Science.gov

Sample records for mukaiyama aldol reactions

  1. Mukaiyama Aldol Reactions in Aqueous Media

    PubMed Central

    Kitanosono, Taku; Kobayashi, Sh?

    2013-01-01

    Mukaiyama aldol reactions in aqueous media have been surveyed. While the original Mukaiyama aldol reactions entailed stoichiometric use of Lewis acids in organic solvents under strictly anhydrous conditions, Mukaiyama aldol reactions in aqueous media are not only suitable for green sustainable chemistry but are found to produce singular phenomena. These findings led to the discovery of a series of water-compatible Lewis acids such as lanthanide triflates in 1991. Our understanding on these beneficial effects in the presence of water will be deepened through the brilliant examples collected in this review. 1 Introduction 2 Rate Enhancement by Water in the Mukaiyama Aldol Reaction 3 Lewis Acid Catalysis in Aqueous or Organic Solvents 3.1 Water-Compatible Lewis Acids 4 Lewis-Base Catalysis in Aqueous or Organic Solvents 5 The Mukaiyama Aldol Reactions in 100% Water 6 Asymmetric Catalysts in Aqueous Media and Water 7 Conclusions and Perspective PMID:24971045

  2. The impact of the Mukaiyama aldol reaction in total synthesis.

    PubMed

    Kan, S B Jennifer; Ng, Kenneth K-H; Paterson, Ian

    2013-08-26

    Four decades since Mukaiyama's first reports on the successful application of silicon and boron enolates in directed aldol reactions, the ability of this highly controlled carbon-carbon bond-forming method to simultaneously define stereochemistry, introduce complexity, and construct the carbon skeleton with a characteristic 1,3-oxygenation pattern has made it a powerful tool for natural product synthesis. This Minireview highlights a number of representative total syntheses that demonstrate the impact of the Mukaiyama aldol reaction and discusses the underlying mechanistic rationale that determines the stereochemical outcomes. PMID:23893491

  3. Facile uncatalyzed mukaiyama aldol reactions: an ab initio study of the effects of substituents.

    PubMed

    Wong, Chiong Teck; Wong, Ming Wah

    2005-01-01

    High-level ab initio molecular orbital calculations at the G3(MP2) level of theory were carried out to investigate the effects of substituents on the energetics of the uncatalyzed Mukaiyama aldol reaction between trihydrosilyl enol ether and formaldehyde. The concerted pathway, via a twist-boat six-membered ring transition state, is strongly favored over the stepwise pathway which involves a four-membered ring oxetane intermediate. Six substituents (CH(3), NH(2), OH, F, SH, and CHO) on trihydrosilyl enol ether and eight substituents (CH(3), CF(3), NH(2), F, CHO, COOCH(3), CH=CH(2), and C(6)H(5)) on formaldehyde were considered. We find that the reaction exothermicity is the main factor that dominates reactivity. The calculated barriers vary considerably from 30 to 131 kJ mol(-1). With the exception of halogen substitution, the nucleophilicity of silyl enol ether and the electrophilicity of the aldehyde are important in promoting the reactivity of this class of aldol addition. The roles of frontier molecular orbital interactions and electrostatic interactions are also discussed. In addition, our study has revealed that employing substituents on both reactants can act in a cooperatively manner to reduce the activation barrier further. In particular, we predict that the reactions between NH(2)-substituted enol silane and CHO-, COOCH(3)-, and CF(3)-substituted aldehydes have remarkably low barriers (<12 kJ mol(-1)). Thus, these reactions may proceed readily without a catalyst below room temperature. Several substitutions on the silicon group, namely SiF(3), SiCl(3), SiMe(3), and silacyclobutyl, were considered. In agreement with experiment, the O-(silacyclobutyl) and O-(trichlorosilyl) derivatives are found to promote aldol reactivity. PMID:15624914

  4. The Mechanism of Iron(II)-Catalyzed Asymmetric Mukaiyama Aldol Reaction in Aqueous Media: Density Functional Theory and Artificial Force-Induced Reaction Study.

    PubMed

    Sameera, W M C; Hatanaka, Miho; Kitanosono, Taku; Kobayashi, Sh?; Morokuma, Keiji

    2015-09-01

    Density functional theory (DFT), combined with the artificial force-induced reaction (AFIR) method, is used to establish the mechanism of the aqueous Mukaiyama aldol reactions catalyzed by a chiral Fe(II) complex. On the bases of the calculations, we identified several thermodynamically stable six- or seven-coordinate complexes in the solution, where the high-spin quintet state is the ground state. Among them, the active intermediates for the selectivity-determining outer-sphere carbon-carbon bond formation are proposed. The multicomponent artificial force-induced reaction (MC-AFIR) method found key transition states for the carbon-carbon bond formation, and explained the enantioselectivity and diastereoselectivity. The overall mechanism consists of the coordination of the aldehyde, carbon-carbon bond formation, the rate-determining proton transfer from water to aldehyde, and dissociation of trimethylsilyl group. The calculated full catalytic cycle is consistent with the experiments. This study provides important mechanistic insights for the transition metal catalyzed Mukaiyama aldol reaction in aqueous media. PMID:26267294

  5. Vinylogous Mukaiyama-Michael Reactions of Dihydropyridinones.

    PubMed

    Li, Hui; Wu, Jimmy

    2015-11-01

    An In(III)-catalyzed vinylogous addition of O-silyl vinylketene acetals to 2,3-dihydro-4-pyridinones has been developed. The method features the unprecedented employment of supersilyl groups to influence the ? versus ? regiochemical control of vinylogous Mukaiyama-Michael (vM-Michael) reactions when ?-substituted O-silyl vinylketene acetals are used. We also demonstrate that these reactions allow facile access to quinolizidine-based alkaloids such as deoxynupharidine and well as lasubine I and II. PMID:26493620

  6. Organolanthanide reagents and the Mukaiyama reaction

    SciTech Connect

    Gong, L.

    1989-01-01

    The bis(pentamethylcyclopentadienyl) lutetium halide complex ((C/sub 5/Me/sub 5/)/sub 2/LuCl/center dot/THF) was synthesized and characterized. The crystal structure of this complex shows that the Lu is at the center of a distorted tetrahedron consisting of the centroids of two cyclopentadienyl rings, the oxygen atom of a tetrahydrofuran molecule and a chlorine atom. /sup 1/H NMR studies of toluene-d/sub 8/ solutions of (C/sub 5/Me/sub 5/LuCl(THF) + THF, (TMS/sub 2/CP)/sub 2/LuCl(THF) + THF, and (MeCp)/sub 2/LuCl(THF) + THF at various temperatures showed exchange processes between co- ordinated THF and free THF with average values of ..delta..G/sup ne/ of 13.0 /+-/ 0.3 kcal/mol, 11.1 /+-/ 0.1 kcal/mol and <11 kcal/mol at 0/degree/C, respectively. It has been found that under the influence of a catalytic amount (1--5 mol %) of (TMS/sub 2/Cp)/sub 2/YbCl dimer, silyl enol ethers (R/sub 1/R/sub 2/C = C(OR/sub 3/)OSiMe/sub 3/)) react with benzaldehyde smoothly in dichloromethane at room temperature, giving >99% of the aldol silyl ether (isolated yield: 90%) within 3 h. At /minus/78/degrees/C, the reaction gives kinetically controlled diastereoselectivity, which was not observed in the TiCl/sub 4/-mediated aldol reaction. The use of organoytterbium enolates shows promise result with respect to increased stereoselectivity, and indicates the importance of the bulky ligands on the metal center. In addition, Yb(III) species can retard retroaldol reaction owing to its mild Lewis acidity. 118 refs., 14 figs., 30 tabs.

  7. Enantioselective Total Synthesis of (-)-Pironetin: Iterative Aldol Reactions

    E-print Network

    Enantioselective Total Synthesis of (-)-Pironetin: Iterative Aldol Reactions of Thiazolidinethiones titanium mediated iterative aldol reactions. Key steps in this synthesis include an acetal aldol reaction the ability to execute iterative propionate aldol reactions for the synthesis of complex polypropionates

  8. Asymmetric Aldol-Tishchenko Reaction of Sulfinimines.

    PubMed

    Foley, Vera M; McSweeney, Christina M; Eccles, Kevin S; Lawrence, Simon E; McGlacken, Gerard P

    2015-11-20

    Methods for the preparation of 1,3-amino alcohols and their derivatives containing two stereogenic centers usually involve a two-step installation of the chiral centers. An aldol-Tishchenko reaction of chiral sulfinimines which involves the first reported reduction of a C?N in this type of reaction is described. Two and even three chiral centers can be installed in one synthetic step, affording anti-1,3-amino alcohols in good diastereo- and enantioselectivity. PMID:26528888

  9. Direct Catalytic Enantio- and Diastereoselective Ketone Aldol Reactions of Isocyanoacetates**

    PubMed Central

    delaCampa, Raquel; Ortín, Irene; Dixon, Darren J

    2015-01-01

    A catalytic asymmetric aldol addition/cyclization reaction of unactivated ketones with isocyanoacetate pronucleophiles has been developed. A quinine-derived aminophosphine precatalyst and silver oxide were found to be an effective binary catalyst system and promoted the reaction to afford chiral oxazolines possessing a fully substituted stereocenter with good diastereoselectivities and excellent enantioselectivities. PMID:25735645

  10. Anti-Selective Aldol Reactions with Titanium Enolates of

    E-print Network

    Anti-Selective Aldol Reactions with Titanium Enolates of N-Glycolyloxazolidinethiones Michael T-glycolyloxazolidinethiones has been developed. Enolization of an N-glycolyloxazolidinethione with titanium (IV) chloride successful with a wide variety of aldehydes and protecting groups.2 Additionally, the titanium enolates of N

  11. Functionalized multi-walled carbon nanotubes in an aldol reaction

    NASA Astrophysics Data System (ADS)

    Chronopoulos, D. D.; Kokotos, C. G.; Karousis, N.; Kokotos, G.; Tagmatarchis, N.

    2015-01-01

    The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction between acetone and 4-nitrobenzaldehyde was evaluated for the first time, showing to proceed almost quantitatively in aqueous media. Furthermore, several amino-modified MWCNTs were prepared and examined in the particular aldol reaction. These new hybrid materials exhibited an enhanced catalytic activity in water, contrasting with the pristine MWCNTs as well as the parent organic molecule, which failed to catalyze the reaction efficiently. Furthermore, the modified MWCNTs proved to catalyze the aldol reaction even after three repetitive cycles. Overall, a green approach for the aldol reaction is presented, where water can be employed as the solvent and modified MWCNTs can be used as catalysts, which can be successfully recovered and reused, while their catalytic activity is retained.The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction between acetone and 4-nitrobenzaldehyde was evaluated for the first time, showing to proceed almost quantitatively in aqueous media. Furthermore, several amino-modified MWCNTs were prepared and examined in the particular aldol reaction. These new hybrid materials exhibited an enhanced catalytic activity in water, contrasting with the pristine MWCNTs as well as the parent organic molecule, which failed to catalyze the reaction efficiently. Furthermore, the modified MWCNTs proved to catalyze the aldol reaction even after three repetitive cycles. Overall, a green approach for the aldol reaction is presented, where water can be employed as the solvent and modified MWCNTs can be used as catalysts, which can be successfully recovered and reused, while their catalytic activity is retained. Electronic supplementary information (ESI) available: Experimental details for the synthesis of 5, 8 and 11; 1H & 13C NMR of compounds 8 and 11; ATR-IR spectra, thermographs and TEM imaging of hybrids 10 and 13. See DOI: 10.1039/c4nr06543c

  12. Method of carbon chain extension using novel aldol reaction

    DOEpatents

    Silks, Louis A; Gordon, John C; Wu, Ruilan; Hanson, Susan Kloek

    2013-07-30

    Method of producing C.sub.8-C.sub.15 hydrocarbons. comprising providing a ketone starting material; providing an aldol starting material comprising chloromethylfurfural; mixing the ketone starting material and the aldol starting material in a reaction in the presence of a proline-containing catalyst selected from the group consisting of Zn(Pro).sub.2, Yb(Pro).sub.3, and combinations thereof, or a catalyst having one of the structures (I), (II) or (III), and in the presence of a solvent, wherein the solvent comprises water and is substantially free of organic solvents, where (I), (II) and (III) respectively are: ##STR00001## where R.sub.1 is a C.sub.1-C.sub.6 alkyl moiety, X=(OH) and n=2. ##STR00002## In (III), X may be CH.sub.2, sulfur or selenium, M may be Zn, Mg, or a lanthanide, and R.sub.1 and R.sub.2 each independently may be a methyl, ethyl, phenyl moiety.

  13. Method of carbon chain extension using novel aldol reaction

    DOEpatents

    Silks, Louis A; Gordon, John C; Wu, Ruilan; Hangson, Susan Kloek

    2013-08-13

    Method of producing C.sub.8-C.sub.15 hydrocarbons comprising providing a ketone starting material; providing an aldol starting material comprising hydroxymethylfurfural; mixing the ketone starting material and the aldol starting material in a reaction in the presence of a proline-containing catalyst selected from the group consisting of Zn(Pro).sub.2, Yb(Pro).sub.2, and combinations thereof, or a catalyst having one of the structures (I), (II) or (III), and in the presence of a solvent, wherein the solvent comprises water and is substantially free of organic solvents, where (I), (II) and (III) respectively are: ##STR00001## where R.sub.1 is a C.sub.1-C.sub.6 alkyl moiety, X=(OH) and n=2. ##STR00002## In (III), X may be CH.sub.2, sulfur or selenium, M may be Zn, Mg, or a lanthanide, and R.sub.1 and R.sub.2 each independently may be a methyl, ethyl, phenyl moiety.

  14. (+)-(R,Z)-5-Muscenone and (-)-(R)-muscone by enantioselective aldol reaction and Grob fragmentation.

    PubMed

    Fehr, Charles; Buzas, Andrea K; Knopff, Oliver; de Saint Laumer, Jean-Yves

    2010-02-22

    (+)-(R,Z)-5-Muscenone ((R)-1) was synthesized by an enantioselective aldol reaction, catalyzed by new ephedrine-type Ti reagents (up to 70 % enantiomeric excess). Substrate-directed diastereoselective reduction of the aldol product and Grob fragmentation of the tosylate of the resultant 1,3-diol afforded (+)-1. This approach also gave access to (-)-(R,E)-5-muscenone and (-)-(R)-muscone. PMID:20077541

  15. Rapid and Efficient Functionalized Ionic Liquid-Catalyzed Aldol Condensation Reactions Associated with Microwave Irradiation

    PubMed Central

    Wang, Chang; Liu, Jing; Leng, Wenguang; Gao, Yanan

    2014-01-01

    Five quaternary ammonium ionic liquid (IL) and two tetrabutylphosphonium ILs were prepared and characterized. An environmentally benign and convenient functionalized ionic liquid catalytic system was thus explored in the aldol condensation reactions of aromatic aldehydes with acetone. The aldol reactions proceeded more efficiently through microwave-assisted heating than through conventional thermal heating. The yield of products obtained under microwave heating for 30 min was approximately 90%, and the ILs can be recovered and reused at least five times without apparent loss of activity. In addition, this catalytic system can be successfully extended to the Henry reactions. PMID:24445262

  16. ?-Hydroxyallylsilanes as propionaldehyde enolate equivalents and their use toward iterative aldol reactions.

    PubMed

    Ruiz, Johal; Murthy, Akondi Srirama; Roisnel, Thierry; Chandrasekhar, Srivari; Grée, René

    2015-02-20

    Smooth and efficient reaction conditions have been found for the transformation of protected ?-hydroxyacylsilanes into the corresponding aldehydes. This opens a new route to iterative aldol reactions, and it has been used for the synthesis of fragments of several bioactive natural products. PMID:25636066

  17. An efficient aldol-type direct reaction of isatins with TMSCH2CN.

    PubMed

    Bhaskara Rao, V U; Kumar, Krishna; Singh, Ravi P

    2015-09-23

    Cesium fluoride catalyzed direct cyanomethylation of various isatins by using trimethylsilyl acetonitrile (TMSAN) as a nucleophile has been developed. The reaction has been explored for a number of isatins, with various substitutions on its aromatic ring. Further, the versatility of the reaction is demonstrated by converting the direct aldol adducts to the corresponding intermediates of natural products and medicinally important compounds. PMID:26347285

  18. Hydrophobic Substituent Effects on Proline Catalysis of Aldol Reactions in Water

    PubMed Central

    Zhao, Qingquan; Lam, Yu-hong; Kheirabadi, Mahboubeh; Xu, Chongsong; Houk, K. N.

    2013-01-01

    Derivatives of 4-hydroxyproline with a series of hydrophobic groups in well-defined orientations have been tested as catalysts for the aldol reactions. All of the modified proline catalysts carry out the intermolecular aldol reaction in water and provide high diastereoselectivity and enantioselectivity. Modified prolines with aromatic groups syn to the carboxylic acid are better catalysts than those with small hydrophobic groups (1a is 43.5 times faster than 1f). Quantum mechanical calculations provide transition structures, TS-1awater and TS-1fwater that support the hypothesis that a stabilizing hydrophobic interaction occurs with 1a. PMID:22500641

  19. Alternating chiral selectivity of aldol reactions under the confined space of mesoporous silica.

    PubMed

    Yeh, Chewei; Sun, Yan-Ru; Huang, Shing-Jong; Tsai, Yeun-Min; Cheng, Soofin

    2015-12-14

    The chiral selectivities were altered and high diastereo- and enantio-selectivities of the products were obtained in water medium without adding acid co-catalysts when a primary-tertiary diamine catalyst was immobilized on mesoporous SBA-15 to form a recyclable catalyst for the direct asymmetric aldol reaction of cyclohexanone with p-nitrobenzaldehyde. PMID:26451656

  20. RUTHENIUM-CATALYZED TANDEM OLEFIN MIGRATION-ALDOL AND MANNICH-TYPE REACTIONS IN IONIC LIQUID.

    EPA Science Inventory

    In the presence of a catalytic amount of RuCl2(PPh3)3, a cross-coupling of 3-buten-2-ol with aldehydes and imines was developed via a tandem olefin migration--aldol--Mannich reaction in bmim[PF6]. With In(OAc)3 as a co-catalyst, a-vinylbenzyl alcohol and aldehydes underwent sim...

  1. ALDOL- AND MANNICH-TYPE REACTIONS VIA IN SITU OLEFIN MIGRATION IN IONIC LIQUID

    EPA Science Inventory


    An aldol-type and a Mannich-type reaction via the cross-coupling of aldehydes and imines with allylic alcohols catalyzed by RuCl2(PPh3)3 was developed with ionic liquid as the solvent. The solvent/catalyst system could be reused for at least five times with no loss of reactiv...

  2. A NOVEL CHIRAL GALLIUM LEWIS ACID CATALYST WITH SEMI-CROWN LIGAND IN AQUEOUS ASYMMETRIC MUKAIYAMA ALDOL REACTIONS. (R828129)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. Stereoselective titanium-mediated aldol reactions of a chiral lactate-derived ethyl ketone with ketones.

    PubMed

    Alcoberro, Sandra; Gómez-Palomino, Alejandro; Solà, Ricard; Romea, Pedro; Urpí, Fèlix; Font-Bardia, Mercè

    2014-01-17

    Aldol reactions of titanium enolates of lactate-derived ethyl ketone 1 with other ketones proceed in a very efficient and stereocontrolled manner provided that a further equivalent of TiCl4 is added to the reacting mixture. The scope of these reactions encompasses simple ketones such as acetone or cyclohexanone as well as other ketones that contain potential chelating groups such as pyruvate esters or ?- and ?-hydroxy ketones. PMID:24372372

  4. Catalytic Asymmetric Iterative/Domino Aldehyde Cross-Aldol Reactions for the Rapid and Flexible Synthesis of 1,3-Polyols.

    PubMed

    Lin, Luqing; Yamamoto, Kumiko; Mitsunuma, Harunobu; Kanzaki, Yamato; Matsunaga, Shigeki; Kanai, Motomu

    2015-12-16

    We report here catalytic asymmetric iterative and domino cross-aldol reactions between aldehydes, endowed with a high level of robustness, flexibility, and generality. A Cu(I)-DTBM-SEGPHOS complex catalyzes an asymmetric cross-aldol reaction between acceptor aldehydes and boron enolates derived from donor aldehydes, which are generated through Ir-catalyzed isomerization of allyloxyboronates. The unit process can be repeated using the aldol products in turn as acceptor substrates for the subsequent asymmetric aldol reaction. The donor aldehydes and stereoselectivity can be flexibly switched in a stepwise manner for the double-aldol reaction. Furthermore, asymmetric triple- and quadruple-aldol reactions are possible in one-pot using the appropriate amounts of donors and amine additives, rapidly elongating the carbon skeleton with controlling up to eight stereocenters. The method should be useful for straightforward synthesis of enantiomerically and diastereomerically enriched 1,3-polyols. PMID:26632863

  5. Solvent-Induced Reversal of Activities between Two Closely Related Heterogeneous Catalysts in the Aldol Reaction

    SciTech Connect

    Kandel, Kapil; Althaus, Stacey M; Peeraphatdit, Chorthip; Kobayashi, Takeshi; Trewyn, Brian G; Pruski, Marek; Slowing, Igor I

    2013-01-11

    The relative rates of the aldol reaction catalyzed by supported primary and secondary amines can be inverted by 2 orders of magnitude, depending on the use of hexane or water as a solvent. Our analyses suggest that this dramatic shift in the catalytic behavior of the supported amines does not involve differences in reaction mechanism, but is caused by activation of imine to enamine equilibria and stabilization of iminium species. The effects of solvent polarity and acidity were found to be important to the performance of the catalytic reaction. This study highlights the critical role of solvent in multicomponent heterogeneous catalytic processes.

  6. Double diastereoselection in anti aldol reactions mediated by dicyclohexylchloroborane between an L-erythrulose derivative and chiral aldehydes.

    PubMed

    Díaz-Oltra, Santiago; Ruiz, Purificación; Falomir, Eva; Murga, Juan; Carda, Miguel; Marco, J Alberto

    2012-09-14

    Anti aldol reactions of an l-erythrulose derivative with several ?-chiral aldehydes mediated by dicyclohexylboron chloride are examined. Good yields and stereoselectivities are observed. The results are best explained when the reactions are assumed to occur via boat-like transition states with minimization of 1,3-allylic strain and avoidance of syn pentane interactions. PMID:22825403

  7. A highly efficient Mukaiyama-Mannich reaction of N-Boc isatin ketimines and other active cyclic ketimines using difluoroenol silyl ethers catalyzed by Ph3PAuOTf.

    PubMed

    Yu, Jin-Sheng; Zhou, Jian

    2015-12-01

    Ph3PAuOTf is identified as a powerful catalyst for the addition of difluoroenol silyl ethers to N-Boc isatin ketimines and other two kinds of active cyclic ketimines. This represents the first Au(i)-catalyzed Mukaiyama-Mannich reaction, and the corresponding non-fluorinated enol silyl ether proves to be even much more reactive under the same conditions. This method paves the way to the total synthesis of difluoromethylated analogues of AG-041R, a gastrin/CCK-B receptor antagonist. PMID:26443467

  8. Dynamic assembly of a zinc-templated bifunctional organocatalyst in the presence of water for the asymmetric aldol reaction.

    PubMed

    Serra-Pont, Anna; Alfonso, Ignacio; Jimeno, Ciril; Solà, Jordi

    2015-12-21

    A bifunctional organocatalytic system consisting of simple pyridine ligands containing separate catalytic functionalities was assembled using ZnCl2. This novel metal-templated catalyst furnished high yields and stereoselectivities towards the aldol reaction. The addition of controlled amounts of water turned out to be crucial to dissolve the system and achieve optimal results. PMID:26478115

  9. Tandem aldol-Michael reactions in aqueous diethylamine medium: a greener and efficient approach to bis-pyrimidine derivatives.

    PubMed

    Al-Majid, Abdullah M; Barakat, Assem; Al-Najjar, Hany J; Mabkhot, Yahia N; Ghabbour, Hazem A; Fun, Hoong-Kun

    2013-01-01

    A simple protocol, involving the green synthesis for the construction of novel bis-pyrimidine derivatives, 3a-i and 4a-e are accomplished by the aqueous diethylamine media promoted tandem Aldol-Michael reaction between two molecules of barbituric acid derivatives 1a,b with various aldehydes. This efficient synthetic protocol using an economic and environmentally friendly reaction media with versatility and shorter reaction time provides bis-pyrimidine derivatives with high yields (88%-99%). PMID:24317435

  10. Direct Access to 6/5/7/5- and 6/7/5/5-Fused Tetracyclic Triterpenoids via Divergent Transannular Aldol Reaction of Lanosterol-Derived Diketone

    PubMed Central

    Ignatenko, Vasily A.; Han, Yong

    2013-01-01

    In an effort to access biologically relevant chemical space, a complex natural product-derived non-symmetrical diketone was prepared as a substrate for divergent transannular aldol reactions. The use of common aldol conditions resulted in predominant syn-addition via pathway a, while the use of alumina provided access to the anti-adduct. Screening of a range of Lewis acids of varying strength unexpectedly resulted in the formation of aldol products with 6/7/5/5-fused molecular skeleton via pathway b. PMID:24161022

  11. Expedient synthesis of C-aryl carbohydrates by consecutive biocatalytic benzoin and aldol reactions.

    PubMed

    Hernández, Karel; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Pohl, Martina; Clapés, Pere

    2015-02-16

    The introduction of aromatic residues connected by a C-C bond into the non-reducing end of carbohydrates is highly significant for the development of innovative structures with improved binding affinity and selectivity (e.g., C-aril-sLex). In this work, an expedient asymmetric "de novo" synthetic route to new aryl carbohydrate derivatives based on two sequential stereoselectively biocatalytic carboligation reactions is presented. First, the benzoin reaction of aromatic aldehydes to dimethoxyacetaldehyde is conducted, catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I. Then, the ?-hydroxyketones formed are reduced by using NaBH4 yielding the anti diol. After acetal hydrolysis, the aldol addition of dihydroxyacetone, hydroxyacetone, or glycolaldehyde catalyzed by the stereocomplementary D-fructose-6-phosphate aldolase and L-rhamnulose-1-phosphate aldolase is performed. Both aldolases accept unphosphorylated donor substrates, avoiding the need of handling the phosphate group that the dihydroxyacetone phosphate-dependent aldolases require. In this way, 6-C-aryl-L-sorbose, 6-C-aryl-L-fructose, 6-C-aryl-L-tagatose, and 5-C-aryl-L-xylose derivatives are prepared by using this methodology. PMID:25640727

  12. Characterization and mechanism insight of accelerated catalytic promiscuity of Sulfolobus tokodaii (ST0779) peptidase for aldol addition reaction.

    PubMed

    Li, Rong; Perez, Bianca; Jian, Hui; Jensen, Mads Mørk; Gao, Renjun; Dong, Mingdong; Glasius, Marianne; Guo, Zheng

    2015-11-01

    A novel peptidase from thermophilic archaea Sulfolobus tokodaii (ST0779) is examined for its catalytic promiscuity of aldol addition, which shows comparable activity as porcine pancreatic lipase (PPL, one of the best enzymes identified for biocatalytic aldol addition) at 30 °C but much accelerated activity at elevated temperature. The molecular catalytic efficiency kcat/Km (M(-1) s(-1)) of this thermostable enzyme at 55 °C adds up to 140 times higher than that of PPL at its optimum temperature 37 °C. The fluorescence quenching analysis depicts that the binding constants of PPL are significantly higher than those of ST0779, and their numbers of binding sites show opposite temperature dependency. Thermodynamic parameters estimated by fluorescence quenching analysis unveil distinctly different substrate-binding modes between PPL and ST0779: the governing binding interaction between PPL and substrates is hydrophobic force, while the dominating substrate-binding forces for ST0779 are van der Waals and H-bonds interactions. A reasonable mechanism for ST0779-catalyzed aldol reaction is proposed based on kinetic study, spectroscopic analysis, and molecular stereostructure simulation. This work represents a successful example to identify a new enzyme for catalytic promiscuity, which demonstrates a huge potential to discover and exploit novel biocatalyst from thermophile microorganism sources. PMID:26169629

  13. Chiral Phosphine-Silver(I) Complex Catalyzed Enantioselective Interrupted Feist-Bénary Reaction with Ynones: The Aldol-Cycloisomerization Cascade.

    PubMed

    Sinha, Debarshi; Biswas, Arnab; Singh, Vinod K

    2015-07-01

    Silver-catalyzed interrupted Feist-Bénary reaction is described for the efficient enantioselective synthesis of dihydrofuran heterocycles. A new method has been developed for the silver(I)-(R)-BINAP complex mediated aldol-cycloisomerization cascade reaction between ynones and 1,3-diketones to provide functionalized dihydrofurans with moderate to good yields (up to 95%) and good to excellent enantiomeric excess (up to 98%). The presence of an exocyclic double bond and hydroxy group in the dihydrofuran products provides wide scope for further structural manipulation. PMID:26106952

  14. Stereoselective anti aldol reactions of erythrulose derivatives. Functionalized chiral d3 and d4 synthons.

    PubMed

    Murga, Juan; Ruiz, Purificación; Falomir, Eva; Carda, Miguel; Peris, Gabriel; Marco, J Alberto

    2004-03-19

    An improved procedure for the synthesis of anti aldols from protected erythrulose derivatives is reported. The preparation of functionalized d3 and d4 synthons with various stereochemical arrays by means of this methodology is described and subsequently applied to a stereoselective formal synthesis of the natural metabolite goniothalesdiol. PMID:15058944

  15. A convenient enantioselective decarboxylative aldol reaction to access chiral ?-hydroxy esters using ?-keto acids

    PubMed Central

    Duan, Zhiqiang; Han, Jianlin; Qian, Ping; Zhang, Zirui; Pan, Yi

    2014-01-01

    Summary We show a convenient decarboxylative aldol process using a scandium catalyst and a PYBOX ligand to generate a series of highly functionalized chiral ?-hydroxy esters. The protocol tolerates a broad range of ?-keto acids with inactivated aromatic and aliphatic ?-keto esters. The possible mechanism is rationalized. PMID:24991246

  16. Unexpected Synthesis of 5,6-Dihydropyridin-2(1H)-ones by a Domino Ugi/Aldol/Hydrolysis Reaction Starting from Baylis-Hillman Phosphonium Salts.

    PubMed

    Zeng, Xiao-Hua; Wang, Hong-Mei; Ding, Ming-Wu

    2015-05-01

    A one-pot synthetic approach to 5,6-dihydropyridin-2(1H)-ones has been developed using a domino process involving Ugi, aldol, and hydrolysis reactions, starting with Baylis-Hillman phosphonium salts, primary amines, isocyanides, and arylglyoxals. PMID:25875533

  17. TANDEM BIS-ALDOL REACTION OF KETONES: A FACILE ONE-POT SYNTHESIS OF 1,3-DIOXANES IN AQUEOUS MEDIUM

    EPA Science Inventory

    A novel tandem bis-aldol reaction of ketone with paraformaldehyde catalyzed by polystyrenesulfonic acid in aqueous medium delivers 1,3-dioxanes in high yield. This one pot, operationally simple microwave-assisted synthetic protocol proceeds efficiently in water in the absence of ...

  18. A Combined DFT and NMR Investigation of the Zinc Organometallic Intermediate Proposed in the Syn-Selective Tandem Chain Extension-Aldol Reaction of ?-Keto Esters

    PubMed Central

    Aiken, Karelle S.; Eger, Wilhelm A.; Williams, Craig M.; Spencer, Carley M.

    2012-01-01

    The tandem chain extension-aldol (TCA) reaction of ?-keto esters provides a ?-substituted ?-keto ester with an average syn:anti selectivity of 10:1. It is proposed that the reaction proceeds via a carbon-zinc bound organometallic intermediate potentially bearing mechanistic similarity to the Reformatsky reaction. Evidence, derived from control Reformatsky reactions and a study of the structure of the TCA intermediate utilizing DFT methods and NMR-spectroscopy, suggests the ?-keto group of the TCA intermediate plays a significant role in diastereoselectivity observed in this reaction. Such coordination effects have design implications for future zinc mediated reactions. PMID:22703563

  19. Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions

    NASA Astrophysics Data System (ADS)

    Szekrenyi, Anna; Garrabou, Xavier; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Clapés, Pere

    2015-09-01

    The preparation of multifunctional chiral molecules can be greatly simplified by adopting a route via the sequential catalytic assembly of achiral building blocks. The catalytic aldol assembly of prebiotic compounds into stereodefined pentoses and hexoses is an as yet unmet challenge. Such a process would be of remarkable synthetic utility and highly significant with regard to the origin of life. Pursuing an expedient enzymatic approach, here we use engineered D-fructose-6-phosphate aldolase from Escherichia coli to prepare a series of three- to six-carbon aldoses by sequential one-pot additions of glycolaldehyde. Notably, the pertinent selection of the aldolase variant provides control of the sugar size. The stereochemical outcome of the addition was also altered to allow the synthesis of L-glucose and related derivatives. Such engineered biocatalysts may offer new routes for the straightforward synthesis of natural molecules and their analogues that circumvent the intricate enzymatic pathways forged by evolution.

  20. Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions.

    PubMed

    Szekrenyi, Anna; Garrabou, Xavier; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Clapés, Pere

    2015-09-01

    The preparation of multifunctional chiral molecules can be greatly simplified by adopting a route via the sequential catalytic assembly of achiral building blocks. The catalytic aldol assembly of prebiotic compounds into stereodefined pentoses and hexoses is an as yet unmet challenge. Such a process would be of remarkable synthetic utility and highly significant with regard to the origin of life. Pursuing an expedient enzymatic approach, here we use engineered D-fructose-6-phosphate aldolase from Escherichia coli to prepare a series of three- to six-carbon aldoses by sequential one-pot additions of glycolaldehyde. Notably, the pertinent selection of the aldolase variant provides control of the sugar size. The stereochemical outcome of the addition was also altered to allow the synthesis of L-glucose and related derivatives. Such engineered biocatalysts may offer new routes for the straightforward synthesis of natural molecules and their analogues that circumvent the intricate enzymatic pathways forged by evolution. PMID:26291944

  1. Aldol reactions between L-erythrulose derivatives and chiral alpha-amino and alpha-fluoro aldehydes: competition between Felkin-Anh and Cornforth transition states.

    PubMed

    Díaz-Oltra, Santiago; Carda, Miguel; Murga, Juan; Falomir, Eva; Marco, J Alberto

    2008-01-01

    Both matched and mismatched diastereoselection have been observed in aldol reactions of a boron enolate of a protected L-erythrulose derivative with several chiral alpha-fluoro and alpha-amino aldehydes. Strict adherence to the Felkin-Anh model for the respective transition structures does not account satisfactorily for all the observed results, as previously observed in the case of alpha-oxygenated aldehydes. In some cases, only the Cornforth model provides a good explanation. The factors that influence this dichotomy are discussed and a general mechanistic model is proposed for aldol reactions with alpha-heteroatom-substituted aldehydes. Additional support for the model was obtained from density functional calculations. PMID:18756569

  2. Concise Enantioselective Synthesis of Oxygenated Steroids via Sequential Copper(II)-Catalyzed Michael Addition/Intramolecular Aldol Cyclization Reactions

    PubMed Central

    Cichowicz, Nathan R.; Kaplan, Will; Khomutnyk, Yaroslav; Bhattarai, Bijay; Sun, Zhankui; Nagorny, Pavel

    2015-01-01

    A new scalable enantioselective approach to functionalized oxygenated steroids is described. This strategy is based on chiral bis(oxazoline) copper(II) complex-catalyzed enantioselective and diastereoselective Michael reactions of cyclic ketoesters and enones to install vicinal quaternary and tertiary stereocenters. In addition, the utility of copper(II) salts as highly active catalysts for the Michael reactions of traditionally unreactive ???-enones and substituted ???-ketoesters that results in unprecedented Michael adducts containing vicinal all-carbon quaternary centers is also demonstrated. The Michael adducts subsequently undergo base-promoted diastereoselective aldol cascade reactions resulting in the natural or unnatural steroid skeletons. The experimental and computational studies suggest that the torsional strain effects arising from the presence of the ?5-unsaturation are key controling elements for the formation of the natural cardenolide scaffold. The described method enables expedient generation of polycyclic molecules including modified steroidal scaffolds as well as challenging-to-synthesize Hajos-Parrish and Wieland-Miescher ketones. PMID:26491886

  3. Concise Enantioselective Synthesis of Oxygenated Steroids via Sequential Copper(II)-Catalyzed Michael Addition/Intramolecular Aldol Cyclization Reactions.

    PubMed

    Cichowicz, Nathan R; Kaplan, Will; Khomutnyk, Yaroslav; Bhattarai, Bijay; Sun, Zhankui; Nagorny, Pavel

    2015-11-18

    A new scalable enantioselective approach to functionalized oxygenated steroids is described. This strategy is based on chiral bis(oxazoline) copper(II) complex-catalyzed enantioselective and diastereoselective Michael reactions of cyclic ketoesters and enones to install vicinal quaternary and tertiary stereocenters. In addition, the utility of copper(II) salts as highly active catalysts for the Michael reactions of traditionally unreactive ?,?'-enones and substituted ?,?'-ketoesters that results in unprecedented Michael adducts containing vicinal all-carbon quaternary centers is also demonstrated. The Michael adducts subsequently undergo base-promoted diastereoselective aldol cascade reactions resulting in the natural or unnatural steroid skeletons. The experimental and computational studies suggest that the torsional strain effects arising from the presence of the ?(5)-unsaturation are key controlling elements for the formation of the natural cardenolide scaffold. The described method enables expedient generation of polycyclic molecules including modified steroidal scaffolds as well as challenging-to-synthesize Hajos-Parrish and Wieland-Miescher ketones. PMID:26491886

  4. Tandem Aldol-Michael reactions in aqueous diethylamine medium: a greener and efficient approach to dimedone-barbituric acid derivatives

    PubMed Central

    2014-01-01

    Background Green chemistry is a rapidly developing new field that provides us with a proactive avenue for the sustainable development of future science and technologies. Green chemistry uses highly efficient and environmentally benign synthetic protocols to deliver lifesaving medicines, accelerating lead optimization processes in drug discovery, with reduced unnecessary environmental impact. From this view point, it is desirable to use water instead of organic solvents as a reaction medium, since water is safe, abundant and an environmentally benign solvent. Results A convenient one-pot method for the efficient synthesis of the novel Zwitterion derivatives 4a-pvia a three-component condensation reaction of barbituric acid derivatives 1a,b, dimedone 2, and various aldehydes 3 in the presence of aqueous diethylamine media is described. This new approach is environmentally benign, with clean synthetic procedure, short reaction times and easy work-up procedure which proceeded smoothly to provide excellent yield (88-98%). The synthesized products were characterized by elemental analysis, IR, MS, NMR and CHN analysis. The structure of 4a was further confirmed by single crystal X-ray diffraction. The compound crystallizes in the orthorhombic space group Pbca with ??=?14.6669 (5) Å, b?=?18.3084 (6) Å, c?=?19.0294 (6) Å, ??=?90°, ??=?90°, = 90°, V?=?5109.9 (3) Å3, and Z?=?8. The molecules are packed in crystal structure by weak intermolecular C–H? ? ?O hydrogen bonding interactions. Conclusions An environmentally benign Aldol-Michael protocol for the synthesis of dimedone-barbituric derivatives using aqueous diethylamine medium is achieved. PMID:24485059

  5. Double diastereoselection in aldol reactions mediated by dicyclohexylchloroborane between L-erythrulose derivatives and chiral aldehydes. The Felkin-Anh versus Cornforth dichotomy.

    PubMed

    Marco, J Alberto; Carda, Miguel; Díaz-Oltra, Santiago; Murga, Juan; Falomir, Eva; Roeper, Harald

    2003-10-31

    Both matched and mismatched diastereoselections have been observed in aldol reactions of the B,B-dicyclohexylboron enolate of a protected l-erythrulose derivative with a range of chiral aldehydes. The stereochemical outcome of reactions with alpha-methyl aldehydes can be adequately explained within the Felkin-Anh paradigm. In the case of alpha-oxygenated aldehydes, however, strict adherence to this model does not allow for a satisfactory account of the observed results. In such cases, the Cornforth model provides a much better explanation. PMID:14575488

  6. The Aldol Addition and Condensation: The Effect of Conditions on Reaction Pathway

    ERIC Educational Resources Information Center

    Crouch, R. David; Richardson, Amie; Howard, Jessica L.; Harker, Rebecca L.; Barker, Kathryn H.

    2007-01-01

    The reaction of a ketone and an aldehyde in aqueous Na[subscript 2]CO[subscript 2] is described. This experiment is performed in the absence of strong bases or organic solvents and offers the opportunity for students to observe the critical role that reaction temperature and base strength have in determining the product of the base-mediated…

  7. Direct synthesis of C-glycosides from unprotected 2-N-acyl-aldohexoses via aldol condensation-oxa-Michael reactions with unactivated ketones.

    PubMed

    Johnson, Sherida; Tanaka, Fujie

    2016-01-01

    C-glycosides are important compounds as they are used as bioactive molecules and building blocks. We have developed methods to concisely synthesize C-glycosides from unprotected 2-N-acyl-aldohexoses and unactivated ketones; we designed aldol-condensation-oxa-Michael addition reactions catalyzed by amine-based catalysts using additives. Depending on the conditions used, C-glycosides were stereoselectively obtained. Our methods allowed the C-C bond formations at the anomeric centers of unprotected carbohydrates under mild conditions to lead the C-glycosides in atom- and step-economical ways. PMID:26565955

  8. Double diastereoselection in aldol reactions mediated by dicyclohexylchloroborane between chiral aldehydes and a chiral ethyl ketone derived from L-erythrulose. synthesis of a C1-C9 fragment of the structure of the antifungal metabolite soraphen A1alpha.

    PubMed

    Díaz-Oltra, Santiago; Murga, Juan; Falomir, Eva; Carda, Miguel; Peris, Gabriel; Marco, J Alberto

    2005-09-30

    [Chemical reaction: See text] Both matched and mismatched diastereoselections have been observed in the aldol reactions of a range of chiral aldehydes with the dicyclohexylboron enolate of a chiral ethyl ketone related to L-erythrulose. As was previously observed in the corresponding aldol reactions with L-erythrulose derivatives, the Felkin-Anh model provides an adequate explanation for the stereochemical outcome of reactions with chiral alpha-methyl aldehydes. However, a satisfactory account of the results observed with alpha-oxygenated aldehydes was only possible with the Cornforth model. As a practical application of the methodology described herein, a C1-C9 fragment of the structure of the antifungal macrolide soraphen A1alpha has been prepared in a convergent and stereoselective way. PMID:16277339

  9. Contemporaneous Dual Catalysis: Aldol Products from Non-Carbonyl Substrates.

    PubMed

    Trost, Barry M; Tracy, Jacob S

    2015-10-19

    The aldol reaction represents an important class of atom-economic carbon-carbon bond-forming reactions vital to modern organic synthesis. Despite the attention this reaction has received, issues related to chemo- and regioselectivity as well as reactivity of readily enolizable electrophiles remain. To help overcome these limitations, a new direct approach toward aldol products that does not rely upon carbonyl substrates is described. This approach employs room-temperature contemporaneous lanthanum/vanadium dual catalysis, whereby a vanadium-catalyzed 1,3-transposition of allenols is coupled with a lanthanum-catalyzed Meinwald rearrangement of epoxides in situ to directly form aldol products. PMID:26334442

  10. Towards catalyst compartimentation in combined chemo- and biocatalytic processes: immobilization of alcohol dehydrogenases for the diastereoselective reduction of a ?-hydroxy ketone obtained from an organocatalytic aldol reaction.

    PubMed

    Rulli, Giuseppe; Heidlindemann, Marcel; Berkessel, Albrecht; Hummel, Werner; Gröger, Harald

    2013-11-01

    The alcohol dehydrogenases (ADHs) from Lactobacillus kefir and Rhodococcus sp., which earlier turned out to be suitable for a chemoenzymatic one-pot synthesis with organocatalysts, were immobilized with their cofactors on a commercially available superabsorber based on a literature known protocol. The use of the immobilized ADH from L. kefir in the reduction of acetophenone as a model substrate led to high conversion (>95%) in the first reaction cycle, followed by a slight decrease of conversion in the second reaction cycle. A comparable result was obtained when no cofactor was added although a water rich reaction media was used. The immobilized ADHs also turned out to be suitable catalysts for the diastereoselective reduction of an organocatalytically prepared enantiomerically enriched aldol adduct, leading to high conversion, diastereomeric ratio and enantioselectivity for the resulting 1,3-diols. However, at a lower catalyst and cofactor amount being still sufficient for biotransformations with "free" enzymes the immobilized ADH only showed high conversion and >99% ee for the first reaction cycle whereas a strong decrease of conversion was observed already in the second reaction cycle, thus indicating a significant leaching effect of catalyst and/or cofactor. PMID:24036136

  11. Chemoselective Functionalization of Carboxylic Acid and Phenol Containing Natural Products and the Development and Use of a Nucleophile Catalyzed Michael Aldol Lactonization Process 

    E-print Network

    McFarlin, Rae

    2013-05-02

    catalyzed aldol lactonization (NCAL) reaction for synthesizing highly substituted cyclopentane fused beta-lactones, we developed a nucleophile catalyzed, tandem Michael aldol lactonization (NCMAL) reaction. Herein, we show the synthetic utility...

  12. A Multistep Organocatalysis Experiment for the Undergraduate Organic Laboratory: An Enantioselective Aldol Reaction Catalyzed by Methyl Prolinamide

    ERIC Educational Resources Information Center

    Wade, Edmir O.; Walsh, Kenneth E.

    2011-01-01

    In recent years, there has been an explosion of research concerning the area of organocatalysis. A multistep capstone laboratory project that combines traditional reactions frequently found in organic laboratory curriculums with this new field of research is described. In this experiment, the students synthesize a prolinamide-based organocatalyst…

  13. Illustrating the Utility of X-Ray Crystallography for Structure Elucidation through a Tandem Aldol Condensation/Diels-Alder Reaction Sequence

    ERIC Educational Resources Information Center

    Hoang, Giang T.; Kubo, Tomohiro; Young, Victor G., Jr.; Kautzky, Jacob A.; Wissinger, Jane E.

    2015-01-01

    Two introductory organic chemistry laboratory experiments are described based on the Diels-Alder reaction of 2,3,4,5-tetraphenylcyclopentadienone, which is synthesized prior to or in a one-pot reaction, with styrene. Students are presented with three possible products, the "endo" and "exo" diastereomers and the decarbonylated…

  14. Studies in asymmetric ?-lactone synthesis: extensions of the chiral nucleophile catalyzed aldol-lactonization (NCAL) reaction and new transformations of chlorinated ?-lactones 

    E-print Network

    Tennyson, Reginald L.

    2001-01-01

    Expansion of Wynberg's procedure for the asymmetric synthesis of ?-lactones has been extended to the use of in situ generated ketene. Reaction with dichlorinated aldehydes in the presence of quinidine yielded ?-lactone products in good yield (40...

  15. Synthetic studies toward the brasilinolides: controlled assembly of a protected C1–C38 polyol based on fragment union by complex aldol reactions

    E-print Network

    Paterson, Ian; Housden, Michael P.; Cordier, Christopher J.; Burton, Paul M.; Mühlthau, Friedrich A.; Loiseleur, Olivier

    2015-04-14

    from but-3-en-1- ol. Ozonolysis and in situ Wittig reaction of the resulting alde- hyde with Ph3PvCHCOMe gave the corresponding enone 25 (69%), solely as the E-isomer.17 This was then subjected to a Sharpless asymmetric dihydroxylation,18 where a ligand...

  16. Domino hydroformylation/aldol condensation/hydrogenation catalysis: highly selective synthesis of ketones from olefins.

    PubMed

    Fang, Xianjie; Jackstell, Ralf; Börner, Armin; Beller, Matthias

    2014-11-24

    A general and highly chemo- and regioselective synthesis of ketones from olefins by domino hydroformylation/aldol condensation/hydrogenation reaction has been developed. A variety of olefins are efficiently converted into various ketones in good to excellent yields and regioselectivities in the presence of a specific rhodium phosphine/base-acid catalyst system. PMID:25331557

  17. Anti-selective and regioselective aldol addition of ketones with aldehydes using MgI2 as promoter

    E-print Network

    Paré, Paul W.

    Anti-selective and regioselective aldol addition of ketones with aldehydes using MgI2 as promoter is reported. The coupling reactions were carried out in a one-pot reaction by mixing four reaction components at room temperature. In the case of unsymmetrical ketones, addition was made to the less hindered a

  18. Development of Catalytic Stereoselective Reductive Aldol Reactions 

    E-print Network

    Joensuu, Pekka Matias

    2008-01-01

    The chemistry of enolates can be considered one of the cornerstone areas in organic chemistry. Regioselective generation of an enolate in the presence of several enolisable sites can often prove to be a difficult task. ...

  19. 19: Cyclization and Pericyclic Reactions (Not Posted) Reactions That Make Rings

    E-print Network

    Reed, Christopher A.

    Intermediates Friedel-Crafts Reactions. Carbocation Addition to Alkenes. Carbocation Ring Contraction19: Cyclization and Pericyclic Reactions (Not Posted) Reactions That Make Rings Cyclization Reactions Enolate Ion Intermediates Intramolecular Aldol Reaction. Dieckmann Condensation. Malonic

  20. Optimization and extensions of the nucleophile catalyzed aldol-lactonization (NCAL) process for bicyclic beta-lactone synthesis: applications to piperidine, pyrrolidine, and gamma-lactam-fused beta-lactones 

    E-print Network

    Oh, Seongho

    2006-08-16

    The intramolecular nucleophile catalyzed aldol-lactonization (NCAL) process was optimized successfully. A variety of C9-acylated cinchona alkaloids were synthesized and used for NCAL reactions with non-activated aldehydes. ...

  1. Chem 115Stereoselective, Directed Aldol ReactionMyers Diastereofacial Selectivity in the Aldol Addition Reaction-

    E-print Network

    .; Mathre, D. J.; Bartroli, J. Pure & Appl. Chem. 1981, 53, 1109-1127. Brown, H. C.; Dhar, R. K.; Bakshi, R.; Mathre, D. J.; Bartroli, J. Pure Appl. Chem. 1981, 53, 1109-1127. Evans, D. A.; Vogel, E.; Nelson, J. V, D. J. Bartroli, J. Pure & Appl. Chem. 1981, 53, 1109-1127. O N Bn O O R O CH3 O N Bn O O R O CH3 B B

  2. Total synthesis of the proposed structure of astakolactin

    PubMed Central

    Mameda, Keisuke; Fujishiro, Moe; Yoshinaga, Yutaka

    2014-01-01

    Summary The first total synthesis of the proposed structure of astakolactin, a sesterterpene metabolite isolated from the marine sponge Cacospongia scalaris, has been achieved, mainly featuring Johnson–Claisen rearrangement, asymmetric Mukaiyama aldol reaction and MNBA-mediated lactonization. PMID:25383112

  3. Domino-hydroformylation/aldol condensation catalysis: highly selective synthesis of ?,?-unsaturated aldehydes from olefins.

    PubMed

    Fang, Xianjie; Jackstell, Ralf; Franke, Robert; Beller, Matthias

    2014-10-01

    A general and highly chemo-, regio-, and stereoselective synthesis of ?,?-unsaturated aldehydes by a domino hydroformylation/aldol condensation reaction has been developed. A variety of olefins and aromatic aldehydes were efficiently converted into various substituted ?,?-unsaturated aldehydes in good to excellent yields in the presence of a rhodium phosphine/acid-base catalyst system. In view of the easy availability of the substrates, the high atom-efficiency, the excellent selectivity, and the mild conditions, this method is expected to complement current methodologies for the preparation of ?,?-unsaturated aldehydes. PMID:25179918

  4. Dissociation and Decay of Ultracold Sodium Molecules T. Mukaiyama, J. R. Abo-Shaeer, K. Xu, J. K. Chin, and W. Ketterle

    E-print Network

    Dissociation and Decay of Ultracold Sodium Molecules T. Mukaiyama, J. R. Abo-Shaeer, K. Xu, J. K (Received 24 November 2003; published 4 May 2004) The dissociation of ultracold molecules was studied by ramping an external magnetic field through a Feshbach resonance. The observed dissociation energies

  5. Engineering the donor selectivity of D-fructose-6-phosphate aldolase for biocatalytic asymmetric cross-aldol additions of glycolaldehyde.

    PubMed

    Szekrenyi, Anna; Soler, Anna; Garrabou, Xavier; Guérard-Hélaine, Christine; Parella, Teodor; Joglar, Jesús; Lemaire, Marielle; Bujons, Jordi; Clapés, Pere

    2014-09-22

    D-Fructose-6-phosphate aldolase (FSA) is a unique catalyst for asymmetric cross-aldol additions of glycolaldehyde. A combination of a structure-guided approach of saturation mutagenesis, site-directed mutagenesis, and computational modeling was applied to construct a set of FSA variants that improved the catalytic efficiency towards glycolaldehyde dimerization up to 1800-fold. A combination of mutations in positions L107, A129, and A165 provided a toolbox of FSA variants that expand the synthetic possibilities towards the preparation of aldose-like carbohydrate compounds. The new FSA variants were applied as highly efficient catalysts for cross-aldol additions of glycolaldehyde to N-carbobenzyloxyaminoaldehydes to furnish between 80-98?% aldol adduct under optimized reaction conditions. Donor competition experiments showed high selectivity for glycolaldehyde relative to dihydroxyacetone or hydroxyacetone. These results demonstrate the exceptional malleability of the active site in FSA, which can be remodeled to accept a wide spectrum of donor and acceptor substrates with high efficiency and selectivity. PMID:25146467

  6. Asymmetric Aldol Additions with Titanium Enolates of Acyloxazolidinethiones: Dependence of

    E-print Network

    Asymmetric Aldol Additions with Titanium Enolates of Acyloxazolidinethiones: Dependence purity (generally >250:1 diastereoselectivity, i.e. >99% ee).1 Titanium2-4 and tin5 metal centers have report here our studies on the use of titanium- (IV) enolates of acyloxazolidinethiones

  7. A Green Enantioselective Aldol Condensation for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Bennett, George D.

    2006-01-01

    A number of laboratory exercises for the organic chemistry curriculum that emphasize enantioselective synthesis of the aldol condensation which involves the proline-catalyzed condensation between acetone and isobutyraldehyde are explored. The experiment illustrates some of the trade-offs involved in green chemistry like the use of acetone in large…

  8. Strong Lewis acids of air-stable metallocene bis(perfluorooctanesulfonate)s as high-efficiency catalysts for carbonyl-group transformation reactions.

    PubMed

    Qiu, Renhua; Xu, Xinhua; Peng, Lifeng; Zhao, Yalei; Li, Ningbo; Yin, Shuangfeng

    2012-05-14

    Strong Lewis acids of air-stable metallocene bis(perfluorooctanesulfonate)s [M(Cp)(2)][OSO(2)C(8)F(17)](2)?nH(2)O?THF (M = Zr (2?a?3?H(2)O?THF), M = Ti (2?b?2?H(2)O?THF)) were synthesized by the reaction of [M(Cp)(2)]Cl(2) (M = Zr (1?a), M = Ti (1?b)) with nBuLi and C(8)F(17)SO(3)H (2?equiv) or with C(8)F(17)SO(3)Ag (2?equiv). The hydrate numbers (n) of these complexes were variable, changing from 0 to 4 depending on conditions. In contrast to well-known metallocene triflates, these complexes suffered no change in open air for a year. thermogravimetry-differential scanning calorimetry (TG-DSC) analysis showed that 2?a and 2?b were thermally stable at 300 and 180?°C, respectively. These complexes exhibited unusually high solubility in polar organic solvents. Conductivity measurement showed that the complexes (2?a and 2?b) were ionic dissociation in CH(3)CN solution. X-ray analysis result confirmed 2?a?3?H(2)O?THF was a cationic organometallic Lewis acid. UV/Vis spectra showed a significant red shift due to the strong complex formation between 10-methylacridone and 2?a. Fluorescence spectra showed that the Lewis acidity of 2?a fell between those of Sc(3+) (?(em)=474?nm) and Fe(3+) (?(em)=478?nm). ESR spectra showed the Lewis acidity of 2?a (0.91?eV) was at the same level as that of Sc(3+) (1.00?eV) and Y(3+) (0.85?eV), while the Lewis acidity of 2?b (1.06?eV) was larger than that of Sc(3+) (1.00?eV) and Y(3+) (0.85?eV). They showed high catalytic ability in carbonyl-compound transformation reactions, such as the Mannich reaction, the Mukaiyama aldol reaction, allylation of aldehydes, the Friedel-Crafts acylation of alkyl aromatic ethers, and cyclotrimerization of ketones. Moreover, the complexes possessed good reusability. On account of their excellent catalytic efficiency, stability, and reusability, the complexes will find broad catalytic applications in organic synthesis. PMID:22504964

  9. One-pot aldol condensation and hydrodeoxygenation of biomass-derived carbonyl compounds for biodiesel synthesis.

    PubMed

    Faba, Laura; Díaz, Eva; Ordóñez, Salvador

    2014-10-01

    Integrating reaction steps is of key interest in the development of processes for transforming lignocellulosic materials into drop-in fuels. We propose a procedure for performing the aldol condensation (reaction between furfural and acetone is taken as model reaction) and the total hydrodeoxygenation of the resulting condensation adducts in one step, yielding n-alkanes. Different combinations of catalysts (bifunctional catalysts or mechanical mixtures), reaction conditions, and solvents (aqueous and organic) have been tested for performing these reactions in an isothermal batch reactor. The results suggest that the use of bifunctional catalysts and aqueous phase lead to an effective integration of both reactions. Therefore, selectivities to n-alkanes higher than 50% were obtained using this catalyst at typical hydrogenation conditions (T=493 K, P=4.5 MPa, 24 h reaction time). The use of organic solvent, carbonaceous supports, or mechanical mixtures of monofunctional catalysts leads to poorer results owing to side effects; mainly, hydrogenation of reactants and adsorption processes. PMID:25088473

  10. Enantioselective construction of multifunctionalized spirocyclohexaneoxindoles through organocatalytic Michael-Aldol cyclization of isatin derived alkenes with linear dialdehydes.

    PubMed

    Huang, Xiao-Fei; Liu, Zhao-Min; Geng, Zhi-Cong; Zhang, Shao-Yun; Wang, Yong; Wang, Xing-Wang

    2012-11-28

    Optically active spirocyclohexaneoxindole motifs are very important building blocks for preparations of biologically active complexes, natural products, and pharmaceutical compounds. Herein, we report the syntheses of enantiopure spirocyclohexaneoxindoles through domino Michael-Aldol reactions between isatin derived alkenes and pentane-1,5-dial in the presence of diphenylprolinol silyl ether as an aminocatalyst. As a result, a series of multistereogenic and functionalized spirocyclohexaneoxindoles have been obtained in good yields with moderate diastereoselectivities and excellent enantioselectivities. In addition, electronic circular dichroism (ECD) spectroscopy and time-dependent density functional theory (TD-DFT) were used to investigate the rational structures of spirocyclohexaneoxindoles. PMID:23044749

  11. Aldol Reactions - Isotope Effects, Mechanism and Dynamic Effects 

    E-print Network

    Vetticatt, Mathew J.

    2011-02-22

    -limiting. This raises several interesting mechanistic scenarios - an electron transfer mechanism with two different rate-limiting steps for the two components, emerges as the most probable possibility. Finally, labeling studies of the base catalyzed 1,3- proton transfer...

  12. The Intramolecular Aldol Condensation Route to Fused Bi- and Tricyclic beta-Lactams(1)(,)(2).

    PubMed

    Alcaide, Benito; Polanco, Concepción; Sáez, Elena; Sierra, Miguel A.

    1996-10-01

    Staüdinger cycloaddition of activated acid chlorides to 1,3-ketoaldimines, prepared in quantitative yields from 1,3-ketoaldehydes and amino esters, gave in excellent yields cis-2-azetidinones, 6-8, having the adequate functionality to obtain fused bi- and tricyclic beta-lactams. Reaction of compounds 6 with LHMDS at low temperature gave a single diastereomer of fused bicyclic compounds with a carbapenam or carbacefam skeleton. Treatment of diastereomeric cis-2-azetidinones, 7/8, in analogous conditions resulted either in the exclusive cyclization of one of the two diastereomers to form tricyclic [4.n.m] (n = 5, 6; m = 5, 6) compounds, or in the cyclization of both diastereomers to form tricyclic [4.n.7] (n = 5, 6) 2-azetidinones. In all cases the cyclization step was totally stereoselective. Alternatively, trans-carbapenams and one example of a tricyclic system having a trans-2-azetidinone ring have been obtained by using longer reaction times and higher temperatures. Epimerization at C3 of the 2-azetidinone nucleus occurs in these reaction conditions to obtain a single diastereomer of the final products. This approach to fused policyclic 2-azetidinones is one of the scarce syntheses of this kind of compound making use of the aldol condensation. PMID:11667615

  13. Asymmetric Aldol Additions: Use of Titanium Tetrachloride and (-)-Sparteine for the Soft Enolization of N-Acyl Oxazolidinones,

    E-print Network

    Asymmetric Aldol Additions: Use of Titanium Tetrachloride and (-)-Sparteine for the Soft- Evans syn product depending on the nature and amount of the base used. With 1 equiv of titanium and are highly effective for the prepara- tion of Evans syn products in asymmetric aldol addi- tions.3 Titanium

  14. The effect of the distance between acidic site and basic site immobilized on mesoporous solid on the activity in catalyzing aldol condensation

    SciTech Connect

    Yu Xiaofang; Yu Xiaobo; Wu Shujie; Liu Bo; Liu Heng; Guan Jingqi; Kan Qiubin

    2011-02-15

    Acid-base bifunctional heterogeneous catalysts containing carboxylic and amine groups, which were immobilized at defined distance from one another on the mesoporous solid were synthesized by immobilizing lysine onto carboxyl-SBA-15. The obtained materials were characterized by X-ray diffraction (XRD), N{sub 2} adsorption, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron micrographs (SEM), transmission electron micrographs (TEM), elemental analysis, and back titration. Proximal-C-A-SBA-15 with a proximal acid-base distance was more active than maximum-C-A-SBA-15 with a maximum acid-base distance in aldol condensation reaction between acetone and various aldehydes. It appears that the distance between acidic site and basic site immobilized on mesoporous solid should be an essential factor for catalysis optimization. -- Graphical abstract: Proximal-C-A-SBA-15 with a proximal acid-base distance and maximum-C-A-SBA-15 with a maximum acid-base distance were synthesized by immobilizing lysine onto carboxyl-SBA-15. Display Omitted Research highlights: {yields} Proximal-C-A-SBA-15 with a proximal acid-base distance. {yields} Maximum-C-A-SBA-15 with a maximum acid-base distance. {yields} Compared to maximum-C-A-SBA-15, proximal-C-A-SBA-15 was more active toward aldol condensation reaction between acetone and various aldehydes.

  15. TBAF-Triggered Aldol-Type Addition of ?-Triethylsilyl-?-diazoacetone.

    PubMed

    Abid, Imen; Gosselin, Pascal; Mathé-Allainmat, Monique; Abid, Souhir; Dujardin, Gilles; Gaulon-Nourry, Catherine

    2015-10-16

    Aldol-type addition of ?-triethylsilyl-?-diazoacetone was achieved under nucleophilic activation by tetrabutylammonium fluoride (TBAF). The use of a semistoichiometric amount of TBAF (protocol P1) provided the corresponding ?-hydroxy-?-diazoacetone as the sole product. Alternatively, the use of a catalytic amount of TBAF led to a mixture of ?-hydroxy- and ?-silyloxy-?-diazoacetone products, which was cleanly desilylated with Et3N·3HF (protocol P2). The weakly basic conditions employed tolerate a wide range of substrates and constitute a high-yielding, convenient complementary procedure to the low-temperature LDA-promoted aldol-type addition of diazoacetone. PMID:26395942

  16. D-Aminoacylase-initiated cascade Aldol condensation/Robinson annulation for synthesis of substituted cyclohex-2-enones from simple aldehydes and acetone.

    PubMed

    Xiang, Ziwei; Liang, Yiru; Chen, Xiang; Wu, Qi; Lin, Xianfu

    2014-08-01

    As an important building block, developing efficient and green synthesis strategy of cyclohex-2-enones is of great importance. In this present work, a general approach to the mild synthesis of substituted cyclohex-2-enones derivatives starting fro m simple aldehydes and acetone have been achieved via D-aminoacylase-initiated Aldol condensation/Robinson annulation cascade reaction using imidazole as an additive in organic media. The influences of reaction conditions including solvents, enzyme concentration, additives type, molar ratio of enzyme to additive, and substrate scopes were systematically investigated. Furthermore, some experiments were designed to explore the catalytic roles of D-aminoacylase and imidazole in the multistep cascade process, and one possible mechanism was proposed. PMID:24770961

  17. Copper-catalyzed cascade reactions of ?,?-unsaturated esters with keto esters

    PubMed Central

    Wang, Chongnian; Li, Zengchang

    2015-01-01

    Summary A copper-catalyzed cascade reaction of ?,?-unsaturated esters with keto esters is reported. It features a copper-catalyzed reductive aldolization followed by a lactonization. This method provides a facile approach to prepare ?-carboxymethyl-?-lactones and ?-carboxymethyl-?-lactones under mild reaction conditions. PMID:25815072

  18. The effect of the distance between acidic site and basic site immobilized on mesoporous solid on the activity in catalyzing aldol condensation

    NASA Astrophysics Data System (ADS)

    Yu, Xiaofang; Yu, Xiaobo; Wu, Shujie; Liu, Bo; Liu, Heng; Guan, Jingqi; Kan, Qiubin

    2011-02-01

    Acid-base bifunctional heterogeneous catalysts containing carboxylic and amine groups, which were immobilized at defined distance from one another on the mesoporous solid were synthesized by immobilizing lysine onto carboxyl-SBA-15. The obtained materials were characterized by X-ray diffraction (XRD), N 2 adsorption, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron micrographs (SEM), transmission electron micrographs (TEM), elemental analysis, and back titration. Proximal-C-A-SBA-15 with a proximal acid-base distance was more active than maximum-C-A-SBA-15 with a maximum acid-base distance in aldol condensation reaction between acetone and various aldehydes. It appears that the distance between acidic site and basic site immobilized on mesoporous solid should be an essential factor for catalysis optimization.

  19. A DFT analysis of thermal decomposition reactions important to natural products.

    PubMed

    Setzer, William N

    2010-07-01

    The thermal decomposition reactions of several important natural flavor and fragrance chemicals have been investigated using density functional theory (DFT, B3LYP/6-31G*). Retro-aldol reactions of glucose, fructose, hernandulcin, epihernandulcin, [3]-gingerol, and [4]-isogingerol; retro-carbonyl-ene reactions of isopulegol, lavandulol, isolyratol, and indicumenone; and pyrolytic syn elimination reactions of linalyl acetate, alpha-terpinyl acetate, and bornyl acetate, have been carried out. The calculations indicate activation enthalpies of around 30 kcal/mol for the retro-aldol reactions and for retro-carbonyl-ene reactions, comparable to pericyclic reactions such as the Cope rearrangement and electrocyclic reactions, and therefore important reactions at elevated temperatures (e.g., boiling aqueous solutions, gas-chromatograph injection ports). Activation enthalpies for pyrolytic eliminations are around 40 kcal/mol and are unlikely to occur during extraction or GC analysis. PMID:20734926

  20. Asymmetric synthesis of anti-aldol segments via a nonaldol route: synthetic applications to statines and (-)-tetrahydrolipstatin.

    PubMed

    Ghosh, Arun K; Shurrush, Khriesto; Kulkarni, Sarang

    2009-06-19

    An asymmetric synthesis of anti-aldol segments via a nonaldol route is described. The strategy involves a highly diastereoselective synthesis of functionalized tetrahydrofuran derivatives from optically active 4-phenylbutyrolactone. Treatment of the tetrahydrofuran derivatives with a Lewis acid and acetic anhydride provided the corresponding ring-opened styrene derivatives. Oxidative cleavage of the styrene derivatives provided access to the anti-aldol segments. The utility of this methodology was demonstrated by the synthesis of statine derivatives and pancreatic lipase inhibitor, (-)-tetrahydrolipstatin. PMID:19438217

  1. Enantioselective Total Synthesis of (+)-Gigantecin: Exploiting the Asymmetric Glycolate Aldol Reaction

    E-print Network

    22, 2004; E-mail: crimmins@email.unc.edu Plants of the family Annonaceae produce an abundant collection of highly bioactive C35-C37 fatty acid metabolites.1 These aceto- genins have been found to effect diastereoselectivity (>98:2).10 The chiral auxiliary was reductively cleaved, and the ensuing primary alcohol

  2. Amine-catalyzed direct aldol reactions of hydroxy- and dihydroxyacetone: biomimetic synthesis of carbohydrates.

    PubMed

    Popik, Oskar; Pasternak-Suder, Monika; Le?niak, Katarzyna; Jawiczuk, Magdalena; Górecki, Marcin; Frelek, Jadwiga; Mlynarski, Jacek

    2014-06-20

    This article presents comprehensive studies on the application of primary, secondary, and tertiary amines as efficient organocatalysts for the de novo synthesis of ketoses and deoxyketoses. Mimicking the actions of aldolase enzymes, the synthesis of selected carbohydrates was accomplished in aqueous media by using proline- and serine-based organocatalysts. The presented methodology also provides direct access to unnatural L-carbohydrates from the (S)-glyceraldehyde precursor. Determination of the absolute configuration of all obtained sugars was feasible using a methodology consisting of concerted ECD and VCD spectroscopy. PMID:24837738

  3. An Exercise on Structure Elucidation Based on a Tricky Aldol Reaction

    ERIC Educational Resources Information Center

    Sierra, Manuel Gonzalez; Pellegrinet, Silvina C.; Colombo, Maria I.; Ruveda, Edmundo A.

    2008-01-01

    An exercise on structure elucidation for advanced undergraduate students is described. To determine the structure of an unknown product, students are required to use spectra together with an organic chemistry mechanism. This exercise exemplifies the procedure commonly used in research, thus helping students develop problem-solving skills. In…

  4. Analysis of UDP-D-Apiose/UDP-D-Xylose Synthase-Catalyzed Conversion of UDP-D-Apiose Phosphonate to UDP-D-Xylose Phosphonate: Implications for a Retroaldol-Aldol Mechanism

    PubMed Central

    Choi, Sei-hyun; Mansoorabadi, Steven O.; Liu, Yung-nan; Liu, Hung-wen

    2012-01-01

    UDP-D-apiose/UDP-D-xylose synthase (AXS) catalyzes the conversion of UDP-D-glucuronic acid to UDP-D-apiose and UDP-D-xylose. An acetyl-protected phosphonate analogue of UDP-D-apiose was synthesized and used in an in situ HPLC assay to demonstrate, for the first time, the ability of AXS to interconvert the two reaction products. Density functional theory calculations provided insight into the energetics of this process and the apparent inability of AXS to catalyze the conversion of UDP-D-xylose to UDP-D-apiose. The data suggest that this observation is unlikely to be due to an unfavorable equilibrium, but rather substrate inhibition by the most stable chair conformation of UDP-D-xylose. The detection of xylose cyclic phosphonate as the turnover product uncovers significant new detail about the AXS-catalyzed reaction and supports the proposed retroaldol-aldol mechanism of catalysis. PMID:22830643

  5. Cobalt-catalysed alkylative aldol cyclisations using trialkylaluminium reagents: Rhodium-catalysed carbometallation of ynamides in the preparation of multisubstituted enamides 

    E-print Network

    Rudkin, Mairi Ellen

    2010-01-01

    The cobalt-catalysed alkylative aldol cyclisations of ?,?-unsaturated amides with an appendant ketone were studied using a range of trialkylaluminium reagents. Investigations revealed that Co(acac)2·2H2O acts as an ...

  6. A four-component reaction involving in situ generated organometallic reagents: straightforward access to ?-amino esters.

    PubMed

    Le Gall, Erwan; Léonel, Eric

    2013-04-22

    Four in one: A straightforward synthesis of ?(2,3)-amino esters is described through a new zinc-mediated, cobalt-catalyzed four-component reaction between organic bromides, alkyl acrylates, amines, and aldehydes (see scheme). Synthesis involves a Mannich-related conjugate addition/aza-aldol domino sequence, allowing the formation of three single bonds in one step. A reaction mechanism, emphasizing the crucial role of zinc salts, is described. PMID:23463614

  7. A Simple Organic Microscale Experiment Illustrating the Equilibrium Aspect of the Aldol Condensation

    NASA Astrophysics Data System (ADS)

    Harrison, Ernest A., Jr.

    1998-05-01

    A simple microscale experiment has been developed that illustrates the equilibrium aspect of the aldol condensation by using two versions of the standard preparation of tetraphenylcyclopentadienone (5) from benzil (1) and 1,3-diphenyl-2-propanone (2). In version (high base concentration) a mixture of 5 and the diastereomeric 4-hydroxy-2,3,4,5-tetraphenyl-2-cyclopenten-1-ones 3 and 4 are produced, while in the other (low base concentration) a mixture of 1, 2, 3, and 4 results. The experiment is typically carried out in conjunction with the previously reported preparation/dehydration of 3, thus the students provide themselves with authentic samples of 3 and 5. Using these, plus authentic samples of 1 and 2 which are made available, students are able to identify all of the components in the equilibrium mixtures, except 4, by TLC analysis. In the case of 4, students are expected to propose a reasonable structure for this compound based on the observed chemistry and the spectroscopic evidence which is provided (i.e., NMR, IR and mass spectra). The experiment lends itself nicely to either the traditional or problem-solving approach, and it also opens up opportunities for collaborative learning.

  8. Molecular Mechanism by which One Enzyme Catalyzes Two Reactions

    NASA Astrophysics Data System (ADS)

    Nishimasu, Hiroshi; Fushinobu, Shinya; Wakagi, Takayoshi

    Unlike ordinary enzymes, fructose-1,6-bisphosphate (FBP) aldolase/phosphatase (FBPA/P) catalyzes two distinct reactions : (1) the aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate to FBP, and (2) the dephosphorylation of FBP to fructose-6-phosphate. We solved the crystal structures of FBPA/P in complex with DHAP (its aldolase form) and FBP (its phosphatase form). The crystal structures revealed that FBPA/P exhibits the dual activities through a dramatic conformational change in the active-site architecture. Our findings expand the conventional concept that one enzyme catalyzes one reaction.

  9. Controlling reaction specificity in pyridoxal phosphate enzymes

    PubMed Central

    Toney, Michael D.

    2012-01-01

    Pyridoxal 5'-phosphate enzymes are ubiquitous in the nitrogen metabolism of all organisms. They catalyze a wide variety of reactions including racemization, transamination, decarboxylation, elimination, retro-aldol cleavage, Claisen condensation, and others on substrates containing an amino group, most commonly ?-amino acids. The wide variety of reactions catalyzed by PLP enzymes is enabled by the ability of the covalent aldimine intermediate formed between substrate and PLP to stabilize carbanionic intermediates at C? of the substrate. This review attempts to summarize the mechanisms by which reaction specificity can be achieved in PLP enzymes by focusing on three aspects of these reactions: stereoelectronic effects, protonation state of the external aldimine intermediate, and interaction of the carbanionic intermediate with the protein side chains present in the active site. PMID:21664990

  10. Synthesis and Characterization of Aldol Condensation Products from Unknown Aldehydes and Ketones: An Inquiry-Based Experiment in the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Angelo, Nicholas G.; Henchey, Laura K.; Waxman, Adam J.; Canary, James W.; Arora, Paramjit S.; Wink, Donald

    2007-01-01

    An experiment for the undergraduate chemistry laboratory in which students perform the aldol condensation on an unknown aldehyde and an unknown ketone is described. The experiment involves the use of techniques such as TLC, column chromatography, and recrystallization, and compounds are characterized by [to the first power]H NMR, GC-MS, and FTIR.…

  11. Total synthesis of the protected aglycon of fidaxomicin (tiacumicin?B, lipiarmycin?A3).

    PubMed

    Miyatake-Ondozabal, Hideki; Kaufmann, Elias; Gademann, Karl

    2015-02-01

    Fidaxomicin, also known as tiacumicin?B or lipiarmycin?A3, is a novel macrocyclic antibiotic that is used in hospitals for the treatment of Clostridium difficile infections. This natural product has also been shown to have excellent bactericidal activity against multidrug-resistant Mycobacterium tuberculosis. In spite of its attractive biological activity, no total synthesis has been reported to date. The enantioselective synthesis of the central 18-membered macrolactone is reported herein. The key reactions include ring-closing metathesis between a terminal olefin and a dienoate moiety for macrocyclization, a vinylogous Mukaiyama aldol reaction, and a Stille coupling reaction of sterically demanding substrates. The retrosynthesis involves three medium-sized fragments, thus leading to a flexible yet convergent synthetic route. PMID:25431322

  12. Pd/NbOPO? multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans.

    PubMed

    Xia, Qi-Neng; Cuan, Qian; Liu, Xiao-Hui; Gong, Xue-Qing; Lu, Guan-Zhong; Wang, Yan-Qin

    2014-09-01

    Great efforts have been made to convert renewable biomass into transportation fuels. Herein, we report the novel properties of NbO(x)-based catalysts in the hydrodeoxygenation of furan-derived adducts to liquid alkanes. Excellent activity and stability were observed with almost no decrease in octane yield (>90% throughout) in a 256?h time-on-stream test. Experimental and theoretical studies showed that NbO(x) species play the key role in C-O bond cleavage. As a multifunctional catalyst, Pd/NbOPO4 plays three roles in the conversion of aldol adducts into alkanes: 1)?The noble metal (in this case Pd) is the active center for hydrogenation; 2)?NbO(x) species help to cleave the C-O bond, especially of the tetrahydrofuran ring; and 3)?a niobium-based solid acid catalyzes the dehydration, thus enabling the quantitative conversion of furan-derived adducts into alkanes under mild conditions. PMID:25045056

  13. RUTHENIUM-CATALYZED TANDEM OLEFIN MIGRATION-ALDOL AND MANNICH-TYPE REACTIONS IN WATER AND PROTIC SOLVENT. (R828129)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. Design of chiral urea-quaternary ammonium salt hybrid catalysts for asymmetric reactions of glycine Schiff bases†

    PubMed Central

    Tiffner, Maximilian; Novacek, Johanna; Busillo, Alfonso; Gratzer, Katharina; Massa, Antonio; Waser, Mario

    2015-01-01

    Bifunctional chiral urea-containing quaternary ammonium salts can be straightforwardly synthesised in good yield and with high structural diversity via a scalable and operationally simple highly telescoped sequence starting from trans-1,2-cyclohexanediamine. These novel hybrid catalysts were systematically investigated for their potential to control glycine Schiff bases in asymmetric addition reactions. It was found that Michael addition reactions and the herein presented aldol-initiated cascade reaction can be carried out to provide enantiomeric ratios up to 95 : 5 and good yields under mild conditions at room temperature. PMID:26504516

  15. Catalytic, asymmetric, aldol/O-conjugate addition sequence for the construction of highly substituted furanoids.

    PubMed

    Calter, Michael A; Korotkov, Alexander

    2015-03-20

    A new method for the enantioselective synthesis of highly functionalized dihydrofurans has been developed. This process, related to the interrupted Feist-Bénary reaction, involves the reaction of 2-ene 1,4-diketones with dimedone in the presence of bis(cinchona alkaloid)pyrimidine catalysts to afford dihydrofuran products in excellent yields and high diastereo- and enantioselectivities. PMID:25739895

  16. A General and Enantioselective Approach to Pentoses: A Rapid Synthesis of PSI-6130, the Nucleoside Core of Sofosbuvir

    E-print Network

    MacMillan, David W. C.

    enabled by a chiral amine in conjunction with copper(II) catalysis. A subsequent Mukaiyama aldol coupling of pharmaceutically active compounds currently in clinical use. Carbohydrates represent compounds of both vast, that nucleoside frameworks are found at the core of many pharmaceutically active compounds and that significant

  17. Linked strategy for the production of fuels via formose reaction

    PubMed Central

    Deng, Jin; Pan, Tao; Xu, Qing; Chen, Meng-Yuan; Zhang, Ying; Guo, Qing-Xiang; Fu, Yao

    2013-01-01

    Formose reaction converts formaldehyde to carbohydrates. We found that formose reaction can be used linking the biomass gasification with the aqueous-phase processing (APP) to produce liquid transportation fuel in three steps. First, formaldehyde from syn-gas was converted to triose. This was followed by aldol condensation and dehydration to 4-hydroxymethylfurfural (4-HMF). Finally, 4-HMF was hydrogenated to produce 2,4-dimethylfuran (2,4-DMF) or C9-C15 branched-chain alkanes as liquid transportation fuels. In the linked strategy, high energy-consuming pretreatment as well as expensive and polluting hydrolysis of biomass were omitted, but the high energy recovery of APP was inherited. In addition, the hexoketoses via formose reaction could be converted to HMFs directly without isomerization. A potential platform molecule 4-HMF was formed simultaneously in APP. PMID:23393625

  18. Enantioselective, organocatalytic Morita-Baylis-Hillman and Aza-Morita-Baylis-Hillman reactions: stereochemical issues.

    PubMed

    Mansilla, Javier; Saá, José M

    2010-02-01

    Conscious of the importance that stereochemical issues may have on the design of efficient organocatalyts for both Morita-Baylis-Hillman and aza-Morita-Baylis-Hillman reaction we have analyzed them in this minireview. The so-called standard reactions involve "naked" enolates which therefore should lead to the syn adducts as the major products, irrespective of the E, Z stereochemistry of the enolate. Accordingly, provided the second step is rate determining step, the design of successful bifunctional or polyfunctional catalysts has to consider the geometrical requirements imposed by the transition structures of the second step of these reactions. On the other hand, MBH and aza-MBH reactions co-catalyzed by (S)-proline and a secondary or tertiary amine (co-catalyst) involve the aldol-type condensation of either a 3-amino-substituted enamine, dienamine, or both, depending on the cases. A Zimmerman-Traxler mechanism defines the stereochemical issues regarding these co-catalyzed condensations which parallel those of the well established (S)-proline catalyzed aldol-like reactions. PMID:20335941

  19. Effects of water on reactions for waste treatment, organic synthesis, and bio-refinery in sub- and supercritical water.

    PubMed

    Akizuki, Makoto; Fujii, Tatsuya; Hayashi, Rumiko; Oshima, Yoshito

    2014-01-01

    Current research analyzing the effects of water in the field of homogeneous and heterogeneous reactions of organics in sub- and supercritical water are reviewed in this article. Since the physical properties of water (e.g., density, ion product and dielectric constants) can affect the reaction rates and mechanisms of various reactions, understanding the effects that water can have is important in controlling reactions. For homogeneous reactions, the effects of water on oxidation, hydrolysis, aldol condensation, Beckman rearrangement and biomass refining were introduced including recent experimental results up to 100 MPa using special pressure-resistance equipment. For heterogeneous reactions, the effects of ion product on acid/base-catalyzed reactions, such as hydrothermal conversion of biomass-related compounds, organic synthesis in the context of bio-refinery, and hydration of olefins were described and how the reaction paths are controlled by the concentration of water and hydrogen ions was summarized. PMID:23867097

  20. Synthesis of octitols and the respective amino-derivatives from 'organo-aldols'.

    PubMed

    ??czycka, Katarzyna; Chaciak, Bartosz; Cieplak, Maciej; Cmoch, Piotr; Jarosz, S?awomir

    2015-02-11

    Two diastereoisomeric keto-octoses, obtained in the reaction of 2,3:4,5-diacetone-D-arabinose with protected dihydroxyacetone catalyzed with L- or D-proline, were converted into octitols by stereoselective reduction of the carbonyl group with zinc borohydride and final deprotection. The study on the preparation of the respective amino-derivatives by reductive amination of these organo-adducts is presented; stereochemical aspects of these processes are discussed. PMID:25130931

  1. Control of four stereocentres in a triple cascade organocatalytic reaction.

    PubMed

    Enders, Dieter; Hüttl, Matthias R M; Grondal, Christoph; Raabe, Gerhard

    2006-06-15

    Efficient and elegant syntheses of complex organic molecules with multiple stereogenic centres continue to be important in both academic and industrial laboratories. In particular, catalytic asymmetric multi-component 'domino' reactions, used during total syntheses of natural products and synthetic building blocks, are highly desirable. These reactions avoid time-consuming and costly processes, including the purification of intermediates and steps involving the protection and deprotection of functional groups, and they are environmentally friendly and often proceed with excellent stereoselectivities. Therefore, the design of new catalytic and stereoselective cascade reactions is a continuing challenge at the forefront of synthetic chemistry. In addition, catalytic cascade reactions can be described as biomimetic, as they are reminiscent of tandem reactions that may occur during biosyntheses of complex natural products. Here we report the development of an asymmetric organocatalytic triple cascade reaction for the synthesis of tetra-substituted cyclohexene carbaldehydes. This three-component domino reaction proceeds by way of a catalysed Michael/Michael/aldol condensation sequence affording the products with good to moderate yields (25-58 per cent). During this sequence, four stereogenic centres are formed with high diastereoselectivity and complete enantioselectivity. In addition, variation of the starting materials can be used to obtain diverse polyfunctional cyclohexene derivatives, which can be used as building blocks in organic synthesis. PMID:16778886

  2. Hydroxyapatite catalyzed aldol condensation: synthesis, spectral linearity, antimicrobial and insect antifeedant activities of some 2,5-dimethyl-3-furyl chalcones.

    PubMed

    Subramanian, M; Vanangamudi, G; Thirunarayanan, G

    2013-06-01

    A series of 2,5-dimethyl-3-furyl chalcones [2E-1-(2,5-dimethyl-3-furyl)-3-(substituted phenyl)-2-propen-1-ones] have been synthesized by Hydrotalcite catalyzed aldol condensation between 3-acetyl-2,5-dimethylfuron and substituted benzaldehydes. Yields of chalcones are more than 80%. These chalcones were characterized by their physical constants and spectral data. The group frequencies of infrared ?(cm(-1)) of CO s-cis and s-trans, CH in-plane and out of plane, CH=CH out of plane, C=C out of plane modes, NMR chemical shifts ?(ppm) of H?, H?, CO, C? and C? of these chalcones were correlated with Hammett substituent constants, F and R parameters using single and multi-regression analyses. From the results of statistical analyses, the effects of substituents on the group frequencies are explained. Antibacterial, antifungal and insect antifeedant activities of these chalcones have been studied. PMID:23562741

  3. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2014-11-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, Attenuated Total Reflectance-Fourier Transform Infrared and 1H Nuclear Magnetic Resonance spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene, which was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence for products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal have the potential to produce significant organic aerosol mass and therefore could potentially impact chemical, optical and/or cloud-forming properties of aerosols, especially if the products partition to the aerosol surface.

  4. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2015-04-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt%) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal have the potential to produce significant organic aerosol mass and therefore could potentially impact chemical, optical and/or cloud-forming properties of aerosols, especially if the products partition to the aerosol surface.

  5. Total Synthesis of the Anti-inflammatory and Pro-resolving Lipid Mediator MaR1n-3 DPA Utilizing an sp3-sp3 Negishi Cross-coupling Reaction**

    PubMed Central

    Tungen, Jørn Eivind; Aursnes, Marius; Dalli, Jesmond; Arnardottir, Hildur; Serhan, Charles Nicholas

    2014-01-01

    The first total synthesis of the lipid mediator MaR1n-3 DPA (5) has been achieved in 12% overall yield over 11 steps. The stereoselective preparation of 5 was based on a Pd-catalyzed sp3-sp3 Negishi cross-coupling reaction and a stereo controlled Evans-Nagao acetate aldol reaction. LC-MS/MS results with synthetic material matched the biologically product 5. This novel lipid mediator displayed potent pro-resolving properties stimulating macrophage efferocytosis of apoptotic neutrophils. PMID:25225129

  6. The First Direct and Enantioselective Cross-Aldol Reaction of Aldehydes Alan B. Northrup and David W. C. MacMillan*

    E-print Network

    MacMillan, David W. C.

    for asymmetric synthesis, we have recently initiated studies toward the identification of chiral amines such as dimethyl sulfoxide (entry 7, >99% ee). It is important to note that byproducts arising from dehydration

  7. Allergic Reactions

    MedlinePLUS

    ... allergic reaction is actually a result of a chain reaction that begins in your genes and is expressed ... Tips • Allergy symptoms are the result of a chain reaction that starts in your immune system. • If you ...

  8. [Synthesis of carbohydrate related compounds by using aldolase catalyzed reaction].

    PubMed

    Kajimoto, T

    2000-01-01

    Enzymes proceed the reaction with high regio- and stereoselectivity under mild conditions, i.e. in an aqueous medium at room temperature. However, enzymatic reactions that catalyze carbon-carbon bond formation have not been utilized in organic synthesis until recently. We had an interest in an aldolase-catalyzed reaction which proceed carbon-carbon bond formation referred to aldol condensation, by which many bioactive compounds have been rationally synthesized. On the other hand, recent biological studies on cell recognition (cell adhesion) have disclosed the important roles of oligosaccharides on cell surfaces, especially which include glucuronic acid, 3-deoxy-D-manno-oct-2-ulosonic acid (KDO), and sialic acid in the structures e.g., sialyl Lewis X and endotoxins, in differentiation, induction, viral and bacterial infections, and immune response. As well as acidic oligosaccharides, basic ones have been utilized as practical medicines in the clinical level, like acarbose that acts as an amylase inhibitor. Based on these background, we embarked the synthesis of carbohydrate related compounds which can control the interaction between carbohydrates and carbohydrate recognition protein by the use of several aldolases. Azasugars, potent inhibitors toward glycosidases, were synthesized using fructose-1,6-diphosphate (FDP)-aldolase and other dihdroxyacetonephosphate (DHAP)-dependent aldolases in the key step. Sialyl Lewis X mimetic, peptidic mimetic of RNA having anti-Vero toxin activity, mycestericin D, and aza-idulonic acid were prepared by taking advantage of L-threonine aldolase catalyzed reaction, which afford beta-hydroxy-alpha-L-amino acids. A precursor of KDO, featured acidic sugar of endotoxins was provided by the reaction catalyzed with kynureninase, which generates beta-anion of L-alanine in its active site during the metabolic reaction from kynurenine to anthranilic acid. PMID:10655781

  9. Hydrolysis/dehydration/aldol-condensation/hydrogenation of lignocellulosic biomass and biomass-derived carbohydrates in the presence of Pd/WO3-ZrO2 in a single reactor.

    PubMed

    Dedsuksophon, W; Faungnawakij, K; Champreda, V; Laosiripojana, N

    2011-01-01

    Hydrolysis/dehydration/aldol-condensation/hydrogenation of lignocellulosic-biomass (corncobs) and biomass-derived carbohydrates (tapioca flour) to produce water-soluble C5-C15 compounds was developed in a single reactor system. WO3-ZrO2 efficiently catalyzed the hydrolysis/dehydration of these feedstocks to 5-hydroxymethylfurfural and furfural, while the impregnation of WO3-ZrO2 with Pd allowed sequential aldolcondensation/hydrogenation of these furans to C5-C15 compounds. The highest C5-C15 yields of 14.8-20.3% were observed at a hydrolysis/dehydration temperature of 573 K for 5 min, an aldol-condensation temperature of 353 K for 30 h, and a hydrogenation temperature of 393 K for 6 h. The C5-C15 yield from tapioca flour was higher than that from corncobs (20.3% compared to 14.8%). Tapioca flour produced more C6/C9/C15, whereas corncobs generated more C5/C8/C13 compounds due to the presence of hemicellulose in the corncobs. These water-soluble organic compounds can be further converted to liquid alkanes with high cetane numbers for replacing diesel fuel in transportation applications. PMID:20934873

  10. Copper and iridium conjugate addition – cyclisation processes; domino reactions 

    E-print Network

    Solana González, Jorge

    2015-06-30

    Asymmetric conjugate addition of bis(pinacolato)diboron followed by aldol cyclisation of enone diones under the action of a chiral copper catalyst has been developed.This enantioselective process, using a chiral bisphosphine ...

  11. Design and Synthesis of Chiral Zn2+ Complexes Mimicking Natural Aldolases for Catalytic C–C Bond Forming Reactions in Aqueous Solution

    PubMed Central

    Itoh, Susumu; Sonoike, Shotaro; Kitamura, Masanori; Aoki, Shin

    2014-01-01

    Extending carbon frameworks via a series of C–C bond forming reactions is essential for the synthesis of natural products, pharmaceutically active compounds, active agrochemical ingredients, and a variety of functional materials. The application of stereoselective C–C bond forming reactions to the one-pot synthesis of biorelevant compounds is now emerging as a challenging and powerful strategy for improving the efficiency of a chemical reaction, in which some of the reactants are subjected to successive chemical reactions in just one reactor. However, organic reactions are generally conducted in organic solvents, as many organic molecules, reagents, and intermediates are not stable or soluble in water. In contrast, enzymatic reactions in living systems proceed in aqueous solvents, as most of enzymes generally function only within a narrow range of temperature and pH and are not so stable in less polar organic environments, which makes it difficult to conduct chemoenzymatic reactions in organic solvents. In this review, we describe the design and synthesis of chiral metal complexes with Zn2+ ions as a catalytic factor that mimic aldolases in stereoselective C–C bond forming reactions, especially for enantioselective aldol reactions. Their application to chemoenzymatic reactions in aqueous solution is also presented. PMID:24481060

  12. Glucose and fructose decomposition in subcritical and supercritical water: Detailed reaction pathway, mechanisms, and kinetics

    SciTech Connect

    Kabyemela, B.M.; Adschiri, T.; Malaluan, R.M.; Arai, K.

    1999-08-01

    The authors are developing a new catalyst-free process of cellulose decomposition in supercritical water. In their initial study on the cellulose decomposition in supercritical water, the main products of cellulose decomposition were found to be oligomers of glucose (cellobiose, cellotriose, etc.) and glucose at short residence times (400 C, 25 MPa, 0.05 s). The kinetics of glucose at these conditions can be useful in understanding the reaction pathways of cellulose. Experiments were performed on the products of glucose decomposition at short residence times to elucidate the reaction pathways and evaluate kinetics of glucose and fructose decomposition in sub- and supercritical water. The conditions were a temperature of 300--400 C and pressure of 25--40 MPa for extremely short residence times between 0.02 and 2 s. The products of glucose decomposition were fructose, a product of isomerization, 1,6-anhydroglucose, a product of dehydration, and erythrose and glyceraldehyde, products of C-C bond cleavage. Fructose underwent reactions similar to glucose except that it did not form 1,6-anhydroglucose and isomerization to glucose is negligible. The mechanism for the products formed from C-C bond cleavage could be explained by reverse aldol condensation and the double-bond rule of the respective enediols formed during the Lobry de Bruyn Alberda van Ekenstein transformation. The differential equations resulting from the proposed pathways were fit to experimental results to obtain the kinetic rate constants.

  13. Early stage composition of SOA produced by ?-pinene/ozone reaction: ?-Acyloxyhydroperoxy aldehydes and acidic dimers

    NASA Astrophysics Data System (ADS)

    Witkowski, Bart?omiej; Gierczak, Tomasz

    2014-10-01

    Composition of the freshly formed secondary organic aerosol (SOA) generated by ozonolysis of cyclohexene, cyclohexene-d10 (model precursors) and ?-pinene was studied using liquid chromatography coupled to electrospray ionization tandem mass spectrometry (LC-ESI/MS2). SOA was generated in the flow-tube reactor under the following conditions: 22 ± 2 °C, 1 atm and reaction time was approx. 30 s. In an attempt to resolve the current ambiguities, regarding the structure of ?-pinene SOA nucleating agents, analytical methods for analysis of ?-acyloxyhydroperoxy aldehydes and oligomers containing carboxylic group were developed to study the potential nucleating agents. Negatively charged m/z 351, 341, 337, 357 and 367 ions corresponding to the acidic oligomers were detected in freshly formed ?-pinene SOA. For the first time, structures and formation mechanism for compounds detected as m/z 337 and 351 ions were proposed. Based on the model precursor analysis (cyclohexene and cyclohexene-d10) it was concluded that these compounds were most likely formed via aldol reaction of the lower molecular weight aerosol components. ?-Acyloxyhydroperoxy aldehydes were studied in the SOA samples using previously developed, novel method, based on the prediction of fragmentation spectrum for the compounds of interest. It was concluded that ?-acyloxyhydroperoxy aldehydes were not formed in significant quantities. Based on the obtained results, possible SOA formation and growth mechanism is discussed.

  14. Temperature- and pH-dependent aqueous-phase kinetics of the reactions of glyoxal and methylglyoxal with atmospheric amines and ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Sedehi, Nahzaneen; Takano, Hiromi; Blasic, Vanessa A.; Sullivan, Kristin A.; De Haan, David O.

    2013-10-01

    Reactions of glyoxal (Glx) and methylglyoxal (MG) with primary amines and ammonium salts may produce brown carbon and N-containing oligomers in aqueous aerosol. 1H NMR monitoring of reactant losses and product appearance in bulk aqueous reactions were used to derive rate constants and quantify competing reaction pathways as a function of pH and temperature. Glx + ammonium sulfate (AS) and amine reactions generate products containing C-N bonds, with rates depending directly on pH: rate = (70 ± 60) M-1 s-1fAld [Glx]totfAm [Am]tot, where fAld is the fraction of aldehyde with a dehydrated aldehyde functional group, and fAm is the fraction of amine or ammonia that is deprotonated at a given pH. MG + amine reactions generate mostly aldol condensation products and exhibit less pH dependence: rate = 10[(0.36 ± 0.06) × pH - (3.6 ± 0.3)] M-1 s-1fAld [MG]tot [Am]tot. Aldehyde + AS reactions are less temperature-dependent (Ea = 18 ± 8 kJ mol-1) than corresponding amine reactions (Ea = 50 ± 11 kJ mol-1). Using aerosol concentrations of [OH] = 10-12 M, [amine]tot = [AS] = 0.1 M, fGlx = 0.046 and fMG = 0.09, we estimate that OH radical reactions are normally the major aerosol-phase sink for both dicarbonyl compounds. However, reactions with AS and amines together can account for up to 12 and 45% of daytime aerosol-phase glyoxal and methylglyoxal reactivity, respectively, in marine aerosol at pH 5.5. Reactions with AS and amines become less important in acidic or non-marine aerosol, but may still be significant atmospheric sources of brown carbon, imidazoles, and nitrogen-containing oligomers.

  15. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking.

    PubMed

    Migneault, Isabelle; Dartiguenave, Catherine; Bertrand, Michel J; Waldron, Karen C

    2004-11-01

    Glutaraldehyde possesses unique characteristics that render it one of the most effective protein crosslinking reagents. It can be present in at least 13 different forms depending on solution conditions such as pH, concentration, temperature, etc. Substantial literature is found concerning the use of glutaraldehyde for protein immobilization, yet there is no agreement about the main reactive species that participates in the crosslinking process because monomeric and polymeric forms are in equilibrium. Glutaraldehyde may react with proteins by several means such as aldol condensation or Michael-type addition, and we show here 8 different reactions for various aqueous forms of this reagent. As a result of these discrepancies and the unique characteristics of each enzyme, crosslinking procedures using glutaraldehyde are largely developed through empirical observation. The choice of the enzyme-glutaraldehyde ratio, as well as their final concentration, is critical because insolubilization of the enzyme must result in minimal distortion of its structure in order to retain catalytic activity. The purpose of this paper is to give an overview of glutaraldehyde as a crosslinking reagent by describing its structure and chemical properties in aqueous solution in an attempt to explain its high reactivity toward proteins, particularly as applied to the production of insoluble enzymes. PMID:15560135

  16. Parallelization for reaction

    E-print Network

    Louvet, Violaine

    Parallelization for reaction waves with complex chemistry Context Application Background Numerical Results Conclusions and Perspectives Parallelization strategies for multi-scale reaction waves for Engineering - Paraguay 2010 #12;Parallelization for reaction waves with complex chemistry Context Application

  17. Catalysis of Photochemical Reactions.

    ERIC Educational Resources Information Center

    Albini, A.

    1986-01-01

    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  18. The Glyoxal Clock Reaction

    ERIC Educational Resources Information Center

    Ealy, Julie B.; Negron, Alexandra Rodriguez; Stephens, Jessica; Stauffer, Rebecca; Furrow, Stanley D.

    2007-01-01

    Research on the glyoxal clock reaction has led to adaptation of the clock reaction to a general chemistry experiment. This particular reaction is just one of many that used formaldehyde in the past. The kinetics of the glyoxal clock makes the reaction suitable as a general chemistry lab using a Calculator Based Laboratory (CBL) or a LabPro. The…

  19. Classes of Chemical Reactions Reactions in aqueous media

    E-print Network

    Zakarian, Armen

    Classes of Chemical Reactions Reactions in aqueous media · Precipitation reactions · Acid-Base reactions · Oxidation-Reduction reactions · Reversible reactions Classes of Chemical Reactions Water (H2O;Classes of Chemical Reactions The solubility of ionic compounds: dissociation O H H + NaCl Cl- Cl- Cl- Na

  20. Enantioselective copper-catalysed reductive Michael cyclisations 

    E-print Network

    Oswald, Claire Louise

    2010-01-01

    Hydrometalation of ?,?-unsaturated carbonyl compounds provides access to reactive metal enolates, which can then be trapped by a suitable electrophile. The coppercatalysed reductive aldol reaction involves hydrometalation ...

  1. Organic Reactions in Aqueous Media (by Chao-Jun Li and Tak-Hang Chan)

    NASA Astrophysics Data System (ADS)

    Rosan, Reviewed Alan M.

    2000-06-01

    This concise book joins the series of Wiley Interscience special topic publications. In seven chapters it selectively reviews the burgeoning literature on organic reactions conducted in water or in aqueous media as a reaction cosolvent, nicely complementing another recent book on the subject by Grieco. Following a short introduction there are six chapters that vary in length from 10 to 50 pages; they cover pericyclic reactions, nucleophilic additions and substitutions, metal-mediated reactions, transition metal-catalyzed reactions, oxidation and reduction reactions, and industrial applications. These chapters, each of which is prefaced with a short provocative quotation, also vary in depth, containing from 11 to more than 180 references. The literature is complete through 1996 and commendably includes citations of original papers by Barbier, Faraday, Frankland, Grignard, Kolbe, Lapworth, and Reformatsky as well as references to selected U.S. and foreign patents and the Russian literature. There is a subject index but no author index. This book is timely and effective. From the title, one might expect a broad discussion of the unique properties of water and water-soluble components (salts, surfactants, etc.) that would be thought to bear on organic reactivity. The first chapter opens by noting that water is the most abundant volatile material in comets and briefly describes those properties that suggest its utility as a solvent or cosolvent, summarizing the potential technical, economic, and environmental advantages. Also described are the remarkable changes in density, conductance, heat capacity, dielectric constant, and ionization constant that accompany the transition to the critical point, but the emphasis here is on the effect of water under non-critical conditions. Discussion of the structure of liquid water and the role of hydrogen bonding in mediating molecular recognition events is abbreviated. In fact, the term "hydrogen bond" is surprisingly absent from the index. The text does not explicitly include a discussion of what has come to be broadly termed biphasic reaction conditions. Understandably, enzymatic reactions are beyond the scope of the presentation. This book has a decidedly applied character with an understated environmental theme, and the authors succinctly present the extraordinary effects of water on the kinetics, efficiency, and stereoselectivity of a large number of diverse reactions. In addition to their emphasis on the historically significant aqueous Diels-Alder reaction, discovered in 1980, and the literature regarding reactions of various nucleophilic organometals, the authors are to be commended for gathering together a wide and diverse body of information: it is clear that many of the examples shown are gems buried among larger bodies of work. Thus the book does an excellent job of culling and surveying a vast amount of data. There is, however, less emphasis on organizing the mechanistic bases underlying these often dramatic effects. For example, the apparent lack of generality of the effect of water on rate and selectivity in pericyclic reactions calls for some theoretical foundation. The singularly effective use of aqueous TlOH in the Suzuki reaction is cited without comment. On the other hand, the authors' concept of a mechanistic triad that incorporates to various degrees anion, radical, or covalent character in the carbon-carbon bond-forming step between various organometals and carbonyl substrates is appealing and suggests the need for future sophisticated experimental design. The most interesting sections are those dealing with synthesis and industrial applications. Unfortunately the latter is also the shortest chapter. The synthetic examples are timely and well chosen and include water-promoted Heck, Stille, Suzuki, and aldol reactions. There is an extensive, highly informative listing and survey of the use of water-soluble phosphines (both achiral and chiral) and an excellent discussion of the diastereoselectivity that often accompanies carbonyl attack by indium, tin, and

  2. Cu(II)-Gd(III) cryogenic magnetic refrigerants and Cu8Dy9 single-molecule magnet generated by in situ reactions of picolinaldehyde and acetylpyridine: experimental and theoretical study.

    PubMed

    Liu, Jun-Liang; Lin, Wei-Quan; Chen, Yan-Cong; Gómez-Coca, Silvia; Aravena, Daniel; Ruiz, Eliseo; Leng, Ji-Dong; Tong, Ming-Liang

    2013-12-16

    A series of heterometallic [Ln(III)(x)Cu(II)(y)] complexes, [Gd2Cu2]n (1), [Gd4Cu8] (2), [Ln9Cu8] (Ln=Gd, 3·Gd; Ln=Dy, 3·Dy), were successfully synthesized by a one-pot route at room temperature with three kinds of in situ carbonyl-related reactions: Cannizzaro reaction, aldol reaction, and oxidation. This strategy led to dysprosium analogues that behaved as single-molecule magnets (SMMs) and gadolinium analogues that showed significant magnetocaloric effect (MCE). In this study a numerical DFT approach is proposed by using pseudopotentials to calculate the exchange coupling constants in three polynuclear [Gd(x)Cu(y)] complexes; with these values exact diagonalization or quantum Monte Carlo simulations have been performed to calculate the variation of the magnetic entropy involved in the MCE. For the [Dy9Cu8] complexes, local magnetic properties of the Dy(III) centers have been determined by using the CASSCF+RASSI method. PMID:24265054

  3. Allergic reactions (image)

    MedlinePLUS

    Allergic reaction is a sensitivity to a specific substance, called an allergen, that is contacted through the skin, inhaled into the lungs, swallowed or injected. The body's reaction to an allergen can be mild, such as ...

  4. Allergic reactions (image)

    MedlinePLUS

    Allergic reaction can be provoked by skin contact with poison plants, chemicals and animal scratches, as well as by ... dust, nuts and shellfish, may also cause allergic reaction. Medications such as penicillin and other antibiotics are ...

  5. Microfluidic chemical reaction circuits

    DOEpatents

    Lee, Chung-cheng (Irvine, CA); Sui, Guodong (Los Angeles, CA); Elizarov, Arkadij (Valley Village, CA); Kolb, Hartmuth C. (Playa del Rey, CA); Huang, Jiang (San Jose, CA); Heath, James R. (South Pasadena, CA); Phelps, Michael E. (Los Angeles, CA); Quake, Stephen R. (Stanford, CA); Tseng, Hsian-rong (Los Angeles, CA); Wyatt, Paul (Tipperary, IE); Daridon, Antoine (Mont-Sur-Rolle, CH)

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  6. Microscale Thermite Reactions.

    ERIC Educational Resources Information Center

    Arnaiz, Francisco J.; Aguado, Rafael; Arnaiz, Susana

    1998-01-01

    Describes the adaptation of thermite (aluminum with metal oxides) reactions from whole-class demonstrations to student-run micro-reactions. Lists detailed directions and possible variations of the experiment. (WRM)

  7. Reaction spreading on graphs

    NASA Astrophysics Data System (ADS)

    Burioni, Raffaella; Chibbaro, Sergio; Vergni, Davide; Vulpiani, Angelo

    2012-11-01

    We study reaction-diffusion processes on graphs through an extension of the standard reaction-diffusion equation starting from first principles. We focus on reaction spreading, i.e., on the time evolution of the reaction product M(t). At variance with pure diffusive processes, characterized by the spectral dimension ds, the important quantity for reaction spreading is found to be the connectivity dimension dl. Numerical data, in agreement with analytical estimates based on the features of n independent random walkers on the graph, show that M(t)˜tdl. In the case of Erdös-Renyi random graphs, the reaction product is characterized by an exponential growth M(t)˜e?t with ? proportional to ln, where is the average degree of the graph.

  8. The polymorphic phototest reaction

    SciTech Connect

    Jansen, C.

    1982-09-01

    One hundred tem patients with polymorphic light eruption (PMLE) and 58 control subjects were tested with an overdose of erythemogenic radiation. A morphologically abnormal phototest reaction was demonstrable in 72% of the patients with PMLE and in 9% of the control subjects. On the average, a dose of 3.8 times the patient's minimal erythemal dose was needed to produce the reaction. The most common findings in positive phototest reaction sites were edema and itching. A medium-pressure mercury lamp was shown to be as effective as a xenon arc lamp in producing the phototest reaction. The time of the reaction varied considerably in different patients, and frequent inspections of test sites were necessary to detect positive phototest reactions. When properly performed and interpreted, phototesting is a valuable diagnostic procedure for PMLE.

  9. Sleeve reaction chamber system

    DOEpatents

    Northrup, M. Allen (Berkeley, CA); Beeman, Barton V. (San Mateo, CA); Benett, William J. (Livermore, CA); Hadley, Dean R. (Manteca, CA); Landre, Phoebe (Livermore, CA); Lehew, Stacy L. (Livermore, CA); Krulevitch, Peter A. (Pleasanton, CA)

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  10. Radical reactions of borohydrides.

    PubMed

    Kawamoto, Takuji; Ryu, Ilhyong

    2014-12-28

    Borohydrides are an important class of reagents in both organic and inorganic chemistry. Though popular as hydride-transfer reagents for reduction, since earlier work from the 1970s, borohydride reagents have also been known to serve as hydrogen-transfer reagents. In pursuit of greener tin hydride substitutes, recent progress has been made to mediate radical C-C bond forming reactions, including Giese reactions, radical carbonylation and addition to HCHO reactions, with borohydride reagents. This review article focuses on state-of-the-art borohydride based radical reactions, also covering earlier work, kinetics and some DFT calculations with respect to the hydrogen transfer mechanism. PMID:25349957

  11. Degradations and Rearrangement Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  12. Oscillating Reactions: Two Analogies

    ERIC Educational Resources Information Center

    Petruševski, Vladimir M.; Stojanovska, Marina I.; Šoptrajanov, Bojan T.

    2007-01-01

    Oscillating chemical reactions are truly spectacular phenomena, and demonstrations are always appreciated by the class. However, explaining such reactions to high school or first-year university students is problematic, because it may seem that no acceptable explanation is possible unless the students have profound knowledge of both physical…

  13. Applications of Reaction Rate

    ERIC Educational Resources Information Center

    Cunningham, Kevin

    2007-01-01

    This article presents an assignment in which students are to research and report on a chemical reaction whose increased or decreased rate is of practical importance. Specifically, students are asked to represent the reaction they have chosen with an acceptable chemical equation, identify a factor that influences its rate and explain how and why it…

  14. Chemical Reaction Problem Solving.

    ERIC Educational Resources Information Center

    Veal, William

    1999-01-01

    Discusses the role of chemical-equation problem solving in helping students predict reaction products. Methods for helping students learn this process must be taught to students and future teachers by using pedagogical skills within the content of chemistry. Emphasizes that solving chemical reactions should involve creative cognition where…

  15. Nuclear Reaction Data Centers

    SciTech Connect

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab.

  16. THE CUTANEOUS TRICHOPHYTIN REACTION

    PubMed Central

    Amberg, Samuel

    1910-01-01

    There exists a far-reaching analogy between the cutaneous trichophytin reaction and the cutaneous tuberculin reaction. Both indicate that the organism is the seat of a definite infection or that it has passed through such an infection. Both may persist for a long time after the active disease has come to rest, indicating that the infection has left the organism in a state of altered reactivity—allergy. Under certain conditions both may be of diagnostic value, but since the reaction persists for a long time after the infection has passed, the negative reaction may be of greater value, excluding the existence of a specific infection. The analogy of the trichophytin reaction with the tuberculin reaction is not only limited to the obvious clinical manifestations, but, as in the tuberculin reaction, it can be shown that with uniform concentration of antibody, the intensity of the reaction is dependent on the concentration of the trichophytin. A tentative explanation of the halo formation is offered, based on a rapidly renewed formation of antibody stimulated probably by the entrance of a small amount of allergen into the general circulation. PMID:19867336

  17. Clock Reaction: Outreach Attraction

    ERIC Educational Resources Information Center

    Carpenter, Yuen-ying; Phillips, Heather A.; Jakubinek, Michael B.

    2010-01-01

    Chemistry students are often introduced to the concept of reaction rates through demonstrations or laboratory activities involving the well-known iodine clock reaction. For example, a laboratory experiment involving thiosulfate as an iodine scavenger is part of the first-year general chemistry laboratory curriculum at Dalhousie University. With…

  18. Untoward penicillin reactions

    PubMed Central

    Guthe, T.; Idsöe, O.; Willcox, R. R.

    1958-01-01

    The literature on untoward reactions following the administration of penicillin is reviewed. These reactions, including a certain number of deaths which have been reported, are of particular interest to health administrations and to WHO in view of the large-scale programmes for controlling the treponematoses which are now under way—programmes affecting millions of people in many parts of the world. The most serious problems are anaphylactic sensitivity phenomena and superinfection or cross-infection with penicillin-resistant organisms, and the reactions involved range in intensity from the mildest to the fatal; the incidence of the latter is estimated at 0.1-0.3 per million injections. The authors point out that with increasing use of penicillin, more persons are likely to become sensitized and the number of reactions can therefore be expected to rise. The best prevention against such an increase is the restriction of the unnecessary use of penicillin. PMID:13596877

  19. An Illuminating Reaction.

    ERIC Educational Resources Information Center

    Matthews, Catherine E.

    1996-01-01

    Describes the use of carbide lights as an excellent mechanism for introducing or reviewing many basic chemistry concepts including elements and compounds, endothermic and exothermic reactions, physical and chemical changes, and balancing chemical equations. (JRH)

  20. Reaction wheel assembly

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The fabrication and testing of three reaction wheels with associated drive and system monitoring electronics and brushless dc spin motors are discussed; the wheels are intended for use in a teleoperator simulator. Test results are included as graphs.

  1. Reactor for exothermic reactions

    DOEpatents

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  2. Vaccine Reaction Images

    MedlinePLUS

    ... Methyl bromide Methyl isocyanate Nicotine Nitrogen mustard Opioids Organic solvents Osmium tetroxide Paraquat Phosgene Phosgene oxime Phosphine ... Doing What You Can Do Blog: Public Health Matters What's New A - Z Index Vaccine Reaction Images* ...

  3. Reactor for exothermic reactions

    DOEpatents

    Smith, Jr., Lawrence A. (Bellaire, TX); Hearn, Dennis (Houston, TX); Jones, Jr., Edward M. (Friendswood, TX)

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  4. Bad Reaction to Cosmetics?

    MedlinePLUS

    ... Home For Consumers Consumer Updates Bad Reaction to Cosmetics? Tell FDA Share Tweet Linkedin Pin it More ... M.D., director of the agency’s Office of Cosmetics and Colors. “So, consumers are one of FDA’s ...

  5. Iodine Clock Reaction.

    ERIC Educational Resources Information Center

    Mitchell, Richard S.

    1996-01-01

    Describes a combination of solutions that can be used in the study of kinetics using the iodine clock reaction. The combination slows down degradation of the prepared solutions and can be used successfully for several weeks. (JRH)

  6. ULTRAFAST REACTION Martin Gruebele

    E-print Network

    Zewail, Ahmed

    ULTRAFAST REACTION DYNAMICS Martin Gruebele and Ahmed H. Zewail With new lasertechniques andwith fellowand the dynamics. We use the term "transition state" in its Ahmed Zewail is LinusPauling Professorof

  7. Chemisorption And Precipitation Reactions

    EPA Science Inventory

    The transport and bioavailability of chemical components within soils is, in part, controlled by partitioning between solids and solution. General terms used to describe these partitioning reactions include chemisorption and precipitation. Chemisorption is inclusive of the suit...

  8. Uptake and Reactions of Formaldehyde, Acetaldehyde, Acetone, Propanal and Ethanol in Sulfuric Acid solutions at 200-240 K: Implications for upper tropospheric aerosol composition

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; Williams, M. B.; Axson, J.; Michelsen, R.

    2007-12-01

    The production of light absorbing, organic material in aerosol that is normally considered to be transparent in the UV and visible wavelength regions has significant implications for biogeochemical cycling and climate modelling. Production mechanisms likely involve carbonyl compounds such as formaldehyde, acetone, acetaldehyde and propanal that are present in significant quantities in the upper troposphere (UT). In this study, we have performed experiments focusing on a class of acid catalyzed carbonyl reactions, the formation of acetals. R2C=O + 2R'OH --> R2C(OR')2 + H2O Using a Knudsen cell apparatus, we have measured the rate of uptake of formaldehyde, acetaldehyde, acetone, propanal, and ethanol into sulfuric acid solutions ranging between 40-70 wt% of acid, containing 0-0.1 M of ethanol, acetone or formaldehyde at temperatures of 220-250 K. For all reactant pairs, the aldol condensation path, including self reaction, should be insignificant at the acidities studied. Evidence for reaction between organics was observed for all pairs, except those involving propanal which were likely limited by the very low solubility. We attribute enhanced uptake to the formation of acetals, such as 1,1-diethoxyethane and 2,2- diethoxypropane, among others. Enhanced uptake was observed to proceed on timescales > 1 hour and sometimes shows complex dependence on acidity that is likely related to speciation of the individual carbonyls in acidic solution. The acetal products do not absorb in the visible but are less volatile than parent molecules, allowing for accumulation in sulfuric acid particles, and enhanced uptake. Cross reactions of carbonyls with alcohols in sulfuric acid medium have not been previously measured, yet methanol and ethanol show high solubility and are present at significant concentrations in the UT. Thus even at slow reaction rates, the acetal reaction has ample starting material and proceeds under conditions common to the UT. We will present results for the enhanced uptake of carbonyls in the presence of alcohols, derive rate constants, and discuss the atmospheric impact of the acetal reaction path.

  9. Reaction Mechanisms Effects of Bending Excitation on the Reaction of

    E-print Network

    Zare, Richard N.

    Reaction Mechanisms Effects of Bending Excitation on the Reaction of Chlorine Atoms with Methane,* and Konstantin Vodopyanov Many chemical reactions are accelerated by heating the reagents. This effect is caused, and rotational degrees of freedom that ultimately becomes available for overcoming the reaction barrier. Which

  10. Cutaneous reactions to vaccinations.

    PubMed

    Rosenblatt, Adena E; Stein, Sarah L

    2015-01-01

    Vaccinations are important for infectious disease prevention; however, there are adverse effects of vaccines, many of which are cutaneous. Some of these reactions are due to nonspecific inflammation and irritation at the injection site, whereas other reactions are directly related to the live attenuated virus. Rarely, vaccinations have been associated with generalized hypersensitivity reactions, such as erythema multiforme, Stevens-Johnson syndrome, urticaria, acute generalized exanthematous pustulosis, and drug hypersensitivity syndrome. The onset of certain inflammatory dermatologic conditions, such as lichen planus, granuloma annulare, and pemphigoid, were reported to occur shortly after vaccine administration. Allergic contact dermatitis can develop at the injection site, typically due to adjuvant ingredients in the vaccine, such as thimerosal and aluminum. Vaccinations are important to promote development of both individual and herd immunity. Although most vaccinations are considered relatively safe, there may be adverse effects associated with any vaccine. Cutaneous manifestations make up a large portion of the types of reactions associated with vaccines. There are many different reasons for the development of a cutaneous reaction to a vaccination. Some are directly related to the injection of a live attenuated virus, such as varicella or vaccinia (for immunity to smallpox), whereas others cause more nonspecific erythema and swelling at the injection site, as a result of local inflammation or irritation. Vaccinations have also been associated in rare reports with generalized hypersensitivity reactions, such as erythema multiforme, Stevens-Johnson syndrome, urticaria, acute generalized exanthematous pustulosis, and drug hypersensitivity syndrome. There have been case reports associating the administration of a vaccine with the new onset of a dermatologic condition, such as lichen planus, granuloma annulare, and Sweet syndrome. Finally, allergic contact dermatitis can develop at the injection site, typically due to adjuvant ingredients in the vaccine, such as thimerosal and aluminum. PMID:25889134

  11. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A. (Walnut Creek, CA)

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  12. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A. (Walnut Creek, CA)

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  13. Accretion with back reaction

    E-print Network

    Vyacheslav I. Dokuchaev; Yury N. Eroshenko

    2011-12-19

    We calculate analytically a back reaction of the stationary spherical accretion flow near the event horizon and near the inner Cauchy horizon of the charged black hole. It is shown that corresponding back-reaction corrections to the black hole metric depend only on the fluid accretion rate and diverge in the case of an extremely charged black hole. In result, the test fluid approximation for stationary accretion is violated for extreme black holes. This behavior of the accreting black hole is in accordance with the third law of black hole thermodynamics, forbidding the practical attainability of the extreme state.

  14. I. A1,3-Strain Enabled Retention of Chirality During Bis-Cyclization of ?-Ketoamides: Asymmetric Synthesis and Bioactivity of Salinosporamide A and Derivatives II. Optimization of an Organic Syntheses: Asymmetric Nucleophile-Catalyzed Aldol- Lactonization of Aldehyde Acids 

    E-print Network

    Nguyen, Henry

    2010-11-17

    Cl ............................................................... 49 Table 3.7 Optimization of Oxidative PMB Deprotection ................................. 51 Table 4.1 Optimization of the Bis-Cyclization Leading to Bicyclic-?-Lactone??????????????????? 60 Table 4.2 Variation of the C2-Side....6. Subsequent Dess-Martin periodinane oxidation of the alcohol 1.6 gave ?-keto amide 1.7, which underwent an intramolecular Baylis-Hillman reaction, and subsequent cyclization using quinuclidine as the nucleophile led to a ?-lactam (dr 9:1) and silylation...

  15. Friday After Thanksgiving: Chain Reaction

    E-print Network

    Oliva, Aude

    Friday After Thanksgiving: Chain Reaction 2014 Guidelines Your link in the chain reaction should a cup of water. Your link's action must be repeatable, so please test your chain reaction before, whimsical, or elegant. There will be a section of the Chain Reaction connected by tubes to pass a single

  16. NUCLEAR REACTIONS Lecture 11-VI

    E-print Network

    Smith, Nathanael J.

    NUCLEAR REACTIONS Lecture 11-VI #12;General setup 2 Radioactive decay ­ a nucleus spontaneously decays. The only particle present before the decay is the parent nucleus. Nuclear reaction ­ an incident shorthand for nuclear reactions Examples Write the following reactions using the shorthand notation. (Note

  17. Inorganic Reaction Mechanisms. Part I

    ERIC Educational Resources Information Center

    Cooke, D. O.

    1976-01-01

    Provides a collection of data on the mechanistic aspects of inorganic chemical reactions. Wherever possible includes procedures for classroom demonstration or student project work. The material covered includes gas phase reactions, reactions in solution, mechanisms of electron transfer, the reaction between iron III and iodine, and hydrolysis. (GS)

  18. Polymerase chain reaction system

    DOEpatents

    Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.

    2004-03-02

    A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.

  19. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  20. Reaction product imaging

    SciTech Connect

    Chandler, D.W.

    1993-12-01

    Over the past few years the author has investigated the photochemistry of small molecules using the photofragment imaging technique. Bond energies, spectroscopy of radicals, dissociation dynamics and branching ratios are examples of information obtained by this technique. Along with extending the technique to the study of bimolecular reactions, efforts to make the technique as quantitative as possible have been the focus of the research effort. To this end, the author has measured the bond energy of the C-H bond in acetylene, branching ratios in the dissociation of HI, the energetics of CH{sub 3}Br, CD{sub 3}Br, C{sub 2}H{sub 5}Br and C{sub 2}H{sub 5}OBr dissociation, and the alignment of the CD{sub 3} fragment from CD{sub 3}I photolysis. In an effort to extend the technique to bimolecular reactions the author has studied the reaction of H with HI and the isotopic exchange reaction between H and D{sub 2}.

  1. Polymer Reaction & Colloidal Engineering

    E-print Network

    Giger, Christine

    Polymer Reaction & Colloidal Engineering Research Profile The Morbidelli Group is carrying out research in numerous areas related to polymer and colloid science and enginee- ring. Our research activity combines a variety of experimen- tal techniques for polymers and particles characterization with advanced

  2. Reaction Formulation: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    Reaction formation was studied by Sigmund Freud. This defense mechanism may be related to repression, substitution, reversal, and compensation (or over-compensation). Alfred Adler considered compensation a basic process in his individual psychology. Anna Freud discussed some defense mechanisms, and Bibring, Dwyer, Huntington, and Valenstein…

  3. Balancing Equations Chemical Reactions

    E-print Network

    Heller, Barbara

    Balancing Equations Chemical Reactions #12;Chemical Equations · A chemical equation describes what of the participants (solid, liquid, gas, aqueous) and the amount of each substance. #12;Balancing of Equations · To balance a chemical equation, you have to establish a mathematical relationship between the quantity

  4. Chemical Reactions at Surfaces

    SciTech Connect

    Michael Henderson and Nancy Ryan Gray

    2010-04-14

    Chemical reactions at surfaces underlie some of the most important processes of today, including catalysis, energy conversion, microelectronics, human health and the environment. Understanding surface chemical reactions at a fundamental level is at the core of the field of surface science. The Gordon Research Conference on Chemical Reactions at Surfaces is one of the premiere meetings in the field. The program this year will cover a broad range of topics, including heterogeneous catalysis and surface chemistry, surfaces in environmental chemistry and energy conversion, reactions at the liquid-solid and liquid-gas interface, electronic materials growth and surface modification, biological interfaces, and electrons and photons at surfaces. An exciting program is planned, with contributions from outstanding speakers and discussion leaders from the international scientific community. The conference provides a dynamic environment with ample time for discussion and interaction. Attendees are encouraged to present posters; the poster sessions are historically well attended and stimulate additional discussions. The conference provides an excellent opportunity for junior researchers (e.g. graduate students or postdocs) to present their work and interact with established leaders in the field.

  5. Examples 01 Photochemical Reactions

    E-print Network

    Simons, Jack

    is forbidden by symmetry. Recall that in C2vsymmetry the orbital-correlation diagram for this reaction species in terms of symmetry orbitals. Using the reverse of the transformation erom a localized orbital to a symmetry-adapted orbital, the proposed experimentally prepared 1I"1(1I"1I"*)Astale (in which A and' B refer

  6. Quinoprotein-catalysed reactions.

    PubMed Central

    Anthony, C

    1996-01-01

    This review is concerned with the structure and function of the quinoprotein enzymes, sometimes called quinoenzymes. These have prosthetic groups containing quinones, the name thus being analogous to the flavoproteins containing flavin prosthetic groups. Pyrrolo-quinoline quinone (PQQ) is non-covalently attached, whereas tryptophan tryptophylquinone (TTQ), topaquinone (TPQ) and lysine tyrosylquinone (LTQ) are derived from amino acid residues in the backbone of the enzymes. The mechanisms of the quinoproteins are reviewed and related to their recently determined three-dimensional structures. As expected, the quinone structures in the prosthetic groups play important roles in the mechanisms. A second common feature is the presence of a catalytic base (aspartate) at the active site which initiates the reactions by abstracting a proton from the substrate, and it is likely to be involved in multiple reactions in the mechanism. A third common feature of these enzymes is that the first part of the reaction produces a reduced prosthetic group; this part of the mechanism is fairly well understood. This is followed by an oxidative phase involving electron transfer reactions which remain poorly understood. In both types of dehydrogenase (containing PQQ and TTQ), electrons must pass from the reduced prosthetic group to redox centres in a second recipient protein (or protein domain), whereas in amine oxidases (containing TPQ or LTQ), electrons must be transferred to molecular oxygen by way of a redox-active copper ion in the protein. PMID:9003352

  7. Exocharmic Reactions up Close

    ERIC Educational Resources Information Center

    Ramette, R. W.

    2007-01-01

    The exocharmic reactions that can be observed microscopically are discussed. The students can discover the optimal concentration of an acidic lead nitrate solution, so that a crystal of potassium iodide, nudged to the edge of a drop, results in glinting golden hexagons of lead iodide.

  8. Transfer reactions with HELIOS

    NASA Astrophysics Data System (ADS)

    Wuosmaa, Alan H.

    2011-04-01

    Nucleon-transfer reactions have formed the backbone of nuclear-structure studies for several decades, providing a wealth of information about the energies, quantum numbers, and wave functions of single-particle states in nuclei throughout the nuclear chart. Current trends in nuclear-structure physics and the modern emphasis on properties of neutron-rich nuclei far from stability have renewed interest in such transfer reactions with radioactive beams. Here, the usual combination of light beam and heavy target cannot be used, and measurements must be performed in ``inverse kinematics,'' with a heavy, unstable beam incident on a light target. This arrangement introduces several technical difficulties, including the identification of the reaction products and the resolution of the states of interest in the residual nuclei. A new device, HELIOS (the HELIcal Orbit Spectrometer) at the ATLAS facility at Argonne National Laboratory, solves many of the problems encountered with inverse kinematics including particle identification and energy resolution in the center-of-mass frame. The device utilizes the uniform magnetic field of a large, superconducting solenoid to transport light reaction products from the target to a linear array of position-sensitive silicon detectors. The properties of HELIOS will be described, and examples from the initial research program that focuses on neutron transfer with the (d,p) reaction, using both stable and unstable beams with mass A = 11 to 136, will be presented. Work supported by the U. S. Department of Energy, Office of Nuclear Physics under contract numbers DE-FG02-04ER41320 (WMU) and DE-AC02-06CH11357 (ANL).

  9. Photoneutron reactions in astrophysics

    SciTech Connect

    Varlamov, V. V. Ishkhanov, B. S.; Orlin, V. N.; Peskov, N. N.; Stopani, K. A.

    2014-12-15

    Among key problems in nuclear astrophysics, that of obtaining deeper insight into the mechanism of synthesis of chemical elements is of paramount importance. The majority of heavy elements existing in nature are produced in stars via radiative neutron capture in so-called s- and r processes, which are, respectively, slow and fast, in relation to competing ?{sup ?}-decay processes. At the same time, we know 35 neutron-deficient so-called bypassed p-nuclei that lie between {sup 74}Se and {sup 196}Hg and which cannot originate from the aforementioned s- and r-processes. Their production is possible in (?, n), (?, p), or (?, ?) photonuclear reactions. In view of this, data on photoneutron reactions play an important role in predicting and describing processes leading to the production of p-nuclei. Interest in determining cross sections for photoneutron reactions in the threshold energy region, which is of particular importance for astrophysics, has grown substantially in recent years. The use of modern sources of quasimonoenergetic photons obtained in processes of inverse Compton laser-radiation scattering on relativistic electronsmakes it possible to reveal rather interesting special features of respective cross sections, manifestations of pygmy E1 and M1 resonances, or the production of nuclei in isomeric states, on one hand, and to revisit the problem of systematic discrepancies between data on reaction cross sections from experiments of different types, on the other hand. Data obtained on the basis of our new experimental-theoretical approach to evaluating cross sections for partial photoneutron reactions are invoked in considering these problems.

  10. Concordant Chemical Reaction Networks

    PubMed Central

    Shinar, Guy; Feinberg, Martin

    2015-01-01

    We describe a large class of chemical reaction networks, those endowed with a subtle structural property called concordance. We show that the class of concordant networks coincides precisely with the class of networks which, when taken with any weakly monotonic kinetics, invariably give rise to kinetic systems that are injective — a quality that, among other things, precludes the possibility of switch-like transitions between distinct positive steady states. We also provide persistence characteristics of concordant networks, instability implications of discordance, and consequences of stronger variants of concordance. Some of our results are in the spirit of recent ones by Banaji and Craciun, but here we do not require that every species suffer a degradation reaction. This is especially important in studying biochemical networks, for which it is rare to have all species degrade. PMID:22659063

  11. Reaction chemistry of cerium

    SciTech Connect

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  12. Magnetically suspended reaction wheels

    NASA Technical Reports Server (NTRS)

    Sabnis, A. V.; Stocking, G. L.; Dendy, J. B.

    1975-01-01

    Magnetic suspensions offer several advantages over conventional bearings, arising because of the contactless nature of the load support. In application to spacecraft reaction wheels, the advantages are low drag torque, wearfree, unlubricated, vacuum-compatible operation, and unlimited life. By the provision of redundancy in the control electronics, single-point failures are eliminated. The rational for selection of a passive radial, active axial, dc magnetic suspension is presented, and the relative merits of 3-loop and single-loop magnetic suspensions are discussed. The design of a .678 N-m-sec (.5 ft-lb-sec) reaction wheel using the single loop magnetic suspension was developed; the design compares favorably with current ball bearing wheels in terms of weight and power.

  13. Some Reactions of Formamidines

    E-print Network

    Malleis, Otto Oscar

    1913-05-15

    to alkali * .9297 ( 44.84 - (32.24 x .9297) ) x .1105 x .01401 - 4.82 % || Theoretical for CeHsCH « HCeHAOOHaOe^or, c 2 0H I 7 o n E r 14.01 - 4.88 % 287.146 nitrogen found = 4.82 $ Preparation of anisal-p-amino-phenyl-benzyl-ether by the reaction... water hath for a short time. Crystallize from alcohol. M.P. 151° Reaction. S OCHB , OCHe CeH* r HaMJeHAl - H«0 *• CeH* v CH«0 x CH s IC*H*I This product may he called anisal-p-iodo-aniline. Analysis: litrogen determination by Kjeldahl method...

  14. Neutrons from Piezonuclear Reactions

    E-print Network

    F. Cardone; G. Cherubini; R. Mignani; W. Perconti; A. Petrucci; F. Rosetto; G. Spera

    2008-11-16

    We report the results obtained by cavitating water solutions of iron salts (iron chloride and iron nitrate) with different concentrations at different ultrasound powers. In all cases we detected a neutron radiation well higher than the background level. The neutron production is perfectly reproducible and can at some extent be controlled. These evidences for neutron emission generated by cavitation support some preliminary clues for the possibility of piezonuclear reactions (namely nuclear reactions induced by pressure and shock waves) obtained in the last ten years. We have been able for the first time to state some basic features of such a neutron emission induced by cavitation, namely: 1) a marked threshold behavior in power, energy and time; 2) its occurring without a concomitant production of gamma radiation.

  15. Photochemical reaction dynamics

    SciTech Connect

    Moore, B.C.

    1993-12-01

    The purpose of the program is to develop a fundamental understanding of unimolecular and bimolecular reaction dynamics with application in combustion and energy systems. The energy dependence in ketene isomerization, ketene dissociation dynamics, and carbonyl substitution on organometallic rhodium complexes in liquid xenon have been studied. Future studies concerning unimolecular processes in ketene as well as energy transfer and kinetic studies of methylene radicals are discussed.

  16. Factors augmenting allergic reactions.

    PubMed

    Niggemann, B; Beyer, K

    2014-12-01

    Elicitors of anaphylactic reactions are any sources of protein with allergenic capacity. However, not all allergic reactions end up in the most severe form of anaphylaxis. Augmenting factors may explain why certain conditions lead to anaphylaxis. Augmenting factors may exhibit three effects: lowering the threshold, increasing the severity, and reversing acquired clinical tolerance. Common augmenting factors are physical exercise, menstruation, NSAIDs, alcohol, body temperature, acute infections, and antacids. Therapeutic options may address causative, preventive, pragmatic, or symptomatic considerations: avoid the eliciting food, take an antihistamine before any situation with a possible risk of augmentation, separate food and sport (at least for 2 h), and carry an adrenaline autoinjector at all times. Individual patterns include summation effects and specific patterns. In conclusion, in the case of a suggestive history but a negative oral challenge, one should consider the possible involvement of augmenting factors; after anaphylactic reactions, always ask for possible augmentation and other risk factors during the recent past; if augmentation is suspected, oral food challenges should be performed in combination with augmenting factors; and in the future, standardized challenge protocols including augmenting factors should be established. PMID:25306896

  17. Chemical reaction dynamics

    PubMed Central

    Crim, F. Fleming

    2008-01-01

    Understanding the motions of the constituent atoms in reacting molecules lies at the heart of chemistry and is the central focus of chemical reaction dynamics. The most detailed questions one can ask are about the evolution of molecules prepared in a single quantum state to products in individual states, and both calculations and experiments are providing such detailed understanding of increasingly complex systems. A central goal of these studies is uncovering the essential details of chemical change by removing the averaging over the initial conditions that occurs in many cases. Such information provides an exquisite test of theory and helps paint pictures of complicated chemical transformations. The goal of this Special Feature is to provide a snapshot of a portion of the field of chemical reaction dynamics. Much of the work presented here emphasizes a close interplay of experiment and theory in ways that sharpen the conclusions of both and animate future studies. The articles do not completely cover the rich field of chemical reaction dynamics but rather provide a glimpse of some of the emerging insights. PMID:18753626

  18. Chemical Reactions in DSMC

    SciTech Connect

    Bird, G. A.

    2011-05-20

    DSMC simulations of chemically reacting gas flows have generally employed procedures that convert the macroscopic chemical rate equations to reaction cross-sections at the microscopic level. They therefore depend on the availability of experimental data that has been fitted to equations of the Arrhenius form. This paper presents a physical model for dissociation and recombination reactions and a phenomenological model for exchange and chain reactions. These are based on the vibrational states of the colliding molecules and do not require any experimentally-based data. The simplicity of the models allows the corresponding rate equations to be written down and, while these are not required for the implementation of the models, they facilitate their validation. The model is applied to a typical hypersonic atmospheric entry problem and the results are compared with the corresponding results from the traditional method. It is also used to investigate both spontaneous and forced ignition as well as the structure of a deflagration wave in an oxygen-hydrogen mixture.

  19. Theoretical Study ofTheoretical Study of ReactionReaction

    E-print Network

    Theoretical Study ofTheoretical Study of ReactionReaction BFBF33 + BF+ BF BFBF22 + BF+ BF22 the growth of boron nitride in a plasma torch experiment. The theoretical data is used to optimize/Cl/N/H, as well as limited kinetics studies of the reactions between BCl3 and NH3. #12;Kinetic ModelKinetic Model

  20. Reaction Extrema: Extent of Reaction in General Chemistry

    ERIC Educational Resources Information Center

    Vandezande, Jonathon E.; Vander Griend, Douglas A.; DeKock, Roger L.

    2013-01-01

    Nearly 100 years ago de Donder introduced the term "extent of reaction", ?. We build on that work by defining the concept of reagent extrema for an arbitrary chemical reaction, aA + bB [reversible reaction] yY + zZ. The central equation is ?^[subscript i] = -n[subscript i,0]/?[subscript i]. The symbol ?^[subscript i] represents the…

  1. Ultrafast Laser Spectroscopyof Chemical Reactions

    E-print Network

    Zewail, Ahmed

    Ultrafast Laser Spectroscopyof Chemical Reactions - Joseph L. Kneeand AhmedH. Zewail California Instituteof Technology Ultrafast laser spectroscopy has extended reaction- tion, have been probed (very sensitively) by a variety of laser spec- troscopic techniques and have

  2. Positive reaction to allergen (image)

    MedlinePLUS

    Allergic reaction is a sensitivity to a specific substance, called an allergen, that is contacted through the skin, inhaled into the lungs, swallowed or injected. The body's reaction to an allergen can be mild, such as ...

  3. Coping with Traumatic Stress Reactions

    MedlinePLUS

    ... here Enter ZIP code here Coping with Traumatic Stress Reactions Public This section is for Veterans, General Public, Family, & Friends Coping with Traumatic Stress Reactions Available in Spanish: Cómo Afrontar las Reacciones ...

  4. Hydrazine decomposition and other reactions

    NASA Technical Reports Server (NTRS)

    Armstrong, Warren E. (Inventor); La France, Donald S. (Inventor); Voge, Hervey H. (Inventor)

    1978-01-01

    This invention relates to the catalytic decomposition of hydrazine, catalysts useful for this decomposition and other reactions, and to reactions in hydrogen atmospheres generally using carbon-containing catalysts.

  5. Demonstration of the Fenton Reaction

    ERIC Educational Resources Information Center

    Luehrs, Dean C.; Roher, Alex E.

    2007-01-01

    The study demonstrates the Fenton reaction, which is carried out using the Fenton reagent that is used for groundwater and soil remediation. The Fenton reaction can be implicated in DNA damage, Alzheimer's disease, cardiovascular disease and ageing in general.

  6. The heterogeneous explosive reaction zone

    SciTech Connect

    Mader, C.L.; Kershner, J.D.

    1989-01-01

    The calculated reaction zone of PBX-9404 using solid HMX Arrhenius kinetics is stable to perturbations. The calculated reaction zone Von Neumann spike pressure agrees with the experimental observations within experimental uncertainty associated with different experimental techniques. The calculated homogengeous explosive reaction zone thickness is larger than observed for the heterogeneous explosive. The effect of two volume percent air holes on the reaction zone was modeled using the three-dimensional Eulerian reactive hydrodynamic code, 3DE. The air holes perturb the reaction zone. A complicated, time-dependent, multidimensional reaction region proceeds through the heterogeneous explosive. The experimentally observed reaction zone characteristic of heterogeneous explosives are mean values of an irregular, three-dimensional reaction region. 20 refs., 6 figs.

  7. The Vitamin C Clock Reaction

    NASA Astrophysics Data System (ADS)

    Wright, Stephen W.

    2002-01-01

    An iodine clock reaction that gives a colorless to black result similar to that of the familiar Landolt iodate-bisulfite clock reaction is described. The vitamin C clock reaction uses chemicals that are readily available on the retail market: vitamin C, tincture of iodine, 3% hydrogen peroxide, and laundry starch. Orange juice may be used as the vitamin C source to give an orange to black reaction.

  8. The Vitamin C Clock Reaction.

    ERIC Educational Resources Information Center

    Wright, Stephen W.

    2002-01-01

    Describes an iodine clock reaction that produces an effect similar to the Landolt clock reaction. This reaction uses supermarket chemicals and avoids iodate, bisulfite, and mercury compounds. Ascorbic acid and tincture of iodine are the main reactants with alternate procedures provided for vitamin C tablets and orange juice. (DDR)

  9. Determination of Complex Reaction Mechanisms

    E-print Network

    Steinbock, Oliver

    can be derived. This interesting chapter starts with the analysis of simple unbranched chain reactionsDetermination of Complex Reaction Mechanisms Analysis of Chemi- cal, Biological, and Genetic in the field of chemical kinetics. The book Determination of Complex Reaction Mechanisms, by Ross, Schreiber

  10. Oxide formation: reaction details studied,

    E-print Network

    Johnson, Edward A.

    Oxide formation: reaction details studied, reported in brief Sir -- Nineteen years ago, I published-nitrosohydroxylamines undergo an alternative decomposition under very similar reaction conditions to liberate nitrous oxide, N2O (refs 4,5). Moreover, this alternative reaction involves highly electrophilic intermediates analogous

  11. Low Energy Nuclear Reactions?

    E-print Network

    CERN. Geneva; Faccini, R.

    2014-01-01

    After an introduction to the controversial problem of Low Energy Nuclear Reactions (LENR) catalyzed by neutrons on metallic hydride surfaces we present the results of an experiment, made in collaboration with ENEA Labs in Frascati, to search neutrons from plasma discharges in electrolytic cells. The negative outcome of our experiment goes in the direction of ruling out those theoretical models expecting LENR to occur in condensed matter systems under specific conditions. Our criticism on the theoretical foundations of such models will also be presented.

  12. Characterization of hairpin ribozyme reactions.

    PubMed

    Bajaj, Preeti; Hammann, Christian

    2014-01-01

    Hairpin ribozymes are small RNA catalytic motifs naturally found in the satellite RNAs of tobacco ringspot virus (TRsV), chicory yellow mottle virus (CYMoV), and arabis mosaic virus (ArMV). The catalytic activity of the hairpin ribozyme extends to both cleavage and ligation reactions. Here we describe methods for the kinetic analysis of the self-cleavage reaction under transcription reaction conditions. We also describe methods for the generation of DNA templates for subsequent in vitro transcription reaction of hairpin ribozymes. This is followed by a description of the preparation of the suitable RNA molecules for ligation reaction and their kinetic analysis. PMID:24318889

  13. Metallic induction reaction engine

    NASA Astrophysics Data System (ADS)

    Hart, Douglas; Mongeau, Peter P.; Kolm, Henry H.

    1985-11-01

    Metal rings placed close to a pulsed field coil have been accelerated at 200 million gee to 5 km/s in a 2 cm length by Bandoletov in the USSR Bandoletov, 1977. We have studied the basic phenomena and ultimate limitations of the pulsed induction process both theoretically and experimentally to determine its usefulness as a reaction engine. It is possible in principle to accelerate metal rings at high efficiency, and impart sufficient energy to ensure melting and evaporation, so that the reaction mass is ultimately ejected in the form of plasma. In practice the process is limited by electrical, mechanical and thermal failure of the induction coil. Over a hundred shots were fired including several in which 12 gram rings were accelerated to over 700 m/s at efficiencies above 30 percent. This is equivalent to the performance of a high power rifle with a one inch long barrel. An unexpected result of these studies is the discovery that to achieve maximum velocity, the mutual inductance gradient between induction coil and projectile ring in the firing position must be reduced to minimize the initial acceleration. This reduces the back voltage and increases the interaction time, resulting in maximum energy transfer.

  14. Interfacial Reaction Kinetics

    E-print Network

    Ben O'Shaughnessy; Dimitrios Vavylonis

    1999-09-10

    We study irreversible A-B reaction kinetics at a fixed interface separating two immiscible bulk phases, A and B. We consider general dynamical exponent $z$, where $x_t\\sim t^{1/z}$ is the rms diffusion distance after time $t$. At short times the number of reactions per unit area, $R_t$, is {\\em 2nd order} in the far-field reactant densities $n_A^{\\infty},n_B^{\\infty}$. For spatial dimensions $d$ above a critical value $d_c=z-1$, simple mean field (MF) kinetics pertain, $R_t\\sim Q_b t n_A^{\\infty} n_B^{\\infty}$ where $Q_b$ is the local reactivity. For low dimensions $d Q_b^* \\sim (n_B^{\\infty})^{[z-(d+1)]/d}$. Logarithmic corrections arise in marginal cases. At long times, a cross-over to {\\em 1st order} DC kinetics occurs: $R_t \\approx x_t n_A^{\\infty}$. A density depletion hole grows on the more dilute A side. In the symmetric case ($n_A^{\\infty}=n_B^{\\infty}$), when $dd_c$ fluctuations are unimportant: local mean field theory applies at the interface (joint density distribution approximating the product of A and B densities) and $n_A^s \\sim t^{(1-z)/(2z)}$. We apply our results to simple molecules (Fickian diffusion, $z=2$) and to several models of short-time polymer diffusion ($z>2$).

  15. [Abnormal grief reaction].

    PubMed

    Meyer, J E

    1977-01-01

    Pathological grief reactions following the death of a child are reported on the basis of five case studies. In contrast to acute grief reactions these pathological syndromes are of long standing. One parent had not truly accepted the death of the child. The denial of reality is sometimes a defence against aggression towards the deceased, because of his having left one behind. The mourning process comes to no end but remains in its initial phase. At the same time the life of the mourner stands still, as in the house and the family everything is left unchanged. Family interactions alter, particularly between the parents. For the genesis of these grief syndromes the following is of relevance: The death occurs at a time, when another child cannot replace the one who died. Mature independence had not been reached by either parent or child. Death destroyed expectations that this child would succeed in that which the parent had been unable to achieve. The parent had not seen the child after death--a gap in the continuity of experiencing which made acceptance of the irreversibility of the loss even more difficult. PMID:595912

  16. Geometric description of chemical reactions

    E-print Network

    Hernando Quevedo; Diego Tapias

    2013-01-02

    We use the formalism of Geometrothermodynamics to describe chemical reactions in the context of equilibrium thermodynamics. Any chemical reaction in a closed system is shown to be described by a geodesic in a $2-$dimensional manifold that can be interpreted as the equilibrium space of the reaction. We first show this in the particular cases of a reaction with only two species corresponding to either two ideal gases or two van der Waals gases. We then consider the case of a reaction with an arbitrary number of species. The initial equilibrium state of the geodesic is determined by the initial conditions of the reaction. The final equilibrium state, which follows from a thermodynamic analysis of the reaction, is shown to correspond to a coordinate singularity of the thermodynamic metric which describes the equilibrium manifold.

  17. Subdiffusion-reaction processes with A?B reactions versus subdiffusion-reaction processes with A+B?B reactions.

    PubMed

    Koszto?owicz, Tadeusz; Lewandowska, Katarzyna D

    2014-09-01

    We consider the subdiffusion-reaction process with reactions of a type A+B?B (in which particles A are assumed to be mobile, whereas B are assumed to be static) in comparison to the subdiffusion-reaction process with A?B reactions which was studied by Sokolov, Schmidt, and Sagués [Phys. Rev. E 73, 031102 (2006)]. In both processes a rule that reactions can only occur between particles which continue to exist is taken into account. Although in both processes a probability of the vanishing of particle A due to a reaction is independent of both time and space variables (assuming that in the system with the A+B?B reactions, particles B are distributed homogeneously), we show that subdiffusion-reaction equations describing these processes as well as their Green's functions are qualitatively different. The reason for this difference is as follows. In the case of the former reaction, particles A and B have to meet with some probability before the reaction occurs in contradiction with the case of the latter reaction. For the subdiffusion process with the A+B?B reactions we consider three models which differ in some details concerning a description of the reactions. We base the method considered in this paper on a random walk model in a system with both discrete time and discrete space variables. Then the system with discrete variables is transformed into a system with both continuous time and continuous space variables. Such a method seems to be convenient in analyzing subdiffusion-reaction processes with partially absorbing or partially reflecting walls. The reason is that within this method we can determine Green's functions without a necessity of solving a fractional differential subdiffusion-reaction equation with boundary conditions at the walls. As an example, we use the model to find the Green's functions for a subdiffusive reaction system (with the reactions mentioned above), which is bounded by a partially absorbing wall. This example shows how the model can be used to analyze the subdiffusion-reaction process in a system with partially absorbing or reflecting thin membranes. Employing a simple phenomenological model, we also derive equations related to the reaction parameters used in the considered models. PMID:25314424

  18. Laser induced nuclear reactions

    SciTech Connect

    Ledingham, Ken; McCanny, Tom; Graham, Paul; Fang Xiao; Singhal, Ravi; Magill, Joe; Creswell, Alan; Sanderson, David; Allott, Ric; Neely, David; Norreys, Peter; Santala, Marko; Zepf, Matthew; Watts, Ian; Clark, Eugene; Krushelnick, Karl; Tatarakis, Michael; Dangor, Bucker; Machecek, Antonin; Wark, Justin

    1998-12-16

    Dramatic improvements in laser technology since 1984 have revolutionised high power laser technology. Application of chirped-pulse amplification techniques has resulted in laser intensities in excess of 10{sup 19} W/cm{sup 2}. In the mid to late eighties, C. K. Rhodes and K. Boyer discussed the possibility of shining laser light of this intensity onto solid surfaces and to cause nuclear transitions. In particular, irradiation of a uranium target could induce electro- and photofission in the focal region of the laser. In this paper it is shown that {mu}Ci of {sup 62}Cu can be generated via the ({gamma},n) reaction by a laser with an intensity of about 10{sup 19} Wcm{sup -2}.

  19. Hypersensitivity reaction with deferasirox.

    PubMed

    Sharma, Atul; Arora, Ekta; Singh, Harmanjit

    2015-01-01

    Thalassemias comprise a group of hereditary blood disorders. Thalassemia major presents with anemia within the first 2 years of life requiring frequent blood transfusions for sustaining life. Regular blood transfusions lead to iron overload-related complications. Prognosis of thalassemia has improved because of the availability of iron-chelating agents. Oral iron chelators are the mainstay of chelation therapy. Deferasirox is a new-generation oral iron chelator for once daily usage. We herein describe a patient of beta thalassemia major who developed an allergic manifestation in the form of erythematous pruritic skin rashes to the oral iron chelator deferasirox. This is a rare adverse reaction reported with deferasirox that led to a therapeutic dilemma in this particular case. PMID:25969661

  20. Hypersensitivity reaction with deferasirox

    PubMed Central

    Sharma, Atul; Arora, Ekta; Singh, Harmanjit

    2015-01-01

    Thalassemias comprise a group of hereditary blood disorders. Thalassemia major presents with anemia within the first 2 years of life requiring frequent blood transfusions for sustaining life. Regular blood transfusions lead to iron overload-related complications. Prognosis of thalassemia has improved because of the availability of iron-chelating agents. Oral iron chelators are the mainstay of chelation therapy. Deferasirox is a new-generation oral iron chelator for once daily usage. We herein describe a patient of beta thalassemia major who developed an allergic manifestation in the form of erythematous pruritic skin rashes to the oral iron chelator deferasirox. This is a rare adverse reaction reported with deferasirox that led to a therapeutic dilemma in this particular case. PMID:25969661

  1. OH + HBr reaction revisited

    SciTech Connect

    Ravishankara, A.R.; Wine, P.H.; Wells, J.R.

    1985-07-01

    Variable-temperature measurements of the rate coefficient /k(1)/ for the reaction OH + HBr yield Br + H2O are presented. The measurements are verified by two techniques: one involved a 266-nm pulsed-laser photolysis of O3/H2O/HBr/He mixtures in conjunction with time-resolved resonance fluorescence detection of OH, the second comprised pulsed laser-induced fluorescence detection of OH following 248-nm pulsed-laser photolysis of H2O2/HBr/Ar mixtures. It is reported that k(1) = (11.9 + or -1.4 x 10 to the -12th (cu cm)/(molecule)(s) independent of temperature. The measurements are compared with other available results. 6 references.

  2. Reactions inside nanoscale protein cages.

    PubMed

    Bode, Saskia A; Minten, Inge J; Nolte, Roeland J M; Cornelissen, Jeroen J L M

    2011-06-01

    Chemical reactions are traditionally carried out in bulk solution, but in nature confined spaces, like cell organelles, are used to obtain control in time and space of conversion. One way of studying these reactions in confinement is the development and use of small reaction vessels dispersed in solution, such as vesicles and micelles. The utilization of protein cages as reaction vessels is a relatively new field and very promising as these capsules are inherently monodisperse, in that way providing uniform reaction conditions, and are readily accessible to both chemical and genetic modifications. In this review, we aim to give an overview of the different kinds of nanoscale protein cages that have been employed as confined reaction spaces. PMID:21461437

  3. Electrophilic Substitution Reactions of Indoles

    NASA Astrophysics Data System (ADS)

    Sundberg, Richard J.

    The topic of this chapter is electrophilic substitution of indole and its derivatives. The indole ring is highly reactive at its 3-position toward protonation, halogenation, alkylation and acylation. Electrophilic substitution can be combined with inter- or intramolecular addition at C-2. Intramolecular alkylation by iminium ions (Pictet-Spengler reaction) is particularly useful. Enantioselectivity can be achieved in many conjugate addition reactions. These reactions have been applied to synthesis of both natural products and drugs.

  4. Speeding chemical reactions by focusing

    E-print Network

    A. M. Lacasta; L. Ramirez-Piscina; J. M. Sancho; K. Lindenberg

    2012-12-13

    We present numerical results for a chemical reaction of colloidal particles which are transported by a laminar fluid and are focused by periodic obstacles in such a way that the two components are well mixed and consequently the chemical reaction is speeded up. The roles of the various system parameters (diffusion coefficients, reaction rate, obstacles sizes) are studied. We show that focusing speeds up the reaction from the diffusion limited rate (t to the power -1/2) to very close to the perfect mixing rate, (t to the power -1).

  5. Dynamic Reaction Figures: An Integrative Vehicle for Understanding Chemical Reactions

    ERIC Educational Resources Information Center

    Schultz, Emeric

    2008-01-01

    A highly flexible learning tool, referred to as a dynamic reaction figure, is described. Application of these figures can (i) yield the correct chemical equation by simply following a set of menu driven directions; (ii) present the underlying "mechanism" in chemical reactions; and (iii) help to solve quantitative problems in a number of different…

  6. Hemolytic Transfusion Reactions

    PubMed Central

    Strobel, Erwin

    2008-01-01

    Summary The risk of hemolytic transfusion reactions (HTRs) is approximately 1:70,000 per unit. Acute HTRs occurring during or within 24 h after administration of a blood product are usually caused by transfusion of incompatible red blood cells (RBCs), and, more rarely, of a large volume of incompatible plasma. Delayed HTRs are caused by a secondary immune response to an antigen on the donor's RBCs. In some patients with delayed HTRs, an additional bystander hemolysis of the patient's RBCs can be assumed. Different mechanisms lead to intra- and extra-vascular hemolysis, such as complete complement activation, phagocytosis of RBCs covered with C3b by macrophages after incomplete complement activation, or destruction of RBCs covered only with IgG by direct cell-cell contact with K cells. The clinical consequences of HTRs are triggered via several pathophysiological pathways like formation of anaphylatoxins, release of cytokines causing a systemic inflammatory response syndrome, activation of the kinin system, the intrinsic clotting cascade and fibrinolysis resulting in hypotension, disseminated intravascular coagulation, diffuse bleeding, and disruption of microcirculation leading to renal failure and shock. In the following, the symptoms of HTR are introduced, laboratory investigations and treatment are described, and some recommendations for prevention are given. PMID:21512623

  7. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D. (Evergreen, CO)

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  8. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  9. Free Radical Reactions in Food.

    ERIC Educational Resources Information Center

    Taub, Irwin A.

    1984-01-01

    Discusses reactions of free radicals that determine the chemistry of many fresh, processed, and stored foods. Focuses on reactions involving ascorbic acid, myoglobin, and palmitate radicals as representative radicals derived from a vitamin, metallo-protein, and saturated lipid. Basic concepts related to free radical structure, formation, and…

  10. Domino reactions triggered by hydroformylation.

    PubMed

    Petricci, Elena; Cini, Elena

    2013-01-01

    HF reaction represents a selective method for the synthesis of aldehydes starting from alkenes. Because of versatile aldehydes reactivity, it is possible to perform different domino protocols based on contemporary HF, including Michael's reaction, reductive amination, cyclopropanation, lactonization, and many others. This overview reports on the last 5 years' results obtained on this field. PMID:23912442

  11. Chemistry of heavy ion reactions

    SciTech Connect

    Hoffman, D.C.

    1988-10-01

    The use of heavy ions to induce nuclear reactions was reported as early as 1950. Since that time it has been one of the most active areas of nuclear research. Intense beams of ions as heavy as uranium with energies high enough to overcome the Coulomb barriers of even the heaviest elements are available. The wide variety of possible reactions gives rise to a multitude of products which have been studied by many ingenious chemical and physical techniques. Chemical techniques have been of special value for the separation and unequivocal identification of low yield species from the plethora of other nuclides present. Heavy ion reactions have been essential for the production of the trans-Md elements and a host of new isotopes. The systematics of compound nucleus reactions, transfer reactions, and deeply inelastic reactions have been elucidated using chemical techniques. A review of the variety of chemical procedures and techniques which have been developed for the study of heavy ion reactions and their products is given. Determination of the chemical properties of the trans-Md elements, which are very short-lived and can only be produced an ''atom-at-a-time'' via heavy ion reactions, is discussed. 53 refs., 19 figs.

  12. Adverse Reactions to Hallucinogenic Drugs.

    ERIC Educational Resources Information Center

    Meyer, Roger E. , Ed.

    This reports a conference of psychologists, psychiatrists, geneticists and others concerned with the biological and psychological effects of lysergic acid diethylamide and other hallucinogenic drugs. Clinical data are presented on adverse drug reactions. The difficulty of determining the causes of adverse reactions is discussed, as are different…

  13. "Greening up" the Suzuki Reaction

    ERIC Educational Resources Information Center

    Aktoudianakis, Evangelos; Chan, Elton; Edward, Amanda R.; Jarosz, Isabel; Lee, Vicki; Mui, Leo; Thatipamala, Sonya S.; Dicks, Andrew P.

    2008-01-01

    This article describes the rapid, green synthesis of a biaryl compound (4-phenylphenol) via a Pd(0)-catalyzed Suzuki cross-coupling reaction in water. Mild reaction conditions and operational simplicity makes this experiment especially amenable to both mid- and upper-level undergraduates. The methodology exposes students to purely aqueous…

  14. Isosinglet approximation for nonelastic reactions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1972-01-01

    Group theoretic relations are derived between different combinations of projectile and secondary particles which appear to have a broad range of application in spacecraft shielding or radiation damage studies. These relations are used to reduce the experimental effort required to obtain nuclear reaction data for transport calculations. Implications for theoretical modeling are also noted, especially for heavy-heavy reactions.

  15. [Anaphylactic reaction following hair bleaching].

    PubMed

    Babilas, P; Landthaler, M; Szeimies, R-M

    2005-12-01

    Ammonium persulphate is a potent bleach and oxidizing agent that is commonly present in hair bleaches. Because bleaching is so commonly performed, hairdressers often develop allergic contact dermatitis to ammonium persulphate. In addition to this delayed reaction, asthma and rhinitis may develop as immediate reactions in those exposed to the fumes. Severe anaphylactic reactions are rare. We report a 24-year-old woman who acquired dermatitis following contact with bleaching substances while working as a hairdresser. After changing her profession, the dermatitis disappeared. Following the private use of a hairdressing bleach containing ammonium persulphate, she suffered a severe anaphylactic reaction with unconsciousness. The patient also developed an anaphylactic reaction three hours following patch testing with the hairdresser battery. The rub test with ammonium persulphate (2.5%) in a 1:100 solution was positive. PMID:15688222

  16. Effective reaction rates for diffusion-limited reaction cycles.

    PubMed

    Na??cz-Jawecki, Pawe?; Szyma?ska, Paulina; Kocha?czyk, Marek; Mi?kisz, Jacek; Lipniacki, Tomasz

    2015-12-01

    Biological signals in cells are transmitted with the use of reaction cycles, such as the phosphorylation-dephosphorylation cycle, in which substrate is modified by antagonistic enzymes. An appreciable share of such reactions takes place in crowded environments of two-dimensional structures, such as plasma membrane or intracellular membranes, and is expected to be diffusion-controlled. In this work, starting from the microscopic bimolecular reaction rate constants and using estimates of the mean first-passage time for an enzyme-substrate encounter, we derive diffusion-dependent effective macroscopic reaction rate coefficients (EMRRC) for a generic reaction cycle. Each EMRRC was found to be half of the harmonic average of the microscopic rate constant (phosphorylation c or dephosphorylation d), and the effective (crowding-dependent) motility divided by a slowly decreasing logarithmic function of the sum of the enzyme concentrations. This implies that when c and d differ, the two EMRRCs scale differently with the motility, rendering the steady-state fraction of phosphorylated substrate molecules diffusion-dependent. Analytical predictions are verified using kinetic Monte Carlo simulations on the two-dimensional triangular lattice at the single-molecule resolution. It is demonstrated that the proposed formulas estimate the steady-state concentrations and effective reaction rates for different sets of microscopic reaction rates and concentrations of reactants, including a non-trivial example where with increasing diffusivity the fraction of phosphorylated substrate molecules changes from 10% to 90%. PMID:26646890

  17. Nuclear Structure and Reaction Mechanism Studies with Multinucleon Reactions

    SciTech Connect

    Regan, P. H.; Jones, G. A.; Podolyak, Zs.; Abdullah, M.; Gelletly, W.; Langdown, S. D.; Wollel, G.; De Angelis, G.; Gadea, A.; Kroell, Th.; Marginean, N.; Martinez, T.; Napoli, D. R.; Rusu, C.; Tonev, D.; Zhang, Y. H.; Ur, C. A.; Axiotis, M.; Bazzacco, D.; Farnea, E.

    2006-08-14

    This contribution reports on the results of an experiment to study the near-yrast states in selenium- and osmium-like nuclei, following their population in thick-target, multinucleon transfer reactions between an 82Se beam and a 192Os target. The experimental results for the level scheme for 84Se are presented together with investigations into the use of multi-dimensional gamma-ray energy gating to investigate angular momentum population in such heavy-ion binary reactions.

  18. Siloxy alkynes in annulation reactions.

    PubMed

    Qian, Hui; Zhao, Wanxiang; Sun, Jianwei

    2014-12-01

    Siloxy alkynes are a family of versatile species in organic synthesis. This account reviews the annulation reactions of siloxy alkynes for the synthesis of a variety of carbo- and heterocyclic products. With various dipolarophiles or dipolarophile-like reaction partners, siloxy alkynes are capable of forming small (three- to six-membered) rings. Recently, we have expanded the scope to the synthesis of medium- and large-ring lactones, enabled by the design of new amphoteric molecules as well as a new ring-expansion strategy. These annulation reactions provide not only practically useful syntheses of cyclic molecules, but also important understanding of the fundamental reactivity of siloxy alkynes. PMID:25171137

  19. Catalytic Organometallic Reactions of Ammonia

    PubMed Central

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  20. [Arthropod bite reactions and pyodermias].

    PubMed

    Hengge, U R

    2008-08-01

    Tourists in the tropics often develop reactions to bites or stings of mosquitoes, fleas, mites, ants, bedbugs, beetles, larva, millipedes, spiders and scorpions. In addition, they may have fresh or salt water exposure to sponges, corals, jellyfish and sea urchins with resultant injury and inflammation. Bacterial skin infections (pyodermias) can follow bites or stings as well as mechanical trauma. The most common bacteria involved in skin infections are staphylococci and streptococci. For tourists, bacterial infections are often complicating a pruritic bite reaction and scratching. It is important to know the cause of the bite reaction and pyoderma in order to take appropriate therapeutic measures. PMID:18626616

  1. Nuclear Reactions for Astrophysics and Other Applications

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Scielzo, N D; Ressler, J J

    2011-03-01

    Cross sections for compound-nuclear reactions are required for many applications. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  2. 2 01 5 T H I E M E S TU T T G AR T N E W Y O R K 1123 P. ELLERBROCK, N. ARMANINO, M. K. ILG, R. WEBSTER, D. TRAUNER* (LUDWIG

    E-print Network

    Synfacts 02112015, 11(11), 1123 Published online: 19.10.20151861-19581861-194X DOI: 10.1055/s-0035 and Potential Drugs Key words (5+2) cycloaddition retro-Claisen condensation vinylogous aldol reaction cascade

  3. The Retro-Hydroformylation Reaction.

    PubMed

    Kusumoto, Shuhei; Tatsuki, Toshiumi; Nozaki, Kyoko

    2015-07-13

    Hydroformylation, a reaction that adds carbon monoxide and dihydrogen across an unsaturated carbon-carbon multiple bond, has been widely employed in the chemical industry since its discovery in 1938. In contrast, the reverse reaction, retro-hydroformylation, has seldom been studied. The retro-hydroformylation reaction of an aldehyde into an alkene and synthesis gas (a mixture of carbon monoxide and dihydrogen) in the presence of a cyclopentadienyl iridium catalyst is now reported. Aliphatic aldehydes were converted into the corresponding alkenes in up to 91% yield with concomitant release of carbon monoxide and dihydrogen. Mechanistic control experiments indicated that the reaction proceeds by retro-hydroformylation and not by a sequential decarbonylation-dehydrogenation or dehydrogenation-decarbonylation process. PMID:26089259

  4. Color Changes Mark Polymer Reactions.

    ERIC Educational Resources Information Center

    Krieger, James H.

    1980-01-01

    Describes how polydiacetylenes can be used as educational aids. These polymers have conjugated backbones, which cause changes in color when the polydiacetylenes undergo various chemical and physical processes. Diagrams summarize all chemical reactions and their associated color changes. (CS)

  5. Pericyclic reactions in organic synthesis

    E-print Network

    Robinson-Surry, Julia M. (Julia Mae)

    2011-01-01

    Part I of this thesis describes a formal, metal-free, [2 + 2 + 2] cycloaddition strategy based on a cascade of two pericyclic processes. An intramolecular propargylic ene reaction of a 1,6-diyne is used to generate a ...

  6. Experimental Study of Serpentinization Reactions

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Brearley, A. J.; Ganguly, J.; Liermann, H.-P.; Keil, K.

    2004-01-01

    Current carbonaceous chondrite parent-body thermal models [1-3] produce scenarios that are inconsistent with constraints on aqueous alteration conditions based on meteorite mineralogical evidence, such as phase stability relationships within the meteorite matrix minerals [4] and isotope equilibration arguments [5, 6]. This discrepancy arises principally because of the thermal runaway effect produced by silicate hydration reactions (here loosely called serpentinization, as the principal products are serpentine minerals), which are so exothermic as to produce more than enough heat to melt more ice and provide a self-sustaining chain reaction. One possible way to dissipate the heat of reaction is to use a very small parent body [e.g., 2] or possibly a rubble pile model. Another possibility is to release this heat more slowly, which depends on the alteration reaction path and kinetics.

  7. Solar-thermal reaction processing

    DOEpatents

    Weimer, Alan W; Dahl, Jaimee K; Lewandowski, Allan A; Bingham, Carl; Raska Buechler, Karen J; Grothe, Willy

    2014-03-18

    In an embodiment, a method of conducting a high temperature chemical reaction that produces hydrogen or synthesis gas is described. The high temperature chemical reaction is conducted in a reactor having at least two reactor shells, including an inner shell and an outer shell. Heat absorbing particles are included in a gas stream flowing in the inner shell. The reactor is heated at least in part by a source of concentrated sunlight. The inner shell is heated by the concentrated sunlight. The inner shell re-radiates from the inner wall and heats the heat absorbing particles in the gas stream flowing through the inner shell, and heat transfers from the heat absorbing particles to the first gas stream, thereby heating the reactants in the gas stream to a sufficiently high temperature so that the first gas stream undergoes the desired reaction(s), thereby producing hydrogen or synthesis gas in the gas stream.

  8. Method for conducting exothermic reactions

    DOEpatents

    Smith, L. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-01-05

    A liquid phase process for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  9. Medications and Drug Allergic Reactions

    MedlinePLUS

    ... an adverse reaction to a medication. These include: genetics, body chemistry, frequent drug exposure or the presence of an underlying disease. Also, having an allergy to one drug predisposes an individual to have ...

  10. Method for conducting exothermic reactions

    DOEpatents

    Smith, Jr., Lawrence (Bellaire, TX); Hearn, Dennis (Houston, TX); Jones, Jr., Edward M. (Friendswood, TX)

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  11. Bystanders' Reactions to Sexual Harassment 

    E-print Network

    Benavides Espinoza, Claudia

    2010-07-14

    Sexual harassment is associated with negative consequences for victims and bystanders. Because 9 in 10 victims do not report harassment, understanding bystanders' reactions to sexual harassment is important. Thus, my dissertation?s purpose...

  12. Thermodynamics of random reaction networks.

    PubMed

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erd?s-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks. PMID:25723751

  13. Vibrational excitation induces double reaction.

    PubMed

    Huang, Kai; Leung, Lydie; Lim, Tingbin; Ning, Zhanyu; Polanyi, John C

    2014-12-23

    Electron-induced reaction at metal surfaces is currently the subject of extensive study. Here, we broaden the range of experimentation to a comparison of vibrational excitation with electronic excitation, for reaction of the same molecule at the same clean metal surface. In a previous study of electron-induced reaction by scanning tunneling microscopy (STM), we examined the dynamics of the concurrent breaking of the two C-I bonds of ortho-diiodobenzene physisorbed on Cu(110). The energy of the incident electron was near the electronic excitation threshold of E0=1.0 eV required to induce this single-electron process. STM has been employed in the present work to study the reaction dynamics at the substantially lower incident electron energies of 0.3 eV, well below the electronic excitation threshold. The observed increase in reaction rate with current was found to be fourth-order, indicative of multistep reagent vibrational excitation, in contrast to the first-order rate dependence found earlier for electronic excitation. The change in mode of excitation was accompanied by altered reaction dynamics, evidenced by a different pattern of binding of the chemisorbed products to the copper surface. We have modeled these altered reaction dynamics by exciting normal modes of vibration that distort the C-I bonds of the physisorbed reagent. Using the same ab initio ground potential-energy surface as in the prior work on electronic excitation, but with only vibrational excitation of the physisorbed reagent in the asymmetric stretch mode of C-I bonds, we obtained the observed alteration in reaction dynamics. PMID:25489788

  14. Reaction rates for mesoscopic reaction-diffusion kinetics.

    PubMed

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results. PMID:25768640

  15. Concordant Chemical Reaction Networks and the Species-Reaction Graph

    PubMed Central

    Shinar, Guy; Feinberg, Martin

    2015-01-01

    In a recent paper it was shown that, for chemical reaction networks possessing a subtle structural property called concordance, dynamical behavior of a very circumscribed (and largely stable) kind is enforced, so long as the kinetics lies within the very broad and natural weakly monotonic class. In particular, multiple equilibria are precluded, as are degenerate positive equilibria. Moreover, under certain circumstances, also related to concordance, all real eigenvalues associated with a positive equilibrium are negative. Although concordance of a reaction network can be decided by readily available computational means, we show here that, when a nondegenerate network’s Species-Reaction Graph satisfies certain mild conditions, concordance and its dynamical consequences are ensured. These conditions are weaker than earlier ones invoked to establish kinetic system injectivity, which, in turn, is just one ramification of network concordance. Because the Species-Reaction Graph resembles pathway depictions often drawn by biochemists, results here expand the possibility of inferring significant dynamical information directly from standard biochemical reaction diagrams. PMID:22940368

  16. Reaction rates for mesoscopic reaction-diffusion kinetics

    E-print Network

    Stefan Hellander; Andreas Hellander; Linda Petzold

    2015-01-28

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework, frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a mixed boundary condition at the reaction radius of two molecules. We also establish fundamental limits for the range of mesh resolutions for which this approach yields accurate results, and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics.

  17. Inorganic Reaction Mechanisms Part II: Homogeneous Catalysis

    ERIC Educational Resources Information Center

    Cooke, D. O.

    1976-01-01

    Suggests several mechanisms for catalysis by metal ion complexes. Discusses the principal factors of importance in these catalysis reactions and suggests reactions suitable for laboratory study. (MLH)

  18. Nickel-catalysed reductive aldol cyclisation: scope and mechanistic insight 

    E-print Network

    Fordyce, Euan Alexander Fraser

    2009-01-01

    with (trifluoromethyl)trimethylsilane, a diverse range of 1,3,3-trisubstituted cyclopropenes underwent direct silylation to afford the corresponding 1-silylcyclopropenes in good to excellent yield. Attempts to adapt these conditions to synthesise the corresponding...

  19. Nonlocality in deuteron stripping reactions.

    PubMed

    Timofeyuk, N K; Johnson, R C

    2013-03-15

    We propose a new method for the analysis of deuteron stripping reactions, A(d,p)B, in which the nonlocality of nucleon-nucleus interactions and three-body degrees of freedom are accounted for in a consistent way. The model deals with equivalent local nucleon potentials taken at an energy shifted by ?40??MeV from the "E(d)/2" value frequently used in the analysis of experimental data, where E(d) is the incident deuteron energy. The "E(d)/2" rule lies at the heart of all three-body analyses of (d, p) reactions performed so far with the aim of obtaining nuclear structure properties such as spectroscopic factors and asymptotic normalization coefficients that are crucial for our understanding of nuclear shell evolution in neutron- and proton-rich regions of the nuclear periodic table and for predicting the cross sections of stellar reactions. The large predicted shift arises from the large relative kinetic energy of the neutron and proton in the incident deuteron in those components of the n+p+A wave function that dominate the (d, p) reaction amplitude. The large shift reduces the effective d-A potentials and leads to a change in predicted (d, p) cross sections, thus affecting the interpretation of these reactions in terms of nuclear structure. PMID:25166525

  20. Combustion kinetics and reaction pathways

    SciTech Connect

    Klemm, R.B.; Sutherland, J.W.

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  1. Quantifying mixing using equilibrium reactions

    SciTech Connect

    Wheat, Philip M.; Posner, Jonathan D.

    2009-03-15

    A method of quantifying equilibrium reactions in a microchannel using a fluorometric reaction of Fluo-4 and Ca{sup 2+} ions is presented. Under the proper conditions, equilibrium reactions can be used to quantify fluid mixing without the challenges associated with constituent mixing measures such as limited imaging spatial resolution and viewing angle coupled with three-dimensional structure. Quantitative measurements of CaCl and calcium-indicating fluorescent dye Fluo-4 mixing are measured in Y-shaped microchannels. Reactant and product concentration distributions are modeled using Green's function solutions and a numerical solution to the advection-diffusion equation. Equilibrium reactions provide for an unambiguous, quantitative measure of mixing when the reactant concentrations are greater than 100 times their dissociation constant and the diffusivities are equal. At lower concentrations and for dissimilar diffusivities, the area averaged fluorescence signal reaches a maximum before the species have interdiffused, suggesting that reactant concentrations and diffusivities must be carefully selected to provide unambiguous, quantitative mixing measures. Fluorometric equilibrium reactions work over a wide range of pH and background concentrations such that they can be used for a wide variety of fluid mixing measures including industrial or microscale flows.

  2. VII. Reactions of Alkenes: Electrophilic Addition The most characteristic reaction of alkenes is an Electrophilic Addition Reaction.

    E-print Network

    White, Douglas R.

    57 VII. Reactions of Alkenes: Electrophilic Addition The most characteristic reaction of alkenes is an Electrophilic Addition Reaction. VIII. Addition of Hydrogen Halides to Alkenes The hydrogen halides H-Cl, H reaction. · Hydrogen halide addition to alkenes is regioselective and follows Markovnikov's rule

  3. A unified diabatic description for electron transfer reactions, isomerization reactions, proton transfer reactions, and aromaticity.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    While diabatic approaches are ubiquitous for the understanding of electron-transfer reactions and have been mooted as being of general relevance, alternate applications have not been able to unify the same wide range of observed spectroscopic and kinetic properties. The cause of this is identified as the fundamentally different orbital configurations involved: charge-transfer phenomena involve typically either 1 or 3 electrons in two orbitals whereas most reactions are typically closed shell. As a result, two vibrationally coupled electronic states depict charge-transfer scenarios whereas three coupled states arise for closed-shell reactions of non-degenerate molecules and seven states for the reactions implicated in the aromaticity of benzene. Previous diabatic treatments of closed-shell processes have considered only two arbitrarily chosen states as being critical, mapping these states to those for electron transfer. We show that such effective two-state diabatic models are feasible but involve renormalized electronic coupling and vibrational coupling parameters, with this renormalization being property dependent. With this caveat, diabatic models are shown to provide excellent descriptions of the spectroscopy and kinetics of the ammonia inversion reaction, proton transfer in N2H7(+), and aromaticity in benzene. This allows for the development of a single simple theory that can semi-quantitatively describe all of these chemical phenomena, as well as of course electron-transfer reactions. It forms a basis for understanding many technologically relevant aspects of chemical reactions, condensed-matter physics, chemical quantum entanglement, nanotechnology, and natural or artificial solar energy capture and conversion. PMID:26193994

  4. Reaction theory for exotic nuclei

    SciTech Connect

    Bonaccorso, Angela

    2014-05-09

    Exotic nuclei are usually defined as those with unusual N/Z ratios. They can be found in the crust of neutron stars enbedded in a sea of electrons or created in laboratory by fragmentation of a primary beam (in-flight method) or of the target (ISOL method). They are extremely important for nuclear astrophysics, see for example Ref.[1]. Furthermore by studying them we can check the limits of validity of nuclear reaction and structure models. This contribution will be devoted to the understanding of how by using reaction theory and comparing to the data we can extract structure information. We shall discuss the differences between the mechanisms of transfer and breakup reactions, an we will try to explain how nowadays it is possible to do accurate spectroscopy in extreme conditions.

  5. Surface reactions of natural glasses

    SciTech Connect

    White, A.F.

    1986-12-31

    Reactions at natural glass surfaces are important in studies involving nuclear waste transport due to chemical control on ground water in host rocks such as basalt and tuff, to potential diffusion into natural hydrated glass surfaces and as natural analogs for waste glass stability. Dissolution kinetics can be described by linear surface reaction coupled with cation interdiffusion with resulting rates similar to those of synthetic silicate glasses. Rates of Cs diffusion into hydrated obsidian surfaces between 25{sup 0} and 75{sup 0}C were determined by XPS depth profiles and loss rates from aqueous solutions. Calculated diffusion coefficients were ten others of magnitude more rapid than predicted from an Arrhenius extrapolation of high temperature tracer diffusion data due to surface hydration reactions.

  6. Enantioselective catalysis of photochemical reactions.

    PubMed

    Brimioulle, Richard; Lenhart, Dominik; Maturi, Mark M; Bach, Thorsten

    2015-03-23

    The nature of the excited state renders the development of chiral catalysts for enantioselective photochemical reactions a considerable challenge. The absorption of a 400?nm photon corresponds to an energy uptake of approximately 300?kJ?mol(-1) . Given the large distance to the ground state, innovative concepts are required to open reaction pathways that selectively lead to a single enantiomer of the desired product. This Review outlines the two major concepts of homogenously catalyzed enantioselective processes. The first part deals with chiral photocatalysts, which intervene in the photochemical key step and induce an asymmetric induction in this step. In the second part, reactions are presented in which the photochemical excitation is mediated by an achiral photocatalyst and the transfer of chirality is ensured by a second chiral catalyst (dual catalysis). PMID:25728854

  7. Coupled Reactions "versus" Connected Reactions: Coupling Concepts with Terms

    ERIC Educational Resources Information Center

    Aledo, Juan Carlos

    2007-01-01

    A hallmark of living matter is its ability to extract and transform energy from the environment. Not surprisingly, biology students are required to take thermodynamics. The necessity of coupling exergonic reactions to endergonic processes is easily grasped by most undergraduate students. However, when addressing the thermodynamic concept of…

  8. Laser stimulation of heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Libenson, Mikhail N.; Minaev, Sergei M.

    1990-10-01

    Some physical ideas and imaginations about laser thermal activation of che mical reactions their influence on the condensed matter optical properties re discussed in this paperS Theoretical foundations of thermo chemical mecha n I sms o-f 1 aser beam i nteract i on wi th metal s are I ai d down The part i cul ar at tention is paid tothe questions of chemical reactions selfsupporting regimes initiation and the multiform of such regimes for oxidation is shown. 1.

  9. Learning to Predict Chemical Reactions

    PubMed Central

    Kayala, Matthew A.; Azencott, Chloé-Agathe; Chen, Jonathan H.

    2011-01-01

    Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles respectively are not high-throughput, are not generalizable or scalable, or lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry dataset consisting of 1630 full multi-step reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval, problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of non-productive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system is generalizable, making reasonable predictions over reactants and conditions which the rule-based expert does not handle. A web interface to the machine learning based mechanistic reaction predictor is accessible through our chemoinformatics portal (http://cdb.ics.uci.edu) under the Toolkits section. PMID:21819139

  10. Vision 2020. Reaction Engineering Roadmap

    SciTech Connect

    Klipstein, David H.; Robinson, Sharon

    2001-01-01

    The Reaction Engineering Roadmap is a part of an industry- wide effort to create a blueprint of the research and technology milestones that are necessary to achieve longterm industry goals. This report documents the results of a workshop focused on the research needs, technology barriers, and priorities of the chemical industry as they relate to reaction engineering viewed first by industrial use (basic chemicals; specialty chemicals; pharmaceuticals; and polymers) and then by technology segment (reactor system selection, design, and scale-up; chemical mechanism development and property estimation; dealing with catalysis; and new, nonstandard reactor types).

  11. Experimental Demonstrations in Teaching Chemical Reactions.

    ERIC Educational Resources Information Center

    Hugerat, Muhamad; Basheer, Sobhi

    2001-01-01

    Presents demonstrations of chemical reactions by employing different features of various compounds that can be altered after a chemical change occurs. Experimental activities include para- and dia-magnetism in chemical reactions, aluminum reaction with base, reaction of acid with carbonates, use of electrochemical cells for demonstrating chemical…

  12. Research Directions CharacterizationReaction Kinetics

    E-print Network

    the reaction time ·Reaction time dependent on polymer size, percentage of varying monomers, and solvent), standard (8.7 M) or dilute conditions (6.6 M) · Varying solvent amount changed reaction time and AVL conditions provided a good balance of reaction time to AVL incorporation · Dilute conditions are much slower

  13. Radicals and Hydroxy Radical Reactions in Troposphere

    E-print Network

    Schofield, Jeremy

    { Continuous conversion between OH and NO 2 #12; Classi#12;cation of OH reactions 1. Addition reactions atom #15; Example: CH 4 +OH ! CH 3 #1; +H 2 O #15; Both addition reactions and H abstraction can occurRadicals and Hydroxy Radical Reactions in Troposphere Examples of ground state radicals: 1. H atom

  14. Multicomponent Reactions in Total Synthesis Kevin Allan

    E-print Network

    Stoltz, Brian M.

    Multicomponent Reactions in Total Synthesis Kevin Allan Stoltz Group Literature Meeting Monday Ph Ph PhO N N H Ph Ph Ph Ph N HN Ph Ph 3-CR 4-CR 5-CR #12;Multicomponent Reactions in Total Synthesis / Petasis (Boronic Acid Mannich) Reaction · Biginelli Dihydropyrimidinone Synthesis · Passerini Reaction

  15. Adverse Drug Reactions in Dental Practice

    PubMed Central

    Becker, Daniel E.

    2014-01-01

    Adverse reactions may occur with any of the medications prescribed or administered in dental practice. Most of these reactions are somewhat predictable based on the pharmacodynamic properties of the drug. Others, such as allergic and pseudoallergic reactions, are less common and unrelated to normal drug action. This article will review the most common adverse reactions that are unrelated to drug allergy. PMID:24697823

  16. Reaction Dynamics and Multifragmentation in Fermi Energy Heavy Ion Reactions

    E-print Network

    R. Wada; T. Keutgen; K. Hagel; Y. G. Ma; J. Wang; M. Murray; L. Qin; P. Smith; J. B. Natowitz; R. Alfarro; J. Cibor; M. Cinausero; Y. El Masri; D. Fabris; E. Fioretto; A. Keksis; M. Lunardon; A. Makeev; N. Marie; E. Martin; A. Martinez-Davalos; A. Menchaca-Rocha; G. Nebbia; G. Prete; V. Rizzi; A. Ruangma; D. V. Shetty; G. Souliotis; P. Staszel; M. Veselsky; G. Viesti; E. M. Winchester; S. J. Yennello; Z. Majka; A. Ono

    2003-08-27

    The reaction systems, 64Zn + 58Ni, 64Zn + 92Mo, 64Zn + 197Au, at 26A, 35A and 47A MeV, have been studied both in experiments with a 4$\\pi$ detector array, NIMROD, and with Antisymmetrized Molecular Dynamics model calculations employing effective interactions corresponding to soft and stiff equations of state (EOS). Direct experimental observables, such as multiplicity distributions, charge distributions, energy spectra and velocity spectra, have been compared in detail with those of the calculations and a reasonable agreement is obtained. The velocity distributions of $\\alpha$ particles and fragments with Z >= 3 show distinct differences in calculations with the soft EOS and the stiff EOS. The velocity distributions of $\\alpha$ particle and Intermediate Mass Fragments (IMF's) are best described by the stiff EOS. Neither of the above direct observables nor the strength of the elliptic flow are sensitive to changes in the in-medium nucleon-nucleon (NN) cross sections. A detailed analysis of the central collision events calculated with the stiff EOS revealed that multifragmentation with cold fragment emission is a common feature predicted for all reactions studied here. A possible multifragmentation scenario is presented; after the preequilibrium emission ceases in the composite system, cold light fragments are formed in a hotter gas of nucleons and stay cold until the composite system underdoes multifragmentation. For reaction with 197Au at 47A MeV a significant radial expansion takes place. For reactions with 58Ni and 92Mo at 47A MeV semi-transparency becomes prominent. The differing reaction dynamics drastically change the kinematic characteristics of emitted fragments. This scenario gives consistent explanations for many existing experimental results in the Fermi energy domain.

  17. Astronomy with Radioactivities: Chapter 9, Nuclear Reactions

    E-print Network

    M. Wiescher; T. Rauscher

    2010-11-01

    Nuclear reaction rates determine the abundances of isotopes in stellar burning processes. A multitude of reactions determine the reaction flow pattern which is described in terms of reaction network simulations. The reaction rates are determined by laboratory experiments supplemented by nuclear reaction and structure theory. We will discuss the experimental approach as well as the theoretical tools for obtaining the stellar reaction rates. A detailed analysis of a reaction is only possible for a few selected cases which will be highlighted in this section. The bulk of nuclear reaction processes is however described in terms of a statistical model approach, which relies on global nuclear structure and reaction parameters such as level density and mass and barrier penetration, respectively. We will discuss a variety of experimental facilities and techniques used in the field, this includes low energy stable beam experiments, measurements at radioactive beam accelerators, and neutron beam facilities.

  18. Lecture Notes Chapter 6 Understanding Organic Reactions

    E-print Network

    White, Douglas R.

    , elimination, and addition reactions. A. Substitution Reactions Substitution is a reaction in which an atom CH3 I + Cl CH3 Cl C O + OH C X C Y + reagent H CH H C H Br H + OH #12;114 C. Addition Reactions In an addition reaction, elements are added to a starting material: Examples: Notice: H OH H2SO4 CC X Y+ CC H H

  19. Thermodynamics of Enzyme-Catalyzed Reactions Database

    National Institute of Standards and Technology Data Gateway

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  20. Reduction of chemical reaction models

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  1. Reaction modeling in geothermal systems

    NASA Astrophysics Data System (ADS)

    Stefansson, A.

    2012-12-01

    Natural volcanic geothermal systems are open systems in term of matter and energy. Such systems are complex to model in terms of fluid chemistry, fluid flow and energy budget. Reaction modeling may be used to gain insight and possibly quantify chemical processes occurring within a system, for example fluid-fluid and fluid-rock interaction. Methods have been developed within the WATCH (Bjarnason, 1994; Arnórsson et al., 2007) and PHREEQC (Parkhurst and Appelo, 1999) programs to simulate reactions of multicomponent and multiphase systems to 300°C. The models include boiling and phase segregation (open system boiling), fluid-fluid mixing and fluid-rock interaction (gas-water-rock interaction). The models have been applied to quantify processes within the Hellisheidi geothermal system, Iceland. Open system boiling and fluid-rock interaction were simulated as a function of temperature, initial fluid composition and extent of reaction (T-X-?). In addition the interactions of magmatic gases with geothermal fluids and rocks were modeled. In this way various component behavior has been traced within the geothermal system and compared with observations of fluid composition and mineralogy. In addition, the reaction models have been used to evaluate the geochemical feasibility and best conditions of gas (CO2 and H2S) and waste water injection into geothermal system.

  2. Knoevenagel Reaction of Unprotected Sugars

    NASA Astrophysics Data System (ADS)

    Scherrmann, Marie-Christine

    The Knoevenagel reaction of unprotected sugars was investigated in the 1950s using zinc chloride as promoter. The so-called Garcia Gonzalez reaction had been almost forgotten for 50 years, until the emergence of new water tolerant catalysts having Lewis acid behavior. The reaction was thus reinvestigated and optimal conditions have been found to prepare trihydroxylated furan derivatives from pentose or ?-tetrahydrofuranylfuran from hexoses with non-cyclic ?-keto ester or ?-diketones. Other valuable compounds such as ?-linked tetrahydrobenzofuranyl glycosides or hydroxyalkyl-3,3,6,6,-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione can be obtained using cyclic ?-dicarbonylic derivatives. Apart from one report in the 1950s, the Knoevenagel reaction of unprotected carbohydrate in basic condition has been studied only in the mid-1980s to prepare C-glycosyl barbiturates from barbituric acids and, later on, from non-cyclic ?-diketones, ?-C-glycosidic ketones. The efficient method exploited to prepare such compounds has found an industrial development in cosmetics.

  3. Deformed Space-Time Reactions

    NASA Astrophysics Data System (ADS)

    Albertini, Gianni; Kostro, Ludwik; Cardone, Fabio

    Recent experimental results, which are not easy to explain at the light of the current commonly accepted theories, can find an explanation in the framework of a theory of locally deformed space-time. Small cavities inside pressed solids and bubbles inside cavitated liquids are assumed as micro-reactors where deformed space-time reactions can take place.

  4. Molecular Reaction Dynamics and Solvation.

    NASA Astrophysics Data System (ADS)

    Kim, Seong Keun

    A potential energy surface was constructed for the triatomic molecule Li_2H using a semiempirical method akin to the diatomics-in-molecules theory. Valence bond configurations were chosen to include the major ionic contributions in the ground state potential energy. Quasiclassical trajectories were run on this potential energy surface. The results of these calculations are shown to be generally in accord with the experimental investigations of analogous reactions of H atoms with bigger alkali dimer molecules. Certain aspects of chemical reaction dynamics which have been largely overlooked were examined. These involve correlations of vector properties in chemical reactions. Specifically, the strong correlation between orbital and rotational angular momenta in the product channel of this reaction was shown to be the reason for a seemingly contradictory set of distributions of different angles. Gas phase solvation of nucleic acid base molecules was studied using clusters produced by supersonic expansion. Relative stabilities of the species with different numbers of solvent molecules were studied by varying the expansion conditions. The ionization potentials were measured as a function of the number of solvent molecules. Rather distinct effects of hydration were observed for the ionization potentials of adenine and thymine.

  5. Interfacial Reaction Studies Using ONIOM

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    2003-01-01

    In this report, we focus on the calculations of the energetics and chemical kinetics of heterogeneous reactions for Organometallic vapor phase epitaxy (OMVPE). The work described in this report builds upon our own previous thermochemical and chemical kinetics studies. The first of these articles refers to the prediction of thermochemical properties, and the latter one deals with the prediction of rate constants for gaseous homolytic dissociation reactions. The calculations of this investigation are at the microscopic level. The systems chosen consisted of a gallium nitride (GaN) substrate, and molecular nitrogen (N2) and ammonia (NH3) as adsorbants. The energetics for the adsorption and the adsorbant dissociation processes were estimated, and reaction rate constants for the dissociation reactions of free and adsorbed molecules were predicted. The energetics for substrate decomposition was also computed. The ONIOM method, implemented in the Gaussian98 program, was used to perform the calculations. This approach has been selected since it allows dividing the system into two layers that can be treated at different levels of accuracy. The atoms of the substrate were modeled using molecular mechanics6 with universal force fields, whereas the adsorbed molecules were approximated using quantum mechanics, based on density functional theory methods with B3LYP functionals and 6-311G(d,p) basis sets. Calculations for the substrate were performed in slabs of several unit cells in each direction. The N2 and NH3 adsorbates were attached to a central location at the Ga-lined surface.

  6. HADES results in elementary reactions

    NASA Astrophysics Data System (ADS)

    Ramstein, B.; Adamczewski-Musch, J.; Arnold, O.; Atomssa, E. T.; Behnke, C.; Berger-Chen, J. C.; Biernat, J.; Blanco, A.; Blume, C.; Böhmer, M.; Bordalo, P.; Chernenko, S.; Deveaux, C.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Fonte, P.; Franco, C.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gill, K.; Golubeva, M.; Guber, F.; Gumberidze, M.; Harabasz, S.; Hennino, T.; Hlavac, S.; Höhne, C.; Holzmann, R.; Ierusalimov, A.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Kardan, K.; Koenig, I.; Koenig, W.; Kolb, B. W.; Korcyl, G.; Kornakov, G.; Kotte, R.; Krása, A.; Krebs, E.; Kuc, H.; Kugler, A.; Kunz, T.; Kurepin, A.; Kurilkin, A.; Kurilkin, P.; Ladygin, V.; Lalik, R.; Lapidus, K.; Lebedev, A.; Lopes, L.; Lorenz, M.; Mahmoud, T.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Petousis, V.; Pietraszko, J.; Przygoda, W.; Rehnisch, L.; Reshetin, A.; Rost, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Scheib, T.; Schmidt-Sommerfeld, K.; Schuldes, H.; Sellheim, P.; Siebenson, J.; Silva, L.; Sobolev, Yu. G.; Spataro, S.; Ströbele, H.; Stroth, J.; Strzempek, P.; Sturm, C.; Svoboda, O.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Wendisch, C.; Wirth, J.; Wüstenfeld, J.; Zanevsky, Y.; Zumbruch, P.

    2014-11-01

    Recent results obtained with the HADES experimental set-up at GSI are presented with a focus on dielectron production and strangeness in pp and quasi-free np reactions. Perspectives related to the very recent experiment using the pion beam at GSI are also discussed.

  7. Severe allergic reaction to Dermabond.

    PubMed

    Perry, Arthur W; Sosin, Michael

    2009-01-01

    The use of 2-octyl cyanoacrylate (Dermabond; Ethicon, Somerville, NJ) for wound closure is increasingly popular. Problems with Dermabond are generally related to application techniques and rarely relate to the chemical nature of the adhesive. This article describes a severe allergic reaction to Dermabond following breast augmentation/mastopexy. PMID:19717065

  8. Homeostasis in Chemical Reaction Pathways

    E-print Network

    V. A. Malyshev; A. D. Manita; A. A. Zamyatin

    2011-12-25

    We consider stochastic models of chemical reaction networks with time dependent input rates and several types of molecules. We prove that, in despite of strong time dependence of input rates, there is a kind of homeostasis phenomenon: far away from input nodes the mean numbers of molecules of each type become approximately constant (do not depend on time).

  9. Homeostasis in Chemical Reaction Pathways

    E-print Network

    Malyshev, V A; Zamyatin, A A

    2011-01-01

    We consider stochastic models of chemical reaction networks with time dependent input rates and several types of molecules. We prove that, in despite of strong time dependence of input rates, there is a kind of homeostasis phenomenon: far away from input nodes the mean numbers of molecules of each type become approximately constant (do not depend on time).

  10. The Pitfalls of Precipitation Reactions.

    ERIC Educational Resources Information Center

    Slade, Peter W.; Rayner-Canham, Geoffrey W.

    1990-01-01

    Described are some of the difficulties presented in these reactions by competing equilibria that are usually ignored. Situations involving acid-base equilibria, solubility product calculations, the use of ammonia as a complexing agent, and semiquantitative comparisons of solubility product values are discussed. (CW)

  11. Reactions of arsine with hemoglobin

    SciTech Connect

    Hatlelid, K.M.; Brailsford, C.; Carter, D.E.

    1996-02-09

    The mechanism of arsine (AsH{sub 3}) induced hemolysis was studied in vitro using isolated red blood cells (RBCs) from the rat or dog. AsH{sub 3}-induced hemolysis of dog red blood cells was completely blocked by carbon monoxide (CO) preincubation and was reduced by pure oxygen (O{sub 2}) compared to incubations in air. Since CO and O{sub 2} bind to heme and also reduced hemolysis, these results suggested a reaction between AsH{sub 3} and hemoglobin in the hemeligand binding pocket or with the heme iron. Further, sodium nitrite induction of methemoglobin (metHb) to 85% and 34% of total Hb in otherwise intact RBCs resulted in 56% and 16% decreases in hemolysis, respectively, after incubation for 4 h. This provided additional evidence for the involvement of hemoglobin in the AsH{sub 3}-induced hemolysis mechanism. Reactions between AsH{sub 3} and hemoglobin were studied in solutions of purified dog hemoglobin. Spectrophotometric studies of the reaction of AsH{sub 3} with various purified hemoglobin species revealed that AsH{sub 3} reacted with HbO{sub 2} to produce metHb and, eventually, degraded Hb characterized by gross precipitation of the protein. AsH{sub 3} did not alter the spectrum of deoxyHb and did not cause degradation of metHb in oxygen, but bound to and reduced metHb in the absence of oxygen. These data indicate that a reaction of AsH{sub 3} with oxygenated hemoglobin, HbO{sub 2}, may lead to hemolysis, but there are reactions between AsH{sub 3} and metHb that may not be directly involved in the hemolytic process. 17 refs., 6 figs.

  12. Reaction of alkylcobalamins with thiols

    SciTech Connect

    Hogenkamp, H.P.C.; Bratt, G.T.; Kotchevar, A.T.

    1987-07-28

    Carbon-13 NMR spectroscopy and phosphorus-31 NMR spectroscopy have been used to study the reaction of several alkylcobalamins with 2-mercaptoethanol. At alkaline pH, when the thiol is deprotonated, the alkyl-transfer reactions involve a nucleophilic attack of the thiolate anion on the Co-methylene carbon of the cobalamins, yielding alkyl thioethers and cob(II)alamin. In these nucleophilic displacement reactions cob(I)alamin is presumably formed as an intermediate. The higher alkylcobalamins react more slowly than methylcobalamin. The lower reactivity of ethyl- and propylcobalamin is probably the basis of the inhibition of the corrinoid-dependent methyl-transfer systems by propyl iodide. The transfer of the upper nucleoside ligand of adenosylcobalamin to 2-mercaptoethanol is a very slow process; S-adenosylmercaptoethanol and cob(II)alamin are the final products of the reaction. The dealkylation of (carboxymethyl)cobalamin is a much more facile reaction. At alkaline pH S-(carboxymethyl)mercaptoethanol and cob(II)alamin are produced, while at pH values below 8 the carbon-cobalt bond is cleaved reductively to acetate and cob(II)alamin. The reductive cleavage of the carbon-cobalt bond of (carboxymethyl)cobalamin by 2-mercaptoethanol is extremely fast when the cobalamin is in the base-off form. Because the authors have been unable to detect trans coordination of 2-mercaptoethanol, they favor a mechanism that involves a hydride attack on the Co-methylene carbon of (carboxymethyl) rather than a trans attack of the thiol on the cobalt atom.

  13. Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions

    E-print Network

    Anderson, James B.

    Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions Shannon D and understanding the behavior of gas phase chemical reaction systems. This Monte Carlo method, originated by Bird. Extension to chemical reactions offers a powerful tool for treating reaction systems with nonthermal

  14. A Synthetic Reaction Network: Chemical Amplification Using Nonequilibrium Autocatalytic Reactions Coupled in Time

    E-print Network

    Ismagilov, Rustem F.

    reaction network that performs a function: it uses autocatalysis in a time- controlled microfluidic device the reactions in space and time.1-5 An example of a chemical network is an array of 16 coupled reactionsA Synthetic Reaction Network: Chemical Amplification Using Nonequilibrium Autocatalytic Reactions

  15. Unusual reaction paths of SN2 nucleophile substitution reactions CH4+H-

    E-print Network

    Quapp, Wolfgang

    Unusual reaction paths of SN2 nucleophile substitution reactions CH4+H- CH4+H- and CH4+F- CH3F for the SN2 nucleophile substitution reactions CH4+H- CH4+H- and CH4+F- CH3F+H- . The calculated gradient reaction pathways for both reactions have an unusual behavior. An unusual saddle point of index 2 lies

  16. Chemical reaction equilibrium in nanoporous materials: NO dimerization reaction in carbon slit nanopores

    E-print Network

    Lisal, Martin

    Chemical reaction equilibrium in nanoporous materials: NO dimerization reaction in carbon slit of confinement on chemical reaction equilibrium in nanoporous materials. We use the reaction ensemble Monte Carlo condensation on the nitric oxide dimerization reaction in a model carbon slit nanopore in equilibrium

  17. Explicit formulas for reaction probability in reaction-diffusion experiments

    E-print Network

    Renato Feres; Matthew Wallace; Ari Stern; Gregory Yablonsky

    2015-10-13

    A computational procedure is developed for determining the conversion probability for reaction-diffusion systems in which a first-order catalytic reaction is performed over active particles. We apply this general method to systems on metric graphs, which may be viewed as 1-dimensional approximations of 3-dimensional systems, and obtain explicit formulas for conversion. We then study numerically a class of 3-dimensional systems and test how accurately they are described by model formulas obtained for metric graphs. The optimal arrangement of active particles in a 1-dimensional multiparticle system is found, which is shown to depend on the level of catalytic activity: conversion is maximized for low catalytic activity when all particles are bunched together close to the point of gas injection, and for high catalytic activity when the particles are evenly spaced.

  18. Microfabricated electrochemiluminescence cell for chemical reaction detection

    DOEpatents

    Northrup, M. Allen (Berkeley, CA); Hsueh, Yun-Tai (Davis, CA); Smith, Rosemary L. (Davis, CA)

    2003-01-01

    A detector cell for a silicon-based or non-silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The detector cell is an electrochemiluminescence cell constructed of layers of silicon with a cover layer of glass, with spaced electrodes located intermediate various layers forming the cell. The cell includes a cavity formed therein and fluid inlets for directing reaction fluid therein. The reaction chamber and detector cell may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The ECL cell may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  19. The molecular dynamics of atmospheric reaction

    NASA Technical Reports Server (NTRS)

    Polanyi, J. C.

    1971-01-01

    Detailed information about the chemistry of the upper atmosphere took the form of quantitative data concerning the rate of reaction into specified states of product vibration, rotation and translation for exothermic reaction, as well as concerning the rate of reaction from specified states of reagent vibration, rotation and translation for endothermic reaction. The techniques used were variants on the infrared chemiluminescence method. Emphasis was placed on reactions that formed, and that removed, vibrationally-excited hydroxyl radicals. Fundamental studies were also performed on exothermic reactions involving hydrogen halides.

  20. Electroweak reactions with light nuclei

    E-print Network

    Sonia Bacca

    2010-06-01

    The investigation of light nuclei with ab-initio methods provides an optimal setting to probe our knowledge on nuclear forces, because the few-nucleon problem can be solved accurately. Nucleons interact not only in pairs but also via many-body forces. Theoretical efforts need to be taken towards the identification of nuclear observables sensitive to the less known many-nucleon forces. Electromagnetic reactions can potentially provide useful information on this. We present results on photo-absorption and electron scattering off light nuclei, emphasizing the role of three-body forces and the comparison with experimental data. On the other hand, reactions induced by weak probes, like neutrino interactions with nucleonic matter, are relevant to astrophysics and can be calculated with few-body techniques. In this case, since often no experiment is possible, ab-initio predictions provide valuable input for astrophysical simulations.

  1. Prebiotic condensation reactions using cyanamide

    NASA Technical Reports Server (NTRS)

    Sherwood, E.; Nooner, D. W.; Eichberg, J.; Epps, D. E.; Oro, J.

    1978-01-01

    Condensation reactions in cyanamide, 4-amino-5-imidazole-carboxamide and cyanamide, imidazole systems under dehydrating conditions at moderate temperatures (60 to 100 deg C) were investigated. The cyanamide, imidazole system was used for synthesis of palmitoylglycerols from ammonium palmitate and glycerol. With the addition of deoxythymidine to the former system, P1, P2-dideoxythymidine 5 prime-phosphate was obtained; the same cyanamide, 4-amino-5-imidazole-carboxamide system was used to synthesize deoxythymidine oligonucleotides using deoxythymidine 5 prime-phosphate and deoxythymidine 5 prime-triphosphate, and peptides using glycine, phenylalanine or isoleucine with adenosine 5 prime-triphosphate. The pH requirements for these reactions make their prebiotic significance questionable; however, it is conceivable that they could occur in stable pockets of low interlayer acidity in a clay such as montmorillonite.

  2. Propulsive Reaction Control System Model

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Phan, Linh H.; Serricchio, Frederick; San Martin, Alejandro M.

    2011-01-01

    This software models a propulsive reaction control system (RCS) for guidance, navigation, and control simulation purposes. The model includes the drive electronics, the electromechanical valve dynamics, the combustion dynamics, and thrust. This innovation follows the Mars Science Laboratory entry reaction control system design, and has been created to meet the Mars Science Laboratory (MSL) entry, descent, and landing simulation needs. It has been built to be plug-and-play on multiple MSL testbeds [analysis, Monte Carlo, flight software development, hardware-in-the-loop, and ATLO (assembly, test and launch operations) testbeds]. This RCS model is a C language program. It contains two main functions: the RCS electronics model function that models the RCS FPGA (field-programmable-gate-array) processing and commanding of the RCS valve, and the RCS dynamic model function that models the valve and combustion dynamics. In addition, this software provides support functions to initialize the model states, set parameters, access model telemetry, and access calculated thruster forces.

  3. Quantum back-reaction problems

    E-print Network

    Ralf Schützhold

    2007-12-10

    The macroscopic behavior of many physical systems can be approximately described by classical quantities. However, quantum theory demands the existence of omnipresent quantum fluctuations on top of this classical background -- which, albeit small, should have some impact onto its dynamics. The correct treatment of this quantum back-reaction is one of the main problems in quantum gravity and related to fundamental questions such as the initial (big bang) singularity or the cosmological constant. By means of the qualitative analogy between gravity and fluid dynamics, we try to shed some light onto these problems and show some of the difficulties associated with the calculation of the quantum back-reaction starting from the classical (macroscopic) equation of motion.

  4. Fractional reaction-diffusion equations

    E-print Network

    R. K. Saxena; A. M. Mathai; H. J. Haubold

    2007-01-03

    In a series of papers, Saxena, Mathai, and Haubold (2002, 2004a, 2004b) derived solutions of a number of fractional kinetic equations in terms of generalized Mittag-Leffler functions which provide the extension of the work of Haubold and Mathai (1995, 2000). The subject of the present paper is to investigate the solution of a fractional reaction-diffusion equation. The results derived are of general nature and include the results reported earlier by many authors, notably by Jespersen, Metzler, and Fogedby (1999) for anomalous diffusion and del-Castillo-Negrete, Carreras, and Lynch (2003) for reaction-diffusion systems with L\\'evy flights. The solution has been developed in terms of the H-function in a compact form with the help of Laplace and Fourier transforms. Most of the results obtained are in a form suitable for numerical computation.

  5. Programmability of Chemical Reaction Networks

    NASA Astrophysics Data System (ADS)

    Cook, Matthew; Soloveichik, David; Winfree, Erik; Bruck, Jehoshua

    Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a well-stirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri nets, Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines. A theme to these investigations is the thin line between decidable and undecidable questions about SCRN behavior.

  6. Investigating Reaction-Driven Cracking

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Hirth, G.; Savage, H. M.

    2013-12-01

    Many metamorphic reactions lead to large volume changes, and potentially to reaction-driven cracking [1,2]. Large-scale hydration of mantle peridotite to produce serpentine or talc is invoked to explain the rheology of plate boundaries, the nature of earthquakes, and the seismic properties of slow-spread ocean crust and the 'mantle wedge' above subduction zones. Carbonation of peridotite may be an important sink in the global carbon cycle. Zones of 100% magnesite + quartz replacing peridotite, up to 200 m thick, formed where oceanic mantle was thrust over carbonate-bearing metasediments in Oman. Talc + carbonate is an important component of the matrix in subduction mélanges at Santa Catalina Island , California, and the Sanbagawa metamorphic belt, Japan. Engineered systems to emulate natural mineral carbonation could provide relatively inexpensive CO2 capture and storage [3]. More generally, engineered reaction-driven cracking could supplement or replace hydraulic fracture in geothermal systems, solution mining, and extraction of tight oil and gas. The controls on reaction-driven cracking are poorly understood. Hydration and carbonation reactions can be self-limiting, since they potentially reduce permeability and armor reactive surfaces [4]. Also, in some cases, hydration or carbonation may take place at constant volume. Small changes in volume due to precipitation of solid products increases stress, destabilizing solid reactants, until precipitation and dissolution rates become equal at a steady state stress [5]. In a third case, volume change due to precipitation of solid products causes brittle failure. This has been invoked on qualitative grounds to explain, e.g., complete serpentinization of mantle peridotite [6]. Below ~ 300°C, the available potential energy for hydration and carbonation of olivine could produce stresses of 100's of MPa [2], sufficient to fracture rocks to 10 km depth or more, causing brittle failure below the steady state stress required for constant volume replacement. Natural examples have fracture energy densities due to strain energy density of 100's of MPa [2]. Despite theory and observation, until now lab experiments on peridotite hydration and carbonation have not produced reaction-driven cracking. Slow kinetics and limited reactive surface area in low porosity samples may be the cause. Also, maximum stress may be limited by 'disjoining pressure', above which nano-films along grain boundaries collapse, and crystal growth essentially ceases [7]. To address these issues, we've begun experiments on analog materials with fast reaction rates, e.g., CaO + H2O = Ca(OH)2, to efficiently investigate the role of confining pressure and other factors on reaction-driven fracture events. Intriguingly, commercially available 'demolition mortar', largely CaO, produces stresses of 70 MPa or more around 1 inch bore holes at room T and P [8], even though there is a free surface at the top of the borehole, and hydration in a 'closed' system creates ~ 40% air-filled pore space. [1] Jamtveit et al EPSL 08 [2] Kelemen & Hirth EPSL 12 [3] Kelemen et al AREPS 11 [4] Aharonov et al JGR 98 [5] Fletcher & Merino GCA 01 [6] Macdonald & Fyfe T'phys 85 [7] Espinosa-Marzal & Scherer GSL Special Papers 10 [8] Laefer et al Mag Concrete Res 10

  7. Modelling reaction kinetics inside cells

    PubMed Central

    Grima, Ramon; Schnell, Santiago

    2009-01-01

    In the past decade, advances in molecular biology such as the development of non-invasive single molecule imaging techniques have given us a window into the intricate biochemical activities that occur inside cells. In this article we review four distinct theoretical and simulation frameworks: (1) non-spatial and deterministic, (2) spatial and deterministic, (3) non-spatial and stochastic and (4) spatial and stochastic. Each framework can be suited to modelling and interpreting intracellular reaction kinetics. By estimating the fundamental length scales, one can roughly determine which models are best suited for the particular reaction pathway under study. We discuss differences in prediction between the four modelling methodologies. In particular we show that taking into account noise and space does not simply add quantitative predictive accuracy but may also lead to qualitatively different physiological predictions, unaccounted for by classical deterministic models. PMID:18793122

  8. Modeling the enzyme kinetic reaction.

    PubMed

    Atangana, Abdon

    2015-09-01

    The Enzymatic control reactions model was presented within the scope of fractional calculus. In order to accommodate the usual initial conditions, the fractional derivative used is in Caputo sense. The methodologies of the three analytical methods were used to derive approximate solution of the fractional nonlinear system of differential equations. Two methods use integral operator and the other one uses just an integral. Numerical results obtained exhibit biological behavior of real world problem. PMID:25930963

  9. Cascade reactions in multicompartmentalized polymersomes.

    PubMed

    Peters, Ruud J R W; Marguet, Maïté; Marais, Sébastien; Fraaije, Marco W; van Hest, Jan C M; Lecommandoux, Sébastien

    2014-01-01

    Enzyme-filled polystyrene-b-poly(3-(isocyano-L-alanyl-aminoethyl)thiophene) (PS-b-PIAT) nanoreactors are encapsulated together with free enzymes and substrates in a larger polybutadiene-b-poly(ethylene oxide) (PB-b-PEO) polymersome, forming a multicompartmentalized structure, which shows structural resemblance to the cell and its organelles. An original cofactor-dependent three-enzyme cascade reaction is performed, using either compatible or incompatible enzymes, which takes place across multiple compartments. PMID:24254810

  10. Multicomponent reactions in nucleoside chemistry

    PubMed Central

    Buchowicz, W?odzimierz

    2014-01-01

    Summary This review covers sixty original publications dealing with the application of multicomponent reactions (MCRs) in the synthesis of novel nucleoside analogs. The reported approaches were employed for modifications of the parent nucleoside core or for de novo construction of a nucleoside scaffold from non-nucleoside substrates. The cited references are grouped according to the usually recognized types of the MCRs. Biochemical properties of the novel nucleoside analogs are also presented (if provided by the authors). PMID:25161730

  11. The Biginelli Reaction Is a Urea-Catalyzed Organocatalytic Multicomponent Reaction.

    PubMed

    Puripat, Maneeporn; Ramozzi, Romain; Hatanaka, Miho; Parasuk, Waraporn; Parasuk, Vudhichai; Morokuma, Keiji

    2015-07-17

    The recently developed artificial force induced reaction (AFIR) method was applied to search systematically all possible multicomponent pathways for the Biginelli reaction mechanism. The most favorable pathway starts with the condensation of the urea and benzaldehyde, followed by the addition of ethyl acetoacetate. Remarkably, a second urea molecule catalyzes nearly every step of the reaction. Thus, the Biginelli reaction is a urea-catalyzed multicomponent reaction. The reaction mechanism was found to be identical in both protic and aprotic solvents. PMID:26066623

  12. Catalytic reactions in ionic liquids.

    PubMed

    Sheldon, R

    2001-12-01

    The chemical industry is under considerable pressure to replace many of the volatile organic compounds (VOCs) that are currently used as solvents in organic synthesis. The toxic and/or hazardous properties of many solvents, notably chlorinated hydrocarbons, combined with serious environmental issues, such as atmospheric emissions and contamination of aqueous effluents is making their use prohibitive. This is an important driving force in the quest for novel reaction media. Curzons and coworkers, for example, recently noted that rigorous management of solvent use is likely to result in the greatest improvement towards greener processes for the manufacture of pharmaceutical intermediates. The current emphasis on novel reaction media is also motivated by the need for efficient methods for recycling homogeneous catalysts. The key to waste minimisation in chemicals manufacture is the widespread substitution of classical 'stoichiometric' syntheses by atom efficient, catalytic alternatives. In the context of homogeneous catalysis, efficient recycling of the catalyst is a conditio sine qua non for economically and environmentally attractive processes. Motivated by one or both of the above issues much attention has been devoted to homogeneous catalysis in aqueous biphasic and fluorous biphasic systems as well as in supercritical carbon dioxide. Similarly, the use of ionic liquids as novel reaction media may offer a convenient solution to both the solvent emission and the catalyst recycling problem. PMID:12239988

  13. Transfer reactions with heavy elements

    SciTech Connect

    Hoffman, D.C.

    1986-04-01

    Transfer reactions for several transuranium elements are studied. (/sup 248/Cm, /sup 249/Bk, /sup 249/CF, /sup 254/Es), /sup 16,18/O, /sup 20,22/Ne, and /sup 40,48/Ca projectiles are used. The production of neutron-rich heavy actinides is enhanced by the use of neutron-rich projectiles /sup 18/O and /sup 22/Ne. The maxima of the isotopic distributions occur at only 2 to 3 mass numbers larger for /sup 48/Ca than for /sup 40/Ca reactions with /sup 248/Cm. The cross sections decrease rapidly with the number of nucleons transferred. The use of neutron-rich targets favors the production of neutron-rich isotopes. ''Cold'' heavy targets are produced. Comparisons with simple calculations of the product excitation energies assuming binary transfers indicate that the maxima of the isotopic distributions occur at the lightest product isotope for which the energy exceeds the reaction barrier. The cross sections for transfer of the same nucleon clusters appear to be comparable for a wide variety of systems. 23 refs., 4 figs., 4 tabs.

  14. Reaction Selectivity in Heterogeneous Catalysis

    SciTech Connect

    Somorjai, Gabor A.; Kliewer, Christopher J.

    2009-02-02

    The understanding of selectivity in heterogeneous catalysis is of paramount importance to our society today. In this review we outline the current state of the art in research on selectivity in heterogeneous catalysis. Current in-situ surface science techniques have revealed several important features of catalytic selectivity. Sum frequency generation vibrational spectroscopy has shown us the importance of understanding the reaction intermediates and mechanism of a heterogeneous reaction, and can readily yield information as to the effect of temperature, pressure, catalyst geometry, surface promoters, and catalyst composition on the reaction mechanism. DFT calculations are quickly approaching the ability to assist in the interpretation of observed surface spectra, thereby making surface spectroscopy an even more powerful tool. HP-STM has revealed three vitally important parameters in heterogeneous selectivity: adsorbate mobility, catalyst mobility, and selective site-blocking. The development of size controlled nanoparticles from 0.8 to 10 nm, of controlled shape, and of controlled bimetallic composition has revealed several important variables for catalytic selectivity. Lastly, DFT calculations may be paving the way to guiding the composition choice for multi-metallic heterogeneous catalysis for the intelligent design of catalysts incorporating the many factors of selectivity we have learned.

  15. Photosynthetic reaction centers in bacteria

    SciTech Connect

    Norris, J.R. Univ. of Chicago, IL ); Schiffer, M. )

    1990-07-30

    The photochemistry of photosynthesis begins in complexes called reaction centers. These have become model systems to study the fundamental process by which plants and bacteria convert and store solar energy as chemical free energy. In green plants, photosynthesis occurs in two systems, each of which contains a different reaction center, working in series. In one, known as photosystem 1, oxidized nicotinamide adenine dinucleotide phosphate (NADP[sup +]) is reduced to NADPH for use in a series of dark reactions called the Calvin cycle, named for Nobel Laureate Melvin Calvin, by which carbon dioxide is converted into useful fuels such as carbohydrates and sugars. In the other half of the photosynthetic machinery of green plants, called photosystem 2, water is oxidized to produce molecular oxygen. A different form of photosynthesis occurs in photosynthetic bacteria, which typically live at the bottom of ponds and feed on organic debris. Two main types of photosynthetic bacteria exist: purple and green. Neither type liberates oxygen from water. Instead, the bacteria feed on organic media or inorganic materials, such as sulfides, which are easier to reduce or oxidize than carbon dioxide or water. Perhaps in consequence, their photosynthetic machinery is simpler than that of green, oxygen-evolving plants and their primary photochemistry is better understood.

  16. Hydrogen tunneling in enzyme reactions

    SciTech Connect

    Cha, Y.; Murray, C.J.; Klinman, J.P.

    1989-03-10

    Primary and secondary protium-to-tritium (H/T) and deuterium-to-tritium (D/T) kinetic isotope effects for the catalytic oxidation of benzyl alcohol to benzaldehyde by yeast alcohol dehydrogenase (YADH) at 25 degrees Celsius have been determined. Previous studies showed that this reaction is nearly or fully rate limited by the hydrogen-transfer step. Semiclassical mass considerations that do not include tunneling effects would predict that kH/kT = (kD/kT)3.26, where kH, kD, and kT are the rate constants for the reaction of protium, deuterium, and tritium derivatives, respectively. Significant deviations from this relation have now been observed for both primary and especially secondary effects, such that experimental H/T ratios are much greater than those calculated from the above expression. These deviations also hold in the temperature range from 0 to 40 degrees Celsius. Such deviations were previously predicted to result from a reaction coordinate containing a significant contribution from hydrogen tunneling.

  17. Microfabricated sleeve devices for chemical reactions

    DOEpatents

    Northrup, M. Allen (Berkeley, CA)

    2003-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  18. Severe Food Allergy Reactions in Kids

    MedlinePLUS

    ... July 9, 2012 Severe Food Allergy Reactions in Kids Young children with allergies to milk or eggs ... Needs to Spread Severe Food Allergy Reactions in Kids Drugs Block Deadly Harm from Radiation Exposure Connect ...

  19. Dynamic Effects in Nucleophilic Substitution Reactions 

    E-print Network

    Bogle, Xavier Sheldon

    2012-02-14

    In order to rationally optimize a reaction, it is necessary to have a thorough understanding of its mechanism. Consequently, great effort has been made to elucidate a variety of reaction mechanisms. However, the fundamental ...

  20. Heavy atom isotope effects on enzymatic reactions

    NASA Astrophysics Data System (ADS)

    Paneth, Piotr

    1994-05-01

    The theory of isotope effects, which has proved to be extremely useful in providing geometrical details of transition states in a variety of chemical reactions, has recently found an application in studies of enzyme-catalyzed reactions. These reactions are multistep in nature with few steps being partially rate-limiting, thus interpretation of these isotope effects is more complex. The theoretical framework of heavy-atom isotope effects on enzymatic reactions is critically analyzed on the basis of recent results of: carbon kinetic isotope effects on carbonic anhydrase and catalytic antibodies; multiple carbon, deuterium isotope effects on reactions catalyzed by formate decarboxylase; oxygen isotope effects on binding processes in reactions catalyzed by pyruvate kinase; and equilibrium oxygen isotope effect on binding an inhibitor to lactate dehydrogenase. The advantages and disadvantages of reaction complexity in learning details of formal and molecular mechanisms are discussed in the examples of reactions catalyzed by phosphoenolpyruvate carboxylase, orotidine decarboxylase and glutamine synthetase.

  1. Diamine ligands in copper-catalyzed reactions

    E-print Network

    Surry, David S.

    The utility of copper-mediated cross-coupling reactions has been significantly increased by the development of mild reaction conditions and the ability to employ catalytic amounts of copper. The use of diamine-based ligands ...

  2. A Clock Reaction Based on Molybdenum Blue

    E-print Network

    Neuenschwander, Ulrich

    Clock reactions are rare kinetic phenomena, so far limited mostly to systems with ionic oxoacids and oxoanions in water. We report a new clock reaction in cyclohexanol that forms molybdenum blue from a noncharged, yellow ...

  3. Visualization of chemical reaction dynamics: Toward understanding complex polyatomic reactions

    PubMed Central

    SUZUKI, Toshinori

    2013-01-01

    Polyatomic molecules have several electronic states that have similar energies. Consequently, their chemical dynamics often involve nonadiabatic transitions between multiple potential energy surfaces. Elucidating the complex reactions of polyatomic molecules is one of the most important tasks of theoretical and experimental studies of chemical dynamics. This paper describes our recent experimental studies of the multidimensional multisurface dynamics of polyatomic molecules based on two-dimensional ion/electron imaging. It also discusses ultrafast photoelectron spectroscopy of liquids for elucidating nonadiabatic electronic dynamics in aqueous solutions. PMID:23318678

  4. One-substrate transketolase-catalyzed reaction.

    PubMed

    Bykova, I A; Solovjeva, O N; Meshalkina, L E; Kovina, M V; Kochetov, G A

    2001-01-26

    Apart from catalyzing the common two-substrate reaction with ketose as donor substrate and aldose as acceptor substrate, transketolase is also able to catalyze a one-substrate reaction utilizing only ketose (xylulose 5-phosphate) as substrate. The products of this one-substrate reaction were glyceraldehyde 3-phosphate and erythrulose. No free glycolaldehyde (a product of xylulose 5-phosphate splitting in the transketolase reaction) was revealed. PMID:11162599

  5. Modeling the complex bromate-iodine reaction.

    PubMed

    Machado, Priscilla B; Faria, Roberto B

    2009-05-01

    In this article, it is shown that the FLEK model (ref 5 ) is able to model the experimental results of the bromate-iodine clock reaction. Five different complex chemical systems, the bromate-iodide clock and oscillating reactions, the bromite-iodide clock and oscillating reactions, and now the bromate-iodine clock reaction are adequately accounted for by the FLEK model. PMID:19361181

  6. The chlorate-iodine clock reaction.

    PubMed

    Oliveira, André P; Faria, Roberto B

    2005-12-28

    A clock reaction produced by mixing chlorate and iodine solutions in perchloric acid media is reported. This is the first example of a clock reaction using chlorate as a reagent. Increasing chlorate and acid concentration reduces the induction period. Changing the initial iodine concentration does not affect the length of the induction period. The discovery of this clock reaction opens the possibility that a new family of oscillation reactions can be built using chlorate as reagent. PMID:16366551

  7. Reactions to thimerosal in hepatitis B vaccines.

    PubMed

    Rietschel, R L; Adams, R M

    1990-01-01

    Hypersensitivity to thimerosal in vaccines has been reported to induce persistent local reactions, urticarial and generalized exanthematic eruptions, and, in the case of the hepatitis B vaccine, urticaria with asthma. The authors describe two cases of extensive reactions, one in a patient who did not form antibodies to the principal vaccine antigen. Although not all thimerosal-sensitive patients develop adverse reactions to vaccines containing this material, there is a potential risk, and the reactions can be very long lasting. PMID:2137393

  8. Exothermic reaction waves in multilayer nanofilms

    NASA Astrophysics Data System (ADS)

    Rogachev, A. S.

    2008-01-01

    Experimental and theoretical studies on heterogeneous exothermic reaction waves in multilayer nanofilms are analysed. Mathematical models for the reaction wave propagation are described. The dynamics of phase and structural transformations during heterogeneous reactions in nanoscale systems is considered. Prospects of the studies of reaction waves for the elucidation of the mechanisms of processes in nanoscale systems and for diverse practical applications (in particular, for the development of new welding and soldering techniques) are demonstrated.

  9. THEORY OF CHEMICAL REACTION ANTONIO LAGANA

    E-print Network

    Auzinsh, Marcis

    THEORY OF CHEMICAL REACTION DYNAMICS Edited by: ANTONIO LAGANA Department of Chemistry University Theoretical treatment of the dynamics of chemical reactions has undergone a spectacular development during the NATO Advanced Research Work- shop on the Theory of the Dynamics of Chemical Reactions in Balatonf

  10. Giovanni Raciti, in memoriam. NUCLEAR REACTIONS

    E-print Network

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    &M University, Commerce, TX 75429, USA Nuclear reactions generate energy in nuclear reactors, in starsGiovanni Raciti, in memoriam. NUCLEAR REACTIONS C.A. BERTULANI Department of Physics, Texas A, and are responsible for the ex- istence of all elements heavier than hydrogen in the universe. Nuclear reactions

  11. Reaction Order Ambiguity in Integrated Rate Plots

    ERIC Educational Resources Information Center

    Lee, Joe

    2008-01-01

    Integrated rate plots are frequently used in reaction kinetics to determine orders of reactions. It is often emphasised, when using this methodology in practice, that it is necessary to monitor the reaction to a substantial fraction of completion for these plots to yield unambiguous orders. The present article gives a theoretical and statistical…

  12. Ultracold Chemistry and its Reaction Kinetics

    E-print Network

    Florian Richter; Daniel Becker; Cédric Bény; Torben A. Schulze; Silke Ospelkaus; Tobias J. Osborne

    2015-01-08

    We study the reaction kinetics of chemical processes occurring in the ultracold regime and systematically investigate their dynamics. Quantum entanglement is found to play a key role in driving an ultracold reaction towards a dynamical equilibrium. In case of multiple concurrent reactions Hamiltonian chaos dominates the phase space dynamics in the mean field approximation.

  13. Triggered amplification by hybridization chain reaction

    E-print Network

    Pierce, Niles A.

    Triggered amplification by hybridization chain reaction Robert M. Dirks and Niles A. Pierce chain reaction (HCR), in which stable DNA monomers assemble only upon exposure to a target DNA fragment termed hybridization chain reaction (HCR). This class of mech- anisms suggests the possibility

  14. Acylation of Fish Protein: Effect of Reaction

    E-print Network

    Acylation of Fish Protein: Effect of Reaction Conditions on Products KANG-HO LEE, HERMAN S on the acylation reaction was also evaluated. Introduction Functionality is the attribute of a food material to acylation reaction con- ditions. Rat feeding tests showed clearly that acylation resulted in The authors

  15. Nazarov-type reactions in water.

    PubMed

    Kokubo, Masaya; Kobayashi, Sh?

    2009-04-01

    Different in water! We have developed Nazarov-type reactions in water. Different reaction courses compared with those in organic solvents are observed in water. In the presence of a scandium based, surfactant-type catalyst, water-trapping products are obtained exclusively. The results presented are unprecedented and provide a valuable extension to information available regarding organic reactions in water. PMID:19212964

  16. Direct mechanism in solar nuclear reactions

    E-print Network

    H. Oberhummer; G. Staudt

    1994-04-22

    A short overview of the direct reaction mechanism and the models used for the analysis of such processes is given. Nuclear reactions proceeding through the direct mechanism and involved in solar hydrogen burning are discussed. The significance of these nuclear reactions with respect to the solar neutrino problem is investigated.

  17. A novel capillary polymerase chain reaction machine

    E-print Network

    Chiou, Jeffrey Tsungshuan

    2001-01-01

    I built a novel prototype capillary polymerase chain reaction machine. The purpose was to perform a single reaction as fast as possible with a reaction volume - 100 nl. The PCR mix is in the form of a 1 /1 droplet that ...

  18. An Iodine Fluorescence Quenching Clock Reaction

    ERIC Educational Resources Information Center

    Weinberg, Richard B.; Muyskens, Mark

    2007-01-01

    Clock reactions based upon competing oxidation and reduction reactions of iodine and starch as the most popular type of chemistry example is presented to illustrate the redox phenomena, reaction kinetics, and principles of chemical titration. The examination of the photophysical principles underlying the iodine fluorescence quenching clock…

  19. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M. (Princeton, NJ); Furth, Harold P. (Princeton, NJ); Valeo, Ernest J. (Princeton Junction, NJ); Goldhaber, Maurice (Bayport, NY)

    1988-01-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  20. Reaction-Map of Organic Chemistry

    ERIC Educational Resources Information Center

    Murov, Steven

    2007-01-01

    The Reaction-Map of Organic Chemistry lists all the most commonly studied reactions in organic chemistry on one page. The discussed Reaction-Map will act as another learning aide for the students, making the study of organic chemistry much easier.

  1. 'GREENER' CHEMICAL SYNTHESES USING ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Microwave (MW) irradiation in conjunction with water as reaction media has proven to be a greener chemical approach for expeditious N-alkylation reactions of amines and hydrazines wherein the reactions under mildly basic conditions afford tertiary amines and double N-alkylation t...

  2. Indirect Methods for Nuclear Reaction Data

    SciTech Connect

    Escher, J E; Dietrich, F S

    2005-11-18

    Several indirect approaches for obtaining reaction cross sections are briefly reviewed. The Surrogate Nuclear Reactions method, which aims at determining cross sections for compound-nuclear reactions, is discussed in some detail. The validity of the Weisskopf-Ewing approximation in the Surrogate approach is studied for the example of neutron-induced fission of an actinide nucleus.

  3. Modified triglyceride oil through reactions with phenyltriazolinedione

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The synthesis of a modified triglyceride oil was achieved through the reactions with 4-phenyl-1,2-4-triazoline-3,5-dione (PTAD). 1H NMR was used for structure determination and to monitor the reactions. Several reaction products were produced, and their relative yields depended on the stoichiometry ...

  4. Chemical reactions at aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Vecitis, Chad David

    2009-12-01

    Interfaces or phase boundaries are a unique chemical environment relative to individual gas, liquid, or solid phases. Interfacial reaction mechanisms and kinetics are often at variance with homogeneous chemistry due to mass transfer, molecular orientation, and catalytic effects. Aqueous interfaces are a common subject of environmental science and engineering research, and three environmentally relevant aqueous interfaces are investigated in this thesis: 1) fluorochemical sonochemistry (bubble-water), 2) aqueous aerosol ozonation (gas-water droplet), and 3) electrolytic hydrogen production and simultaneous organic oxidation (water-metal/semiconductor). Direct interfacial analysis under environmentally relevant conditions is difficult, since most surface-specific techniques require relatively `extreme' conditions. Thus, the experimental investigations here focus on the development of chemical reactors and analytical techniques for the completion of time/concentration-dependent measurements of reactants and their products. Kinetic modeling, estimations, and/or correlations were used to extract information on interfacially relevant processes. We found that interfacial chemistry was determined to be the rate-limiting step to a subsequent series of relatively fast homogeneous reactions, for example: 1) Pyrolytic cleavage of the ionic headgroup of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorbed to cavitating bubble-water interfaces during sonolysis was the rate-determining step in transformation to their inorganic constituents carbon monoxide, carbon dioxide, and fluoride; 2) ozone oxidation of aqueous iodide to hypoiodous acid at the aerosol-gas interface is the rate-determining step in the oxidation of bromide and chloride to dihalogens; 3) Electrolytic oxidation of anodic titanol surface groups is rate-limiting for the overall oxidation of organics by the dichloride radical. We also found chemistry unique to the interface, for example: 1) Adsorption of dilute PFOS(aq) and PFOA(aq) to acoustically cavitating bubble interfaces was greater than equilibrium expectations due to high-velocity bubble radial oscillations; 2) Relative ozone oxidation kinetics of aqueous iodide, sulfite, and thiosulfate were at variance with previously reported bulk aqueous kinetics; 3) Organics that directly chelated with the anode surface were oxidized by direct electron transfer, resulting in immediate carbon dioxide production but slower overall oxidation kinetics. Chemical reactions at aqueous interfaces can be the rate-limiting step of a reaction network and often display novel mechanisms and kinetics as compared to homogeneous chemistry.

  5. Kinetic studies of elementary chemical reactions

    SciTech Connect

    Durant, J.L. Jr.

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  6. Thermochemical modeling of thermite-type reactions

    SciTech Connect

    Behrens, R.G.; Hansen, G.P.

    1985-01-01

    Purpose of this work was to use thermodynamic modeling to study the chemistry associated with the synthesis of TiB/sub 2/, SiC, and TiC by thermite-type reactions. Side reactions (including vaporization reactions) compete with the primary reaction and thus decrease the yield of a desired product. The relative importance of side reactions is governed in part by the thermodynamic stabilities of byproducts relative to the stabilities of the major products. The computer program SOLGASMIX was used to compute condensed phase stability diagrams for the four chemical systems.

  7. Incidents of chemical reactions in cell equipment

    SciTech Connect

    Baldwin, N.M.; Barlow, C.R.

    1991-12-31

    Strongly exothermic reactions can occur between equipment structural components and process gases under certain accident conditions in the diffusion enrichment cascades. This paper describes the conditions required for initiation of these reactions, and describes the range of such reactions experienced over nearly 50 years of equipment operation in the US uranium enrichment program. Factors are cited which can promote or limit the destructive extent of these reactions, and process operations are described which are designed to control the reactions to minimize equipment damage, downtime, and the possibility of material releases.

  8. Electromagnetic effects on explosive reaction and plasma

    SciTech Connect

    Tasker, Douglas G; Whitley, Von H; Mace, Jonathan L; Pemberton, Steven J; Sandoval, Thomas D; Lee, Richard J

    2010-01-01

    A number of studies have reported that electric fields can have quantifiable effects on the initiation and growth of detonation, yet the mechanisms of these effects are not clear. Candidates include Joule heating of the reaction zone, perturbations to the activation energy for chemical reaction, reduction of the Peierls energy barrier that facilitates dislocation motion, and acceleration of plasma projected from the reaction zone. In this study the possible role of plasma in the initiation and growth of explosive reaction is investigated. The effects of magnetic and electric field effects on reaction growth will be reviewed and recent experiments reported.

  9. CROSS SECTION FOR THE ASTROPHYSICAL 14C(n, )15C REACTION VIA THE INVERSE REACTION

    E-print Network

    Horváth, Ákos

    -induced CNO cycles of stellar evolution phases beyond the main sequence. The chain of reactions in primordialCROSS SECTION FOR THE ASTROPHYSICAL 14C(n, )15C REACTION VIA THE INVERSE REACTION A´ . Horva´th,1 Received 2001 July 9; accepted 2002 January 18 ABSTRACT The 14C(n, )15C reaction is important in neutron

  10. Fast-reaction asymptotics for a two-scale reaction-diffusion system

    E-print Network

    Eindhoven, Technische Universiteit

    Fast-reaction asymptotics for a two-scale reaction-diffusion system Sebastian Meier Adrian Muntean October 8, 2008 Abstract We investigate a reaction­diffusion process in a two-phase medium) and the reaction constant k is large. First, the homogenisation limit 0 is taken, which leads to a two

  11. Reaction Event Counting Statistics of Biopolymer Reaction Systems with Dynamic Heterogeneity

    E-print Network

    Cao, Jianshu

    Reaction Event Counting Statistics of Biopolymer Reaction Systems with Dynamic Heterogeneity Yu Rim of Technology, Cambridge, Massachusetts 02139, United States ABSTRACT: We investigate the reaction event counting statistics (RECS) of an elementary biopolymer reaction in which the rate coefficient is dependent

  12. COMSOL Multiphysics for Efficient Solution of a Transient Reaction-Diffusion System with Fast Reaction

    E-print Network

    Gobbert, Matthias K.

    COMSOL Multiphysics for Efficient Solution of a Transient Reaction-Diffusion System with Fast Reaction Matthias K. Gobbert, Aaron Churchill, Guan Wang, and Thomas I. Seidman Department of Mathematics@math.umbc.edu Abstract: A reaction between chemical species is modeled by a particular reaction pathway, in which one

  13. Reaction class transition state theory: Hydrogen abstraction reactions by hydrogen atoms as test cases

    E-print Network

    Truong, Thanh N.

    Reaction class transition state theory: Hydrogen abstraction reactions by hydrogen atoms as test 2000 We present a new method called Reaction Class Transition State Theory RC-TST for estimating thermal rate constants of a large number of reactions in a class. This method is based on the transition

  14. Competing reaction channels in IR-laser-induced unimolecular reactions

    SciTech Connect

    Berman, M.R.

    1981-01-01

    The competing reaction channels in the unimolecular decomposition of two molecules, formaldehyde and tetralin were studied. A TEA CO/sub 2/ laser was used as the excitation source in all experiments. The dissociation of D/sub 2/CO was studied by infrared multiphoton dissociation (MPD) and the small-molecule nature of formaldehyde with regard to MPD was explored. The effect of collisions in MPD were probed by the pressure dependence of the MPD yield and ir fluorescence from multiphoton excited D/sub 2/CO. MPD yield shows a near cubic dependence in pure D/sub 2/CO which is reduced to a 1.7 power dependence when 15 torr of NO is added. The peak amplitude of 5 ..mu..m ir fluorescence from D/sub 2/CO is proportional to the square of the D/sub 2/CO pressure in pure D/sub 2/CO or in the presence of 50 torr of Ar. Results are explained in terms of bottlenecks to excitation at the v = 1 level which are overcome by a combination of vibrational energy transfer and rotational relaxation. The radical/molecule branching ratio in D/sub 2/CO MPD was 0.10 +- 0.02 at a fluence of 125 J/cm/sup 2/ at 946.0 cm/sup -1/. The barrier height to molecular dissociation was calculated to be 3.6 +- 2.0 kcal/mole below the radical threshold or 85.0 +- 3.0 kcal/mole above the ground state of D/sub 2/CO. In H/sub 2/CO, this corresponds to 2.5 +- 2.0 kcal/mole below the radical threshold or 83.8 +- 3.0 kcal/mole above the ground state. Comparison with uv data indicate that RRKM theory is an acceptable description of formaldehyde dissociation in the 5 to 10 torr pressure range. The unimolecular decomposition of tetralin was studied by MPD and SiF/sub 4/ - sensitized pyrolysis. Both techniques induce decomposition without the interference of catalytic surfaces. Ethylene loss is identified as the lowest energy reaction channel. Dehydrogenation is found to result from step-wise H atom loss. Isomerization via disproportionation is also identified as a primary reaction channel.

  15. Isothermal reactions for the amplification of oligonucleotides.

    PubMed

    Van Ness, Jeffrey; Van Ness, Lori K; Galas, David J

    2003-04-15

    We have devised a class of isothermal reactions for amplifying DNA. These homogeneous reactions rapidly synthesize short oligonucleotides (8-16 bases) specified by the sequence of an amplification template. Versions of the reactions can proceed in either a linear or an exponential amplification mode. Both of these reactions require simple, constant conditions, and the rate of amplification depends entirely on the molecular parameters governing the interactions of the molecules in the reaction. The exponential version of the reaction is a molecular chain reaction that uses the oligonucleotide products of each linear reaction to create producers of more of the same oligonucleotide. It is a highly sensitive chain reaction that can be specifically triggered by given DNA sequences and can achieve amplifications of >10(6)-fold. Several similar reactions in this class are described here. The robustness, speed, and sensitivity of the exponential reaction suggest it will be useful in rapidly detecting the presence of small amounts of a specific DNA sequence in a sample, and a range of other applications, including many currently making use of the PCR. PMID:12679520

  16. Nuclear Reactions from Lattice QCD

    E-print Network

    Raúl A. Briceño; Zohreh Davoudi; Thomas C. Luu

    2014-11-25

    One of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low- energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.

  17. Nuclear reactions from lattice QCD

    SciTech Connect

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.

  18. Radiation Reaction and Thomson Scattering

    SciTech Connect

    Koga, James

    2007-07-11

    In recent years high power high irradiance lasers of peta-watt order have been or are under construction. In addition, in the next 10 years lasers of unprecedented powers, exa-watt, could be built If lasers such as these are focused to very small spot sizes, extremely high laser irradiances will be achieved. When electrons interact with such a laser, they become highly relativistic over very short time and spatial scales. Usually the motion of an electron under the influence of electromagnetic fields is influenced to a small extent by radiation emission from acceleration. However, under such violent acceleration the amount of radiation emitted by electrons can become so large that significant damping of the electron motion by the emission of this radiation can occur. In this lecture note we will study this problem of radiation reaction by first showing how the equations of motion are obtained. Then, we will examine the problems with such equations and what approximations are made. We will specifically examine the effects of radiation reaction on the Thomson scattering of radiation from counter-streaming laser pulses and high energy electrons through the numerical integration of the equations of motion. We will briefly address the fundamental physics, which can be addressed by using such high irradiance lasers interacting with high energy electrons.

  19. Nuclear reactions from lattice QCD

    DOE PAGESBeta

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-01-13

    In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculationsmore »of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.« less

  20. Nuclear reactions from lattice QCD

    NASA Astrophysics Data System (ADS)

    Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.

    2015-02-01

    One of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, quantum chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three-nucleon (and higher) interactions in a consistent manner. Currently, lattice quantum chromodynamics (LQCD) provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between LQCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from LQCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.

  1. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  2. Heuristics-Guided Exploration of Reaction Mechanisms

    E-print Network

    Bergeler, Maike; Proppe, Jonny; Reiher, Markus

    2015-01-01

    For the investigation of chemical reaction networks, the efficient and accurate determination of all relevant intermediates and elementary reactions is inevitable. The complexity of such a network may grow rapidly, in particular if reactive species are involved that might cause a myriad of side reactions. Without automation, a complete investigation of complex reaction mechanisms is tedious and possibly unfeasible. Therefore, only the expected dominant reaction paths of a chemical reaction network (e.g., a catalytic cycle or an enzymatic cascade) are usually explored in practice. Here, we present a computational protocol that constructs such networks in a parallelized and automated manner. Molecular structures of reactive complexes are generated based on heuristic rules and subsequently optimized by electronic-structure methods. Pairs of reactive complexes related by an elementary reaction are then automatically detected and subjected to an automated search for the connecting transition state. The results are...

  3. Crystal violet reactions of coagulase negative staphylococci.

    PubMed Central

    Freeman, R; Burdess, D; Smith, S

    1994-01-01

    Twenty four reference strains and 112 clinical isolates of coagulase negative staphylococci (CNS) were examined for their reactions in the crystal violet test. Some species gave a white reaction and others a purple reaction. Results were consistent and reproducible and each species gave only one pattern of crystal violet reaction. Within the limited variety of species represented in the clinical isolates, Staphylococcus saprophyticus and S haemolyticus gave crystal violet purple reactions, in contrast to S epidermidis, which always gave a white reaction. Investigations suggested that the mechanism of the crystal violet test in S haemolyticus may be similar to that previously described in S aureus. Further work is needed to characterise the ability of crystal violet to modify S epidermidis and other central nervous system species. The crystal violet reaction, which has strong associations with invasiveness, phage group susceptibilities, colonisation persistence abilities, and nosocomial origin in S aureus may also be useful in studies of CNS disease. PMID:8163706

  4. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1990-01-01

    The objective was to obtain accurate potential energy surfaces (PES's) for a number of reactions which are important in the H/N/O combustion process. The interest in this is centered around the design of the SCRAM jet engine for the National Aerospace Plane (NASP), which was envisioned as an air-breathing hydrogen-burning vehicle capable of reaching velocities as large as Mach 25. Preliminary studies indicated that the supersonic flow in the combustor region of the scram jet engine required accurate reaction rate data for reactions in the H/N/O system, some of which was not readily available from experiment. The most important class of combustion reactions from the standpoint of the NASP project are radical recombinaton reactions, since these reactions result in most of the heat release in the combustion process. Theoretical characterizations of the potential energy surfaces for these reactions are presented and discussed.

  5. The Ozone-Iodine-Chlorate Clock Reaction

    PubMed Central

    Sant'Anna, Rafaela T. P.; Monteiro, Emily V.; Pereira, Juliano R. T.; Faria, Roberto B.

    2013-01-01

    This work presents a new clock reaction based on ozone, iodine, and chlorate that differs from the known chlorate-iodine clock reaction because it does not require UV light. The induction period for this new clock reaction depends inversely on the initial concentrations of ozone, chlorate, and perchloric acid but is independent of the initial iodine concentration. The proposed mechanism considers the reaction of ozone and iodide to form HOI, which is a key species for producing non-linear autocatalytic behavior. The novelty of this system lies in the presence of ozone, whose participation has never been observed in complex systems such as clock or oscillating reactions. Thus, the autocatalysis demonstrated in this new clock reaction should open the possibility for a new family of oscillating reactions. PMID:24386257

  6. An Iodine Fluorescence Quenching Clock Reaction

    NASA Astrophysics Data System (ADS)

    Weinberg, Richard B.

    2007-05-01

    A fluorescent clock reaction is described that is based on the principles of the Landolt iodine reaction but uses the potent fluorescence quenching properties of triiodide to abruptly extinguish the ultraviolet fluorescence of optical brighteners present in liquid laundry detergents. The reaction uses easily obtained household products. One variation illustrates the sequential steps and mechanisms of the reaction; other variations maximize the dramatic impact of the demonstration; and a variation that uses liquid detergent in the Briggs Rauscher reaction yields a striking oscillating luminescence. The iodine fluorescence quenching clock reaction can be used in the classroom to explore not only the principles of redox chemistry and reaction kinetics, but also the photophysics of fluorescent pH probes and optical quenching.

  7. The ozone-iodine-chlorate clock reaction.

    PubMed

    Sant'Anna, Rafaela T P; Monteiro, Emily V; Pereira, Juliano R T; Faria, Roberto B

    2013-01-01

    This work presents a new clock reaction based on ozone, iodine, and chlorate that differs from the known chlorate-iodine clock reaction because it does not require UV light. The induction period for this new clock reaction depends inversely on the initial concentrations of ozone, chlorate, and perchloric acid but is independent of the initial iodine concentration. The proposed mechanism considers the reaction of ozone and iodide to form HOI, which is a key species for producing non-linear autocatalytic behavior. The novelty of this system lies in the presence of ozone, whose participation has never been observed in complex systems such as clock or oscillating reactions. Thus, the autocatalysis demonstrated in this new clock reaction should open the possibility for a new family of oscillating reactions. PMID:24386257

  8. Nonequilibrium thermodynamics and a fluctuation theorem for individual reaction steps in a chemical reaction network

    NASA Astrophysics Data System (ADS)

    Pal, Krishnendu; Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2015-09-01

    We have introduced an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the propensities of the individual elementary reactions and the corresponding reverse reactions. The method is a microscopic formulation of the dissipation function in terms of the relative entropy or Kullback-Leibler distance which is based on the analogy of phase space trajectory with the path of elementary reactions in a network of chemical process. We have introduced here a fluctuation theorem valid for each opposite pair of elementary reactions which is useful in determining the contribution of each sub-reaction on the nonequilibrium thermodynamics of overall reaction. The methodology is applied to an oligomeric enzyme kinetics at a chemiostatic condition that leads the reaction to a nonequilibrium steady state for which we have estimated how each step of the reaction is energy driven or entropy driven to contribute to the overall reaction.

  9. Surface catalyzed mercury transformation reactions

    NASA Astrophysics Data System (ADS)

    Varanasi, Patanjali

    Mercury is a known pollutant that has detrimental effect on human health and environment. The anthropogenic emissions of mercury account for 10 to 30% of worldwide mercury emissions. There is a need to control/reduce anthropogenic mercury emissions. Many mercury control technologies are available but their effectiveness is dependent on the chemical form of mercury, because different chemical forms of mercury have different physical and chemical properties. Mercury leaves the boiler in its elemental form but goes through various transformations in the post-combustion zone. There is a need to understand how fly ash and flue gas composition affect speciation, partitioning, and reactions of mercury under the full range of post-combustion zone conditions. This knowledge can then be used to predict the chemical transformation of mercury (elemental, oxidized or particulate) in the post combustion zone and thus help with the control of mercury emissions from coal-burning power plants. To accomplish this goal present study was conducted using five coal fly ashes. These ashes were characterized and their catalytic activity was compared under selected reaction conditions in a fixed bed reactor. Based on the results from these fly ash experiments, three key components (carbon, iron oxide and calcium oxide) were chosen. These three components were then used to prepare model fly ashes. Silica/alumina was used as a base for these model fly ashes. One, two or three component model fly ashes were then prepared to investigate mercury transformation reactions. The third set of experiments was performed with five different oxidation catalysts to further understand the mercury oxidation process. Based on the results of these three studies the key components were predicted for different fly ash compositions under variety of flue gas conditions. A fixed bed reactor system was used to conduct this study. In all the experiments, the inlet concentration of Hg0(g) was maintained at 35 mug/m 3 using a diffusion tube as the source of Hg0(g). All experiments were conducted using 4% O2 in nitrogen mix as a reaction gas, and other reactants (HCl, H2O and SO2, NO 2, Br2) were added as required. The fixed bed reactor was operated over a temperature range of 200 to 400°C. In each experiment, the reactor effluent was analyzed using the modified Ontario-Hydro method. After each experiment, fly ash particles were also analyzed for mercury. The results show that the ability of fly ash to adsorb and/or oxidize mercury is primarily dependent on its carbon, iron and calcium content. There can be either one or more than one key component at a particular temperature and flue gas condition. Surface area played a secondary role in effecting the mercury transformations when compared to the concentration of the key component in the fly ash. Amount carbon and surface area played a key important role in the adsorption of mercury. Increased concentration of gases in the flue gas other than oxygen and nitrogen caused decreased the amount of mercury adsorbed on carbon surface. Mercury adsorption by iron oxide primarily depended on the crystalline structure of iron oxide. alpha-iron oxide had no effect on mercury adsorption or oxidation under most of the flue gas conditions, but gamma-iron oxide adsorbed mercury under most of the flue gas conditions. Bromine is a very good oxidizing agent for mercury. But in the presence of calcium oxide containing fly ashes, all the oxidized mercury would be reduced to elemental form. Among the catalysts, it was observed that presence of free lattice chlorine in the catalyst was very important for the oxidation of mercury. But instead of using the catalyst alone, using it along with carbon may better serve the purpose by providing the adsorption surface for mercury and also some extra surface area for the reaction to occur (especially for fly ashes with low surface area).

  10. Reactions of butadiyne. 1: The reaction with hydrogen atoms

    NASA Technical Reports Server (NTRS)

    Schwanebeck, W.; Warnatz, J.

    1984-01-01

    The reaction of hydrogen (H) atoms with butadiene (C4H2) was studied at room temperature in a pressure range between w mbar and 10 mbar. The primary step was an addition of H to C4H2 which is in its high pressure range at p 1 mbar. Under these conditions the following addition of a second H atom lies in the transition region between low and high pressure range. Vibrationally excited C4H4 can be deactivated to form buten-(1)-yne-(3)(C4H4) or decomposes into two C2H2 molecules. The rate constant at room temperature for primary step is given. The second order rate constant for the consumption of buten-(1)-yne-(3) is an H atom excess at room temperature is given.

  11. Soccer shin guard reactions: allergic and irritant reactions.

    PubMed

    Powell, Douglas; Ahmed, Sartaj

    2010-01-01

    In spite of the worldwide popularity of soccer among youth and the common requirement of the use of protective shin guards, reports of allergy to shin guards is sparse. This is surprising in light of the fact that this equipment is often made of materials that are reported to cause allergies, and that friction and moisture from the use of these shin guards during the sport would seem to predispose soccer players to the development of an allergic response. We present eight patients that presented for evaluation of dermatitis under their shin guards--some of which had allergy to their shin guards and some of which were diagnosed as having an irritant reaction. PMID:20487661

  12. Chemical Reactions in Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Wai, Chien M.; Hunt, Fred; Ji, Min; Chen, Xiaoyuan

    1998-12-01

    Utilizing supercritical fluids as environmentally benign solvents for chemical synthesis is one of the new approaches in the "greening" of chemistry. Carbon dioxide is the most widely used gas for supercritical fluid studies because of its moderate critical constants, nontoxic nature, and availability in pure form. One unique property of supercritical carbon dioxide (sc-CO2) is its high solubility for fluorinated compounds. Thus sc-CO2 can be used to replace Freons that are conventionally used as solvents for synthesis of perfluoro-polymers. Another property of sc-CO2 is its miscibility with gases such as H2. Heterogeneous reactions involving these gases may become homogeneous reactions in sc-CO2. Reactions in sc-CO2 may offer several advantages including controlling phase behavior and products, increasing speed of reactions, and obtaining specific reaction channels. This paper describes the following nine types of chemical reactions reported in the literature utilizing sc-CO2 as a solvent to illustrate the unique properties of the supercritical fluid reaction systems: (i) hydrogenation and hydroformylation, (ii) synthesis of organometallic compounds, (iii) metal chelation and extraction, (iv) preparation of inorganic nanoparticles, (v) stereo-selectivity of lipase-catalyzed reactions, (vi) asymmetric catalytic hydrogenation, (vii) polymerization, (viii) Diels-Alder reaction, and (ix) free radical reactions.

  13. Palladium-catalyzed oxidative carbonylation reactions.

    PubMed

    Wu, Xiao-Feng; Neumann, Helfried; Beller, Matthias

    2013-02-01

    Palladium-catalyzed coupling reactions have become a powerful tool for advanced organic synthesis. This type of reaction is of significant value for the preparation of pharmaceuticals, agrochemicals, as well as advanced materials. Both, academic as well as industrial laboratories continuously investigate new applications of the different methodologies. Clearly, this area constitutes one of the major topics in homogeneous catalysis and organic synthesis. Among the different palladium-catalyzed coupling reactions, several carbonylations have been developed and widely used in organic syntheses and are even applied in the pharmaceutical industry on ton-scale. Furthermore, methodologies such as the carbonylative Suzuki and Sonogashira reactions allow for the preparation of interesting building blocks, which can be easily refined further on. Although carbonylative coupling reactions of aryl halides have been well established, palladium-catalyzed oxidative carbonylation reactions are also interesting. Compared with the reactions of aryl halides, oxidative carbonylation reactions offer an interesting pathway. The oxidative addition step could be potentially avoided in oxidative reactions, but only few reviews exist in this area. In this Minireview, we summarize the recent development in the oxidative carbonylation reactions. PMID:23307763

  14. Some reactions of the ureas

    E-print Network

    Geauque, Harry Aiman

    1915-01-01

    was reorystallised from hot alcohol and melted at 80S0. This was 2-Thiocarb- onyl-,5-Dike to-1,3,-Diphenyltetrahydroimidazol#. The reaction was HC1 C6H5ITH C1C0 C6H5?"~—9° +H01. Si C6H5UH CICO 06H5!f— 00 M. V. Stojentin+ prepared this compound by heating... was recrystallised several times from- (CH3)2C6H3NC8 + H2S M01T0PHKNYL THIOUREA and DIPHENYL UREA CHLORIDE 5. alcohol and finally from gasoline which gave a crystalline comp­ ound. This melted at 190° "but there was very little of it, and not enough to identify...

  15. Can Reaction Mechanisms Be Proven?

    NASA Astrophysics Data System (ADS)

    Buskirk, Allen; Baradaran, Hediyeh

    2009-05-01

    "Can Reaction Mechanisms Be Proven?" generated spirited responses from its reviewers. The reviews were approximately evenly divided, and all were of very high quality. The authors agreed with the editor’s proposal that the reviewers convert their reviews into rebuttals or affirmations of the authors’ position for publication along with the article, which has been revised based on the reviews. Most agreed to such a process and their comments appear here. We hope that publication of this paper and well-reasoned rebuttals such as those provided here will initiate a wide-ranging discussion. JCE will provide an online forum for further discussion of the issue. Our hope is that both faculty and students will contribute their opinions and ideas to this discussion. See Reviewer Comments: Brown Lewis Yoon Wade

  16. Acute transfusion reactions: an update.

    PubMed

    Scorer, T; Doughty, H

    2014-01-01

    Over the last decade the use of blood products by the United Kingdom (UK) military has increased significantly; with the increase in transfusion comes an increased incidence of transfusion-related incidents. Acute transfusion reactions (ATRs) are a common consequence of transfusion, which vary widely in their severity and are likely to be under-reported, although reporting is a regulatory requirement. This paper discusses the importance of identifying ATRs and managing them appropriately. It introduces a flowchart (due to be incorporated in the next version of Joint Service Publication (JSP) 999, Clinical Guidelines for Operations (CGOs)), which is designed to assist the military multi-disciplinary team caring for patients in the operational environment. PMID:25895413

  17. The OH + HBr reaction revisited

    NASA Technical Reports Server (NTRS)

    Ravishankara, A. R.; Wine, P. H.; Wells, J. R.

    1985-01-01

    Variable-temperature measurements of the rate coefficient /k(1)/ for the reaction OH + HBr yield Br + H2O are presented. The measurements are verified by two techniques: one involved a 266-nm pulsed-laser photolysis of O3/H2O/HBr/He mixtures in conjunction with time-resolved resonance fluorescence detection of OH, the second comprised pulsed laser-induced fluorescence detection of OH following 248-nm pulsed-laser photolysis of H2O2/HBr/Ar mixtures. It is reported that k(1) = (11.9 + or -1.4 x 10 to the -12th (cu cm)/(molecule)(s) independent of temperature. The measurements are compared with other available results.

  18. Tracking dissipation in capture reactions

    SciTech Connect

    Materna, T.; Bouchat, V.; Kinnard, V.; Hanappe, F.; Dorvaux, O.; Stuttge, L.; Schmitt, C.; Siwek-Wilczynska, K.; Aritomo, Y.; Bogatchev, A.; Prokhorova, E.; Ohta, M.

    2004-04-12

    Nuclear dissipation in capture reactions is investigated using backtracing. Combining the analysis procedure with dynamical models, the difficult and long-standing problem of competition and mixing of quasi-fission and fusion-fission is solved for the first time. At low excitation energy a new protocol able to handle low statistics data gives access to the precession neutron multiplicity in two different systems 48Ca + 208Pb, Pu. The results are in agreement with a domination of fusion-fission in the case of 256No and an equal mixing of quasi-fission and fusion-fission in the case of Z = 114. The nature of the relevant dissipation is determined as one-body dissipation.

  19. Intermediate energy heavy ion reactions

    NASA Astrophysics Data System (ADS)

    Grégoire, C.; Tamain, B.

    The intermediate energy heavy ion induced reactions are extensively studied for several years. In this paper, we try to summarize the present knowledge. The peripheral reactions appear to be intermediate between the fragmentation and the deep inelastic regimes. Many questions remain open concerning the energy relaxation mechanisms and an eventual participant zone creation. In the case of central collisions, it has been shown that very hot nuclei can be built. The fusion limits are discussed and the very hot nuclei properties are considered. In some cases, hot spot formation or compression effects could play a role. Multifragmentation is discussed as a possible decay channel. In all these aspects, a difficult question concerns the validity of the temperature concept and more generally of collective thermodynamical variables. Such collective effects have been investigated in pion production experiments. Les réactions induites par ions lourds d'énergie intermédiaire sont très étudiées depuis quelques années. Dans cet article, nous essayons de résumer l'état actuel des connaissances. Les mécanismes mis en jeu dans les collisions périphériques sont intermédiaires entre les collisions très inélastiques et la fragmentation. La cible joue clairement un rôle déterminant et des effets importants de champ moyen demeurent. De nombreuses questions restent sans réponse comme par exemple les mécanismes de relaxation d'énergie ou l'existence d'une éventuelle zone participante. Dans le cas des collisions centrales, il a pu être montré que des noyaux très chauds sont fabriqués. Les limites au processus de fusion et les propriétés des noyaux très chauds sont discutées. Dans certains cas, des effets de compression ou de points chauds peuvent être envisagés. La multifragmentation est une voie de désexcitation possible. Une importante question concerne la validité du concept de température et plus généralement la notion de variable collective équilibrée. Des effets collectifs peuvent être responsables de la production de pions.

  20. Tandem Reactions for Streamlining Synthesis

    PubMed Central

    HUSSAIN, MAHMUD M.; WALSH, PATRICK J.

    2009-01-01

    CONSPECTUS In 1980 Sharpless and Katsuki introduced the asymmetric epoxidation of prochiral allylic alcohols (the Sharpless-Katsuki Asymmetric Epoxidation), which enabled the rapid synthesis of highly enantioenriched epoxy alcohols. This reaction was a milestone in the development of asymmetric catalysis because it was the first highly enantioselective oxidation reaction. Furthermore, it provided access to enantioenriched allylic alcohols that are now standard starting materials in natural product synthesis. In 1981 Sharpless and coworkers made another seminal contribution by describing the kinetic resolution (KR) of racemic allylic alcohols. This work demonstrated that small-molecule catalysts could compete with enzymatic catalysts in KRs. For these pioneering works, Sharpless was awarded the 2001 Nobel Prize with Knowles and Noyori. Despite these achievements, the Sharpless KR is not an efficient method to prepare epoxy alcohols with high enantiomeric excess (ee). First, the racemic allylic alcohol must be prepared and purified. KR of the racemic allylic alcohol must be stopped at low conversion, because the ee of the product epoxy alcohol decreases as the KR progresses. Thus, better methods to prepare epoxy alcohols containing stereogenic carbinol carbons are needed. This Account summarizes our efforts to develop one-pot methods for the synthesis of various epoxy alcohols and allylic epoxy alcohols with high enantio-, diastereo-, and chemoselectivity. Our laboratory developed titanium-based catalysts for use in the synthesis of epoxy alcohols with tertiary carbinols. The catalysts are involved in the first step, which is an asymmetric alkyl or allyl addition to enones. The resulting intermediates are then subjected to a titanium-directed diastereoselective epoxidation to provide tertiary epoxy alcohols. Similarly, the synthesis of acyclic epoxy alcohols begins with asymmetric additions to enals and subsequent epoxidation. The methods described here enable the synthesis of skeletally diverse epoxy alcohols. PMID:18710197

  1. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1991-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  2. Organic syntheses employing supercritical carbon dioxide as a reaction solvent

    NASA Technical Reports Server (NTRS)

    Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)

    1993-01-01

    Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.

  3. Reaction class transition state theory: Hydrogen abstraction reactions by hydrogen atoms as test cases

    NASA Astrophysics Data System (ADS)

    Truong, Thanh N.

    2000-09-01

    We present a new method called Reaction Class Transition State Theory (RC-TST) for estimating thermal rate constants of a large number of reactions in a class. This method is based on the transition state theory framework within the reaction class approach. Thermal rate constants of a given reaction in a class relative to those of its principal reaction can be efficiently predicted from only its differential barrier height and reaction energy. Such requirements are much less than what is needed by the conventional TST method. Furthermore, we have shown that the differential energetic information can be calculated at a relatively low level of theory. No frequency calculation beyond those of the principal reaction is required for this theory. The new theory was applied to a number of hydrogen abstraction reactions. Excellent agreement with experimental data shows that the RC-TST method can be very useful in design of fundamental kinetic models of complex reactions.

  4. Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen

    2013-01-01

    A report describes a model that estimates the orientation of the backup reaction wheel using the reaction wheel spin rates telemetry from a spacecraft. Attitude control via the reaction wheel assembly (RWA) onboard a spacecraft uses three reaction wheels (one wheel per axis) and a backup to accommodate any wheel degradation throughout the course of the mission. The spacecraft dynamics prediction depends upon the correct knowledge of the reaction wheel orientations. Thus, it is vital to determine the actual orientation of the reaction wheels such that the correct spacecraft dynamics can be predicted. The conservation of angular momentum is used to estimate the orientation of the backup reaction wheel from the prime and backup reaction wheel spin rates data. The method is applied in estimating the orientation of the backup wheel onboard the Cassini spacecraft. The flight telemetry from the March 2011 prime and backup RWA swap activity on Cassini is used to obtain the best estimate for the backup reaction wheel orientation.

  5. Neutrino nuclear response and photo nuclear reaction

    E-print Network

    H. Ejiri; A. I. Titov; M. Boswell; A. Young

    2013-11-10

    Photo nuclear reactions are shown to be used for studying neutrino/weak nuclear responses involved in astro-neutrino nuclear interactions and double beta decays. Charged current weak responses for ground and excited states are studied by using photo nuclear reactions through isobaric analog states of those states, while neutral current weak responses for excited states are studied by using photo nuclear reactions through the excited states. The weak interaction strengths are studied by measuring the cross sections of the photo nuclear reactions, and the spin and parity of the state are studied by measuring angular correlations of particles emitted from the photo nuclear reactions. Medium-energy polarized photons obtained from laser photons scattered off GeV electrons are very useful. Nuclear responses studied by photo nuclear reactions are used to evaluate neutrino/weak nuclear responses, i.e. nuclear beta and double beta matrix elements and neutrino nuclear interactions, and to verify theoretical calculations for them.

  6. Antibody-mediated cofactor-driven reactions

    DOEpatents

    Schultz, Peter G. (Oakland, CA)

    1993-01-01

    Chemical reactions capable of being rate-enhanced by auxiliary species which interact with the reactants but do not become chemically bound to them in the formation of the final product are performed in the presence of antibodies which promote the reactions. The antibodies contain regions within their antigen binding sites which recognize the auxiliary species in a conformation which promotes the reaction. The antigen binding site frequently recognizes a particular transition state complex or other high energy complex along the reaction coordinate, thereby promoting the progress of the reaction along the desired route as opposed to other less favorable routes. Various classes of reaction together with appropriate antigen binding site specificities tailored for each are disclosed.

  7. Transfer and breakup reactions at intermediate energies

    SciTech Connect

    Stokstad, R.G.

    1986-04-01

    The origin of the quasi-elastic peak in peripheral heavy-ion reactions is discussed in terms of inelastic scattering and transfer reactions to unbound states of the primary projectile-like fragment. The situation is analogous to the use of reverse kinematics in fusion reactions, a technique in which the object of study is moving with nearly the beam velocity. It appears that several important features of the quasi-elastic peak may be explained by this approach. Projectile-breakup reactions have attractive features for the study of nuclear structure. They may also be used to determine the partition of excitation energy in peripheral reactions. At intermediate energies, neutron-pickup reactions leading to four-body final states become important. Examples of experiments are presented that illustrate these points. 15 refs., 14 figs.

  8. Dinuclear systems in complete fusion reactions

    NASA Astrophysics Data System (ADS)

    Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.

    2014-09-01

    Formation and evolution of dinuclear systems in reactions of complete fusion are considered. Based on the dinuclear system concept, the process of compound nucleus formation is studied. Arguments confirming the validity of this concept are given. The main problems of describing the complete fusion in adiabatic approximation are listed. Calculations of evaporation residue cross sections in complete fusion reactions leading to formation of superheavy nuclei are shown. Isotopic trends of the cross sections of heavy nuclei formation in complete fusion reactions are considered.

  9. AMSD Reaction Structure Cryo Deformation Test Plan

    NASA Technical Reports Server (NTRS)

    Eng, Ron; Hraba, John; Thornton, Gary; Baker, Mark; Haight, Harlan; Hadaway, James; Blackwell, Lisa; Stahl, Phil (Technical Monitor)

    2002-01-01

    The method developed for measuring both in-plane & out-of-plane cryo deformations of AMSD reaction structures at the XRCF will be presented. For in-plane measurements, a theodolite is used to track the positions of several (up to ten) targets on the reaction structure. For out-of-plane measurements, the Leica ADM is used to measure the change in distance to several (up to ten) corner cubes attached to the reaction structure.

  10. The Science of Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2007-03-01

    The large literature describing the anomalous behavior attributed to cold fusion or low energy nuclear reactions has been critically described in a recently published book. Over 950 publications are evaluated allowing the phenomenon to be understood. A new class of nuclear reactions has been discovered that are able to generate practical energy without significant radiation or radioactivity. Edmund K Storms, The Science of Low Energy Nuclear Reactions, in press (2006). Also see: http://www.lenr-canr.org/StudentsGuide.htm .

  11. Reaction-diffusion waves in biology

    NASA Astrophysics Data System (ADS)

    Volpert, V.; Petrovskii, S.

    2009-12-01

    The theory of reaction-diffusion waves begins in the 1930s with the works in population dynamics, combustion theory and chemical kinetics. At the present time, it is a well developed area of research which includes qualitative properties of travelling waves for the scalar reaction-diffusion equation and for system of equations, complex nonlinear dynamics, numerous applications in physics, chemistry, biology, medicine. This paper reviews biological applications of reaction-diffusion waves.

  12. Chemical reactions between muonium and porphyrins

    NASA Astrophysics Data System (ADS)

    Jean, Y. C.; Ng, B. W.; Walker, D. C.

    1980-11-01

    The rate constants for reaction of muonium atoms with hemin and the protoporphyrin are found to be 2.7 × 10 9 and 6 × 10 8 M -1 s -1, respectively. The reaction mechanisms are mainly through the addition to the conjugated double bond for the protoporphyrin and by reductions or partial spin conversion processes for the hemin solutions. The point of reaction is suggested to be the peripheral site of the porphyrin molecules.

  13. Diamine Ligands in Copper-Catalyzed Reactions

    PubMed Central

    Surry, David S.

    2012-01-01

    The utility of copper-mediated cross-coupling reactions has been significantly increased by the development of mild reaction conditions and the ability to employ catalytic amounts of copper. The use of diamine-based ligands has been important in these advances and in this review we discuss these systems, including the choice of reaction conditions and applications in the synthesis of pharmaceuticals, natural products and designed materials. PMID:22384310

  14. Chemical reactions in low-g

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Facemire, B. R.

    1978-01-01

    The Apollo-Soyuz flight experiment, 'Chemical Foams' demonstrated that foams and air/liquid dispersions are much more stable in low-gravity than on the ground. It thus should be possible to conduct unique chemical reactions in space foams. The low-g results and subsequent ground work on the formaldehyde clock reaction indicate that the reaction is strongly influenced by (1) dissociated and undissociated solution species being adsorbed at solid/liquid and gas/liquid surfaces and (2) chemical reaction rates apparently being affected by long-range forces determined by the liquid mass and the extent and nature of all surface interfaces.

  15. Characterization of reaction intermediates by ion spectroscopy.

    PubMed

    Roithová, Jana

    2012-01-21

    In the last decade, we have experienced massive progress in spectroscopic methods for mass-selected ions. The aim of this tutorial review is to present action spectroscopy as a powerful tool for the investigation of ionic reaction intermediates. Examples span from ultraviolet and infrared photodissociation spectroscopy of model reaction intermediates to applications of infrared multiphoton dissociation spectroscopy (IRMPD) to intermediates directly sampled from reaction mixtures. The first example of double resonance IR-UV spectroscopy of model intermediates in an organometallic reaction is also mentioned. PMID:21792393

  16. Entropy generation in a chemical reaction

    E-print Network

    E. N. Miranda

    2012-08-10

    Entropy generation in a chemical reaction is analyzed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first order reaction is used to show that entropy production is always positive. A second approach assumes that the reaction is near equilibrium to prove that the entropy generated is always greater than zero, without any reference to the kinetics of the reaction. Finally, it is shown that entropy generation is related to fluctuations in the number of particles at equilibrium, i.e. it is associated to a microscopic process.

  17. Energy distribution among reaction products. V.

    NASA Technical Reports Server (NTRS)

    Anlauf, K. G.; Horne, D. S.; Macdonald, R. G.; Polanyi, J. C.; Woodall, K. B.

    1972-01-01

    Discussion of three reactions, one point of theoretical interest being the predicted correlation between barrier height and barrier location. The H + Br 2 reaction having a lower activation barrier than H + Cl 2, should have an earlier barrier, and hence a greater percentage attractive energy release and higher efficiency of vibrational excitation. Information is developed concerning the effect of isotopic substitution in the pair of reactions H + Cl 2 and D + Cl 2. The 'arrested relaxation' method was used. Essentially, the method involves reacting two diffuse reagent beams in a reaction vessel with background pressure less than 0.001 torr, and with walls cooled by liquid nitrogen or liquid helium.

  18. A Lewis acid-promoted Pinner reaction

    PubMed Central

    Pfaff, Dominik; Nemecek, Gregor

    2013-01-01

    Summary Carbonitriles and alcohols react in a Lewis acid-promoted Pinner reaction to carboxylic esters. Best results are obtained with two equivalents of trimethylsilyl triflate as Lewis acid. Good yields are achieved with primary alcohols and aliphatic or benzylic carbonitriles, but the straightforward synthesis of acrylates and benzoates starting with acrylonitrile and benzonitrile, respectively, is similarly possible. Phenols are not acylated under these reaction conditions. The method has been used for the first total synthesis of the natural product monaspilosin. In the reaction of benzyl alcohols variable amounts of amides are formed in a Ritter-type side reaction. PMID:23946857

  19. Process for operating equilibrium controlled reactions

    DOEpatents

    Nataraj, Shankar (Allentown, PA); Carvill, Brian Thomas (Orefield, PA); Hufton, Jeffrey Raymond (Fogelsville, PA); Mayorga, Steven Gerard (Allentown, PA); Gaffney, Thomas Richard (Allentown, PA); Brzozowski, Jeffrey Richard (Bethlehem, PA)

    2001-01-01

    A cyclic process for operating an equilibrium controlled reaction in a plurality of reactors containing an admixture of an adsorbent and a reaction catalyst suitable for performing the desired reaction which is operated in a predetermined timed sequence wherein the heating and cooling requirements in a moving reaction mass transfer zone within each reactor are provided by indirect heat exchange with a fluid capable of phase change at temperatures maintained in each reactor during sorpreaction, depressurization, purging and pressurization steps during each process cycle.

  20. A reaction class approach for modeling gas phase reaction rates Thanh N. Truong,* Wendell T. Duncan and Max Tirtowidjojo

    E-print Network

    Truong, Thanh N.

    A reaction class approach for modeling gas phase reaction rates Thanh N. Truong,* Wendell T. Duncan present a series of new tunneling models based on a reaction class approach. Reaction class consists of all reactions that have the same reactive moiety. One can expect that reactions in the same class

  1. Demisable Reaction-Wheel Assembly

    NASA Technical Reports Server (NTRS)

    Roder, Russell; Ahronovich, Eliezer; Davis, Milton C., III

    2008-01-01

    A document discusses the concept of a demisable motor-drive-and-flywheel assembly [reaction-wheel assembly (RWA)] used in controlling the attitude of a spacecraft. Demisable as used here does not have its traditional legal meaning; instead, it signifies susceptible to melting, vaporizing, and/or otherwise disintegrating during re-entry of the spacecraft into the atmosphere of the Earth so as not to pose a hazard to anyone or anything on the ground. Prior RWAs include parts made of metals (e.g., iron, steel, and titanium) that melt at high temperatures and include structures of generally closed character that shield some parts (e.g., magnets) against re-entry heating. In a demisable RWA, the flywheel would be made of aluminum, which melts at a lower temperature. The flywheel web would not be a solid disk but would have a more open, nearly-spoke-like structure so that it would disintegrate more rapidly; hence, the flywheel rim would separate more rapidly so that parts shielded by the rim would be exposed sooner to re-entry heating. In addition, clearances between the flywheel and other components would be made greater, imparting a more open character and thus increasing the exposure of those components.

  2. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D. (Evergreen, CO)

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  3. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  4. Mediating chemical reactions using polysaccharides

    NASA Astrophysics Data System (ADS)

    Tyler, Lauren E.

    We have studied the NaBH4-mediated hydrogenation of select alkenes catalyzed by polysaccharide-stabilized nanoparticles. We compared the catalytic properties of Ni-based nanoparticles or Au/Co-based nanoparticles on the hydrogenation of cinnamic acid, cinnamide, cinnamyl alcohol, and ethyl cinnamate. We evaluated the possibility that the type of stabilizing polysaccharide surrounding the nanoparticle may affect the selectivity towards the alkene compounds that undergo the hydrogenation reaction. We found that the hydrogenation of cinnamide or ethyl cinnamate proceeded readily to 100% completion independent of the type of polysaccharide stabilizing the nanoparticle. However, the extent of the hydrogenation of cinnamyl alcohol and cinnamic acid varied greatly depending on the type of polysaccharide stabilizing the nanoparticle. In the course of these studies, we observed that some polysaccharides by themselves promoted the hydrolysis of ethyl cinnamate. Thus, we have raised the hypothesis that some polysaccharides may act as "esterases" and explored the interaction between select polysaccharides and a variety of ester compounds.

  5. 2005 Chemical Reactions at Surfaces

    SciTech Connect

    Cynthia M. Friend

    2006-03-14

    The Gordon Research Conference (GRC) on 2005 Chemical Reactions at Surfaces was held at Ventura Beach Marriott, Ventura California from February 13, 2005 through February 18, 2005. The Conference was well-attended with 124 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, 'free time' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.

  6. Fusion reactions at low energy

    SciTech Connect

    Beckerman, M.

    1985-01-01

    Fusion measurement methods at low energies are briefly described, and experimental and theoretical fusion cross sections for /sup 58/Ni + /sup 58/Ni, /sup 58/Ni + /sup 64/Ni and /sup 64/Ni + /sup 64/Ni reactions are discussed. It is shown that quantal tunneling calculations do not describe the near- and sub-barrier behavior of the fusion data. Instead, the WKB predictions fall progressively further blow the experimental results as the energy is lowered. At far subbarrier energies the measured cross sections exceed the WKB predictions by more than three orders of magnitude. The unexpectedly strong dependence of the fusion probability upon the nuclear valence structure is illustrated and discussed. The relationship of channel coupling and quantal tunneling is discussed. In conclusion, it was established that atomic nuclei fuse far more readily at low energies that would be expected from quantal tunneling considerations alone. It was found that the behavior of the cross sections for fusion depends strongly upon the valence structure of the collision partners. This structural dependence extends from light 1p-shell systems to systems involving nearly 200 nucleons. These new phenomena may be viewed as characterizing the tunneling of a quantal system with many degrees of freedom. The failure of standard tunneling models may be understood as resulting from the ability of the dinuclear system to tunnel into the classically forbidden region by means of couplings to intrinsic degrees of freedom. 38 refs. (WHK)

  7. Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions

    EPA Science Inventory

    Magnetite-sulfonic acid (NanocatFe-OSO3H), prepared by wet-impregnation method, serves as a magnetically retrievable sustainable catalyst for the Ritter reaction which can be used in several reaction cycles without any loss of activity.

  8. Nuclear Reaction Data File for Astrophysics (NRDF/A) in Hokkaido University Nuclear Reaction Data Center

    SciTech Connect

    Kato, Kiyoshi; Kimura, Masaaki; Furutachi, Naoya; Makinaga, Ayano; Togashi, Tomoaki; Otuka, Naohiko

    2010-06-01

    The activities of the Japan Nuclear Reaction Data Centre is explained. The main task of the centre is data compilation of Japanese nuclear reaction data in collaboration of the International Network of Nuclear Reaction Data Centres. As one of recent activities, preparation of a new database (NRDF/A) and evaluation of astronuclear reaction data are reported. Collaboration in the nuclear data activities among Asian countries is proposed.

  9. Miniature reaction chamber and devices incorporating same

    DOEpatents

    Mathies, Richard A. (Moraga, CA); Woolley, Adam T. (Albany, CA)

    2000-10-17

    The present invention generally relates to miniaturized devices for carrying out and controlling chemical reactions and analyses. In particular, the present invention provides devices which have miniature temperature controlled reaction chambers for carrying out a variety of synthetic and diagnostic applications, such as PCR amplification, nucleic acid hybridization, chemical labeling, nucleic acid fragmentation and the like.

  10. Acceleration of reaction in charged microdroplets

    E-print Network

    REPORT Acceleration of reaction in charged microdroplets Jae Kyoo Lee1,2 , Shibdas Banerjee1 , Hong solution. In both the cases we found marked acceleration of reaction, by a factor of a million or more is not responsible for the acceleration pro- cess in aqueous droplet fusion and (2) the droplet­air interface may

  11. A Convergent Reaction-Diffusion Master Equation

    E-print Network

    Samuel A Isaacson

    2013-06-28

    The reaction-diffusion master equation (RDME) is a lattice stochastic reaction-diffusion model that has been used to study spatially distributed cellular processes. The RDME is often interpreted as an approximation to spatially-continuous models in which molecules move by Brownian motion and react by one of several mechanisms when sufficiently close. In the limit that the lattice spacing approaches zero, in two or more dimensions, the RDME has been shown to lose bimolecular reactions. The RDME is therefore not a convergent approximation to any spatially-continuous model that incorporates bimolecular reactions. In this work we derive a new convergent RDME (CRDME) by finite volume discretization of a spatially-continuous stochastic reaction-diffusion model popularized by Doi. We demonstrate the numerical convergence of reaction time statistics associated with the CRDME. For sufficiently large lattice spacings or slow bimolecular reaction rates, we also show the reaction time statistics of the CRDME may be approximated by those from the RDME. The original RDME may therefore be interpreted as an approximation to the CRDME in several asymptotic limits.

  12. Reaction kinetics in a tight spot.

    PubMed

    Biham, Ofer; Krug, Joachim; Lipshtat, Azi; Michely, Thomas

    2005-05-01

    The standard analysis of reaction networks based on deterministic rate equations fails in confined geometries, commonly encountered in fields such as astrochemistry, thin-film growth and cell biology. In these systems the small reactant population implies anomalous behavior of reaction rates, which can be accounted for only by following the full distribution of reactant numbers. PMID:17193475

  13. The Logical Chain Reaction (aka Mathematical Induction)

    E-print Network

    Pego, Robert

    The Logical Chain Reaction (aka Mathematical Induction) Robert Pego Department of Mathematical infinitum. This is the logical chain reaction -- it proves that A(n) is in fact true for every postitive an infinite chain of implications: A(1) A(2) A(3) . . . A(37) A(38) . . . ad infinitum. The fuse is set

  14. Nuclear excitation and precompound nuclear reactions

    SciTech Connect

    De, A.; Ray, S.; Ghosh, S.K.

    1988-06-01

    The angular distribution of nucleons emitted in nucleon-induced precompound nuclear reactions are calculated taking into account the effect of excitation on the kinematics of nucleon-nucleon scattering inside the target-plus-projectile system. The results are compared with quantum mechanical calculations and those of reaction models based on a pure nucleon-nucleon collision picture.

  15. Reaction plane dispersion at intermediate energies

    E-print Network

    J. Lukasik; W. Trautmann

    2006-03-29

    A method to derive the corrections for the dispersion of the reaction plane at intermediate energies is proposed. The method is based on the correlated, non-isotropic Gaussian approximation. It allowed to construct the excitation function of genuine flow values for the Au+Au reactions at 40-150 MeV/nucleon measured with the INDRA detector at GSI.

  16. Entropy Generation in a Chemical Reaction

    ERIC Educational Resources Information Center

    Miranda, E. N.

    2010-01-01

    Entropy generation in a chemical reaction is analysed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first-order reaction is used to show that entropy production is always positive. A…

  17. Resonant structures in heavy-ion reactions

    SciTech Connect

    Sanders, S.J.; Henning, W.; Ernst, H.; Geesaman, D.F.; Jachcinski, C.; Kovar, D.G.; Paul, M.; Schiffer, J.P.

    1980-01-01

    An investigation of heavy-ion resonance structures using the /sup 24/Mg(/sup 16/O, /sup 12/C)/sup 28/Si reaction is presented. The data are analyzed in the context of Breit-Wigner resonances added to a direct-reaction background.

  18. SULFUR DIOXIDE OXIDATION REACTIONS IN AQUEOUS SOLUTIONS

    EPA Science Inventory

    This is the final report on a three year project to study the kinetics and mechanisms of some 105 reactions involving the aqueous oxidation of sulfur dioxide and nitrogen oxides in mixed catalyst-oxidant systems at low pH (0-3). The 105 systems involve six redox reaction types: S...

  19. Enzyme Substrate Reactions in High Magnetic Fields

    PubMed Central

    Maling, J. E.; Weissbluth, M.; Jacobs, E. E.

    1965-01-01

    The reaction rates of two enzyme substrate systems, ribonuclease-RNA and succinate-cytochrome c reductase, were followed as a function of magnetic field from zero to 48,000 gauss. The reaction rates remained constant to within 10 per cent. PMID:5884011

  20. Photosynthetic reaction center complexes from heliobacteria

    NASA Technical Reports Server (NTRS)

    Trost, J. T.; Vermaas, W. F. J.; Blankenship, R. E.

    1991-01-01

    The goal of this project is to understand the early evolutionary development of photosynthesis by examining the properties of reaction centers isolated from certain contemporary organisms that appear to contain the simplest photosynthetic reaction centers. The major focus of this project is the family of newly discovered strictly anaerobic photosynthetic organisms known as Heliobacteria. These organisms are the only known photosynthetic organisms that are grouped with the gram-positive phylum of bacteria. The properties of these reaction centers suggest that they might be the decendants of an ancestor that also gave rise to Photosystem 1 found in oxygen-evolving photosynthetic organisms. Photoactive reaction center-core antenna complexes have been isolated from the photosynthetic bacteria Heliobacillus mobilis and Heliobacterium gestii. The absorption and fluorescence properties of membranes and reaction centers are almost identical, suggesting that a single pigment-protein complex serves as both antenna and reaction center. Experiments in progress include sequence determination of the 48,000 Mr reaction center protein, and evolutionary comparisons with other reaction center proteins.

  1. ABIOTIC ORGANIC REACTIONS AT MINERAL SURFACES

    EPA Science Inventory

    Abiotic organic reactions, such as hydrolysis, elimination, substitution, redox, and polymerization reactions, can be influenced by surfaces of clay and primary minerals, and of metal oxides. This influence is due to adsorption of the reactants to surface Lewis and Bronsted sites...

  2. Electron transfer reactions in microporous solids

    NASA Astrophysics Data System (ADS)

    Mallouk, T. E.

    1991-05-01

    We are studying the synthesis of light-induced electron transfer reactions which occur within microporous materials. Some highlights of our progress in the last year are in the fields of (1) electron transfer reactions of donor/acceptor molecules at the zeolite/solution interface; (2) photochemistry of zeolite/TiO2 composites; and (3) photochemistry of layered oxide semiconductors.

  3. A reusable prepositioned ATP reaction chamber

    NASA Technical Reports Server (NTRS)

    Hoffman, D. G.

    1972-01-01

    Luminescence biometer detects presence of life by means of light-emitting chemical reaction of luciferin and luciferase with adenosine triphosphate (ATP) that occurs in all living cells. Amount of light in reaction chamber is measured to determine presence and extent of life.

  4. Infliximab-Related Infusion Reactions: Systematic Review

    PubMed Central

    Ron, Yulia; Kivity, Shmuel; Ben-Horin, Shomron; Israeli, Eran; Fraser, Gerald M.; Dotan, Iris; Chowers, Yehuda; Confino-Cohen, Ronit; Weiss, Batia

    2015-01-01

    Objective: Administration of infliximab is associated with a well-recognised risk of infusion reactions. Lack of a mechanism-based rationale for their prevention, and absence of adequate and well-controlled studies, has led to the use of diverse empirical administration protocols. The aim of this study is to perform a systematic review of the evidence behind the strategies for preventing infusion reactions to infliximab, and for controlling the reactions once they occur. Methods: We conducted extensive search of electronic databases of MEDLINE [PubMed] for reports that communicate various aspects of infusion reactions to infliximab in IBD patients. Results: We examined full texts of 105 potentially eligible articles. No randomised controlled trials that pre-defined infusion reaction as a primary outcome were found. Three RCTs evaluated infusion reactions as a secondary outcome; another four RCTs included infusion reactions in the safety evaluation analysis; and 62 additional studies focused on various aspects of mechanism/s, risk, primary and secondary preventive measures, and management algorithms. Seven studies were added by a manual search of reference lists of the relevant articles. A total of 76 original studies were included in quantitative analysis of the existing strategies. Conclusions: There is still paucity of systematic and controlled data on the risk, prevention, and management of infusion reactions to infliximab. We present working algorithms based on systematic and extensive review of the available data. More randomised controlled trials are needed in order to investigate the efficacy of the proposed preventive and management algorithms. PMID:26092578

  5. Psychological Factors That Predict Reaction to Abortion.

    ERIC Educational Resources Information Center

    Moseley, D. T.; And Others

    1981-01-01

    Investigated demographic and psychological factors related to reactions to legal abortions in 62 females in an urban southern community. Results suggest that the social context and the degree of support from a series of significant persons rather than demographic variables were most predictive of a positive reaction. (Author)

  6. Lecture Notes Chapter 15 Radical Reactions

    E-print Network

    White, Douglas R.

    ion bromine atom Bromine (molecule) II. General Features of Radical Reactions Radicals are formed from the reaction. III. Halogenation of Alkanes Chlorine or Bromine will react with alkanes in the presence of light of hydrogen abstraction by halogen atoms: Q. Why is the bromine atom so much more selective? A. If you compare

  7. Heuristics-Guided Exploration of Reaction Mechanisms.

    PubMed

    Bergeler, Maike; Simm, Gregor N; Proppe, Jonny; Reiher, Markus

    2015-12-01

    For the investigation of chemical reaction networks, the efficient and accurate determination of all relevant intermediates and elementary reactions is mandatory. The complexity of such a network may grow rapidly, in particular if reactive species are involved that might cause a myriad of side reactions. Without automation, a complete investigation of complex reaction mechanisms is tedious and possibly unfeasible. Therefore, only the expected dominant reaction paths of a chemical reaction network (e.g., a catalytic cycle or an enzymatic cascade) are usually explored in practice. Here, we present a computational protocol that constructs such networks in a parallelized and automated manner. Molecular structures of reactive complexes are generated based on heuristic rules derived from conceptual electronic-structure theory and subsequently optimized by quantum-chemical methods to produce stable intermediates of an emerging reaction network. Pairs of intermediates in this network that might be related by an elementary reaction according to some structural similarity measure are then automatically detected and subjected to an automated search for the connecting transition state. The results are visualized as an automatically generated network graph, from which a comprehensive picture of the mechanism of a complex chemical process can be obtained that greatly facilitates the analysis of the whole network. We apply our protocol to the Schrock dinitrogen-fixation catalyst to study alternative pathways of catalytic ammonia production. PMID:26642988

  8. Hawking Fluxes, Back reaction and Covariant Anomalies

    E-print Network

    Shailesh Kulkarni

    2008-09-16

    Starting from the chiral covariant effective action approach of Banerjee and Kulkarni [Phys. Lett. B 659, 827(2008)], we provide a derivation of the Hawking radiation from a charged black hole in the presence of gravitational back reaction. The modified expressions for charge and energy flux, due to effect of one loop back reaction are obtained.

  9. The Iodine Clock Reaction and Hypothermia.

    ERIC Educational Resources Information Center

    Gennaro, Gene; Munson, Bruce

    1988-01-01

    Explains an activity which can be used to compare the effect of temperature on the rate of chemical reactions to the metabolic reactions that take place within the body. Outlines directions and materials needed to perform the experiment. Lists a number of the body's defenses against extremely low temperatures. (RT)

  10. pH & Rate of Enzymatic Reactions.

    ERIC Educational Resources Information Center

    Clariana, Roy B.

    1991-01-01

    A quantitative and inexpensive way to measure the rate of enzymatic reaction is provided. The effects of different pH levels on the reaction rate of an enzyme from yeast are investigated and the results graphed. Background information, a list of needed materials, directions for preparing solutions, procedure, and results and discussion are…

  11. Theory of electromagnetic reactions in light nuclei

    E-print Network

    Tianrui Xu; Mirko Miorelli; Sonia Bacca; Gaute Hagen

    2015-09-11

    We briefly review the theory for electromagnetic reactions in light nuclei based on the coupled-cluster formulation of the Lorentz integral transform method. Results on photodisintegration reactions of 22O and 40Ca are reported on and preliminary calculations on the Coulomb sum rule for 4He are discussed.

  12. REACTIONS OF ISOPROPOXY RADICALS WITH NITROGEN OXIDES

    EPA Science Inventory

    Information was sought concerning reactions of isopropoxy radicals with nitric oxide and nitrogen dioxide. Isopropyl nitrate was photodissociated in the presence of oxides of nitrogen and an inert gas. The reaction was found to be less important than the alkoxy radical NO reactio...

  13. A Hierarchy of Homodesmotic Reactions for Thermochemistry

    PubMed Central

    Schleyer, Paul v. R.

    2009-01-01

    Chemical equations that balance bond types and atom hybridization to different degrees are often used in computational thermochemistry, for example, to increase accuracy when lower levels of theory are employed. We expose the widespread confusion over such classes of equations and demonstrate that the two most widely used definitions of “homodesmotic” reactions are not equivalent. New definitions are introduced and a consistent hierarchy of reaction classes (RC1 – RC5) for hydrocarbons is constructed: isogyric (RC1) ? isodesmic (RC2) ? hypohomodesmotic (RC3) ? homodesmotic (RC4) ? hyperhomodesmotic (RC5). Each of these successively conserves larger molecular fragments. The concept of isodesmic bond separation reactions is generalized to all classes in this hierarchy, providing a unique sectioning of a given molecule for each reaction type. Several ab initio and density functional methods are applied to the bond separation reactions of 38 hydrocarbons containing five or six carbon atoms. RC4 and RC5 reactions provide bond separation enthalpies with errors consistently less than 0.4 kcal mol?1 across a wide range of theoretical levels, performing significantly better than the other reaction types and far superior to atomization routes. Our recommended bond separation reactions were demonstrated by determining the enthalpies of formation (at 298 K) of 1,3,5-hexatriyne (163.7 ± 0.4 kcal mol?1), 1,3,5,7-octatetrayne (217.6 ± 0.6 kcal mol?1), the larger polyynes C10H2 through C26H2, and an infinite acetylenic carbon chain. PMID:19182999

  14. Organic Reaction Mechanisms at A-Level.

    ERIC Educational Resources Information Center

    Norman, R. O. C.; Waddington, D. J.

    1979-01-01

    Advocates teaching of organic reaction mechanisms through the methods which are used in elucidating them. This also provides a useful way of illustrating the theories and methods of physical chemistry. Describes an approach to teaching three reaction mechanisms: substitution in alkanes; addition to alkenes; and ester hydrolysis. (Author/GA)

  15. Asthma and anaphylactoid reactions to food additives.

    PubMed Central

    Tarlo, S. M.; Sussman, G. L.

    1993-01-01

    Presumed allergic reactions to hidden food additives are both controversial and important. Clinical manifestations include asthma, urticaria, angioedema, and anaphylactic-anaphylactoid events. Most adverse reactions are caused by just a few additives, such as sulfites and monosodium glutamate. Diagnosis is suspected from the history and confirmed by specific challenge. The treatment is specific avoidance. PMID:8499792

  16. The Thermit Reaction: A Dazzling Thermochemical Demonstration.

    ERIC Educational Resources Information Center

    Kauffman, George B.

    1997-01-01

    Describes an outdoor scientific demonstration of metal reduction, a reaction known as the thermit process. Heat from an ignition mixture is required to initiate the reaction, which then becomes self-sustaining. The demonstration provides a dazzling introduction to such fundamental general chemistry topics as oxidation-reduction, metallurgy,…

  17. The definition of reaction coordinates for reaction-path dynamics Gregory A. Natanson

    E-print Network

    Truong, Thanh N.

    only small-amplitude deviations from a minimum-energy path (MEP) through nuclear coordinate space. Thus the reaction path, the reaction coordinate s is uniquely defined as the negative or positive distance from- tion A + BC+AB -t C. Figure 1 displays a schematic of po- tential energy contours for the reaction

  18. A Green Multicomponent Reaction for the Organic Chemistry Laboratory: The Aqueous Passerini Reaction

    ERIC Educational Resources Information Center

    Hooper, Matthew M.; DeBoef, Brenton

    2009-01-01

    Water is the ideal green solvent for organic reactions. However, most organic molecules are insoluble in it. Herein, we report a laboratory module that takes advantage of this property. The Passerini reaction, a three-component coupling involving an isocyanide, aldehyde, and carboxylic acid, typically requires [similar to] 24 h reaction times in…

  19. Mesoscale simulation of polymer reaction equilibrium: Combining dissipative particle dynamics with reaction

    E-print Network

    Lisal, Martin

    Mesoscale simulation of polymer reaction equilibrium: Combining dissipative particle dynamics with reaction ensemble Monte Carlo. II. Supramolecular diblock copolymers Martin Lísal,1,a John K. Brennan,2 formulation of the reaction ensemble dissipative particle dynamics RxDPD method M. Lísal, J. K. Brennan, and W

  20. General rules for nuclear reactions Nuclear reactions | the transformations between di erent atomic nuclei | need to

    E-print Network

    Boettcher, Markus

    by 1: Z ! Z+1 with no change in the atomic weight A. If a nucleus is overloaded" with protonsGeneral rules for nuclear reactions Nuclear reactions | the transformations between di erent atomic nuclei | need to be balanced, in a similar way that in a chemical reaction the total number of atoms

  1. Autocatalysis-driven clock reaction II: kinetics of the pentathionate-periodate reaction.

    PubMed

    Xu, Li; Horváth, Attila K

    2014-10-23

    The pentathionate-periodate reaction has been investigated by spectrophotometrically monitoring the total amount of iodine evolved in the presence of phosphoric acid/dihydrogen phosphate buffer at 468 nm. The majority of the main characteristics of the title system is very reminiscent of that found recently in the pentathionate-iodate reaction, a system that led us to classify generally the clock reactions. Along with the pentathionate-iodate reaction the title system is proposed to belong to the autocatalysis-driven clock reactions as well. The kinetic model of the pentathionate-iodate system published recently was implemented by the necessary reactions of periodate to compose a 24-step kinetic model in which the mechanisms of the pentathionate-iodine, pentathionate-iodate, bisulfite-periodate, bisulfite-iodate, iodide-periodate, and the well-known Dushman reactions are combined. A thorough analysis revealed that the direct pentathionate-periodate reaction plays a role only to produce iodide ion via a finite sequence of reactions, and once its concentration reaches a certain level, the reaction is almost exclusively governed by the pentathionate-iodine, the iodide-periodate, and the Dushman reactions. As expected strong catalytic effect of the buffer composition is also found that can readily be explained by its well-known catalytic influence on the Dushman reaction. PMID:25268333

  2. TRIMOLECULAR REACTIONS OF URANIUM HEXAFLUORIDE WITH WATER

    SciTech Connect

    Westbrook, M.; Becnel, J.; Garrison, S.

    2010-02-25

    The hydrolysis reaction of uranium hexafluoride (UF{sub 6}) is a key step in the synthesis of uranium dioxide (UO{sub 2}) powder for nuclear fuels. Mechanisms for the hydrolysis reactions are studied here with density functional theory and the Stuttgart small-core scalar relativistic pseudopotential and associated basis set for uranium. The reaction of a single UF{sub 6} molecule with a water molecule in the gas phase has been previously predicted to proceed over a relatively sizeable barrier of 78.2 kJ {center_dot} mol{sup -1}, indicating this reaction is only feasible at elevated temperatures. Given the observed formation of a second morphology for the UO{sub 2} product coupled with the observations of rapid, spontaneous hydrolysis at ambient conditions, an alternate reaction pathway must exist. In the present work, two trimolecular hydrolysis mechanisms are studied with density functional theory: (1) the reaction between two UF{sub 6} molecules and one water molecule, and (2) the reaction of two water molecules with a single UF{sub 6} molecule. The predicted reaction of two UF{sub 6} molecules with one water molecule displays an interesting 'fluorine-shuttle' mechanism, a significant energy barrier of 69.0 kJ {center_dot} mol{sup -1} to the formation of UF{sub 5}OH, and an enthalpy of reaction ({Delta}H{sub 298}) of +17.9 kJ {center_dot} mol{sup -1}. The reaction of a single UF{sub 6} molecule with two water molecules displays a 'proton-shuttle' mechanism, and is more favorable, having a slightly lower computed energy barrier of 58.9 kJ {center_dot} mol{sup -1} and an exothermic enthalpy of reaction ({Delta}H{sub 298}) of -13.9 kJ {center_dot} mol{sup -1}. The exothermic nature of the overall UF{sub 6} + 2 {center_dot} H{sub 2}O trimolecular reaction and the lowering of the barrier height with respect to the bimolecular reaction are encouraging; however, the sizable energy barrier indicates further study of the UF{sub 6} hydrolysis reaction mechanism is warranted to resolve the remaining discrepancies between the predicted mechanisms and experimental observations.

  3. Catalytic Conia-ene and related reactions.

    PubMed

    Hack, Daniel; Blümel, Marcus; Chauhan, Pankaj; Philipps, Arne R; Enders, Dieter

    2015-10-01

    Since its initial inception, the Conia-ene reaction, known as the intramolecular addition of enols to alkynes or alkenes, has experienced a tremendous development and appealing catalytic protocols have emerged. This review fathoms the underlying mechanistic principles rationalizing how substrate design, substrate activation, and the nature of the catalyst work hand in hand for the efficient synthesis of carbocycles and heterocycles at mild reaction conditions. Nowadays, Conia-ene reactions can be found as part of tandem reactions, and the road for asymmetric versions has already been paved. Based on their broad applicability, Conia-ene reactions have turned into a highly appreciated synthetic tool with impressive examples in natural product synthesis reported in recent years. PMID:26031492

  4. Low energy ion-molecule reactions

    SciTech Connect

    Farrar, J.M.

    1993-12-01

    This project is concerned with elucidating the dynamics of elementary ion-molecule reactions at collision energies near and below 1 eV. From measurements of the angular and energy distributions of the reaction products, one can infer intimathe details about the nature of collisions leading to chemical reaction, the geometries and lifetimes of intermediate complexes that govern the reaction dynamics, and the collision energy dependence of these dynamical features. The author employs crossed-beam low energy mass spectrometry technology developed over the last several years, with the focus of current research on proton transfer and hydrogen atom transfer reactions of te O{sup {minus}} ion with species such as HF, H{sub 2}O, and NH{sub 3}.

  5. A Reaction of Aspirin with Ferrous Gluconate.

    PubMed

    Zhang, Jian

    2015-12-01

    A color reaction of aspirin with ferrous gluconate was studied by UV-Vis spectrophotometry and HPLC-MS. It was found that the UV-Vis spectra of the two drugs were different before and after they were mixed in water at about 0.3 M (diluted by >20 times for analysis), indicating that a complexation reaction took place. The drug-iron complex dissociated when the reacting solution was diluted by 400 times. The by-products of the reaction identified by HPLC-MS were salicylic acid, acetylated gluconic acid, salicylate-gluconic acid conjugate, and an oxidized product of salicylic acid that was complexed with iron with a molecular weight of 212. This reaction may be used as an important consideration to optimize the dosing regime of the two drugs and to help explain some pharmacological reactions between aspirin and biomolecules. PMID:25771741

  6. Reaction Kinetics in Polymer Melts

    E-print Network

    Ben O'Shaughnessy; Dimitrios Vavylonis

    1998-07-09

    We study the reaction kinetics of end-functionalized polymer chains dispersed in an unreactive polymer melt. Starting from an infinite hierarchy of coupled equations for many-chain correlation functions, a closed equation is derived for the 2nd order rate constant $k$ after postulating simple physical bounds. Our results generalize previous 2-chain treatments (valid in dilute reactants limit) by Doi, de Gennes, and Friedman and O'Shaughnessy, to arbitrary initial reactive group density $n_0$ and local chemical reactivity $Q$. Simple mean field (MF) kinetics apply at short times, $k \\sim Q$. For high $Q$, a transition occurs to diffusion-controlled (DC) kinetics with $k \\approx x_t^3/t$ (where $x_t$ is rms monomer displacement in time $t$) leading to a density decay $n_t \\approx n_0 - n_0^2 x_t^3$. If $n_0$ exceeds the chain overlap threshold, this behavior is followed by a regime where $n_t \\approx 1/x_t^3$ during which $k$ has the same power law dependence in time, $k \\approx x_t^3/t$, but possibly different numerical coefficient. For unentangled melts this gives $n_t \\sim t^{-3/4}$ while for entangled cases one or more of the successive regimes $n_t \\sim t^{-3/4}$, $t^{-3/8}$ and $t^{-3/4}$ may be realized depending on the magnitudes of $Q$ and $n_0$. Kinetics at times longer than the longest polymer relaxation time $\\tau$ are always MF. If a DC regime has developed before $\\tau$ then the long time rate constant is $k \\approx R^3/\\tau$ where $R$ is the coil radius. We propose measuring the above kinetics in a model experiment where radical end groups are generated by photolysis.

  7. Connecting localized DNA strand displacement reactions

    NASA Astrophysics Data System (ADS)

    Mullor Ruiz, Ismael; Arbona, Jean-Michel; Lad, Amitkumar; Mendoza, Oscar; Aimé, Jean-Pierre; Elezgaray, Juan

    2015-07-01

    Logic circuits based on DNA strand displacement reactions have been shown to be versatile enough to compute the square root of four-bit numbers. The implementation of these circuits as a set of bulk reactions faces difficulties which include leaky reactions and intrinsically slow, diffusion-limited reaction rates. In this paper, we consider simple examples of these circuits when they are attached to platforms (DNA origamis). As expected, constraining distances between DNA strands leads to faster reaction rates. However, it also induces side-effects that are not detectable in the solution-phase version of this circuitry. Appropriate design of the system, including protection and asymmetry between input and fuel strands, leads to a reproducible behaviour, at least one order of magnitude faster than the one observed under bulk conditions.Logic circuits based on DNA strand displacement reactions have been shown to be versatile enough to compute the square root of four-bit numbers. The implementation of these circuits as a set of bulk reactions faces difficulties which include leaky reactions and intrinsically slow, diffusion-limited reaction rates. In this paper, we consider simple examples of these circuits when they are attached to platforms (DNA origamis). As expected, constraining distances between DNA strands leads to faster reaction rates. However, it also induces side-effects that are not detectable in the solution-phase version of this circuitry. Appropriate design of the system, including protection and asymmetry between input and fuel strands, leads to a reproducible behaviour, at least one order of magnitude faster than the one observed under bulk conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR02434J

  8. A New Twist on the Iodine Clock Reaction: Determining the Order of a Reaction

    NASA Astrophysics Data System (ADS)

    Creary, Xavier; Morris, Karen M.

    1999-04-01

    The Landolt iodine clock reaction is a reliable and well-used chemistry demonstration owing to a variety of features: ease of solution preparation, striking color change indicating reaction completion, convenience in changing reaction "clock time", and effective dramatic presentation. The iodine clock reaction can also be used to illustrate the kinetic order of a reaction, and an overhead projector demonstration was developed three years ago for general chemistry classes at the University of Notre Dame showing this concept. This demonstration has been used successfully with consistent results since that time.

  9. ReactionMap: an efficient atom-mapping algorithm for chemical reactions.

    PubMed

    Fooshee, David; Andronico, Alessio; Baldi, Pierre

    2013-11-25

    Large databases of chemical reactions provide new data-mining opportunities and challenges. Key challenges result from the imperfect quality of the data and the fact that many of these reactions are not properly balanced or atom-mapped. Here, we describe ReactionMap, an efficient atom-mapping algorithm. Our approach uses a combination of maximum common chemical subgraph search and minimization of an assignment cost function derived empirically from training data. We use a set of over 259,000 balanced atom-mapped reactions from the SPRESI commercial database to train the system, and we validate it on random sets of 1000 and 17,996 reactions sampled from this pool. These large test sets represent a broad range of chemical reaction types, and ReactionMap correctly maps about 99% of the atoms and about 96% of the reactions, with a mean time per mapping of 2 s. Most correctly mapped reactions are mapped with high confidence. Mapping accuracy compares favorably with ChemAxon's AutoMapper, versions 5 and 6.1, and the DREAM Web tool. These approaches correctly map 60.7%, 86.5%, and 90.3% of the reactions, respectively, on the same data set. A ReactionMap server is available on the ChemDB Web portal at http://cdb.ics.uci.edu . PMID:24160861

  10. Controlling chemical reactions of a single particle

    E-print Network

    Lothar Ratschbacher; Christoph Zipkes; Carlo Sias; Michael Köhl

    2012-09-26

    The control of chemical reactions is a recurring theme in physics and chemistry. Traditionally, chemical reactions have been investigated by tuning thermodynamic parameters, such as temperature or pressure. More recently, physical methods such as laser or magnetic field control have emerged to provide completely new experimental possibilities, in particular in the realm of cold collisions. The control of reaction pathways is also a critical component to implement molecular quantum information processing. For these undertakings, single particles provide a clean and well-controlled experimental system. Here, we report on the experimental tuning of the exchange reaction rates of a single trapped ion with ultracold neutral atoms by exerting control over both their quantum states. We observe the influence of the hyperfine interaction on chemical reaction rates and branching ratios, and monitor the kinematics of the reaction products. These investigations advance chemistry with single trapped particles towards achieving quantum-limited control of chemical reactions and indicate limits for buffer gas cooling of single ion clocks.

  11. [4-aminopyridine induced rage reaction in mice].

    PubMed

    Xu, J H; Liu, H C; Zhang, Y P

    1991-03-01

    Rage reaction was induced in mice by sc 4-aminopyridine (4-AP) 6 mg . kg-1. Mice appeared hyperreactive after 8-12 min and then squeaked and fought each other. These manifestations were most distinct in 10-30 min and subsided after 40-60 min. The occurrence of rage reaction on this dose level was around 90%. At higher doses 4-AP caused convulsions and death after evocation of rage reaction. The ED50 of 4-AP for eliciting rage reaction was 4.7 +/- 0.7 mg . kg-1 sc. No significant difference in induction of rage reaction was seen between male and female mice of different body weights. Both neuroleptic drugs (chlorpromazine, haloperidol, tarden and clozapine) and anxiolytic drugs (diazepam, chlordiazepoxide, and meprobamate) inhibited 4-AP-induced rage reaction in mice. Barbiturates, Chloral hydrate, methaqualone, morphine hydrochloride, aspirin, phenytoin sodium, diphenhydramine hydrochloride, atropine sulfate, and procaine hydrochloride did not affect rage reaction. The 4-AP-induced aggressive behavior, similar to that induced by electric footshock or isolation, has the merits of convenience to deal with and time saving. Hence we recommended it as a screening method for drugs with neuroleptic and anxiolytic activities. PMID:1685615

  12. Acceleration of reaction in charged microdroplets.

    PubMed

    Lee, Jae Kyoo; Banerjee, Shibdas; Nam, Hong Gil; Zare, Richard N

    2015-11-01

    Using high-resolution mass spectrometry, we have studied the synthesis of isoquinoline in a charged electrospray droplet and the complexation between cytochrome c and maltose in a fused droplet to investigate the feasibility of droplets to drive reactions (both covalent and noncovalent interactions) at a faster rate than that observed in conventional bulk solution. In both the cases we found marked acceleration of reaction, by a factor of a million or more in the former and a factor of a thousand or more in the latter. We believe that carrying out reactions in microdroplets (about 1-15 ?m in diameter corresponding to 0·5 pl - 2 nl) is a general method for increasing reaction rates. The mechanism is not presently established but droplet evaporation and droplet confinement of reagents appear to be two important factors among others. In the case of fused water droplets, evaporation has been shown to be almost negligible during the flight time from where droplet fusion occurs and the droplets enter the heated capillary inlet of the mass spectrometer. This suggests that (1) evaporation is not responsible for the acceleration process in aqueous droplet fusion and (2) the droplet-air interface may play a significant role in accelerating the reaction. We argue that this 'microdroplet chemistry' could be a remarkable alternative to accelerate slow and difficult reactions, and in conjunction with mass spectrometry, it may provide a new arena to study chemical and biochemical reactions in a confined environment. PMID:26537403

  13. Enzyme reaction annotation using cloud techniques.

    PubMed

    Huang, Chuan-Ching; Lin, Chun-Yuan; Chang, Cheng-Wen; Tang, Chuan Yi

    2013-01-01

    An understanding of the activities of enzymes could help to elucidate the metabolic pathways of thousands of chemical reactions that are catalyzed by enzymes in living systems. Sophisticated applications such as drug design and metabolic reconstruction could be developed using accurate enzyme reaction annotation. Because accurate enzyme reaction annotation methods create potential for enhanced production capacity in these applications, they have received greater attention in the global market. We propose the enzyme reaction prediction (ERP) method as a novel tool to deduce enzyme reactions from domain architecture. We used several frequency relationships between architectures and reactions to enhance the annotation rates for single and multiple catalyzed reactions. The deluge of information which arose from high-throughput techniques in the postgenomic era has improved our understanding of biological data, although it presents obstacles in the data-processing stage. The high computational capacity provided by cloud computing has resulted in an exponential growth in the volume of incoming data. Cloud services also relieve the requirement for large-scale memory space required by this approach to analyze enzyme kinetic data. Our tool is designed as a single execution file; thus, it could be applied to any cloud platform in which multiple queries are supported. PMID:24222895

  14. Extension of a Kinetic-Theory Approach for Computing Chemical-Reaction Rates to Reactions with Charged Particles

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark J.

    2010-01-01

    Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction rate information) are extended to include reactions involving charged particles and electronic energy levels. The proposed extensions include ionization reactions, exothermic associative ionization reactions, endothermic and exothermic charge exchange reactions, and other exchange reactions involving ionized species. The extensions are shown to agree favorably with the measured Arrhenius rates for near-equilibrium conditions.

  15. IgA anaphylactic transfusion reactions.

    PubMed

    Sandler, S G; Mallory, D; Malamut, D; Eckrich, R

    1995-01-01

    IgA anaphylactic transfusion reactions are rare events, estimated to occur in 1 in 20,000 to 47,000 transfusions. The signs and symptoms of these reactions do not differentiate them from other causes of anaphylaxis. The diagnosis of an anaphylactic transfusion reaction is established by showing an IgA-antibody in the patient's serum. Most laboratories that test for IgA antibodies rely on the PHA method, which uses red blood cells that are coated with serologically defined IgA multiple myeloma proteins. We tested sera referred from Red Cross regional blood centers and hospitals from patients with suspected IgA anaphylactic reactions and found an IgA antibody in 76.3% of IgA-deficient patients. However, only 17.5% of all samples referred contained an IgA antibody, indicating that most persons with suspected IgA anaphylactic reactions had experienced acute generalized reactions that were from causes other than anti-IgA transfusion. Using PHIA to measure serum concentrations of IgA and PHA to detect IgA antibodies, we found the frequency of IgA deficiency (< 0.05 mg/dL) and class-specific anti-IgA in random blood donors to be approximately 1 in 1,200. Titers of anti-IgA did not distinguish these seemingly healthy blood donors from patients with a history of an anaphylactic transfusion reaction. Because the frequency of 1 in 1,200 greatly exceeds the observed frequency of anaphylactic reactions in transfused persons, we conclude that using PHA for anti-IgA does not reliably predict risk for an anaphylactic transfusion reaction. Additional research is needed to define a more specific marker to identify those persons who are truly at risk for these serious, but rare, complications of blood transfusion. PMID:7719037

  16. Violent Reactions from Non-Shock Stimuli

    NASA Astrophysics Data System (ADS)

    Sandusky, Harold

    2007-06-01

    Most reactions are thermally initiated, whether from direct heating or dissipation of energy from mechanical, shock, or electrical stimuli. For other than prompt shock initiation, the reaction must be able to spread through porosity or over large surface area to become more violent than just rupturing any confinement. While burning rates are important, high-strain mechanical properties are nearly so, either by reducing existing porosity or generating additional surface area through fracture. The first example is deflagration-to-detonation transition (DDT) in porous beds. During the early stages, weak compressive waves ahead of the convective ignition front will reduce porosity, thereby restricting the spread of combustion and the pressure buildup. If, however, pressure increases faster than can be relieved by loss of confinement, coalescing compressive waves can initiate reaction at hot spots from rapid pore collapse. This compressive reaction can drive a shockwave that transits to detonation, the most violent reaction in any scenario. It has been shown that reaction violence is reduced in DDT experiments if the binder is softened, either by raising the initial temperature or adding a solvent. An example of the role of mechanical properties in enhancing reaction violence through fracturing occurs when cavities in projectile fills collapse during acceleration in the gun barrel, which is referred to as setback. Explosives with soft rubber binders will deform and undergo mild reaction from shear heating within the explosive and adiabatic compression of any gas in the cavity. Stiff explosives are similarly ignited, but also fracture and generate additional surface area for a violent event. The last example to be considered is slow cook-off, where thermal damage can increase burning rate as well as provide porosity to enhance the pressure buildup. As reaction spreads from the zone of thermal run-away, an explosive binder that resists breakup will limit the violence.

  17. Silicon-based sleeve devices for chemical reactions

    DOEpatents

    Northrup, M. Allen (Berkeley, CA); Mariella, Jr., Raymond P. (Danville, CA); Carrano, Anthony V. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    1996-01-01

    A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.

  18. Silicon-based sleeve devices for chemical reactions

    DOEpatents

    Northrup, M.A.; Mariella, R.P. Jr.; Carrano, A.V.; Balch, J.W.

    1996-12-31

    A silicon-based sleeve type chemical reaction chamber is described that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis. 32 figs.

  19. Physiological aspects of free-radical reactions.

    PubMed Central

    Yamazaki, I; Tamura, M; Nakajima, R; Nakamura, M

    1985-01-01

    Enzymes which catalyze the formation of free radicals in vitro will catalyze similar reactions in vivo. We believe that the formation of some kinds of free radicals has definite physiological meanings in metabolism. In this sense, the enzymes forming such free radicals are concluded to be in evolutionally advanced states. Elaborated structure and function of enzymes such as horseradish peroxidase and microsomal flavoproteins support the idea. Deleterious and side reactions caused by free radicals are assumed to be minimized in vivo by localizing the reactions, but this assumption should be verified by future studies. PMID:3007098

  20. Serpentinization reaction pathways: implications for modeling approach

    SciTech Connect

    Janecky, D.R.

    1986-01-01

    Experimental seawater-peridotite reaction pathways to form serpentinites at 300/sup 0/C, 500 bars, can be accurately modeled using the EQ3/6 codes in conjunction with thermodynamic and kinetic data from the literature and unpublished compilations. These models provide both confirmation of experimental interpretations and more detailed insight into hydrothermal reaction processes within the oceanic crust. The accuracy of these models depends on careful evaluation of the aqueous speciation model, use of mineral compositions that closely reproduce compositions in the experiments, and definition of realistic reactive components in terms of composition, thermodynamic data, and reaction rates.

  1. Supercritical Fluid Reactions for Coal Processing

    SciTech Connect

    Charles A. Eckert

    1997-11-01

    Exciting opportunities exist for the application of supercritical fluid (SCF) reactions for the pre-treatment of coal. Utilizing reactants which resemble the organic nitrogen containing components of coal, we developed a method to tailor chemical reactions in supercritical fluid solvents for the specific application of coal denitrogenation. The tautomeric equilibrium of a Schiff base was chosen as one model system and was investigated in supercritical ethane and cosolvent modified supercritical ethane. The Diels-Alder reaction of anthracene and 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) was selected as a second model system, and it was investigated in supercritical carbon dioxide.

  2. Lattice Boltzmann simulation of catalytic reactions.

    PubMed

    Arcidiacono, S; Mantzaras, J; Karlin, I V

    2008-10-01

    A lattice Boltzmann model is developed to simulate finite-rate catalytic surface chemistry. Diffusive wall boundary conditions are established to account for catalytic reactions in multicomponent mixtures. Implementation of wall boundary conditions with chemical reactions is based on a general second-order accurate interpolation scheme. Results of lattice Boltzmann simulations for a four-component mixture with a global catalytic methane oxidation reaction in a straight channel are in excellent agreement with a finite volume Navier-Stokes solver in terms of both the flow field and species concentrations. PMID:18999565

  3. Power law behavior in chemical reactions.

    PubMed

    Claycomb, J R; Nawarathna, D; Vajrala, V; Miller, J H

    2004-12-22

    Reactions between metals and chloride solutions have been shown to exhibit magnetic field fluctuations over a wide range of size and time scales. Power law behavior observed in these reactions is consistent with models said to exhibit self-organized criticality. Voltage fluctuations observed during the dissolution of magnesium and aluminum in copper chloride solution are qualitatively similar to the recorded magnetic signals. In this paper, distributions of voltage and magnetic peak sizes, noise spectra, and return times are compared for both reactions studied. PMID:15606263

  4. Tuning Bimolecular Chemical Reactions by Electric Fields

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur V.; Krems, Roman V.

    2015-07-01

    We develop a theoretical method for solving the quantum mechanical reactive scattering problem in the presence of external fields based on a hyperspherical coordinate description of the reaction complex combined with the total angular momentum representation for collisions in external fields. The method allows us to obtain converged results for the chemical reaction LiF +H ?Li +HF in an electric field. Our calculations demonstrate that, by inducing couplings between states of different total angular momenta, electric fields with magnitudes <150 kV /cm give rise to resonant scattering and a significant modification of the total reaction probabilities, product state distributions, and the branching ratios for reactive versus inelastic scattering.

  5. Reaction synthesis of heat-resistant materials

    SciTech Connect

    Deevi, S.C.; Sikka, V.K.

    1995-12-31

    Exothermicity associated with the synthesis of aluminides can be utilized to obtain aluminides of transition metals. Combustion synthesis, extrusion, and hot pressing were utilized to obtain dense intermetallics and their composites. Composites were analyzed by X- ray diffraction and microscopy techniques, and tensile properties were measured on button-head and sheet specimens of intermetallics and their composites. Mechanical properties of intermetallics obtained by reaction synthesis and densification compare well with conventionally processed materials. Reaction-synthesis principles were also extended to weld overlays. Possible approaches to obtaining dense products by reaction synthesis and densification are summarized in a schematic illustration. 19 refs., 14 figs., 3 tabs.

  6. REACTION-DIFFUSION FRONT SPEED ENHANCEMENT BY FLOWS ANDREJ ZLATOS

    E-print Network

    Zlato?, Andrej

    -negative reaction function f C1, ([0, 1]) accounts for the increase of temperature due to a chemical reaction the reaction-advection-diffusion equation Tt + u(x) · T = T + f(T) (1.1) for the (normalized) temperature T. If > 0, then f is an ignition reaction (with ignition temperature ), otherwise f is a positive reaction

  7. Astrophysical reaction rate for the 8 Li,,n, ...9

    E-print Network

    Horváth, Ákos

    Astrophysical reaction rate for the 8 Li,,n, ...9 Li reaction Hiroshi Kobayashi,1, * Kazuo Ieki,1 A reaction by performing the inverse reaction 9 Li( ,n)8 Li, with the equivalent photons in the electric field of nuclei in a Pb target providing the rays for the reaction. The energy spectrum of lithium

  8. [Psychopathologic reactions in orthopedic patients].

    PubMed

    Lesi?, Aleksandar; Opali?, Petar

    2003-01-01

    The idea to monitor and research psychopathological responses of physically injured persons in a more systematic manner has come from our observation of huge differences in patient behavior, whose psychological responses were noticeably changed and often inappropriate. The behavior aberrations were all the more striking because we treated war-time injuries in addition to peacetime ones. Our sample had 175 patient subjects, of both sexes, different ages, marital status and professions. A group of 70 patients treated in the Institute for Orthopedic Surgery and Traumatology were divided into two subgroups. The first experimental subgroup (E1) consisted of 26 (37.1%) patients physically injured in combat. The second subgroup (E2) had 44 (62.9%) patients physically injured in peacetime circumstances (car accidents, work accidents, etc). The physical injuries encompassed injuries to spinal column and extremities. The control (K) consisted of 105 subjects without physical injuries. The clinical picture and psychological reactions of the patients were examined by means of 4 instruments--PTSD-10 scale or posttraumatic symptoms scale [1], Family Homogeneity Index/FHI/with 19 variables, applied to measure the relation between the family system homogeneity and accident effects [2], Short Eysenck's Personality Inventory applied to investigate neuroticism and extroversion and introversion traits [3], Late Effects of Accidental Injury Questionnaire [4]. Our observations of psychological responses of patients in our ward (insomnia, sedatives intake) were mostly confirmed by tests conducted with the above instruments. In the group of the wartime injured (E1), as well as in the control (K), Eysenck's scale proved a significantly higher degree of neuroticism in comparison to the peacetime injured. Such results indicated that the wartime injured would most probably develop the picture of Posttraumatic Stress Disorder. Such a conclusion was related not only to the seriousness of injuries but also to the circumstances of their occurrence. The proneness to develop PTSD symptoms was not in correlation with the preparedness for accident, it being much poorer in peace-time injuries, as opposed to wartime patients, who had been prepared to the possibility of injury occurrence. The highest value of family homogeneity (FHI) was established in the wartime injured, which led us to conclude that the injury contributed to the cohesion of the family from which the patient came. By extracting some questions related to psychopathological entities such as insomnia, depression, somatization, anxiety, and cognitive disorders, the following results were obtained. Depression was the most frequent in both groups of injuries. Anxiety was also present in the control group; and insomnia and somatization, that is, conversion symptoms, were present in both groups of the injured. By examining narrower psychological characteristics of the wartime injured revealed dissociation problems--derangement to be the most frequent. Then follow the symptoms of depression, which occur significantly more frequently in the wartime injured in comparison to the peacetime injured. The phenomenological symptoms of derangement and depression proved to be reliable parameters of physical trauma. It is also significant that the three characteristics showed correlation to psychopathological responses: severity of surgery, paralysis, and acute injury. PMID:14692144

  9. Biomixing by chemotaxis and efficiency of biological reactions: The critical reaction case

    NASA Astrophysics Data System (ADS)

    Kiselev, Alexander; Ryzhik, Lenya

    2012-11-01

    Many phenomena in biology involve both reactions and chemotaxis. These processes can clearly influence each other, and chemotaxis can play an important role in sustaining and speeding up the reaction. In continuation of our work [A. Kiselev and L. Ryzhik, "Biomixing by chemotaxis and enhancement of biological reactions," Comm. Partial Differential Equations 37, 298-318 (2012)], 10.1080/03605302.2011.589879, we consider a model with a single density function involving diffusion, advection, chemotaxis, and absorbing reaction. The model is motivated, in particular, by the studies of coral broadcast spawning, where experimental observations of the efficiency of fertilization rates significantly exceed the data obtained from numerical models that do not take chemotaxis (attraction of sperm gametes by a chemical secreted by egg gametes) into account. We consider the case of the weakly coupled quadratic reaction term, which is the most natural from the biological point of view and was left open in Kiselev and Ryzhik ["Biomixing by chemotaxis and enhancement of biological reactions," Comm. Partial Differential Equations 37, 298-318 (2012)], 10.1080/03605302.2011.589879. The result is that similarly to Kiselev and Ryzhik ["Biomixing by chemotaxis and enhancement of biological reactions," Comm. Partial Differential Equations 37, 298-318 (2012)], 10.1080/03605302.2011.589879, the chemotaxis plays a crucial role in ensuring efficiency of reaction. However, mathematically, the picture is quite different in the quadratic reaction case and is more subtle. The reaction is now complete even in the absence of chemotaxis, but the timescales are very different. Without chemotaxis, the reaction is very slow, especially for the weak reaction coupling. With chemotaxis, the timescale and efficiency of reaction are independent of the coupling parameter.

  10. Solar thermal aerosol flow reaction process

    DOEpatents

    Weimer, Alan W.; Dahl, Jaimee K.; Pitts, J. Roland; Lewandowski, Allan A.; Bingham, Carl; Tamburini, Joseph R.

    2005-03-29

    The present invention provides an environmentally beneficial process using concentrated sunlight to heat radiation absorbing particles to carry out highly endothermic gas phase chemical reactions ultimately resulting in the production of hydrogen or hydrogen synthesis gases.

  11. Stochastic thermodynamics of chemical reaction networks

    E-print Network

    Tim Schmiedl; Udo Seifert

    2006-12-19

    For chemical reaction networks described by a master equation, we define energy and entropy on a stochastic trajectory and develop a consistent nonequilibrium thermodynamic description along a single stochastic trajectory of reaction events. A first-law like energy balance relates internal energy, applied (chemical) work and dissipated heat for every single reaction. Entropy production along a single trajectory involves a sum over changes in the entropy of the network itself and the entropy of the medium. The latter is given by the exchanged heat identified through the first law. Total entropy production is constrained by an integral fluctuation theorem for networks arbitrarily driven by time-dependent rates and a detailed fluctuation theorem for networks in the steady state. Further exact relations like a generalized Jarzynski relation and a generalized Clausius inequality are discussed. We illustrate these results for a three-species cyclic reaction network which exhibits nonequilibrium steady states as well as transitions between different steady states.

  12. Multistage reaction pathways in detonating high explosives

    SciTech Connect

    Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya

    2014-11-17

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N{sub 2} and H{sub 2}O within ?10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N{sub 2} and H{sub 2}O productions.

  13. Adsorption Isotherms and Surface Reaction Kinetics

    ERIC Educational Resources Information Center

    Lobo, L. S.; Bernardo, C. A.

    1974-01-01

    Explains an error that occurs in calculating the conditions for a maximum value of a rate expression for a bimolecular reaction. The rate expression is derived using the Langmuir adsorption isotherm to relate gas pressures and corresponding surface coverages. (GS)

  14. Enzyme Reactions in Nanoporous, Picoliter Volume Containers

    SciTech Connect

    Siuti, Piro; Retterer, Scott T; Choi, Chang Kyoung; Doktycz, Mitchel John

    2012-01-01

    Advancements in nanoscale fabrication allow creation of small volume reaction containers that can facilitate the screening and characterization of enzymes. A porous, ~19 pL volume vessel has been used in this work to carry out enzyme reactions under varying substrate concentrations. Glucose oxidase and horseradish peroxidase can be contained in these structures and diffusively fed with a solution containing glucose and the fluorogenic substrate Amplex Red through the engineered nanoscale pore structure. Fluorescent microscopy was used to monitor the reaction, which was carried out under microfluidic control. Kinetic characteristics of the enzyme were evaluated and compared with results from conventional scale reactions. These picoliter, nanoporous containers can facilitate quick determination of enzyme kinetics in microfluidic systems without the requirement of surface tethering and can be used for applications in drug discovery, clinical diagnostics and high-throughput screening.

  15. Individual Reactions to Failure in Virtual Teams 

    E-print Network

    Diaz, Ismael

    2012-02-14

    This project examines the relationship between team identification and collaboration configuration and how they affect attributions to failure. In a sample of 110 participants, we examined reactions to failure. We manipulated perceptions...

  16. Immune Reactions Among Marine and Other Invertebrates

    ERIC Educational Resources Information Center

    Bang, Frederik B.

    1973-01-01

    Discusses the defense mechanisms and immune reaction found in invertebrates, and examines the wealth of related biological problems that need study and many of the leads that have recently been developed. (JR)

  17. Allergic and nonallergic reactions to nitroglycerin.

    PubMed

    Ramey, John T; Lockey, Richard F

    2006-01-01

    Allergic and nonallergic reactions to nitroglycerin occur. The aims of this study were to review the different manifestations of nitroglycerin allergy, to explain how to evaluate for it, and to discuss its treatment. We reviewed relevant literature in peer-reviewed journals, computerized databases, and references identified from relevant bibliographics. Nitroglycerin's most common side effects are headache, facial flushing, head throbbing, fainting, hypotension, tachycardia, and syncope. The majority of reported skin reactions to topical and transdermal nitroglycerin products are irritant contact dermatitis, allergic contact dermatitis, and urticaria. Five cases of presumed allergic reactions to oral, sublingual, intravenous, or perianal nitroglycerin products have been described. Patch testing may be helpful in subjects with skin reactions to topical or transdermal nitroglycerin. In subjects with positive patch tests to nitroglycerin (allergic contact dermatitis), transdermal nitroglycerin patches and other topical nitroglycerin products should be avoided. Most patients with contact dermatitis to nitroglycerin have tolerated oral nitroglycerin, sublingual nitroglycerin, or oral isosorbide challenges. PMID:16913273

  18. Heterogeneous Reactions of Epoxides in Acidic Media 

    E-print Network

    Lal, Vinita

    2012-02-14

    Epoxides have been recently identified as one of the intermediate species in the gas phase oxidation of alkenes. This study investigates the reaction of isoprene oxide and alpha-pinene oxide with sulfuric acid to identify the potential of epoxides...

  19. A hitherto unknown transketolase-catalyzed reaction.

    PubMed

    Sevostyanova, Irina A; Solovjeva, Olga N; Kochetov, German A

    2004-01-16

    Yeast transketolase, in addition to catalyzing the transferase reaction through utilization of two substrates--the donor substrate (ketose) and the acceptor substrate (aldose)--is also able to catalyze a one-substrate reaction with only aldose (glycolaldehyde) as substrate. The interaction of glycolaldehyde with holotransketolase results in formation of the transketolase reaction intermediate, dihydroxyethyl-thiamin diphosphate. Then the glycolaldehyde residue is transferred from dihydroxyethyl-thiamin diphosphate to free glycolaldehyde. As a result, the one-substrate transketolase reaction product, erythrulose, is formed. The specific activity of transketolase was found to be 0.23 U/mg and the apparent Km for glycolaldehyde was estimated as 140 mM. PMID:14697258

  20. Polymerization as a Model Chain Reaction

    ERIC Educational Resources Information Center

    Morton, Maurice

    1973-01-01

    Describes the features of the free radical, anionic, and cationic mechanisms of chain addition polymerization. Indicates that the nature of chain reactions can be best taught through the study of macromolecules. (CC)

  1. Violent Reactions from Non-Shock Stimuli

    NASA Astrophysics Data System (ADS)

    Sandusky, H. W.; Granholm, R. H.

    2007-12-01

    Most reactions are thermally initiated, whether from direct heating or dissipation of energy from mechanical, shock, or electrical stimuli. For other than prompt shock initiation, the reaction must spread through porosity or over large surface area to become more violent than just rupturing any confinement. While burning rates are important, high-strain mechanical properties are nearly so, either by reducing existing porosity or generating additional surface area through fracture. In studies of deflagration-to-detonation transition (DDT), it has been shown that reaction violence is reduced if the binder is softened, either by raising the initial temperature or adding a solvent. In studies of cavity collapse in explosives, those with soft rubber binders will deform and undergo mild reaction whereas those with stiff binders will fracture and generate additional surface area for a violent event.

  2. Recoil polarimetery in meson photoproduction reactions 

    E-print Network

    Sikora, Mark

    2011-11-23

    A large acceptance polarimeter has been designed to measure recoil polarisation in pseudoscalar (J?=0?) meson photoproduction reactions. The device was installed at the MAMI facility at the Institut für Kernphysik in ...

  3. Adolescents' Fright Reactions to Television and Films.

    ERIC Educational Resources Information Center

    Cantor, Joanne; Reilly, Sandra

    1982-01-01

    Results demonstrate that adolescents experience enduring fright reactions from scary television shows and films, yet their mothers are often unaware of their responses. Concludes that family communication about how and when a child is frightened is poor. (PD)

  4. Unusual Cytochrome P450 Enzymes and Reactions*

    PubMed Central

    Guengerich, F. Peter; Munro, Andrew W.

    2013-01-01

    Cytochrome P450 enzymes primarily catalyze mixed-function oxidation reactions, plus some reductions and rearrangements of oxygenated species, e.g. prostaglandins. Most of these reactions can be rationalized in a paradigm involving Compound I, a high-valent iron-oxygen complex (FeO3+), to explain seemingly unusual reactions, including ring couplings, ring expansion and contraction, and fusion of substrates. Most P450s interact with flavoenzymes or iron-sulfur proteins to receive electrons from NAD(P)H. In some cases, P450s are fused to protein partners. Other P450s catalyze non-redox isomerization reactions. A number of permutations on the P450 theme reveal the diversity of cytochrome P450 form and function. PMID:23632016

  5. Marginal states in a cubic autocatalytic reaction

    NASA Astrophysics Data System (ADS)

    Das, Debojyoti; Ghosh, Pushpita; Ray, Deb Shankar

    2011-09-01

    Marginal steady state belongs to a special class of states in nonlinear dynamics. To realize this state we consider a cubic autocatalytic reaction A + 2B ? 3B in a continuous-stirred-tank-reactor, where the flow rate of the reactant A can be controlled to manipulate the dynamical behavior of the open system. We demonstrate that when the flow rate is weakly noisy the autocatalytic reaction admits of a steady state which is marginal in nature and is surrounded by infinite number of periodic trajectories. When the uncatalyzed reaction A ? B is included in the reaction scheme, there exists a marginal steady state which is a critical state corresponding to the point of transition between the flow branch and the equilibrium branch, similar to gas-liquid critical point of transition. This state loses its stability in the weak noise limit.

  6. EMOTIONAL REACTIONS TO DISFIGUREMENT FROM CANCER THERAPY.

    PubMed

    ADSETT, C A

    1963-08-31

    Disfigurement not only produces current anxieties but reactivates childhood conflicts. The emotional reaction depends upon the disturbance to the patient's major adaptations to life as well as the meaning of the organ to the patient. Fear of isolation and rejection by others may be more terrifying than fear of death. Emotional reactions include regression with marked dependency, anxiety, depression, hostility and, if severe, paranoid states, hypochondriasis, denial, counterphobic behaviour, obsessive-compulsive reactions and schizophrenic reactions. Management basically involves early establishment of a positive doctor-patient relationship. In such a relationship the physican should educate his patient, undercut guilt, accept transient regression and expression of anger, set limits on counterphobic behaviour, either support or gently question denial of reality, and support, without being overly sympathetic, a depressed patient. The nurse, social worker, psychiatrist and the patient's family may be valuable members of the therapy team. Disfigurements of various body areas pose individual problems of management. PMID:14042789

  7. Method for predicting enzyme-catalyzed reactions

    DOEpatents

    Hlavacek, William S.; Unkefer, Clifford J.; Mu, Fangping; Unkefer, Pat J.

    2013-03-19

    The reactivity of given metabolites is assessed using selected empirical atomic properties in the potential reaction center. Metabolic reactions are represented as biotransformation rules. These rules are generalized from the patterns in reactions. These patterns are not unique to reactants but are widely distributed among metabolites. Using a metabolite database, potential substructures are identified in the metabolites for a given biotransformation. These substructures are divided into reactants or non-reactants, depending on whether they participate in the biotransformation or not. Each potential substructure is then modeled using descriptors of the topological and electronic properties of atoms in the potential reaction center; molecular properties can also be used. A Support Vector Machine (SVM) or classifier is trained to classify a potential reactant as a true or false reactant using these properties.

  8. Precautions and Adverse Reactions during Blood Transfusion

    MedlinePLUS

    ... More serious allergic reactions may be treated with hydrocortisone or even with epinephrine . Treatments are available that ... Name Select Brand Names acetaminophen TYLENOL epinephrine ADRENALIN hydrocortisone CORTEF, SOLU-CORTEF Blood Transfusion Overview of Blood ...

  9. Severe cutaneous adverse reaction to telaprevir.

    PubMed

    Shuster, Marina; Do, Daihung; Nambudiri, Vinod

    2015-01-01

    A 50-year-old woman presented with diffuse, intensely pruritic pink-red papules on her trunk and extremities three weeks after starting combination therapy with ribavirin, telaprevir, and interferon. She also had cervical lymphadenopathy, fever, eosinophilia, and transaminitis consistent with a severe drug reaction to telaprevir. She was started on high potency topical steroids under inpatient observation and recovered within two weeks. Severe cutaneous eruptions secondary to telaprevir have resulted in black-box warnings for potentially fatal skin reactions, including Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) and Stevens-Johnson Syndrome (SJS), and Toxic Epidermal Necrolysis (TEN). Because these reactions carry acute mortality rates of 10%, prompt detection and treatment with steroids are important. As such, physicians should be aware of these potentially lethal side effects. PMID:25612120

  10. Towards exotic nuclei via binary reaction mechanism

    E-print Network

    N. V. Antonenko; A. K. Nasirov; T. M. Shneidman; V. D. Toneev

    1997-11-19

    Assuming a binary reaction mechanism, the yield of isotopes near the heaviest $N=Z$ neutron-deficit nucleus $^{100}$Sn is studied with a microscopic transport model. The large influence of nuclear shell structure and isotope composition of the colliding nuclei on the production of exotic nuclei is demonstrated. It is shown that the reaction $^{54}$Fe+$^{106}$Cd seems to be most favourable for producing primary exotic Sn isotopes which may survive if the excitation energy in the entrance reaction channel is less than about 100 MeV. In the case of large differences in the charge (mass) numbers between entrance and exit channels the light fragment yield is essentially fed from the decay of excited primary heavier fragments. The existence of optimal energies for the production of some oxygen isotopes in the binary mechanism is demonstrated for the $^{32}$S+$^{197}$Au reaction.

  11. Stochastic Analysis of Reaction–Diffusion Processes

    PubMed Central

    Hu, Jifeng; Kang, Hye-Won

    2013-01-01

    Reaction and diffusion processes are used to model chemical and biological processes over a wide range of spatial and temporal scales. Several routes to the diffusion process at various levels of description in time and space are discussed and the master equation for spatially discretized systems involving reaction and diffusion is developed. We discuss an estimator for the appropriate compartment size for simulating reaction–diffusion systems and introduce a measure of fluctuations in a discretized system. We then describe a new computational algorithm for implementing a modified Gillespie method for compartmental systems in which reactions are aggregated into equivalence classes and computational cells are searched via an optimized tree structure. Finally, we discuss several examples that illustrate the issues that have to be addressed in general systems. PMID:23719732

  12. Cutaneous adverse reactions to acyclovir: case reports.

    PubMed Central

    Robinson, G E; Weber, J; Griffiths, C; Underhill, G S; Jeffries, D J; Goldmeir, D

    1985-01-01

    Intravenous, oral, and topical formulations of acyclovir have been successful in treating genital herpes. We report on two patients who developed skin reactions while taking acyclovir, which resolved when treatment was stopped. PMID:2935482

  13. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.

  14. Postabortion Depressive Reactions in College Women.

    ERIC Educational Resources Information Center

    Gould, Nadja Burns

    1980-01-01

    Depression as a postabortion phenomenon among women at a large university is explored. Characteristics of long- and short-term depressive reactions, a review of abortion research, and several case studies are presented. (JN)

  15. REACTION KINETICS In this chapter, we will discuss the time evolution of simple reactions in reduced spatial dimension. Diffusion-

    E-print Network

    Redner, Sidney

    Chapter 8 REACTION KINETICS In this chapter, we will discuss the time evolution of simple reactions-controlled limit. In contrast, in the reaction-controlled limit, reactants must meet many times before a reaction in reduced spatial dimension. Diffusion- limited reactions have played an important role in the development

  16. A two-scale reaction-diffusion system with micro-cell reaction concentrated on a free boundary

    E-print Network

    Eindhoven, Technische Universiteit

    A two-scale reaction-diffusion system with micro-cell reaction concentrated on a free boundary, 5600 MB Eindhoven, The Netherlands Abstract We discuss the fast-reaction limit of a two-scale reaction-diffusion model. We point out that if the reaction constant a explodes to infinity, then a two-scale PDEs system

  17. Special Relativity and Reactions with Unstable Nuclei

    E-print Network

    C. A. Bertulani

    2005-05-04

    Dynamical relativistic effects are often neglected in the description of reactions with unstable nuclear beams at intermediate energies (E ~ 100 MeV/nucleon). Evidently, this introduces sizable errors in experimental analysis and theoretical descriptions of these reactions. This is particularly important for the experiments held in GANIL/France, MSU/USA, RIKEN/Japan and GSI/Germany. I review a few examples where relativistic effects have been studied in nucleus-nucleus scattering at intermediate energies.

  18. Serious allergic reaction to administration of epirubicin.

    PubMed

    Oltmans, R; van der Vegt, S G L

    2003-06-01

    A 47-year old woman was admitted for adjuvant treatment with chemotherapy consisting of epirubicin and cyclophosphamide. During the second course of chemotherapy an allergic reaction occurred after administration of epirubicin. Treatment with clemastine 2 mg iv caused a quick recovery and after 24 hours there was only a slight redness of the face. A discussion follows on allergic reactions to antracyclines and the literature is updated. PMID:12948166

  19. Impact of THM reaction rates for astrophysics

    NASA Astrophysics Data System (ADS)

    Lamia, L.; Spitaleri, C.; Tognelli, E.; Degl'Innocenti, S.; Pizzone, R. G.; Moroni, P. G. Prada; Puglia, S. M. R.; Romano, S.; Sergi, M. L.

    2015-10-01

    Burning reaction S(E)-factor determinations are among the key ingredients for stellar models when one has to deal with energy generation evaluation and the genesis of the elements at stellar conditions. To by pass the still present uncertainties in extrapolating low-energies values, S(E)-factor measurements for charged-particle induced reactions involving light elements have been made available by devote Trojan Horse Method (THM) experiments. The recent results are here discussed together with their impact in astrophysics.

  20. Kinetics of Chemical Reactions in Flames

    NASA Technical Reports Server (NTRS)

    Zeldovich, Y.; Semenov, N.

    1946-01-01

    In part I of the paper the theory of flame propagation is developed along the lines followed by Frank-Kamenetsky and one of the writers. The development of chain processes in flames is considered. A basis is given for the application of the method of stationary concentrations to reactions in flames; reactions with branching chains are analyzed. The case of a diffusion coefficient different from the coefficient of temperature conductivity is considered.

  1. Gold(I)-catalyzed enantioselective cycloaddition reactions

    PubMed Central

    2013-01-01

    Summary In recent years there have been extraordinary developments of gold(I)-catalyzed enantioselective processes. This includes progress in the area of cycloaddition reactions, which are of particular interest due to their potential for the rapid construction of optically active cyclic products. In this article we will summarize some of the most remarkable examples, emphasizing reaction mechanisms and key intermediates involved in the processes. PMID:24204438

  2. Charge Transfer Reactions in Porous Materials

    E-print Network

    Mitchell-Koch, Katie Rose

    2008-08-15

    REACTIONS IN POROUS MATERIALS BY Katie R. Mitchell-Koch Submitted to the graduate degree program in Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Committee...: Ward H. Thompson, Chairperson Mikhail V. Barybin Brian B. Laird Aaron M. Scurto Jon A. Tunge ii The Dissertation Committee for Katie R. Mitchell-Koch certifies that this is the approved version of the following dissertation: CHARGE TRANSFER REACTIONS...

  3. Aspects of Heavy Ion Transfer Reactions

    SciTech Connect

    Corradi, L.

    2009-08-26

    With the large solid angle magnetic spectrometer PRISMA coupled to the {gamma} array CLARA extensive investigations have been carried out for nuclear structure and reaction dynamics. In the present paper aspects of these studies will be presented, focusing more closely on the reaction mechanism, in particular on the properties of quasi-elastic and deep-inelastic processes and on measurements at energies far below the Coulomb barrier.

  4. The Reaction Specificity of Nanoparticles in Solution

    SciTech Connect

    Baer, Donald R.

    2006-06-01

    Iron-based metallic and oxide nanoparticles have been shown to have enhanced reactivity towards a variety of chemical species, including chlorinated hydrocarbons and reducible oxyanions, which frequently contaminate ground water at DOE and other government and industrial sites. Possibly of greater importance is the ability of these nanoparticles to select specific reaction pathways, potentially facilitating the formation of the most environmentally acceptable reaction products.

  5. Cyclic Peptidomimetics and Pseudopeptides from Multicomponent Reactions

    NASA Astrophysics Data System (ADS)

    Wessjohann, Ludger A.; Rhoden, Cristiano R. B.; Rivera, Daniel G.; Vercillo, Otilie Eichler

    Multicomponent reactions (MCRs) that provide in the final product amides are suitable to produce peptides and peptide-like moieties. The Passerini and Staudinger reactions provide one amide bond, and the Ugi-four-component reaction generates two amides from three or even four (or more) components, respectively. The Ugi-reaction thus is most important to produce peptides and peptoids while the Passerini reaction is useful to generate depsipeptoid moieties. In order to produce cyclic peptides and pseudopeptides, the linear peptidic MCR products have to be cyclized, usually with the help of bifunctional or activatable building blocks. Orthogonal but cyclizable secondary functionalities that need no protection in isonitrile MCRs commonly include alkenes (for ring closing metathesis), azide/alkyne (for Huisgen click reactions) or dienes and enoates (Diels-Alder) etc. If MCR-reactive groups are to be used also for the cyclisation, monoprotected bifunctional building blocks are used and deprotected after the MCR, e.g. for Ugi reactions as Ugi-Deprotection-Cyclisation (UDC). Alternatively one of the former building blocks or functional groups generated by the MCR can be activated. Most commonly these are activated amides (from so-called convertible isonitriles) which can be used e.g. for Ugi-Activation-Cyclisation (UAC) protocols, or most recently for a simultaneous use of both strategies Ugi-Deprotection/Activation-Cyclisation (UDAC). These methods mostly lead to small, medicinally relevant peptide turn mimics. In an opposing strategy, the MCR is rather used as ring-closing reaction, thereby introducing a (di-)peptide moiety. Most recently these processes have been combined to use MCRs for both, linear precursor synthesis and cyclisation. These multiple MCR approaches allow the most efficient and versatile one pot synthesis of macrocyclic pseudopeptides known to date.

  6. Photosensitivity reactions: a case report involving NSAIDs.

    PubMed

    Mammen, L; Schmidt, C P

    1995-08-01

    Photosensitivity reactions associated with the use of prescription or over-the-counter drugs may be classified as phototoxic (caused by potentiation of solar energy by a drug) or photoallergic (in which the combination of a photosensitizing agent and light evokes a true cell-mediated hypersensitivity response). A case of a photoallergic response related to the use of piroxicam is included to illustrate the presentation and management of photosensitivity reactions to nonsteroidal anti-inflammatory drugs. PMID:7625330

  7. Exclusive Reactions Involving Pions and Nucleons

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.; Tripathi, R. K.

    2002-01-01

    The HZETRN code requires inclusive cross sections as input. One of the methods used to calculate these cross sections requires knowledge of all exclusive processes contributing to the inclusive reaction. Conservation laws are used to determine all possible exclusive reactions involving strong interactions between pions and nucleons. Inclusive particle masses are subsequently determined and are needed in cross-section calculations for inclusive pion production.

  8. [Periosteal reaction in periarteritis nodosa in children].

    PubMed

    Bouguerra, L; el Khil, A K

    1989-10-21

    Bone involvement has exceptionally been reported in children with periarteritis nodosa. A 5-year old girl was admitted to hospital for fever and arthralgias. Three months later, myalgias and painful subcutaneous nodules developed on the legs and ankles. Skin biopsy yielded a diagnosis of periarteritis nodosa. X-ray films revealed a bilateral periosteal reaction with images of laminae in the tibia and fibula. After a 4-year remission under corticosteroid therapy, the periosteal reaction persisted. PMID:2577026

  9. Stellar evolution and the triple-? reactions

    SciTech Connect

    Suda, Takuma

    2014-05-02

    Nuclear reaction rates play a crucial role in the evolution of stars. For low-mass stars, the triple-? reaction controls the helium burning stars in the red giant and asymptotic giant branch (AGB) phase. More importantly, the cross section of the triple-? reaction has a great impact on the helium ignition at the center of the electron degenerate helium core of red giants and on the helium shell flashes of AGB stars. It is to be noted that stellar evolution models are influenced not only by the value of the cross section, but also by the temperature dependence of the reaction rate. In this paper, I present the impact of the triple-? reaction rates on the evolution of low-mass metal-free stars and intermediate-mass AGB stars. According to the previous study, the constraint on the triple-? reaction rate is derived based on stellar evolution theory. It is found that the recent revisions of the rate proposed by nuclear physics calculations satisfy the condition for the ignition of the helium core flash in low-mass stars.

  10. Bifurcations of dividing surfaces in chemical reactions

    NASA Astrophysics Data System (ADS)

    Iñarrea, Manuel; Palacián, Jesús F.; Pascual, Ana Isabel; Salas, J. Pablo

    2011-07-01

    We study the dynamical behavior of the unstable periodic orbit (NHIM) associated to the non-return transition state (TS) of the H2 + H collinear exchange reaction and their effects on the reaction probability. By means of the normal form of the Hamiltonian in the vicinity of the phase space saddle point, we obtain explicit expressions of the dynamical structures that rule the reaction. Taking advantage of the straightforward identification of the TS in normal form coordinates, we calculate the reaction probability as a function of the system energy in a more efficient way than the standard Monte Carlo method. The reaction probability values computed by both methods are not in agreement for high energies. We study by numerical continuation the bifurcations experienced by the NHIM as the energy increases. We find that the occurrence of new periodic orbits emanated from these bifurcations prevents the existence of a unique non-return TS, so that for high energies, the transition state theory cannot be longer applied to calculate the reaction probability.

  11. Reaction cycle and thermodynamics in bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1992-01-01

    Light causes the all-trans to 13-cis isomerization of the retinal in bacteriorhodopsin; the thermal relaxation leading back to the initial state drives proton transport first via proton transfer between the retinal Schiff base and D85 and then between the Schiff base and D96. The reaction sequence and thermodynamics of this photocycle are described by measuring time-resolved absorption changes with a gated multichannel analyzer between 100 ns and 100 ms, at six temperatures between 5 degrees C and 30 degrees C. Analysis of the energetics of the chromophore reaction sequence is on the basis of a recently proposed model (Varo & Lanyi, Biochemistry 30, 5016-5022, 1991) which consists of a single cycle and many reversible reactions: BR -hv-->K<==>L<==>M1-->M2<==>N<==>O-->BR. The existence of the M1-->M2 reaction, which functions as the switch in the proton transfer, is confirmed by spectroscopic evidence. The calculated thermodynamic parameters indicate that the exchange of free energy between the protein and the protons is at the switch step. Further, a large entropy decrease at this reaction suggests a protein conformation change which will conserve delta G for driving the completion of the reaction cycle. The results provide insights to mechanism and energy coupling in this system, with possible relevance to the general question of how ion pumps function.

  12. The aroma side of the Maillard reaction.

    PubMed

    Cerny, Christoph

    2008-04-01

    The Maillard reaction in food produces, among others, a diversity of sensory-active compounds (aroma, taste, color). The resulting key aroma compounds are often present only in trace concentrations of 1 microg/kg to 1 mg/kg. Nevertheless, they contribute to the respective flavor because of their low odor-perception thresholds. While Maillard intermediates, such as Amadori compounds and deoxyosones, are formed at percentage levels during model reactions, the yield of aroma compounds, in particular nitrogen and sulfur-containing ones, is often as low as 0.001-0.01 mol%, thus indicating their formation through chemical side reactions. The elucidation of the relevant precursors in food and the identification of previously unknown intermediates can throw light on these minor pathways. Also, model reactions with isotopically labeled precursors are of great value in gaining insight into the relevant formation mechanisms. Several examples of these studies are illustrated including work to elucidate the role of the solvent glycerol in the formation of pyrazines, trials to reveal the relative significance of 4-hydroxy-5-methyl-3(2H)-furanone as intermediate in the reaction between ribose and cysteine, and experiments to assess the proportional contribution of the precursors cysteine, xylose, and thiamine to the formation of the resulting aroma compounds in the thermal reaction. PMID:18079482

  13. Dynamical properties of Discrete Reaction Networks.

    PubMed

    Paulevé, Loïc; Craciun, Gheorghe; Koeppl, Heinz

    2014-07-01

    Reaction networks are commonly used to model the dynamics of populations subject to transformations that follow an imposed stoichiometry. This paper focuses on the efficient characterisation of dynamical properties of Discrete Reaction Networks (DRNs). DRNs can be seen as modeling the underlying discrete nondeterministic transitions of stochastic models of reaction networks. In that sense, a proof of non-reachability in a given DRN has immediate implications for any concrete stochastic model based on that DRN, independent of the choice of kinetic laws and constants. Moreover, if we assume that stochastic kinetic rates are given by the mass-action law (or any other kinetic law that gives non-vanishing probability to each reaction if the required number of interacting substrates is present), then reachability properties are equivalent in the two settings. The analysis of two types of global dynamical properties of DRNs is addressed: irreducibility, i.e., the ability to reach any discrete state from any other state; and recurrence, i.e., the ability to return to any initial state. Our results consider both the verification of such properties when species are present in a large copy number, and in the general case. The necessary and sufficient conditions obtained involve algebraic conditions on the network reactions which in most cases can be verified using linear programming. Finally, the relationship of DRN irreducibility and recurrence with dynamical properties of stochastic and continuous models of reaction networks is discussed. PMID:23722628

  14. Mathematical model to predict drivers' reaction speeds.

    PubMed

    Long, Benjamin L; Gillespie, A Isabella; Tanaka, Martin L

    2012-02-01

    Mental distractions and physical impairments can increase the risk of accidents by affecting a driver's ability to control the vehicle. In this article, we developed a linear mathematical model that can be used to quantitatively predict drivers' performance over a variety of possible driving conditions. Predictions were not limited only to conditions tested, but also included linear combinations of these tests conditions. Two groups of 12 participants were evaluated using a custom drivers' reaction speed testing device to evaluate the effect of cell phone talking, texting, and a fixed knee brace on the components of drivers' reaction speed. Cognitive reaction time was found to increase by 24% for cell phone talking and 74% for texting. The fixed knee brace increased musculoskeletal reaction time by 24%. These experimental data were used to develop a mathematical model to predict reaction speed for an untested condition, talking on a cell phone with a fixed knee brace. The model was verified by comparing the predicted reaction speed to measured experimental values from an independent test. The model predicted full braking time within 3% of the measured value. Although only a few influential conditions were evaluated, we present a general approach that can be expanded to include other types of distractions, impairments, and environmental conditions. PMID:22431214

  15. Low Energy Nuclear Reactions: 2007 Update

    NASA Astrophysics Data System (ADS)

    Krivit, Steven B.

    2007-03-01

    This paper presents an overview of low energy nuclear reactions, a subset of the field of condensed matter nuclear science. Condensed matter nuclear science studies nuclear effects in and/or on condensed matter, including low energy nuclear reactions, an entirely new branch of science that gained widespread attention and notoriety beginning in 1989 with the announcement of a previously unrecognized source of energy by Martin Fleischmann and Stanley Pons that came to be known as cold fusion. Two branches of LENR are recognized. The first includes a set of reactions like those observed by Fleischmann and Pons that use palladium and deuterium and yield excess heat and helium-4. Numerous mechanisms have been proposed to explain these reactions, however there is no consensus for, or general acceptance of, any of the theories. The claim of fusion is still considered speculative and, as such, is not an ideal term for this work. The other branch is a wide assortment of nuclear reactions that may occur with either hydrogen or deuterium. Anomalous nuclear transmutations are reported that involve light as well as heavy elements. The significant questions that face this field of research are: 1) Are LENRs a genuine nuclear reaction? 2) If so, is there a release of excess energy? 3) If there is, is the energy release cost-effective?

  16. Low Energy Nuclear Reaction Products at Surfaces

    NASA Astrophysics Data System (ADS)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  17. The Smallest Multistationary Mass-Preserving Chemical Reaction Network

    E-print Network

    Rowell, Eric C.

    The Smallest Multistationary Mass-Preserving Chemical Reaction Network Anne Shiu Dept bistability are of interest to biologists and mathematicians alike. Chemical reaction network the- ory can state exists. Keywords: Chemical reaction network, bistability. 1 Introduction Bistable biochemical

  18. Probability 1 computation with chemical reaction networks Rachel Cummings

    E-print Network

    Probability 1 computation with chemical reaction networks Rachel Cummings David Doty David Soloveichik§ Abstract The computational power of stochastic chemical reaction networks (CRNs) varies signifi computation. How can chemical reactions process information, make decisions, and solve problems? A natural

  19. Graphene Layer Growth Chemistry: Five-Six-Ring Flip Reaction

    E-print Network

    Whitesides, R.; Domin, D.; Salomon-Ferrer, R.; Lester Jr., W.A.; Frenklach, M.

    2008-01-01

    addition and abstraction channels), collision, separation, and migration 18 reactions.environments. 18 In addition, the flip reaction is orders ofdue to the addition of the flip reaction channel species.

  20. Reaction Diffusion Equations Matrix Pencils and Common Lyapunov Functions

    E-print Network

    Knobloch,Jürgen

    Reaction Diffusion Equations Matrix Pencils and Common Lyapunov Functions CLFs and Turing Instability Applications Mathematical Biology - Reaction Diffusion Models and Turing Instability Stuart Townley University of Exeter, UK March 20, 2014 Stuart Townley Math Biol - Reaction Diffusion 1/ 33 #12