaldehyde besides via the aldose having three carbon atoms in hydrothermal reaction which all formed by the reverse aldol condensation of hexoses.

  3. Secondary organic aerosol formation by self-reactions of methylglyoxal and glyoxal in evaporating droplets.

    PubMed

    De Haan, David O; Corrigan, Ashley L; Tolbert, Margaret A; Jimenez, Jose L; Wood, Stephanie E; Turley, Jacob J

    2009-11-01

    Glyoxal and methylglyoxal are scavenged by clouds, where a fraction of these compounds are oxidized during the lifetime of the droplet. As a cloud droplet evaporates, the remaining glyoxal and methylglyoxal must either form low-volatility compounds such as oligomers and remain in the aerosol phase, or transfer back to the gas phase. A series of experiments on evaporating aqueous aerosol droplets indicates that over the atmospherically relevant concentration range for clouds and fog (4-1000 microM), 33 +/- 11% of glyoxal and 19 +/- 13% of methylglyoxal remains in the aerosol phase while the remainder evaporates. Measurements of aerosol density and time-dependent AMS signal changes are consistent with the formation of oligomers by each compound during the drying process. Unlike glyoxal, which forms acetal oligomers, exact mass AMS data indicates that the majority of methylglyoxal oligomers are formed by aldol condensation reactions, likely catalyzed by pyruvic acid, formed from methylglyoxal disproportionation. Our measurements of evaporation fractions can be used to estimate the global aerosol formation potential of glyoxal and methylglyoxal via self-reactions at 1 and 1.6 Tg C yr(-1), respectively. This is a factor of 4 less than the SOA formed by these compounds if their uptake is assumed to be irreversible. However, these estimates are likely lower limits for their total aerosol formation potential because oxidants and amines will also react with glyoxal and methylglyoxal to form additional low-volatility products. PMID:19924942

  4. 11-Step Total Synthesis of Pallambins C and D

    PubMed Central

    2016-01-01

    The structurally intriguing terpenes pallambins C and D have been assembled in only 11 steps from a cheap commodity chemical: furfuryl alcohol. This synthesis, which features a redox-economic approach free of protecting-group manipulations, assembles all four-ring systems via a sequential cyclization strategy. Of these four-ring constructing operations, two are classical (Robinson annulation and Mukaiyama aldol) and two are newly devised. During the course of this work a method for the difunctionalization of enol ethers was developed, and the scope of this transformation was explored. PMID:27284962

  5. 11-Step Total Synthesis of Pallambins C and D.

    PubMed

    Martinez, Luisruben P; Umemiya, Shigenobu; Wengryniuk, Sarah E; Baran, Phil S

    2016-06-22

    The structurally intriguing terpenes pallambins C and D have been assembled in only 11 steps from a cheap commodity chemical: furfuryl alcohol. This synthesis, which features a redox-economic approach free of protecting-group manipulations, assembles all four-ring systems via a sequential cyclization strategy. Of these four-ring constructing operations, two are classical (Robinson annulation and Mukaiyama aldol) and two are newly devised. During the course of this work a method for the difunctionalization of enol ethers was developed, and the scope of this transformation was explored. PMID:27284962

  6. Temperature- and pH-dependent aqueous-phase kinetics of the reactions of glyoxal and methylglyoxal with atmospheric amines and ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Sedehi, Nahzaneen; Takano, Hiromi; Blasic, Vanessa A.; Sullivan, Kristin A.; De Haan, David O.

    2013-10-01

    Reactions of glyoxal (Glx) and methylglyoxal (MG) with primary amines and ammonium salts may produce brown carbon and N-containing oligomers in aqueous aerosol. 1H NMR monitoring of reactant losses and product appearance in bulk aqueous reactions were used to derive rate constants and quantify competing reaction pathways as a function of pH and temperature. Glx + ammonium sulfate (AS) and amine reactions generate products containing C-N bonds, with rates depending directly on pH: rate = (70 ± 60) M-1 s-1fAld [Glx]totfAm [Am]tot, where fAld is the fraction of aldehyde with a dehydrated aldehyde functional group, and fAm is the fraction of amine or ammonia that is deprotonated at a given pH. MG + amine reactions generate mostly aldol condensation products and exhibit less pH dependence: rate = 10[(0.36 ± 0.06) × pH - (3.6 ± 0.3)] M-1 s-1fAld [MG]tot [Am]tot. Aldehyde + AS reactions are less temperature-dependent (Ea = 18 ± 8 kJ mol-1) than corresponding amine reactions (Ea = 50 ± 11 kJ mol-1). Using aerosol concentrations of [OH] = 10-12 M, [amine]tot = [AS] = 0.1 M, fGlx = 0.046 and fMG = 0.09, we estimate that OH radical reactions are normally the major aerosol-phase sink for both dicarbonyl compounds. However, reactions with AS and amines together can account for up to 12 and 45% of daytime aerosol-phase glyoxal and methylglyoxal reactivity, respectively, in marine aerosol at pH 5.5. Reactions with AS and amines become less important in acidic or non-marine aerosol, but may still be significant atmospheric sources of brown carbon, imidazoles, and nitrogen-containing oligomers.

  7. The Glyoxal Clock Reaction

    ERIC Educational Resources Information Center

    Ealy, Julie B.; Negron, Alexandra Rodriguez; Stephens, Jessica; Stauffer, Rebecca; Furrow, Stanley D.

    2007-01-01

    Research on the glyoxal clock reaction has led to adaptation of the clock reaction to a general chemistry experiment. This particular reaction is just one of many that used formaldehyde in the past. The kinetics of the glyoxal clock makes the reaction suitable as a general chemistry lab using a Calculator Based Laboratory (CBL) or a LabPro. The…

  8. Gas-Phase Reactions of Glyceraldehyde and 1,3-Dihydroxyacetone as Models for Levoglucosan Conversion during Biomass Gasification.

    PubMed

    Fukutome, Asuka; Kawamoto, Haruo; Saka, Shiro

    2016-04-01

    Levoglucosan, the major intermediate in wood gasification, is decomposed selectively to C1/C2 fragments at 550-600 °C. Kinetic analyses suggest that radical chain mechanisms with the involvement of short-lived carbonyl intermediates explain the lower production of larger fragments. To address this hypothesis, the gas-phase reactivities of glyceraldehyde (Gald), 1,3-dihydroxyacetone (DHA), and glycerol, as simple C3 model compounds, were compared at 400-800 °C under N2 flow at residence times of 0.9-1.4 s. Retro-aldol fragmentation and dehydration proceeded for the pyrolysis of Gald/DHA at 400 °C, far below the 600 °C decomposition point of glycerol. Pyrolysis of Gald/DHA generated exclusively syngas (CO and H2). On the basis of the results of theoretical calculations, the effects of carbonyl intermediates on reactivity were explained by postulating uni- and bimolecular reactions, although the bimolecular reactions became less effective at elevated temperatures. PMID:26893057

  9. Practice Gaps: Drug Reactions.

    PubMed

    Wolverton, Stephen E

    2016-07-01

    The term "drug reactions" is relevant to dermatology in three categories of reactions: cutaneous drug reactions without systemic features, cutaneous drug reactions with systemic features, and systemic drugs prescribed by the dermatologist with systematic adverse effects. This article uses examples from each of these categories to illustrate several important principles central to drug reaction diagnosis and management. The information presented will help clinicians attain the highest possible level of certainty before making clinical decisions. PMID:27363888

  10. Continuous detonation reaction engine

    NASA Technical Reports Server (NTRS)

    Lange, O. H.; Stein, R. J.; Tubbs, H. E.

    1968-01-01

    Reaction engine operates on the principles of a controlled condensed detonation rather than on the principles of gas expansion. The detonation results in reaction products that are expelled at a much higher velocity.

  11. Allergic reactions (image)

    MedlinePlus

    Allergic reaction is a sensitivity to a specific substance, called an allergen, that is contacted through the skin, inhaled into the lungs, swallowed or injected. The body's reaction to an allergen can be mild, such as ...

  12. Allergic reactions (image)

    MedlinePlus

    Allergic reaction can be provoked by skin contact with poison plants, chemicals and animal scratches, as well as by ... dust, nuts and shellfish, may also cause allergic reaction. Medications such as penicillin and other antibiotics are ...

  13. Microscale Thermite Reactions.

    ERIC Educational Resources Information Center

    Arnaiz, Francisco J.; Aguado, Rafael; Arnaiz, Susana

    1998-01-01

    Describes the adaptation of thermite (aluminum with metal oxides) reactions from whole-class demonstrations to student-run micro-reactions. Lists detailed directions and possible variations of the experiment. (WRM)

  14. Microfluidic chemical reaction circuits

    DOEpatents

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C.; Huang, Jiang; Heath, James R.; Phelps, Michael E.; Quake, Stephen R.; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  15. Reaction coordinates for electron transfer reactions

    SciTech Connect

    Rasaiah, Jayendran C.; Zhu Jianjun

    2008-12-07

    The polarization fluctuation and energy gap formulations of the reaction coordinate for outer sphere electron transfer are linearly related to the constant energy constraint Lagrangian multiplier m in Marcus' theory of electron transfer. The quadratic dependence of the free energies of the reactant and product intermediates on m and m+1, respectively, leads to similar dependence of the free energies on the reaction coordinates and to the same dependence of the activation energy on the reorganization energy and the standard reaction free energy. Within the approximations of a continuum model of the solvent and linear response of the longitudinal polarization to the electric field in Marcus' theory, both formulations of the reaction coordinate are expected to lead to the same results.

  16. Proline catalyzed α-aminoxylation reaction in the synthesis of biologically active compounds.

    PubMed

    Kumar, Pradeep; Dwivedi, Namrata

    2013-02-19

    The search for new and efficient ways to synthesize optically pure compounds is an active area of research in organic synthesis. Asymmetric catalysis provides a practical, cost-effective, and efficient method to create a variety of complex natural products containing multiple stereocenters. In recent years, chemists have become more interested in using small organic molecules to catalyze organic reactions. As a result, organocatalysis has emerged both as a promising strategy and as an alternative to catalysis with expensive proteins or toxic metals. One of the most successful and widely studied secondary amine-based organocatalysts is proline. This small molecule can catalyze numerous reactions such as the aldol, Mannich, Michael addition, Robinson annulation, Diels-Alder, α-functionalization, α-amination, and α-aminoxylation reactions. Catalytic and enantioselective α-oxygenation of carbonyl compounds is an important reaction to access a variety of useful building blocks for bioactive molecules. Proline catalyzed α-aminoxylation using nitrosobenzene as oxygen source, followed by in situ reduction, gives enantiomerically pure 1,2-diol. This molecule can then undergo a variety of organic reactions. In addition, proline organocatalysis provides access to an assortment of biologically active natural products including mevinoline (a cholesterol lowering drug), tetrahydrolipstatin (an antiobesity drug), R(+)-α-lipoic acid, and bovidic acid. In this Account, we present an iterative organocatalytic approach to synthesize both syn- and anti-1,3-polyols, both enantio- and stereoselectively. This method is primarily based on proline-catalyzed sequential α-aminoxylation and Horner-Wadsworth-Emmons (HWE) olefination of aldehyde to give a γ-hydroxy ester. In addition, we briefly illustrate the broad application of our recently developed strategy for 1,3-polyols, which serve as valuable, enantiopure building blocks for polyketides and other structurally diverse and

  17. Catalytic diastereoselective petasis reactions.

    PubMed

    Muncipinto, Giovanni; Moquist, Philip N; Schreiber, Stuart L; Schaus, Scott E

    2011-08-22

    Multicomponent Petasis reactions: the first diastereoselective Petasis reaction catalyzed by chiral biphenols that enables the synthesis of syn and anti β-amino alcohols in pure form has been developed. The reaction exploits a multicomponent approach that involves boronates, α-hydroxy aldehydes, and amines. PMID:21751322

  18. Reaction efficiency effects on binary chemical reactions

    NASA Astrophysics Data System (ADS)

    Lazaridis, Filippos; Savara, Aditya; Argyrakis, Panos

    2014-09-01

    We study the effect of the variation of reaction efficiency in binary reactions. We use the well-known A + B → 0 model, which has been extensively studied in the past. We perform simulations on this model where we vary the efficiency of reaction, i.e., when two particles meet they do not instantly react, as has been assumed in previous studies, but they react with a probability γ, where γ is in the range 0 < γ < 1. Our results show that at small γ values the system is reaction limited, but as γ increases it crosses over to a diffusion limited behavior. At early times, for small γ values, the particle density falls slower than for larger γ values. This fall-off goes over a crossover point, around the value of γ = 0.50 for high initial densities. Under a variety of conditions simulated, we find that the crossover point was dependent on the initial concentration but not on the lattice size. For intermediate and long times simulations, all γ values (in the depleted reciprocal density versus time plot) converge to the same behavior. These theoretical results are useful in models of epidemic reactions and epidemic spreading, where a contagion from one neighbor to the next is not always successful but proceeds with a certain probability, an analogous effect with the reaction probability examined in the current work.

  19. A new color of the synthetic chameleon methoxyallene: synthesis of trifluoromethyl-substituted pyridinol derivatives: an unusual reaction mechanism, a remarkable crystal packing, and first palladium-catalyzed coupling reactions.

    PubMed

    Flögel, Oliver; Dash, Jyotirmayee; Brüdgam, Irene; Hartl, Hans; Reissig, Hans-Ulrich

    2004-09-01

    Addition of lithiated methoxyallene to pivalonitrile afforded after aqueous workup the expected iminoallene 1 in excellent yield. Treatment of this intermediate with silver nitrate accomplished the desired cyclization to the electron-rich pyrrole derivative 2 in moderate yield. Surprisingly, trifluoroacetic acid converted iminoallene 1 to a mixture of enamide 3 and trifluoromethyl-substituted pyridinol 4 (together with its tautomer 5). A plausible mechanism proposed for this intriguing transformation involves addition of trifluoroacetate to the central allene carbon atom of an allenyl iminium intermediate as crucial step. Enamide 3 is converted to pyridinol 4 by an intramolecular aldol-type process. A practical direct synthesis of trifluoromethyl-substituted pyridinols 4, 10, 11, and 12 starting from typical nitriles and methoxyallene was established. Pyridinol 10 shows an interesting crystal packing with three molecules in the elementary cell and a remarkable helical supramolecular arrangement. Trifluoromethyl-substituted pyridinol 4 was converted to the corresponding pyridyl nonaflate 13, which is an excellent precursor for palladium-catalyzed reactions leading to pyridine derivatives 14-16 in good to excellent yields. The new synthesis of trifluoromethyl-substituted pyridines disclosed here demonstrates a novel reactivity pattern of lithiated methoxyallene which is incorporated into the products as the unusual tripolar synthon B. PMID:15352110

  20. Quantification of monosaccharides through multiple-reaction monitoring liquid chromatography/mass spectrometry using an aminopropyl column.

    PubMed

    Hammad, Loubna A; Derryberry, Dakota Z; Jmeian, Yazen R; Mechref, Yehia

    2010-06-15

    A simple, sensitive, and reproducible quantitative liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was designed for the simultaneous quantification of monosaccharides derived from glycoprotein and blood serum using a multiple-reaction monitoring (MRM) approach. Sialic acids and neutral monosaccharides were efficiently separated using an amino-bonded silica phase column. Neutral monosaccharide molecules were detected as their aldol acetate anion adducts [M + CH(3)CO(2)](-) using electrospray ionization in negative ion MRM mode, while sialic acids were detected as deprotonated ions [M-H](-). The new method did not require a reduction step, and exhibited very high sensitivity to carbohydrates with limits of detection of 1 pg for the sugars studied. The linearity of the described approach spanned over three orders of magnitude (pg to ng). The method was validated for monosaccharides originating from N-linked glycans attached to glycoproteins and glycoproteins found in human blood serum. The method effectively quantified monosaccharides originating from as little as 1 microg of glycoprotein and 5 microL of blood serum. The method was robust, reproducible, and highly sensitive. It did not require reduction, derivatization or postcolumn addition of reagents. PMID:20486252

  1. Reactions to radiocontrast media.

    PubMed

    Hong, Sandra J; Wong, Johnson T; Bloch, Kurt J

    2002-01-01

    Adverse reactions to radiocontrast media (RCM) occur unexpectedly and may be life-threatening. This article describes an anaphylactoid reaction (AR) in one patient. The term AR refers to a syndrome clinically similar to anaphylaxis, but these reactions are independent of immunoglobulin E antibody-mediated mast cell or basophil degranulation. This article briefly reviews the literature regarding RCMs and types of reactions to RCM. The risk factors for AR to RCM infusions will be discussed along with current concepts of the pathogenesis of RCM-induced ARs. This article also describes the therapeutic management of patients who have had a previous adverse reaction to RCM and provides an approach to patients who have breakthrough reactions despite adequate premedication, but require additional radiographic studies. PMID:12476546

  2. Noncanonical Reactions of Flavoenzymes

    PubMed Central

    Sobrado, Pablo

    2012-01-01

    Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel chemistries. Recent mechanistic and structural data supporting novel flavin functionalities in reactions catalyzed by chorismate synthase, type II isopentenyl diphosphate isomerase, UDP-galactopyranose mutase, and alkyl-dihydroxyacetonephosphate synthase are presented in this review. In these enzymes, the flavin plays either a direct role in acid/base reactions or as a nucleophile or electrophile. In addition, the flavin cofactor is proposed to function as a “molecular scaffold” in the formation of UDP-galactofuranose and alkyl-dihydroxyacetonephosphate by forming a covalent adduct with reaction intermediates. PMID:23203060

  3. Mechanisms in Knockout Reactions

    NASA Astrophysics Data System (ADS)

    Bazin, D.; Charity, R. J.; de Souza, R. T.; Famiano, M. A.; Gade, A.; Henzl, V.; Henzlova, D.; Hudan, S.; Lee, J.; Lukyanov, S.; Lynch, W. G.; McDaniel, S.; Mocko, M.; Obertelli, A.; Rogers, A. M.; Sobotka, L. G.; Terry, J. R.; Tostevin, J. A.; Tsang, M. B.; Wallace, M. S.

    2009-06-01

    We report the first detailed study of the relative importance of the stripping and diffraction mechanisms involved in nucleon knockout reactions, by the use of a coincidence measurement of the residue and fast proton following one-proton knockout reactions. The measurements used the S800 spectrograph in combination with the HiRA detector array at the NSCL. Results for the reactions Be9(C9,B8+X)Y and Be9(B8,Be7+X)Y are presented and compared with theoretical predictions for the two reaction mechanisms calculated using the eikonal model. The data show a clear distinction between the stripping and diffraction mechanisms and the measured relative proportions are very well reproduced by the reaction theory. This agreement adds support to the results of knockout reaction analyses and their applications to the spectroscopy of rare isotopes.

  4. Anaphylactic reactions to cinoxacin.

    PubMed Central

    Stricker, B. H.; Slagboom, G.; Demaeseneer, R.; Slootmaekers, V.; Thijs, I.; Olsson, S.

    1988-01-01

    During 1981 to mid-1988 three cases of anaphylactic shock after treatment with the quinolone derivative cinoxacin were reviewed by the Netherlands Centre for Monitoring of Adverse Reactions to Drugs and 17 cases of an anaphylactic type of reaction notified to the World Health Organisation Collaborating Centre for International Drug Monitoring. In five out of six patients for whom data were available the reaction began shortly after taking a single capsule of a second or next course of treatment. Cinoxacin is related to nalidixic acid, and one patient previously treated with that agent subsequently had an anaphylactoid reaction to cinoxacin and later developed a skin reaction to nalidixic acid. There were no deaths, and patients treated as an emergency with plasma expanders or with adrenaline and corticosteroids generally recovered promptly and uneventfully. In view of the potentially fatal consequences of anaphylactic reactions to cinoxacin and other quinolones doctors should take care when prescribing these drugs. PMID:3147004

  5. Symmetry-Driven Strategy for the Assembly of the Core Tetracycle of (+)-Ryanodine: Synthetic Utility of a Cobalt-Catalyzed Olefin Oxidation and α-Alkoxy Bridgehead Radical Reaction.

    PubMed

    Nagatomo, Masanori; Hagiwara, Koji; Masuda, Kengo; Koshimizu, Masaki; Kawamata, Takahiro; Matsui, Yuki; Urabe, Daisuke; Inoue, Masayuki

    2016-01-01

    Ryanodine (1) is a potent modulator of intracellular calcium release channels, designated as ryanodine receptors. The exceptionally complex molecular architecture of 1 comprises a highly oxygenated pentacyclic system with eleven contiguous stereogenic centers, which makes it a formidable target for organic synthesis. We identified the embedded C2 -symmetric tricyclic substructure within 1. This specific recognition permitted us to design a concise synthetic route to enantiopure tricycle 9 by utilizing a series of pairwise functionalizations. The four tetrasubstituted carbon centers of 9 were effectively constructed by three key reactions, a dearomatizing Diels-Alder reaction, the kinetic resolution of the obtained racemic 14 through asymmetric methanolysis, and the transannular aldol reaction of the eight-membered diketone 10. A new combination of cobalt-catalyzed hydroperoxidation and NfF-promoted elimination enabled conversion of the hindered olefin of 9 into the corresponding ketone, thus realizing the desymmetrization. Finally, the tetrasubstituted carbon was stereospecifically installed by utilizing the α-alkoxy bridgehead radical to deliver the core tetracycle 7 with the six contiguous tetrasubstituted carbon centers. Consequently, the present work not only accomplishes efficient assembly of four out of the five fused rings of 1, but also develops two new powerful methodologies: two-step ketone formation and bridgehead radical reaction. PMID:26616151

  6. Sleeve reaction chamber system

    SciTech Connect

    Northrup, M. Allen; Beeman, Barton V.; Benett, William J.; Hadley, Dean R.; Landre, Phoebe; Lehew, Stacy L.; Krulevitch, Peter A.

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  7. Metal-mullite reactions

    SciTech Connect

    Loehman, R.E.; Tomsia, A.P.

    1993-11-01

    Mullite was reacted with pure Al and with Ti or Zr dissolved in Ag-Cu eutectic alloys at 1100 C in Ar. Analysis of the Ti and Zr-containing specimens showed reaction zones with compositions of Ti{sub 50}Cu{sub 3O}O{sub 20} and ZrO{sub 2}, respectively. The Al-mullite specimen showed much more extensive penetration into the ceramic and a more diffuse reaction zone than the other two systems. Al{sub 2}O{sub 3} and Si were the main reaction products for Al-mullite reaction.

  8. Organic Reactions in Aqueous Media (by Chao-Jun Li and Tak-Hang Chan)

    NASA Astrophysics Data System (ADS)

    Rosan, Reviewed Alan M.

    2000-06-01

    the index. The text does not explicitly include a discussion of what has come to be broadly termed biphasic reaction conditions. Understandably, enzymatic reactions are beyond the scope of the presentation. This book has a decidedly applied character with an understated environmental theme, and the authors succinctly present the extraordinary effects of water on the kinetics, efficiency, and stereoselectivity of a large number of diverse reactions. In addition to their emphasis on the historically significant aqueous Diels-Alder reaction, discovered in 1980, and the literature regarding reactions of various nucleophilic organometals, the authors are to be commended for gathering together a wide and diverse body of information: it is clear that many of the examples shown are gems buried among larger bodies of work. Thus the book does an excellent job of culling and surveying a vast amount of data. There is, however, less emphasis on organizing the mechanistic bases underlying these often dramatic effects. For example, the apparent lack of generality of the effect of water on rate and selectivity in pericyclic reactions calls for some theoretical foundation. The singularly effective use of aqueous TlOH in the Suzuki reaction is cited without comment. On the other hand, the authors' concept of a mechanistic triad that incorporates to various degrees anion, radical, or covalent character in the carbon-carbon bond-forming step between various organometals and carbonyl substrates is appealing and suggests the need for future sophisticated experimental design. The most interesting sections are those dealing with synthesis and industrial applications. Unfortunately the latter is also the shortest chapter. The synthetic examples are timely and well chosen and include water-promoted Heck, Stille, Suzuki, and aldol reactions. There is an extensive, highly informative listing and survey of the use of water-soluble phosphines (both achiral and chiral) and an excellent discussion

  9. Synthesis and Applications of Silyl 2-Methylprop-2-ene-1-sulfinates in Preparative Silylation and GC-Derivatization Reactions of Polyols and Carbohydrates.

    PubMed

    Marković, Dean; Tchawou, Wandji Augustin; Novosjolova, Irina; Laclef, Sylvain; Stepanovs, Dmitrijs; Turks, Māris; Vogel, Pierre

    2016-03-14

    Trimethylsilyl, triethylsilyl, tert-butyldimethylsilyl, and triisopropylsilyl 2-methylprop-2-ene-1-sulfinates were prepared through (CuOTf)2⋅C6H6-catalyzed sila-ene reactions of the corresponding methallylsilanes with SO2 at 50 °C. Sterically hindered, epimerizable, and base-sensitive alcohols gave the corresponding silyl ethers in high yields and purities at room temperature and under neutral conditions. As the byproducts of the silylation reaction (SO2 +isobutylene) are volatile, the workup was simplified to solvent evaporation. The developed method can be employed for the chemo- and regioselective semiprotection of polyols and glycosides and for the silylation of unstable aldols. The high reactivity of the developed reagents is shown by the synthesis of sterically hindered per-O-tert-butyldimethylsilyl-α-D-glucopyranose, the X-ray crystallographic analysis of which is the first for a per-O-silylated hexopyranose. The per-O-silylation of polyols, hydroxy carboxylic acids, and carbohydrates with trimethylsilyl 2-methylprop-2-ene-1-sulfinate was coupled with the GC analysis of nonvolatile polyhydroxy compounds both qualitatively and quantitatively. PMID:26864218

  10. REUSABLE REACTION VESSEL

    DOEpatents

    Soine, T.S.

    1963-02-26

    This patent shows a reusable reaction vessel for such high temperature reactions as the reduction of actinide metal chlorides by calcium metal. The vessel consists of an outer metal shell, an inner container of refractory material such as sintered magnesia, and between these, a bed of loose refractory material impregnated with thermally conductive inorganic salts. (AEC)

  11. Nuclear Reaction Data Centers

    SciTech Connect

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab.

  12. Hydrogen evolution reaction catalyst

    DOEpatents

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  13. Chemical Reaction Problem Solving.

    ERIC Educational Resources Information Center

    Veal, William

    1999-01-01

    Discusses the role of chemical-equation problem solving in helping students predict reaction products. Methods for helping students learn this process must be taught to students and future teachers by using pedagogical skills within the content of chemistry. Emphasizes that solving chemical reactions should involve creative cognition where…

  14. Applications of Reaction Rate

    ERIC Educational Resources Information Center

    Cunningham, Kevin

    2007-01-01

    This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. Specifically, students are asked to represent the reaction they have chosen with an acceptable chemical equation, identify a factor that influences its rate and explain how and why it…

  15. Degradations and Rearrangement Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  16. Oscillating Reactions: Two Analogies

    ERIC Educational Resources Information Center

    Petruševski, Vladimir M.; Stojanovska, Marina I.; Šoptrajanov, Bojan T.

    2007-01-01

    Oscillating chemical reactions are truly spectacular phenomena, and demonstrations are always appreciated by the class. However, explaining such reactions to high school or first-year university students is problematic, because it may seem that no acceptable explanation is possible unless the students have profound knowledge of both physical…

  17. Clock Reaction: Outreach Attraction

    ERIC Educational Resources Information Center

    Carpenter, Yuen-ying; Phillips, Heather A.; Jakubinek, Michael B.

    2010-01-01

    Chemistry students are often introduced to the concept of reaction rates through demonstrations or laboratory activities involving the well-known iodine clock reaction. For example, a laboratory experiment involving thiosulfate as an iodine scavenger is part of the first-year general chemistry laboratory curriculum at Dalhousie University. With…

  18. Chemical burn or reaction

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000059.htm Chemical burn or reaction To use the sharing features on this page, please enable JavaScript. Chemicals that touch skin can lead to a reaction on the skin, throughout the body, or both. ...

  19. Lipases in lipophilization reactions.

    PubMed

    Villeneuve, Pierre

    2007-01-01

    Lipases are used in various sectors, as pharmaceutical, food or detergency industry. Their advantage versus classical chemical catalysts is that they exhibit a better selectivity and operate in milder reaction conditions. Theses enzymes can also be used in lipophilization reactions corresponding to the grafting of a lipophilic moiety to a hydrophilic one such as sugar, amino acids and proteins, or phenolic compounds. The major difficulty to overcome in such enzyme-catalyzed reaction resides in the fact that the two involved substrates greatly differ in term of polarity and solvent affinity. Therefore, several key parameters are to be considered in order to achieve the reaction in satisfactory kinetics and yields. The present review discusses the nature of such parameters (eg solvent nature, water activity, chemical modification of substrates) and illustrates their effect with examples of lipase-catalyzed lipophilization reactions of various sugar, amino acids or phenolic derivatives. PMID:17681737

  20. Formation of C-C and C-O bonds and oxygen removal in reactions of alkanediols, alkanols, and alkanals on copper catalysts.

    PubMed

    Sad, María E; Neurock, Matthew; Iglesia, Enrique

    2011-12-21

    This study reports evidence for catalytic deoxygenation of alkanols, alkanals, and alkanediols on dispersed Cu clusters with minimal use of external H(2) and with the concurrent formation of new C-C and C-O bonds. These catalysts selectively remove O-atoms from these oxygenates as CO or CO(2) through decarbonylation or decarboxylation routes, respectively, that use C-atoms present within reactants or as H(2)O using H(2) added or formed in situ from CO/H(2)O mixtures via water-gas shift. Cu catalysts fully convert 1,3-propanediol to equilibrated propanol-propanal intermediates that subsequently form larger oxygenates via aldol-type condensation and esterification routes without detectable involvement of the oxide supports. Propanal-propanol-H(2) equilibration is mediated by their chemisorption and interconversion at surfaces via C-H and O-H activation and propoxide intermediates. The kinetic effects of H(2), propanal, and propanol pressures on turnover rates, taken together with measured selectivities and the established chemical events for base-catalyzed condensation and esterification reactions, indicate that both reactions involve kinetically relevant bimolecular steps in which propoxide species, acting as the base, abstract the α-hydrogen in adsorbed propanal (condensation) or attack the electrophilic C-atom at its carbonyl group (esterification). These weakly held basic alkoxides render Cu surfaces able to mediate C-C and C-O formation reactions typically catalyzed by basic sites inherent in the catalyst, instead of provided by coadsorbed organic moieties. Turnover rates for condensation and esterification reactions decrease with increasing Cu dispersion, because low-coordination corner and edge atoms prevalent on small clusters stabilize adsorbed intermediates and increase the activation barriers for the bimolecular kinetically relevant steps required for both reactions. PMID:22023723

  1. Reactions of oriented molecules.

    PubMed

    Brooks, P R

    1976-07-01

    Beams of oriented molecules have been used to directly study geometrical requirements in chemical reactions. These studies have shown that reactivity is much greater in some orientations than others and demonstrated the existence of steric effects. For some reactions portions of the orientation results are in good accord with traditional views of steric hindrance, but for others it is clear that our chemical intuition needs recalibrating. Indeed, the information gained from simultaneously orienting the reactants and observing the scattering angle of the products may lead to new insights about the detailed mechanism of certain reactions. Further work must be done to extend the scope and detail of the studies described here. More detailed information is needed on the CH(3)I reaction and the CF(3)I reaction. The effects of alkyl groups of various sizes and alkali metals of various sizes are of interest. In addition, reactions where a long-lived complex is formed should be studied to see if orientation is important. Finally, it would be of interest to apply the technique to the sort of reactions that led to our interest in the first place: the S(N)2 displacements in alkyl halides where the fascinating Walden inversion occurs. PMID:17793988

  2. Mechanisms in knockout reactions

    NASA Astrophysics Data System (ADS)

    Bazin, D.; Charity, R. J.; de Souza, R. T.; Famiano, M. A.; Gade, A.; Henzl, V.; Henzlova, D.; Hudan, S.; Lee, J.; Lukyanov, S.; Lynch, W. G.; McDaniel, S.; Mocko, M.; Obertelli, A.; Rogers, A. M.; Sobotka, L. G.; Terry, J. R.; Tostevin, J. A.; Tsang, M. B.; Wallace, M. S.

    2009-10-01

    We report on the first detailed study of the mechanisms involved in knockout reactions, via a coincidence measurement of the residue and fast proton in one-proton knockout reactions, using the S800 spectrograph in combination with the HiRA detector array at the NSCL. Results on the reactions ^9Be(^9C,^8B+X)Y and ^9Be(^8B,^7Be+X)Y are presented. They are compared with theoretical predictions for both the diffraction (elastic breakup) and stripping (inelastic breakup) reaction mechanisms, as calculated in the eikonal model. The data shows a clear distinction between the two reaction mechanisms, and the observed respective proportions are very well reproduced by the reaction theory. This agreement supports the results of knockout reaction analyses and their applications to the spectroscopy of rare isotopes. In particular, this add considerable support to the use of the eikonal model as a quantitative tool, able, for example, to determine single-particle spectroscopic strengths in rare isotopes.

  3. Enhancing chemical reactions

    DOEpatents

    Morrey, John R.

    1978-01-01

    Methods of enhancing selected chemical reactions. The population of a selected high vibrational energy state of a reactant molecule is increased substantially above its population at thermal equilibrium by directing onto the molecule a beam of radiant energy from a laser having a combination of frequency and intensity selected to pump the selected energy state, and the reaction is carried out with the temperature, pressure, and concentrations of reactants maintained at a combination of values selected to optimize the reaction in preference to thermal degradation by transforming the absorbed energy into translational motion. The reaction temperature is selected to optimize the reaction. Typically a laser and a frequency doubler emit radiant energy at frequencies of .nu. and 2.nu. into an optical dye within an optical cavity capable of being tuned to a wanted frequency .delta. or a parametric oscillator comprising a non-centrosymmetric crystal having two indices of refraction, to emit radiant energy at the frequencies of .nu., 2.nu., and .delta. (and, with a parametric oscillator, also at 2.nu.-.delta.). Each unwanted frequency is filtered out, and each desired frequency is focused to the desired radiation flux within a reaction chamber and is reflected repeatedly through the chamber while reactants are fed into the chamber and reaction products are removed therefrom.

  4. Hypersensitivity reactions to corticosteroids.

    PubMed

    Vatti, Rani R; Ali, Fatima; Teuber, Suzanne; Chang, Christopher; Gershwin, M Eric

    2014-08-01

    Hypersensitivity reactions to corticosteroids (CS) are rare in the general population, but they are not uncommon in high-risk groups such as patients who receive repeated doses of CS. Hypersensitivity reactions to steroids are broadly divided into two categories: immediate reactions, typically occurring within 1 h of drug administration, and non-immediate reactions, which manifest more than an hour after drug administration. The latter group is more common. We reviewed the literature using the search terms "hypersensitivity to steroids, adverse effects of steroids, steroid allergy, allergic contact dermatitis, corticosteroid side effects, and type I hypersensitivity" to identify studies or clinical reports of steroid hypersensitivity. We discuss the prevalence, mechanism, presentation, evaluation, and therapeutic options in corticosteroid hypersensitivity reactions. There is a paucity of literature on corticosteroid allergy, with most reports being case reports. Most reports involve non-systemic application of corticosteroids. Steroid hypersensitivity has been associated with type I IgE-mediated allergy including anaphylaxis. The overall prevalence of type I steroid hypersensitivity is estimated to be 0.3-0.5%. Allergic contact dermatitis (ACD) is the most commonly reported non-immediate hypersensitivity reaction and usually follows topical CS application. Atopic dermatitis and stasis dermatitis of the lower extremities are risk factors for the development of ACD from topical CS. Patients can also develop hypersensitivity reactions to nasal, inhaled, oral, and parenteral CS. A close and detailed evaluation is required for the clinician to confirm the presence of a true hypersensitivity reaction to the suspected drug and choose the safest alternative. Choosing an alternative CS is not only paramount to the patient's safety but also ameliorates the worry of developing an allergic, and potentially fatal, steroid hypersensitivity reaction. This evaluation becomes

  5. NEUTRONIC REACTION SYSTEM

    DOEpatents

    Wigner, E.P.

    1963-09-01

    A nuclear reactor system is described for breeding fissionable material, including a heat-exchange tank, a high- and a low-pressure chamber therein, heat- exchange tubes connecting these chambers, a solution of U/sup 233/ in heavy water in a reaction container within the tank, a slurry of thorium dioxide in heavy water in a second container surrounding the first container, an inlet conduit including a pump connecting the low pressure chamber to the reaction container, an outlet conduit connecting the high pressure chamber to the reaction container, and means of removing gaseous fission products released in both chambers. (AEC)

  6. Reactor for exothermic reactions

    DOEpatents

    Smith, Jr., Lawrence A.; Hearn, Dennis; Jones, Jr., Edward M.

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  7. Iodine Clock Reaction.

    ERIC Educational Resources Information Center

    Mitchell, Richard S.

    1996-01-01

    Describes a combination of solutions that can be used in the study of kinetics using the iodine clock reaction. The combination slows down degradation of the prepared solutions and can be used successfully for several weeks. (JRH)

  8. Untoward penicillin reactions

    PubMed Central

    Guthe, T.; Idsöe, O.; Willcox, R. R.

    1958-01-01

    The literature on untoward reactions following the administration of penicillin is reviewed. These reactions, including a certain number of deaths which have been reported, are of particular interest to health administrations and to WHO in view of the large-scale programmes for controlling the treponematoses which are now under way—programmes affecting millions of people in many parts of the world. The most serious problems are anaphylactic sensitivity phenomena and superinfection or cross-infection with penicillin-resistant organisms, and the reactions involved range in intensity from the mildest to the fatal; the incidence of the latter is estimated at 0.1-0.3 per million injections. The authors point out that with increasing use of penicillin, more persons are likely to become sensitized and the number of reactions can therefore be expected to rise. The best prevention against such an increase is the restriction of the unnecessary use of penicillin. PMID:13596877

  9. Catalysis in reaction networks.

    PubMed

    Gopalkrishnan, Manoj

    2011-12-01

    We define catalytic networks as chemical reaction networks with an essentially catalytic reaction pathway: one which is "on" in the presence of certain catalysts and "off" in their absence. We show that examples of catalytic networks include synthetic DNA molecular circuits that have been shown to perform signal amplification and molecular logic. Recall that a critical siphon is a subset of the species in a chemical reaction network whose absence is forward invariant and stoichiometrically compatible with a positive point. Our main theorem is that all weakly-reversible networks with critical siphons are catalytic. Consequently, we obtain new proofs for the persistence of atomic event-systems of Adleman et al., and normal networks of Gnacadja. We define autocatalytic networks, and conjecture that a weakly-reversible reaction network has critical siphons if and only if it is autocatalytic. PMID:21503834

  10. Chemisorption And Precipitation Reactions

    EPA Science Inventory

    The transport and bioavailability of chemical components within soils is, in part, controlled by partitioning between solids and solution. General terms used to describe these partitioning reactions include chemisorption and precipitation. Chemisorption is inclusive of the suit...

  11. An Illuminating Reaction.

    ERIC Educational Resources Information Center

    Matthews, Catherine E.

    1996-01-01

    Describes the use of carbide lights as an excellent mechanism for introducing or reviewing many basic chemistry concepts including elements and compounds, endothermic and exothermic reactions, physical and chemical changes, and balancing chemical equations. (JRH)

  12. Reactor for exothermic reactions

    DOEpatents

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  13. Autocatalysis in reaction networks.

    PubMed

    Deshpande, Abhishek; Gopalkrishnan, Manoj

    2014-10-01

    The persistence conjecture is a long-standing open problem in chemical reaction network theory. It concerns the behavior of solutions to coupled ODE systems that arise from applying mass-action kinetics to a network of chemical reactions. The idea is that if all reactions are reversible in a weak sense, then no species can go extinct. A notion that has been found useful in thinking about persistence is that of "critical siphon." We explore the combinatorics of critical siphons, with a view toward the persistence conjecture. We introduce the notions of "drainable" and "self-replicable" (or autocatalytic) siphons. We show that: Every minimal critical siphon is either drainable or self-replicable; reaction networks without drainable siphons are persistent; and nonautocatalytic weakly reversible networks are persistent. Our results clarify that the difficulties in proving the persistence conjecture are essentially due to competition between drainable and self-replicable siphons. PMID:25245394

  14. Adverse reactions to sulfites

    PubMed Central

    Yang, William H.; Purchase, Emerson C.R.

    1985-01-01

    Sulfites are widely used as preservatives in the food and pharmaceutical industries. In the United States more than 250 cases of sulfite-related adverse reactions, including anaphylactic shock, asthmatic attacks, urticaria and angioedema, nausea, abdominal pain and diarrhea, seizures and death, have been reported, including 6 deaths allegedly associated with restaurant food containing sulfites. In Canada 10 sulfite-related adverse reactions have been documented, and 1 death suspected to be sulfite-related has occurred. The exact mechanism of sulfite-induced reactions is unknown. Practising physicians should be aware of the clinical manifestations of sulfite-related adverse reactions as well as which foods and pharmaceuticals contain sulfites. Cases should be reported to health officials and proper advice given to the victims to prevent further exposure to sulfites. The food industry, including beer and wine manufacturers, and the pharmaceutical industry should consider using alternative preservatives. In the interim, they should list any sulfites in their products. PMID:4052897

  15. Cu(II)-Gd(III) cryogenic magnetic refrigerants and Cu8Dy9 single-molecule magnet generated by in situ reactions of picolinaldehyde and acetylpyridine: experimental and theoretical study.

    PubMed

    Liu, Jun-Liang; Lin, Wei-Quan; Chen, Yan-Cong; Gómez-Coca, Silvia; Aravena, Daniel; Ruiz, Eliseo; Leng, Ji-Dong; Tong, Ming-Liang

    2013-12-16

    A series of heterometallic [Ln(III)(x)Cu(II)(y)] complexes, [Gd2Cu2]n (1), [Gd4Cu8] (2), [Ln9Cu8] (Ln=Gd, 3·Gd; Ln=Dy, 3·Dy), were successfully synthesized by a one-pot route at room temperature with three kinds of in situ carbonyl-related reactions: Cannizzaro reaction, aldol reaction, and oxidation. This strategy led to dysprosium analogues that behaved as single-molecule magnets (SMMs) and gadolinium analogues that showed significant magnetocaloric effect (MCE). In this study a numerical DFT approach is proposed by using pseudopotentials to calculate the exchange coupling constants in three polynuclear [Gd(x)Cu(y)] complexes; with these values exact diagonalization or quantum Monte Carlo simulations have been performed to calculate the variation of the magnetic entropy involved in the MCE. For the [Dy9Cu8] complexes, local magnetic properties of the Dy(III) centers have been determined by using the CASSCF+RASSI method. PMID:24265054

  16. Oxygen evolution reaction catalysis

    DOEpatents

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  17. Jets in hadronic reactions

    SciTech Connect

    Paige, F.E.

    1983-01-01

    Recent experimental data on the properties of jets in hadronic reactions are reviewed and compared with theoretical expectations. Jets are clearly established as the dominant process for high E/sub T/ events in hadronic reactions. The cross section and the other properties of these events are in qualitative and even semiquantitative agreement with expectations based on perturbative QCD. However, we can not yet make precise tests of QCD, primarily because there are substantial uncertainties in the theoretical calculations. 45 references. (WHK)

  18. [Cutaneous adverse drug reactions].

    PubMed

    Lebrun-Vignes, B; Valeyrie-Allanore, L

    2015-04-01

    Cutaneous adverse drug reactions (CADR) represent a heterogeneous field including various clinical patterns without specific features suggesting drug causality. Exanthematous eruptions, urticaria and vasculitis are the most common forms of CADR. Fixed eruption is uncommon in western countries. Serious reactions (fatal outcome, sequelae) represent 2% of CADR: bullous reactions (Stevens-Johnson syndrome, toxic epidermal necrolysis), DRESS (drug reaction with eosinophilia and systemic symptoms or drug-induced hypersensitivity syndrome) and acute generalized exanthematous pustulosis (AGEP). These forms must be quickly diagnosed to guide their management. The main risk factors are immunosuppression, autoimmunity and some HLA alleles in bullous reactions and DRESS. Most systemic drugs may induce cutaneous adverse reactions, especially antibiotics, anticonvulsivants, antineoplastic drugs, non-steroidal anti-inflammatory drugs, allopurinol and contrast media. Pathogenesis includes immediate or delayed immunologic mechanism, usually not related to dose, and pharmacologic/toxic mechanism, commonly dose-dependent or time-dependent. In case of immunologic mechanism, allergologic exploration is possible to clarify drug causality, with a variable sensitivity according to the drug and to the CADR type. It includes epicutaneous patch testing, prick test and intradermal test. However, no in vivo or in vitro test can confirm the drug causality. To determine the cause of the eruption, a logical approach based on clinical characteristics, chronologic factors and elimination of differential diagnosis is required, completed with a literature search. A reporting to pharmacovigilance network is essential in case of a serious CADR whatever the suspected drug and in any case if the involved drug is a newly marketed one or unusually related to cutaneous reactions. PMID:25458866

  19. High Resolution Reaction Intermediates of rabbit Muscle Fructose-1,6-bisphosphate Aldolase: Substrate Cleavage and Induced Fit

    SciTech Connect

    St-Jean,M.; Lafrance-Vanasse, J.; Liotard, B.; Sygusch, J.

    2005-01-01

    Crystal structures were determined to 1.8-Angstrom resolution of the glycolytic enzyme fructose-1, 6-bis(phosphate) aldolase trapped in complex with its substrate and a competitive inhibitor, mannitol-1, 6-bis(phosphate). The enzyme substrate complex corresponded to the postulated Schiff base intermediate and has reaction geometry consistent with incipient C3-C4 bond cleavage catalyzed by Glu-187, which is adjacent to the Schiff base forming Lys-229. Atom arrangement about the cleaved bond in the reaction intermediate mimics a pericyclic transition state occurring in non-enzymatic aldol condensations. Lys-146 hydrogen bonds the substrate C4 hydroxyl and assists substrate cleavage by stabilizing the developing negative charge on the C4 hydroxyl during proton abstraction. Mannitol-1, 6-bis(phosphate) forms a non-covalent complex in the active site whose binding geometry mimics the covalent carbinolamine precursor. Glu-187 hydrogen bonds the C2 hydroxyl of the inhibitor in the enzyme complex substantiating a proton transfer role by Glu-187 in catalyzing the conversion of the carbinolamine intermediate to Schiff base. Modeling of the acyclic substrate configuration into the active site shows Glu-187, in acid form, hydrogen bonding both substrate C2 carbonyl and C4 hydroxyl, thereby aligning the substrate ketose for nucleophilic attack by Lys-229. The multi-functional role by Glu-187 epitomizes a canonical mechanistic feature conserved in Schiff base forming aldolases catalyzing carbohydrate metabolism. Trapping of tagatose-1, 6-bis(phosphate), a diastereoisomer of fructose-1, 6-bis(phosphate), displayed stereospecific discrimination and reduced ketohexose binding specificity. Each ligand induces homologous conformational changes in two adjacent a-helical regions that promote phosphate binding in the active site.

  20. Immediate reaction to clarithromycin.

    PubMed

    Gangemi, S; Ricciardi, L; Fedele, R; Isola, S; Purello-D'Ambrosio, F

    2001-01-01

    We present the case of bronchospastic reaction to clarithromycin had during a drug challenge test. Personal allergic history was negative for respiratory allergies and positive for adverse drug reactions to general and regional anesthesia and to ceftriaxone. After the administration of 1/4 of therapeutic dose of clarithromycin the patient showed dyspnea, cough and bronchospasm in all the lung fields. The positivity of the test was confirmed by the negativity to the administration of placebo. The quickness and the clinical characteristic of the adverse reaction suggest a pathogenic mechanism of immediate-type hypersensitivity. On reviewing the literature we have found no reports of bronchospastic reaction to clarithromycin. Macrolides are a class of antibiotics mainly used in the last years in place of beta-lactams because of a broad spectrum of action and a low allergic power. In fact, there are few reports on allergic reactions to these molecules. Clarithromycin is one of the latest macrolides, characterised by the presence of a 14-carbon-atom lactone ring as erythromycin, active on a wide spectrum of pathogens. PMID:11449533

  1. Find favorable reactions faster

    SciTech Connect

    Yaws, C.L.; Chiang, P.Y. )

    1988-11-01

    Now, equations are given to identify whether the reactions are thermodynamically favorable. The method uses Gibbs free energy of formation for the reactants and products. The equation for any 700 major organic compounds is given as temperature coefficients. Then the reaction can be tested at various temperature levels beyond the standard 298/sup 0/K conditions imposed by many other data tabulations. Data for the water and hydrogen chloride are also included. Gibbs free energy of formation of ideal gas (..delta..G/sub f/, jkoule/g-mol) is calculated from the tabulated coefficients (A, B, C) and the temperature (T, /sup 0/K) using the following equation: (1) ..delta..G/sub f/ = A + BT + CT/sup 2/. Chemical equilibrium for a reaction is associated with the change in Gibbs free energy (..delta..G/sub r/) calculated as follows: (2) ..delta..G/sub r/ = ..delta..G/sub f/, products - ..delta..G/sub f/, reactants. If the change in Gibbs free energy is negative, the thermodynamics for the reaction are favorable. On the other hand, if the change in Gibbs free energy is highly positive, the thermodynamics for the reaction are not favorable and may be feasible only under special circumstances.

  2. Nanoparticle Reactions on Chip

    NASA Astrophysics Data System (ADS)

    Köhler, J. M.; Kirner, Th.; Wagner, J.; Csáki, A.; Möller, R.; Fritzsche, W.

    The handling of heterogenous systems in micro reactors is difficult due to their adhesion and transport behaviour. Therefore, the formation of precipitates and gas bubbles has to be avoided in micro reaction technology, in most cases. But, micro channels and other micro reactors offer interesting possibilities for the control of reaction conditions and transport by diffusion and convection due to the laminar flow caused by small Reynolds numbers. This can be used for the preparation and modification of objects, which are much smaller than the cross section of microchannels. The formation of colloidal solutions and the change of surface states of nano particles are two important tasks for the application of chip reactors in nanoparticle technology. Some concepts for the preparation and reaction of nanoparticles in modular chip reactor arrangements will be discussed.

  3. Hipersensitivity Reactions to Corticosteroids.

    PubMed

    Berbegal, L; DeLeon, F J; Silvestre, J F

    2016-03-01

    Corticosteroids are widely used drugs in the clinical practice, especially by topic application in dermatology. These substances may act as allergens and produce immediate and delayed hypersensitivity reactions. Allergic contact dermatitis is the most frequent presentation of corticosteroid allergy and it should be studied by patch testing in specific units. The corticosteroids included in the Spanish standard battery are good markers but not ideal. Therefore, if those makers are positive, it is useful to apply a specific battery of corticosteroids and the drugs provided by patients. Immediate reactions are relatively rare but potentially severe, and it is important to confirm the sensitization profile and to guide the use of alternative corticosteroids, because they are often necessary in several diseases. In this article we review the main concepts regarding these two types of hypersensitivity reactions in corticosteroid allergy, as well as their approach in the clinical practice. PMID:26621334

  4. Cutaneous reactions to vaccinations.

    PubMed

    Rosenblatt, Adena E; Stein, Sarah L

    2015-01-01

    Vaccinations are important for infectious disease prevention; however, there are adverse effects of vaccines, many of which are cutaneous. Some of these reactions are due to nonspecific inflammation and irritation at the injection site, whereas other reactions are directly related to the live attenuated virus. Rarely, vaccinations have been associated with generalized hypersensitivity reactions, such as erythema multiforme, Stevens-Johnson syndrome, urticaria, acute generalized exanthematous pustulosis, and drug hypersensitivity syndrome. The onset of certain inflammatory dermatologic conditions, such as lichen planus, granuloma annulare, and pemphigoid, were reported to occur shortly after vaccine administration. Allergic contact dermatitis can develop at the injection site, typically due to adjuvant ingredients in the vaccine, such as thimerosal and aluminum. Vaccinations are important to promote development of both individual and herd immunity. Although most vaccinations are considered relatively safe, there may be adverse effects associated with any vaccine. Cutaneous manifestations make up a large portion of the types of reactions associated with vaccines. There are many different reasons for the development of a cutaneous reaction to a vaccination. Some are directly related to the injection of a live attenuated virus, such as varicella or vaccinia (for immunity to smallpox), whereas others cause more nonspecific erythema and swelling at the injection site, as a result of local inflammation or irritation. Vaccinations have also been associated in rare reports with generalized hypersensitivity reactions, such as erythema multiforme, Stevens-Johnson syndrome, urticaria, acute generalized exanthematous pustulosis, and drug hypersensitivity syndrome. There have been case reports associating the administration of a vaccine with the new onset of a dermatologic condition, such as lichen planus, granuloma annulare, and Sweet syndrome. Finally, allergic contact

  5. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  6. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  7. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  8. Chemical Reactions at Surfaces

    SciTech Connect

    Michael Henderson and Nancy Ryan Gray

    2010-04-14

    Chemical reactions at surfaces underlie some of the most important processes of today, including catalysis, energy conversion, microelectronics, human health and the environment. Understanding surface chemical reactions at a fundamental level is at the core of the field of surface science. The Gordon Research Conference on Chemical Reactions at Surfaces is one of the premiere meetings in the field. The program this year will cover a broad range of topics, including heterogeneous catalysis and surface chemistry, surfaces in environmental chemistry and energy conversion, reactions at the liquid-solid and liquid-gas interface, electronic materials growth and surface modification, biological interfaces, and electrons and photons at surfaces. An exciting program is planned, with contributions from outstanding speakers and discussion leaders from the international scientific community. The conference provides a dynamic environment with ample time for discussion and interaction. Attendees are encouraged to present posters; the poster sessions are historically well attended and stimulate additional discussions. The conference provides an excellent opportunity for junior researchers (e.g. graduate students or postdocs) to present their work and interact with established leaders in the field.

  9. Radiobiology of tissue reactions.

    PubMed

    Dörr, W

    2015-06-01

    Tissue effects of radiation exposure are observed in virtually all normal tissues, with interactions when several organs are involved. Early reactions occur in turnover tissues, where proliferative impairment results in hypoplasia; late reactions, based on combined parenchymal, vascular, and connective tissue changes, result in loss of function within the exposed volume; consequential late effects develop through interactions between early and late effects in the same organ; and very late effects are dominated by vascular sequelae. Invariably, involvement of the immune system is observed. Importantly, latent times of late effects are inversely dependent on the biologically equieffective dose. Each tissue component and--importantly--each individual symptom/endpoint displays a specific dose-effect relationship. Equieffective doses are modulated by exposure conditions: in particular, dose-rate reduction--down to chronic levels--and dose fractionation impact on late responding tissues, while overall exposure time predominantly affects early (and consequential late) reactions. Consequences of partial organ exposure are related to tissue architecture. In 'tubular' organs (gastrointestinal tract, but also vasculature), punctual exposure affects function in downstream compartments. In 'parallel' organs, such as liver or lungs, only exposure of a significant (organ-dependent) fraction of the total volume results in clinical consequences. Forthcoming studies must address biomarkers of the individual risk for tissue reactions, and strategies to prevent/mitigate tissue effects after exposure. PMID:25816259

  10. Reaction and Response.

    ERIC Educational Resources Information Center

    Armento, Beverly J.; And Others

    1993-01-01

    Provides a reaction by three economic educators to an article by Raymond C. Miller calling for the elimination of economics. Contends that traditional economics does not necessarily lead to the degradation of the environment. Argues that economics should not promote any set of social values. (CFR)