Sample records for mulches

  1. Rolled cotton mulch as an alternative mulching material for transplanted cucurbit crops

    USDA-ARS?s Scientific Manuscript database

    Low-density polyethylene (LDPE) mulch is commonly used in transplanted vegetable crop production in the southeastern U. S. Cantaloupe and watermelon growers use a system of hybrid transplants, grown on narrow LDPE mulch-covered seedbeds with overhead irrigation, and use the mulch cover for only one...

  2. Nanoparticles from Degradation of Biodegradable Plastic Mulch

    NASA Astrophysics Data System (ADS)

    Flury, Markus; Sintim, Henry; Bary, Andy; English, Marie; Schaefer, Sean

    2017-04-01

    Plastic mulch films are commonly used in crop production. They provide multiple benefits, including control of weeds and insects, increase of soil and air temperature, reduction of evaporation, and prevention of soil erosion. The use of plastic mulch film in agriculture has great potential to increase food production and security. Plastic mulch films must be retrieved and disposed after usage. Biodegradable plastic mulch films, who can be tilled into the soil after usage offer great benefits as alternative to conventional polyethylene plastic. However, it has to be shown that the degradation of these mulches is complete and no micro- and nanoparticles are released during degradation. We conducted a field experiment with biodegradable mulches and tested mulch degradation. Mulch was removed from the field after the growing season and composted to facilitate degradation. We found that micro- and nanoparticles were released during degradation of the mulch films in compost. This raises concerns about degradation in soils as well.

  3. Remediation potential of mulch for removing lead.

    PubMed

    Jang, A; Bishop, P L

    2012-01-01

    Hardwood bark mulch has good physicochemical properties for the adsorption of lead (Pb(II)). Batch tests were conducted to obtain the sorption coefficient of Pb(II) in mulch. The results of the Freundlich model were not in as good agreement as for the case of the Langmuir model. In addition, a laboratory-scale mulch permeable reactive barrier (PRB) system was designed for the treatment of Pb(II)-contaminated groundwater. The mulch PRB system, using a mulch layer, can potentially be used in the subsurface for cost-effective and in situ transformation of the Pb(II) into environmentally acceptable forms. From the Pb(II) breakthrough curve, the mulch becomes saturated more quickly at higher flow rates.

  4. The use of biodegradable mulch for tomato and broccoli production: Crop yield and quality, mulch deterioration, and growers' perceptions

    NASA Astrophysics Data System (ADS)

    Cowan, Jeremy Scott

    Biodegradable mulch may offer the benefits of polyethylene mulch for crop production with the added benefit of biodegradability. Four studies were carried out in Mount Vernon, WA to evaluate biodegradable mulch for tomato (Solanum lycopersicum L.) and broccoli (Brassica oleracea var. italica) production. The first study compared four biodegradable mulch treatments: BioAgri, BioTelo, WeedGuardPlus (cellulose product), and SB-PLA-10/11/12 (experimental, non-woven fabric), to polyethylene mulch and bare ground in high tunnels and in the open field for tomato yield and fruit quality over three growing seasons. Biodegradable plastic films produced yields and fruit quality comparable to polyethylene. Moreover, high tunnels increased total and marketable fruit weight five and eight times, respectively, compared to the open field. The second study quantified relationships among visual assessment parameters and mulch mechanical properties. Visual assessments and mechanical property tests of polyethylene, BioAgri, BioTelo, WeedGuardPlus, and SB-PLA-10/11/12, were made over three growing seasons. Regression analyses found the strongest relationship overall (r2 = 0.41) to be between the percent of initial breaking force in the machine direction and log 10 of percent visual deterioration. However, evaluating mulch products individually and increasing sample frequency are recommended for future research. The third study evaluated three biodegradable mulch products, BioAgri, Crown 1, and SB-PLA-11, after soil-incorporation. The average area of recovered mulch fragments decreased for all mulch products over time. The number of mulch fragments initially increased for all mulch products, with the greatest number of Crown 1 and BioAgri fragments recovered 132 and 299 days after incorporation, respectively. At 397 days after soil-incorporation, the total area of recovered fragments of Crown 1 and BioAgri was 0% and 34% of the theoretical maximum area, respectively. The fourth study

  5. Soil Quality and Colloid Transport under Biodegradable Mulches

    NASA Astrophysics Data System (ADS)

    Sintim, Henry; Bandopadhyay, Sreejata; Ghimire, Shuresh; Flury, Markus; Bary, Andy; Schaeffer, Sean; DeBruyn, Jennifer; Miles, Carol; Inglis, Debra

    2016-04-01

    Polyethylene (PE) mulch is commonly used in agriculture to increase water use efficiency, to control weeds, manage plant diseases, and maintain a favorable micro-climate for plant growth. However, producers need to retrieve and safely dispose PE mulch after usage, which creates enormous amounts of plastic waste. Substituting PE mulch with biodegradable plastic mulches could alleviate disposal needs. However, repeated applications of biodegradable mulches, which are incorporated into the soil after the growing season, may cause deterioration of soil quality through breakdown of mulches into colloidal fragments, which can be transported through soil. Findings from year 1 of a 5-year field experiment will be presented.

  6. [Double mulching application for Panax notoginseng growing seedlings].

    PubMed

    Ou, Xiao-Hong; Fang, Yan; Shi, Ya-Na; Guo, Lan-Ping; Wang, Li; Yang, Yan; Jin, Hang; Liu, Da-Hui

    2014-02-01

    In order to improve the irrigation for Panax notginseng growing seedlings, different mulching ways were carried out to investigate the effects of double mulching. Field experiment was applied to study soil moisture, soil temperature and bulk density of different mulching ways while the germination rate and seedlings growth also were investigated. Compared with the traditional single mulching with pine leaves or straw, double mulching using plastic film combined with pine leaves or straw could reduce 2/3 volumes of irrigation at the early seedling time Double mulching treatments didn't need to irrigate for 40 days from seeding to germination, and kept soil moisture and temperature steady at whole seedling time about 30% and 9.0-16.6 degrees C, respectively. The steady soil moisture and temperature benefited to resist late spring cold and germinate earlier while kept germination regularly, higher rate and seedlings quality. In contrast, single mulching using pine leaves or straw had poor soil moisture and temperature preserving, needed to irrigate every 12-day, meanwhile dropped the germination and booming time 14 days and 24-26 days, respectively, reduced germination rate about 11.3%-8.7%. However, single pine leaves mulching was better than straw mulching. In addition, though better effects of soil moisture and temperature preserving as well as earlier and higher rate of germination with single plastic films mulching had, some disadvantages had also been observed, such as daily soil temperature changed greatly, seedling bed soil hardened easily, more moss and weeds resulted difficulty in later management. To the purpose of saving water and labor as well as getting higher germination rate and seedlings quality, double mulching using plastic films combined pine leaves at the early time and single mulching removing plastic films at the later time is suggested to apply in the growing seedlings of P. notoginseng.

  7. Image Analysis to Estimate Mulch Residual on Soil

    NASA Astrophysics Data System (ADS)

    Moreno Valencia, Carmen; Moreno Valencia, Marta; Tarquis, Ana M.

    2014-05-01

    Organic farmers are currently allowed to use conventional polyethylene mulch, provided it is removed from the field at the end of the growing or harvest season. To some, such use represents a contradiction between the resource conservation goals of sustainable, organic agriculture and the waste generated from the use of polyethylene mulch. One possible solution is to use biodegradable plastic or paper as mulch, which could present an alternative to polyethylene in reducing non-recyclable waste and decreasing the environmental pollution associated with it. Determination of mulch residues on the ground is one of the basic requisites to estimate the potential of each material to degrade. Determination the extent of mulch residue on the field is an exhausting job while there is not a distinct and accurate criterion for its measurement. There are several indices for estimation the residue covers while most of them are not only laborious and time consuming but also impressed by human errors. Human vision system is fast and accurate enough in this case but the problem is that the magnitude must be stated numerically to be reported and to be used for comparison between several mulches or mulches in different times. Interpretation of the extent perceived by vision system to numerals is possible by simulation of human vision system. Machine vision comprising image processing system can afford these jobs. This study aimed to evaluate the residue of mulch materials over a crop campaign in a processing tomato (Solanum lycopersicon L.) crop in Central Spain through image analysis. The mulch materials used were standard black polyethylene (PE), two biodegradable plastic mulches (BD1 and BD2), and one paper (PP1) were compared. Meanwhile the initial appearance of most of the mulches was sort of black PE, at the end of the experiment the materials appeared somewhat discoloured, soil and/or crop residue was impregnated being very difficult to completely remove them. A digital camera

  8. Can plastic mulching replace irrigation in dryland agriculture?

    NASA Astrophysics Data System (ADS)

    Wang, L.; Daryanto, S.; Jacinthe, P. A.

    2017-12-01

    Increasing water use efficiency (WUE) is a key strategy to maintaining crops yield without over-exploiting the scarce water resource. Plastic mulching technology for wheat and maize has been commonly used in China, but their effect on yield, soil moisture, evapotranspiration (ET), and WUE has not been compared with traditional irrigation method. Using a meta-analysis approach, we quantitatively examined the efficacy of plastic mulching in comparison with traditional irrigation in dryland agriculture. Our results showed that plastic mulching technique resulted in yield increase comparable to irrigated crops but used 24% less water. By covering the ridges with plastic and channeling rainwater into a very narrow planting zone (furrow), plastic mulching increased WUE and available soil moisture. Higher WUE in plastic-mulched croplands was likely a result of greater proportion of available water being used for transpiration than evaporation. If problems related to production costs and residual plastic pollution could be managed, plastic mulching technology would become a promising strategy for dryland farming in other regions.

  9. DEVELOPING SUSTAINABLE ALTERNATIVES TO PLASTIC MULCH

    EPA Science Inventory

    We propose a project to raise awareness of pollution associated with the production, use and disposal of plastic films/ sheeting used as mulch, and to work with farmers and industry partners to develop a biodegradable, sustainable alternative to plastic mulch.

  10. Russian thistle for soil mulch in coal mine reclamation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Day, A.D.; Tucker, T.C.; Thames, J.L.

    1979-01-01

    The effectiveness of Russian thistle mulch in reducing soil moisture loss from coal mine soil was gauged and compared with the effectiveness of barley straw mulch. The decrease in soil moisture loss after mulch addition was greater in a low temperature, high humidity environment. Russian thistle mulch was as effective as barley straw in reducing soil moisture loss in Red Mesa loam, unmined soil, and coal mine soil. Because Russian thistle can be grown on mine spoils and has a higher organic volume than barley straw mulch has, treatment of mine soil with thistle will improve soil characteristics and plantmore » growth. (14 references, 1 table)« less

  11. Colored plastic mulch microclimates affect strawberry fruit yield and quality

    NASA Astrophysics Data System (ADS)

    Shiukhy, Saeid; Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2015-08-01

    Significant reduction of strawberry ( Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC50 value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment.

  12. Colored plastic mulch microclimates affect strawberry fruit yield and quality.

    PubMed

    Shiukhy, Saeid; Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2015-08-01

    Significant reduction of strawberry (Fragaria × ananassa, Duch.) fruit yield and quality, as a consequence of conventional cultivation method, is common in the Caspian Sea region, Iran. Recently, growers started using plastic mulches to overcome these shortcomings. Plastic mulches have different thermal and radiation properties and could affect strawberry fruit yield and quality. In the present study, the effect of different colored plastic mulches (black, red, and white) along with conventional practice was tested on yield and quality of strawberry Camarosa cultivar, in a completely randomized block design. Colored plastic mulches had highly significant effect on fruit weight, size, and phytochemical contents. In the most harvest times, mean fruit weight was significantly higher in red plastic relative to white and control treatments. Total fruit weight of plastic mulches was not significantly different, while all were statistically higher than that of control. Fruit size significantly increased over red plastic mulch. Total fruit numbers over plastic mulches were significantly higher than that of control treatment. The content of phenolic compounds was similar between treatments, while anthocyanin content, IC(50) value, and flavonoid content significantly were affected by colored plastics. In conclusion, colored plastic mulches could affect strawberry fruit weight and quality through altering strawberry thermal and radiation environment.

  13. Mulching as a means of exploiting dew for arid agriculture?

    NASA Astrophysics Data System (ADS)

    Graf, Alexander; Kuttler, Wilhelm; Werner, Julius

    2008-03-01

    A traditional mulching technique used in Lanzarote, Canary Islands, allows dry farming as well as pronounced water savings in irrigation. It is known to reduce evaporational losses, but is also supposed to enhance the nocturnal condensation of water vapour from the atmosphere. The mulch layer consists of porous volcanic rock fragments abundantly available on the island. The mulched surface is believed to cool rapidly and to be more hygroscopic than a bare soil surface. This was investigated during a field experiment conducted over 68 nights during different seasons in 2001 and 2002, as well as some simple laboratory measurements. It was found that nocturnal condensation on the mulch surface (max 0.33 mm) was lower than on the bare soil surface (max 0.57 mm) or any one of three alternative mulch substrates. However, a slightly stronger nocturnal cooling of the mulched as compared to the bare surface was present. It is shown that these contrary findings can be explained by the higher hygroscopicity of the dry loam soil, resulting in condensation gains beyond the strict definition of dew. Differences in plant-availability of non-hygroscopic dew water and hygroscopic water uptakes are discussed, and conditions under which mulching would show positive condensation effects are defined. This includes a theoretical section demonstrating that non-hygroscopic mulch layers of a proper thickness can provide small amounts of dew to plant roots at the mulch-soil interface. This condensation could also happen during the day and would be favoured by a high amplitude of the diurnal atmospheric moisture cycle.

  14. Reflective mulch enhances ripening and health compounds in apple fruit.

    PubMed

    Overbeck, Verena; Schmitz-Eiberger, Michaela A; Blanke, Michael M

    2013-08-15

    The objective of the study was to improve fruit quality, including health compounds, by improving light utilization for fruit crops under hail net. Four reflective mulches including plastics such as Extenday® and a bio-degradable paper were spread in the alleyways of a cv. 'Gala Mondial' apple orchard on 10 August 2010 5 weeks before anticipated harvest. Reflective mulch affected neither fruit firmness nor sugar, but accelerated starch breakdown, indicative of riper fruits (smaller Streif index), compared with the uncovered grass alleyway (control). Reflective mulches also improved fruit quality such as red coloration of cv. 'Gala Mondial' apples. This was due to significantly enhanced flavonoids and anthocyanins. Flavonoids increased up to 52.4% in the Extenday® treatment (29.2 nmol cm(-2) in the grass control versus 44.5 nmol cm(-2) fruit peel with reflective mulch). Similarly, reflective mulch improved anthocyanin content in cv. 'Gala Mondial' peel up to 66% compared to grass control (14.5 nmol cm(-2) in control fruit versus 24.1 nmol cm(-2) with reflective mulch). The reflective mulch did not affect chlorophyll and carotenoid content in the 'Gala' fruit peel. Overall, the application of reflective mulches improved fruit quality in terms of better coloration and health compounds and accelerated ripening, leading to higher market value. © 2013 Society of Chemical Industry.

  15. Effects of Gravel Mulch Properties and Thickness on Evaporation from Underlying Soil

    NASA Astrophysics Data System (ADS)

    Li, Z.; Smits, K. M.

    2017-12-01

    Evaporation is the process of mass and heat transfer between the atmosphere and the shallow subsurface, and it is critical to many natural and industrial applications. In arid areas with very little rainfall, gravel has been widely used as a mulch layer to suppress evaporation from the underlying soil. The properties of mulch layers have a significant effect on the evaporation process, and the effect of grain size and mulch thickness has been previously studied experimentally. However, there is debate on the effect of the gravel mulch hydraulic properties on the evaporation suppression and role of the gravel mulch layer just after precipitation has not been discussed. The goal of this work is to investigate in more depth the impact of the gravel mulch hydraulic properties and the thickness of the mulch layer on evaporation from underlying soil with the combination of experiments and theoretical models. For this work, we developed a fully coupled numerical model of layered porous media that solves for heat, liquid water and water vapor flux under both wet and dry soil conditions. Various mulch layers with different texture and thickness were employed in the numerical simulation to study the effect of the hydraulic properties and thickness on the underlying soil evaporation. The water and heat transport in the soil and across the soil-atmosphere interface were presented and analyzed. In addition, results from numerical simulations were also compared with a series of mulch layer experiments performed using bench-scale porous media tanks interfaced with an open-return wind tunnel. Results demonstrated that gravel mulch is effective in significantly delaying and suppressing evaporation from underlying soil, and the evaporation behavior varies from different mulch types and thicknesses. The reason for evaporation suppression is that the gravel mulch retards the evaporation from the underlying soil first, and then cuts the hydraulic connection between the drying front and

  16. Effectiveness of distinct mulch application rates and schemes under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Prats, Sergio; Abrantes, Joao; Crema, Isabela; Keizer, Jacob; de Lima, Joao

    2017-04-01

    Post-fire forest residue mulching using eucalypt bark strands have been proven effective for reducing hillslope runoff and erosion in field plots of different sizes. Application rates of around 8-10 Mg ha-1 achieved about 80% of protective soil surface. Lower application rates, however, would reduce costs and, possibly, also allow faster application, which could be especially critical in late summer high-severity fires. Such lower rates could be achieved by applying less mulch per unit area, by applying mulch in specific zones (strips) and by removing the finest fractions, especially since these can be expected to contribute little to reduce erosion risk. The objective of this laboratory study was to identify the threshold, or the minimum application rate, at which a new mulch blend (without the fraction ≤4 cm) would effectively control runoff and erosion. Two levels of ground cover by forest residue mulch (50 and 70%) and three mulch strips (of 1/3, 2/3 and 3/3) at the bottom of the flume were tested against the untreated bare soil, by applying simulated rainfall and simulated inflow. The seven treatments were replicated three times using a 2.7 m x 0.3 m soil flume with a 40% slope, filled with a dry loamy sand soil. Each experiment included: (i) a "Dry" soil run comprising 20 min of simulated rainfall at a rate of 56 mm h-1; (ii) a "Wet" soil run with the same rainfall characteristics; (iii) a "Flow" run combining 20 min of rainfall with three inflows at increasing rates (52, 110, 232 mm h-1) on nearly saturated soil. The results showed that runoff, interrill and rill erosion were strongly reduced by covering 3/3 and 2/3 of the flume with mulch at 70% ground cover (overall mulch application rates of 2.6 and 1.3 Mg ha-1). The 1/3 mulch strip at 70% mulch cover (application rate of 1 Mg ha-1) also reduced significantly erosion but not runoff. The mulch strips at 50% were less effective, and only the application over the whole plot was able to reduce interrill and

  17. Growing Season Carbon Dioxide Exchange in Flooded Non-Mulching and Non-Flooded Mulching Cotton

    PubMed Central

    Li, Zhi-guo; Zhang, Run-hua; Wang, Xiu-jun; Chen, Fang; Tian, Chang-yan

    2012-01-01

    There is much interest in the role that agricultural practices might play in sequestering carbon to help offset rising atmospheric CO2 concentrations. However, limited information exists regarding the potential for increased carbon sequestration of different management strategies. The objective of this study was to quantify and contrast carbon dioxide exchange in traditional non-mulching with flooding irrigation (TF) and plastic film mulching with drip irrigation (PM) cotton (Gossypium hirsutum L.) fields in northwest China. Net primary productivity (NPP), soil heterotrophic respiration (R h) and net ecosystem productivity (NEP) were measured during the growing seasons in 2009 and 2010. As compared with TF, PM significantly increased the aboveground and belowground biomass and the NPP (340 g C m−2 season−1) of cotton, and decreased the R h (89 g C m−2 season−1) (p<0.05). In a growing season, PM had a higher carbon sequestration in terms of NEP of ∼ 429 g C m−2 season−1 than the TF. These results demonstrate that conversion of this type of land use to mulching practices is an effective way to increase carbon sequestration in the short term in cotton systems of arid areas. PMID:23226376

  18. 30 CFR 817.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Revegetation: Mulching and other soil... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been...

  19. 30 CFR 817.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Revegetation: Mulching and other soil... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been...

  20. 30 CFR 817.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Revegetation: Mulching and other soil... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been...

  1. 30 CFR 817.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Revegetation: Mulching and other soil... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been...

  2. 30 CFR 817.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Revegetation: Mulching and other soil... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been...

  3. Allelopathic Effects of Common Landscape and Nursery Mulch Materials on Weed Control

    PubMed Central

    Saha, Debalina; Marble, S. Chris; Pearson, Brian J.

    2018-01-01

    Use of organic mulch materials such as pinebark, pinestraw, or various hardwood chips for weed control is a common practice in residential and commercial landscapes. Mulch can inhibit weed seed germination and growth through light exclusion, acting as physical barrier, reducing available moisture to weed seeds within the mulch layer, and through release of allelochemicals that may inhibit germination or growth of some weed species. Previous and current research on allelopathic chemicals present in mulch have focused on cover crops and their residues with an emphasis on agronomic crops. These materials would not be suitable in a landscape setting due to rapid decomposition, lack of commercial availability, and little aesthetic appeal. Research is needed concerning identification, quantification, extraction, mechanism of release, persistence, selectivity, genetic regulation, and mode of action of potential allelochemicals present in mulch materials used for landscape purposes. More knowledge of these natural chemicals could aid practitioners and homeowners in the selection of mulch and identify potential new mulch materials that could be utilized in these industries. The purpose of this review is to summarize previous research pertaining to allelopathic compounds present in commonly used mulch materials and identify new potential mulch materials that could be utilized in the landscape sector based upon allelopathic properties. Current areas where additional research is needed are also identified. PMID:29899752

  4. ECO-FRIENDLY ADDITIVES FOR BIODEGRADATION OF AGRICULTURAL MULCHES

    EPA Science Inventory

    The main output is a new method to facilitate microbial assimilation of “biodegradable” agricultural mulches through addition of amendment(s) to the mulches at the end of their service life, prior to their being plowed into the soil.  The outcome is the identifi...

  5. 30 CFR 816.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Revegetation: Mulching and other soil... STANDARDS-SURFACE MINING ACTIVITIES § 816.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been regraded and...

  6. 30 CFR 816.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Revegetation: Mulching and other soil... STANDARDS-SURFACE MINING ACTIVITIES § 816.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been regraded and...

  7. 30 CFR 816.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Revegetation: Mulching and other soil... STANDARDS-SURFACE MINING ACTIVITIES § 816.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been regraded and...

  8. 30 CFR 816.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Revegetation: Mulching and other soil... STANDARDS-SURFACE MINING ACTIVITIES § 816.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been regraded and...

  9. 30 CFR 816.114 - Revegetation: Mulching and other soil stabilizing practices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Revegetation: Mulching and other soil... STANDARDS-SURFACE MINING ACTIVITIES § 816.114 Revegetation: Mulching and other soil stabilizing practices. Suitable mulch and other soil stabilizing practices shall be used on all areas that have been regraded and...

  10. Economic assessment of different mulches in conventional and water-saving rice production systems.

    PubMed

    Jabran, Khawar; Hussain, Mubshar; Fahad, Shah; Farooq, Muhammad; Bajwa, Ali Ahsan; Alharrby, Hesham; Nasim, Wajid

    2016-05-01

    Water-saving rice production systems including alternate wetting and drying (AWD) and aerobic rice (AR) are being increasingly adopted by growers due to global water crises. Application of natural and artificial mulches may further improve water economy of water-saving rice production systems. Conventionally flooded rice (CFR) system has been rarely compared with AWD and AR in terms of economic returns. In this 2-year field study, we compared CFR with AWD and AR (with and without straw and plastic mulches) for the cost of production and economic benefits. Results indicated that CFR had a higher production cost than AWD and AR. However, application of mulches increased the cost of production of AWD and AR production systems where plastic mulch was expensive than straw mulch. Although the mulching increased the cost of production for AWD and AR, the gross income of these systems was also improved significantly. The gross income from mulched plots of AWD and AR was higher than non-mulched plots of the same systems. In conclusion, AWD and AR effectively reduce cost of production by economizing the water use. However, the use of natural and artificial mulches in such water-saving environments further increased the economic returns. The maximized economic returns by using straw mulch in water-saving rice production systems definitely have pragmatic implications for sustainable agriculture.

  11. Response of soil carbon fractions and dryland maize yield to mulching

    USDA-ARS?s Scientific Manuscript database

    Stimulation of root growth from mulching may enhance soil C fractions under maize (Zea mays L.). We studied the 5-yr straw (SM) and plastic film (PM) mulching effect on soil C fractions and maize yield compared with no mulching (CK) in the Loess Plateau of China. Soil samples collected from 0- to 10...

  12. Mulch evaluation and managing vegetation in medians : final report.

    DOT National Transportation Integrated Search

    1980-01-01

    Experiments show best erosion control and vegetation with straw mulch, all wood or paper fiber mulches being suitable tacking agents at rates of 750 lb/A. When used alone, standard woodfiber generally gave better vegetative cover than paperfiber; how...

  13. Fertilizer and Mulch Improves Yellow-Poplar Growth on Exposed harsells Subsoils

    Treesearch

    John K. Francis

    1977-01-01

    Fertilizing and mulching of eroded Hartsells soil increased height and diameter of yellow-poplars. To see if chemical infertility of exposed Hartsells subsoils limits yellow-poplar growth and to test fertilizer and mulch as remedial agents, seedlings were planted on undisturbed soil, soil with the topsoil removed, and soil with the topsoil removed but mulched with leaf...

  14. Modelling the dissipation and leaching of two herbicides in decomposing mulch of crop residues

    NASA Astrophysics Data System (ADS)

    Aslam, Sohaib; Iqbal, Akhtar; Lafolie, François; Recous, Sylvie; Benoit, Pierre; Garnier, Patricia

    2013-04-01

    Conservation agricultural practices are increasingly adopted because of ecosystem services such as conservation of soil and water resources. These farming systems are characterized mainly by the presence of mulch made of residues of harvested or cover crops on soil surface. The mulch can intercept and retain applied pesticides depending on pesticide molecule and rainfall timing. The pesticide wash-off from mulch is considered a key process in pesticide fate and can have effects on degradation and transport processes. This work highlights a modelling approach to study the pesticide wash-off from mulch residues and their further transport in soil under two rainfall regimes. Transformation and leaching of two herbicides, s-metolachlor and glyphosate, was studied and simulated by Pastis-mulch model. A pesticide module describing pesticide degradation in mulch and soil was coupled to a transport model including a mulch module. The model was tested to simulate the pesticide dissipation, wash-off from mulch and further leaching in soil. Pesticide degradation parameters in mulch were estimated from incubation experiments with 14C-labelled molecules in small cylinders. The model was then tested using the data obtained through a soil column experiment (reconstructed soil cores :15 cm diameter x 35 cm depth), a mulch of Zea mais + Doliquos lablab and with two treatments varied by water regimes: i) frequent rain (temperate, twice a week) with week intensity (6 mm/hr); and ii) occasional rain (tropical, twice a month) with stronger intensity (20 mm/hr). Columns were incubated at 20 °C for 84 days to monitor soil water, C, N and pesticide dynamics. Model successfully simulated the experimental data of pesticide dissipation in mulch residues. Results showed that the rain regime affected more S-metolachlor than glyphosate behavior. The simulated results indicated also that the dynamics in mulch of the two molecules differed according to the rain treatment. Glyphosate showed a

  15. Deterioration pattern of six biodegradable, potentially low-environmental impact mulches in field conditions.

    PubMed

    Moreno, Marta M; González-Mora, Sara; Villena, Jaime; Campos, Juan A; Moreno, Carmen

    2017-09-15

    Polyethylene plastic mulches are widely used in agriculture due to the countless advantages they have. However, the environmental problems associated with their use have led us to look for alternative mulch materials which degrade naturally and quickly, impact the environment less and function satisfactorily. To this end, biodegradable plastics and paper mulches are being used, but aspects related to their degradation should be studied more in-depth. This work provides the deterioration pattern of six biodegradable mulch materials (i.e. vegetable starch, polylactic acid plastic films or paper mulches) in horticultural crop in the edaphoclimatic conditions of Central Spain in two situations: over the lifetime of the mulches and after being incorporated into the soil. In the first situation, the deterioration levels were evaluated by recording the puncture resistance, weight and area covered in the above-soil and the in-soil part, and after soil incorporation by the number of fragments, their surfaces and weight. In the above-soil part, biodegradable plastics experienced further deterioration, particularly with no crop, while the paper mulch remained practically intact. However, the in-soil paper experienced complete and rapid degradation. At 200 days after soil incorporation, mulch residues were scarce, with the environmental effects it entails. These findings offer practical implications regarding the type of crop. The measurement of the surface covered, rather than the weight, was shown to be a more reliable indicator of the degradation of mulches. Furthermore, visual estimation was found to underestimate the functionality of mulches in comparison to that of the measurement of the surface covered. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Yield Responses of Wheat to Mulching Practices in Dryland Farming on the Loess Plateau

    PubMed Central

    Wang, Li-fang; Chen, Juan; Shangguan, Zhou-ping

    2015-01-01

    Improving farming practices of soil and water conservation has profound effects on the yield of wheat (Triticum aestivum L.) in dryland farming regions of the Loess Plateau in China. Mulching has proven to be an effective practice to increase crop yield, and possibly contribute to replenishing groundwater. This evaluation study collected and analyzed the data of 1849 observations published in 38 papers using meta-analysis to investigate effects of the mulching practices on wheat yield in terms of different rainfall and regions in comparison with conventional tillage. The main results of the study follow. The effects of the mulching practices were ranked in the order of RFM (ridge–furrow mulching) > MTMC (mulching with two materials combined) > MOM (mulching with other materials) > WSM (wheat straw mulching) > FM (flat mulching). The effects of the mulching practices at the different levels of rainfall during the wheat growing season were in the order: (< 150 mm) > (> 250 mm) > (150–250 mm). The effects of the mulching practices in the different regions were in the order of Henan > Shanxi > Shaanxi > Gansu. WSM, MTMC and FM performed better in improving wheat yield for rainfall of < 150, 150–250 and > 250 mm during the growing season, respectively. The wheat yield with FM, MTMC, MOM and MOM was higher than those with the other mulching practices in Shaanxi, Gansu, Henan and Shanxi. The wheat yield with RFM was 27.4% higher than that with FM, indicating that RFM was the most effective practice to improve wheat yield among all the practices. These findings have important implications for choosing appropriate crop field management to improve wheat yield. PMID:26020965

  17. Effects of Mulching on Soil Properties and Growth of Tea Olive (Osmanthus fragrans).

    PubMed

    Ni, Xue; Song, Weiting; Zhang, Huanchao; Yang, Xiulian; Wang, Lianggui

    2016-01-01

    Different mulches have variable effects on soil physical properties and plant growth. This study aimed to compare the effects of mulching with inorganic (round gravel, RG), organic (wood chips, WC), and living (manila turf grass, MG) materials on soil properties at 0-5-cm and 5-10-cm depths, as well as on the growth and physiological features of Osmanthus fragrans L. 'Rixianggui' plants. Soil samples were collected at three different time points from field plots of O. fragrans plants treated with the different mulching treatments. Moisture at both soil depths was significantly higher after mulching with RG and WC than that in the unmulched control (CK) treatment. Mulching did not affect soil bulk density, pH, or total nitrogen content, but consistently improved soil organic matter. The available nitrogen in the soil increased after RG and WC treatments, but decreased after MG treatment during the experimental period. Mulching improved plant growth by increasing root activity, soluble sugar, and chlorophyll a content, as well as by providing suitable moisture conditions and nutrients in the root zone. Plant height and trunk diameter were remarkably increased after mulching, especially with RG and WC. However, while MG improved plant growth at the beginning of the treatment, the 'Rixianggui' plants later showed no improvement in growth. This was probably because MG competed with the plants for water and available nitrogen in the soil. Thus, our findings suggest that RG and WC, but not MG, improved the soil environment and the growth of 'Rixianggui' plants. Considering the effect of mulching on soil properties and plant growth and physiology, round gravel and wood chips appear to be a better choice than manila turf grass in 'Rixianggui' nurseries. Further studies are required to determine the effects of mulch quality and mulch-layer thickness on shoot and root growths.

  18. REMOVAL OF SELECTED POLLUTANTS FROM AQUEOUS MEDIA BY HARDWOOD MULCH

    EPA Science Inventory

    Generic hardwood mulch, usually used for landscaping, was utilized to remove several selected pollutants (heavy metals and toxic organic compounds) typically found in urban stormwater (SW) runoff. The hardwood mulch sorbed all the selected pollutants from a spiked stormwater mix...

  19. Waste cotton as a biodegradable mulching material for transplanted watermelon and cantaloupe production

    USDA-ARS?s Scientific Manuscript database

    Low-density polyethylene (LDPE) mulch is commonly used in transplanted vegetable crop production in the southeastern U. S. Cantaloupe and watermelon growers use a system of hybrid transplants, grown on narrow LDPE mulch-covered seedbeds with overhead irrigation, and use the mulch cover for only one...

  20. Evaluation of alternative mulches for blueberry over five production seasons

    USDA-ARS?s Scientific Manuscript database

    Highbush blueberry (Vaccinium corymbosum L.) is a calcifuge (acid-loving) plant that responds favorably to mulching with organic matter (OM). Until recently, most blueberry plantings in our region were grown with a mulch of douglas-fir sawdust, with additional nitrogen (N) fertilizer applied to comp...

  1. Survival of Escherichia coli in common garden mulches spiked with synthetic greywater.

    PubMed

    Boyte, S; Quaife, S; Horswell, J; Siggins, A

    2017-05-01

    Reuse of domestic wastewater is increasingly practiced as a means to address global demands on fresh water. Greywater is primarily reused via subsurface irrigation of gardens, where the soil environment is seen to be an integral part of the treatment process. The fate of biological contaminants (i.e. pathogens) in the soil is reasonably well understood, but their persistence and survival in soil cover layers is largely unexplored. This study investigated the ability of Escherichia coli to survive in common soil cover layers. Three garden mulches were investigated: pea straw mulch, a bark-based mulch and a coconut husk mulch. Each mulch was treated with an E. coli solution, a synthetic greywater with E. coli, or a freshwater control. Escherichia coli was applied at 1 × 10 4  most probable number (MPN) per g dry weight mulch. Subsamples were temporally analysed for E. coli. The bark and coconut husk mulches showed a steady decline in E. coli numbers, while E. coli increased in the pea straw mulch for the duration of the 50 days experiment, peaking at 1·8 × 10 8  MPN per g dry weight mulch. This study highlighted the importance of selection of a suitable material for covering areas that are subsurface irrigated with greywater. Potential for microbial contamination is one of the limiting factors for domestic greywater reuse. Although subsurface irrigation is considered to be one of the lowest risk applications, there is still a possibility of microbes reaching the soil surface if the environmental conditions are not favourable or if soil movement inadvertently exposes the irrigation line. In these circumstances, the soil cover layer may be contaminated by greywater microbes. This study assesses the survival rates of the pathogen indicator organism Escherichia coli in three soil cover materials commonly used worldwide and makes clear recommendations to facilitate the safe reuse of domestic greywater. © 2017 The Society for Applied Microbiology.

  2. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis

    PubMed Central

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-01-01

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge. PMID:26586114

  3. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis.

    PubMed

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-20

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  4. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-01

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  5. Evaluating the effectiveness of mulch application to store carbon belowground: Short-term effects of mulch application on soluble soil and microbial C and N in agricultural soils with low and high organic matter

    NASA Astrophysics Data System (ADS)

    Chen, Janet; Heiling, Maria; Resch, Christian; Gruber, Roman; Dercon, Gerd

    2017-04-01

    Agricultural soils have the potential to contain a large pool of carbon and, depending on the farming techniques applied, can either effectively store carbon belowground, or further release carbon, in the form of CO2, into the atmosphere. Farming techniques, such as mulch application, are frequently proposed to increase carbon content belowground and improve soil quality and can be used in efforts to reduce greenhouse gas levels, such as in the "4 per 1000" Initiative. To test the effectiveness of mulch application to store carbon belowground in the short term and improve soil nutrient quality, we maintained agricultural soils with low and high organic carbon content (disturbed top soil from local Cambisols and Chernozems) in greenhouse mesocosms (70 cm deep with a radius of 25 cm) with controlled moisture for 4 years. Over the 4 years, maize and soybean were grown yearly in rotation and mulch was removed or applied to soils once plant material was harvested at 2 ton/ha dry matter. In addition, soil disturbance was kept to a minimum, with only surface disturbance of a few centimeters to keep soil free from weeds. After 4 years, we measured effects of mulch application on soluble soil and microbial carbon and nitrogen in the mesocosms and compared effects of mulch application versus no mulch on soils from 0-5 cm and 5-15 cm with low and high organic matter. We predicted that mulch would increase soil carbon and nitrogen content and mulch application would have a greater effect on soils with low organic matter than soils with high organic matter. In soils with low organic carbon content and larger predicted potential to increase soil carbon, mulch application did not increase soluble soil or microbial carbon or nitrogen compared to the treatments without mulch application. However, mulch application significantly increased the δ13C of both microbial and soluble soil carbon in these soils by 1 ‰ each, indicating a shift in belowground processes, such as increased

  6. Impact of straw mulch on populations of onion thrips (Thysanoptera: Thripidae) in onion.

    PubMed

    Larentzaki, E; Plate, J; Nault, B A; Shelton, A M

    2008-08-01

    Development of insecticide resistance in onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), populations in onion (Allium spp.) fields and the incidence of the T. tabaci transmitted Iris yellow spot virus have stimulated interest in evaluating alternative management tactics. Effects of straw mulch applied in commercial onion fields in muck areas of western New York were assessed in 2006 and 2007 as a possible onion thrips management strategy. In trials in which no insecticides were applied for thrips control, straw mulch-treated plots supported significantly lower T. tabaci populations compared with control plots. In both years, the action thresholds of one or three larvae per leaf were reached in straw mulch treatments between 7 and 14 d later than in the control. Ground predatory fauna, as evaluated by pitfall trapping, was not increased by straw mulch in 2006; however, populations of the common predatory thrips Aeolothrips fasciatus (L.) (Thysanoptera: Aeolothripidae) were significantly lower in straw mulch plots in both years. Interference of straw mulch in the pupation and emergence of T. tabaci was investigated in the lab and their emergence was reduced by 54% compared with bare soil. In the field the overall yield of onions was not affected by the straw mulch treatment; however, the presence of jumbo grade onions (>77 mm) was increased in 2006, but not in 2007. These results indicate that populations of T. tabaci adults and larvae can be significantly reduced by the use of straw mulch without compromising overall onion yield. The use of this cultural practice in an onion integrated pest management program seems promising.

  7. Post-fire mulching and soil hydrological response

    NASA Astrophysics Data System (ADS)

    Jordán, Antonio; Zavala, Lorena M.; Gordillo-Rivero, Ángel J.; Muñoz-Rojas, Miriam; Keesstra, Saskia; Cerdà, Artemi

    2017-04-01

    In general, one of the major threats after a forest fire is the increased erosion. This can occur due to the erosive impact of rainfall after a drastic reduction of vegetation cover or to changes in soil surface properties that contribute to enhanced runoff flow. There is a consensus among researchers that one of the best ways to reduce this risk is to apply a mulch cover (straw, shredded wood or other materials) immediately after fire. In this study, we studied the effectiveness of various types of mulch materials for the reduction of runoff and soil loss during the first 3 years after a forest fire, in plots of different sizes, with special attention to water repellency and physical properties of the soil surface. In general, straw mulch reduced both runoff and erosion rate more than other treatments. However, the effect was much more important on larger plots. This may be due to specific processes and impacts on sediment connectivity and surface water flow. Therefore, the effect of the scale seems to be an important factor in the management of burnt soils.

  8. Effect of Tithonia diversifolia Mulch on Atta cephalotes (Hymenoptera: Formicidae) Nests

    PubMed Central

    Rodríguez, Jonathan; Montoya-Lerma, James; Calle, Zoraida

    2015-01-01

    Recent studies have shown an insecticidal effect of Tithonia diversifolia (Hemsl.) Gray (Asterales: Asteraceae) foliage on workers of Atta cephalotes L. and inhibitory effects of this plant on the growth of the symbiotic fungus Leucoagaricus gongylophorus (A. Müler) Singer. To evaluate the potential of T. diversifolia as a biological control treatment of this important pest, we assessed the effect of green manure (mulch) of this plant on natural nests of A. cephalotes, in Cali, Colombia. Three treatments were randomly assigned to 30 nests: 1) green mulch of T. diversifolia, 2) green mulch of Miconia sp., Ruiz & Pav. and 3) unmulched control. Every 2 wk for 6 mo, the surface of the nests was completely covered with leaves. Physical and chemical parameters of nest soil were assessed before the first and after the last application of the mulch. Ant foraging in T. diversifolia-treated nests decreased by 60% after the initial applications of the mulch, while nest surface area decreased by 40%. When the nests covered with T. diversifolia were opened, it was observed that the superficial fungus chambers had been relocated at a greater depth. In addition, microbial activity and soil pH increased by 84% and 12%, respectively, in nests covered with plant residues. In conclusion, the continued use of T. diversifolia mulch reduces foraging activity and negatively affects the internal conditions of the colonies, thereby inducing the ants to relocate the fungus chambers within the nests. PMID:25843585

  9. ‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China

    NASA Astrophysics Data System (ADS)

    Liu, E. K.; He, W. Q.; Yan, C. R.

    2014-09-01

    Plastic film mulching has played an important role in Chinese agriculture due to its soil warming and moisture conservation effects. With the help of plastic film mulch technology, grain and cash crop yields have increased by 20-35% and 20-60%, respectively. The area of plastic film coverage in China reached approximately 20 million hectares, and the amount of plastic film used reached 1.25 million tons in 2011. While producing huge benefits, plastic film mulch technology has also brought on a series of pollution hazards. Large amounts of residual plastic film have detrimental effects on soil structure, water and nutrient transport and crop growth, thereby disrupting the agricultural environment and reducing crop production. To control pollution, the Chinese government urgently needs to elevate plastic film standards. Meanwhile, research and development of biodegradable mulch film and multi-functional mulch recovery machinery will help promote effective control and management of residual mulch pollution.

  10. [Effects of different patterns surface mulching on soil properties and fruit trees growth and yield in an apple orchard].

    PubMed

    Zhang, Yi; Xie, Yong-Sheng; Hao, Ming-De; She, Xiao-Yan

    2010-02-01

    Taking a nine-year-old Fuji apple orchard in Loess Plateau as test object, this paper studied the effects of different patterns surface mulching (clean tillage, grass cover, plastic film mulch, straw mulch, and gravel mulch) on the soil properties and fruit trees growth and yield in this orchard. Grass cover induced the lowest differentiation of soil moisture profile, while gravel mulch induced the highest one. In treatment gravel mulch, the soil moisture content in apple trees root zone was the highest, which meant that there was more water available to apple trees. Surface mulching had significant effects on soil temperature, and generally resulted in a decrease in the maximum soil temperature. The exception was treatment plastic film mulch, in which, the soil temperature in summer exceeded the maximum allowable temperature for continuous root growth and physiological function. With the exception of treatment plastic film mulch, surface mulching increased the soil CO2 flux, which was the highest in treatment grass cover. Surface mulching also affected the proportion of various branch types and fruit yield. The proportion of medium-sized branches and fruit yield were the highest in treatment gravel mulch, while the fruit yield was the lowest in treatment grass cover. Factor analysis indicated that among the test surface mulching patterns, gravel mulch was most suitable for the apple orchards in gully region of Loess Plateau.

  11. Effects of plastic mulches and high tunnel raspberry production systems on soil physicochemical quality indicators

    NASA Astrophysics Data System (ADS)

    Domagała-Świątkiewicz, Iwona; Siwek, Piotr

    2018-01-01

    In horticulture, degradable materials are desirable alternatives to plastic films. Our aim was to study the impact of soil plastic mulching on the soil properties in the high tunnel and open field production systems of raspberry. The raised beds were mulched with a polypropylene non-woven and two degradable mulches: polypropylene with a photodegradant and non-woven polylactide. The results indicated that the system of raspberry production, as well as the type of mulching had significant impact on soil organic carbon stock, moisture content and water stable aggregate amount. Soils taken from the open field system had a lower bulk density and water stability aggregation index, but higher organic carbon and capillary water content as compared to soils collected from high tunnel conditions. In comparison with the open field system, soil salinity was also found to be higher in high tunnel, as well as with higher P, Mg, Ca, S, Na and B content. Furthermore, mulch covered soils had more organic carbon amount than the bare soils. Soil mulching also enhanced the water capacity expressed as a volume of capillary water content. In addition, mulching improved the soil structure in relation to the bare soil, in particular, in open field conditions. The impact of the compared mulches on soil quality indicators was similar.

  12. Plastic-Film Mulching for Enhanced Water-Use Efficiency and Economic Returns from Maize Fields in Semiarid China

    PubMed Central

    Zhang, Peng; Wei, Ting; Cai, Tie; Ali, Shahzad; Han, Qingfang; Ren, Xiaolong; Jia, Zhikuan

    2017-01-01

    Film mulch has gradually been popularized to increase water availability to crops for improving and stabilizing agricultural production in the semiarid areas of Northwest China. To find more sustainable and economic film mulch methods for alleviating drought stress in semiarid region, it is necessary to test optimum planting methods in same cultivation conditions. A field experiment was conducted during 2013 and 2014 to evaluate the effects of different plastic film mulch methods on soil water, soil temperature, water use efficiency (WUE), yield and revenue. The treatments included: (i) the control, conventional flat planting without plastic film mulch (CK); (ii) flat planting with maize rows (60 cm spacing) on plastic film mulch (70 cm wide); (iii) furrow planting of maize (60 cm spacing), separated by consecutive plastic film-mulched ridges (each 50 cm wide and 15 cm tall); (iv) furrow planting of maize (60 cm spacing), separated by alternating large and small plastic film-mulched ridges (large ridges: 70 cm wide and 15 cm tall, small ridges 50 cm wide and 10 cm tall); and (v) furrow-flat planting of maize (60 cm spacing) with a large plastic film-mulched ridge (60 cm wide and 15 cm tall) alternating with a flat without plastic film-mulched space (60 cm wide). Topsoil temperature (5–25 cm) was significantly (p < 0.05) higher in field plots with plastic film mulch than the control (CK), and resulted in greater soil water storage (0–200 cm) up to 40 days after planting. Maize grain yield and WUE were significantly (p < 0.05) higher with the furrow planting methods (consecutive film-mulched ridges and alternating film-mulched ridges) than the check in both years. Maize yield was, on average, 29% (p < 0.05) greater and 28% (p < 0.05) greater with these furrow planting methods, while the average WUE increased by 22.8% (p < 0.05) with consecutive film-mulched ridges and 21.1% (p < 0.05) with alternating film-mulched ridges. The 2-year average net income increased

  13. Plastic-Film Mulching for Enhanced Water-Use Efficiency and Economic Returns from Maize Fields in Semiarid China.

    PubMed

    Zhang, Peng; Wei, Ting; Cai, Tie; Ali, Shahzad; Han, Qingfang; Ren, Xiaolong; Jia, Zhikuan

    2017-01-01

    Film mulch has gradually been popularized to increase water availability to crops for improving and stabilizing agricultural production in the semiarid areas of Northwest China. To find more sustainable and economic film mulch methods for alleviating drought stress in semiarid region, it is necessary to test optimum planting methods in same cultivation conditions. A field experiment was conducted during 2013 and 2014 to evaluate the effects of different plastic film mulch methods on soil water, soil temperature, water use efficiency (WUE), yield and revenue. The treatments included: (i) the control, conventional flat planting without plastic film mulch (CK); (ii) flat planting with maize rows (60 cm spacing) on plastic film mulch (70 cm wide); (iii) furrow planting of maize (60 cm spacing), separated by consecutive plastic film-mulched ridges (each 50 cm wide and 15 cm tall); (iv) furrow planting of maize (60 cm spacing), separated by alternating large and small plastic film-mulched ridges (large ridges: 70 cm wide and 15 cm tall, small ridges 50 cm wide and 10 cm tall); and (v) furrow-flat planting of maize (60 cm spacing) with a large plastic film-mulched ridge (60 cm wide and 15 cm tall) alternating with a flat without plastic film-mulched space (60 cm wide). Topsoil temperature (5-25 cm) was significantly ( p < 0.05) higher in field plots with plastic film mulch than the control (CK), and resulted in greater soil water storage (0-200 cm) up to 40 days after planting. Maize grain yield and WUE were significantly ( p < 0.05) higher with the furrow planting methods (consecutive film-mulched ridges and alternating film-mulched ridges) than the check in both years. Maize yield was, on average, 29% ( p < 0.05) greater and 28% ( p < 0.05) greater with these furrow planting methods, while the average WUE increased by 22.8% ( p < 0.05) with consecutive film-mulched ridges and 21.1% ( p < 0.05) with alternating film-mulched ridges. The 2-year average net income increased

  14. Effects of straw mulch on soil water and winter wheat production in dryland farming

    PubMed Central

    Peng, Zhang; Ting, Wei; Haixia, Wang; Min, Wang; Xiangping, Meng; Siwei, Mou; Rui, Zhang; Zhikuan, Jia; Qingfang, Han

    2015-01-01

    The soil water supply is the main factor that limits dryland crop production in China. In a three-year field experiment at a dryland farming experimental station, we evaluated the effects of various straw mulch practices on soil water storage, grain yield, and water use efficiency (WUE) of winter wheat (Triticum aestivum). Field experiments were conducted with six different mulch combinations (two different mulch durations and three different mulch amounts): high (SM1; 9000 kg ha−1), medium (SM2; 6000 kg ha−1), and low (SM3; 3000 kg ha−1) straw mulch treatments for the whole period; and high (SM4), medium (SM5) and low (SM6) straw mulch treatments during the growth period only, where the control was the whole period without mulch (CK). Throughout the whole growth period of the three-year experiment, the average soil water content in the 0–200 cm soil layer increased by 0.7–22.5% compared with CK, while the WUE increased significantly by 30.6%, 32.7% and 24.2% with SM1, SM2, and SM3, respectively (P < 0.05). The yield increased by 13.3–23.0% when mulch was provided during the growth period, while the WUE increased by 15.2%, 17.2% and 18.0% with SM4, SM5, and SM6, respectively, compared with CK. PMID:26035528

  15. Effect of Tithonia diversifolia mulch on Atta cephalotes (Hymenoptera: Formicidae) nests.

    PubMed

    Rodríguez, Jonathan; Montoya-Lerma, James; Calle, Zoraida

    2015-01-01

    Recent studies have shown an insecticidal effect of Tithonia diversifolia (Hemsl.) Gray (Asterales: Asteraceae) foliage on workers of Atta cephalotes L. and inhibitory effects of this plant on the growth of the symbiotic fungus Leucoagaricus gongylophorus (A. Müler) Singer. To evaluate the potential of T. diversifolia as a biological control treatment of this important pest, we assessed the effect of green manure (mulch) of this plant on natural nests of A. cephalotes, in Cali, Colombia. Three treatments were randomly assigned to 30 nests: 1) green mulch of T. diversifolia, 2) green mulch of Miconia sp., Ruiz & Pav. and 3) unmulched control. Every 2 wk for 6 mo, the surface of the nests was completely covered with leaves. Physical and chemical parameters of nest soil were assessed before the first and after the last application of the mulch. Ant foraging in T. diversifolia-treated nests decreased by 60% after the initial applications of the mulch, while nest surface area decreased by 40%. When the nests covered with T. diversifolia were opened, it was observed that the superficial fungus chambers had been relocated at a greater depth. In addition, microbial activity and soil pH increased by 84% and 12%, respectively, in nests covered with plant residues. In conclusion, the continued use of T. diversifolia mulch reduces foraging activity and negatively affects the internal conditions of the colonies, thereby inducing the ants to relocate the fungus chambers within the nests. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  16. Soil Physical Characteristics and Biological Indicators of Soil Quality Under Different Biodegradable Mulches

    NASA Astrophysics Data System (ADS)

    Schaeffer, S. M.; Flury, M.; Sintim, H.; Bandopadhyay, S.; Ghimire, S.; Bary, A.; DeBruyn, J.

    2015-12-01

    Application of conventional polyethylene (PE) mulch in crop production offers benefits of increased water use efficiency, weed control, management of certain plant diseases, and maintenance of a micro-climate conducive for plant growth. These factors improve crop yield and quality, but PE must be retrieved and safely disposed of after usage. Substituting PE with biodegradable plastic mulches (BDM) would alleviate disposal needs, and is potentially a more sustainable practice. However, knowledge of potential impacts of BDMs on agricultural soil ecosystems is needed to evaluate sustainability. We (a) monitored soil moisture and temperature dynamics, and (b) assessed soil quality upon usage of different mulches, with pie pumpkin (Cucurbita pepo) as the test crop. Experimental field trials are ongoing at two sites, one at Northwestern Washington Research and Extension Center, Mount Vernon, WA, and the other at East Tennessee Research and Education Center, Knoxville, TN. The treatments constitute four different commercial BDM products, one experimental BDM; no mulch and PE served as the controls. Soil quality parameters being examined include: organic matter content, aggregate stability, water infiltration rate, CO2 flux, pH, and extracellular enzyme activity. In addition, lysimeters were installed to examine the soil water and heat flow dynamics. We present baseline and the first field season results from this study. Mulch cover appeared to moderate soil temperatures, but biodegradable mulches also appeared to lose water more quickly than PE. All mulch types, with the exception of cellulose, reduced the diurnal fluctuations in soil temperature at 10cm depth from 1 to 4ºC. However, volumetric water content ranged from 0.10 to 0.22 m3 m-3 under the five biodegradable mulches compared to 0.22 to 0.28 m3 m-3 under conventional PE. Results from the study will be useful for management practices by providing knowledge on how different mulches impact soil physical and

  17. Mulching fuels treatments promote understory plant communities in three Colorado, USA, coniferous forest types

    Treesearch

    Paula J. Fornwalt; Monique E. Rocca; Michael Battaglia; Charles C. Rhoades; Michael G. Ryan

    2017-01-01

    Mulching fuels treatments have been increasingly implemented by forest managers in the western USA to reduce crown fire hazard. These treatments use heavy machinery to masticate or chip unwanted shrubs and small-diameter trees and broadcast the mulched material on the ground. Because mulching treatments are relatively novel and have no natural analog, their ecological...

  18. Evaluation of compost/mulch as highway embankment erosion control in Louisiana at the plot-scale

    NASA Astrophysics Data System (ADS)

    Bakr, Noura; Weindorf, David C.; Zhu, Yuanda; Arceneaux, Allen E.; Selim, H. M.

    2012-10-01

    SummaryTotal suspended solids (TSS) and associated turbidity in runoff water are considered the most problematic nonpoint source pollutant of Louisiana surface waters. With high precipitation in Louisiana, attention should be given to controlling highway right-of-way erosion. The use of compost/mulch for erosion control enhances soil conservation and substantially reduces erosion. The main objective of this study was to assess the effect of compost/mulch placement on runoff water quality on roadsides. Our hypothesis was that the use of compost/mulch would significantly reduce TSS and turbidity in runoff from highway right-of-ways in Louisiana. Two locations constituting four sites and eight individual plots were chosen; one in an active highway construction area and another in an established area plagued by continual rill and sheet erosion. Thicknesses of compost/mulch (5 and 10 cm), slope inclination (10-34%), and tillage practices (till vs. no-till) were evaluated. Runoff, triggered by storm water events, was collected using ISCO auto-samplers from June 2010 to August 2011 and the samples were analyzed for TSS, turbidity, biochemical oxygen demand, electrical conductivity, and pH. The results of factor analysis showed that the compost/mulch thickness was the most influential variable affecting water quality. Two samples t-test results indicated that TSS and turbidity were significantly different across all comparative variables; construction activities, compost/mulch applications, and tillage practices. The results confirmed the effectiveness of compost/mulch cover as a successful best management practice. Specifically decreases in TSS of 70% and 74% were achieved for the 5 cm and 10 cm compost/mulch application when compared to no compost/mulch, respectively. Light tillage application increased TSS as much as 67%. Therefore, light tillage is not recommended since it decreased the effectiveness of compost/mulch in reducing runoff and sediment losses.

  19. Measuring and modeling maize evapotranspiration under plastic film-mulching condition

    NASA Astrophysics Data System (ADS)

    Li, Sien; Kang, Shaozhong; Zhang, Lu; Ortega-Farias, Samuel; Li, Fusheng; Du, Taisheng; Tong, Ling; Wang, Sufen; Ingman, Mark; Guo, Weihua

    2013-10-01

    Plastic film-mulching techniques have been widely used over a variety of agricultural crops for saving water and improving yield. Accurate estimation of crop evapotranspiration (ET) under the film-mulching condition is critical for optimizing crop water management. After taking the mulching effect on soil evaporation (Es) into account, our study adjusted the original Shuttleworth-Wallace model (MSW) in estimating maize ET and Es under the film-mulching condition. Maize ET and Es respectively measured by eddy covariance and micro-lysimeter methods during 2007 and 2008 were used to validate the performance of the Penman-Monteith (PM), the original Shuttleworth-Wallace (SW) and the MSW models in arid northwest China. Results indicate that all three models significantly overestimated ET during the initial crop stage in the both years, which may be due to the underestimation of canopy resistance induced by the Jarvis model for the drought stress in the stage. For the entire experimental period, the SW model overestimated half-hourly maize ET by 17% compared with the eddy covariance method (ETEC) and overestimated daily Es by 241% compared with the micro-lysimeter measurements (EL), while the PM model only underestimated daily maize ET by 6%, and the MSW model only underestimated half-hourly maize ET by 2% and Es by 7% during the whole period. Thus the PM and MSW models significantly improved the accuracy against the original SW model and can be used to estimate ET and Es under the film-mulching condition.

  20. Effects of mulch on plant and soil recovery after wildfire in the eastern Great Basin

    USDA-ARS?s Scientific Manuscript database

    Straw mulch is often applied after wildfire to reduce soil erosion and potentially increase soil moisture and thus plant recruitment. However, the efficacy of mulch treatments is poorly known, particularly in Great Basin ecosystems. We examined the effects of straw mulch application on the Black fir...

  1. Full-Scale Experimental Investigation to Quantify Building Component Ignition Vulnerability from Mulch Beds Attacked by Firebrand Showers

    PubMed Central

    Manzello, Samuel L.; Suzuki, Sayaka; Nii, Daisaku

    2015-01-01

    Structure ignition by wind-driven firebrand showers is an important fire spread mechanism in large outdoor fires. Experiments were conducted with three common mulch types (shredded hardwood mulch, Japanese Cypress wood chips, and pine bark nuggets) placed adjacent to realistic-scale reentrant corners. In the first series of experiments, mulch beds were placed adjacent to a re-entrant corner constructed with wood studs and lined with oriented strand board (OSB) as the sheathing. The premise behind conducting experiments with no siding treatments applied was predicated on the notion that bare OSB mulch contact would be a worst-case scenario, and therefore, a wall assembly in the most vulnerable state to mulch ignition. In the second series of experiments, vinyl siding was applied to the re-entrant corner assemblies (wood studs/OSB/moisture barrier/vinyl siding), and the influence of vertical separation distance (102 mm or 203 mm) on wall ignition from adjacent mulch beds was determined. The vertical separation distance was maintained by applying gypsum board to the base of the re-entrant corner. The siding itself did not influence the ignition process for the mulch beds, as the mulch beds were the first to ignite from the firebrand showers. In all experiments, it was observed that firebrands produced smoldering ignition in the mulch beds, this transitioned to flaming ignition, and the re-entrant corner assembly was exposed to the flaming mulch beds. With no siding treatments applied, the flaming mulch beds ignited the re-entrant corner, and ignition was observed to propagate to the back side of re-entrant corner assembly under all wind speeds (6 m/s to 8 m/s). With respect to the re-entrant corners fitted with vinyl siding, the mulch type, vertical separation distance, and wind speed were important parameters as to whether flaming ignition was observed to propagate to the back-side of a reentrant corner assembly. Mulches clearly pose an ignition hazard to structures

  2. Full-Scale Experimental Investigation to Quantify Building Component Ignition Vulnerability from Mulch Beds Attacked by Firebrand Showers.

    PubMed

    Manzello, Samuel L; Suzuki, Sayaka; Nii, Daisaku

    2017-03-01

    Structure ignition by wind-driven firebrand showers is an important fire spread mechanism in large outdoor fires. Experiments were conducted with three common mulch types (shredded hardwood mulch, Japanese Cypress wood chips, and pine bark nuggets) placed adjacent to realistic-scale reentrant corners. In the first series of experiments, mulch beds were placed adjacent to a re-entrant corner constructed with wood studs and lined with oriented strand board (OSB) as the sheathing. The premise behind conducting experiments with no siding treatments applied was predicated on the notion that bare OSB mulch contact would be a worst-case scenario, and therefore, a wall assembly in the most vulnerable state to mulch ignition. In the second series of experiments, vinyl siding was applied to the re-entrant corner assemblies (wood studs/OSB/moisture barrier/vinyl siding), and the influence of vertical separation distance (102 mm or 203 mm) on wall ignition from adjacent mulch beds was determined. The vertical separation distance was maintained by applying gypsum board to the base of the re-entrant corner. The siding itself did not influence the ignition process for the mulch beds, as the mulch beds were the first to ignite from the firebrand showers. In all experiments, it was observed that firebrands produced smoldering ignition in the mulch beds, this transitioned to flaming ignition, and the re-entrant corner assembly was exposed to the flaming mulch beds. With no siding treatments applied, the flaming mulch beds ignited the re-entrant corner, and ignition was observed to propagate to the back side of re-entrant corner assembly under all wind speeds (6 m/s to 8 m/s). With respect to the re-entrant corners fitted with vinyl siding, the mulch type, vertical separation distance, and wind speed were important parameters as to whether flaming ignition was observed to propagate to the back-side of a reentrant corner assembly. Mulches clearly pose an ignition hazard to structures

  3. Machine for row-mulching logging slash to enhance site- a concept

    Treesearch

    P. Koch; D.W. McKenzie

    1977-01-01

    Proposes that stumps, tops, and branches residual after logging pine plantations be hogged to build mulch beds spaced on about 2.5-m centers, thereby eliminating pile and bum operations. Growth of seedlings planted through mulch beds should be accelerated because of moisture conservation, weed suppression, and minimum disturbance of topsoil.

  4. Machine for row-mulching logging slash to enhance site-a concept

    Treesearch

    Peter Koch; Dan W. McKenzie

    1975-01-01

    Proposes that stumps, tops, and branches residual after logging pine plantations be hogged to build mulch beds spaced on about 2.5-m centers, thereby eliminating pile and burn operations. Growth of seedlings planted through mulch beds should be accelerated because of moisture conservation, weed suppression, and minimum disturbance of topsoil.

  5. Influence of film mulching on soil microbial community in a rainfed region of northeastern China.

    PubMed

    Dong, Wenyi; Si, Pengfei; Liu, Enke; Yan, Changrong; Zhang, Zhe; Zhang, Yanqing

    2017-08-16

    Information about the effect of plastic film mulching (PFM) on the soil microbial communities of rainfed regions remains scarce. In the present study, Illumina Hiseq sequencer was employed to compare the soil bacterial and fungal communities under three treatments: no mulching (NM), spring mulching (SM) and autumn mulching (AM) in two layers (0-10 and, 10-20 cm). Our results demonstrated that the plastic film mulching (PFM) application had positive effects on soil physicochemical properties as compared to no-mulching (NM): higher soil temperature (ST), greater soil moisture content (SMC) and better soil nutrients. Moreover, mulching application (especially AM) caused a significant increase of bacterial and fungal richness and diversity and played important roles in shaping microbial community composition. These effects were mainly explained by the ST and SMC induced by the PFM application. The positive effects of AM and SM on species abundances were very similar, while the AM harbored relatively more beneficial microbial taxa than the SM, e.g., taxa related to higher degrading capacity and nutrient cycling. According to the overall effects of AM application on ST, SMC, soil nutrients and microbial diversity, AM is recommended during maize cultivation in rain-fed region of northeast China.

  6. Mulching effects on vegetation recovery following high severity wildfire in north-central Washington State, USA

    Treesearch

    Erich Kyle Dodson; David W. Peterson

    2010-01-01

    Straw mulch application after high severity wildfire has gained favor in recent years due to its efficacy in reducing soil erosion hazards. However, possible collateral effects of mulching on post-fire vegetation recovery have received relatively little study. We assessed mulching effects on plant cover and species richness, tree seedling establishment, and...

  7. Soybean nodulation and symbiotic nitrogen fixation in response to soil compaction and mulching

    NASA Astrophysics Data System (ADS)

    Siczek, A.; Lipiec, J.

    2009-04-01

    Symbiotic nitrogen fixation by legume crops such as soybean plays a key role in supplying nitrogen for agricultural systems. In symbiotic associations with Bradyrhizobium japonicum soybean can fix up to 200 kg N ha-1 yr-1. This reduces the need for expensive and often environmentally harmful because of leaching nitrogen fertilization. However both soybean nodulation and nitrogen fixation are sensitive to soil conditions. One of the critical soil constraints is soil compaction. Increasing use of heavy equipment and intensive cropping in modern agriculture leads to excessive soil compaction. Compaction often is found as a result of field operations that have to be performed in a very short period of time and when soils are wet and more susceptible to compaction. This results in unfavourable water content, temperature, aeration, pore size distribution, strength for plant growth and microbial activity. The surface mulching can alleviate the adverse effect of the environmental factors on soil by decreasing fluctuation of soil temperature, increasing moisture by controlling evaporation from the soil surface, decreasing bulk density, preventing soil crusting. The effect of mulch on soil conditions largely depends on soil compaction and weather conditions during growing season. The positive effect of the straw mulch on soil moisture has been seen under seasons with insufficient rainfalls. However thicker layers of mulch can act as diffusion barrier, especially when the mulch is wet. Additionally, low soil temperature prevalent during early spring under mulch can impede development of nodule, nodule size and delay onset of nodulation. The aim of this study was to determine the effect of the straw mulch on nodulation and nitrogen fixation of soybean in variously compacted soil. The experimental field was 192 m2and was divided into three parts composed of 6 micro-plots with area 7 m2. Three degrees of soil compaction obtained in each field part through tractor passes were

  8. Impact of mulches and growing season on indicator bacteria survival during lettuce cultivation.

    PubMed

    Xu, Aixia; Buchanan, Robert L; Micallef, Shirley A

    2016-05-02

    In fresh produce production, the use of mulches as ground cover to retain moisture and control weeds is a common agricultural practice, but the influence that various mulches have on enteric pathogen survival and dispersal is unknown. The goal of this study was to assess the impact of different mulching methods on the survival of soil and epiphytic fecal indicator bacteria on organically grown lettuce during different growing seasons. Organically managed lettuce, cultivated with various ground covers--polyethylene plastic, corn-based biodegradable plastic, paper and straw mulch--and bare ground as a no-mulch control, was overhead inoculated with manure-contaminated water containing known levels of generic Escherichia coli and Enterococcus spp. Leaves and soil samples were collected at intervals over a two week period on days 0, 1, 3, 5, 7, 10 and 14, and quantitatively assessed for E. coli, fecal coliforms and Enterococcus spp. Data were analyzed using mixed models with repeated measures and an exponential decline with asymptote survival model. Indicator bacterial concentrations in the lettuce phyllosphere decreased over time under all treatments, with more rapid E. coli declines in the fall than in the spring (p<0.01). Persistence of E. coli in spring was correlated with higher maximum and minimum temperatures in this season, and more regular rainfall. The survival model gave very good fits for the progression of E. coli concentrations in the phyllosphere over time (R(2)=0.88 ± 0.12). In the spring season, decline rates of E. coli counts were faster (2013 p=0.18; 2014 p<0.005) for the bare ground-cultivated lettuce compared to mulches. In fall 2014, the E. coli decline rate on paper mulch-grown lettuce was higher (p<0.005). Bacteria fluctuated more, and persisted longer, in soil compared to lettuce phyllosphere, and mulch type was a factor for fecal coliform levels (p<0.05), with higher counts retrieved under plastic mulches in all trials, and higher enterococci

  9. Impact of living mulches on the physical properties of Planosol in monocropped maize cultivation

    NASA Astrophysics Data System (ADS)

    Romaneckas, Kęstutis; Adamavičienė, Aida; Šarauskis, Egidijus; Kriaučiūnienė, Zita; Marks, Marek; Vaitauskienė, Kristina

    2018-04-01

    The complex mutual interactions between soil properties and plants in high-biodiversity mono-cropping agro ecosystems have not been widely investigated. For this purpose, during 2009-2011, a stationary field experiment was conducted at the Experimental Station of the Aleksandras Stulginskis University to establish the effect of a multi-component agrocenose (maize, living mulch, weeds) on the physical properties of the soil. Spring oilseed rape, white mustard, spring barley, Italian ryegrass, black medic, Persian clover and red clover were sown as living mulch into maize inter-rows. The stability of >1.0 mm aggregates increased between the beginning and end of the maize vegetative period in almost all of the crops containing living mulch. The greatest competition for moisture content between the inter-crops and maize was observed at the beginning of the vegetative period because of living mulches of long growing seasons using the most moisture. In many cases, the shear strength of the soil was significantly reduced by the living mulch in the middle of summer, when it covered the maize inter-rows. These findings show that the monocropping of maize with living mulch stabilises or improves the physical characteristics of the soil, highlighting its potential for sustainable maize growing.

  10. STORMWATER FILTRATION USING MULCH AND JUTE

    EPA Science Inventory

    This study evaluated the feasibility of using readily available, low-cost natural filter naterials for stormwater (SW) treatment. Generic (hardwood) mulch and processed jute fiber were evaluated for the removal of metallic and organic pollutants from urban SW runoff samples colle...

  11. Degradation of sustainable mulch materials in two types of soil under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Villena, Jaime; González, Sara; Moreno, Carmen; Aceituno, Patricia; Campos, Juan; Meco, Ramón; María Moreno, Marta

    2017-04-01

    Mulching is a technique used in cultivation worldwide, especially for vegetable crops, for reducing weed growth, minimising or eliminating soil erosion, and often for enhancing total yields. Manufactured plastic films, mainly polyethylene (PE), have been widely used for this purpose due to their excellent mechanical properties, light weight and relatively low prices in recent years. However, the use of PE is associated with serious environmental problems related to its petrochemical origin and its long shelf-life, which causes a waste problem in our crop fields. For this reason, the use of biodegradable mulch materials (biopolymers and papers) as alternative to PE is increasing nowadays, especially in organic farming. However, these materials can suffer an undesirable early degradation (and therefore not fulfilling their function successfully), greatly resulting from the type of soil. For this reason, this study aimed to analyse the degradation pattern of different mulch materials buried in two types of soils, clay and sand, under laboratory conditions (25°C, dark surroundings, constant humidity). The mulch materials used were: 1) black polyethylene (15 µm); black biopolymers (15 µm): 2) maize starch-based, 3) potato starch-based, 4) polylactic acid-based, 5) black paper, 85 g/m2. Periodically (every 15-20 days), the weight and surface loss of the different materials were recorded. The results indicate that mulch degradation was earlier and higher in the clay soil, especially in the paper and in the potato starch-based materials, followed by the maize starch-based mulch, while polylactic acid-based suffered the least and the latest degradation. Keywords: mulch, biodegradable, biopolymer, paper, degradation. Acknowledgements: the research was funded by Project RTA2011-00104-C04-03 from the INIA (Spanish Ministry of Economy and Competitiveness).

  12. Mulch your tomatoes to fight weeds, retain soil moisture and save money

    USDA-ARS?s Scientific Manuscript database

    An on-farm experiment was conducted to determine whether different types of mulches were a cost-effective means of weed management in organic tomato production. Three mulch treatment, bare soil, straw and grass, were applied to drip-irrigated tomatoes at a depth of 7.5 cm. Weed biomass was reduced s...

  13. Precipitation alters plastic film mulching impacts on soil respiration in an arid area of northwest China

    NASA Astrophysics Data System (ADS)

    Ming, Guanghui; Hu, Hongchang; Tian, Fuqiang; Peng, Zhenyang; Yang, Pengju; Luo, Yiqi

    2018-05-01

    Plastic film mulching (PFM) has widely been used around the world to save water and improve crop yield. However, the effect of PFM on soil respiration (Rs) remains unclear and could be further confounded by irrigation and precipitation. To address these topics, controlled experiments were conducted in mulched and non-mulched fields under drip irrigation from 2014 to 2016 in an arid area of the Xinjiang Uygur Autonomous Region, northwest China. The spatio-temporal pattern of soil surface CO2 flux as an index of soil respiration under drip irrigation with PFM was investigated, and the confounded effects of PFM and irrigation/precipitation on soil respiration were explored. The main findings were as follows. (1) Furrows, planting holes, and plastic mulch are three important pathways of soil CO2 emissions in mulched fields, of which the planting hole efflux outweighs that from the furrow, with the largest values of 8.0 and 6.6 µmol m-2 s-1, respectively, and the plastic mulch itself can emit up to 3.6 µmol m-2 s-1 of CO2. (2) The frequent application of water (i.e. through irrigation and precipitation) elevates soil moisture and soil respiration and enhances their variation. The resultant higher variation of soil moisture further alleviates the sensitivity of soil respiration to soil temperature, leading to a weak correlation and lower Q10 values. (3) Soil CO2 effluxes from furrows and ridges in mulched fields outweigh the corresponding values in non-mulched fields in arid areas. However, this outweighing relation attenuates with increasing precipitation. Furthermore, by combining our results with those from the literature, we show that the difference in soil CO2 effluxes between non-mulched and mulched fields presents a linear relation with the amount of precipitation, which results in negative values in arid areas and positive values in humid areas. Therefore, whether PFM increases soil respiration or not depends on the amount of precipitation during the crop

  14. [Effects of gravel mulch technology on soil erosion resistance and plant growth of river flinty slope].

    PubMed

    Zhu, Wei; Xie, San-Tao; Ruan, Ai-Dong; Bian, Xun-Wen

    2008-03-01

    Aiming at the technical difficulties such as the stability and water balance in the ecological rehabilitation of river flinty slope, a gravel mulch technology was proposed, with the effects of different gravel mulch treatments on the soil anti-erosion capacity, soil water retention property, and plant growth investigated by anti-erosion and pot experiments. The results showed that mulching with the gravels 1.5-2 cm in size could obviously enhance the soil anti-erosion capacity, soil water retention property and plant biomass, but no obvious differences were observed between the mulch thickness of 5 cm and 8 cm. It was indicated that mulching with the gravels 1.5-2 cm in size and 5 cm in thickness was an effective and economical technology for the ecological rehabilitation of river flinty slope.

  15. Dynamic Changes of Soil Surface Organic Carbon under Different Mulching Practices in Citrus Orchards on Sloping Land

    PubMed Central

    Gu, Chiming; Liu, Yi; Mohamed, Ibrahim; Zhang, Runhua; Wang, Xiao; Nie, Xinxin; Jiang, Min; Brooks, Margot; Chen, Fang; Li, Zhiguo

    2016-01-01

    Mulching management has been used in many places all over the world to improve agricultural sustainability. However, the cycling of carbon in the soil under applications of mulch on sloping arable land is not yet fully understood. A four-year field experiment was carried out in Xiaofuling watershed of Danjiangkou reservoir in China. The object was to evaluate the effects of the application of straw mulch (ST) and grass mulch (GT) on dynamic changes in soil organic carbon and its fractions. Results showed that mulch applied on the soil surface increased the contents of SOC and its active fractions in the soil. Compared to the control without cover (CK), ST and GT treatments increased the contents of SOC, LOC, DOC, POC and EOC by 14.73%, 16.5%, 22.5%, 41.5% and 21%, respectively, in the 0–40 cm soil layer, and by 17%, 14%, 19%, and 30%, respectively, in the 0–100 cm soil layer. The contents of organic carbon and its active fractions decreased with increasing soil depth in all of the treatments. SOC was accumulated in the period of December to the following March. The contents of soil DOC and LOC were high in January to March, while the contents of soil POC and EOC were high in June to September. The relative contents of soil organic carbon fractions were POC > EOC > LOC > DOC over the four years. Straw mulching had no significant effect on the changes in soil organic carbon active fractions during the different periods. Based on this long-term field experiment in Danjiangkou reservoir, we found that straw mulching had a significant effect on soil, increasing SOC content and stock in slopping arable land, and that live grass mulching was more effective than rice straw mulching. We discuss possible optimal periods for the implementation of mulching practices on sloping land. PMID:28030551

  16. Dynamic Changes of Soil Surface Organic Carbon under Different Mulching Practices in Citrus Orchards on Sloping Land.

    PubMed

    Gu, Chiming; Liu, Yi; Mohamed, Ibrahim; Zhang, Runhua; Wang, Xiao; Nie, Xinxin; Jiang, Min; Brooks, Margot; Chen, Fang; Li, Zhiguo

    2016-01-01

    Mulching management has been used in many places all over the world to improve agricultural sustainability. However, the cycling of carbon in the soil under applications of mulch on sloping arable land is not yet fully understood. A four-year field experiment was carried out in Xiaofuling watershed of Danjiangkou reservoir in China. The object was to evaluate the effects of the application of straw mulch (ST) and grass mulch (GT) on dynamic changes in soil organic carbon and its fractions. Results showed that mulch applied on the soil surface increased the contents of SOC and its active fractions in the soil. Compared to the control without cover (CK), ST and GT treatments increased the contents of SOC, LOC, DOC, POC and EOC by 14.73%, 16.5%, 22.5%, 41.5% and 21%, respectively, in the 0-40 cm soil layer, and by 17%, 14%, 19%, and 30%, respectively, in the 0-100 cm soil layer. The contents of organic carbon and its active fractions decreased with increasing soil depth in all of the treatments. SOC was accumulated in the period of December to the following March. The contents of soil DOC and LOC were high in January to March, while the contents of soil POC and EOC were high in June to September. The relative contents of soil organic carbon fractions were POC > EOC > LOC > DOC over the four years. Straw mulching had no significant effect on the changes in soil organic carbon active fractions during the different periods. Based on this long-term field experiment in Danjiangkou reservoir, we found that straw mulching had a significant effect on soil, increasing SOC content and stock in slopping arable land, and that live grass mulching was more effective than rice straw mulching. We discuss possible optimal periods for the implementation of mulching practices on sloping land.

  17. [Effects of bio-mulching on rhizosphere soil microbial population, enzyme activity and tree growth in poplar plantation].

    PubMed

    Liu, Jiu-Jun; Fang, Sheng-Zuo; Xie, Bao-Dong; Hao, Juan-Juan

    2008-06-01

    Coriaria nepalensis, Pteridium aquilinum var. latiuscukum, Imperata cylindrical var. major, and Quercus fabric were used as mulching materials to study their effects on the rhizosphere soil microbial population and enzyme activity and the tree growth in poplar plantation. The results showed that after mulching with test materials, the populations of both bacteria and fungi in rhizosphere soil were more than those of the control. Of the mulching materials, I. cylindrical and Q. fabric had the best effect, with the numbers of bacteria and fungi being 23.56 and 1.43 times higher than the control, respectively. The bacterial and fungal populations in rhizosphere soil increased with increasing mulching amount. When the mulching amount was 7.5 kg m(-2), the numbers of bacteria and fungi in rhizosphere soil were 0.5 and 5.14 times higher than the control, respectively. Under bio-mulching, the bacterial and fungal populations in rhizosphere soil had a similar annual variation trend, which was accorded with the annual fluctuation of soil temperature and got to the maximum in July and the minimum in December. The urease and phosphatase activities in rhizosphere soil also increased with increasing mulching amount. As for the effects of different mulching materials on the enzyme activities, they were in the order of C. nepalensis > P. aquilinum > I. cylindrical > Q. fabric. The annual variation of urease and phosphatase activities in rhizosphere soil was similar to that of bacterial and fungal populations, being the highest in July and the lowest in December. Bio-mulching promoted the tree height, DBH, and biomass of poplar trees significantly.

  18. Effects of stubble and mulching on soil erosion by wind in semi-arid China.

    PubMed

    Cong, Peifei; Yin, Guanghua; Gu, Jian

    2016-07-18

    Soil erosion is a growing challenge for agricultural production in Northern China. To explore the effect of variation in stubble height and mulching biomass on soil erosion caused by wind, we conducted a field experiment using a quadratic rotation combination design. Results showed that the quantity of straw mulch was the dominant factor affecting soil erosion, and stubble height was of secondary importance. The soil water content in stubble and straw mulching treatments was higher than in a control treatment at 0-20 cm soil, and the tendency in the amount of soil water content was opposite to the amount of wind erosion (r = -0.882, n = 10, p < 0.01). The change in soil water content observed in the stubble and mulch treatments at the 15-20 cm depth was higher than the change from 0-5 cm to 5-10 cm. Combined, the influence of a stubble height of 34 cm and mulch quantity of 4260 kg·ha(-1) lowered the amount of erosion to 0.42 t·ha(-1), and increased the corn yield to 11900 kg·ha(-1). We determined that those were the most appropriate levels of stubble height and straw mulch for crop fields in the semi-arid regions of Northern China.

  19. [Effects of different organic matter mulching on water content, temperature, and available nutrients of apple orchard soil in a cold region].

    PubMed

    Zhou, Jiang-Tao; Lü, De-Guo; Qin, Si-Jun

    2014-09-01

    The effects of different organic matter covers on soil physical-chemical properties were investigated in a 'Hanfu' apple orchard located in a cold region. Four treatments were applied (weed mulching, rice straw mulching, corn straw mulching, and crushed branches mulching), and physical-chemical properties, including orchard soil moisture and nutrient contents, were compared among treatment groups and between organic matter-treated and untreated plots. The results showed that soil water content increased in the plots treated with organic matter mulching, especially in the arid season. Cover with organic matter mulch slowed the rate of soil temperature increase in spring, which was harmful to the early growth of fruit trees. Organic matter mulching treatments decreased the peak temperature of orchard soil in the summer and increased the minimum soil temperature in the fall. pH was increased in soils treated with organic matter mulching, especially in the corn straw mulching treatment, which occurred as a response to alleviating soil acidification to achieve near-neutral soil conditions. The soil organic matter increased to varying extents among treatment groups, with the highest increase observed in the weed mulching treatment. Overall, mulching increased alkali-hydrolyzable nitrogen, available phosphorus, and available potassium in the soil, but the alkali-hydrolyzable nitrogen content in the rice straw mulching treatment was lower than that of the control.

  20. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?

    PubMed

    Steinmetz, Zacharias; Wollmann, Claudia; Schaefer, Miriam; Buchmann, Christian; David, Jan; Tröger, Josephine; Muñoz, Katherine; Frör, Oliver; Schaumann, Gabriele Ellen

    2016-04-15

    Plastic mulching has become a globally applied agricultural practice for its instant economic benefits such as higher yields, earlier harvests, improved fruit quality and increased water-use efficiency. However, knowledge of the sustainability of plastic mulching remains vague in terms of both an environmental and agronomic perspective. This review critically discusses the current understanding of the environmental impact of plastic mulch use by linking knowledge of agricultural benefits and research on the life cycle of plastic mulches with direct and indirect implications for long-term soil quality and ecosystem services. Adverse effects may arise from plastic additives, enhanced pesticide runoff and plastic residues likely to fragment into microplastics but remaining chemically intact and accumulating in soil where they can successively sorb agrochemicals. The quantification of microplastics in soil remains challenging due to the lack of appropriate analytical techniques. The cost and effort of recovering and recycling used mulching films may offset the aforementioned benefits in the long term. However, comparative and long-term agronomic assessments have not yet been conducted. Furthermore, plastic mulches have the potential to alter soil quality by shifting the edaphic biocoenosis (e.g. towards mycotoxigenic fungi), accelerate C/N metabolism eventually depleting soil organic matter stocks, increase soil water repellency and favour the release of greenhouse gases. A substantial process understanding of the interactions between the soil microclimate, water supply and biological activity under plastic mulches is still lacking but required to estimate potential risks for long-term soil quality. Currently, farmers mostly base their decision to apply plastic mulches rather on expected short-term benefits than on the consideration of long-term consequences. Future interdisciplinary research should therefore gain a deeper understanding of the incentives for farmers

  1. Post-fire mulching for runoff and erosion mitigation; Part I: Effectiveness at reducing hillslope erosion rates

    Treesearch

    Peter R. Robichaud; Sarah A. Lewis; Joseph W. Wagenbrenner; Louise E. Ashmun; Robert E. Brown

    2013-01-01

    Mulch treatments often are used to mitigate post-fire increases in runoff and erosion rates but the comparative effectiveness of various mulches is not well established. The ability of mulch treatments to reduce sediment yields from natural rainfall and resulting overland flow was measured using hillslope plots on areas burned at high severity following four wildfires...

  2. Remediation of RDX- and HMX-contaminated groundwater using organic mulch permeable reactive barriers.

    PubMed

    Ahmad, Farrukh; Schnitker, Stephen P; Newell, Charles J

    2007-02-20

    Organic mulch is a complex organic material that is typically populated with its own consortium of microorganisms. The organisms in mulch breakdown complex organics to soluble carbon, which can then be used by these and other microorganisms as an electron donor for treating RDX and HMX via reductive pathways. A bench-scale treatability study with organic mulch was conducted for the treatment of RDX- and HMX-contaminated groundwater obtained from a plume at the Pueblo Chemical Depot (PCD) in Pueblo, Colorado. The site-specific cleanup criteria of 0.55 ppb RDX and 602 ppb HMX were used as the logical goals of the study. Column flow-through tests were run to steady-state at the average site seepage velocity, using a 70%:30% (vol.:vol.) mulch:pea gravel packing to approach the formation's permeability. Significant results included: (1) Complete removal of 90 ppb influent RDX and 8 ppb influent HMX in steady-state mulch column effluent; (2) pseudo-first-order steady-state kinetic rate constant, k, of 0.20 to 0.27 h(-1) based on RDX data, using triplicate parallel column runs; (3) accumulation of reduced RDX intermediates in the steady-state column effluent at less than 2% of the influent RDX mass; (4) no binding of RDX to the column fill material; and (5) no leaching of RDX, HMX or reduction intermediates from the column fill material. The results of the bench-scale study will be used to design and implement a pilot-scale organic mulch/pea gravel permeable reactive barrier (PRB) at the site.

  3. [Effects of mulching management on biomass of Phyllostachys praecox and soil fertility].

    PubMed

    Zhai, Wan Lu; Yang, Chuan Bao; Zhang, Xiao Ping; Gao, Gui Bin; Zhong, Zhe Ke

    2018-04-01

    We analyzed the dynamics of stand growth and soil nutrient availability during the degradation processes of Phyllostachys praecox plantation, taking the advantage of bamboo forest stands with different mulching ages (0, 3, 6, 9 and 12 a). The results showed the aboveground and belowground biomass of bamboo forest reached the maximum value when they were covered by three years, which was significantly increased by 14.6% and 146.6% compared with the control. The soil nutrient content was affected by the mulching age and soil layer. Soil nutrients gradually accumulated in upper layer. Soil organic carbon and total nitrogen content were increased with the increases of coverage years. The soil total phosphorus content at different soil layers showed a trend of decreasing first and then increasing. It was the lowest level in the surface layer (0-20 cm) and the bottom (40-60 cm) in 6 years, and the subsurface (20-40 cm) soil reached the lowest level in three years. The total potassium content kept increasing in 0-20 cm soil layer, but decreased during the first three years of mulching and then increased in 20-60 cm soil layer. The comprehensive index of soil fertility quality was greatly improved after nine years mulching, with fertility of subsurface soil being better than that of surface and bottom soils. There was no relationship between the soil fertility index and biomass of different organs in bamboo in the different mulching ages. In the subsurface, however, nitrogen content was negatively related to leaf biomass and potassium was negatively correlated with the biomass of leaves and whip roots. Our results indicated that excessive accumulation of soil nutrients seriously inhibited the propagation and biomass accumulation of P. praecox after long-term mulching management and a large amount of fertilizer, which further aggravated the degradation of bamboo plantation.

  4. Soil water retention and plant growth response on the soil affected by continuous organic matter and plastic mulch application

    NASA Astrophysics Data System (ADS)

    Rasyid, B.; Oda, M.; Omae, H.

    2018-05-01

    Soil-water and plant growth interaction is a primary key to develop environmental plant production system. The objective of this research is to evaluate change in soil water retention characteristics and plant response as the effect of continuous organic matter and plastic mulch application. The experiment was conducted in the plastic house field with plot size of 5 m (length) x 1 m (width). The field had treatments of plastic mulch type (mesh and poly) and no mulch, nitrogen (0, 10 and 40 kg N ha-1), and 2 ton ha-1 organic matter (incorporated into all plots). Water retention measurement using sand box method for low suction and pressure plate apparatus was applied for high suction. Completely randomized block experimental design and Duncan-MRT were used to analysis the effect of treatment on the parameters. Soil organic carbon and nitrogen increased slightly in both mulch types, but C:N ratio decreased in poly mulch which had the lowest value during two planting season. Various change in soil water retention was shown in different mulch type with mesh mulch had the highest result on lower suction, and control was the lowest water retention on the high suction. Soil water availability was highest in mesh mulch type followed by control and poly mulch type. This study could conclude that continuous incorporation of organic matter and mesh-plastic mulch was useful in achieving environments to improve soil C:N ratio and soil water retention.

  5. Fertilization and Colors of Plastic Mulch Affect Biomass and Essential Oil of Sweet-Scented Geranium

    PubMed Central

    Silva, Anderson de Carvalho; dos Santos, Wallace Melo; Prata, Paloma Santana; Alves, Péricles Barreto

    2014-01-01

    Sweet-scented geranium (Pelargonium graveolens L'Hér), a plant belonging to the Geraniaceae family, has medicinal and aromatic properties and is widely used in the cosmetic, soap, perfume, aromatherapy, and food industries. The aim of this study was to evaluate the influence of fertilization and the use of different colors of plastic mulch on sweet-scented geranium biomass and essential oil. Three colors of plastic mulch (black, white, and silver-colored) and a control without plastic mulch were assessed along with three fertilizers (20,000 L·ha−1 of cattle manure; 1,000 kg·ha−1 of NPK 3-12-6; and 20,000 L·ha−1 of cattle manure + 1,000 kg·ha−1 of NPK 3-12-6 fertilizer) and a control without fertilizer. The absence of a soil cover negatively influenced the agronomical variables, while coverage with plastic mulch was associated with increased biomass. The use of fertilizer had no effect on the evaluated agronomic variables. When cattle manure and NPK 3-12-6 were used together, combined with white or black plastic mulch, the highest yields of essential oil were obtained. For the silver-colored plastic mulch, higher amounts of essential oil (6,9-guaiadien) were obtained with mineral fertilizer. PMID:24757440

  6. Mulches aid in regenerating California and Oregon forests: past, present, and future

    Treesearch

    Philip M. McDonald; Ole T. Helgerson

    1990-01-01

    The use of mulches as a reforestation tool in Oregon and California began primarily in the late 1950's. Many types of mulches were tried including sheets of plastic, newspaper, and plywood; various thicknesses of bark, sawdust, sand, and straw; sprayed-on petroleum resin; and even large plastic buckets. Most proved to be ineffective, costly or both. Early trials...

  7. Soil water repellency under stones, forest residue mulch and bare soil following wildfire.

    NASA Astrophysics Data System (ADS)

    Martins, Martinho A. S.; Prats, Sérgio A.; van Keulen, Daan; Vieira, Diana C. S.; Silva, Flávio C.; Keizer, Jan J.; Verheijen, Frank G. A.

    2017-04-01

    Soil water repellency (SWR) is a physical property that is commonly defined as the aptitude of soil to resist wetting. It has been documented for a wide range of soil and vegetation types, and can vary with soil organic matter (SOM) content and type, soil texture, soil moisture content (SMC) and soil temperature. Fire can induce, enhance or destroy SWR and, therefore, lead to considerable changes in soil water infiltration and storage and increase soil erosion by water, thereby weakening soil quality. In Portugal, wildfires occur frequently and affect large areas, on average some 100000 ha per year, but over 300000 ha in extreme years such as 2003 and 2005. This can have important implications in geomorphological and hydrological processes, as evidenced by the strong and sometimes extreme responses in post-fire runoff and erosion reported from various parts of the world, including Portugal. Thereby, the application of mulches from various materials to cover burned areas has been found to be an efficient stabilization treatment. However, little is known about possible side effects on SWR, especially long term effects. Forest SWR is very heterogeneous, as a result of variation in proximity to trees/shrubs, litter type and thickness, cracks, roots, and stones. This study targeted the spatial heterogeneity of soil water repellency under eucalypt plantation, five years after a wildfire and forest residue mulching application. The main objectives of this work were: 1) to assess the long-term effect of mulching application on the strength and spatial heterogeneity of topsoil SWR, by comparing SWR on bare soil, under stones, and under mulching remains; 2) to assess SWR at 1 cm depth between O and Ah horizons. The soil surface results showed that untreated bare soil areas were slightly more water repellent than mulched areas. However, under stones there were no SWR differences between mulched and control areas. At 1 cm depth, there was a marked mulching effect on SWR, even

  8. Polyethylene mulch modifies greenhouse microclimate and reduces infection of phytophthora infestans in tomato and Pseudoperonospora cubensis in cucumber.

    PubMed

    Shtienberg, D; Elad, Y; Bornstein, M; Ziv, G; Grava, A; Cohen, S

    2010-01-01

    The individual and joint effects of covering the soil with polyethylene mulch before planting and fungicides commonly used by organic growers on tomato late blight (caused by Phytophthora infestans) were studied in three experiments conducted from 2002 to 2005. Application of fungicides resulted in inconsistent and insufficient late blight suppression (control efficacy +/- standard error of 34.5 +/- 14.3%) but the polyethylene mulch resulted in consistent, effective, and highly significant suppression (control efficacy of 83.6 +/- 5.5%) of the disease. The combined effect of the two measures was additive. In a second set of three experiments carried out between 2004 and 2006, it was found that the type of polyethylene mulch used (bicolor aluminized, clear, or black) did not affect the efficacy of late blight suppression (control efficacy of 60.1 to 95.8%) and the differences in the effects among the different polyethylene mulches used were insignificant. Next, the ability of the mulch to suppress cucumber downy mildew (caused by Pseudoperonospora cubensis) was studied in four experiments carried out between 2006 and 2008. The mulch effectively suppressed cucumber downy mildew but the effect was less substantial (control efficacy of 34.9 +/- 4.8%) than that achieved for tomato late blight. The disease-suppressing effect of mulch appeared to come from a reduction in leaf wetness duration, because mulching led to reductions in both the frequency of nights when dew formed and the number of dew hours per night when it formed. Mulching also reduced relative humidity in the canopy, which may have reduced sporulation.

  9. Microbial Functional Diversity, Biomass and Activity as Affected by Soil Surface Mulching in a Semiarid Farmland

    PubMed Central

    Shen, Yufang; Chen, Yingying; Li, Shiqing

    2016-01-01

    Mulching is widely used to increase crop yield in semiarid regions in northwestern China, but little is known about the effect of different mulching systems on the microbial properties of the soil, which play an important role in agroecosystemic functioning and nutrient cycling. Based on a 4-year spring maize (Zea mays L.) field experiment at Changwu Agricultural and Ecological Experimental Station, Shaanxi, we evaluated the responses of soil microbial activity and crop to various management systems. The treatments were NMC (no mulching with inorganic N fertilizer), GMC (gravel mulching with inorganic N fertilizer), FMC (plastic-film mulching with inorganic N fertilizer) and FMO (plastic-film mulching with inorganic N fertilizer and organic manure addition). The results showed that the FMO soil had the highest contents of microbial biomass carbon and nitrogen, dehydrogenase activity, microbial activity and Shannon diversity index. The relative use of carbohydrates and amino acids by microbes was highest in the FMO soil, whereas the relative use of polymers, phenolic compounds and amines was highest in the soil in the NMC soil. Compared with the NMC, an increased but no significant trend of biomass production and nitrogen accumulation was observed under the GMC treatment. The FMC and FMO led a greater increase in biomass production than GMC and NMC. Compare with the NMC treatment, FMC increased grain yield, maize biomass and nitrogen accumulation by 62.2, 62.9 and 86.2%, but no significant difference was found between the FMO and FMC treatments. Some soil biological properties, i.e. microbial biomass carbon, microbial biomass nitrogen, being sensitive to the mulching and organic fertilizer, were significant correlated with yield and nitrogen availability. Film mulching over gravel mulching can serve as an effective measure for crop production and nutrient cycling, and plus organic fertilization additions may thus have improvements in the biological quality of the

  10. Effects of Mulching and Nitrogen on Soil Nitrate-N Distribution, Leaching and Nitrogen Use Efficiency of Maize (Zea mays L.)

    PubMed Central

    2016-01-01

    Mulching and nitrogen are critical drivers of crop production for smallholders of the Loess Plateau in China. The purpose of this study was to investigate the effect of mulching and nitrogen fertilizer on the soil water content, soil nitrate-N content and vertical distribution in maize root-zone. The experiment was conducted over two consecutive years and used randomly assigned field plots with three replicates. The six treatments consisted of no fertilizer without plastic film (CK), plastic film mulching with no basal fertilizer and no top dressing (MN0), basal fertilizer with no top dressing and no mulching (BN1), plastic film mulching and basal fertilizer with no top dressing (MN1), basal fertilizer and top dressing with no mulching (BN2) and plastic film mulching with basal fertilizer and top dressing (MN2). In the top soil layers, the soil water content was a little high in the plastic film mulching than that without mulching. The mean soil water content from 0 to 40 cm without mulching were 3.35% lower than those measured in the corresponding mulching treatments in 31 days after sowing in 2012. The mulching treatment increased the soil nitrate-N content was observed in the 0–40-cm soil layers. The results indicate that high contents of soil nitrate-N were mainly distributed at 0–20-cm at 31 days after sowing in 2012, and the soil nitrate-N concentration in the MN2 treatment was 1.58 times higher than that did not receive fertilizer. The MN2 treatment greatly increased the soil nitrate-N content in the upper layer of soil (0–40-cm), and the mean soil nitrate-N content was increased nearly 50 mg kg−1 at 105 days after sowing compared with CK treatment in 2012. The soil nitrate-N leaching amount in MN1 treatment was 28.61% and 39.14% lower than BN1 treatment, and the mulch effect attained to 42.55% and 65.27% in MN2 lower than BN2 in both years. The yield increased with an increase in the basal fertilizer, top dressing and plastic film mulching, and the

  11. Effects of Mulching and Nitrogen on Soil Nitrate-N Distribution, Leaching and Nitrogen Use Efficiency of Maize (Zea mays L.).

    PubMed

    Wang, Xiukang; Xing, Yingying

    2016-01-01

    Mulching and nitrogen are critical drivers of crop production for smallholders of the Loess Plateau in China. The purpose of this study was to investigate the effect of mulching and nitrogen fertilizer on the soil water content, soil nitrate-N content and vertical distribution in maize root-zone. The experiment was conducted over two consecutive years and used randomly assigned field plots with three replicates. The six treatments consisted of no fertilizer without plastic film (CK), plastic film mulching with no basal fertilizer and no top dressing (MN0), basal fertilizer with no top dressing and no mulching (BN1), plastic film mulching and basal fertilizer with no top dressing (MN1), basal fertilizer and top dressing with no mulching (BN2) and plastic film mulching with basal fertilizer and top dressing (MN2). In the top soil layers, the soil water content was a little high in the plastic film mulching than that without mulching. The mean soil water content from 0 to 40 cm without mulching were 3.35% lower than those measured in the corresponding mulching treatments in 31 days after sowing in 2012. The mulching treatment increased the soil nitrate-N content was observed in the 0-40-cm soil layers. The results indicate that high contents of soil nitrate-N were mainly distributed at 0-20-cm at 31 days after sowing in 2012, and the soil nitrate-N concentration in the MN2 treatment was 1.58 times higher than that did not receive fertilizer. The MN2 treatment greatly increased the soil nitrate-N content in the upper layer of soil (0-40-cm), and the mean soil nitrate-N content was increased nearly 50 mg kg-1 at 105 days after sowing compared with CK treatment in 2012. The soil nitrate-N leaching amount in MN1 treatment was 28.61% and 39.14% lower than BN1 treatment, and the mulch effect attained to 42.55% and 65.27% in MN2 lower than BN2 in both years. The yield increased with an increase in the basal fertilizer, top dressing and plastic film mulching, and the grain

  12. Tillage, Mulch and N Fertilizer Affect Emissions of CO2 under the Rain Fed Condition

    PubMed Central

    Tanveer, Sikander Khan; Wen, Xiaoxia; Lu, Xing Li; Zhang, Junli; Liao, Yuncheng

    2013-01-01

    A two year (2010–2012) study was conducted to assess the effects of different agronomic management practices on the emissions of CO2 from a field of non-irrigated wheat planted on China's Loess Plateau. Management practices included four tillage methods i.e. T1: (chisel plow tillage), T2: (zero-tillage), T3: (rotary tillage) and T4: (mold board plow tillage), 2 mulch levels i.e., M0 (no corn residue mulch) and M1 (application of corn residue mulch) and 5 levels of N fertilizer (0, 80, 160, 240, 320 kg N/ha). A factorial experiment having a strip split-split arrangement, with tillage methods in the main plots, mulch levels in the sub plots and N-fertilizer levels in the sub-sub plots with three replicates, was used for this study. The CO2 data were recorded three times per week using a portable GXH-3010E1 gas analyzer. The highest CO2 emissions were recorded following rotary tillage, compared to the lowest emissions from the zero tillage planting method. The lowest emissions were recorded at the 160 kg N/ha, fertilizer level. Higher CO2 emissions were recorded during the cropping year 2010–11 relative to the year 2011–12. During cropping year 2010–11, applications of corn residue mulch significantly increased CO2 emissions in comparison to the non-mulched treatments, and during the year 2011–12, equal emissions were recorded for both types of mulch treatments. Higher CO2 emissions were recorded immediately after the tillage operations. Different environmental factors, i.e., rain, air temperatures, soil temperatures and soil moistures, had significant effects on the CO2 emissions. We conclude that conservation tillage practices, i.e., zero tillage, the use of corn residue mulch and optimum N fertilizer use, can reduce CO2 emissions, give better yields and provide environmentally friendly options. PMID:24086256

  13. [Effect of ground mulch managements on soil bacterial community structure and diversity in the non-irrigated apple orchard in Weibei Loess Plateau].

    PubMed

    Chen, Yuexing; Wen, Xiaoxia; Sun, Yulin; Zhang, Junli; Lin, Xiaoli; Liao, Yuncheng

    2015-07-04

    We studied the changes in soil bacterial communities induced by ground mulch managements at different apple growth periods. We adopted the denaturing gradient gel electrophoresis (DGGE) with PCR-amplified 16S rRNA fragments to determine soil bacterial community structure and diversity. Soil bacterial community structure with different ground mulch managements were significantly different. Both the mulch management strategies and apple growth periods affected the predominant groups and their abundance in soil bacterial communities. Grass mulch and cornstalk mulch treatments had higher bacterial diversity and richness than the control at young fruit period and fruit expanding period, whereas film mulch treatment had no significant difference compared with the control. During mature period, bacterial diversity in the control reached its maximum, which may be ascribed to the rapid growth and reproduction of the r-selection bacteria. The clustering and detrended correspondence analysis revealed that differences in soil bacterial communities were closely correlated to apple growth periods and ground mulch managements. Soil samples from the grass mulch and cornstalk mulch treatments clustered together while those mulched with plastic film treatment were similar to the control. The most abundant phylum in soil bacterial community was Proteobacteria followed by Bacteroidetes. Some other phyla were also detected, such as Acidobacteria, Firmicutes, Actinobacteria and Chloroflexi. Mulching with plant (Grass/Cornstalk) had great effects on soil bacterial community structure and enhanced the diversity while film mulch management had no significant effects.

  14. Changes in soil parameters under continuous plastic mulching in strawberry cultivation

    NASA Astrophysics Data System (ADS)

    Muñoz, Katherine; Diehl, Dörte; Scopchanova, Sirma; Schaumann, Gabriele E.

    2016-04-01

    Plastic mulching (PM) is a widely used practice in modern agriculture because they generate conditions for optimal yield rates and quality. However, information about long-term effects of PC on soil quality parameters is scarce. The aim of this study is to compare the effect of three different mulching managements on soil quality parameters. Sampling and methodology: Three different managements were studied: Organic mulching (OM), 2-years PM and 4-years PM. Soil samples were collected from irrigated fields in 0-5, 5-10 and 10-30 cm depths and analyzed for water content (WC), pH, dissolved organic carbon (DOC), total soil carbon (Ctot) and cation exchange capacity (CECeff). Results and discussion: Mulching management has an influence on soil parameters. The magnitude of the effects is influenced by the type (organic agriculture practice vs. plastic mulching practice) and duration of the mulching. PM modified the water distribution through the soil column. WC values at the root zone were in average 10% higher compared to those measured at the topsoil. Under OM, the WC was lower than under PM. The pH was mainly influenced by the duration of the managements with slightly higher values after 4 than after 2-years PM. Under PM, aqueous extracts of the topsoil (0-5 cm depth) contained in average with 8.5±1.8 mg/L higher DOC than in 10-30 cm depth with 5.6±0.5 mg/L, which may indicate a mobilization of organic components in the upper layers. After 4-years PM, Ctot values were slightly higher than after 2-years PM and after OM. Surprisingly, after 4-years PM, CECeff values were with 138 - 157 mmolc/kg almost 2-fold higher than after 2-years PM and OM which had with 74 - 102 mmolc/kg comparable CECeff values. Long-term PM resulted in changes of soil pH and slightly increased Ctot which probably enhanced the CECeff of the soil. However, further investigations of the effect of PM on stability of soil organic matter and microbial community structure are needed.

  15. Growth and yield of patchouli (Pogostemon cablin, Benth) due to mulching and method of fertilizer on rain-fed land

    NASA Astrophysics Data System (ADS)

    Nasruddin; Harahap, E. M.; Hanum, C.; Siregar, L. A. M.

    2018-02-01

    The drought stress that occurs during growth results in a drastic reduction in growth and yield. This study was aimed to study the effect of mulching and method of fertilizer application in reducing the impact of drought stress on patchouli plants. The experiment was conducted from July to December 2016 using a split plot design into three replications with two treatment factors. The first factor was mulch factor with three levels, i.e. M0 (without mulch), M1 (rice straw mulch) and M2 (silver black plastic mulch). The second factor was the method of fertilizer application consisting of three stages: C1 (once), C2 (twice), C3 (three times). The parameters included plant height, number of branches, number of leaves, root length, wet weight of plant, root canopy ratio, total of chlorophyll, soil temperature and soil moisture content. The results showed the use of straw mulch reduce the impact of drought stress on patchouli plants. Two times fertilizer application gave better growth and yield. The use of straw mulch produced lower temperature degrees and maintained soil moisture content.

  16. Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions.

    PubMed

    Bandopadhyay, Sreejata; Martin-Closas, Lluis; Pelacho, Ana M; DeBruyn, Jennifer M

    2018-01-01

    Agricultural plastic mulch films are widely used in specialty crop production systems because of their agronomic benefits. Biodegradable plastic mulches (BDMs) offer an environmentally sustainable alternative to conventional polyethylene (PE) mulch. Unlike PE films, which need to be removed after use, BDMs are tilled into soil where they are expected to biodegrade. However, there remains considerable uncertainty about long-term impacts of BDM incorporation on soil ecosystems. BDMs potentially influence soil microbial communities in two ways: first, as a surface barrier prior to soil incorporation, indirectly affecting soil microclimate and atmosphere (similar to PE films) and second, after soil incorporation, as a direct input of physical fragments, which add carbon, microorganisms, additives, and adherent chemicals. This review summarizes the current literature on impacts of plastic mulches on soil biological and biogeochemical processes, with a special emphasis on BDMs. The combined findings indicated that when used as a surface barrier, plastic mulches altered soil microbial community composition and functioning via microclimate modification, though the nature of these alterations varied between studies. In addition, BDM incorporation into soil can result in enhanced microbial activity and enrichment of fungal taxa. This suggests that despite the fact that total carbon input from BDMs is minuscule, a stimulatory effect on microbial activity may ultimately affect soil organic matter dynamics. To address the current knowledge gaps, long term studies and a better understanding of impacts of BDMs on nutrient biogeochemistry are needed. These are critical to evaluating BDMs as they relate to soil health and agroecosystem sustainability.

  17. Biodegradable Plastic Mulch Films: Impacts on Soil Microbial Communities and Ecosystem Functions

    PubMed Central

    Bandopadhyay, Sreejata; Martin-Closas, Lluis; Pelacho, Ana M.; DeBruyn, Jennifer M.

    2018-01-01

    Agricultural plastic mulch films are widely used in specialty crop production systems because of their agronomic benefits. Biodegradable plastic mulches (BDMs) offer an environmentally sustainable alternative to conventional polyethylene (PE) mulch. Unlike PE films, which need to be removed after use, BDMs are tilled into soil where they are expected to biodegrade. However, there remains considerable uncertainty about long-term impacts of BDM incorporation on soil ecosystems. BDMs potentially influence soil microbial communities in two ways: first, as a surface barrier prior to soil incorporation, indirectly affecting soil microclimate and atmosphere (similar to PE films) and second, after soil incorporation, as a direct input of physical fragments, which add carbon, microorganisms, additives, and adherent chemicals. This review summarizes the current literature on impacts of plastic mulches on soil biological and biogeochemical processes, with a special emphasis on BDMs. The combined findings indicated that when used as a surface barrier, plastic mulches altered soil microbial community composition and functioning via microclimate modification, though the nature of these alterations varied between studies. In addition, BDM incorporation into soil can result in enhanced microbial activity and enrichment of fungal taxa. This suggests that despite the fact that total carbon input from BDMs is minuscule, a stimulatory effect on microbial activity may ultimately affect soil organic matter dynamics. To address the current knowledge gaps, long term studies and a better understanding of impacts of BDMs on nutrient biogeochemistry are needed. These are critical to evaluating BDMs as they relate to soil health and agroecosystem sustainability. PMID:29755440

  18. Effects of three mulch treatments on initial postfire erosion in north-central Arizona

    Treesearch

    George H. Riechers; Jan L. Beyers; Peter R. Robichaud; Karen Jennings; Erin Kreutz; Jeff Moll

    2008-01-01

    Mulching after wildfires is a common treatment designed to protect bare ground from raindrop impact and reduce subsequent erosion. We tested the effectiveness of three mulching methods on the Indian Fire near Prescott, Arizona, USA. The first method felled all fire-killed trees, chipped the logs and limbs, and spread the chips across the hillslope with a mobile...

  19. Study of the degradation of mulch materials in vegetable crops for organic farming

    NASA Astrophysics Data System (ADS)

    María Moreno, Marta; Mancebo, Ignacio; Moreno, Carmen; Villena, Jaime; Meco, Ramón

    2014-05-01

    Mulching is the most common technique used worldwide by vegetable growers in protected cultivation. For this purpose, several plastic materials have been used, with polyethylene (PE) being the most widespread. However, PE is produced from petroleum derivatives, it is not degradable, and thus pollutes the environment for periods much longer than the crop duration (Martín-Closas and Pelacho, 2011), which are very important negative aspects especially for organic farmers. A large portion of plastic films is left on the field or burnt uncontrollably by the farmers, with the associated negative consequences to the environment (Moreno and Moreno, 2008). Therefore, the best solution is to find a material with a lifetime similar to the crop duration time that can be later incorporated by the agricultural system through a biodegradation process (Martín-Closas and Pelacho, 2011). In this context, various biodegradable materials have been considered as alternatives in the last few years, including oxo-biodegradable films, biopolymer mulches, different types of papers, and crop residues (Kasirajan and Ngouajio, 2012). In this work we evaluate the evolution of different properties related to mulch degradation in both the buried and the superficial (exposed) part of mulch materials of different composition (standard black PE, papers and black biodegradable plastics) in summer vegetable crops under organic management in Castilla-La Mancha (Central Spain). As results, it is remarkable the early deterioration suffered by the buried part of the papers, disappearing completely in the soil at the end of the crop cycles and therefore indicating the total incorporation of these materials to the soil once the crop has finished. In the case of the degradation of the exposed mulch, small differences between crops were observed. In general, all the materials were less degraded under the plants than when receiving directly the solar radiation. As conclusion, biodegradable mulches degrade

  20. Mulch effects on runoff and sediment production at the hillslope scale in the High Park Fire, Colorado

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Kampf, S. K.; Wagenbrenner, J. W.; MacDonald, L. H.; Gleason, H.

    2015-12-01

    The 2012 High Park Fire (HPF) burned 330 km2 of Front Range forests surrounding the Cache la Poudre River just upstream of the municipal water supply intakes for the cities of Fort Collins and Greeley. From 2012-2014, millions of dollars were spent on mulch treatments to stabilize burned soils and protect water supplies. The objective of this research is to evaluate how runoff and sediment production vary with precipitation (P) on two unmulched and two mulched hillslopes of the HPF during the 2014 summer thunderstorm season. The four hillslopes are moderate to severely burned zero-order catchments 0.2-0.4 ha in area. Sediment fences were installed at the base of each hillslope to collect bedload sediment; each fence was fitted with a V-notch weir and a series of flow splitters to collect proportional samples of runoff and suspended sediment. Runoff and sediment were captured during 3-7 events for the unmulched sites and 1-9 events for the mulched sites; some P events that produced bedload sediment did not produce measurable runoff. The 30-minute maximum P intensity thresholds for runoff and sediment production were lower for unmulched (10 mm hr-1) than mulched hillslopes (16 mm hr-1). Runoff ratios were similar for the unmulched (0.01-0.10) and mulched sites (0.00-0.08), but total sediment yield (bedload + suspended load; Mg ha-1) for the unmulched sites was up to three times greater (0.02-1.54) than the mulched sites (0.01-0.50. The ratio of suspended sediment to bedload was similar for the unmulched (0.24-1.97) and mulched sites (0.16-2.52). The results of this research suggest that (1) bedload sediment measurements under-represent hillslope sediment production, and (2) mulching may reduce sediment production in zero-order catchments, but the magnitude of the mulch effect varies by catchment and by rain event.

  1. Herbicide dissipation from low density polyethylene mulch

    USDA-ARS?s Scientific Manuscript database

    Field and laboratory studies were conducted to examine herbicide dissipation when applied to low density polyethylene (LDPE) mulch for dry scenarios vs. washing off with water. In field studies, halosulfuron, paraquat, carfentrazone, glyphosate, and flumioxazin were applied to black 1.25-mil LDPE at...

  2. Effects of water collection and mulching combinations on water infiltration and consumption in a semiarid rainfed orchard

    NASA Astrophysics Data System (ADS)

    Li, Hongchen; Zhao, Xining; Gao, Xiaodong; Ren, Kemeng; Wu, Pute

    2018-03-01

    Soil water and its efficient use are critical to sustainable productivity of rainfed orchards under the context of climate change in water-limited areas. Here, we combined micro-catchments for collecting hillslope runoff, named fish-scale pits, with mulches to examine water infiltration and water consumption of fruit trees using in situ soil moisture monitoring, the micro-lysimeter and sap flow methods via a two-year experiment in a rainfed jujube orchard on China's Loess Plateau. This experiment included four treatments: fish-scale pit with branch mulching (FB), fish-scale pit with straw mulching (FS), fish-scale pit without mulching (F), and bare land treatment (CK). The results showed that only about 50% of the rainfall infiltrated the soil for CK during the 2014 and 2015 growing seasons. The fish-scale pit without mulching experienced significantly increased rainfall infiltration by 41.38 and 27.30%, respectively, but also increased evaporation by 42.28 and 65.59%, respectively, compared to CK during the two growing seasons. The jujube transpiration significantly increased by 45.64-53.10% over CK, and the evaporation decreased by 42.47-53.50% when fish-scale pits were mulched with branches or straw. Taken together, the results show that the fish-scale pits and mulching combinations efficiently increased rainfall infiltration and jujube evapotranspiration in the experimental jujube orchard. The findings here provide an insight into the field water management for hillslope orchards in water-limited regions.

  3. Characterization of wood mulch and leachate/runoff from three wood recycling facilities.

    PubMed

    Kannepalli, Sarat; Strom, Peter F; Krogmann, Uta; Subroy, Vandana; Giménez, Daniel; Miskewitz, Robert

    2016-11-01

    Large-scale open storage of wood mulch is common practice at wood recycling facilities. During rain and snow melt, leachate with soluble compounds and suspended particles is released from mulch stockpiles. The objective of this study was to determine the quality of leachate/runoff from wood recycling facilities to evaluate its potential to contaminate receiving waterbodies. Wood mulch (n = 30) and leachate/runoff (n = 26) samples were collected over 1.5 years from three wood recycling facilities in New Jersey, USA. Differences by site were found (p < 0.05) for most of the 21 constituents tested in the solid wood mulch samples. Biochemical oxygen demand (range <20-3000 mg/L), chemical oxygen demand (134-6000 mg/L) and total suspended solids (69-401 mg/L) median concentrations of the leachate/runoff samples were comparable to those of untreated domestic wastewater. Total Kjeldahl N, total P and fecal coliform median values were slightly lower than typical wastewater values. Dose-response studies with leachate/runoff samples using zebrafish (Danio rerio) embryos showed that mortality and developmental defects typically did not occur even at the highest concentration tested, indicating low toxicity, although delayed development did occur. Based on this study, leachate/runoff from wood recycling facilities should not be released to surface waters as it is a potential source of organic contamination and low levels of nutrients. A study in which runoff from a controlled drainage area containing wood mulch of known properties is monitored would allow for better assessment of the potential impact of stormwater runoff from wood recycling facilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Mid-term and scaling effects of forest residue mulching on post-fire runoff and soil erosion.

    PubMed

    Prats, Sergio Alegre; Wagenbrenner, Joseph W; Martins, Martinho António Santos; Malvar, Maruxa Cortizo; Keizer, Jan Jacob

    2016-12-15

    Mulching is an effective post-fire soil erosion mitigation treatment. Experiments with forest residue mulch have demonstrated that it increased ground cover to 70% and reduced runoff and soil loss at small spatial scales and for short post-fire periods. However, no studies have systematically assessed the joint effects of scale, time since burning, and mulching on runoff, soil loss, and organic matter loss. The objective of this study was to evaluate the effects of scale and forest residue mulch using 0.25m 2 micro-plots and 100m 2 slope-scale plots in a burnt eucalypt plantation in central Portugal. We assessed the underlying processes involved in the post-fire hydrologic and erosive responses, particularly the effects of soil moisture and soil water repellency. Runoff amount in the micro-plots was more than ten-fold the runoff in the larger slope-scale plots in the first year and decreased to eight-fold in the third post-fire year. Soil losses in the micro-plots were initially about twice the values in the slope-scale plots and this ratio increased over time. The mulch greatly reduced the cumulative soil loss measured in the untreated slope-scale plots (616gm -2 ) by 91% during the five post-fire years. The implications are that applying forest residue mulch immediately after a wildfire can reduce soil losses at spatial scales of interest to land managers throughout the expected post-fire window of disturbance, and that mulching resulted in a substantial relative gain in soil organic matter. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Optimization of irrigation scheduling for spring wheat with mulching and limited irrigation water in an arid climate

    NASA Astrophysics Data System (ADS)

    Wen, Y.

    2017-12-01

    Combining mulch and irrigation scheduling may lead to an increase of crop yield and water use efficiency (WUE = crop yield/evapotranspiration) with limited irrigation water, especially in arid regions. Based on 2 years' field experiments with ten irrigation-mulching treatments of spring wheat (Triticum aestivum L.) in the Shiyang River Basin Experiment Station in Gansu Province of Northwest China, a simulation-based optimization model for deficit irrigation scheduling of plastic mulching spring wheat was used to analyze an optimal irrigation scheduling for different deficit irrigation scenarios. Results revealed that mulching may increase maximum grain yield without water stress by 0.4-0.6 t ha-1 in different years and WUE by 0.2-0.3 kg m-3 for different irrigation amounts compared with no mulching. Yield of plastic mulching spring wheat was more sensitive to water stress in the early and development growth stages with an increase of cumulative crop water sensitive index (CCWSI) by 42%, and less sensitive to water stress in the mid and late growth stages with a reduction of CCWSI by 24%. For a relative wet year, when irrigation water is only applied once it should be at the mid to end of booting growth stage. Two irrigations should be applied at the beginning of booting and heading growth stages. The irrigation date can be extended to the beginning of jointing and grain formation growth stages with more water available for irrigation. For a normal or a dry year, the first irrigation should be applied 5-8 days earlier than the wet year. The highest WUE of 3.6 kg m-3 was achieved with 180 mm of irrigation applied twice for mulching in a wet year. Combining mulch and an optimal deficit irrigation scheduling is an effective way to increase crop yield and WUE in arid regions.

  6. Effects of straw and plastic film mulching on greenhouse gas emissions in Loess Plateau, China: A field study of 2 consecutive wheat-maize rotation cycles.

    PubMed

    Chen, Haixin; Liu, Jingjing; Zhang, Afeng; Chen, Jing; Cheng, Gong; Sun, Benhua; Pi, Xiaomin; Dyck, Miles; Si, Bingcheng; Zhao, Ying; Feng, Hao

    2017-02-01

    Mulching practices have long been used to modify the soil temperature and moisture conditions and thus potentially improve crop production in dryland agriculture, but few studies have focused on mulching effects on soil gaseous emissions. We monitored annual greenhouse gas (GHG) emissions under the regime of straw and plastic film mulching using a closed chamber method on a typical winter-wheat (Triticum aestivum L. cv Xiaoyan 22) and summer-maize (Zea mays L. cv Qinlong 11) rotation field over two-year period in the Loess Plateau, northwestern China. The following four field treatments were included: T1 (control, no mulching), T2 (4000kgha -1 wheat straw mulching, covering 100% of soil surface), T3 (half plastic film mulching, covering 50% of soil surface), and T4 (complete plastic film mulching, covering 100% of soil surface). Compared with the control, straw mulching decreased soil temperature and increased soil moisture, whereas plastic film mulching increased both soil temperature and moisture. Accordingly, straw mulching increased annual crop yields over both cycles, while plastic film mulching significantly enhanced annual crop yield over cycle 2. Compared to the no-mulching treatment, all mulching treatments increased soil CO 2 emission over both cycles, and straw mulching increased soil CH 4 absorption over both cycles, but patterns of soil N 2 O emissions under straw or film mulching are not consistent. Overall, compared to T1, annual GHG intensity was significantly decreased by 106%, 24% and 26% under T2, T3 and T4 over cycle 1, respectively; and by 20%, 51% and 29% under T2, T3 and T4 over cycle 2, respectively. Considering the additional cost and environmental issues associated with plastic film mulching, the application of straw mulching might achieve a balance between food security and GHG emissions in the Chinese Loess Plateau. However, further research is required to investigate the perennial influence of different mulching applications. Copyright

  7. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments

    NASA Astrophysics Data System (ADS)

    Yin, Wen; Feng, Fuxue; Zhao, Cai; Yu, Aizhong; Hu, Falong; Chai, Qiang; Gan, Yantai; Guo, Yao

    2016-09-01

    Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a "double mulching" system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % ( P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well "collaborative" status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be used as an

  8. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments.

    PubMed

    Yin, Wen; Feng, Fuxue; Zhao, Cai; Yu, Aizhong; Hu, Falong; Chai, Qiang; Gan, Yantai; Guo, Yao

    2016-09-01

    Water shortage threatens agricultural sustainability in many arid and semiarid areas of the world. It is unknown whether improved water conservation practices can be developed to alleviate this issue while increasing crop productivity. In this study, we developed a "double mulching" system, i.e., plastic film coupled with straw mulch, integrated together with intensified strip intercropping. We determined (i) the responses of soil evaporation and moisture conservation to the integrated double mulching system and (ii) the change of soil temperature during key plant growth stages under the integrated systems. Experiments were carried out in northwest China in 2009 to 2011. Results show that wheat-maize strip intercropping in combination with plastic film and straw covering on the soil surface increased soil moisture (mm) by an average of 3.8 % before sowing, 5.3 % during the wheat and maize co-growth period, 4.4 % after wheat harvest, and 4.9 % after maize harvest, compared to conventional practice (control). The double mulching decreased total evapotranspiration of the two intercrops by an average of 4.6 % (P < 0.05), compared to control. An added feature was that the double mulching system decreased soil temperature in the top 10-cm depth by 1.26 to 1.31 °C in the strips of the cool-season wheat, and by 1.31 to 1.51 °C in the strips of the warm-season maize through the 2 years. Soil temperature of maize strips higher as 1.25 to 1.94 °C than that of wheat strips in the top 10-cm soil depth under intercropping with the double mulching system; especially higher as 1.58 to 2.11 °C under intercropping with the conventional tillage; this allows the two intercrops to grow in a well "collaborative" status under the double mulching system during their co-growth period. The improvement of soil moisture and the optimization of soil temperature for the two intercrops allow us to conclude that wheat-maize intensification with the double mulching system can be

  9. Effects of mesquite control and mulching treatments on herbage production on semiarid shrub-grasslands

    Treesearch

    Stacy Pease; Peter F. Ffolliott; Leonard F. DeBano; Gerald J. Gottfried

    2000-01-01

    Effects of complete removal of mesquite overstory, complete removal of mesquite overstory with control of post-treatment sprouts, and retention of the mesquite overstory as a control on herbage production are described. Mulching treatments included applications of a chip mulch, a commercial compost, lopped-and-scattered mesquite branchwood, and an untreated control....

  10. Effects of straw mulching on soil evaporation during the soil thawing period in a cold region in northeastern China

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Yan, Peiru; Li, Tianxiao; Cui, Song; Peng, Li

    2018-04-01

    To study the effect of straw mulching on soil water evaporation, it is necessary to measure soil water evaporation under different conditions of straw mulching during the soil thawing period. A field experiment was conducted in winter, and soil evaporation was measured using a microlysimeter on bare land (LD) and 4500 (GF4500), 9000 (GF9000) and 13500 kg/hm2 (GF13500) straw mulch. The influence of different quantities of straw mulch on soil water evaporation during the thawing period was analyzed using the Mallat algorithm, statistical analysis and information cost function. The results showed that straw mulching could delay the thawing of the surface soil by 3-6 d, decrease the speed at which the surface soil thaws by 0.40-0.80 cm/d, delay the peak soil liquid water content, increase the soil liquid water content, reduce the cumulative evaporation by 2.70-7.40 mm in the thawing period, increase the range of soil evaporation by 0.04-0.10 mm in the early stage of the thawing period, and reduce the range of soil evaporation by 0.25-0.90 mm in the late stage of the thawing period. Straw mulching could reduce the range of and variation in soil evaporation and can reduce the effect of random factors on soil evaporation. When the amount of straw mulch exceeded 9000 kg/hm2, the effect of increasing the amount of straw mulch on daily soil water evaporation was small.

  11. Water–use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau

    PubMed Central

    Wang, Li-fang; Shangguan, Zhou-ping

    2015-01-01

    Mulching and tillage are widely considered to be major practices for improving soil and water conservation where water is scarce. This paper studied the effects of FM (flat mulching), RFM (ridge-furrow mulching), SM (straw mulching), MTMC (mulching with two materials combined), MOM (mulching with other materials), NT (no-tillage) ST (subsoiling tillage) and RT (rotational tillage) on wheat yield based on a synthesis of 85 recent publications (including 2795 observations at 24 sites) in the Loess Plateau, China. This synthesis suggests that wheat yield was in the range of 259–7898 kg ha−1 for FM and RFM. The sequence of water use efficiency (WUE) effect sizes was similar to that of wheat yield for the practices. Wheat yields were more sensitive to soil water at planting covered by plastic film, wheat straw, liquid film, water-permeable plastic film and sand compared to NT, ST and RT. RFM and RT increased the yields of wheat by 18 and 15%, respectively, and corresponding for WUE by 20.11 and 12.50%. This synthesis demonstrates that RFM was better for avoiding the risk of reduced production due to lack of precipitation; however, under conditions of better soil moisture, RT and MTMC were also economic. PMID:26192158

  12. Metalized polyethylene mulch to repel Asian citrus psyllid, slow spread of huanglongbing and improve growth of new citrus plantings.

    PubMed

    Croxton, Scott D; Stansly, Philip A

    2014-02-01

    Greening or huanglongbing (HLB) is a debilitating disease of citrus caused by Candidatus Liberibactor asiaticus and transmitted by the Asian citrus psyllid (ACP), Diaphorina citri. HLB now occurs worldwide in all major citrus growing regions except the Mediterranean and Australia. Management relies principally on insecticidal control of the ACP vector, but is insufficient, even for young trees which are most susceptible to the disease. We tested the ability of metalized polyethylene mulch to repel adult ACP as well as effects on incidence of HLB and early tree growth. Metalized mulch significantly reduced ACP populations and HLB incidence compared to whiteface mulch or bare ground. In addition, metalized mulch, together with the associated drip irrigation and fertigation system, increased soil moisture, reduced weed pressure, and increased tree growth rate. Metalized mulch slows spread of ACP and therefore HLB pressure on young citrus trees. Metalized mulch can thereby augment current control measures for young trees based primarily on systemic insecticides. Additional costs could be compensated for by increased tree growth rate which would shorten time to crop profitability. These advantages make a compelling case for large-scale trials using metalized mulch in young citrus plantings threatened by HLB. © 2013 Society of Chemical Industry.

  13. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria.

    PubMed

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A

    2007-03-01

    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  14. [Effects of mulching management of Phyllostachys heterocycla forests on the characteristics of soil infiltration and biometrics in southwest Zhejiang Province, China].

    PubMed

    Wang, Yi Kun; Jin, Ai Wu; Fang, Sheng Zuo

    2017-05-18

    Soil infiltration, soil physical and chemical properties, root length density and soil fauna diversity were studied in Phyllostachys heterocycla forests with different mulching times in southwest Zhejiang Province, China. Significant differences of soil infiltration capability were found among the forests with different mulching times and among soil layers. Soil infiltration capability generally declined in the deeper soil layers. With mulching management, soil infiltration capability increased under the first mulching, and then declined with the increase of mulching times. The Kostiakov model was suitable for simulating soil infiltration process. With the extending of mulching times (4 to 6 years), soil pH and total/non-capillary porosity decreased, while soil bulk density, soil orga-nic matter and total nitrogen contents increased significantly. Soil initial, steady, and average infiltration rates as well as the cumulative infiltration amount correlated closely with the length density of roots with diameter from 0.5 mm to 5.0 mm, showing a decreasing tendency with the decrease in root length density. Soil fauna density was highest in the forest under the first mulching, and was lowest after third mulching. The decreased numbers of large and meso-arthropods, including Symphyla, Chilopoda, Diplopoda, Hymenoptera and pseudoscorpions, and the micro-arthropods, including Oribatida, Mesostigmata, Onychiuridae, Neanuridae, Cyphoderidae, and Entomobryidae, showed negative effects on soil infiltration. In conclusion, long-term mulching changed soil physical and chemical properties, decreased soil infiltration capability, and suppressed the development of soil fauna, which might cause the decline ofP. heterocycla forests.

  15. Vegetation trends in a young ponderosa pine plantation treated by manual release and mulching

    Treesearch

    Philip M. McDonald; Gary O. Fiddler

    1997-01-01

    On an above-average site in northern California, a complex plant community was treated by manual release in 2- and 5-foot radii, one and three times. Mulching with a small (3-footsquare) paper / asphalt mulch and a control were additional treatments. Results for a 10-year period are presented for shrubs, a subshrub (whipplea), ferns, forbs, and grasses. No single...

  16. [Effects of ridge-cultivation and plastic film mulching on root distribution and yield of spring maize in hilly area of central Sichuan basin, China.

    PubMed

    Zha, Li; Xie, Meng Lin; Zhu, Min; Dou, Pan; Cheng, Qiu Bo; Wang, Xing Long; Yuan, Ji Chao; Kong, Fan Lei

    2016-03-01

    A field experiment was conducted to study the effects of planting pattern (ridge culture, flatten culture, furrow culture) and film mulching on the distribution of spring maize root system and their influence on the yield of spring maize in the hilly area of central Sichuan basin. The results showed that ridge and film mulching had great influence on root morphology and root distribution of maize. The root length, root surface area and root volume of film mulching was 42.3%, 50.0%, 57.4% higher than those of no film mulching at jointing stage. The film mulching significantly increased the dry mass of root in vertical and horizontal distribution, and increased the root allocation ratio in deeper soil layer (20-40 cm) and the allocation ratio of wide row (0-20 cm) in horizontal direction. The effects of planting pattern on root growth and root distribution differed by film mulching. With film mulching, the ridge culture significantly increased the root dry mass in each soil layer and enlarged the distribution percentage of wide row (20-40 cm) in horizontal direction, as well as the dry mass of root in horizontal distribution and the root allocation ratio of wide row. The root mass under film mulching was in the order of ridge culture>flatten culture>furrow culture. Without film mulching, the furrow culture significantly increased root dry mass of narrow row (0-40 cm), and the root mass under no film mulching was in the order of furrow culture > ridge culture >flatten culture. As for the spike characteristics and maize yield, the filming mulching mea-sures reduced the corn bald length while increased the spike length, grain number, 1000-grain mass and yield. The yield under film mulching was in the order of ridge culture>flatten culture> furrow culture, while it was furrow culture > flatten culture > ridge culture under no film mulching. The reason for yield increase under ridge culture with film mulching was that it increased root weight especially in deep soil, and

  17. Impact of reflective mulch on yield of strawberry plants and incidence of damage by tarnished plant bug (Heteroptera: Miridae).

    PubMed

    Rhainds, N; Kovach, J; Dosa, E L; English-Loeb, G

    2001-12-01

    The current study investigated the impact of reflective mulch on yield of strawberry plants and incidence of damage by tarnished plant bugs, Lygus lineolaris (Palisot de Beauvois), for three strawberry cultivars: 'Honeoye', 'Earliglow', and two sibling Dayneutrals ('Tribute' and 'Tristar', herein considered as one cultivar). Of all cultivars tested, Honeoye was the most productive and least susceptible to tarnished plant bug. For Earliglow and Honeoye, reflective mulch enhanced productivity of strawberry plants and suppressed density of nymphs per flower cluster and proportion of damaged fruits, but did not significantly impact numbers of nymphs or damaged fruits per hectare, Results with Dayneutrals were not consistently significant. Both in the presence or absence of reflective mulch, proportion of damaged fruits increased with increasing density of nymphs per flower cluster and with decreasing number of fruits harvested per row section, suggesting that planting productive strawberry cultivars or maintaining cultural practices that promote high yield may provide an effective line of defense against tarnished plant bug. These results also suggest that reflective mulch may suppress incidence of damage by tarnished plant bug both directly, by reducing number of nymphs per flower cluster, and indirectly, by enhancing productivity of strawberry plants. Economic analyses evaluating costs and benefits of using reflective mulch, as well as studies investigating mechanisms that underlie the impact of reflective mulch on yield and incidence of damage by tarnished plant bug, are still needed before reflective mulch can be implemented as a management strategy in commercial strawberry fields.

  18. [Effects of plastic mulch on soil moisture and temperature and limiting factors to yield increase for dryland spring maize in the North China].

    PubMed

    Liu, Sheng-Yao; Zhang, Li-Feng; Li, Zhi-Hong; Jia, Jian-Ming; Fan, Feng-Cui; Shi, Yu-Fang

    2014-11-01

    Four treatments, including ridge tillage with plastic mulch (RP), ridge tillage without mulch (RB), flat tillage with plastic mulch (FP) and flat tillage without mulch (FB), were carried out to examine the tillage type and mulch on the effects of soil moisture and temperature, yield and water use efficiency (WUE) of dry land spring maize in the North China. Results showed that the average soil temperature was increased by 1-3 °C and the accumulated soil temperature was increased by 155.2-280.9 °C from sowing to tasseling by plastic mulch, and the growing duration was extended by 5.9-10.7 d. The water conservation effect of plastic mulch was significant from sowing to the seedling establishment, with WUE being increased by 81.6%-136.4% under mulch as compared with that without mulch. From the seedling to jointing stage, which coincided with the dry period in the region, soil water utilization by the maize under mulch could reach the depth of 80-100 cm, and its WUE was about 17.0%-21.6% lower than the maize without mulch, since the latter was affected by dry stress. With the coming of rainy season around the trumpeting stage, soil water in each treatment was replenished and maintained at relative high level up to harvest. Yield of maize was increased by 9.5% under RP as compared with RB. However, yield was reduced by 5.0% under FP, due to the plastic film under flat tillage prevented the infiltration of rainfall and waterlogging occurred. No significant difference in yield was found between RB and FB. Higher yield of spring maize was limited because of the mismatching in water supply and demand characterized by soil water shortage before the rainy season and abundant soil water storage after the rainy season.

  19. Rice Performance and Water Use Efficiency under Plastic Mulching with Drip Irrigation

    PubMed Central

    He, Haibing; Ma, Fuyu; Yang, Ru; Chen, Lin; Jia, Biao; Cui, Jing; Fan, Hua; Wang, Xin; Li, Li

    2013-01-01

    Plastic mulching with drip irrigation is a new water-saving rice cultivation technology, but little is known on its productivity and water-saving capacity. This study aimed to assess the production potential, performance, and water use efficiency (WUE) of rice under plastic mulching with drip irrigation. Field experiments were conducted over 2 years with two rice cultivars under different cultivation systems: conventional flooding (CF), non-flooded irrigation incorporating plastic mulching with furrow irrigation (FIM), non-mulching with furrow irrigation (FIN), and plastic mulching with drip irrigation (DI). Compared with the CF treatment, grain yields were reduced by 31.76–52.19% under the DI treatment, by 57.16–61.02% under the FIM treatment, by 74.40–75.73% under the FIN treatment, which were mainly from source limitation, especially a low dry matter accumulation during post-anthesis, in non-flooded irrigation. WUE was the highest in the DI treatment, being 1.52–2.12 times higher than with the CF treatment, 1.35–1.89 times higher than with the FIM treatment, and 2.37–3.78 times higher than with the FIN treatment. The yield contribution from tillers (YCFTs) was 50.65–62.47% for the CF treatment and 12.07–20.62% for the non-flooded irrigation treatments. These low YCFTs values were attributed to the poor performance in tiller panicles rather than the total tiller number. Under non-flooded irrigation, root length was significantly reduced with more roots distributed in deep soil layers compared with the CF treatment; the DI treatment had more roots in the topsoil layer than the FIM and FIN treatments. The experiment demonstrates that the DI treatment has greater water saving capacity and lower yield and economic benefit gaps than the FIM and FIN treatments compared with the CF treatment, and would therefore be a better water-saving technology in areas of water scarcity. PMID:24340087

  20. Wood chip mulch thickness effects on soil water, soil temperature, weed growth, and landscape plant growth

    USDA-ARS?s Scientific Manuscript database

    Wood chip mulches are used in landscapes to reduce soil water evaporation and competition from weeds. A study was conducted over a three-year period to determine soil water content at various depths under four wood chip mulch treatments and to evaluate the effects of wood chip thickness on growth of...

  1. The effects of rape residue mulching on net global warming potential and greenhouse gas intensity from no-tillage paddy fields.

    PubMed

    Zhang, Zhi-Sheng; Cao, Cou-Gui; Guo, Li-Jin; Li, Cheng-Fang

    2014-01-01

    A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha(-1)) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulching treatments showed significantly more organic carbon (C) density for the 0-20 cm soil layer at harvesting than no residue treatment. During a rice-growing season, residue mulching treatments sequestered significantly more organic C from 687 kg C ha(-1) season(-1) to 1654 kg C ha(-1) season(-1) than no residue treatment. Residue mulching significantly increased emissions of CO2 and N2O but decreased CH4 emissions. Residue mulching treatments significantly increased GWP by 9-30% but significantly decreased net GWP by 33-71% and GHGI by 35-72% relative to no residue treatment. These results suggest that agricultural economic viability and GHG mitigation can be achieved simultaneously by residue mulching on NT paddy fields in central China.

  2. Power mulchers can apply hardwood bark mulch

    Treesearch

    David M. Emanuel

    1971-01-01

    Two makes of power mulchers were evaluated for their ability to apply raw or processed hardwood bark mulch for use in revegetating disturbed soils. Tests were made to determine the uniformity of bark coverage and distance to which coverage was obtained. Moisture content and particle-size distribution of the barks used were also tested to determine whether or not these...

  3. [Effects of different colored plastic film mulching and planting density on dry matter accumulation and yield of spring maize.

    PubMed

    Zhang, Lin Lin; Sun, Shi Jun; Chen, Zhi Jun; Jiang, Hao; Zhang, Xu Dong; Chi, Dao Cai

    2018-01-01

    In order to investigate the effect of different colored plastic film mulching and planting density on spring maize dry matter accumulation and yield in the rain-fed area of the Northeast China, a complete combination field experiment which was comprised by three types of mulching (non-mulching, transparent plastic film mulching and black plastic film mulching) and five densities (60000, 67500, 75000, 82500 and 90000 plants·hm -2 ), was conducted to analyze the water and heat effect, dry matter accumulation and yield of spring maize (Liangyu 99). The results showed that, compared with the other mulching treatments, the black plastic film mulching treatment significantly increased the maize dry matter accumulation and maize biomass by 3.2%-8.2%. In mature stage, the biomass increased firstly and then decreased with the increasing plant density. When planting density was 82500 plants·hm -2 , the biomass was the highest, which was 5.2%-28.3% higher than that of other plant density treatments. The mean soil temperature in prophase of transparent plastic film mulching treatment was 0.4-2.7 ℃ higher than that of other treatments, which accelerated the maize growth process and augmented the dry matter transportation amount (T), dry matter transportation efficiency (TE) and contribution rate of dry matter transportation to the grain yield (TC) of maize stalk and leaf. The T, TE, TC of leaf and leaf-stalk under 60000 plants·hm -2 treatment were the highest. The highest T, TE, TC of stalk were observed under 75000 plants·hm -2 treatment. In heading period, the water consumption and daily water consumption intensity of maize under the treatment of black film mulching were the largest, which were 9.4%-10.6% and 10.6%-24.5% higher than that of other mulching treatments, respectively. The highest water consumption and daily water consumption intensity were both obtained under 90000 plants·hm -2 treatment, which increased by 6.8%-15.7% and 7.0%-20.0% compared with other

  4. Using QuickBird imagery to detect cover and spread of post-fire straw mulch after the 2006 Tripod Fire, Washington, USA

    Treesearch

    Sarah A. Lewis; Peter R. Robichaud

    2011-01-01

    Agricultural straw mulch is a commonly applied treatment for protecting resources at risk from runoff and erosion events after wildfires. High-resolution QuickBird satellite imagery was acquired after straw mulch was applied on the 2006 Tripod Fire in Washington. We tested whether the imagery was suitable for remotely assessing the areal coverage of the straw mulch...

  5. Modeling water flow and nitrate dynamics in a plastic mulch vegetable cultivation system using HYDRUS-2D

    NASA Astrophysics Data System (ADS)

    Filipović, Vilim; Romić, Davor; Romić, Marija; Matijević, Lana; Mallmann, Fábio J. K.; Robinson, David A.

    2016-04-01

    Growing vegetables commercially requires intensive management and involves high irrigation demands and input of agrochemicals. Plastic mulch application in combination with drip irrigation is a common agricultural management technique practiced due to variety of benefits to the crop, mostly vegetable biomass production. However, the use of these techniques can result in various impacts on water and nutrient distribution in underlying soil and consequently affect nutrient leaching towards groundwater resources. The aim of this work is to estimate the effect of plastic mulch cover in combination with drip irrigation on water and nitrate dynamics in soil using HYDRUS-2D model. The field site was located in Croatian costal karst area on a Gleysol (WRB). The experiment was designed according to the split-plot design in three repetitions and was divided into plots with plastic mulch cover (MULCH) and control plots with bare soil (CONT). Each of these plots received applications of three levels of nitrogen fertilizer: 70, 140, and 210 kg per ha. All plots were equipped with drip irrigation and cropped with bell pepper (Capsicum annuum L. cv. Bianca F1). Lysimeters were installed at 90 cm depth in all plots and were used for monitoring the water and nitrate outflow. HYDRUS-2D was used for modeling the water and nitrogen outflow in the MULCH and CONT plots, implementing the proper boundary conditions. HYDRUS-2D simulated results showed good fitting to the field site observed data in both cumulative water and nitrate outflow, with high level of agreement. Water flow simulations produced model efficiency of 0.84 for CONT and 0.56 for MULCH plots, while nitrate simulations showed model efficiency ranging from 0.67 to 0.83 and from 0.70 to 0.93, respectively. Additional simulations were performed with the absence of the lysimeter, revealing faster transport of nitrates below drip line in the CONT plots, mostly because of the increased surface area subjected to precipitation

  6. The effects of mulching on soil erosion by water. A review based on published data

    NASA Astrophysics Data System (ADS)

    Prosdocimi, Massimo; Jordán, Antonio; Tarolli, Paolo; Cerdà, Artemi

    2016-04-01

    Among the soil conservation practices that have been recently implemented, mulching has been successfully applied in different contexts (Jordán et al., 2011), such as agricultural lands (García-Orenes et al. 2009; Prosdocimi et al., 2016), fire-affected areas (Prats et al., 2014; Robichaud et al., 2013) and anthropic sites (Hayes et al., 2005), to reduce water and soil losses rates. In these contexts, soil erosion by water is a serious problem, especially in semi-arid and semi-humid areas of the world (Cerdà et al., 2009; Cerdan et al., 2010; Sadeghi et al., 2015). Although soil erosion by water consists of physical processes that vary significantly in severity and frequency according to when and where they occur, they are also strongly influenced by anthropic factors such as unsustainable farming practices and land-use changes on large scales (Cerdà, 1994; Montgomery, 2007). Although the beneficial effects of mulching are known, their quantification needs further research, especially in those areas where soil erosion by water represents a severe threat. In literature, there are still some uncertainties about how to maximize the effectiveness of mulching in the reduction of soil and water loss rates. First, the type of choice of the vegetative residues is fundamental and drives the application rate, cost, and consequently, its effectiveness. Second, it is important to assess application rates suitable for site-specific soil and environment conditions. The percentage of area covered by mulch is another important aspect to take into account, because it has proven to influence the reduction of soil loss. And third, the role played by mulching at catchment scale, where it plays a key role as barrier for breaking sediment and runoff connectivity. Given the seriousness of soil erosion by water and the uncertainties that still concern the correct use of mulching, this work aims to evaluate the effects of mulching on soil erosion rates and water losses in agricultural

  7. Utilization of a Biodegradable Mulch Sheet Produced from Poly(Lactic Acid)/Ecoflex®/Modified Starch in Mandarin Orange Groves

    PubMed Central

    Tachibana, Yuya; Maeda, Takuya; Ito, Osamu; Maeda, Yasukatsu; Kunioka, Masao

    2009-01-01

    We have developed a mulch sheet made by inflation molding of PLA, Ecoflex® and modified starch, which all have different biodegradabilities. A field test of use as an agricultural mulch sheet for mandarin oranges was carried out over two years. The mechanical properties of the mulch sheet were weakened with time during the field test, but the quality of the mandarin oranges increased, a result of the controlled degradation of the sheet. The most degradable modified starch degraded first, allowing control of the moisture on the soil. Accelerator mass spectroscopy was used for evaluation of the biomass carbon ratio. The biomass carbon ratio decreased by degradation of the biobased materials, PLA and modified starch in the mulch sheet. PMID:19812715

  8. Effect of different mulch materials on the soil dehydrogenase activity (DHA) in an organic pepper crop

    NASA Astrophysics Data System (ADS)

    Moreno, Marta M.; Peco, Jesús; Campos, Juan; Villena, Jaime; González, Sara; Moreno, Carmen

    2016-04-01

    The use biodegradable materials (biopolymers of different composition and papers) as an alternative to conventional mulches has increased considerably during the last years mainly for environmental reason. In order to assess the effect of these materials on the soil microbial activity during the season of a pepper crop organically grown in Central Spain, the soil dehydrogenase activity (DHA) was measured in laboratory. The mulch materials tested were: 1) black polyethylene (PE, 15 μm); black biopolymers (15 μm): 2) Mater-Bi® (corn starch based), 3) Sphere 4® (potato starch based), 4) Sphere 6® (potato starch based), 5) Bioflex® (polylactic acid based), 6) Ecovio® (polylactic acid based), 7) Mimgreen® (black paper, 85 g/m2). A randomized complete block design with four replications was adopted. The crop was drip irrigated following the water demand of each treatment. Soil samples (5-10 cm depth) under the different mulches were taken at different dates (at the beginning of the crop cycle and at different dates throughout the crop season). Additionally, samples of bare soil in a manual weeding and in an untreated control were taken. The results obtained show the negative effect of black PE on the DHA activity, mainly as result of the higher temperature reached under the mulch and the reduction in the gas interchange between the soil and the atmosphere. The values corresponding to the biodegradable materials were variable, although highlighting the low DHA activity observed under Bioflex®. In general, the uncovered treatments showed higher values than those reached under mulches, especially in the untreated control. Keywords: mulch, biodegradable, biopolymer, paper, dehydrogenase activity (DHA). Acknowledgements: the research was funded by Project RTA2011-00104-C04-03 from the INIA (Spanish Ministry of Economy and Competitiveness).

  9. [Effects of mulching patterns on soil water, broomcorn millet growth, photosynthetic charac- teristics and yield in the dryland of Loess Plateau in China].

    PubMed

    Su, Wang; Zhang, Yan-Ping; Qu, Yang; Li, Cui; Miao, Jia-Yuan; Gao, Xiao-Li; Liu, Jian-Hua; Feng, Bai-Li

    2014-11-01

    The objective of this study was to explore the effects of mulching patterns on soil water, growth, photosynthetic characteristics, grain yield and water use efficiency (WUE) of broomcorn millet in the dryland of Loess Plateau in China. In a three-year field experiment from 2011 to 2013, we compared four different mulching patterns with traditional plat planting (no mulching) as the control (CK). The mulching patterns included W ridge covered with common plastic film + intredune covered with straw (SG), common ridge covered with common plastic film + intredune covered with straw (LM), double ridges covered with common plastic film + intredune covered with straw (QM), and the traditional plat planting covered with straw (JG). The results showed that the soil water storage in 0-100 cm layer was significantly higher in all mulching patterns than in CK, particularly in SG then followed by LM, QM and JG, and the differences among the mulching patterns reached a significant level at the different growth stages of broomcorn millet. Among all mulching patterns, SG had the greatest effect on the growth and photosynthesis of broomcorn millet, respectively increasing the yield and WUE by 55.9% and 64.9% over CK, and the differences among the mulching patterns also reached a significant level. Therefore, SG was recommended as an efficient planting pattern for broomcorn millet production in the dryland of Loess Plateau in China.

  10. Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Liu, Qiaofei; Chen, Yu; Li, Weiwei; Liu, Yang; Han, Juan; Wen, Xiaoxia; Liao, Yuncheng

    2016-06-01

    A 2-year field experiment was conducted on maize (Zea mays L.) to explore effective ways to decrease soil CO2 emissions and increase grain yield. Treatments established were: (1) no mulching with urea, (2) no mulching with controlled release fertiliser (CRF), (3) transparent plastic-film mulching (PMt) with urea, (4) PMt with CRF, (5) black plastic-film mulching (PMb) with urea, and (6) PMb with CRF. During the early growth stages, soil CO2 emissions were noted as PMt > PMb > no mulching, and this order was reversed in the late growth stages. This trend was the result of topsoil temperature dynamics. There were no significant correlations noted between soil CO2 emissions and soil temperature and moisture. Cumulative soil CO2 emissions were higher for the PMt than for the PMb, and grain yield was higher for the PMb treatments than for the PMt or no mulching treatments. The CRF produced higher grain yield and inhibited soil CO2 emissions. Soil CO2 emissions per unit grain yield were lower for the BC treatment than for the other treatments. In conclusion, the use of black plastic-film mulching and controlled release fertiliser not only increased maize yield, but also reduced soil CO2 emissions.

  11. Amendments and mulches improve the biological quality of soils degraded by mining activities in SE Spain

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Miralles Mellado, Isabel; Hernández Fernández, María Teresa; García Izquierdo, Carlos; Solé Benet, Albert

    2014-05-01

    Mining and quarrying activities generate negative visual impacts in the landscape and a loss of environmental quality. Substrate properties at the end of mining are in general not suitable for plant growth, even native ones. In an experimental soil restoration in limestone quarries from Sierra de Gádor (Almería), SE Spain, the effect of organic amendment (sewage sludge, compost from the organic fraction of domestic waste or non-amendment) combined or not with two different kind of mulches (fine gravel, chopped forest residue) was tested by triplicate in 5 x 5 m plots with the aim to improve soil/substrate properties and to reduce evaporation and erosion. In each experimental plot 75 native plants (Stipa tenacissima, Anthyllis terniflora and Anthyllis cytisoides) were planted. Effects of adding organic amendments and mulches on some soil microbiological and biochemical parameters (microbial biomass carbon, basal respiration and different enzymatic activities, such as dehydrogenase, phosphatase, β-glucosidase and urease) were analyzed 5 years after the start of the experiment. Vegetation growth was also monitored. The two-way ANOVA, using as factors amendment and mulch, showed a significant positive influence of organic amendments on microbial biomass (Cmic), basal respiration and some enzymatic activities related to the cycles of C and N. The highest values of these parameters were obtained with compost. The influence of the mulch factor and its interactions with the amendment factor on the measured variables did not follow a clear trend with respect the measured parameters. Mulching did not improved significantly (p<0.05) the positive effect of organic amendments on Cmic although Cmic values increased with the incorporation of "forest chopped residue" and decreased with gravel incorporation. In general, both type of mulch decreased or have no effect on the microbial activity detected in the amended soils, with the only exception of the forest chopped residue

  12. Rice-Straw Mulch Reduces the Green Peach Aphid, Myzus persicae (Hemiptera: Aphididae) Populations on Kale, Brassica oleracea var. acephala (Brassicaceae) Plants

    PubMed Central

    Silva-Filho, Reinildes; Santos, Ricardo Henrique Silva; Tavares, Wagner de Souza; Leite, Germano Leão Demolin; Wilcken, Carlos Frederico; Serrão, José Eduardo; Zanuncio, José Cola

    2014-01-01

    Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21–36°C and to 18–32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants. PMID:24714367

  13. Rice-straw mulch reduces the green peach aphid, Myzus persicae (Hemiptera: Aphididae) populations on kale, Brassica oleracea var. acephala (Brassicaceae) plants.

    PubMed

    Silva-Filho, Reinildes; Santos, Ricardo Henrique Silva; Tavares, Wagner de Souza; Leite, Germano Leão Demolin; Wilcken, Carlos Frederico; Serrão, José Eduardo; Zanuncio, José Cola

    2014-01-01

    Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21-36°C and to 18-32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants.

  14. Reducing insecticide and fungicide loads in runoff from plastic mulch with vegetative-covered furrows.

    PubMed

    Rice, Pamela J; Harman-Fetcho, Jennifer A; Sadeghi, Ali M; McConnell, Laura L; Coffman, C Benjamin; Teasdale, John R; Abdul-Baki, Aref; Starr, James L; McCarty, Gregory W; Herbert, Rachel R; Hapeman, Cathleen J

    2007-02-21

    A common management practice for the production of fresh-market vegetables utilizes polyethylene (plastic) mulch because it increases soil temperature, decreases weed pressure, maintains soil moisture, and minimizes soil contact with the product. However, rain events afford much more erosion and runoff because 50-75% of the field is covered with an impervious surface. A plot study was conducted to compare and to quantify the off-site movement of soil, insecticides, and fungicides associated with runoff from plots planted with Sunbeam tomatoes (Lycopersicon esculentum Mill) using the conventional polyethylene mulch management practice vs an alternative management practice-polyethylene mulch-covered beds with cereal rye (Secale cereale) planted in the furrows between the beds. The use of cereal rye-covered furrows with the conventional polyethylene system decreased runoff volume by more than 40%, soil erosion by more than 80%, and pesticide loads by 48-74%. Results indicate that vegetative furrows are critical to minimizing the negative aspects of this management practice.

  15. Modelling the impact of climatic conditions and plant species on the nitrogen release from mulch of legumes at the soil surface

    NASA Astrophysics Data System (ADS)

    Gaudinat, Germain; Lorin, Mathieu; Valantin-morison, Muriel; Garnier, Patricia

    2015-04-01

    Cover crops provide multiple services to the agro ecosystem. Among them, the use of legumes as cover crop is one of the solutions for limiting the use of herbicides, mineral fertilizers, and insecticides. However, the dynamic of mineralization is difficult to understand because of the difficulty of measuring nitrogen release from mulch in field. Indeed, residues are degraded at the soil surface as mulch, while the nitrogen uptake by the main crop occurred simultaneously in the soil. This work aims to study the dynamics of nitrogen mineralization from legume residues through i) the use of a model able to describe the physical and biological dynamic of mulch and ii) a data set from a field experiment of intercropping systems "oilseed rape-legumes" from different species (grass pea, lentil, Berseem clover, field pea, vetch). The objective of the simulations is to identify the variations of expected quantities of nitrogen from different legumes. The soil-plant model of mulch decomposition PASTIS-Mulch was used to determine the nitrogen supply from mulch available for rapeseed. These simulation results were compared to the data collected in the experimental field of Grignon (France). We performed analyzes of biochemical and physical characteristics of legume residues and monitored the evolution of mulches (moisture, density, cover surface, biomass) in fields. PASTIS simulations of soil temperature, soil moisture, mulch humidity and mulch decomposition were close to the experimental results. The PASTIS model was suitable to simulate the dynamic of legume mulches in the case of "rape - legume" associations. The model simulated nitrogen restitution of aerial and root parts. We found a more rapid nitrogen release by grass pea than other species. Vetch released less nitrogen than the other species. The scenarios for climate conditions were : i) a freezing in December that causes the destruction of plants, or a destruction by herbicide in March, ii) a strong or a weak rainy

  16. Biodegradation of poly(hydroxy butanoic acid) copolymer mulch films in soil

    NASA Astrophysics Data System (ADS)

    Kukade, Pranav

    Agricultural mulch films that are used to cover soil of crop rows contribute to earlier maturation of crops and higher yield. Incineration and landfill disposals are the most common means of disposal of the incumbent polyethylene (PE) mulch films; however, these are not environment friendly options. Biodegradable mulch films that can be rototilled into the soil after crop harvest are a promising alternative to offset problems such as landfill disposal, film retrieval and disposal costs. In this study, an in-house laboratory scale test method was developed in which the rate of disintegration, as a result of biodegradation of films based on polyhydroxybutanoic acid (PHB) copolymers was investigated in a soil environment using the residual weight loss method. The influence of soil composition, moisture levels in the soil, and industry-standard anti-microbial additive in the film composition on the rate of disintegration of PHB copolymer films was investigated. The soil composition has significant effect on the disintegration kinetics of PHB copolymer films, since the increasing compost levels in the soil lowered the rate of disintegration of the film. Also, with the increase in moisture level up to a threshold limit, the microbial activity and, hence, the rate of disintegration increased. Lastly, the developed lab-scale test protocol was found to be sensitive to even small concentrations of industry-standard antimicrobial additive in the film composition.

  17. Short- and medium-term effects of fuel reduction mulch treatments on soil nitrogen availability in Colorado conifer forests

    Treesearch

    C. C. Rhoades; M. A. Battaglia; M. E. Rocca; M. G. Ryan

    2012-01-01

    Mechanical fuel reduction treatments have been implemented on millions of hectares of western North American forests. The redistribution of standing forest biomass to the soil surface by mulching treatments has no ecological analog, and this practice may alter soil processes and forest productivity. We evaluated the effects of mulch addition on soil nitrogen...

  18. Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM.

    PubMed

    Balwinder-Singh; Humphreys, E; Gaydon, D S; Eberbach, P L

    2016-10-01

    Machinery for sowing wheat directly into rice residues has become more common in the rice-wheat systems of the north-west Indo-Gangetic Plains of South Asia, with increasing numbers of farmers now potentially able to access the benefits of residue retention. However, surface residue retention affects soil water and temperature dynamics, thus the optimum sowing date and irrigation management for a mulched crop may vary from those of a traditional non-mulched crop. Furthermore, the effects of sowing date and irrigation management are likely to vary with soil type and seasonal conditions. Therefore, a simulation study was conducted using the APSIM model and 40 years of weather data to evaluate the effects of mulch, sowing date and irrigation management and their interactions on wheat grain yield, irrigation requirement (I) and water productivity with respect to irrigation (WP I ) and evapotranspiration (WP ET ). The results suggest that the optimum wheat sowing date in central Punjab depends on both soil type and the presence or absence of mulch. On the sandy loam, with irrigation scheduled at 50% soil water deficit (SWD), the optimum sowing date was late October to early November for maximising yield, WP I and WP ET . On the clay loam, the optimum date was about one week later. The effect of mulch on yield varied with seasonal conditions and sowing date. With irrigation at 50% SWD, mulching of wheat sown at the optimum time increased average yield by up to 0.5 t ha -1 . The beneficial effect of mulch on yield increased to averages of 1.2-1.3 t ha -1 as sowing was advanced to 15 October. With irrigation at 50% SWD and 7 November sowing, mulch reduced the number of irrigations by one in almost 50% of years, a reduction of about 50 mm on the sandy loam and 60 mm on the clay loam. The reduction in irrigation amount was mainly due to reduced soil evaporation. Mulch reduced irrigation requirement by more as sowing was delayed, more so on the sandy loam than the clay

  19. Comparison Between Ground Ant (Hymenoptera: Formicidae) Communities Foraging in the Straw Mulch of Sugarcane Crops and in the Leaf Litter of Neighboring Forests.

    PubMed

    Silva, N S; Saad, L P; Souza-Campana, D R; Bueno, O C; Morini, M S C

    2017-02-01

    In many sugarcane plantations in Brazil, the straw is left on the soil after harvesting, and vinasse, a by-product of the production of sugar and ethanol, is used for fertigation. Our goal was to compare ant community composition and species richness in the straw mulch of sugarcane crops with the leaf litter of neighboring forests. We tested the hypothesis that ant communities in the straw mulch of vinasse-irrigated sugarcane crops and in the forest leaf litter were similar, because the combination of straw mulching and vinasse irrigation has a positive effect on soil fauna. Straw mulch and leaf litter were collected from 21 sites and placed in Berlese funnels. In total, 61 species were found in the forest leaf litter, whereas 34 and 28 species were found in the straw mulch of sugarcane fields with and without vinasse, respectively. Ant communities differed between forest and crop fields, but the species in the sugarcane straw mulch were a subset of the species found in the forest leaf litter. Although vinasse is rich in organic matter, it did not increase ant diversity. Seven feeding and/or foraging types were identified and, among the different types, surface-foraging omnivorous ants were the most prevalent in all habitats. Vinasse-irrigated sugarcane straw mulch had more predatory species than mulch from vinasse-free fields, but fewer than forest leaf litter. However, this positive effect of vinasse irrigation should be carefully evaluated because vinasse has negative effects on the environment. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. [Effects of deep plowing and mulch in fallow period on soil water and yield of wheat in dryland].

    PubMed

    Deng, Yan; Gao, Zhi-Qiang; Sun, Min; Zhao, Wei-Feng; Zhao, Hong-Mei; Li, Qing

    2014-01-01

    A field test was carried out in Qiujialing Village, Wenxi, Shanxi from 2009 to 2011 to study the soil water movement of 0-300 cm layer, yield formation and water use efficiency (WUE) of wheat with deep plowing and mulching the whole ground immediately (no mulch as control) 15 days and 45 days after harvest. The results indicated that deep plowing and mulch in fallow period could improve soil water storage of the 100-180 cm layer before sowing, the soil water storage efficiency in fallow period, and soil water storage from pre-wintering stage to booting stage. Compared with deep plowing 15 days after wheat harvest, deep plowing 45 days after wheat harvest did better in improving soil water storage and water use efficiency, as well as ear number and yield, which was more conducive in the year with more precipitation. Generally, deep plowing and mulching after raining during fallow period could benefit the soil water storage and conservation, thus would be helpful to improve wheat yield in dryland.

  1. Conservation strategies on citrus plantation in eastern Spain. Catch crops, geotextiles and mulches

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Dominguez, Alfons; Giménez Morera, Antonio

    2010-05-01

    Tillage (6 %), and herbicides (89 %) are the most widespread soil management methods in eastern Spain citrus orchards. The bare soils, the high intensity thunderstorms and the steep slopes result in high erosion rates. Over the last 3 years an experimental station has been developed at Montesa municipality in order to determine the effect of different types of mulch, geotextiles and catch crops. Rainfall simulation experiments on 20 m2 plots shown that soil losses can be control by catch crops (85 %), chipped pruned branches (89 %), straw mulch (97 %) and geotextiles (99 %). Then, vegetation can contribute to control the soil and water losses on the highly erodible soil of Mediterranean orchards.

  2. Impact of plastic mulching on nitrous oxide emissions in China's arid agricultural region under climate change conditions

    NASA Astrophysics Data System (ADS)

    Yu, Yongxiang; Tao, Hui; Jia, Hongtao; Zhao, Chengyi

    2017-06-01

    The denitrification-decomposition (DNDC) model is a useful tool for integrating the effects of agricultural practices and climate change on soil nitrous oxide (N2O) emissions from agricultural ecosystems. In this study, the DNDC model was evaluated against observations and used to simulate the effect of plastic mulching on soil N2O emissions and crop growth. The DNDC model performed well in simulating temporal variations in N2O emissions and plant growth during the observation period, although it slightly underestimated the cumulative N2O emissions, and was able to simulate the effects of plastic mulching on N2O emissions and crop yield. Both the observations and simulations demonstrated that the application of plastic film increased cumulative N2O emissions and cotton lint yield compared with the non-mulched treatment. The sensitivity test showed that the N2O emissions and lint yield were sensitive to changes in climate and management practices, and the application of plastic film made the N2O emissions and lint yield less sensitive to changes in temperature and irrigation. Although the simulations showed that the beneficial impacts of plastic mulching on N2O emissions were not gained under high fertilizer and irrigation scenarios, our simulations suggest that the application of plastic film effectively reduced soil N2O emissions while promoting yields under suitable fertilizer rates and irrigation. Compared with the baseline scenario, future climate change significantly increased N2O emissions by 15-17% without significantly influencing the lint yields in the non-mulched treatment; in the mulched treatment, climate change significantly promoted the lint yield by 5-6% and significantly reduced N2O emissions by 14% in the RCP4.5 and RCP8.5 scenarios. Overall, our results demonstrate that the application of plastic film is an efficient way to address increased N2O emissions and simultaneously enhance crop yield in the future.

  3. Effects of a mulch layer on the assemblage and abundance of mesostigmatan mites and other arthropods in the soil of a sugarcane agro-ecosystem in Australia.

    PubMed

    Manwaring, M; Wallace, H M; Weaver, H J

    2018-03-01

    Sugarcane farmers can utilise a soil conservation technique called green cane trash blanketing, a form of mulching that can increase plant productivity through a number of channels, e.g., via altering soil physical, chemical and biological characteristics, and influence soil arthropod assemblages. Predatory mites (Mesostigmata) are important components of soil communities because they can control populations of other soil-dwelling pest species. Our aim was to characterise mulch-influenced predatory Mesostigmata community assemblages in sugarcane soils in Queensland, Australia. We found that application of a mulch layer significantly increased the abundance of Mesostigmata, and oribatid mites and collembolans, in soils. Furthermore, we observed that the assemblages of Mesostigmata in soil covered by mulch were significantly different to those in bare soil; and the assemblages of Mesostigmata changed over time. The assemblages of Mesostigmata, but not Oribatida or collembolans, were significantly different in soil under mulch depending on whether the mulch was freshly laid, or decomposing. Our results show that the use of mulch, specifically the green cane trash blanket, can increase overall microarthropod abundance including Mesostigmata. This is likely due to increased habitat complexity and changing resource availability.

  4. Rolled cover crop mulches for organic corn and soybean production

    USDA-ARS?s Scientific Manuscript database

    Interest in cover crop mulches has increased out of both economic and soil conservation concerns. The number of tractor passes required to produce corn and a soybean organically is expensive and logistically challenging. Farmers currently use blind cultivators, such as a rotary hoe or flex-tine harr...

  5. Effects of organic amendments and mulches on soil microbial communities in quarry restoration under semiarid climate

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Pastorelli, Roberta; Miralles Mellado, Isabel; Fabiani, Arturo; Bastida López, Felipe; Hernández Fernández, María Teresa; García Izquierdo, Carlos; Solé Benet, Albert

    2015-04-01

    Mining activities generate loss of the quality of the environment and landscape specially in arid and semiarid Mediterranean regions. A precondition for ecosystem reclamation in such highly disturbed mining areas is the development of functional soils with appropriate levels of organic matter. In an experimental soil restoration in limestone quarries from Sierra de Gádor (Almería), SE Spain, 9 plots 15 x 5 m were prepared to test organic amendments (compost from solid urban residues-DOW-, sludge from urban water treatment-SS-, control-NA-) and different mulches (fine gravel-GM-, wood chips-WM-, control-NM-) with the aim to improve soil/substrate properties and to reduce evaporation and erosion. In each experimental plot, 75 native plants (Macrochloa tenacissima, Anthyllis terniflora and Anthyllis cytisoides) were planted. After 5 years from the start of the experiment, we evaluated how microbial community composition responded to the organic amendments and mulches. Microbial community composition of both bacteria and fungi was determined by phospholipid fatty acid (PLFA) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting. The results of the two-way ANOVA showed that PLFAs were significantly affected by organic amendments but not by the mulches or interaction of both factors. Experimental plots with DOW showed significantly higher level of fungal PLFAs than those with SS and NA, even higher than the reference undisturbed soil. However, any plot with organic amendments did not reach the content of bacterial PLFAs of the reference soils. The bacterial diversity (evaluated by diversity indices calculated from DGGE profiles) was greater in soil samples taken under NA and GM. Comparing these indices in fungal DGGE, we found greater values for soil samples taken under DOW and without mulches. Results from UPGMA analysis showed significant differences in the structure of soil bacterial communities from the different treatments

  6. Mulching machines for pre-commercial thinning and fuel reduction

    Treesearch

    Jason D. Thompson

    2002-01-01

    Wildfires in the western United States and Florida over the last several years have highlighted the vulnerability of dense overstocked stands to fire. As a result, landowners, land managers, and researchers alike are interest ed in methods to reduce hazardous fuels in forest stands. Mechanical reduction of under-story and mid-story fuels by mulching or chipping is an...

  7. Role of Vegetation and Mulch in Mitigating the Effects of Raindrop Impact on Runoff and Infiltration from Urban Vegetated Green Infrastructure

    NASA Astrophysics Data System (ADS)

    Alizadehtazi, B.; Montalto, F. A.

    2013-12-01

    Rain drop impact causes soil crust formation which, in turn, reduces infiltration rates and increases runoff, contributing to soil erosion, downstream flooding and non point source pollutant loads. Unprotected soil surfaces (e.g. without vegetation canopies, mulch, or other materials), are more susceptible to crust formation due to the higher kinetic energy associated with raindrop impact. This impulse breaks larger soil aggregates into smaller particles and disperses soil from its original position. The displaced soil particles self-stratify, with finer particles at the top forming the crust. By contrast, soil that is protected by vegetation canopies and mulch layers is less susceptible to crust formation, since these surfaces intercept raindrops, dissipating some of their kinetic energy prior to their impact with the soil. Very little research has sought to quantify the effect that canopies and mulch can have on this phenomenon. This presentation presents preliminary findings from ongoing study conducted using rainfall simulator to determine the ability of new urban vegetation and mulch to minimize soil crust formation. Three different scenarios are compared: a) bare soil, b) soil with mulch cover, and c) soil protected by vegetation canopies. Soil moisture, surface penetration resistance, and physical measurements of the volume of infiltrate and runoff are made on all three surface treatments after simulated rainfall events. The results are used to discuss green infrastructure facility maintenance and design strategies, namely whether heavily vegetated GI facilities require mulching to maintain infiltration capacity.

  8. Spring maize yield, soil water use and water use efficiency under plastic film and straw mulches in the Loess Plateau

    PubMed Central

    Lin, Wen; Liu, Wenzhao; Xue, Qingwu

    2016-01-01

    To compare the soil water balance, yield and water use efficiency (WUE) of spring maize under different mulching types in the Loess Plateau, a 7-year field experiment was conducted in the Changwu region of the Loess Plateau. Three treatments were used in this experiment: straw mulch (SM), plastic film mulch (PM) and conventional covering without mulch (CK). Results show that the soil water change of dryland spring maize was as deep as 300 cm depth and hence 300 cm is recommended as the minimum depth when measure the soil water in this region. Water use (ET) did not differ significantly among the treatments. However, grain yield was significantly higher in PM compared with CK. WUE was significantly higher in PM than in CK for most years of the experiment. Although ET tended to be higher in PM than in the other treatments (without significance), the evaporation of water in the fallow period also decreased. Thus, PM is sustainable with respect to soil water balance. The 7-year experiment and the supplemental experiment thus confirmed that straw mulching at the seedling stage may lead to yield reduction and this effect can be mitigated by delaying the straw application to three-leaf stage. PMID:27976710

  9. A comparison of three erosion control mulches on decommissioned forest road corridors in the northern Rocky Mountains, United States

    Treesearch

    R. B. Foltz

    2012-01-01

    This study tested the erosion mitigation effectiveness of agricultural straw and two wood-based mulches for four years on decommissioned forest roads. Plots were installed on the loosely consolidated, bare soil to measure sediment production, mulch cover, and plant regrowth. The experimental design was a repeated measures, randomized block on two soil types common in...

  10. Surface fuel loadings within mulching treatments in Colorado coniferous forests

    Treesearch

    Mike A. Battaglia; Monique E. Rocca; Charles C. Rhoades; Michael G. Ryan

    2010-01-01

    Recent large-scale, severe wildfires in the western United States have prompted extensive mechanical fuel treatment programs to reduce potential wildfire size and severity. Fuel reduction prescriptions typically target non-merchantable material so approaches to mechanically treat and distribute residue on site are becoming increasingly common. We examined how mulch...

  11. Long-Term Capacity of Plant Mulch to Remediate Trichloroethylene in Groundwater

    EPA Science Inventory

    Passive reactive barriers are commonly used to treat groundwater that is contaminated with chlorinated solvents such as trichloroethylene (TCE). A number of passive reactive barriers have been constructed with plant mulch as the reactive medium. The TCE is removed in these barr...

  12. Effectiveness of two contrasting mulching rates to reduce post-fire soil and organic matter losses

    NASA Astrophysics Data System (ADS)

    Silva, Flavio; Prats, Sergio; Vieira, Diana; Puga, João; Lopes, Rita; Gonzaléz-Pelayo, Oscar; Caetano, Ana; Campos, Isabel; Keizer, Jacob

    2017-04-01

    Wildfire-affected soils can reveal strong responses in runoff generation and associated soil (fertility) losses, thereby constituting a major threat to the typically shallow and poor forest soils of the Portuguese mountain areas. Mulching with logging residues from these forests has proven to provide a protective soil cover that is highly effective in reducing post-fire runoff and especially erosion (Prats et al., 2012, 2014, 2016a, 2016b). However, these past experiments have all applied comparatively large amounts of forest residues, in the order of 10 Mg ha-1, so that the relationship between application rate and effectiveness is still poorly known. Such relationship would nonetheless be of crucial importance for the employment of forest residue mulching in practice, as one of the possible emergency stabilization measures to be contemplated in post-fire land management of a recently-burned area. Further research gaps that exist in relation to post-fire forest residue mulching include its effectiveness in reducing soil fertility losses (C, N, P; Ferreira et al., 2016a, 2016b) and in minimizing export of contaminants (especially PAHs and metals; Campos et al., 2016), and its (secondary) impacts on soil biological activity and diversity (Puga et al., 2016) and on forest productivity (including through the addition of organic matter to the soil surface, partially replacing the burned litter layer; Prats et al. 2016b). In the framework of the EU-project RECARE, the effectiveness of two contrasting mulching rates with forest logging residues has been tested following a wildfire that on August 9th - 10th 2015 consumed some 715 ha of eucalypt plantations in the Semide municipality, central Portugal. Commercially-available logging residues (chopped bark and twigs) from eucalypt plantations were purchased, transported to the study site and applied to six out of nine 16 m2 erosion bounded plots that had been installed in a burned eucalypt plantation using a randomized

  13. The Role of Vegetation and Mulch in Mitigating the Impact of Raindrops on Soils in Urban Vegetated Green Infrastructure Systems

    NASA Astrophysics Data System (ADS)

    Alizadehtazi, B.; Montalto, F. A.; Sjoblom, K.

    2014-12-01

    Raindrop impulses applied to soils can break up larger soil aggregates into smaller particles, dispersing them from their original position. The displaced particles can self-stratify, with finer particles at the top forming a crust. Occurrence of this phenomenon reduces the infiltration rate and increases runoff, contributing to downstream flooding, soil erosion, and non point source pollutant loads. Unprotected soil surfaces (e.g. without vegetation canopies, mulch, or other materials), are more susceptible to crust formation due to the higher kinetic energy associated with raindrop impact. By contrast, soil that is protected by vegetation canopies and mulch layers is less susceptible to crust formation, since these surfaces intercept raindrops, dissipating some of their kinetic energy prior to their impact with the soil. Within this context, this presentation presents preliminary laboratory work conducted using a rainfall simulator to determine the ability of new urban vegetation and mulch to minimize soil crust formation. Three different scenarios are compared: a) bare soil, b) soil with mulch cover, and c) soil protected by vegetation canopies. Soil moisture, surface penetration resistance, and physical measurements of the volume of infiltrate and runoff are made on all three surface treatments after simulated rainfall events. The results are used to develop recommendations regarding surface treatment in green infrastructure (GI) system designs, namely whether heavily vegetated GI facilities require mulching to maintain infiltration capacity.

  14. Analysis of the degradation of biodegradable mulches in a pepper crop under organic management

    NASA Astrophysics Data System (ADS)

    Moreno, Carmen; González, Sara; Villena, Jaime; Meco, Ramón; María Moreno, Marta

    2016-04-01

    The use of biodegradable mulch materials (biopolymers and papers) as an alternative to polyethylene is increasing nowadays, particularly in organic farming, due to environmental factors. It is necessary to test their functionality under field conditions by identifying, for example, the undesirable early degradation which commonly takes place in some of these biodegradable materials. In this sense, it is quite common and easy to apply the use of visual scales to estimate the level of deterioration of mulches, which can be subjective. Therefore, the objectives of this work are: i) To study the degradation of different mulch materials under field conditions by measuring the soil surface they covered. ii) To compare these soil surface values with the overall assessment of their functionality obtained by visual scales. The trial was performed in an organically grown pepper crop in Ciudad Real (Central Spain) in the 2014 spring-summer season. The mulch materials used were: 1) black polyethylene (15 μm); black biopolymers (15 μm): 2) Mater-Bi® (corn starch based), 3) Sphere 4® (potato starch based), 4) Sphere 6® (potato starch based), 5) Bioflex® (polylactic acid based), 6) Ecovio® (polylactic acid based), 7) Mimgreen® (black paper, 85 g/m2). A randomized complete block design with four replications was adopted. The crop was drip irrigated following the water demand of each treatment. To assess the evolution of the soil surface covered by the mulches, a total of 560 photographs of the superficial (exposed) part and 196 photographs of the buried part of the materials (1415x2831 pixels, 28 pixels/cm) were analyzed by using Adobe Photoshop CS at 15, 30, 45, 60, 90,120, 145 days after transplanting. Additionally, four experts evaluated the functionality of these materials based on the photographs according to a scale from 1 (completely deteriorated material) to 9 (intact material). The results show: i) The superficial part corresponding to the polyethylene and the

  15. Vegetation response after post-fire mulching and native grass seeding

    Treesearch

    Penelope Morgan; Marshell Moy; Christine A. Droske; Leigh B. Lentile; Sarah A. Lewis; Peter R. Robichaud; Andrew T. Hudak

    2014-01-01

    Post-fire mulch and seeding treatments, often applied on steep, severely burned slopes immediately after large wildfires, are meant to reduce the potential of erosion and establishment of invasive plants, especially non-native plants, that could threaten values at risk. However, the effects of these treatments on native vegetation response post fire are little studied...

  16. Treatment of RDX and/or HMX Using Mulch Biowalls

    DTIC Science & Technology

    2008-04-01

    industrial classification TAL target analyte list TCE trichloroethene TCLP toxicity characteristic leachate procedure TNB 1,3,5-Trinitobenzene TNT... leachate procedure (TCLP) testing results for the mulch fill in the site-specific treatability phase confirmed no leaching of the target...0.01% 1 ɘ.001% 0.1% * i. Presence of other remediation technologies in the immediate vicinity No 4 No Yes, active phytoremediation in Pink Water

  17. Post-fire mulching for runoff and erosion mitigation; Part II: Effectiveness in reducing runoff and sediment yields from small catchments

    Treesearch

    Peter R. Robichaud; Joseph W. Wagenbrenner; Sarah A. Lewis; Louise E. Ashmun; Robert E. Brown; Peter M. Wohlgemuth

    2013-01-01

    Agricultural straw, hydromulch, and wood shred or wood strand mulches increasingly are being used as post-fire hillslope treatments, but the differences in effectiveness among these mulch treatments are not fully understood. Following the 2002 Hayman fire in central Colorado and the 2003 Cedar fire in southern California, matched catchments were monitored for five to...

  18. [Research progress on the dual-mulching of ridge and furrow technology in dry farming regions of northern China: A review.

    PubMed

    Li, Rong; Hou, Xian Qing; Wang, Xiao Min; Jia, Zhi Kuan; Han, Qing Fang

    2016-04-22

    The precipitation exiguity and water deficiency are the major factors limiting crop growth in dry farming regions of northern China. Dual-mulching of ridges and furrows, which have been widely concerned both domestically and internationally, could increase the utilization efficiency of precipitation and crop yield. In this paper, we reviewed the concept and model of dual-mulching of ridges and furrows, its supporting farm machinery and implements as well as its ecological effects on soil and crops. Based on the current research progress of cultivation techniques using harvested rainfall in ridge and furrow, priority of future research aspects of the dual-mulching of ridges and furrows were suggested as follows: 1) to establish the suitable ridge-furrow ratios for different crops in different types of dry farming regions of northern China; 2) to pay more attention to the study of coupling effects of soil moisture with temperature, fertility and other factors; 3) to explore better environment-friendly mulching materials; 4) to enhance the research on technical evaluation and popularization, and the design of supporting farm machinery and implements.

  19. [Effects of plastic film mulching and nitrogen application rate on net global warming potential in semiarid rain-fed maize cropland].

    PubMed

    Liu, Jian Can; Wang, Ze Lin; Yue, Shan Chao; Li, Shi Qing

    2018-04-01

    A one-year field experiment was conducted to evaluate the effects of plastic film mulching (FM) and nitrogen application rates applied to rain-fed maize fields on net global warming potential (Net GWP) and greenhouse gas intensity (GHGI) at the Changwu Agricultural and Ecological Experimental Station. Both GWP and GHGI were affected by the plastic film mulching and nitrogen application rate. Under the FM treatment, maize yield ranged from 1643 to 16699 kg·hm -2 , the net GWP (CO 2 -eq) ranged from 595 to 4376 kg·hm -2 ·a -1 , and the GHGI (CO 2 -eq) ranged from 213 to 358 kg·t -1 . The grain yield of maize, net GWP and GHGI for the UM (no mulching) treatment were 956 to 8821 kg·hm -2 , 342 to 4004 kg·hm -2 ·a -1 and 204 to 520 kg·t -1 , respectively. The results suggested that plastic film mulching could simultaneously improve grain yield and decrease GHGI in rain-fed cropland along with nitrogen fertilizer of 250 kg·hm -2 .

  20. Sustainability of TCE Removal in the Mulch Biowalls at Altus AFB

    EPA Science Inventory

    A permeable mulch biowall was installed in June 2002 at Landfill 3 (LF-03), Operable Unit 1 (OU-1), Altus AFB, Oklahoma. The demonstration was conducted by Parsons for the AFCEE Technology Transfer Outreach Office. The biowall is approximately 455 feet long, by 24 feet deep, by...

  1. MULCHES AND OTHER COVER MATERIALS TO REDUCE WEED GROWTH IN CONTAINER-GROWN NURSERY STOCK.

    PubMed

    Rys, F; Van Wesemael, D; Van Haecke, D; Mechant, E; Gobin, B

    2014-01-01

    Due to the recent EU-wide implementation of Integrated Pest Management (IPM), alternative methods to reduce weed growth in container-grown nursery stock are needed to cut back the use of herbicides. Covering the upper layer of the substrate is known as a potential method to prevent or reduce weed growth in plant containers. As a high variety of mulches and other cover materials are on the market, however, it is no longer clear for growers which cover material is most efficient for use in containers. Therefore, we examined the effect on weed growth of different mulches and other cover materials, including Pinus maritima, P. sylvestris, Bio-Top Basic, Bio-Top Excellent, coco chips fine, hemp fibres, straw pellets, coco disk 180LD and jute disk. Cover materials were applied immediately after repotting of Ligustrum ovalifolium or planting of Fagus sylvatica. At regular times, both weed growth and side effects (e.g., plant growth, water status of the substrate, occurrence of mushrooms, foraging of birds, complete cover of the substrate and fixation) were assessed. All examined mulches or other cover materials were able to reduce weed growth on the containers during the whole growing season. Weed suppression was even better than that of a chemical treated control. Although all materials showed some side effects, the impact on plant growth is most important to the grower and depends not only on material characteristics (e.g., biodegradation, nutrient leaching and N-immobilisation) but also on container size and climatic conditions. In conclusion, mulches and other cover materials can be a valuable tool within IPM to lower herbicide use. To enable a deliberate choice of which cover material is best used in a specific situation more research is needed on lifespan and stability as well as on economic characteristics of the materials.

  2. Post-fire erosion control mulches alter belowground processes and nitrate reductase activity of a perennial forb, heartleaf arnica (Arnica cordifolia)

    Treesearch

    Erin M. Berryman; Penelope Morgan; Peter R. Robichaud; Deborah Page-Dumroese

    2014-01-01

    Four years post-wildfire, we measured soil and plant properties on hillslopes treated with two different mulches (agricultural wheat straw and wood strands) and a control (unmulched, but burned). Soil total N was about 40% higher and microbial respiration of a standard wood substrate was nearly twice as high in the mulched plots compared to the unmulched plots. Greater...

  3. Effect of nonwoven jute agrotextile mulch on soil health and productivity of broccoli (Brassica oleracea L.) in lateritic soil.

    PubMed

    Manna, Koushik; Kundu, Manik Chandra; Saha, Biplab; Ghosh, Goutam Kumar

    2018-01-16

    A field experiment was conducted in winter season of 2015-2016 in the dry lateritic soil of Eastern India to study the effect of different thicknesses of nonwoven jute agrotextile mulches (NJATM) along with other mulches on soil health, growth and productivity of broccoli (Brassica oleracea L.). The experiment was conducted in randomized block design with six treatments viz., T 1 (control, i.e. no mulching), T 2 (300 gsm NJATM), T 3 (350 gsm NJATM), T 4 (400 gsm NJATM), T 5 (rice straw) and T 6 (black polythene mulch), each of which was replicated four times. The highest average curd weight (355.25 g) and yield (8.53 t ha -1 ) of broccoli were recorded in T 3 treatment. The lowest density of broad leaved weed, sedges and grasses were recorded in T 6 treatment which was statistically at par with T 4 . All the treatments composing of NJATM increased the population of all the soil microbes except bacteria in the root rhizosphere of broccoli from their initial population. On average, the highest population of fungi (54.0 × 10 3  cfu per g) and actinomycetes (134.75 × 10 3  cfu per g) was recorded with T 3 and T 4 treatments respectively in the post-harvest soil. The soil moisture was conserved in all treatments compared to control showing highest moisture content in T 4 treatment. Organic carbon and available N, P and K contents of soil were increased in all mulch treated plots compared to control, and their initial value and their highest value were recorded in T 3 . The NJATM of 350 gsm thickness was very effective compared to other mulches in increasing the growth and productivity of broccoli by suppressing weeds, increasing moisture, microbial population and nutrient content of the lateritic soil.

  4. Parboiled rice hull mulch in containers reduces liverwort and bittercress growth

    USDA-ARS?s Scientific Manuscript database

    Use of preemergence herbicides for weed control is not always possible; some crops and many enclosed production sites are not labeled for herbicide applications. The objective of this research was to determine the utility of parboiled rice hull mulch for controlling two of the most common weeds in ...

  5. Do postfire mulching treatments affect plant community recovery in California coastal sage scrub lands?

    PubMed

    McCullough, Sarah A; Endress, Bryan A

    2012-01-01

    In recent years, the use of postfire mulch treatments to stabilize slopes and reduce soil erosion in shrubland ecosystems has increased; however, the potential effects on plant recovery have not been examined. To evaluate the effects of mulching treatments on postfire plant recovery in southern California coastal sage scrub, we conducted a field experiment with three experimental treatments, consisting of two hydromulch products and an erosion control blanket, plus a control treatment. The area burned in 2007, and treatments were applied to six plot blocks before the 2008 growing season. Treatment effects on plant community recovery were analyzed with a mixed effects ANOVA analysis using a univariate repeated measures approach. Absolute plant cover increased from 13 to 90% by the end of the second growing season, and the mean relative cover of exotic species was 32%. The two hydromulch treatments had no effect on any plant community recovery response variable measured. For the erosion control blanket treatment, the amount of bare ground cover at the end of the second growing season was significantly lower (P = 0.01), and greater shrub height was observed (P < 0.01). We conclude that postfire mulch treatments did not provide either a major benefit or negative impact to coastal sage scrub recovery on the study area.

  6. [Distribution characteristics of soil aggregates and their associated organic carbon in gravel-mulched land with different cultivation years].

    PubMed

    DU, Shao Ping; Ma, Zhong Ming; Xue, Liang

    2017-05-18

    The distribution characteristics of soil aggregates and their organic carbon in gravel-mulched land with different planting years (5, 10, 15, 20 and 30 years) were studied based on a long-term field trial. The results showed that the soil aggregate fraction showed a fluctuation (down-up-down) trend with the decrease of soil aggregate size. The soil aggregates were distributed mainly in the size of >5 mm for less than 10 years cultivation, and 0.05-0.25 mm for more than 15 years. The content of aggregates over 0.25 mm (R 0.25 ) and the mean weight diameter (MWD) of soil aggregates all decreased with the increase of cultivation time. The content of organic carbon within soil aggregates increased with the decrease of soil aggregate size in gravel-mulched land with diffe-rent planting years. However, the content of organic carbon within soil aggregates, contribution rates of different aggregate fractions to soil organic carbon and soil organic carbon storage of aggregate fractions decreased with planting time extension and soil depth. Soil organic carbon in the aggregate sizes over 1 mm was sensitive to long term gravel-mulched field planting. Organic carbon storage of aggregate fractions with 10, 15, 20 and 30 years of planting decreased by 8.0%, 24.4%, 27.5% and 31.4% in the soil depth of 0-10 cm, and 1.4%, 15.8%, 19.4% and 21.8% in the soil depth of 10-20 cm, respectively. In conclusion, the ability of soil carbon sequestration in arid gravel-mulched field was reduced with planting time extension. Therefore, soil fertility of gravel-mulched fields which were cultivated for more than 15 years need to be improved.

  7. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards.

    PubMed

    Prosdocimi, Massimo; Jordán, Antonio; Tarolli, Paolo; Keesstra, Saskia; Novara, Agata; Cerdà, Artemi

    2016-03-15

    Soil and water loss in agriculture is a major problem throughout the world, and especially in Mediterranean areas. Non-conservation agricultural practices have further aggravated the situation, especially in vineyards, which are affected by one of the highest rates of soil loss among cultivated lands. Therefore, it is necessary to find the right soil practices for more sustainable viticulture. In this regard, straw mulching has proven to be effective in other crop and fire affected soils, but, nonetheless, little research has been carried out in vineyards. This research tests the effect of barley straw mulching on soil erosion and surface runoff on vineyards in Eastern Spain where the soil and water losses are non-sustainable. An experiment was setup using rainfall simulation tests at 55 mm h(-1) over 1h on forty paired plots of 0.24 m(2): twenty bare and twenty straw covered. Straw cover varied from 48 to 90% with a median value of 59% as a result of the application of 75 g of straw per m(2). The use of straw mulch resulted in delayed ponding and runoff generation and, as a consequence, the median water loss decreased from 52.59 to 39.27% of the total rainfall. The straw cover reduced the median sediment concentration in runoff from 9.8 to 3.0 g L(-1) and the median total sediment detached from 70.34 to 15.62 g per experiment. The median soil erosion rate decreased from 2.81 to 0.63 Mg ha(-1)h(-1) due to the straw mulch protection. Straw mulch is very effective in reducing soil erodibility and surface runoff, and this benefit was achieved immediately after the application of the straw. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Evaluating the effectiveness of agricultural mulches for reducing post-wildfire wind erosion

    USDA-ARS?s Scientific Manuscript database

    Post-wildfire soil erosion can be caused by water or aeolian processes yet most erosion research has focused on predominantly water-driven erosion. This study investigates the effectiveness of three agricultural mulches, with and without a tackifier, on aeolian sediment transport processes. A wind t...

  9. Effect of rice hull mulch on nutrient concentration of fertilized irrigation water

    USDA-ARS?s Scientific Manuscript database

    Parboiled rice hulls are an effective mulch for controlling weeds in nursery containers. A layer of rice hulls between 1.25 and 2.5 cm deep has been shown to provide effective control of liverwort (Marchantia polymorpha), bittercress (Cardamine flexuosa), and creeping woodsorrel (Oxalis corniculata...

  10. Effect of Different Mulches under Rainfall Concentration System on Corn Production in the Semi-arid Areas of the Loess Plateau

    PubMed Central

    Ren, Xiaolong; Zhang, Peng; Chen, Xiaoli; Guo, Jingjing; Jia, Zhikuan

    2016-01-01

    The ridge and furrow farming system for rainfall concentration (RC) has gradually been popularized to improve the water availability for crops and to increase the water use efficiency (WUE), thereby stabilizing high yields. In the RC system, plastic-covered ridges are rainfall harvesting zones and furrows are planting zones. In this study, we optimized the mulching patterns for RC planting to mitigate the risks of drought during crop production in semi-arid agricultural areas. We conducted a four-year field study to determine the effects on corn production of mulching with 0.08-mm plastic film, maize straw, 8% biodegradable film, liquid film, bare furrow, and conventional flat (CF) farming. We found that RC significantly increased (P > 0.05) the soil moisture storage in the top 0–100 cm layer and the topsoil temperature (0–10 cm) during the corn-growing season. Combining RC with mulching further improved the rain-harvesting, moisture-retaining, and yield-increasing effects in furrows. Compared with CF, the four-year average yield increased by 1497.1 kg ha–1 to 2937.3 kg ha–1 using RC with mulch treatments and the WUE increased by 2.3 kg ha–1 mm–1 to 5.1 kg ha–1 mm–1. PMID:26751619

  11. Effect of Different Mulches under Rainfall Concentration System on Corn Production in the Semi-arid Areas of the Loess Plateau

    NASA Astrophysics Data System (ADS)

    Ren, Xiaolong; Zhang, Peng; Chen, Xiaoli; Guo, Jingjing; Jia, Zhikuan

    2016-01-01

    The ridge and furrow farming system for rainfall concentration (RC) has gradually been popularized to improve the water availability for crops and to increase the water use efficiency (WUE), thereby stabilizing high yields. In the RC system, plastic-covered ridges are rainfall harvesting zones and furrows are planting zones. In this study, we optimized the mulching patterns for RC planting to mitigate the risks of drought during crop production in semi-arid agricultural areas. We conducted a four-year field study to determine the effects on corn production of mulching with 0.08-mm plastic film, maize straw, 8% biodegradable film, liquid film, bare furrow, and conventional flat (CF) farming. We found that RC significantly increased (P > 0.05) the soil moisture storage in the top 0-100 cm layer and the topsoil temperature (0-10 cm) during the corn-growing season. Combining RC with mulching further improved the rain-harvesting, moisture-retaining, and yield-increasing effects in furrows. Compared with CF, the four-year average yield increased by 1497.1 kg ha-1 to 2937.3 kg ha-1 using RC with mulch treatments and the WUE increased by 2.3 kg ha-1 mm-1 to 5.1 kg ha-1 mm-1.

  12. Effect of Different Mulches under Rainfall Concentration System on Corn Production in the Semi-arid Areas of the Loess Plateau.

    PubMed

    Ren, Xiaolong; Zhang, Peng; Chen, Xiaoli; Guo, Jingjing; Jia, Zhikuan

    2016-01-11

    The ridge and furrow farming system for rainfall concentration (RC) has gradually been popularized to improve the water availability for crops and to increase the water use efficiency (WUE), thereby stabilizing high yields. In the RC system, plastic-covered ridges are rainfall harvesting zones and furrows are planting zones. In this study, we optimized the mulching patterns for RC planting to mitigate the risks of drought during crop production in semi-arid agricultural areas. We conducted a four-year field study to determine the effects on corn production of mulching with 0.08-mm plastic film, maize straw, 8% biodegradable film, liquid film, bare furrow, and conventional flat (CF) farming. We found that RC significantly increased (P > 0.05) the soil moisture storage in the top 0-100 cm layer and the topsoil temperature (0-10 cm) during the corn-growing season. Combining RC with mulching further improved the rain-harvesting, moisture-retaining, and yield-increasing effects in furrows. Compared with CF, the four-year average yield increased by 1497.1 kg ha(-1) to 2937.3 kg ha(-1) using RC with mulch treatments and the WUE increased by 2.3 kg ha(-1) mm(-1) to 5.1 kg ha(-1) mm(-1).

  13. Evaluation of three watering and mulching techniques on transplanted trees at Adobe Dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, C.

    1983-06-01

    On the basis of these transplant studies, it is recommended that a minimal irrigation schedule be followed in the future for transplanted specimens. Transplanting early in the year reduces the watering requirements. Furthermore, after a one month adjustment period, trees watered once a month did well. Removal of supplemental water should be gradual, so as not to cause shock to the trees. Stone mulch appears to be both durable and effective as a mulching material, and can be cost effective if readily available on site. Fencing is a requirement for Palo Verde and Mesquite transplants but can be foregone onmore » Creosote. Management following transplanting should include regular site inspections for signs of insect infestation and for watering problems. Inspection personnel should watch for signs that transplants have been watered adequately and the fences are intact and not restricting tree growth.« less

  14. [Effects of different mulching materials on nitrate metabolism in soil of apple root-zone in summer and autumn.

    PubMed

    Zhang, Rui Xue; Yang, Hong Qiang; Xu, Ying; Lyu, Ting Wen; Cao, Hui; Ning, Liu Fang; Zhou, Chun Ran; Fan, Wei Guo

    2016-08-01

    This study explored the effects of mulching straw mat, agricultural carpet, transparent-plastic film and horticultural fabric on nitrification-denitrification, nitrate reductase (NR), nitrite reductase (NiR), ammonium, nitrate and nitrite nitrogen in root-zone soil grown with three-year old apple trees (Malus domestica cv. Starkrimson) during summer and autumn. Results showed that the four treatments decreased nitrification intensity in summer soil, NiR activity in summer-autumn soil and the variation coefficient of nitrification-denitrification intensity and NR in both summer and autumn soil. The treatments increased the denitrification intensity, NR activity, ammonium nitrogen contents in summer-autumn soil and ammonium nitrogen contents in autumn soil. Straw mat treatment increased denitrification intensity and nitrate nitrogen contents in both summer and autumn soil and decreased the activity of NR and NiR in summer soil. The coefficient of variation of nitrification-denitrification intensity and NR activity treated by mulching straw mat was lower than those in the other treatments in both summer and autumn soil. Agricultural carpet increased the NR and NiR activity in summer soil, the nitrate nitrogen contents in summer-autumn soil and the denitrification intensity in autumn soil and decreased denitrification intensity in summer soil. Transparent-plastic film increased the nitrite nitrogen contents in summer soil, the contents of nitrate nitrogen in summer-autumn soil, the nitrification intensity and NiR activity in autumn soil, and decreased nitrate nitrogen contents in summer soil. Horticultural fabric increased denitrification intensity in summer soil, nitrification intensity in summer-autumn and autumn soil and the nitrate nitrogen contents in autumn soil. The four mulching treatments all promoted plant growth. In the four mulching treatments, the new shoot and trunk thickening growth were more under straw mat and horticultural fabric treatments. The four

  15. Highly organic natural media as permeable reactive barriers: TCE partitioning and anaerobic degradation profile in eucalyptus mulch and compost.

    PubMed

    Öztürk, Zuhal; Tansel, Berrin; Katsenovich, Yelena; Sukop, Michael; Laha, Shonali

    2012-10-01

    Batch and column experiments were conducted with eucalyptus mulch and commercial compost to evaluate suitability of highly organic natural media to support anaerobic decomposition of trichloroethylene (TCE) in groundwater. Experimental data for TCE and its dechlorination byproducts were analyzed with Hydrus-1D model to estimate the partitioning and kinetic parameters for the sequential dechlorination reactions during TCE decomposition. The highly organic natural media allowed development of a bioactive zone capable of decomposing TCE under anaerobic conditions. The first order TCE biodecomposition reaction rates were 0.23 and 1.2d(-1) in eucalyptus mulch and compost media, respectively. The retardation factors in the eucalyptus mulch and compost columns for TCE were 35 and 301, respectively. The results showed that natural organic soil amendments can effectively support the anaerobic bioactive zone for remediation of TCE contaminated groundwater. The natural organic media are effective environmentally sustainable materials for use in permeable reactive barriers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Vegetable Response to Herbicides Applied to Low-Density Polyethylene Mulch Prior to Transplant

    USDA-ARS?s Scientific Manuscript database

    Few herbicides are available for weed control in vegetables. The elimination of methyl bromide increases the need for herbicides. An experiment was conducted to evaluate crop injury from herbicides applied to LDPE mulch prior to transplant. Irrigation (1 cm) or no irrigation following crop transplan...

  17. Polyacrylamide application versus forest residue mulching for reducing post-fire runoff and soil erosion.

    PubMed

    Prats, Sergio Alegre; Martins, Martinho António Dos Santos; Malvar, Maruxa Cortizo; Ben-Hur, Meni; Keizer, Jan Jacob

    2014-01-15

    For several years now, forest fires have been known to increase overland flow and soil erosion. However, mitigation of these effects has been little studied, especially outside the USA. This study aimed to quantify the effectiveness of two so-called emergency treatments to reduce post-fire runoff and soil losses at the microplot scale in a eucalyptus plantation in north-central Portugal. The treatments involved the application of chopped eucalyptus bark mulch at a rate of 10-12 Mg ha(-1), and surface application of a dry, granular, anionic polyacrylamide (PAM) at a rate of 50 kg ha(-1). During the first year after a wildfire in 2010, 1419 mm of rainfall produced, on average, 785 mm of overland flow in the untreated plots and 8.4 Mg ha(-1) of soil losses. Mulching reduced these two figures significantly, by an average 52 and 93%, respectively. In contrast, the PAM-treated plots did not differ from the control plots, despite slightly lower runoff but higher soil erosion figures. When compared to the control plots, mean key factors for runoff and soil erosion were different in the case of the mulched but not the PAM plots. Notably, the plots on the lower half of the slope registered bigger runoff and erosion figures than those on the upper half of the slope. This could be explained by differences in fire intensity and, ultimately, in pre-fire standing biomass. © 2013 Elsevier B.V. All rights reserved.

  18. Coordinating management of water, salinity and trace elements for cotton under mulched drip irrigation with brackish water

    NASA Astrophysics Data System (ADS)

    Jin, M.; Chen, W.; Liang, X.

    2016-12-01

    Rational irrigation with brackish water can increase crop production, but irrational use may cause soil salinization. In order to understand the relationships among water, salt, and nutrient (including trace elements) and find rational schemes to manage water, salinity and nutrient in cotton fields, field and pot experiments were conducted in an arid area of southern Xinjiang, northwest China. Field experiments were performed from 2008 to 2015, and involved mulched drip irrigation during the growing season and flood irrigation afterwards. The average cotton yield of seven years varied between 3,575 and 5,095 kg/ha, and the irrigation water productivity between 0.91 and 1.16 kg/m3. With the progress of brackish water irrigation, Cu, Fe, Mn, and Na showed strong aggregation in topsoil at the narrow row, whereas the contents of Ca and K decreased in the order of inter-mulch gap, the wide inter row, and the narrow row. The contents of Cu, Fe, Mn, Ca and K in root soil reduced with cotton growth, whereas Na increased. Although mulched drip irrigation during the growing season resulted in an increase in salinity in the root zone, flood irrigation after harvesting leached the accumulated salts below background levels. Based on experiments a scheme for coordinating management of soil water, salt, and nutrient is proposed, that is, under the planting pattern of one mulch, two drip lines and four rows, the alternative irrigation plus a flood irrigation after harvesting or before seeding was the ideal scheme. Numerical simulations using solute transport model coupled with the root solute uptake based on the experiments and extended by another 20 years, suggest that the mulched drip irrigation using alternatively fresh and brackish water during the growing season and flood irrigation with fresh water after harvesting, is a sustainable irrigation practice that should not lead to soil salinization. Pot experiments with trace elements and different saline water showed

  19. Modelling the impact of mulching the soil with plant remains on water regime formation, crop yield and energy costs in agricultural ecosystems

    NASA Astrophysics Data System (ADS)

    Gusev, Yeugeniy M.; Dzhogan, Larisa Y.; Nasonova, Olga N.

    2018-02-01

    The model MULCH, developed by authors previously for simulating the formation of water regime in an agricultural field covered by straw mulch layer, has been used for the comparative evaluation of the efficiency of four agricultural cultivation technologies, which are usually used for wheat production in different regions of Russia and Ukraine. It simulates the dynamics of water budget components in a soil rooting zone at daily time step from the beginning of spring snowmelt to the beginning of the period with stable negative air temperatures. The model was designed for estimation of mulching efficiency in terms of increase in plant water supply and crop yield under climatic and soil conditions of the steppe and forest-steppe zones. It is used for studying the mulching effect on some characteristics of water regime and yield of winter wheat growing at specific sites located in semi-arid and arid regions of the steppe and forest-steppe zones of the eastern and southern parts of the East-European (Russian) plain. In addition, a previously developed technique for estimating the energetic efficiency of various agricultural technologies with accounting for their impact on changes in soil energy is applied for the comparative evaluation of the efficiency of four agricultural cultivation technologies, which are usually used for wheat production in different regions of the steppe and forest-steppe zones of the European Russia: (1) moldboard tillage of soil without irrigation, (2) moldboard tillage of soil with irrigation, (3) subsurface cultivation, and (4) subsurface cultivation with mulching the soil with plant remains.

  20. [Effects of soil wetting pattern on the soil water-thermal environment and cotton root water consumption under mulched drip irrigation].

    PubMed

    Li, Dong-wei; Li, Ming-si; Liu, Dong; Lyu, Mou-chao; Jia, Yan-hui

    2015-08-01

    Abstract: To explore the effects of soil wetting pattern on soil water-thermal environment and water consumption of cotton root under mulched drip irrigation, a field experiment with three drip intensities (1.69, 3.46 and 6.33 L · h(-1)), was carried out in Shihezi, Xinjiang Autonomous Region. The soil matric potential, soil temperature, cotton root distribution and water consumption were measured during the growing period of cotton. The results showed that the main factor influencing the soil temperature of cotton under plastic mulch was sunlight. There was no significant difference in the soil temperature and root water uptake under different treatments. The distribution of soil matrix suction in cotton root zone under plastic mulch was more homogeneous under ' wide and shallow' soil wetting pattern (W633). Under the 'wide and shallow' soil wetting pattern, the average difference of cotton root water consumption between inner row and outer row was 0.67 mm · d(-1), which was favorable to the cotton growing trimly at both inner and outer rows; for the 'narrow and deep' soil wetting pattern (W169), the same index was 0.88 mm · d(-1), which was unfavorable to cotton growing uniformly at both inner and outer rows. So, we should select the broad-shallow type soil wetting pattern in the design of drip irrigation under mulch.

  1. Impacts of ridge-furrow rainfall concentration systems and mulches on corn growth and yield in the semiarid region of China.

    PubMed

    Ren, Xiao-Long; Zhang, Peng; Chen, Xiao-Li; Jia, Zhi-Kuan

    2016-08-01

    Plastic-covered ridge-furrow farming systems for rainfall concentration (RC) improve the water availability for crops and increase the water use efficiency (WUE), thereby stabilizing high yields. In this study, we optimized the mulching patterns for RC planting to mitigate the risks of drought during crop production in semiarid agricultural areas. We conducted a 4-year field study to determine the RC effects on corn production of mulching in furrows with 8% biodegradable films (RCSB ), liquid film (RCSL ), bare furrow (RCSN ) and conventional flat (CF) farming. We found that RC significantly (P > 0.05) increased the soil moisture in the top 0-100 cm layer and the topsoil temperature (0-20 cm) during the corn-growing period. Mulching with different materials in planting furrows further improved the rain-harvesting, moisture-retaining and yield-increasing effects of RC planting. Compared with CF, the 4-year average total dry matter amount per plant for RCSB , RCSL and RCSN treatments increased by 42.1%, 30.8% and 17.2%, respectively. The grain yield increased by 59.7%, 53.4% and 32.6%, respectively. Plastic-covered ridge and furrow mulched with biodegradable film and liquid film is recommended for use in the semiarid Loess Plateau of China to alleviate the effects of drought on crop production. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Effects of five mulch materials on microclimatic conditions affecting the establishment of vegetation on minesoil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cunningham, T.R.; Wittwer, R.F.

    1980-12-01

    The influence of five mulch materials (hardwood bark, hardwood bark with chicken manure, hardwood bark with composted sewage, pelletized grass by-products, and recycled magazine stock) on microclimate and their effect on the revegetation of mine spoils was evaluated. Four tree species (black walnut, Juglan nigra L., boxelder, Acer negundo L., Ohio buckeye, Aesculus glabra Willd., and eastern white pine, Pinus strobus L.) were spot-seeded and a forage mixture of tall fescue, Festuca arundinacea Schreb., orchard grass, Dactylis glomerata L., Dutch white clover, Trifolium repens L., and birdsfoot refoil, Lotus cornicalatans L. was broadcast as a cover. Minesoil temperature and moisture,more » germination, survival and height growth of trees, and percent cover by forages were variables measured. Chemical analysis for mineral content of the five mulch materials was obtained.« less

  3. Organic amendments and mulches influence the quality of restored mine soils and plant cover in semiarid regions.

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Miralles, Isabel; Contreras, Sergio; Lázaro-Suau, Roberto; Solé-Benet, Albert

    2017-04-01

    An experimental restoration was designed in a calcareous quarry in Sierra de Gádor, SE Spain, with the aim of determining useful semiarid restoration techniques. The factors tested were: a) organic amendments (sewage sludge, compost and no amendment), b) mulches (gravel, woodchip and no mulch), and c) three native species (Macrochloa tenacissima, Anthyllis terniflora and Anthyllis cytisoides). Nine combinations of organic amendments and mulches were established in plots of 15 x 5 m and 75 plants were planted in each plot. Plant survival and growth were measured at months 6, 24, 36 and 48 after planting. Moreover, the possible relationships between soil quality indicators (physico-chemical and microbiological properties, aggregate stability and infiltration rate) and changes in the planted vegetation caused by restoration treatments were explored. This study demonstrated that opencast mine revegetation with native species (M. tenacissima, A. terniflora and A. cytisoides) was successful in the boundary between arid and semiarid climate in only four years, compared to previous soil restoration treatment. The response of plant species was different, showing their own physiological mechanisms. M. tenacissima presented the highest survival rates although the two Anthyllis species had the highest growth rates. Despite organic amendments had not a positive effect on plant survival, these treatments increased plant growth. In particular, the improvement on chemical, microbiological and physical soil properties induced by sewage sludge and especially compost treatment, enhanced plant growth. However, changes induced by mulches on the physico-chemical soil properties did not provided clear evidences, either positive or negative, in plant establishment. Thus, the addition of organic matter from organic residues and revegetation with native species can improve the restoration success in SE Spain and perhaps similar regions worldwide under arid-semiarid climate.

  4. Study on stability of rake teeth inserting soil of chain rake type mulching film recovery machine based on Adams

    NASA Astrophysics Data System (ADS)

    Guo, Wensong; Jian, Jianming; San, Yunlong; Lui, Rui; Li, Gang; Hou, Shulin

    2017-08-01

    Traditional rake type mulching film recycling machine has the problem of difficulty in unloading and packing film, poor continuity of the work. In order to solve such problems, this paper designs a kind of chain rake type mulching film recycling machine which can realize continuous raking film, collecting film, transporting film, shaking off soil, unloading film. Rake teeth is the basic part of chain rake mulching recycling machine. The stability of rake teeth's inserting soil is an important factor to ensure recovery efficiency of the plastic film recovery. By virtual prototype simulation, this paper study the influence of different factors on the stability of rake teeth inserting soil. The results are as follows: The speed of chain rake has no significant effect on the stability of rake teeth inserting soil; Reducing resistance of rake teeth in the process of working, is conducive to improve the stability of rake teeth inserting soil; Appropriate increasing elastic modulus of chain rake, is helpful to enhance the stability of rake teeth inserting soil.

  5. The effect of mulching and soil compaction on fungi composition and microbial communities in the rhizosphere of soybean

    NASA Astrophysics Data System (ADS)

    Frac, M.; Siczek, A.; Lipiec, J.

    2009-04-01

    The soil environment is the habitat of pathogenic and saprotrophic microorganisms. The composition of the microbial community are related to biotic and abiotic factors, such as root exudates, crop residues, climate factors, mulching, mineral fertilization, pesticides introduction and soil compaction. The aim of the study was to determine the effect of the mulching and soil compaction on the microorganism communities in the rhizosphere soil of soybean. The studies were carried out on silty loam soil (Orthic Luvisol) developed from loess (Lublin, Poland). The experiment area was 192m2 divided into 3 sections consisted of 6 micro-plots (7m2). Three levels of soil compaction low, medium and heavy obtained through tractor passes were compared. The soil was compacted and loosened within seedbed layer 2 weeks before sowing. Soybean "Aldana" seeds were inoculated with Bradyrhizobium japonicum and were sown with interrow spacing of 0.3m. Wheat straw (as mulch) was uniformly spread on the half of each micro-plot at an amount of 0.5kg m-1 after sowing. Rhizosphere was collected three times during growing season of soybean. Microbiological analyses were conducted in 3 replications and included the determination of: the total number of bacteria and fungi, the number of bacteria Pseudomonas sp. and Bacillus sp., the genus identification of fungi isolated from rhizosphere of soybean. Results indicated a positive effect of mulching on the increase number of all groups of examined rhizosphere microorganisms (fungi, bacteria, Pseudomonas sp., Bacillus sp.). The highest number of the microorganisms was found in the low and medium compacted soil and markedly decreased in the most compacted soil. Relatively high number of antagonistic fungi (Penicillium sp., Trichoderma sp.) was recorded in the rhizosphere of low and medium compacted soil, particularly in mulched plots. The presence of these fungi can testify to considerable biological activity, which contributes to the improvement of

  6. Optimization of disintegration behavior of biodegradable poly (hydroxy butanoic acid) copolymer mulch films in soil environment

    NASA Astrophysics Data System (ADS)

    Mahajan, Viabhav

    Biodegradation of polymeric films used for mulch film applications in agriculture not only eliminates problems of sorting out and disposal of plastics films, but also ensures increased yields in crop growth and cost reduction. One such polymer which is completely biodegradable in the soil is poly 3-hydroxy butanoic acid copolymer, which is a promising alternative to non-biodegradable incumbent polyethylene mulch films. The purpose of mulch film made of poly 3-hydroxy butanoic acid copolymers is to sustain itself during the crop growth and disintegrate and eventually biodegrade back to nature after the crop cycle is over. The disintegration phase of the biodegradation process was evaluated for poly 3-hydroxy butanoic acid copolymer incorporated with no additive, antimicrobial additives, varying amount of crystallinities, another biodegradable polymer, and in different soils, with or without varying soil moisture content. The tools used for quantification were weight loss and visual observation. The test method was standardized using repeatability tests. The onset of disintegration was optimized with addition of right anti-microbial additives, higher crystallinity of film, blending with other biodegradable polymers, compared to virgin poly 3-hydroxy butanoic acid copolymer film. The onset of disintegration time was reduced when soil moisture content was reduced. After the onset of disintegration, the polymer film was physically and mechanically deteriorated, withering away in soil, which is possible to tailor with the crop growth cycle.

  7. RATE OF TCE DEGRADATION IN PASSIVE REACTIVE BARRIERS CONSTRUCTED WITH PLANT MULCH (BIOWALLS)

    EPA Science Inventory

    This presentation reviews a case study at Altus AFB on the extent of treatment of TCE in a passive reactive barrier constructed with plant mulch. It presents data from a tracer test to estimate the rate of ground water flow at the site, and the residence time of water and TCE in...

  8. Short- and full-season soybean in stale seedbeds versus rolled-crimped winter rye mulch

    USDA-ARS?s Scientific Manuscript database

    Late seedbed preparations (also known as stale or false seedbeds) are used by organic growers to reduce weed populations prior to crop planting. Rye mulches, derived from mechanically killed (rolled and crimped) winter rye cover crops, can serve the same purpose for spring-planted organic crops. Bot...

  9. Characterization and Potential Environmental Risks of Leachate from Shredded Rubber Mulches

    PubMed Central

    Kanematsu, Masakazu; Hayashi, Ai; Denison, Michael S.; Young, Thomas M.

    2009-01-01

    In order to determine whether shredded rubber mulches (RM) posed water quality risks when used in stormwater best management practices (BMPs) such as bioretention basins, batch leaching tests were conducted to identify and quantify constituents in leachates from RM such as metal ions, nutrients, total organic carbon (TOC), and aryl hydrocarbon receptor (AhR) activity (determined by the chemically activated luciferase gene expression (CALUX) bioassay) at varied temperature and initial pH values. The results indicate that aqueous extracts of RM contain high concentrations of zinc (Zn) compared with wood mulches (WM), and its concentration increased at lower pH and higher temperature. Although methanol extracts of RM displayed high AhR activity, none of the aqueous extracts of RM had significant activity. Hence, while unknown constituents that have significant AhR activity are present in RM, they appear to be not measurably extracted by water under environmental conditions relevant for stormwater (5 < pH < 9, 10 < T < 40°C). Our results suggests that organic constituents in water extracts of RM which have AhR activity may not be of significant concern while leaching of Zn from RM appears to be a potentially larger water quality issue for RM. PMID:19450864

  10. The visibility of using water boxes and mulch in dryland revegetation

    NASA Astrophysics Data System (ADS)

    Alhamad, Mohammad Noor; Alrababah, Mohammad; Athamneh, Hanaa

    2017-04-01

    Drylands cover more than 41% of the world's surface area and are homeland for about one-third of the world's population, 90% of them in developing countries. Land degradation in the drylands is hot environmental topic as it impacts environmental quality and jeopardizes food security in developing countries. The climate of Jordan varies from dry sub-humid Mediterranean in northwestern areas to desert conditions over a distance of 100 km, where more than 90 % of the county's area receives annual rainfall of less than 200 mm. In Jordan revegetation programs are rainfed; rainfall in Jordan is characterized by variable nature, thus, these programs faces a major challenge of the low survival rate of transplanted seedlings. The present study ought to explore the visibility of using water boxes and plastic mulch as an innovative approach to enhance seedling survival and establishment of four forest tress species ( Carob, Cupressus, Quercus, and Pinus). The experiment results showed that Cupressus, and Pinus seedlings expressed the highest survival rate of 88% and 84 % respectively, flowed by Crob (64%) and Querrcus (16%). The plastic mulch significantly enhanced the seedling survival rate b y40 % over the control while the water boxes resulted in an increase of 32 % over the control.

  11. Predicting the effectiveness of different mulching techniques to reduce post-fire runoff and erosion in Mediterranean pine stands - does cover matter?

    NASA Astrophysics Data System (ADS)

    Vieira, Diana; Nunes, João; Prats, Sergio; Serpa, Dalila; Keizer, Jan

    2016-04-01

    Wildfires have become a recurrent threat for many forest ecosystems of the Mediterranean. The characteristics of the Mediterranean climate with its warm and dry summers and mild and wet winters make it prone to wildfire occurrence as well as to post-fire soil erosion. Furthermore, climate change and continuation of current land management practices and planning are generally expected to further increase this threat. The wide recognition of the effects of wildfires to enhance runoff and erosion has created a strong demand for model-based tools for predicting the post-fire hydrological and erosion response and, in particular, for predicting the effectiveness of post-fire forestry operations to mitigate these responses. Such a tool should allow to identify areas with elevated risks of soil erosion and to evaluate which measures should be applied and when to minimize these risks. A key element in evaluating these measures is also their costs, in order to optimize the use of the limited resources that are typically available for post-fire land management. In this study, two "treatments" are compared with control conditions (i.e. doing nothing) after a wildfire with a moderate soil burn severity: (i) 4 erosion plots were treated with hydro-mulch, (ii) 4 erosion plots were untreated but had a high pine needle cover quickly after the fire, due to needle cast from scorched pine crowns (often referred to as "natural mulching") (iii) 4 plots were untreated and had a very reduced protective litter cover . The main objective of this study was to asses if the revised MMF model could effectively predict the impacts of hydro-mulching and natural mulching with pine needle on runoff generation and the associated soil losses. If MMF could predict well the impact of natural mulching, it could be very useful in limiting the areas that should be considered for specific soil mitigation measures, especially in the case of wildfires that affect large areas with moderate severity. The

  12. Mesquite removal and mulching treatment impacts on herbage production and selected soil chemical properties

    Treesearch

    Stacy Pease; Peter F. Ffolliott; Leonard F. DeBano; Gerald J. Gottfried

    2003-01-01

    Determining the effects of mesquite (Prosopis velutina) overstory removal, posttreatment control of sprouting, and mulching treatments on herbage production (standing biomass) and selected soil chemical properties on the Santa Rita Experimental Range were the objectives of this study. Mesquite control consisted of complete overstory removals with and without the...

  13. Mesquite removal and mulching impacts on herbage production on a semidesert grass-shrub rangeland

    Treesearch

    Stacy Pease; Peter F. Ffolliott; Gerald J. Gottfried; Leonard F. DeBano

    2006-01-01

    The objectives of our study were to determining the effects of velvet mesquite (Prosopis velutina) removal, control of the resulting basal sprouts, and mulching treatments on herbage production (standing biomass) and selected soil chemicals (nutrients) shown to affect herbage production on the Santa Rita Experimental Range. Mesquite control...

  14. Growth of Planted Yellow-Poplar After Vertical Mulching and Fertilization on Eroded Soils

    Treesearch

    J.B. Baker; B.G. Blackmon

    1976-01-01

    Fertilization and vertical mulching improved height growth of yellow-poplars planted on eroded soils. A growing demand for hardwood timber accompanied by a diminishing land base has prompted land managers to consider planting hardwoods on marginal sites such as the eroded soils in the Silty Uplands of Arkansas, Louisiana, and Mississippi. Many of these areas were well...

  15. Establishment of orchards with black polyethylene film mulching: effect on nematode and fungal pathogens, water conservation, and tree growth.

    PubMed

    Duncan, R A; Stapleton, J J; McKenry, M V

    1992-12-01

    Placement of a 3-m-wide, black, polyethylene film mulch down rows of peach (Prunus persica 'Red Haven' on 'Lovell' rootstock) and almond (Prunus dulcis 'Nonpareil' on 'Lovell') trees in the San Joaquin Valley of California resulted in irrigation water conservation of 75%, higher soil temperature in the surface 30 cm, a tendency toward greater root mass, elimination of weeds, and a greater abundance of Meloidogyne incognita second-stage juveniles in soil but reduced root galling when compared to the nonmulched control. Population levels of Pratylenchus hexincisus, a nematode found within tree roots, were reduced by mulching, as were those of Tylenchulus semipenetrans, which survived on old grape roots remaining from a previously planted vineyard, and Paratrichodorus minor, which probably fed on roots of various weed species growing in the nonmulched soil. Populations of Pythium ultimum were not significantly changed, probably also due to the biological refuge of the old grape roots and moderate soil heating level. Trunk diameters of peach trees were increased by mulching, but those of almond trees were reduced by the treatment. Leaf petiole analysis indicated that concentrations of mineral nutrients were inconsistent, except for a significant increase in Ca in both tree species.

  16. Straw Mulching Reduces the Harmful Effects of Extreme Hydrological and Temperature Conditions in Citrus Orchards

    PubMed Central

    Liu, Yi; Wang, Jing; Liu, Dongbi; Li, Zhiguo; Zhang, Guoshi; Tao, Yong; Xie, Juan; Pan, Junfeng; Chen, Fang

    2014-01-01

    Extreme weather conditions with negative impacts can strongly affect agricultural production. In the Danjiangkou reservoir area, citrus yields were greatly influenced by cold weather conditions and drought stress in 2011. Soil straw mulching (SM) practices have a major effect on soil water and thermal regimes. A two-year field experiment was conducted to evaluate whether the SM practices can help achieve favorable citrus fruit yields. Results showed that the annual total runoff was significantly (P<0.05) reduced with SM as compared to the control (CK). Correspondingly, mean soil water storage in the top 100 cm of the soil profile was increased in the SM as compared to the CK treatment. However, this result was significant only in the dry season (Jan to Mar), and not in the wet season (Jul to Sep) for both years. Interestingly, the SM treatment did not significantly increase citrus fruit yield in 2010 but did so in 2011, when the citrus crop was completely destroyed (zero fruit yield) in the CK treatment plot due to extremely low temperatures during the citrus overwintering stage. The mulch probably acted as an insulator, resulting in smaller fluctuations in soil temperature in the SM than in the CK treatment. The results suggested that the small effects on soil water and temperature changes created by surface mulch had limited impact on citrus fruit yield in a normal year (e.g., in 2010). However, SM practices can positively impact citrus fruit yield in extreme weather conditions. PMID:24489844

  17. Food Web Responses to Augmenting the Entomopathogenic Nematodes in Bare and Animal Manure-Mulched Soil

    PubMed Central

    Duncan, L. W.; Graham, J. H.; Zellers, J.; Bright, D.; Dunn, D. C.; El-Borai, F. E.; Porazinska, D. L.

    2007-01-01

    Factorial treatments of entomopathogenic nematodes (EPN) and composted, manure mulches were evaluated for two years in a central Florida citrus orchard to study the post-application biology of EPN used to manage the root weevil, Diaprepes abbreviatus. Mulch treatments were applied once each year to study the effects of altering the community of EPN competitors (free-living bactivorous nematodes) and antagonists (nematophagous fungi (NF), predaceous nematodes and some microarthro-pods). EPN were augmented once with Steinernema riobrave in 2004 and twice in 2005. Adding EPN to soil affected the prevalence of organisms at several trophic levels, but the effects were often ephemeral and sometimes inconsistent. EPN augmentation always increased the mortality of sentinel weevil larvae, the prevalence of free-living nematodes in sentinel cadavers and the prevalence of trapping NF. Subsequent to the insecticidal effects of EPN augmentation in 2004, but not 2005, EPN became temporarily less prevalent, and fewer sentinel weevil larvae died in EPN-augmented compared to non-augmented plots. Manure mulch had variable effects on endoparasitic NF, but consistently decreased the prevalence of trapping NF and increased the prevalence of EPN and the sentinel mortality. Both temporal and spatial abundance of NF were inversely related to the prevalence of Steinernema diaprepesi, whereas Heterorhabditis zealandica prevalence was positively correlated with NF over time. The number of weevil larvae killed by EPN was likely greatest in 2005, due in part to non-target effects of augmentation on the endemic EPN community in 2004 that occurred during a period of peak weevil recruitment into the soil. PMID:19259487

  18. Rice hull mulch affects germination of bittercress and creeping woodsorrel in container plant culture

    USDA-ARS?s Scientific Manuscript database

    Mulches are commonly used to control weeds in container nursery crops, especially in sites where preemergence herbicides are either not labeled or potentially phytotoxic to the crop. Parboiled rice hulls have been shown to provide effective weed control when applied 1.25 to 2.5 cm deep over the con...

  19. The influence of prehistoric Anasazi cobble-mulch agricultural features of northern Rio Grande landscapes

    Treesearch

    Richard D. Periman

    1996-01-01

    Research concerning ancient Pueblo Indian farming, specifically the innovation of cobble-mulch gardens, suggests a manipulation of the local environment on a landscape level that helped create existing ecosystems. This agricultural technology, which consisted of a protective layer of gravel covering the productive soil, trapped seasonal runoff moisture in field areas,...

  20. REMEDIATION OF TCE-CONTAMINATED GROUNDWATER BY A PERMEABLE REACTIVE BARRIER FILLED WITH PLANT MULCH (BIOWALL)

    EPA Science Inventory

    A pilot-scale permeable reactive barrier filled with plant mulch was installed at Altus Air Force Base (in Oklahoma, USA) to treat trichloroethylene (TCE) contamination in ground water emanating from a landfill. The barrier was constructed in June 2002. It was 139 meters long, 7 ...

  1. EFFECTIVE REMOVAL OF TCE IN A LABORATORY MODEL OF A PRB CONSTRUCTED WITH PLANT MULCH

    EPA Science Inventory

    Ground water contaminated with TCE is commonly treated with a permeable reactive barrier (PRB) constructed with zero-valence iron. The cost of iron as the reactive matrix has driven a search for less costly alternatives, and composted plant mulch has been used as an alternative ...

  2. Nitrous oxide emissions from soil amended with 15N-labelled urea with nitrification inhibitor (Nitrapyrin) and mulch

    NASA Astrophysics Data System (ADS)

    Khan, Aamir; Heiling, Maria; Zaman, Mohammad; Resch, Christian

    2017-04-01

    Nitrous oxide (N2O), one of the key greenhouse and ozone (O3) depleting gases, constitutes 7% of the anthropogenic greenhouse effect. Its global warming potential is 310 times higher than that of carbon dioxide (CO2) and 16 times than methane (CH4) over a 100-year period. To develop mitigation tools for N2O emissions, and to investigate the relationship between gross N transformation and N2O emission from soil, it is imperative to understand N2O emission from soils as influenced by N inputs, environmental conditions and farm management practices. The use of nitrification inhibitor such as Nitrapyrin and crop residues (mulch) may have a role in mitigating N2O losses from soil because of their effects on nitrification and denitrification. It prevents hydrolytic action on urea and keeps nitrogen in ammonium form. To determine the effects of urea applied with nitrification inhibitor and mulch on N2O emissions from soil, an incubation experiment was conducted under controlled moisture of 60% water filled pore space (WFPS) and temperature (20±2oC) conditions. Soil samples (0-20 cm soil depth) collected from an arable site were treated with 15N-labelled urea (5 atom %) at 150 kg N/ha rate. The 5 treatments including control, (urea, urea with Nitrapyrin (800 g/100 kg urea), urea with mulch (5 tons/ha) and urea with Nitrapyrin and mulch) were replicated 4 times using 500 ml glass jars. The N2O isotopic signature and the intramolecular distribution of 15N were measured by off-axis integrated cavity output spectroscopy (Los Gatos Research). The preliminary results showed that nitrification inhibitor (Nitrapyrin) can be used to distinguish between different pathways of N2O production from soil. In addition to the site preference of the 15N promises to be a helpful tool to determine the source of the generated N2O.

  3. Validation and application of a two-dimensional model to simulate soil salt transport under mulched drip irrigation

    NASA Astrophysics Data System (ADS)

    Jiao, Huiqing; Zhao, Chengyi; Sheng, Yu; Chen, Yan; Shi, Jianchu; Li, Baoguo

    2017-04-01

    Water shortage and soil salinization increasingly become the main constraints for sustainable development of agriculture in Southern Xinjiang, China. Mulched drip irrigation, as a high-efficient water-saving irrigation method, has been widely applied in Southern Xinjiang for cotton production. In order to analyze the reasonability of describing the three-dimensional soil water and salt transport processes under mulched drip irrigation with a relatively simple two-dimensional model, a field experiment was conducted from 2007 to 2015 at Aksu of Southern Xinjiang, and soil water and salt transport processes were simulated through the three-dimensional and two-dimensional models based on COMSOL. Obvious differences were found between three-dimensional and two-dimensional simulations for soil water flow within the early 12 h of irrigation event and for soil salt transport in the area within 15 cm away from drip tubes during the whole irrigation event. The soil water and salt contents simulated by the two-dimensional model, however, agreed well with the mean values between two adjacent emitters simulated by the three-dimensional model, and also coincided with the measurements as corresponding RMSE less than 0.037 cm3 cm-3 and 1.80 g kg-1, indicating that the two-dimensional model was reliable for field irrigation management. Subsequently, the two-dimensional model was applied to simulate the dynamics of soil salinity for five numerical situations and for a widely adopted irrigation pattern in Southern Xinjiang (about 350 mm through mulched drip irrigation during growing season of cotton and total 400 mm through flooding irrigations before sowing and after harvesting). The simulation results indicated that the contribution of transpiration to salt accumulation in root layer was about 75% under mulched drip irrigation. Moreover, flooding irrigations before sowing and after harvesting were of great importance for salt leaching of arable layer, especially in bare strip where

  4. [Effects of Suaeda glauca planting and straw mulching on soil salinity dynamics and desalination in extremely heavy saline soil of coastal areas.

    PubMed

    Zhang, Jiao; Cui, Shi You; Feng, Zhi Xiang

    2018-05-01

    To elucidate the seasonal variations in soil salinity and its driving factors, and to explore the effects of planting Suaeda glauca and straw mulching on soil desalination and salinity controlling, a field experiment was conducted in extremely heavy saline soil of coastal areas in Rudong, Jiangsu Province. There were four treatments: control (bare land, CK), planting S. glauca (PS), straw mulching A (at 15 t·hm -2 , SM-A), straw mulching 2A (at 30 t·hm -2 , SM-2A). Climate factors (including rainfall, atmospheric temperature, sunshine duration, and atmospheric evaporation) and soil salinity dynamic changes were determined from May 2014 to May 2015. Results showed that: (1) The seasonal variation of soil salinity was obvious in the bare ground (CK), with the lowest (8.69 g·kg -1 ) during June-August and the highest (26.66 g·kg -1 ) during September-December. The changes of soil salinity in topsoil (0-20 cm) were more intense than that in sub-topsoil (20-40 cm), with the changes in sub-topsoil having somewhat time lag compared the topsoil. (2) Soil salinity in CK treatment had a significantly linear correlation with the cumulative rainfall and evaporation-precipitation ratio of the fifteen-day before sampling. The results from multifactor and interphase analysis indicated that the increases of rainfall would promote soil desalinization. The rise of atmospheric temperature could exacerbate soil salt accumulation in surface soil. The interaction between rainfall and atmospheric temperature would have a positive effect on soil salt accumulation. (3) PS treatment did not alter the seasonal variation in soil salinity, but it reduced soil salinity in topsoil. (4) In SM-A and SM-2A treatments, the relationship of soil desalinization rate (%, Y) and treatment time (days, X) was expressed as Logistic curve equation. Moreover, the soil desalination rate was over 95.0% in the topsoil after 90-100 days of straw mul-ching treatment and was over 92.0% in sub-topsoil after 120

  5. Straw mulch prevents loss of fall-sown seeds to cold temperatures and wildlife predation

    Treesearch

    J. Wichman; R. Hawkins; P.M. Pijut

    2005-01-01

    A combination of cover crops and straw mulch effectively protect fall-sown hardwood seeds from cold temperature damage and predation at our nursery in central Indiana. Before using this treatment, we experienced 30% to 90% crop losses on a regular basis, but now our seedbed densities are consistently at target and the resulting seedlings are larger. Specialized...

  6. Effects of Mulching Tolerant Plant Straw on Soil Surface on Growth and Cadmium Accumulation of Galinsoga parviflora

    PubMed Central

    Lin, Lijin; Liao, Ming’an; Ren, Yajun; Luo, Li; Zhang, Xiao; Yang, Daiyu; He, Jing

    2014-01-01

    Pot and field experiments were conducted to study the effects of mulching with straw of cadmium (Cd) tolerant plants (Ranunculus sieboldii, Mazus japonicus, Clinopodium confine and Plantago asiatica) on growth and Cd accumulation of Galinsoga parviflora in Cd-contaminated soil. In the pot experiment, mulching with M. japonicus straw increased the root biomass, stem biomass, leaf biomass, shoot biomass, plant height and activities of antioxidant enzymes (superoxide dismutase, peroxidase and catalase) of G. parviflora compared with the control, whereas mulching with straws of R. sieboldii, C. confine and P. asiatica decreased these parameters. Straws of the four Cd-tolerant plants increased the Cd content in roots of G. parviflora compared with the control. However, only straws of M. japonicus and P. asiatica increased the Cd content in shoots of G. parviflora, reduced the soil pH, and increased the soil exchangeable Cd concentration. Straw of M. japonicus increased the amount of Cd extraction in stems, leaves and shoots of G. parviflora by 21.11%, 29.43% and 24.22%, respectively, compared with the control, whereas straws of the other three Cd-tolerant plants decreased these parameters. In the field experiment, the M. japonicus straw also increased shoot biomass, Cd content in shoots, and amount of Cd extraction in shoots of G. parviflora compared with the control. Therefore, straw of M. japonicus can be used to improve the Cd extraction ability of G. parviflora from Cd-contaminated soil. PMID:25490210

  7. Reducing Soil CO2 Emission and Improving Upland Rice Yield with no-Tillage, Straw Mulch and Nitrogen Fertilization in Northern Benin

    NASA Astrophysics Data System (ADS)

    Dossou-Yovo, E.; Brueggemann, N.; Naab, J.; Huat, J.; Ampofo, E.; Ago, E.; Agbossou, E.

    2015-12-01

    To explore effective ways to decrease soil CO2 emission and increase grain yield, field experiments were conducted on two upland rice soils (Lixisols and Gleyic Luvisols) in northern Benin in West Africa. The treatments were two tillage systems (no-tillage, and manual tillage), two rice straw managements (no rice straw, and rice straw mulch at 3 Mg ha-1) and three nitrogen fertilizers levels (no nitrogen, recommended level of nitrogen: 60 kg ha-1, and high level of nitrogen: 120 kg ha-1). Potassium and phosphorus fertilizers were applied to be non-limiting at 40 kg K2O ha-1 and 40 kg P2O5 ha-1. Four replications of the twelve treatment combinations were arranged in a randomized complete block design. Soil CO2 emission, soil moisture and soil temperature were measured at 5 cm depth in 6 to 10 days intervals during the rainy season and every two weeks during the dry season. Soil moisture was the main factor explaining the seasonal variability of soil CO2 emission. Much larger soil CO2 emissions were found in rainy than dry season. No-tillage planting significantly reduced soil CO2 emissions compared with manual tillage. Higher soil CO2 emissions were recorded in the mulched treatments. Soil CO2 emissions were higher in fertilized treatments compared with non fertilized treatments. Rice biomass and yield were not significantly different as a function of tillage systems. On the contrary, rice biomass and yield significantly increased with application of rice straw mulch and nitrogen fertilizer. The highest response of rice yield to nitrogen fertilizer addition was obtained for 60 kg N ha-1 in combination with 3 Mg ha-1 of rice straw for the two tillage systems. Soil CO2 emission per unit grain yield was lower under no-tillage, rice straw mulch and nitrogen fertilizer treatments. No-tillage combined with rice straw mulch and 60 kg N ha-1 could be used by smallholder farmers to achieve higher grain yield and lower soil CO2 emission in upland rice fields in northern Benin.

  8. The growth of pines germinated from woodchip mulch in restored soils from semiarid SE Spain quarries is enhanced by organic amendments

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Miralles, Isabel; Lázaro-Suau, Roberto; Solé-Benet, Albert

    2017-04-01

    The use of pine woodchips in soil restoration in calcareous quarries is a relatively low-cost mulching technique to improve soil water conservation and decrease soil erosion, contributing to improve soil quality. Besides these two important effects, woodchip mulch is also a potential source of seeds which can germinate if environmental conditions during earlier stages are adequate. Pine germination has been observed in experimental plots treated with pine woodchips used as mulch in one of the driest regions in Europe (SE Spain). This side-effect provided an interesting opportunity to analyse the influence of topsoil and two organic wastes (compost from domestic organic waste and sewage sludge from urban water treatment plant) in mine soils on the germinated pines (Pinus halepensis Mill.) and the plant cover (revegetated native plants and spontaneous vegetation). Number, height and basal diameter of pines and the total plant cover were measured 6 years after the applications of topsoil and organic amendments. Results showed that organic wastes increased the pine growth and the total plant cover which could favour in turn the physico-chemical soil properties and its quality in the medium-long term. However, organic amendments negatively influencing the number of germinated pines. The likely growth of pine seedlings derived from the pine cones which come with pine woodchips used as mulch, when enhanced by organic amendments, adds a positive value in quarry restoration even under very dry climatic conditions. However, it is necessary to continue monitoring the development of vegetation to form a more precise idea about whether the development of the pines is globally beneficial, since the pines could outcompete the local native plants.

  9. Distribution of phthalate esters in agricultural soil with plastic film mulching in Shandong Peninsula, East China.

    PubMed

    Li, Kankan; Ma, Dong; Wu, Juan; Chai, Chao; Shi, Yanxi

    2016-12-01

    The content of phthalate esters (PAEs) was investigated in 36 vegetable fields with plastic film mulching in Shandong Peninsula, East China. Soils at depths of 0-10 cm, 10-20 cm, and 20-40 cm were collected, and 16 PAEs were analyzed by gas chromatography-mass spectrometry. PAEs were detected in all the analyzed samples. The total contents of the 16 PAEs (Σ 16 PAEs) ranged from 1.374 to 18.810 mg/kg, with an average of 6.470 mg/kg. Among the four areas of Shandong Peninsula, including Qingdao, Weihai, Weifang, and Yantai, the highest Σ 16 PAE in the soil was observed in Weifang district (9.786 mg/kg), which is famous for large-scale vegetable production. Despite the significant differences among the Σ 16 PAEs, the PAE compositions in soils with plastic film mulching in Shandong Peninsula were comparable. Diethyl phthalate (DEP), diisobutyl phthalate, and di(4-methyl-2-pentyl) phthalate were present in all the samples, whereas di-n-hexyl phthalate was detected only in Qingdao (∼1%) and dicyclohexyl phthalate was observed only in Weifang (5.7-8.2%) in low proportions. The ratios of dimethyl phthalate, DEP, and di-n-butyl phthalate, which exceeded allowable concentrations, were 63.9-100% at different soil depths, indicating high PAE pollution. The concentration of butyl benzyl phthalate detected only in Weifang exceeded the recommended allowable soil concentration. Overall, the high PAE content in the soil with plastic film mulching in Shandong Peninsula is an issue of concern because of the large amounts of plastic film used. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. TRICHLOROETHYLENE REMOVAL FROM GROUNDWATER IN FLOW-THROUGH COLUMNS SIMULATING A PERMEABLE REACTIVE BARRIER CONSTRUCTED WITH PLANT MULCH

    EPA Science Inventory

    Ground water contaminated with TCE is commonly treated with a passive reactive barrier (PRB) constructed with zero-valence iron. The cost of iron as the reactive matrix has driven a search for less costly alternatives, and composted plant mulch has been used as an alternative re...

  11. Interaction of petroleum mulching, vegetation restoration and dust fallout on the conditions of sand dunes in southwest of Iran

    NASA Astrophysics Data System (ADS)

    Azoogh, Liela; Khalili moghadam, Bijan; Jafari, Siroos

    2018-06-01

    In the past half-century, petroleum mulching-biological fixation (PM-BF) practices have been employed to stabilize sand dunes in Iran. However, the effects of PM-BF practices on the attributes of sand dunes and the dispersion of heavy metals of mulch have been poorly understood. To this end, three regions treated with PM-BF for 5, 20, and 40 years and a control region with no PM-BF were studied. Samples of soil properties were taken at the depths of 0-10 cm and 10-50 cm, with three replications, in Khuzestan Province. The results showed that PM-BF practices promoted the restoration of vegetation cover in the sand dunes. In addition, these practices increased the deposition of dust particles, gradually increasing the magnitudes of palygorskite and smectite clays over time. The interactions between dust deposition and PM-BF practices significantly altered the chemical and physical properties of the dunes. PM-BF practices increased soil organic matter (184-287%), cation exchangeable capacity (142-209%), electrical conductivity (144-493%), clay content (134-196%), and penetration resistance (107-170%) compared to the region with no PM-BF practices. Furthermore, petroleum mulching significantly increased the amount of Ni (1.19%), Cd (1.55%), Pb (1.08%), Cu (1.34%), Zn (1.38%), Mn (1.66%), and Fe (1.15%). However, in the long term, these elements will probably leach linearly as a consequence of an increase in organic matter and soil salinity in the light texture of sand dunes.

  12. Early thawing after snow removal and no straw mulching accelerates organic carbon cycling in a paddy soil in Northeast China.

    PubMed

    Zhang, Hao; Tang, Jie; Liang, Shuang; Li, Zhaoyang; Wang, Jingjing; Wang, Sining

    2018-03-01

    Variations in soil organic carbon (SOC) have implications for atmospheric CO 2 concentrations and the greenhouse effect. However, the effects of snow cover and straw mulching on the variations in SOC fractions across winter remain largely unknown. In this study, soil samples were collected during different stages of winter from an in situ experiment comprising three treatments: 1) snow removal with no straw mulching (Sn-SM-); 2) snow cover with no straw mulching (SC), and; 3) snow cover with straw mulching (SC + SM+). Results showed that labile organic carbon, semi-labile organic carbon, recalcitrant organic carbon (ROC), the light fraction of organic carbon (LFOC), and easily oxidized organic carbon (EOC) contents did not vary significantly (P > .05) during the unfrozen to hard frost stages. Compared to the unfrozen stage, microbial biomass carbon (MBC) contents decreased by 519.03 mg kg -1 , 325.21 mg kg -1 , and 244.09 mg kg -1 and dissolved organic carbon (DOC) contents increased by 473.36 mg kg -1 , 348.10 mg kg -1 , and 258.89 mg kg -1  at the hard frost stage in Sn-SM-, SC, and SC + SM + treatments, respectively. Throughout all thawing stages, > 61% and 59% of SOC and ROC accumulation, respectively in the three treatments were observed in thawing stage II, indicating that higher temperatures and microbial activities in thawing stage II accelerated the inputs of SOC and ROC. ROC accumulation accounted for >65% of the SOC accumulation and the proportions of ROC in SOC increased in the three treatments during the thawing stages. SC + SM + treatment maintained lower EOC contents during thawing stages than other treatments. The observation of lowest SOC and LFOC accumulation and contents in the SC + SM + treatment during thawing stages showed that SC + SM + experienced the least inputs of SOC in the soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Rice straw mulch for post-fire erosion control: assessing non-target effects on vegetation communities

    Treesearch

    Kristen L. Shive; Becky L. Estes; Angela M. White; Hugh D. Safford; Kevin L. O' Hara; Scott L. Stephens

    2017-01-01

    Straw mulch is commonly used for post-fire erosion control in severely burned areas but this practice can introduce non-native species, even when certified weed-free straw is used. Rice straw has recently been promoted as an alternative to wheat under the hypothesis that non-native species that are able to grow in a rice field are unlikely to establish in dry forested...

  14. Mulch and Hexazinone Herbicide Shorten the Time Longleaf Pine Seedlings are in the Grass Stage and Increase Height Growth

    Treesearch

    James D. Haywood

    2000-01-01

    Herbaceous plant control with mulch or hexazinone herbicide influenced planted longleaf pine (Pinus palustris Mill.) seedling total height on a silt loam site in central Louisiana. The site had been sheared and windrowed in 1991, and rotary mowed before three treatments were...

  15. [Effects of plastic film mulching and rain harvesting modes on chlorophyll fluorescence characteristics, yield and water use efficiency of dryland maize].

    PubMed

    Li, Shang-Zhong; Fan, Ting-Lu; Wang, Yong; Zhao, Gang; Wang, Lei; Tang, Xiao-Ming; Dang, Yi; Zhao, Hui

    2014-02-01

    The differences on chlorophyll fluorescence parameters, yield and water use efficiency of dryland maize were compared among full plastic film mulching on double ridges and planting in catchment furrows (FFDRF), half plastic film mulching on double ridges and planting in catchment furrows (HFDRF), plastic film mulching on ridge and planting in film-side (FS), and flat planting with no plastic film mulching (NM) under field conditions in dry highland of Loess Plateau in 2007-2012. The results showed that fluorescence yield (Fo), the maximum fluorescence yield (Fm), light-adapted fluorescence yield when PS II reaction centers were totally open (F), light-adapted fluorescence yield when PS II reaction centers closed (Fm'), the maximal photochemical efficiency of PS II (Fv/Fm), the actual photochemical efficiency of PS II in the light (Phi PS II), the relative electron transport rate (ETR), photochemical quenching (qP) and non-photochemical quenching (qN) in maize leaves of FFDRF were higher than that of control (NM), and the value of 1-qP was lower than that of control, at 13:00, chlorophyll fluorescence parameters values of FFDRF was significantly higher than control, which were increased by 5.3%, 56.8%, 10.7%, 36.3%, 23.6%, 56.7%, 64.4%, 45.5%, 23.6% and -55.6%, respectively, compared with the control. Yield and water use efficiency of FFDRF were the highest in every year no matter dry year, normal year, humid year and hail disaster year. Average yield and water use efficiency of FFDRF were 12,650 kg x hm(-2) and 40.4 kg x mm(-1) x hm(-2) during 2007-2012, increased by 57.8% and 61.6% compared with the control, respectively, and also significantly higher compared with HFDRF and PS. Therefore, it was concluded that FFDRF had significantly increased the efficiency of light energy conversion and improved the production capacity of dryland maize.

  16. Aroma content of fresh basil (Ocimum basilicum L.) leaves is affected by light reflected from colored mulches.

    PubMed

    Loughrin, John H; Kasperbauer, Michael J

    2003-04-09

    Sweet basil (Ocimum basilicum L.) is an herb that is used to add a distinct aroma and flavor to food. Volatile compounds emitted from fully expanded fresh leaves grown in drip-irrigated plots that were covered with six colors of mulch were compared. The colors reflected a range of photosynthetic photon flux, far-red, red, and blue light from the soil surface to developing leaves. Our objective was to determine whether reflection from the different colors could influence concentrations of volatile compounds emitted from the fresh leaves. Volatile compounds were isolated by headspace sampling and quantified by gas chromatography. Twenty-six compounds were identified, of which the terpenoids linalool and 1,8-cineole comprised more than 50% of the total yield. Concentrations of volatile compounds from leaves that developed over green, blue, yellow, white, and red mulches followed the same patterns as they did for air-dried leaves of the same cultivar. However, the concentration of volatile compounds from fresh leaves was about 50-fold higher than those found in the previous study of air-dried leaves.

  17. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants.

    PubMed

    Koitabashi, Motoo; Noguchi, Masako T; Sameshima-Yamashita, Yuka; Hiradate, Syuntaro; Suzuki, Ken; Yoshida, Shigenobu; Watanabe, Takashi; Shinozaki, Yukiko; Tsushima, Seiya; Kitamoto, Hiroko K

    2012-08-02

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions.

  18. A field-grown transgenic tomato line expressing higher levels of polyamines reveals legume cover crop mulch-specific perturbations in fruit phenotype at the levels of metabolite profiles, gene expression, and agronomic characteristics.

    PubMed

    Neelam, Anil; Cassol, Tatiana; Mehta, Roshni A; Abdul-Baki, Aref A; Sobolev, Anatoli P; Goyal, Ravinder K; Abbott, Judith; Segre, Anna L; Handa, Avtar K; Mattoo, Autar K

    2008-01-01

    Genetic modification of crop plants to introduce desirable traits such as nutritional enhancement, disease and pest resistance, and enhanced crop productivity is increasingly seen as a promising technology for sustainable agriculture and boosting food production in the world. Independently, cultural practices that utilize alternative agriculture strategies including organic cultivation subscribe to sustainable agriculture by limiting chemical usage and reduced tillage. How the two together affect fruit metabolism or plant growth in the field or whether they are compatible has not yet been tested. Fruit-specific yeast S-adenosylmethionine decarboxylase (ySAMdc) line 579HO, and a control line 556AZ were grown in leguminous hairy vetch (Vicia villosa Roth) (HV) mulch and conventional black polyethylene (BP) mulch, and their fruit analysed. Significant genotypexmulch-dependent interactions on fruit phenotype were exemplified by differential profiles of 20 fruit metabolites such as amino acids, sugars, and organic acids. Expression patterns of the ySAMdc transgene, and tomato SAMdc, E8, PEPC, and ICDHc genes were compared between the two lines as a function of growth on either BP or HV mulch. HV mulch significantly stimulated the accumulation of asparagine, glutamate, glutamine, choline, and citrate concomitant with a decrease in glucose in the 556AZ fruits during ripening as compared to BP. It enables a metabolic system in tomato somewhat akin to the one in higher polyamine-accumulating transgenic fruit that have higher phytonutrient content. Finally, synergism was found between HV mulch and transgenic tomato in up-regulating N:C indicator genes PEPC and ICDHc in the fruit.

  19. REMOVAL OF ADDED NITRATE IN COTTON BURR COMPOST, MULCH COMPOST, AND PEAT: MECHANISMS AND POTENTIAL USE FOR GROUNDWATER NITRATE REMEDIATION

    EPA Science Inventory

    We conducted batch tests on the nature and kinetics of removal of added nitrate in cotton burr compost, mulch compost, and sphagnum peat that may be potentially used in a permeable reactive barrier (PRB) for groundwater nitrate remediation. A rigorous steam autoclaving protocol (...

  20. Relationship between Water and Carbon Utilization under Different Straw Mulching and Plant Density of Summer Maize in North China Plain

    NASA Astrophysics Data System (ADS)

    Liu, Quanru; Du, Shoujian; Yin, Honglian; Wang, Juan

    2018-03-01

    To explore the relationship between water and carbon utilization and key factors to keep high water use efficiency (WUE), a 2-yr experiment was conduct by covering 0 and 0.6 kg m-2 straw to the surface of soil with plant densities of 1.0 × 105, 7.5 × 104, and 5.5 × 104 plants ha-1 in North China Plain during summer maize growing seasons of the 2012 and 2013. Results showed that straw mulching not only increased grain yield (GY), WUE, and carbon efficient ratio (CER) but also inhibited CO2 emission significantly. WUE positively correlated with CER, GY and negative correlated with evapotranspiration (ET) and CO2 emission. CER had the larger direct effect on WUE compared with ET and CO2 emission. The results indicate that straw mulching management in summer maize growing seasons could make sense for inhibiting CO2 emission.

  1. [Nitrogen mineralization rate in different soil layers and its influence factors under plastic film mulched in Danjiangkou Reservoir area, China].

    PubMed

    Yu, Xing Xiu; Xui, Miao Miao; Zhao, Jin Hui; Zhang, Jia Peng; Wang, Wei; Guo, Ya Li; Xiao, Juan Hua

    2018-04-01

    The objective of this study was to investigate the rate of nitrogen mineralization in various soil layers (0-10, 10-20, and 20-30 cm) and its influencing factors under plastic film mulching ridge-furrow in a corn field of Wulongchi small watershed, Danjiangkou Reservoir Area. Results showed that the rate of soil ammonification decreased with soil depth during the entire maize growth period. The rate of nitrification in seedling, jointing, and heading stages decreased in the following order: 10-20 cm > 0-10 cm > 20-30 cm, while it increased with soil depth in maturation stage. The rate of soil nitrogen mineralization decreased with the increases in soil depth in the seedling, jointing and heading stages, whereas an opposite pattern was observed in maturation stage. Compared with non-filming, film mulching promoted the soil ammonification process in 0-10 cm and the soil nitrification and nitrogen mineralization processes in jointing, heading, and maturation stages in both 0-10 and 10-20 cm. However, the rates of soil nitrification and nitrogen mineralization under film mulching were much lower than those under non-filming in seedling stage. The stepwise regression analysis indicated that the main factors influencing soil nitrogen mineralization rate varied with soil depth. Soil moisture and total N content were the dominant controller for variation of soil nitrogen mineralization in 0-10 cm layer. Soil temperature, moisture, and total N content were dominant controller for that in 10-20 cm layer. Soil temperature drove the variation of soil nitrogen mineralization in 20-30 cm layer.

  2. Effect of plastic mulching and nitrapyrin on N2O concentration and emissions in China under climate change

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Zhu, C.

    2017-12-01

    Fertilized agricultural soils are the main source of atmospheric nitrous oxide (N2O). In this study, both soil N2O concentration in the profile and N2O emission were measured to quantify the effect of plastic mulching and nitrapyrin on N2O dynamic in an oasis cotton field. During the observation period, both N2O concentration and N2O emissions rapidly increased following fertigation, and soil temperature, moisture and mineral N content were the main factors influencing N2O. Temporal variation in N2O emission coincided with changes in N2O content in all soil layers, indicating that the accumulation of N2O likely drives the release of N2O into the atmosphere. The crop yields, N2O content (the sum of aqueous and gaseous phases) in the soil and N2O emissions increased linearly as the application of N fertilizer increased from 80 to 400 kg N ha-1. Plastic mulching increased the crop yields by 16-21%, increased the N2O contents by 88-99%, and reduced the cumulative N2O emissions by 19-28%, indicating that the application of plastic film reduced N2O emission probably through restricted the N2O diffusion process, and limited the N2O production through enhanced the N uptake of cotton. The addition of nitrapyrin to the N fertilizer significantly reduced the levels of N2O without influencing crop yield, with N2O content in the soil profile and cumulative N2O emissions decreasing by 25-32% and 23-42%, respectively. Overall, our result suggested the combined use of plastic film and nitrapyrin could be an efficient practice to reduce N2O emission in the oasis cotton field. Keywords: N2O emissions; plastic film mulching; nitrapyrin; climate change

  3. Nitrous oxide emissions during biological soil disinfestation with different organic matter and plastic mulch films in laboratory-scale tests.

    PubMed

    Maeda, Morihiro; Kayano, Eisuke; Fujiwara, Taku; Nagare, Hideaki; Akao, Satoshi

    2015-10-23

    Nitrous oxide (N 2 O), which is a greenhouse gas, may be more emitted as an intermediate product of denitrification during biological soil disinfestation. The biological soil disinfestation is a method to suppress soil-borne pathogens under reductive soil conditions produced by the application of organic matter and water irrigation with plastic film. The objective of the study was to determine the effects of different organic matter and mulch films on N 2 O emissions during biological soil disinfestation. Grey lowland soil amended with cattle compost plus rice bran (0.2%), rice husk (0.2%) or dent corn (0.1%, 0.2% and 0.4%) was incubated at 100% water-holding capacity with or without plastic films made of polyvinyl chloride (PVC) and triple-layer polyolefin (3PO) for 72 h at 50°C. Permeation of the two films was also measured at 25°C and 50°C. Results showed that incorporation of organic matter increased N 2 O emissions compared with no organic matter addition at 50°C. Incorporation of rice bran and dent corn with easily decomposable C and low C:N ratios increased N 2 O emissions for the first 12 h, but thereafter, available C supply from these amendments suppressed N 2 O emissions. Permeability of mulch films increased at a higher temperature and was larger for PVC than for 3PO. Our study indicated that rice husk should not be used for soil disinfestation and that application rates of organic matter must be determined based on their decomposability. Moreover, mulch film covering would not suppress N 2 O emission in biological soil disinfestation because of high temperature.

  4. [Real-time irrigation forecast of cotton mulched with plastic film under drip irrigation based on meteorological date].

    PubMed

    Shen, Xiao-jun; Sun, Jing-sheng; Li, Ming-si; Zhang, Ji-yang; Wang, Jing-lei; Li, Dong-wei

    2015-02-01

    It is important to improve the real-time irrigation forecasting precision by predicting real-time water consumption of cotton mulched with plastic film under drip irrigation based on meteorological data and cotton growth status. The model parameters for calculating ET0 based on Hargreaves formula were determined using historical meteorological data from 1953 to 2008 in Shihezi reclamation area. According to the field experimental data of growing season in 2009-2010, the model of computing crop coefficient Kc was established based on accumulated temperature. On the basis of crop water requirement (ET0) and Kc, a real-time irrigation forecast model was finally constructed, and it was verified by the field experimental data in 2011. The results showed that the forecast model had high forecasting precision, and the average absolute values of relative error between the predicted value and measured value were about 3.7%, 2.4% and 1.6% during seedling, squaring and blossom-boll forming stages, respectively. The forecast model could be used to modify the predicted values in time according to the real-time meteorological data and to guide the water management in local film-mulched cotton field under drip irrigation.

  5. Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants

    PubMed Central

    2012-01-01

    To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene succinate) (PBS) films. The strain grew on the surface of soil-mounted BP films, produced breaks along the direction of hyphal growth indicated that it secreted a BP-degrading enzyme, and has directly contributing to accelerating the degradation of film. Treatment with the culture filtrate decomposed 91.2 wt%, 23.7 wt%, and 14.6 wt% of PBSA, PBS, and commercially available BP polymer blended mulch film, respectively, on unsterlized soil within 6 days. The PCR-DGGE analysis of the transition of soil microbial community during film degradation revealed that the process was accompanied with drastic changes in the population of soil fungi and Acantamoeba spp., as well as the growth of inoculated strain B47-9. It has a potential for application in the development of an effective method for accelerating degradation of used plastics under actual field conditions. PMID:22856640

  6. The contribution of mulches to control high soil erosion rates in vineyards in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Jordán, Antonio; Zavala, Lorena; José Marqués, María; Novara, Agata

    2014-05-01

    Soil erosion take place in degraded ecosystem where the lack of vegetation, drought, erodible parent material and deforestation take place (Borelli et al., 2013; Haregeweyn et al., 2013; Zhao et al., 2013). Agriculture management developed new landscapes (Ore and Bruins, 2012) and use to trigger non-sustainable soil erosion rates (Zema et al., 2012). High erosion rates were measured in agriculture land (Cerdà et al., 2009), but it is also possible to develop managements that will control the soil and water losses, such as organic amendments (Marqués et al., 2005), plant cover (Marqués et al., 2007) and geotextiles (Giménez Morera et al., 2010). The most successful management to restore the structural stability and the biological activity of the agriculture soil has been the organic mulches (García Orenes et al; 2009; 2010; 2012). The straw mulch is also very successful on bare fire affected soil (Robichaud et al., 2013a; 2013b), which also contributes to a more stable soil moisture content (García-Moreno et al., 2013). The objective of this research is to determine the impact of two mulches: wheat straw and chipped branches, on the soil erosion rates in a rainfed vineyard in Eastern Spain. The research site is located in the Les Alcusses Valley within the Moixent municipality. The Mean annual temperature is 13 ºC, and the mean annual rainfall 455 mm. Soil are sandy loam, and are developed at the foot-slope of a Cretaceous limestone range, the Serra Grossa range. The soils use to be ploughed and the features of soil erosion are found after each thunderstorm. Rills are removed by ploughing. Thirty rainfall simulation experiments were carried out in summer 2011 during the summer drought period. The simulated rainfall lasted during 1 hour at a 45 mmh-1 intensity on 1 m2 plots (Cerdà and Doerr, 2010; Cerdà and Jurgensen 2011). Ten experiments were carried out on the control plots (ploughed), 10 on straw mulch covered plots, and 10 on chipped branches covered

  7. Mulch and fertilizer management practices for organic production of highbush blueberry. II. Impact on plant and soil nutrients during establishment

    USDA-ARS?s Scientific Manuscript database

    A systems trial was established to evaluate management practices for organic production of highbush blueberry. The practices included two bed types (flat and raised), two sources and rates of fertilizer (feather meal and fish emulsion applied at 29 and 57 kg/ha N), three mulches [sawdust, compost to...

  8. Mulch and fertilizer management practices for organic production of highbush blueberry. I. Plant growth and allocation of biomass during establishment

    USDA-ARS?s Scientific Manuscript database

    A systems trial was established to evaluate management practices for organic production of highbush blueberry. The practices included two bed types (flat and raised), two sources and rates of fertilizer (feather meal and fish emulsion applied at 29 and 57 kg/ha N), three mulches [sawdust, compost to...

  9. Water treatment residual (WTR)-coated wood mulch for alleviation of toxic metals and phosphorus from polluted urban stormwater runoff.

    PubMed

    Soleimanifar, Hanieh; Deng, Yang; Wu, Laying; Sarkar, Dibyendu

    2016-07-01

    Aluminum-based water treatment residual (WTR)-coated wood mulches were synthesized and tested for removal of heavy metals and phosphorus (P) in synthetic urban stormwater. WTRs are an industrial waste produced from coagulation in water treatment facilities, primarily composed of amorphous aluminum or iron hydroxides. Batch tests showed that the composite filter media could effectively adsorb 97% lead (Pb), 76% zinc (Zn), 81% copper (Cu) and 97% P from the synthetic stormwater (Pb = 100 μg/L, Zn = 800 μg/L, Cu = 100 μg/L, P = 2.30 mg/L, and pH = 7.0) within 120 min, due to the presence of aluminum hydroxides as an active adsorbent. The adsorption was a 2(nd)-order reaction with respect toward each pollutant. Column tests demonstrated that the WTR-coated mulches considerably alleviated the select pollutants under a continuous-flow condition over the entire filtration period. The effluent Pb, Zn, Cu, and P varied at 0.5-8.9%, 33.4-46.7%, 45.8-55.8%, and 6.4-51.9% of their respective initial concentrations with the increasing bed volume from 0 to 50. Synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) tests indicated that leached contaminants were all below the U.S. criteria, suggesting that the release of undesired chemicals under rainfall or landfilling conditions is not a concern during application. This study demonstrates that the WTR-coated mulches are a new, low-cost, and effective filter media for urban stormwater treatment. Equally important, this study provides a sustainable approach to beneficially reuse an industrial waste for environmental pollution control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Towards an integrated assessment of the impacts of forest residue mulching following wildfire in eucalypt plantations in north-central Portugal

    NASA Astrophysics Data System (ADS)

    Keizer, Jan Jacob; Abrantes, Nelson; Bastos, Ana; Brandsma, Micha; Campos, Isabel; Faria, Silvia; Malvar, Maruxa; Martins, Martinho; João Oliveira, Maria; Pimpão, Gabriel; Prats, Sergio; Puga, João; Ribeiro, Cristina; Rocha, João; Santos, Liliana; Serpa, Dalila; Silva, Flávio; Silva, Tiago; Valente, Sandra; Vieira, Diana

    2016-04-01

    In the framework of the EU-FP7 project RECARE (www.recare-project.eu) and, in particular, its WP6, the University of Aveiro partner has recently started testing two measures against the soil threat of post-fire erosion by water in an area in north-central Portugal, close to Coimbra that burnt during the summer of 2015. These measures - mulching with forest slash residues and contour ploughing - had been selected by the local and external stakeholders involved in the project, through two subsequent stakeholder workshops. While contour ploughing has still not taken place, the mulching was already carried out, using residues from eucalypt plantations as the burnt areas was dominated by eucalypt plantations, and applying them in a homogeneous fashion at two contrasting application rates, i.e. a "standard" rate of approximately 10 Mg ha-1 and a "reduced" rate of about 3 Mg ha-1. The standard rate was selected for having proved effective in reducing post-fire runoff and erosion in previous field studies in the region (Prats et al., 2012, 2014, 2015a), while the reduced rate had been found to be nearly as effective as the standard rate in a recent study in the hydraulic laboratory of the University of Coimbra (Prats et al., 2015b). Unlike the referred prior studies, however, the present study will also assess the impacts of mulching on two other soil threats - i.e. decline in soil organic matter and in soil biodiversity - and, ultimately, will compare the two measures in terms of their consequences for soil-based ecosystem services, using the framework being developed by RECARE (Schwilch et al. in Stolte et al., 2016). The proposed presentation will show the first results on the effects of the two mulch application rates on post-fire runoff as well as the associated losses of sediments, organic matter/C and nutrients (N, P), and on selected indicators of soil biological activity and diversity. Prats et al., 2015a (in press). LD&D (doi: 10.1002/ldr.2422) Prats et al., 2015

  11. Warmer and Wetter Soil Stimulates Assimilation More than Respiration in Rainfed Agricultural Ecosystem on the China Loess Plateau: The Role of Partial Plastic Film Mulching Tillage.

    PubMed

    Gong, Daozhi; Hao, Weiping; Mei, Xurong; Gao, Xiang; Liu, Qi; Caylor, Kelly

    2015-01-01

    Effects of agricultural practices on ecosystem carbon storage have acquired widespread concern due to its alleviation of rising atmospheric CO2 concentrations. Recently, combining of furrow-ridge with plastic film mulching in spring maize ecosystem was widely applied to boost crop water productivity in the semiarid regions of China. However, there is still limited information about the potentials for increased ecosystem carbon storage of this tillage method. The objective of this study was to quantify and contrast net carbon dioxide exchange, biomass accumulation and carbon budgets of maize (Zea maize L.) fields under the traditional non-mulching with flat tillage (CK) and partial plastic film mulching with furrow-ridge tillage (MFR) on the China Loess Plateau. Half-hourly net ecosystem CO2 exchange (NEE) of both treatments were synchronously measured with two eddy covariance systems during the growing seasons of 2011 through 2013. At same time green leaf area index (GLAI) and biomass were also measured biweekly. Compared with CK, the warmer and wetter (+1.3°C and +4.3%) top soil at MFR accelerated the rates of biomass accumulation, promoted greater green leaf area and thus shortened the growing seasons by an average value of 10.4 days for three years. MFR stimulated assimilation more than respiration during whole growing season, resulting in a higher carbon sequestration in terms of NEE of -79 gC/m2 than CK. However, after considering carbon in harvested grain (or aboveground biomass), there is a slight higher carbon sink (or a stronger carbon source) in MFR due to its greater difference of aboveground biomass than that of grain between both treatments. These results demonstrate that partial plastic film mulched furrow-ridge tillage with aboveground biomass exclusive of grain returned to the soil is an effective way to enhance simultaneously carbon sequestration and grain yield of maize in the semiarid regions.

  12. Warmer and Wetter Soil Stimulates Assimilation More than Respiration in Rainfed Agricultural Ecosystem on the China Loess Plateau: The Role of Partial Plastic Film Mulching Tillage

    PubMed Central

    Gong, Daozhi; Hao, Weiping; Mei, Xurong; Gao, Xiang; Liu, Qi; Caylor, Kelly

    2015-01-01

    Effects of agricultural practices on ecosystem carbon storage have acquired widespread concern due to its alleviation of rising atmospheric CO2 concentrations. Recently, combining of furrow-ridge with plastic film mulching in spring maize ecosystem was widely applied to boost crop water productivity in the semiarid regions of China. However, there is still limited information about the potentials for increased ecosystem carbon storage of this tillage method. The objective of this study was to quantify and contrast net carbon dioxide exchange, biomass accumulation and carbon budgets of maize (Zea maize L.) fields under the traditional non-mulching with flat tillage (CK) and partial plastic film mulching with furrow-ridge tillage (MFR) on the China Loess Plateau. Half-hourly net ecosystem CO2 exchange (NEE) of both treatments were synchronously measured with two eddy covariance systems during the growing seasons of 2011 through 2013. At same time green leaf area index (GLAI) and biomass were also measured biweekly. Compared with CK, the warmer and wetter (+1.3°C and +4.3%) top soil at MFR accelerated the rates of biomass accumulation, promoted greater green leaf area and thus shortened the growing seasons by an average value of 10.4 days for three years. MFR stimulated assimilation more than respiration during whole growing season, resulting in a higher carbon sequestration in terms of NEE of -79 gC/m2 than CK. However, after considering carbon in harvested grain (or aboveground biomass), there is a slight higher carbon sink (or a stronger carbon source) in MFR due to its greater difference of aboveground biomass than that of grain between both treatments. These results demonstrate that partial plastic film mulched furrow-ridge tillage with aboveground biomass exclusive of grain returned to the soil is an effective way to enhance simultaneously carbon sequestration and grain yield of maize in the semiarid regions. PMID:26305354

  13. [Simulation of AquaCrop model and management practice optimization for dryland maize production under whole plastic-film mulching on double ridges].

    PubMed

    Zhang, Tao; Sun, Wei; Zhang, Feng Wei; Sun, Bu Gong; Wang, Ting; Wu, Jian Min

    2017-03-18

    In order to study the applicability of AquaCrop model for simulating dryland whole plastic-film mulching in double ridges cultivation mode and to find the best agronomic management measures, the data of nitrogen gradient test in 2014 and 2015 were selected to validate the variety and stress parameters in the model. The change trends of yield were simulated under different mana-gement measures. The results showed that the root mean square error (RMSE), normalized root mean square error (NRMSE) and the compliance index (d) of the measured and simulated production for all treatments were 717 kg·hm -2 , 10.0% and 0.96, respectively, the RMSE, NRMSE and d of the total biomass were 951 kg·hm -2 , 6.5% and 0.98, respectively, which indicated that the cultivation characteristics of the whole plastic-film mulching on double ridges maize in the dryland could be well reflected. The best fitting degree was 270 kg N·hm -2 from dynamic simulation analysis of canopy cover degrees and biomass, and with the increase of N stress, the simulation accuracy gradually declined. The best sowing time of the whole plastic-film mulching on double ridges maize in the middle part of Gansu Province was from late April to early May, the seeding density was 45000-65000 plants·hm -2 , the growth period was 130-145 days, and the nitrogen application rate was 240-280 kg·hm -2 . The results of this study had a certain reference value for the application of AcquaCrop model in arid region of Gansu, and would contribute to the transformation and popularization of agricultural cultivation techniques.

  14. Impact of straw and rock-fragment mulches on soil moisture and early growth of holm oaks in a semiarid area

    Treesearch

    M. N. Jimenez; J. R. Pinto; M. A. Ripoll; A. Sanchez-Miranda; F. B. Navarro

    2017-01-01

    Planted seedlings and saplings usually exhibit low survival and growth rates under dry Mediterranean environments, especially late-successional species such as Quercus. In this work, we studied the effects of straw and rock fragment mulches on the establishment conditions of holm oak (Quercus ilex L. subsp. ballota (Def.) Samp.) in SE Spain. Soil moisture was...

  15. The effect of monoculture peanut and cassava/peanut intercropping on physical and chemical properties in peanut rhizosphere soil under the biochar application and straw mulching

    NASA Astrophysics Data System (ADS)

    Chen, X.; Tian, Y.; Guo, X. F.; Chen, G. K.; He, H. Z.; Li, H. S.

    2017-03-01

    Cassava/peanut intercropping is a popular cultivation method in the south China, with the advantage of apparent yield increase. In order to analyze the effect of cassava/peanut intercropping on physical and chemical properties in peanut rhizosphere soil, the physical and chemical properties were investigated under the biochar application and straw mulching. The result showed that the Ph, organic materials content, available phosphorus content, available potassium content in peanut rhizosphere under the biochar application increased by 7.06%, 94.52%, 17.53%, 25.08% (monoculture peanut) and 8.47%, 89.94%, 17.93%, 22.87% (cassava/peanut intercropping) compared with Ck in the same planting patterns. In addition, the available nitrogen content, organic materials content, available phosphorus content, and available potassium content in peanut rhizosphere under the straw mulching increased by 89.80%, 60.92%, 5.95%, 9.98% (monoculture peanut) and 67.09%, 52.34%, 6.96%, 11.94% (cassava/peanut intercropping) compared with Ck in the same planting patterns. In the same treatment conditions, bulk density in peanut rhizosphere soil decreased and porosity and saturated permeability coefficient increased slightly. But there was no significant difference between the two. At the same time, cassava/peanut intercropping could increase soil nutrients. Therefore, it is beneficial to apply biochar and straw mulching, and the suitable intercropping row spacing is more beneficial to increase soil nutrient contents.

  16. Growth, yield and movement of phosphate nutrients in soybean on P fertilizer, straw mulch and difference of plant spacing

    NASA Astrophysics Data System (ADS)

    Hanum, C.

    2018-02-01

    Soybean is one of the plants that require much amounts of phosphate. P nutrient, microclimate modification and plant spacing arrangement is the efforts to improve grain yield. The objective of the research was to study the effect of P fertilization, mulching straw and plant spacing on growth, yield and movement of P nutrient on soybean. The study was conducted at Cengkeh Turi Binjai using factorial randomized block design with 3 factors. The first factors was P fertilizer 0, 100, and 200 kg/ha, the second factor was thickness of rice straw mulch 0 and 5 cm, and third factors was plant spacing 30 cm x 15 cm, 40 cm x 20 cm, and 50 cm x 25 cm. The results of the research showed that phosphate fertilizer (200 kg/ha) significantly increased levels of phosphate in the shoot. Plant spacing (50 cm x 25 cm) increased root volume. The interaction of phosphate fertilizer (200 kg/ha) and spacing (50 cm x 25 cm) increased the phosphate level by 93.33% in shoot. Plant spacing (50 cm x 25 cm) produced the largest of 100 grains weight as compared to other plant spacing.

  17. Reflective Polyethylene Mulch Reduces Mexican Bean Beetle (Coleoptera: Coccinellidae) Densities and Damage in Snap Beans.

    PubMed

    Nottingham, L B; Kuhar, T P

    2016-08-01

    Mexican bean beetle, Epilachna varivestis Mulsant, is a serious pest of snap beans, Phaseolus vulgaris L., in the eastern United States. These beetles are intolerant to direct sunlight, explaining why individuals are typically found on the undersides of leaves and in the lower portion of the plant canopy. We hypothesized that snap beans grown on reflective, agricultural polyethylene (plastic mulch) would have fewer Mexican bean beetles and less injury than those grown on black plastic or bare soil. In 2014 and 2015, beans were seeded into beds of metallized, white, and black plastic, and bare soil, in field plots near Blacksburg, VA. Mexican bean beetle density, feeding injury, predatory arthropods, and snap bean yield were sampled. Reflected light intensity, temperature, and humidity were monitored using data loggers. Pyranometer readings showed that reflected light intensity was highest over metallized plastic and second highest over white plastic; black plastic and bare soil were similarly low. Temperature and humidity were unaffected by treatments. Significant reductions in Mexican bean beetle densities and feeding injury were observed in both metallized and white plastic plots compared to black plastic and bare soil, with metallized plastic having the fewest Mexican bean beetle life stages and injury. Predatory arthropod densities were not reduced by reflective plastic. Metallized plots produced the highest yields, followed by white. The results of this study suggest that growing snap beans on reflective plastic mulch can suppress the incidence and damage of Mexican bean beetle, and increase yield in snap beans. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Isolation of native soil microorganisms with potential for breaking down biodegradable plastic mulch films used in agriculture.

    PubMed

    Bailes, Graham; Lind, Margaret; Ely, Andrew; Powell, Marianne; Moore-Kucera, Jennifer; Miles, Carol; Inglis, Debra; Brodhagen, Marion

    2013-05-10

    Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles throughout the soil matrix. Secondly, BDMs are not sold commercially as pure polymers, but rather as films containing additives (e.g. fillers, plasticizers and dyes) that may affect microbial growth. The procedures described herein were used for isolates acquired from soil-buried mulch films. Fungal isolates acquired from excavated BDMs were tested individually for growth on pieces of new, disinfested BDMs laid atop defined medium containing no carbon source except agar. Isolates that grew on BDMs were further tested in liquid medium where BDMs were the sole added carbon source. After approximately ten weeks, fungal colonization and BDM degradation were assessed by scanning electron microscopy. Isolates were identified via analysis of ribosomal RNA gene sequences. This report describes methods for fungal isolation, but bacteria also were isolated using these methods by substituting media appropriate for bacteria. Our methodology should prove useful for studies investigating breakdown of intact plastic films or products for which plastic feedstocks are either unknown or not available. However our approach does not provide a quantitative method for comparing rates of BDM degradation.

  19. Isolation of Native Soil Microorganisms with Potential for Breaking Down Biodegradable Plastic Mulch Films Used in Agriculture

    PubMed Central

    Bailes, Graham; Lind, Margaret; Ely, Andrew; Powell, Marianne; Moore-Kucera, Jennifer; Miles, Carol; Inglis, Debra; Brodhagen, Marion

    2013-01-01

    Fungi native to agricultural soils that colonized commercially available biodegradable mulch (BDM) films were isolated and assessed for potential to degrade plastics. Typically, when formulations of plastics are known and a source of the feedstock is available, powdered plastic can be suspended in agar-based media and degradation determined by visualization of clearing zones. However, this approach poorly mimics in situ degradation of BDMs. First, BDMs are not dispersed as small particles throughout the soil matrix. Secondly, BDMs are not sold commercially as pure polymers, but rather as films containing additives (e.g. fillers, plasticizers and dyes) that may affect microbial growth. The procedures described herein were used for isolates acquired from soil-buried mulch films. Fungal isolates acquired from excavated BDMs were tested individually for growth on pieces of new, disinfested BDMs laid atop defined medium containing no carbon source except agar. Isolates that grew on BDMs were further tested in liquid medium where BDMs were the sole added carbon source. After approximately ten weeks, fungal colonization and BDM degradation were assessed by scanning electron microscopy. Isolates were identified via analysis of ribosomal RNA gene sequences. This report describes methods for fungal isolation, but bacteria also were isolated using these methods by substituting media appropriate for bacteria. Our methodology should prove useful for studies investigating breakdown of intact plastic films or products for which plastic feedstocks are either unknown or not available. However our approach does not provide a quantitative method for comparing rates of BDM degradation. PMID:23712218

  20. Evaluating the effectiveness of wood shred and agricultural straw mulches as a treatment to reduce post-wildfire hillslope erosion in southern British Columbia, Canada

    Treesearch

    P. R. Robichaud; P. Jordan; S. A. Lewis; L. E. Ashmun; S. A. Covert; R. E. Brown

    2013-01-01

    After the 2009 Terrace Mountain fire near Kelowna, BC, Canada, wood shred and agricultural straw mulch effects on post-fire runoff and sediment yields were compared using three experimental techniques: rainfall simulations on 1-m2 plots, concentrated flow (rill) simulations on 9-m long plots, and sediment yields from natural rainfall on 30-m2 plots. All experimental...

  1. Yield Potential of Soil Water and Its Sustainability for Dryland Spring Maize with Plastic Film Mulch on the Loess Plateau

    NASA Astrophysics Data System (ADS)

    Lin, Wen; Liu, Wenzhao

    2016-04-01

    Plastic film mulch(PM) is an agronomic measure widely used in the dryland spring maize production system on the Loess Plateau of China. The measure can greatly increase yield of dryland maize due to its significant effects on soil water conservation. Few researches have been done to investigate how the yield potential is impacted by PM. The yield-water use (ET) boundary equation raised by French and Schultz provides a simple approach to calculate crop water limited yield potential and gives a benchmark for farmers in managing their crops. However, method used in building the equation is somewhat arbitrary and has no strict principle, which leads to the uncertainty of equation when it is applied. Though using PM can increase crop yield, it increases soil temperature, promotes crop growth and increases the water transpired by crop, which further leads to high water consumption as compared with crops without PM. This means that PM may lead to the overuse of soil water and hence is unsustainable in a long run. This research is mainly focused on the yield potential and sustainability of PMing for spring maize on the Loess Plateau. A principle that may be utilized by any other researchers was proposed based on French & Schultz's boundary equation and on part of quantile regression theory. We used a data set built by collecting the experimental data from published papers and analyzed the water-limited yield potential of spring maize on the Loess Plateau. Moreover, maize yield and soil water dynamics under PM were investigated by a long-term site field experiment. Results show that on the Loess Plateau, the water limited yield potential can be calculated using the boundary equation y = 60.5×(x - 50), with a platform yield of 15954 kghm-2 after the water use exceeds 314 mm. Without PMing, the water limited yield potential can be estimated by the boundary equation y = 47.5×(x - 62.3) , with a platform yield of 12840 kghm-2 when the water use exceeds 325 mm, which

  2. A comparison of methods for determining the cotton field evapotranspiration and its components under mulched drip irrigation conditions: photosynthesis system, sap flow, and eddy covariance

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Tian, F.; Hu, H.

    2013-12-01

    A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. For upscaling the evapotranspiration from the leaf to the plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. For upscaling the evapotranspiration from the plant to the field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationships between the leaf area and the stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling is slightly higher (18%) than that obtained by sap flow. At the field scale, the estimate of the transpiration obtained by upscaling the estimate based on sap flow measurements is also systematically higher (10%) compared to that obtained through eddy covariance during the cotton open boll growth stage when soil evaporation can be neglected. Nevertheless, the results derived from these three distinct methods show reasonable consistency at the field scale, which indicates that the upscaling approaches are reasonable and valid. Based on the measurements and the upscaling approaches, the evapotranspiration components were analyzed under mulched drip irrigation. During the cotton flower and bolling stages in July and August, the evapotranspiration are 3.94 and 4.53 mm day-1, respectively. The proportion of transpiration to evapotranspiration reaches 87.1% before drip irrigation and 82.3% after irrigation. The high water use efficiency is principally due to the mulched film above the drip pipe, the low soil water content in the inter

  3. Hydrologic Impact of Straw Mulch On Runoff from a Burned Area for Various Soil Water Content

    NASA Astrophysics Data System (ADS)

    Carnicle, M. M.; Moody, J. A.; Ahlstrom, A. K.

    2011-12-01

    Mountainous watersheds often exhibit increases in runoff and flash floods after wildfires. During 11 days of September 2010, the Fourmile Canyon wildfire burned 2500 hectares of the foothills of the Rocky Mountains near Boulder, Colorado. In an effort to minimize the risk of flash floods after the wildfire, Boulder County aerially applied straw mulch on high-risk areas selected primarily on the basis of their slopes and burn severities. The purpose of this research is to investigate the hydrologic response, specifically runoff, of a burned area where straw mulch is applied. We measured the runoff, at different soil water contents, from 0.8-m diameter plots. Paired plots were installed in June 2011 in a basin burned by the Fourmile Canyon Fire. Two sets of bounded, paired plot (two control and two experimental plots) were calibrated for 35 days without straw on either plot by measuring volumetric soil water content 2-3 times per week and measuring total runoff from each storm. Straw (5 cm thick) was added to the two experimental plots on 19 July 2011 and also to the funnels of two visual rain gages in order to measure the amount of rainfall absorbed by the straw. Initial results during the calibration period showed nearly linear relations between the volumetric soil water content of the control and experimental plots. The regression line for the runoff from the control versus the runoff from the experiment plot did not fit a linear trend; the variability may have been caused by two intense storms, which produced runoff that exceeded the capacity of the runoff gages. Also, during the calibration period, when soil water content was low the runoff coefficients were high. It is anticipated that the final results will show that the total runoff is greater on plots with no straw compared to those with straw, under conditions of various antecedent soil water content. We are continuing to collect data during the summer of 2011 to test this hypothesis.

  4. Effect of mungbean (Vigna radiate) living mulch on density and dry weight of weeds in corn (Zea mays) field.

    PubMed

    Moghadam, M Bakhtiari; Vazan, S; Darvishi, B; Golzardi, F; Farahani, M Esfini

    2011-01-01

    Living mulch is a suitable solution for weeds ecological management and is considered as an effective method in decreasing of weeds density and dry weight. In order to evaluate of mungbean living mulch effect on density and dry weight of weeds in corn field, an experiment was conducted as a split plot based on randomized complete block design with four blocks in Research Field of Department of Agronomy, Karaj Branch, Islamic Azad University in 2010. Main plots were time of mungbean suppression with 2,4-D herbicide in four levels (4, 6, 8 and 10 leaves stages of corn) and control without weeding and sub plots were densities of mungbean in three levels (50%, 100% and 150% more than optimum density). Density and dry weight of the weeds were measured in all plots with a quadrate (60 x 100 cm) in 10 days after tasseling. Totally, 9 species of weeds were identified in the field, which included 4 broad leave species that were existed in all plots. The results showed that the best time for suppression of mungbean is the 8 leaves stage of corn, which decreased density and dry weight of weeds, 53% and 51% in comparison with control, respectively. Increase of density of mungbean from 50% into 150% more than optimum density, decrease the density and dry weight of weeds, 27.5% and 22%, respectively. It is concluded that the best time and density for suppression mungbean was 8 leaves stage of corn, and 150% more than optimum density, which decreased density and dry weight of the weeds 69% and 63.5% in comparison with control, respectively.

  5. Methods for Increasing the Material Resistance of the Mulching Tool Body Against its Deformation in Operation

    NASA Astrophysics Data System (ADS)

    Ľuptáčiková, Veronika; Ťavodová, Miroslava

    2017-12-01

    Instruments working in the cultivation of forest areas, for example under the guidance of high stress, are exposed to factors of heterogeneous environment which are soil, wood, various types of rocks, sometimes waste - metal, plastics or glass as well. The mulching tool body, the forging, deforms and worsens rapidly after loss of the WC toe-caps. Currently used tools have a non-heat-treated body material with a ferritic-pearlitic structure that has low abrasion resistance. One of the possibilities is to heat the tool body. Another possibility is to apply suitable welds to exposed areas. By correctly selecting the thermal mode of the tool material or by applying the welded material to the exposed body part of the tool, we can ensure that the tool's operating time is increased.

  6. Nitrapyrin addition mitigates nitrous oxide emissions and raises nitrogen use efficiency in plastic-film-mulched drip-fertigated cotton field.

    PubMed

    Liu, Tao; Liang, Yongchao; Chu, Guixin

    2017-01-01

    Nitrification inhibitors (NIs) have been used extensively to reduce nitrogen losses and increase crop nitrogen nutrition. However, information is still scant regarding the influence of NIs on nitrogen transformation, nitrous oxide (N2O) emission and nitrogen utilization in plastic-film-mulched calcareous soil under high frequency drip-fertigated condition. Therefore, a field trial was conducted to evaluate the effect of nitrapyrin (2-chloro-6-(trichloromethyl)-pyridine) on soil mineral nitrogen (N) transformation, N2O emission and nitrogen use efficiency (NUE) in a drip-fertigated cotton-growing calcareous field. Three treatments were established: control (no N fertilizer), urea (225 kg N ha-1) and urea+nitrapyrin (225 kg N ha-1+2.25 kg nitrapyrin ha-1). Compared with urea alone, urea plus nitrapyrin decreased the average N2O emission fluxes by 6.6-21.8% in June, July and August significantly in a drip-fertigation cycle. Urea application increased the seasonal cumulative N2O emission by 2.4 kg N ha-1 compared with control, and nitrapyrin addition significantly mitigated the seasonal N2O emission by 14.3% compared with urea only. During the main growing season, the average soil ammonium nitrogen (NH4+-N) concentration was 28.0% greater and soil nitrate nitrogen (NO3--N) concentration was 13.8% less in the urea+nitrapyrin treatment than in the urea treatment. Soil NO3--N and water-filled pore space (WFPS) were more closely correlated than soil NH4+-N with soil N2O fluxes under drip-fertigated condition (P<0.001). Compared with urea alone, urea plus nitrapyrin reduced the seasonal N2O emission factor (EF) by 32.4% while increasing nitrogen use efficiency by 10.7%. The results demonstrated that nitrapyrin addition significantly inhibited soil nitrification and maintained more NH4+-N in soil, mitigated N2O losses and improved nitrogen use efficiency in plastic-film-mulched calcareous soil under high frequency drip-fertigated condition.

  7. Nitrapyrin addition mitigates nitrous oxide emissions and raises nitrogen use efficiency in plastic-film-mulched drip-fertigated cotton field

    PubMed Central

    Liu, Tao; Chu, Guixin

    2017-01-01

    Nitrification inhibitors (NIs) have been used extensively to reduce nitrogen losses and increase crop nitrogen nutrition. However, information is still scant regarding the influence of NIs on nitrogen transformation, nitrous oxide (N2O) emission and nitrogen utilization in plastic-film-mulched calcareous soil under high frequency drip-fertigated condition. Therefore, a field trial was conducted to evaluate the effect of nitrapyrin (2-chloro-6-(trichloromethyl)-pyridine) on soil mineral nitrogen (N) transformation, N2O emission and nitrogen use efficiency (NUE) in a drip-fertigated cotton-growing calcareous field. Three treatments were established: control (no N fertilizer), urea (225 kg N ha-1) and urea+nitrapyrin (225 kg N ha-1+2.25 kg nitrapyrin ha-1). Compared with urea alone, urea plus nitrapyrin decreased the average N2O emission fluxes by 6.6–21.8% in June, July and August significantly in a drip-fertigation cycle. Urea application increased the seasonal cumulative N2O emission by 2.4 kg N ha-1 compared with control, and nitrapyrin addition significantly mitigated the seasonal N2O emission by 14.3% compared with urea only. During the main growing season, the average soil ammonium nitrogen (NH4+-N) concentration was 28.0% greater and soil nitrate nitrogen (NO3--N) concentration was 13.8% less in the urea+nitrapyrin treatment than in the urea treatment. Soil NO3--N and water-filled pore space (WFPS) were more closely correlated than soil NH4+-N with soil N2O fluxes under drip-fertigated condition (P<0.001). Compared with urea alone, urea plus nitrapyrin reduced the seasonal N2O emission factor (EF) by 32.4% while increasing nitrogen use efficiency by 10.7%. The results demonstrated that nitrapyrin addition significantly inhibited soil nitrification and maintained more NH4+-N in soil, mitigated N2O losses and improved nitrogen use efficiency in plastic-film-mulched calcareous soil under high frequency drip-fertigated condition. PMID:28481923

  8. Predicting deep percolation with eddy covariance under mulch drip irrigation

    NASA Astrophysics Data System (ADS)

    Ming, Guanghui; Tian, Fuqiang; Hu, Hongchang

    2016-04-01

    Water is essential for the agricultural development and ecological sustainability of the arid and semi-arid oasis with rare precipitation input and high evaporation demand. Deep percolation (DP) defined as excess irrigation water percolating below the plant root zone will reduce irrigation water use efficiency (WUE). But the DP was often ignored in mulch drip irrigation (MDI) which has reached the area of 1.6 million hectares in Xinjiang, the northwest of China. In this study DP experiments were conducted at an agricultural experiment station located within an irrigation district in the Tarim River Basin for four cotton growing periods. First it was detected the irrigation water infiltrated into the soil layers below 100cm and the groundwater level responded to the irrigation events well. Then DP below 100cm soil layers was calculated using the soil water balance method with the aid of eddy covariance (with the energy balance closure of 0.72). The negative DP (groundwater contribution to the crop-water use through capillary rising) at the seedling and harvesting stages can reach 77mm and has a good negative correlation with the groundwater level and positive correlation with potential evaporation. During the drip irrigation stage approximately 45% of the irrigation became DP and resulted in the low irrigation WUE of 0.6. The DP can be 164mm to 270mm per year which was positive linearly correlated to irrigation depth and negative linear correlated to irrigation interval. It is better to establish the irrigation schedule with small irrigation depth and given frequently to reduce deep percolation and meet crop needs.

  9. Carbon balance of a plastic mulch and drip irrigated cotton field in an arid oasis of Northwest China

    NASA Astrophysics Data System (ADS)

    Ming, G.

    2017-12-01

    Carbon balance of a plastic mulch and drip irrigated cotton field in an arid oasis of Northwest ChinaGuanghui Ming1, Fuqiang Tian1*, Hongchang Hu11State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China,Abstracts: Agricultural ecosystems have the potential to offset rising CO2 concentration in the atmosphere but the potential is often altered by agricultural management. Plastic film mulching and drip irrigation (PMDI) have been widespread for saving water and improving crop yield worldwide. To comprehensively assess the carbon balance and to detect the controlling factors of the carbon flux in a PMDI cotton field, experiments combining eddy covariance (EC) system, chamber method and crop sampling were implemented in an arid oasis of Xinjiang from the year 2012 to 2016. The annual net ecosystem exchange (NEE) was -250.18 ± 80.41 g C m-2 in the five years, which indicated that the filed was a much stronger carbon sink. After removal of the harvest of cotton as seed oil (Ch) of 108.81±7.57 g C m-2, the field was still a moderate carbon sink with net biome productivity (NBP) of 141.37±73.7 g C m-2. Soil temperature can explain 82% of seasonal variation of nighttime NEE while PAR can explain 36-81% of daytime NEE varying with crop development and photosynthetic activity. NEE was separated into total ecosystem respiration (Reco, 1214.20±144.42 g C m-2) and gross primary productivity (GPP, 1464.38±122.78 g C m-2). Interannual Reco changed more drastically than GPP and respiration may be the main determinant of carbon balance in the PMDI field. Seasonal NPP measured by cop sampling method (NPPCS) agreed well with NPP calculated with EC (NPPEC), with the annual NPP of 708.86 ± 52.26 g C m-2, which indicated that our carbon flux measurements and separating methods reasonable. The PMDI cotton field induced more GPP and Reco than other croplands with larger light use efficiency (LUE) but relatively

  10. Evaluation of evapotranspiration and deep percolation under mulched drip irrigation in an oasis of Tarim basin, China

    NASA Astrophysics Data System (ADS)

    Li, Xianwen; Jin, Menggui; Zhou, Nianqing; Huang, Jinou; Jiang, Simin; Telesphore, Habiyakare

    2016-07-01

    Mulched drip irrigation for cotton field is an effective measure for the utilization of saline water, and the regulation of soil water and salt. However, the reasonable methods for quantifying actual evapotranspiration (ET) and deep percolation of recharge to groundwater are still not very well understood, which restricts the accurate regulation of soil water and salt for cotton growth in oasis. In this paper, a set of experiments of mulched drip irrigation with brackish water were conducted in a typical arid region of Tarim basin in southern Xinjiang, China. The irrigation events were recorded, and ET and fluctuations of groundwater table were carefully measured for two consecutive irrigation periods of flowering and bolling stages. A group of upscaling conversion methods were used to quantify the ET, in which canopy structure was considered to estimate the transpiration from leaf scale to a unit of field scale. The groundwater table had a significant response to the irrigation events, thus the deep percolation was estimated using water-table fluctuation method (WTF). Results showed that during the two irrigation events of flowering and bolling stages, the total ET was 31.1 mm with the soil surface evaporation of only 0.4 mm. The total percolation of recharge to groundwater was 48.2 mm which contributed to the groundwater run-off of 22.1 mm. Transpiration of 30.7 mm accounted for 98.6% of the total ET of 31.1 mm and 34.3% of the irrigation water of 90.6 mm. Compared with transpiration, the deep percolation accounted for 53.2% of irrigation water, indicating a serious excessive irrigation that recharged to groundwater. Soil salt budget showed that the salt leached into groundwater was 1.56 times of the input from brackish irrigation water and fertilization during the two irrigation periods. Even for the irrigation practice with brackish water, the accumulated salt of soil profile could also be leached out under large amount of irrigation water (e.g. 90.6 mm for the

  11. Dye injection for predicting pesticide movement in micro-irrigated polyethylene film mulch beds.

    PubMed

    Csinos, Alex S; Laska, James E; Childers, Stan

    2002-04-01

    A new method is described for tracing water movement in polyethylene film covered soil beds. Dye was delivered via a drip tape micro-irrigation system which was placed in the bed as the soil beds were shaped and covered with polyethylene film. The dye was injected into the system and irrigated with water for 4-24 h at 0.41-1.38 bar (41-138 kPa) pressure depending on the experiment. The dye appeared as blue circles on the soil surface within 20 min of injection and produced a three-dimensional pattern in the soil profile. Injection-irrigation-pressure scenarios were evaluated by measuring dye movement directly below and between emitters by sliding fabricated blades vertically into the bed at the desired examination point and excavating the soil away from the blade. The dye typically produced a U shape on the face of the bed and the area was calculated for each of these exposed faces. The area increased as the length of irrigation and water pressure increased. Interrupted irrigation (pulsing) scenarios did not alter the calculated areas encompassed by the dye compared to uninterrupted irrigation scenarios. The blue dye provided a direct, inexpensive and easy method of visualizing water movement in soil beds. This information will be used to optimize application of emulsifiable plant-care products in polyethylene film mulch beds.

  12. Roots of symptom-free leguminous cover crop and living mulch species harbor diverse Fusarium communities that show highly variable aggressiveness on pea (Pisum sativum)

    PubMed Central

    Baćanović-Šišić, Jelena; Karlovsky, Petr; Wittwer, Raphaël; Walder, Florian; Campiglia, Enio; Radicetti, Emanuele; Friberg, Hanna; Baresel, Jörg Peter; Finckh, Maria R.

    2018-01-01

    Leguminous cover crop and living mulch species show not only great potential for providing multiple beneficial services to agro-ecosystems, but may also present pathological risks for other crops in rotations through shared pathogens, especially those of the genus Fusarium. Disease severity on roots of subterranean clover, white clover, winter and summer vetch grown as cover crop and living mulch species across five European sites as well as the frequency, distribution and aggressiveness to pea of Fusarium spp. recovered from the roots were assessed in 2013 and 2014. Disease symptoms were very low at all sites. Nevertheless, out of 1480 asymptomatic roots, 670 isolates of 14 Fusarium spp. were recovered. The most frequently isolated species in both years from all hosts were F. oxysporum and F. avenaceum accounting for 69% of total isolation percentage. They were common at the Swiss, Italian and German sites, whereas at the Swedish site F. oxysporum dominated and F. avenaceum occurred only rarely. The agressiveness and effect on pea biomass were tested in greenhouse assays for 72 isolates of six Fusarium species. Isolates of F. avenaceum caused severe root rot symptoms with mean severity index (DI) of 82 and 74% mean biomass reduction compared to the non-inoculated control. Fusarium oxysporum and F. solani isolates were higly variable in agressiveness and their impact on pea biomass. DI varied between 15 and 50 and biomass changes relative to the non-inoculated control -40% to +10%. Isolates of F. tricinctum, F. acuminatum and F. equiseti were non to weakly agressive often enhancing pea biomass. This study shows that some of the major pea pathogens are characterized by high ecological plasticity and have the ability to endophytically colonize the hosts studied that thus may serve as inoculum reservoir for susceptible main legume grain crops such as pea. PMID:29444142

  13. Operation of an anaerobic filter compared with an anaerobic moving bed bioreactor for the treatment of waste water from hydrothermal carbonisation of fine mulch.

    PubMed

    Meier, J F; Austermann-Haun, U; Fettig, J; Liebe, H; Wichern, M

    2017-10-01

    This experimental study investigates the anaerobic digestion of waste water from hydrothermal carbonisation of fine mulch (wood chips) in combination with a co-substrate for the first time. Two anaerobic reactors, an anaerobic filter (AF) and an anaerobic moving bed bioreactor (AnMBBR), were operated over a period of 131 days at mesophilic conditions. The organic loading rate was increased to a maximum of 8.5 g L -l d -1 in the AF and the AnMBBR. Both reactors achieved similarly efficient chemical oxygen demand removal rates of 80% approximately (approx.) and high methane production rates of approx. 2.7 L L -1 d -1 . Nevertheless, signs of an inhibition were observed during the experiments.

  14. [Photosynthetic gas exchange and water utilization of flag leaf of spring wheat with bunch sowing and field plastic mulching below soil on semi-arid rain-fed area.

    PubMed

    Yang, Wen Xiong; Liu, Na; Liu, Xiao Hua; Zhang, Xue Ting; Wang, Shi Hong; Yuan, Jun Xiu; Zhang, Xu Cheng

    2016-07-01

    Based on the field experiment which was conducted in Dingxi County of Gansu Province, and involved in the three treatments: (1) plastic mulching on entire land with soil coverage and bunching (PMS), (2) plastic mulching on entire land and bunching (PM), and (3) direct bunching without mulching (CK). The parameters of SPAD values, chlorophyll fluorescence parameters, photosynthetic gas exchange parameters, as well as leaf area index (LAI), yield, evapotranspiration, and water use efficiency in flag leaves of spring wheat were recorded and analyzed from 2012 to 2013 continuously. The results showed that SPAD values of wheat flag leaves increased in PMS by 10.0%-21.5% and 3.2%-21.6% compared to PM and CK in post-flowering stage, respectively. The maximum photochemical efficiency (F v /F m ) , actual photochemical efficiency (Φ PS 2 ) of photosystem 2 (PS2), and photochemical quenching coefficient (q P ) of PMS were higher than those of PM and CK, the maximum increment values were 6.1%, 9.6% and 30.9% as compared with PM, and significant differences were observed in filling stage (P<0.05). The values of q N in PMS were lowest among the three treatments, and it decreased significantly by 23.8% and 15.4% in heading stage in 2012 and 2013 respectively, as compared with PM. The stoma conductance (g s ) of wheat flag leaves in PMS was higher than that of PM and CK, with significant difference being observed in filling stage, and it increased by 17.1% and 21.1% in 2012 and 2013 respectively, as compared with PM. The transpiration rate (T r ), net photosynthetic rate (P n ), and leaf instantaneous water use efficiency (WUE i ) except heading stage in 2013 of PMS increased by 5.4%-16.7%, 11.2%-23.7%, and 5.6%-7.2%, respectively, as compared with PM, and significant difference of WUE i was observed in flowering stage in 2012. The leaf area index (LAI) of PMS was higher than that of PM and CK, especially, it differed significantly in seasonal drought of 2013. Consequently

  15. [Effects of enhanced-efficiency nitrogen fertilizers on nitrous oxide emissions from cotton field under plastic mulched drip irrigation in Xinjiang,China].

    PubMed

    Ma, Zhi Wen; Gao, Xiao Peng; Gui, Dong Wei; Kuang, Wen Nong; Wang, Xi He; Liu, Hua

    2016-12-01

    The effect of enhanced-efficiency nitrogen (N) fertilizers on emissions of nitrous oxide (N 2 O) from the grey desert agricultural soils of Xinjiang is uncertain. In this study, the enhanced-efficiency fertilizers, polymer-coated urea (ESN), and stabilized urea with urease and nitrification inhibitors (U+I) were compared to conventional urea (U) for N 2 O emissions from cotton under plastic mulch drip irrigation near Urumqi, Xinjiang. ESN was added once at planting but the other treatments were added multiple times with drip irrigation during the growing season. Gas samples were collected and analyzed twice per week during the growing season, using the static chamber-chromatography methodology. The results showed that generally, ESN significantly increased soil cumulative N 2 O emissions during the growing season by 47%-73% compared to other treatments. In the first four months after fertilization, soil ammonium (NH 4 + -N) and nitrate (NO 3 - -N) concentrations under ESN treatment were generally higher than under other treatments. Thereafter, NH 4 + -N and NO 3 - -N concentrations under all treatments gradually decreased to similar levels. ESN all added at planting was likely responsible for high NH 4 + -N and NO 3 - -N concentrations and highest N 2 O emissions. The U+I treatment reduced soil N 2 O emission by 9.9% in comparison with U, whereas the difference was not statistically significant. In addition, soil NO 3 - -N contents of the U+I treatments were generally lower than those of the ESN and the U treatments. The cumulative N 2 O emissionsover the growing season ranged from 300 to 500 g N 2 O-N·hm -2 , generally lower than emissions reported for other agricultural ecosystems. Drip irrigation successfully kept moisture conditions below levels for appreciable N 2 O emissions. Multiple applications of N via drip irrigation seemed to be effective to lower emissions than all N applied at planting. Therefore, for cotton field under plastic mulch drip irrigation

  16. Light reflected from colored mulches affects aroma and phenol content of sweet basil (Ocimum basilicum L.) leaves.

    PubMed

    Loughrin, J H; Kasperbauer, M J

    2001-03-01

    Basil (Ocimum basilicum L.) is an herb the leaves of which are used to add a distinct aroma and flavor to food. It was hypothesized that the size and chemical composition of sun-grown basil leaves could be influenced by the color of light reflected from the soil surface and by the action of the reflected light through the natural growth regulatory system within the growing plants. Leaf morphology, aroma compounds, and soluble phenolics were compared in basil that had been grown over six colors of polyethylene row covers. Altering the ratios of blue, red, and far-red light reflected to growing plants influenced both leaf morphology and chemistry. Leaves developing over red surfaces had greater area, moisture percentage (succulence), and fresh weight than those developing over black surfaces. Basil grown over yellow and green surfaces produced significantly higher concentrations of aroma compounds than did basil grown over white and blue covers. Leaves grown over yellow and green mulches also contained significantly higher concentrations of phenolics than those grown over the other colors. Clearly, the wavelengths (color) of light reflected to growing basil plants affected leaf size, aroma, and concentrations of soluble phenolics, some of which are antioxidants.

  17. Predicting the effectiveness of different mulching techniques in reducing post-fire runoff and erosion at plot scale with the RUSLE, MMF and PESERA models.

    PubMed

    Vieira, D C S; Serpa, D; Nunes, J P C; Prats, S A; Neves, R; Keizer, J J

    2018-08-01

    Wildfires have become a recurrent threat for many Mediterranean forest ecosystems. The characteristics of the Mediterranean climate, with its warm and dry summers and mild and wet winters, make this a region prone to wildfire occurrence as well as to post-fire soil erosion. This threat is expected to be aggravated in the future due to climate change and land management practices and planning. The wide recognition of wildfires as a driver for runoff and erosion in burnt forest areas has created a strong demand for model-based tools for predicting the post-fire hydrological and erosion response and, in particular, for predicting the effectiveness of post-fire management operations to mitigate these responses. In this study, the effectiveness of two post-fire treatments (hydromulch and natural pine needle mulch) in reducing post-fire runoff and soil erosion was evaluated against control conditions (i.e. untreated conditions), at different spatial scales. The main objective of this study was to use field data to evaluate the ability of different erosion models: (i) empirical (RUSLE), (ii) semi-empirical (MMF), and (iii) physically-based (PESERA), to predict the hydrological and erosive response as well as the effectiveness of different mulching techniques in fire-affected areas. The results of this study showed that all three models were reasonably able to reproduce the hydrological and erosive processes occurring in burned forest areas. In addition, it was demonstrated that the models can be calibrated at a small spatial scale (0.5 m 2 ) but provide accurate results at greater spatial scales (10 m 2 ). From this work, the RUSLE model seems to be ideal for fast and simple applications (i.e. prioritization of areas-at-risk) mainly due to its simplicity and reduced data requirements. On the other hand, the more complex MMF and PESERA models would be valuable as a base of a possible tool for assessing the risk of water contamination in fire-affected water bodies and

  18. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching

    PubMed Central

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China. PMID:27806098

  19. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    PubMed

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  20. Controlling Landscape Weeds.

    ERIC Educational Resources Information Center

    Nuss, James Robert, Jr.

    This agriculture extension service publication from Pennsylvania State University discusses the control of common grass and broadleaf weeds through the use of mulches and herbicides. The section on mulches discusses the different types of mulching materials, their advantages and disadvantages, herbicide-mulch combinations, and lists source of…

  1. [Effects of water storage in deeper soil layers on the root growth, root distribution and economic yield of cotton in arid area with drip irrigation under mulch].

    PubMed

    Luo, Hong-Hai; Zhang, Hong-Zhi; Zhang, Ya-Li; Zhang, Wang-Feng

    2012-02-01

    Taking cotton cultivar Xinluzao 13 as test material, a soil column culture expenment was conducted to study the effects of water storage in deeper (> 60 cm) soil layer on the root growth and its relations with the aboveground growth of the cultivar in arid area with drip irrigation under mulch. Two levels of water storage in 60-120 cm soil layer were installed, i. e., well-watered and no watering, and for each, the moisture content in 0-40 cm soil layer during growth period was controlled at two levels, i.e., 70% and 55% of field capacity. It was observed that the total root mass density of the cultivar and its root length density and root activity in 40-120 cm soil layer had significant positive correlations with the aboveground dry mass. When the moisture content in 0-40 cm soil layer during growth season was controlled at 70% of field capacity, the total root mass density under well-watered and no watering had less difference, but the root length density and root activity in 40-120 cm soil layer under well-watered condition increased, which enhanced the water consumption in deeper soil layer, increased the aboveground dry mass, and finally, led to an increased economic yield and higher water use efficiency. When the moisture content in 0-40 cm soil layer during growth season was controlled at 55% of field capacity and the deeper soil layer was well-watered, the root/shoot ratio and root length density in 40-120 cm soil layer and the root activity in 80-120 cm soil layer were higher, the water consumption in deeper soil layer increased, but it was still failed to adequately compensate for the negative effects of water deficit during growth season on the impaired growth of roots and aboveground parts, leading to a significant decrease in the economic yield, as compared with that at 70% of field capacity. Overall, sufficient water storage in deeper soil layer and a sustained soil moisture level of 65% -75% of field capacity during growth period could promote the

  2. 7 CFR 319.40-6 - Universal importation options.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... treated with moisture reduction in accordance with part 305 of this chapter. (d) Wood mulch, humus, compost, and litter. Wood mulch, humus, compost, and litter may be imported if accompanied by an importer document stating that the wood mulch, humus, compost, or litter was fumigated in accordance with part 305...

  3. 7 CFR 319.40-6 - Universal importation options.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... treated with moisture reduction in accordance with part 305 of this chapter. (d) Wood mulch, humus, compost, and litter. Wood mulch, humus, compost, and litter may be imported if accompanied by an importer document stating that the wood mulch, humus, compost, or litter was fumigated in accordance with part 305...

  4. 7 CFR 319.40-6 - Universal importation options.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... treated with moisture reduction in accordance with part 305 of this chapter. (d) Wood mulch, humus, compost, and litter. Wood mulch, humus, compost, and litter may be imported if accompanied by an importer document stating that the wood mulch, humus, compost, or litter was fumigated in accordance with part 305...

  5. Water use efficiency and productivity of habanero pepper (Capsicum chinense Jacq.) based on two transplanting dates.

    PubMed

    López-López, Rutilo; Inzunza-Ibarra, Marco Antonio; Sánchez-Cohen, Ignacio; Fierro-Álvarez, Andrés; Sifuentes-Ibarra, Ernesto

    2015-01-01

    Habanero pepper production was assessed with drip irrigation and plastic mulch, based on two transplanting dates. The objectives of the study were: (i) to evaluate the effect of two transplanting dates and the use of plastic mulch on water productivity and habanero pepper fruit yield under drip irrigation conditions; and (ii) to determine the profitability and economic viability of the product in the regional market. The work was conducted in the municipality of Huimanguillo, state of Tabasco, Mexico, in loam soils classified as Eutric Fluvisol. The Jaguar variety of habanero pepper, developed by INIFAP and possessing better genetic and productive characteristics, was used. Two transplanting dates were studied, (i) 30 January 2013 and (ii) 15 February 2013, with and without plastic mulch. The conclusions were: (i) application of irrigation depths based on crop evapotranspiration (ETc) and plastic mulch transplanted on 30 January increased the fruit yield of the crop and improved the benefit-cost ratio of the production system; and (ii) water use efficiency based on the 30 January transplanting date was 8.68 kg m⁻³ of water applied with plastic mulch, 6.51 kg m⁻³ without plastic mulch, and 3.65 kg m⁻³ for the 15 February transplanting date with plastic mulch.

  6. Effect of Sowing Quantity on Soil Temperature and Yield of Winter Wheat under Straw Strip Mulching in Arid Region of Northwest China

    NASA Astrophysics Data System (ADS)

    Lan, Xuemei; Chai, Yuwei; Li, Rui; Li, Bowen; Cheng, Hongbo; Chang, Lei; Chai, Shouxi

    2018-01-01

    In order to explore the characteristics and relationship between soil temperature and yield of winter wheat, under different sowing quantities conditions of straw mulching conventional drilling in Northwest China, this study took Lantian 26 as material, under the whole corn mulching conventional drilling in Changhe town and Pingxiang town, setting up 3 different seeding quantities of 270 kg/ha (SSMC1), 324 kg/ha (SSMC2) and 405 kg/ha (SSMC3), to study the difference of soil temperature during the growth period of winter wheat and its correlation with yield components. Results showed: the average soil temperature of 0∼25cm in two ecological zones in the whole growth period have a significant change with the increase of sowing quantities; too much seeding had a sharp drop in soil temperature; the highest temperature of SSMC in Changhe town was the middle quantity of SSMC 2; the highest temperature of SSMC in Pingxiang town was the lowest sowing quantity of SSMC1. Diurnal variation of soil temperature at all growth stages showed: with the increase of SSMC, in the morning it increased with the increase of soil depth, noon and evening reducing with the depth of the soil. The average soil temperature of SSMC2 was higher than that of in all the two ecological zones in the whole growth period of SSMC.The maximum day temperature difference of each treatment was at noon. With the increase of SSMC, the yield increase varied with two ecological zones. SSMC of the local conventional sowing quantity of 270kg/ha SSMC1 yield was the highest in Changhe Town. SSMC of the middle sowing quantity SSMC2 of 324kg/ha yield was the highest in Pingxiang town. The difference of grain number per spike was the main cause of yield difference among these 3 treatments. Correlation analysis showed: the correlation among the yield and yield components, growth index and soil temperature varied with different ecological zones; thousand kernel weight and grain number per ear (.964** and.891**) had a

  7. Assessment of farm soil, biochar, compost and weathered pine mulch to mitigate methane emissions.

    PubMed

    Syed, Rashad; Saggar, Surinder; Tate, Kevin; Rehm, Bernd H A

    2016-11-01

    Previous studies have demonstrated the effective utility of volcanic pumice soil to mitigate both high and low levels of methane (CH 4 ) emissions through the activity of both γ-proteobacterial (type I) and α-proteobacterial (type II) aerobic methanotrophs. However, the limited availability of volcanic pumice soil necessitates the assessment of other farm soils and potentially suitable, economical and widely available biofilter materials. The potential biofilter materials, viz. farm soil (isolated from a dairy farm effluent pond bank area), pine biochar, garden waste compost and weathered pine bark mulch, were inoculated with a small amount of volcanic pumice soil. Simultaneously, a similar set-up of potential biofilter materials without inoculum was studied to understand the effect of the inoculum on the ability of these materials to oxidise CH 4 and their effect on methanotroph growth and activity. These materials were incubated at 25 °C with periodic feeding of CH 4 , and flasks were aerated with air (O 2 ) to support methanotroph growth and activity by maintaining aerobic conditions. The efficiency of CH 4 removal was monitored over 6 months. All materials supported the growth and activity of methanotrophs. However, the efficiency of CH 4 removal by all the materials tested fluctuated between no or low removal (0-40 %) and high removal phases (>90 %), indicating biological disturbances rather than physico-chemical changes. Among all the treatments, CH 4 removal was consistently high (>80 %) in the inoculated farm soil and inoculated biochar, and these were more resilient to changes in the methanotroph community. The CH 4 removal from inoculated farm soil and inoculated biochar was further enhanced (up to 99 %) by the addition of a nutrient solution. Our results showed that (i) farm soil and biochar can be used as a biofilter material by inoculating with an active methanotroph community, (ii) an abundant population of α-proteobacterial methanotrophs is

  8. Enhanced conversion of newly-added maize straw to soil microbial biomass C under plastic film mulching and organic manure management

    NASA Astrophysics Data System (ADS)

    Jin, X.; Filley, T. R.

    2017-12-01

    Management of crop residues using plastic film mulching (PFM) has the potential to improve soil health by accelerating nutrient cycling and facilitating stable C pool production; however, a key aspect of this process—microbial immobilization of residue C—is poorly understood, especially under PFM when combined with different fertilization treatments. A 360-day in situ 13C-tracing technique was used to analyze the contribution and dynamics of microbial biomass C (MBC) to soil organic C (SOC) after 13C-labelled maize straw residue was applied to micro-plot topsoil in a cultivated maize (Zea mays L.) field under 27-year PFM and four fertilization treatments. Over the course of the experiment, MBC content was significantly (P<0.05) higher in treatments of manure (M) and manure plus nitrogen (MN) compared to the no-fertilization (CK) and nitrogen (N) treatments, regardless of PFM. Compared to no PFM controls, PFM enhanced the decomposition of maize straw during summer (Day 60) in the M and MN treatments, exhibiting increases of 93.0% and 28.6% in straw-derived 13C-MBC and 80.4% and 82.9% in 13C-MBC/13C-SOC, respectively. Overall, both PFM and organic manure treatments improved soil fertility through microbe-mediated incorporation of C derived from newly-added maize straw. Our results indicate that microbial growth and activity are affected by the utilization of different C sources and most dramatically during early seasonal transition.

  9. Rapid change of AM fungal community in a rain-fed wheat field with short-term plastic film mulching practice.

    PubMed

    Liu, Yongjun; Mao, Lin; He, Xinhua; Cheng, Gang; Ma, Xiaojun; An, Lizhe; Feng, Huyuan

    2012-01-01

    Plastic film mulching (PFM) is a widely used agricultural practice in the temperate semi-arid Loess Plateau of China. However, how beneficial soil microbes, arbuscular mycorrhizal (AM) fungi in particular, respond to the PFM practice is not known. Here, a field experiment was performed to study the effects of a 3-month short-term PFM practice on AM fungi in plots planted with spring wheat (Triticum aestivum L. cv. Dingxi-2) in the Loess Plateau. AM colonization, spore density, wheat spike weight, and grain phosphorus (P) content were significantly increased in the PFM treatments, and these changes were mainly attributable to changes in soil properties such as available P and soil moisture. Alkaline phosphatase activity was significantly higher in PFM soils, but levels of AM fungal-related glomalin were similar between treatments. A total of nine AM fungal phylotypes were detected in root samples based on AM fungal SSU rDNA analyses, with six and five phylotypes in PFM and no-PFM plots, respectively. Although AM fungal phylotype richness was not statistically different between treatments, the community compositions were different, with four and three specific phylotypes in the PFM and no-PFM plots, respectively. A significant and rapid change in AM fungal, wheat, and soil variables following PFM suggested that the functioning of the AM symbiosis had been changed in the wheat field under PFM. Future studies are needed to investigate whether PFM applied over a longer term has a similar effect on the AM fungal community and their functioning in an agricultural ecosystem.

  10. The use of straw mulch as a strategy to prevent extreme soil erosion rates in citrus orchard. A Rainfall simulation approach

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Giménez-Morera, Antonio; Jordán, Antonio; Pereira, Paulo; Novara, Agata; García-Orenes, Fuensanta

    2014-05-01

    in the paddy fields after harvesting and the straw is being as a residue that damages the air quality when burnt, the water quality due to the decomposition and the methane production, and is not accepted in the field by the farmers. This is a new problem as few years ago the rice straw was use for animal feeding. Many attempts were developed in the last decade to remove and use the straw to avoid fires and water pollution (Iranzo et al., 2004; Silvestre et al., 2013). Our goal is to test if a residue such as the rice straw can be transformed as a resource: soil erosion control. Straw has been seen as a very efficient to reduce the water losses in agriculture land (García Moreno et al., 2013), the soil losses in fire affected land (Robichaud et al., 2013a; 2013b; Fernandez and Vega, 2014), and soil properties (García Orenes et al., 2009; 2010; Jordán et al., 2010; García Orenes 2012). Rainfall simulations under 55 mm h-1 rainfall intensity during one hour on 0,25 m2 plots were carried out on plots paired plots: bare and covered with straw. The plots covered with straw had different straw mulch cover: from 10 to 100 % cover and from 0,005 g m2 to 300 g m2. The results show a positive effect of the straw cover that show an exponential relation between the straw cover and weight with the sediment yield. Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and RECARE supported this research. References Bombino, G., Denisi, P., Fortugno, D., Tamburino, V., Zema, D.A., Zimbone, S.M. 2010. Land spreading of solar-dried citrus peel to control runoff and soil erosion. WIT Transactions on Ecology and the Environment 140,145-154. Borrelli, P., Märker, M., Schütt, B. 2013. Modelling post-tree-haversting soil erosion and sediment deposition potential in the Turano River Basin (Italian Central Apennine). Land Degradation & Development, DOI 10.1002/ldr.2214 Cerdà, A., Flanagan, D.C., le Bissonnais, Y., Boardman, J. 2009. Soil erosion and agriculture Soil

  11. Evaluation of compost blankets for erosion control from disturbed lands.

    PubMed

    Bhattarai, Rabin; Kalita, Prasanta K; Yatsu, Shotaro; Howard, Heidi R; Svendsen, Niels G

    2011-03-01

    Soil erosion due to water and wind results in the loss of valuable top soil and causes land degradation and environmental quality problems. Site specific best management practices (BMP) are needed to curb erosion and sediment control and in turn, increase productivity of lands and sustain environmental quality. The aim of this study was to investigate the effectiveness of three different types of biodegradable erosion control blankets- fine compost, mulch, and 50-50 mixture of compost and mulch, for soil erosion control under field and laboratory-scale experiments. Quantitative analysis was conducted by comparing the sediment load in the runoff collected from sloped and tilled plots in the field and in the laboratory with the erosion control blankets. The field plots had an average slope of 3.5% and experiments were conducted under natural rainfall conditions, while the laboratory experiments were conducted at 4, 8 and 16% slopes under simulated rainfall conditions. Results obtained from the field experiments indicated that the 50-50 mixture of compost and mulch provides the best erosion control measures as compared to using either the compost or the mulch blanket alone. Laboratory results under simulated rains indicated that both mulch cover and the 50-50 mixture of mulch and compost cover provided better erosion control measures compared to using the compost alone. Although these results indicate that the 50-50 mixtures and the mulch in laboratory experiments are the best measures among the three erosion control blankets, all three types of blankets provide very effective erosion control measures from bare-soil surface. Results of this study can be used in controlling erosion and sediment from disturbed lands with compost mulch application. Testing different mixture ratios and types of mulch and composts, and their efficiencies in retaining various soil nutrients may provide more quantitative data for developing erosion control plans. Copyright © 2010 Elsevier

  12. The Effect of Conservation Tillage and Cover Crop Residue on Beneficial Arthropods and Weed Seed Predation in Acorn Squash.

    PubMed

    Quinn, N F; Brainard, D C; Szendrei, Z

    2016-12-01

    Conservation tillage combined with cover crops or mulching may enhance natural enemy activity in agroecosystems by reducing soil disturbance and increasing habitat structural complexity. In particular, weed seed predation can increase with vegetation cover and reduced tillage, indicating that mulches may improve the quality of the habitat for weed seed foraging. The purpose of this study was to quantify the effects of tillage and mulching for conservation biological control in cucurbit fields. The effects of mulch and reduced tillage on arthropods and rates of weed seed loss from arenas were examined in field trials on sandy soils in 2014 and 2015. Experimental factors included tillage and cover crop, each with two levels: strip-tillage or full-tillage, and cover crop mulch (rye residue) or no cover crop mulch (unmulched). Arthropod abundance on the crop foliage was not affected by tillage or cover crops. Contrary to expectations, epigeal natural enemies of insects and rates of weed seed removal either did not respond to treatments or were greater in full-tilled plots and plots without mulch. Our study demonstrates the potential importance of weed seed predators in reducing weed seedbanks in vegetable agroecosystems, and suggests that early-season tillage may not be detrimental to epigeal predator assemblages. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. The Effect of Natural Mulches on Crop Performance, Weed Suppression and Biochemical Constituents of Catnip and St. John’s Wort

    PubMed Central

    Duppong, L. M.; Delate, K.; Liebman, M.; Horton, R.; Romero, F.; Kraus, G.; Petrich, J.; Chowdbury, P. K.

    2006-01-01

    Because of expanding markets for high-value niche crops, opportunities have increased for the production of medicinal herbs in the USA. An experiment was conducted in 2001 and 2002 near Gilbert, IA, to study crop performance, weed suppression, and environmental conditions associated with the use of several organic mulches in the production of two herbs, catnip (Nepeta cataria L.) and St. John’s wort (Hypericum perforatum L. ‘Helos’). Treatments were arranged in a completely randomized design and included a positive (hand-weeded) control, a negative (nonweeded) control, oat straw, a flax straw mat, and a nonwoven wool mat. Catnip plant height was significantly greater in the oat straw than the other treatments at 4 wk through 6 wk in 2001; at 4 to 8 wk in 2002, catnip plant height and width was significantly lower in the negative control compared with the other treatments. Catnip yield was significantly higher in the flax straw mat than all other treatments in 2001. In 2002, St. John’s wort yields were not statistically different in any treatments. All weed management treatments had significantly fewer weeds than the non-weeded rows in 2002. Total weed density comparisons in each crop from 2 yr showed fewer weeds present in the flax straw and wool mat treatments compared with positive control plots. There was no significant weed management treatment effect on the concentration of the target compounds, nepetalactone in catnip and pseudohypericin–hypericin in St. John’s wort, although there was a trend toward higher concentrations in the flax straw treatment. PMID:17047728

  14. Effect of Plastic Film Mulching on the Grain Filling and Hormonal Changes of Maize under Different Irrigation Conditions

    PubMed Central

    Liu, Didi; Gu, Dandan; Wang, Yongping; Liao, Yuncheng; Wen, Xiaoxia

    2015-01-01

    Plastic film mulching (PM) is widely utilized for maize production in China. However, the effect of PM on the grain yield of crops has not been established, and the biochemical mechanism underlying the increase or decrease in grain yield under PM is not yet understood. Grain filling markedly affects the grain yield. The objective of this study was to investigate the effects of PM on maize grain filling under different irrigation levels and the relationship of such effects with hormonal changes. In the present study, PM was compared with traditional nonmulching management (TN) under 220 mm, 270 mm and 320 mm irrigation amount, and the grain filling characters of the grains located in various parts of the ear and the hormonal changes in the grains were measured. The results indicated that at 220 mm irrigation, PM significantly increased the grain filling rate of the middle and basal grains and decreased the grain filling rate of the upper grains. At 270 mm irrigation, the PM significantly increased the grain filling rate of the all grains. At 320 mm irrigation, the PM only significantly increased the grain filling rate of the upper grains. The IAA, Z+ZR and ABA content in the grains was positively correlated with the grain weight and grain-filling rates; however, the ETH evolution rate of the grains was negatively correlated with the grain weight and grain-filling rates. These results show that the effect of PM on maize grain filling is related to the irrigation amount and that the grain position on the ear and the grain filling of the upper grains was more sensitive to PM and irrigation than were the other grains. In addition, the PM and irrigation regulated the balance of hormones rather than the content of individual hormones to affect the maize grain filling. PMID:25867028

  15. [Effects of nitrogen management on yield, quality, nitrogen accumulation and its transportation of watermelon in gravel-mulched field].

    PubMed

    Ma, Zhong-ming; Du, Shao-ping; Xue, Liang

    2015-11-01

    The effects of nitrogen management on yield, quality, nitrogen and dry matter accumulation and transportation of watermelon in sand field were studied based on a field experiment. The results showed that too low or too high basal nitrogen fertilzation was unfavorable to seedling growth of watermelon in sand field, and no nitrogen application at vine extension or fruiting stages limited the formation of 'source' or 'sink'. At the same nitrogen rate, compared with the traditional T1 treatment (30% basal N fertilizer + 70% N fertilizer in vine extension), the nitrogen and dry matter accumulation of vegetative organs of T4 treatment (30% basal N fertilizer + 30% N fertilizer in vine extension + 40% N fertilizer in fruiting) and T6 treatment (100% basal N fertilizer + NAM) were reduced significantly, but the nitrogen and dry matter accumulation of fruit were increased significantly in the flushing period. The nitrogen transportation ratio and nitrogen contribution ratio of T4 were 33.6% and 12.0%, respectively. Compared to T1, the nitrogen harvest index, nitrogen fertilizer partial factor productivity and nitrogen fertilizer recovery efficiency of T4 and T6 treatments increased by 14.1% and 12.7%, 11.6% and 12.5%, 5.3% and 8.7%, respectively, and yield of watermelon increased by 11.6% and 12.5%, the soluble sugar, effective acid, the ratio of sugar and acid, Vc content increased by 16.5% and 11.7%, 4.5% and 2.8%, 19.4% and 13.4%, 35.6% and 19.0%, respectively. Therefore, T4 and T6 treatments were the optimal nitrogen fertilizer management mode which could not only achieve high yield and quality but also obtain high nitrogen fertilizer use efficiency in sand field. T6 treatment was the best nitrogen fertilizer management mode considering reduction of fertilizing labor intensity and extending service time of gravel-mulched field.

  16. [Factors influencing ammonia volatilization in a winter wheat field with plastic film mulched ridges and unmulched furrows].

    PubMed

    Shangguan, Yu-Xian; Shi, Ri-Peng; Li, Na; Han, Kun; Li, Hui-Ke; Wang, Lin-Quan

    2012-06-01

    The objective of this experiment was to quantify ammonia volatilization from a winter wheat field with plastic film mulched-ridges and unmulched-furrows (PMRF). The trial was conducted during the 2010-2011 winter wheat growing season at Yangling, Shaanxi Province. Ammonia volatilization from the soil was measured using the closed-chamber method. The results indicated that NH3 emission losses ranged between (1.66 +/- 0.3) and (3.28 +/- 0.51) kg x hm(-2) in the PMRF treatment. In comparison, the NH3 emission loss was (4.68 +/- 0.35) kg x ha(-1) in the conventional tillage treatment (i. e., smooth soil surface). The PMRF treatment reduced NH3 emissions by 29.8 to 63.8% compared with the conventional treatment. The NH3 emission losses were equivalent to 1.9% of the applied N in the conventional practice treatment. In contrast, the losses were equivalent to only 0.3% to 0.8% of the applied N in the PMRF treatment. Ammonia emissions were greatest during the first two weeks after sowing. Emissions before winter accounted for 82% of total NH3 emission in the conventional practice treatment, but only 49% to 61% of the total NH3 emission in the PMRF treatment. The soil NH4+ -N content and the soil moisture content had direct effects on NH3 emission before winter in the conventional treatment. In thePMRF treatment, the soil NH4+ -N content had a direct effect on NH3 emission before winter, whereas soil surface temperature and soil moisture had indirect effects. Ammonia emissions after the greening stage were mainly influenced by the soil NH4+ -N content. Simulation results indicated that logarithmic functions best described cumulative NH3 emission in the PMRF + high N rate treatment and the conventional treatment. A linear function best described cumulative NH3 emission in the PMRF + low N rate treatment and the unfertilized treatment. In conclusion, the PMRF treatment can significantly reduce N losses from winter wheat fields by changing the spatial-temporal dynamics of soil

  17. Lactarius deliciosus and Pinus radiata in New Zealand: towards the development of innovative gourmet mushroom orchards.

    PubMed

    Guerin-Laguette, Alexis; Cummings, Nicholas; Butler, Ruth Catherine; Willows, Anna; Hesom-Williams, Nina; Li, Shuhong; Wang, Yun

    2014-10-01

    The cultivation of Lactarius deliciosus (saffron milk cap) in New Zealand began in 2002 when fruiting bodies were produced in an Otago plantation of Pinus radiata seedlings artificially mycorrhized by L. deliciosus. In 2007, 42 P. radiata seedlings mycorrhized by L. deliciosus under controlled conditions were planted in a grass field at Plant and Food Research (Lincoln, Canterbury). The effects of pine bark mulch application and initial degree of mycorrhization of seedlings were examined to determine their influence on tree growth, development of mycorrhizae (i.e. their multiplication on the root system and their degree of branching) and fruiting body production. Mulch application increased tree growth significantly over 4 years. High initial mycorrhization slightly stimulated tree growth over 2 years. The initial degree of mycorrhization was positively, but not strongly, related to the persistence and development of L. deliciosus mycorrhizae and rhizomorphs based on root sample analyses 2 years after planting. However, mulching strongly reduced the proportion of highly branched L. deliciosus mycorrhizae compared with poorly ramified ones. A positive correlation was observed between the fruiting of L. deliciosus and the development of mycorrhizae. Mulching delayed the onset of fruiting body production. In 2010, fruiting bodies were produced only from non-mulched trees with eight of these (38 %) producing a total of 12 fruiting bodies. In 2011, 19 non-mulched trees (90 %) and 9 mulched trees (45 %) produced 143 and 47 fruiting bodies, respectively, totalling 190 fruiting bodies. By 2012, 19 non-mulched trees (90 %) and 13 mulched trees (65 %) produced 333 and 236 fruiting bodies, respectively, totalling 569 fruiting bodies (c. 30 kg). This study presents new information on factors influencing the onset of fruiting and the development of yields in a plantation of P. radiata mycorrhized by L. deliciosus. Projected yields as high as c. 300 kg/ha from the

  18. A special vegetation index for the weed detection in sensor based precision agriculture.

    PubMed

    Langner, Hans-R; Böttger, Hartmut; Schmidt, Helmut

    2006-06-01

    Many technologies in precision agriculture (PA) require image analysis and image- processing with weed and background differentiations. The detection of weeds on mulched cropland is one important image-processing task for sensor based precision herbicide applications. The article introduces a special vegetation index, the Difference Index with Red Threshold (DIRT), for the weed detection on mulched croplands. Experimental investigations in weed detection on mulched areas point out that the DIRT performs better than the Normalized Difference Vegetation Index (NDVI). The result of the evaluation with four different decision criteria indicate, that the new DIRT gives the highest reliability in weed/background differentiation on mulched areas. While using the same spectral bands (infrared and red) as the NDVI, the new DIRT is more suitable for weed detection than the other vegetation indices and requires only a small amount of additional calculation power. The new vegetation index DIRT was tested on mulched areas during automatic ratings with a special weed camera system. The test results compare the new DIRT and three other decision criteria: the difference between infrared and red intensity (Diff), the soil-adjusted quotient between infrared and red intensity (Quotient) and the NDVI. The decision criteria were compared with the definition of a worse case decision quality parameter Q, suitable for mulched croplands. Although this new index DIRT needs further testing, the index seems to be a good decision criterion for the weed detection on mulched areas and should also be useful for other image processing applications in precision agriculture. The weed detection hardware and the PC program for the weed image processing were developed with funds from the German Federal Ministry of Education and Research (BMBF).

  19. [Effect of straw-returning on the storage and distribution of different active fractions of soil organic carbon].

    PubMed

    Wang, Hul; Wang, Xu-dong; Tian, Xiao-hong

    2014-12-01

    The impacts of straw mulching and returning on the storage of soil dissolved organic carbon (DOC), particulate organic carbon (POC) and mineral associated organic carbon (MOC), and their proportions to the total organic carbon (TOC) were studied based on a field experiment. The results showed that compared to the treatment of wheat straw soil-returning (WR), the storage of TOC and MOC decreased by 4.1% and 9.7% respectively in 0-20 cm soil in the treatment with wheat straw mulching (WM), but the storage of DOC and POC increased by 207.7% and 11.9%, and TOC and POC increased significantly in 20-40 cm soil. Compared to the treatment with maize straw soil-returning (MR), the storage of TOC and MOC in the plough pan soil of the treatment with maize straw mulching (MM) increased by 13.6% and 14.6% , respectively. Compared to the WR-MR treatment, the storage of TOC and MOC in top soil (0-20 icm) significantly decreased by 8.5% and 10.3% respectively in WM-MM treatment. The storage of TOC, and POC in top soil was significantly higher in the treatments with maize straw soil-returning or mulching than that with wheat straw. Compared to the treatment without straw (CK), the storage of TOC in top soil increased by 5.2% to 18.0% in the treatments with straw returning or mulching in the six modes (WM, WR, MM, MR, WM-MM,WR-MR) (P<0.05), but the storage of TOC in the plough pan soil decreased by 8.0% to 11.5% (P<0.05) except for the treatments of WM and MM. The storage of DOC and DOC/TOC ratio decreased significantly in top soil in the treatments with straw mulching or returning in six modes. The storage of POC and POC/TOC ratio in WM and WM-MM treatments, MOC and MOC/TOC ratio in WR treatment, increased significantly in top soil. In the other three treatments with straw mulching and returning (MM, MR, WR-MR), the storage of POC and MOC increased significantly in top soil. These results suggested that straw mulching had the potential to accumulate active organic carbon fraction

  20. Soil physical and X-ray computed tomographic measurements to investigate small-scale structural differences under strip tillage compared to mulch till and no-till

    NASA Astrophysics Data System (ADS)

    Pöhlitz, Julia; Rücknagel, Jan; Schlüter, Steffen; Vogel, Hans-Jörg

    2017-04-01

    In recent years there has been an increasing application of conservation tillage techniques where the soil is no longer turned, but only loosened or left completely untilled. Dead plant material remains on the soil surface, which provides environmental and economic benefits such as the conservation of water, preventing soil erosion and saving time during seedbed preparation. There is a variety of conservation tillage systems, e.g. mulch till, no-till and strip tillage, which is a special feature. In strip tillage, the seed bed is divided into a seed zone (strip-till within the seed row: STWS) and a soil management zone (strip-till between the seed row: STBS). However, each tillage application affects physical soil properties and processes. Here, the combined application of classical soil mechanical and computed tomographic methods is used on a Chernozem (texture 0-30 cm: silt loam) to show small-scale structural differences under strip tillage (STWS, STBS) compared to no-till (NT) and mulch till (MT). In addition to the classical soil physical parameters dry bulk density and saturated conductivity (years: 2012, 2014, 2015) at soil depths 2-8 and 12-18 cm, stress-strain tests were carried out to map mechanical behavior. The stress-strain tests were performed for a load range from 5-550 kPa at 12-18 cm depth (year 2015). Mechanical precompression stress was determined on the stress-dry bulk density curves. Further, CT image cross sections and computed tomographic examinations (average pore size, porosity, connectivity, and anisotropy) were used from the same soil samples. For STBS and NT, a significant increase in dry bulk density was observed over the course of time compared to STWS and MT, which was more pronounced at 2-8 cm than at 12-18 cm depth. Despite higher dry bulk density, STBS displayed higher saturated conductivity in contrast to STWS, which can be attributed to higher earthworm abundance. In strip tillage, structural differences were identified

  1. Effects of cultivar, fruit number and reflected photosynthetically active radiation on Fragaria x ananassa productivity and fruit ellagic acid and ascorbic acid concentrations.

    PubMed

    Atkinson, C J; Dodds, P A A; Ford, Y Y; Le Mière, J; Taylor, J M; Blake, P S; Paul, N

    2006-03-01

    A number of strawberry varieties were surveyed for their total ellagic acid concentration, and attempts were made to determine if ellagic acid and ascorbic acid concentrations of two strawberry cultivars could be increased by polythene reflective mulches. After adjusting crop yields and cultivation using polythene mulches with two different PAR reflective capacities, field- and polytunnel-grown strawberries were analysed for ellagic acid and ascorbic acid concentrations by HPLC. Comparative measurements of yield and fruit quality were determined along with plant developmental changes. Ellagic acid concentration varied widely with strawberry cultivar (60-341 microg g(-1) frozen weight), as did the ratio of conjugated ellagic acid : free ellagic acid. Also, there was significant year-to-year variation in total ellagic acid concentration with some cultivars. Mulches with different reflective capacities impacted on strawberry production; highly reflective mulches significantly increased growth and yield, the latter due to increases in fruit size and number. Highly reflective mulches significantly increased total concentrations of ellagic acid and ascorbic acid relative to control in fruit of different cultivars. The potential of agronomic practices to enhance the concentration and amounts of these important dietary bioactive compounds is discussed.

  2. The Effects of Plastic Film Mulching on Maize Growth and Water Use in Dry and Rainy Years in Northeast China

    PubMed Central

    Xu, Jie; Li, Congfeng; Liu, Huitao; Zhou, Peilu; Tao, Zhiqiang; Wang, Pu; Meng, Qingfeng; Zhao, Ming

    2015-01-01

    Plastic film mulching (PM) has been widely used to improve maize (Zea mays L.) yields and water use efficiency (WUE) in Northeast China, but the effects of PM in a changing climate characterized by highly variable precipitation are not well understood. Six site-year field experiments were conducted in the dry and rainy years to investigate the effects of PM on maize growth, grain yield, and WUE in Northeast China. Compared to crops grown without PM treatment (control, CK), PM significantly increased the grain yield by 15-26% in the dry years, but no significant yield increase was observed in the rainy years. Yield increase in the dry years was mainly due to a large increase in dry matter accumulation pre-silking compared to the CK, which resulted from a greater dry matter accumulation rate due to the higher topsoil temperature and water content. As a result, the WUE of the crops that underwent PM (3.27 kg m-3) treatment was also increased by around 16% compared to the CK, although the overall evapotranspiration was similar between the two treatments. In the rainy years, due to frequent precipitation and scant sunshine, the topsoil temperature and water content in the field that received PM treatment was improved only at some stages and failed to cause higher dry matter accumulation, except at the 8th leaf stage. Consequently, the grain yield and WUE were not improved by PM in the rainy years. In addition, we found that PM caused leaf senescence at the late growth stage in both dry and rainy years. Therefore, in practice, PM should be applied cautiously, especially when in-season precipitation is taken into account. PMID:25970582

  3. Abiotic and Biotic Transformation of TCE under Sulfate Reducing Conditions: the Role of Spatial Heterogeneity (Monterey, CA)

    EPA Science Inventory

    At a number of sites in the USA, passive reactive barriers built with shredded plant mulch have been constructed to treat ground water contaminated with TCE. These barriers are called biowalls because anaerobic biodegradation of the plant mulch is expected to provide substrates ...

  4. Abiotic and Biotic Transformation of TCE under Sulfate Reducing Conditions: the Role of Spatial Heterogeneity

    EPA Science Inventory

    At a number of sites in the USA, passive reactive barriers built with shredded plant mulch have been constructed to treat ground water contaminated with TCE. These barriers are called biowalls because anaerobic biodegradation of the plant mulch is expected to provide substrates...

  5. TREATMENT OF STORMWATER BY NATURAL ORGANIC MATERIALS

    EPA Science Inventory

    The overall objective of this study was to evaluate the feasibility of using low-cost natural filter materials for stormwater (SW) treatment. Generic mulch, pine bark mulch, and processed jute were evaluated for metal and organic pollutant removal from actual SW samples collected...

  6. USE OF NATURAL FILTER MEDIA FOR STORMWATER TREATMENT

    EPA Science Inventory

    The overall objective of this study was to evaluate the feasibility of using low-cost natural filter materials for stormwater (SW) treatment. Generic mulch, pine bark mulch, and processed jute were evaluated for metal and organic pollutant removal from actual SW samples collected...

  7. Dispersal of Salmonella Typhimurium by rain splash onto tomato plants.

    PubMed

    Cevallos-Cevallos, Juan M; Danyluk, Michelle D; Gu, Ganyu; Vallad, Gary E; van Bruggen, Ariena H C

    2012-03-01

    Outbreaks of Salmonella enterica have increasingly been associated with tomatoes and traced back to production areas, but the spread of Salmonella from a point source onto plants has not been described. Splash dispersal by rain could be one means of dissemination. Green fluorescent protein-labeled, kanamycin-resistant Salmonella enterica sv. Typhimurium dispensed on the surface of plastic mulch, organic mulch, or soil at 10⁸ CFU/cm² was used as the point source in the center of a rain simulator. Tomato plants in soil with and without plastic or organic mulch were placed around the point source, and rain intensities of 60 and 110 mm/h were applied for 5, 10, 20, and 30 min. Dispersal of Salmonella followed a negative exponential model with a half distance of 3 cm at 110 mm/h. Dispersed Salmonella survived for 3 days on tomato leaflets, with a total decline of 5 log and an initial decimal reduction time of 10 h. Recovery of dispersed Salmonella from plants at the maximum observed distance ranged from 3 CFU/g of leaflet after a rain episode of 110 mm/h for 10 min on soil to 117 CFU/g of leaflet on plastic mulch. Dispersal of Salmonella on plants with and without mulch was significantly enhanced by increasing rain duration from 0 to 10 min, but dispersal was reduced when rainfall duration increased from 10 to 30 min. Salmonella may be dispersed by rain to contaminate tomato plants in the field, especially during rain events of 10 min and when plastic mulch is used.

  8. Vegetation patches improve the establishment of Salvia mexicana seedlings by modifying microclimatic conditions

    NASA Astrophysics Data System (ADS)

    Mendoza-Hernández, Pedro E.; Rosete-Rodríguez, Alejandra; Sánchez-Coronado, María E.; Orozco, Susana; Pedrero-López, Luis; Méndez, Ignacio; Orozco-Segovia, Alma

    2014-07-01

    Human disturbance has disrupted the dynamics of plant communities. To restore these dynamics, we could take advantage of the microclimatic conditions generated by remaining patches of vegetation and plastic mulch. These microclimatic conditions might have great importance in restoring disturbed lava fields located south of Mexico City, where the rock is exposed and the soil is shallow. We evaluated the effects of both the shade projected by vegetation patches and plastic mulch on the mean monthly soil surface temperature ( T ss) and photosynthetic photon flux density (PPFD) and on the survival and growth of Salvia mexicana throughout the year. This species was used as a phytometer of microsite quality. Shade reduced the T ss to a greater extent than mulch did. Both survival and growth were enhanced by shade and mulch, and the PPFD was related with seedling growth. During the dry season, plant biomass was lost, and there was a negative effect of PPFD on plant growth. At micro-meteorological scales, the use of shade projected by patches of vegetation and mulch significantly reduced the mortality of S. mexicana and enhanced its growth. Survival and growth of this plant depended on the environmental quality of microsites on a small scale, which was determined by the environmental heterogeneity of the patches and the landscape. For plant restoration, microsite quality must be evaluated on small scales, but on a large scale it may be enough to take advantage of landscape shade dynamics and the use of mulch to increase plant survival and growth.

  9. Vegetation patches improve the establishment of Salvia mexicana seedlings by modifying microclimatic conditions.

    PubMed

    Mendoza-Hernández, Pedro E; Rosete-Rodríguez, Alejandra; Sánchez-Coronado, María E; Orozco, Susana; Pedrero-López, Luis; Méndez, Ignacio; Orozco-Segovia, Alma

    2014-07-01

    Human disturbance has disrupted the dynamics of plant communities. To restore these dynamics, we could take advantage of the microclimatic conditions generated by remaining patches of vegetation and plastic mulch. These microclimatic conditions might have great importance in restoring disturbed lava fields located south of Mexico City, where the rock is exposed and the soil is shallow. We evaluated the effects of both the shade projected by vegetation patches and plastic mulch on the mean monthly soil surface temperature (Tss) and photosynthetic photon flux density (PPFD) and on the survival and growth of Salvia mexicana throughout the year. This species was used as a phytometer of microsite quality. Shade reduced the T ss to a greater extent than mulch did. Both survival and growth were enhanced by shade and mulch, and the PPFD was related with seedling growth. During the dry season, plant biomass was lost, and there was a negative effect of PPFD on plant growth. At micro-meteorological scales, the use of shade projected by patches of vegetation and mulch significantly reduced the mortality of S. mexicana and enhanced its growth. Survival and growth of this plant depended on the environmental quality of microsites on a small scale, which was determined by the environmental heterogeneity of the patches and the landscape. For plant restoration, microsite quality must be evaluated on small scales, but on a large scale it may be enough to take advantage of landscape shade dynamics and the use of mulch to increase plant survival and growth.

  10. INVESTIGATION OF ORGANIC WEED CONTROL METHODS, PESTICIDE SPECIAL STUDY, COLORADO STATE UNIVERSITY

    EPA Science Inventory

    The project is proposed for the 2003 and 2004 growing seasons. Corn gluten meal (CGM), treated paper mulch and plastic mulch, along with conventional herbicide, will be applied to fields of drip irrigated broccoli in a randomized complete block design with 6 replicates. Due to ...

  11. Effect of integrating straw into agricultural soils on soil infiltration and evaporation.

    PubMed

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong

    2012-01-01

    Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p < 0.05, and with average errors/biases <10%. Straw mixing exhibited the best effect in terms of soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.

  12. Effects of Long-term Conservation Tillage on Soil Nutrients in Sloping Fields in Regions Characterized by Water and Wind Erosion

    NASA Astrophysics Data System (ADS)

    Tan, Chunjian; Cao, Xue; Yuan, Shuai; Wang, Weiyu; Feng, Yongzhong; Qiao, Bo

    2015-12-01

    Conservation tillage is commonly used in regions affected by water and wind erosion. To understand the effects of conservation tillage on soil nutrients and yield, a long-term experiment was set up in a region affected by water and wind erosion on the Loess Plateau. The treatments used were traditional tillage (CK), no tillage (NT), straw mulching (SM), plastic-film mulching (PM), ridging and plastic-film mulching (RPM) and intercropping (In). Our results demonstrate that the available nutrients in soils subjected to non-traditional tillage treatments decreased during the first several years and then remained stable over the last several years of the experiment. The soil organic matter and total nitrogen content increased gradually over 6 years in all treatments except CK. The nutrient content of soils subjected to conservative tillage methods, such as NT and SM, were significantly higher than those in soils under the CK treatment. Straw mulching and film mulching effectively reduced an observed decrease in soybean yield. Over the final 6 years of the experiment, soybean yields followed the trend RPM > PM > SM > NT > CK > In. This trend has implications for controlling soil erosion and preventing non-point source pollution in sloping fields by sacrificing some food production.

  13. Effects of different regulatory methods on improvement of greenhouse saline soils, tomato quality, and yield.

    PubMed

    Maomao, Hou; Xiaohou, Shao; Yaming, Zhai

    2014-01-01

    To identify effective regulatory methods scheduling with the compromise between the soil desalination and the improvement of tomato quality and yield, a 3-year field experiment was conducted to evaluate and compare the effect of straw mulching and soil structure conditioner and water-retaining agent on greenhouse saline soils, tomato quality, and yield. A higher salt removing rate of 80.72% in plough layer with straw mulching was obtained based on the observation of salt mass fraction in 0 ~ 20 cm soil layer before and after the experiment. Salts were also found to move gradually to the deeper soil layer with time. Straw mulching enhanced the content of soil organic matter significantly and was conductive to reserve soil available N, P, and K, while available P and K in soils of plough layer with soil structure conditioner decreased obviously; thus a greater usage of P fertilizer and K fertilizer was needed when applying soil structure conditioner. Considering the evaluation indexes including tomato quality, yield, and desalination effects of different regulatory methods, straw mulching was recommended as the main regulatory method to improve greenhouse saline soils in south China. Soil structure conditioner was the suboptimal method, which could be applied in concert with straw mulching.

  14. 7 CFR 205.206 - Crop pest, weed, and disease management practice standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... problems may be controlled through mechanical or physical methods including but not limited to: (1... problems may be controlled through: (1) Mulching with fully biodegradable materials; (2) Mowing; (3...) Plastic or other synthetic mulches: Provided, That, they are removed from the field at the end of the...

  15. 7 CFR 205.206 - Crop pest, weed, and disease management practice standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... problems may be controlled through mechanical or physical methods including but not limited to: (1... problems may be controlled through: (1) Mulching with fully biodegradable materials; (2) Mowing; (3...) Plastic or other synthetic mulches: Provided, That, they are removed from the field at the end of the...

  16. Potential of organic filter materials for treating greywater to achieve irrigation quality: a review.

    PubMed

    Dalahmeh, Sahar S; Hylander, Lars D; Vinnerås, Björn; Pell, Mikael; Oborn, Ingrid; Jönsson, Håkan

    2011-01-01

    The objectives of this literature review were to: (i) evaluate the impact of greywater generated in rural communities, with the emphasis on Jordanian conditions, on soil, plant and public health and assess the need for treatment of this greywater before it is used for irrigation, and (ii) assess the potential of different types of organic by-products as carrier material in different filter units for removal of pollutants from greywater. Greywater with high BOD5, COD, high concentrations of SS, fat, oil and grease and high levels of surfactants is commonly found in rural areas in Jordan. Oxygen depletion, odour emission, hydrophobic soil phenomena, plant toxicity, blockage of piping systems and microbiological health risks are common problems associated with greywater without previous treatment. Organic by-products such as wood chips, bark, peat, wheat straw and corncob may be used as carrier material in so-called mulch filters for treating wastewater and greywater from different sources. A down-flow-mode vertical filter is a common setup used in mulch filters. Wastewaters with a wide range of SS, cBOD5 and COD fed into different mulch filters have been studied. The different mulch materials achieved SS removal ranging between 51 and 91%, a BOD5 reduction range of 55-99.9%, and COD removal of 51-98%. Most types of mulches achieved a higher organic matter removal than that achieved by an ordinary septic tank. Bark, peat and wood chips filters removed organic matter better than sand and trickling filters, under similar conditions. Release of filter material and increase in COD in the effluent was reported using some mulch materials. In conclusion, some mulch materials such as bark, peat and woodchips seem to have a great potential for treatment of greywater in robust, low-tech systems. They can be expected to be resilient in dealing with variable low and high organic loads and shock loads.

  17. Grow tubes change microclimate and bush architecture but have little effect on bush biomass allocation at the end of the establishment year in blueberry

    USDA-ARS?s Scientific Manuscript database

    Microclimate variables were integrated over a six-month period during which blueberry (Vaccinium corymbosum cv. Liberty) bushes were grown in 51-cm high, 20-cm diameter round grow tubes (opaque or translucent) on a sawdust mulch-covered raised bed with the mulch incorporated into tilled soil. Grow t...

  18. [Effects of tillage practices on root spatial distribution and yield of spring wheat and pea in the dry land farming areas of central Gansu, China].

    PubMed

    Zhang, Ming Jun; Li, Ling Ling; Xie, Jun Hong; Peng, Zheng Kai; Ren, Jin Hu

    2017-12-01

    A field experiment was conducted to explore the mechanism of cultivation measures in affecting crop yield by investigating root distribution in spring wheat-pea rotation based on a long-term conservation tillage practices in a farming region of Gansu. The results showed that with the develo-pment of growth period, the total root length, root surface area of spring wheat and pea showed a consistent trend of increase after initial decrease and reached the maximum at flowering stage. Higher root distribution was found in the 0-10 cm soil layer at seedling and 10-30 cm soil layer at flowering and maturity stages in spring wheat, while in the field pea, higher root distribution was found in the 0-10 cm soil layer at seedling and maturity, and in the 10-30 cm soil layer at flowering stages. No tillage with straw mulching and plastic mulching increased the root length and root surface area. Compared with conventional tillage in spring wheat and field pea, root length increased by 35.9% to 92.6%, and root surface area increased by 43.2% to 162.4%, respectively. No tillage with straw mulching and plastic mulching optimized spring wheat and pea root system distribution, compared with conventional tillage, increased spring wheat and field pea root length and root surface area ratio at 0-10 cm depths at the seedling stage, the root distribution at deeper depths increased significantly at flowering and maturity stages, and no tillage with straw mulching increased root length and root surface area ratio by 3.3% and 9.7% respectively, in 30-80 cm soil layer at the flowering stage. The total root length, root surface area and yield had significantly positive correlation for spring wheat in each growth period, and the total root length and pea yield also had significant positive correlation. No tillage with straw mulching and plastic mulching boosted yield of spring wheat and pea by 23.4%-38.7% compared with the conventional tillage, and the water use efficiency was increased by 13

  19. High-residue cultivation timing impact on organic no-till soybean weed management

    USDA-ARS?s Scientific Manuscript database

    A cereal rye cover crop mulch can suppress summer annual weeds early in the soybean growing season. However, a multi-tactic weed management approach is required when annual weed seedbanks are large or perennial weeds are present. In such situations, the weed suppression from a cereal rye mulch can b...

  20. Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: A meta-analysis.

    PubMed

    Ma, Dedi; Chen, Lei; Qu, Hongchao; Wang, Yilin; Misselbrook, Tom; Jiang, Rui

    2018-04-01

    In order to increase crop yield in semi-arid and arid areas, plastic film mulching (PFM) is widely used in Northwestern China. To date, many studies have addressed the effects of PFM on soil physical and biochemical properties in rain-fed agriculture in Northwestern China, but the findings of different studies are often contradictory. Therefore, a comprehensive review of the impacts of PFM on soil water content, soil nutrients and food production is needed. We compiled the results of 1278 observations to evaluate the overall effects of PFM on soil water content, the distribution of nitrate and soil organic carbon, and crop yield in rain-fed agriculture in Northwestern China. Our results showed that PFM increased soil moisture and nitrate concentration in topsoils (0-20 cm) by 12.9% and 28.2%, respectively, but slightly decreased (1.8%) soil organic carbon (SOC) content in the 0-10 cm soil layer. PFM significantly increased grain yields by 43.1%, with greatest effect in spring maize (79.4%). When related to cumulative precipitation during the crop growing season, yield increase from PFM was greatest (72.8%) at 200-300 mm, which was attributed to the large increase for spring maize and potato, implying that crop zoning would be beneficial for PFM in this region. When related to N application rate, crop yields benefited most from PFM (80.2%) at 200-300 kg/ha. A cost-benefit analysis indicated that PFM increased economic return by an average of 29.5%, with the best improvement for spring maize (71.1%) and no increase for spring wheat. In conclusion, PFM can significantly increase crop yield and economic return (especially for spring maize) in rain-fed agriculture areas of Northwestern China. Crop zoning is recommended for PFM to achieve the largest economic benefit. However, full account needs to be taken of the environmental impacts relating to N loss, SOC depletion and film pollution to evaluate the sustainability of PFM systems and further research is

  1. Mulch flammability

    Treesearch

    Wayne Zipperer; Alan Long; Brian Hnton; Alexander Maranghides; William Mell

    2007-01-01

    Regardless of how horrible and devastating wildland fires are portrayed by the media, they are a natural disturbance that many native ecosystems depend on for regeneration. As the population of the United States increases, more individuals are building their homes in wildlands rather than urban landscapes. Homes built in undeveloped wildland vegetation create areas...

  2. Study on the removal of hormones from domestic wastewaters with lab-scale constructed wetlands with different substrates and flow directions.

    PubMed

    Herrera-Melián, José Alberto; Guedes-Alonso, Rayco; Borreguero-Fabelo, Alejandro; Santana-Rodríguez, José Juan; Sosa-Ferrera, Zoraida

    2017-05-31

    Eight wastewater samples from a university campus were analysed between May and July of 2014 to determine the concentration of 14 natural and synthetic steroid hormones. An on-line solid-phase extraction combined with ultra-high performance liquid chromatography coupled with mass spectrometry (on-line SPE-UHPLC-MS/MS) was used as extraction, pre-concentration and detection method. In the samples studied, three oestrogens (17β-estradiol, estrone and estriol), two androgens (boldenone and testosterone), three progestogens (norgestrel, progesterone and norethisterone) and one glucocorticoid (prednisone) were detected. The removal of hormones was studied in primary and secondary constructed wetland mesocosms. The porous media of the primary constructed wetlands were palm tree mulch. These reactors were used to study the effect of water flow, i.e. horizontal (HF1) vs vertical (VF1). The latter was more efficient in the removal of 17β-estradiol (HF1: 30%, VF1: 50%), estrone (HF1: 63%, VF1: 85%), estriol (100% both), testosterone (HF1: 45%, VF1: 73%), boldenone (HF1:-77%, VF1: 100%) and progesterone (HF1: 84%, VF1: 99%). The effluent of HF1 was used as influent of three secondary constructed wetland mesocosms: two double-stage vertical flow constructed wetlands, one with gravel (VF2gravel) and one with palm mulch (VF2mulch), and a mineral-based, horizontal flow constructed wetland (HFmineral). VF2mulch was the most efficient of the secondary reactors, since it achieved the complete removal of the hormones studied with the exception of 17ß-estradiol. The significantly better removal of BOD and ammonia attained by VF2mulch suggests that the better aeration of mulch favoured the more efficient removal of hormones.

  3. Slash Incorporation for Amelioration of Site, Soil and Hydrologic Properties on Pocosins and Wet Flats in North Carolina

    Treesearch

    William A. Lakel; W. Michael Aust; Emily A. Carter; Bryce J. Stokes; Felipe G. Sanchez

    1999-01-01

    It was hypothesized that mulching and incorporation of slash as part of site preparation treatments could affect soil water characteristics. Two forested wetland sites, an organic pocosin and a mineral wet flat. located in the lower coastal plain of North Carolina, were selected for treatments. Treatments consisted of slash mulching and incorporation in comoinations...

  4. Reestablishing understory plants in overused wooded areas of Maryland state parks

    Treesearch

    Silas Little; John J. Mohr

    1979-01-01

    In four overused areas, the treatments of small plots were fencing, scarifying the soil, and mulching; fencing and mulching plus planting of shrubs, herbaceous plants, or greenbrier with shrubs or holly. After 3 years, soil compaction was two to four times as great in check plots as in treated plots. Understory cover varied with conditions, but because of volunteer...

  5. The Mobile Bark Blower: An Evaluation of Performance and Costs

    Treesearch

    Raymond L. Sarles; David M. Emanuel

    1977-01-01

    A custom-built bark blower truck (MOBLOW) developed in Oregon was tested for its effectiveness in applying bark mulches, sawdust, and shavings in the eastern United States. Tests determined the bark blower's performance and cost in mulching grass-legume seedings and shrub beds with 10 bark products or wood residues. Bark blower trucks built to MOBLOW...

  6. Production and aerial application of wood shreds as a post-fire hillslope erosion mitigation treatment

    Treesearch

    Peter R. Robichaud; Louise E. Ashmun; Randy B. Foltz; Charles G. Showers; J. Scott Groenier; Jennifer Kesler; Claire DeLeo; Mary Moore

    2013-01-01

    Guidelines for the production and aerial application of wood shred mulch as a post-fire hillslope treatment were developed from laboratory and field studies, several field operations, and the evaluations of professionals involved in those operations. At two early trial sites, the wood shred mulch was produced off-site and transported to the area of use. At the 2010...

  7. Best management practices for erosion control from bladed skid trails

    Treesearch

    Charles R. Wade; W. Michael Aust; M. Chad Bolding; William A. Lakel III

    2012-01-01

    Sediment from forest operations is primarily associated with roads and skid trails. We evaluated five skid trail closure treatments applied to bladed skid trails in the Virginia Piedmont. Closure treatments were Waterbars, Seed, Mulch, Pine slash, and Hardwood slash. Sediment traps were used to collect monthly sediment samples for one year. The Mulch, Pine slash, and...

  8. Removing an invasive shrub (Chinese privet) increases native bee diversity and abundance in riparian forests of the southeastern United States

    Treesearch

    James L. Hanula; Scott Horn

    2011-01-01

    1. Chinese privet (Ligustrum sinense Lour.) was removed from riparian forests in the Piedmont of Georgia in November 2005 by mulching with a track-mounted mulching machine or by chainsaw felling. The remaining privet in the herbaceous layer was killed with herbicide in December 2006. 2. Bee (Hymentoptera: Apoidea) abundance, diversity and community similarity in the...

  9. Lethal soil temperatures during burning of masticated forest residues

    Treesearch

    Matt D. Busse; Ken R. Hubbert; Gary O. Fiddler; Carol J. Shestak; Robert F. Powers

    2005-01-01

    Mastication of woody shrubs is used increasingly as a management option to reduce fire risk at the wildland-urban interface. Whether the resulting mulch layer leads to extreme soil heating, if burned, is unknown. We measured temperature profiles in a clay loam soil during burning of Arctostaphylos residues. Four mulch depths were burned (0, 2.5, 7.5...

  10. [Regulation effect of water storage in deeper soil layers on root physiological characteristics and leaf photosynthetic traits of cotton with drip irrigation under mulch].

    PubMed

    Luo, Hong-Hai; Zhang, Hong-Zhi; Du, Ming-Wei; Huang, Jian-Jun; Zhang, Ya-Li; Zhang, Wang-Feng

    2009-06-01

    A soil column culture experiment was conducted under the ecological and climatic conditions of Xinjiang to study the effects of water storage in deeper (> 60 cm) soil layers on the root physiological characteristics and leaf photosynthetic traits of cotton variety Xinluzao 13. Two treatments were installed, i.e., well-watered and no watering. The moisture content in plough layer was controlled at 70% +/- 5% and 55% +/- 5% of field capacity by drip irrigation under mulch during growth season. It was shown that the water storage in deeper soil layers enhanced the SOD activity and the vigor of cotton root, and increased the water use efficiency of plant as well as the leaf water potential, chlorophyll content, and net photosynthesis rate, which finally led to a higher yield of seed cotton and higher water use efficiency. Under well-watered condition and when the moisture content in plough layer was maintained at 55% of field capacity, the senescence of roots in middle and lower soil layers was slower, and the higher root vigor compensated the negative effects of impaired photosynthesis caused by water deficit to some extent. The yield of seed cotton was lower when the moisture content in plough layer was maintained at 55% of field capacity than at 70% of field capacity, but no significant difference was observed in the water use efficiency. Our results emphasized the importance of pre-sowing irrigation in winter or in spring to increase the water storage of deeper soil layers. In addition, proper cultivation practices and less frequent drip irrigation (longer intervals between successive rounds of irrigation) were also essential for conserving irrigation water and achieving higher yield.

  11. Direct seeding of brushbox, lemon-gum eucalyptus, and cluster pine in Hawaii

    Treesearch

    Gerald A. Walters

    1969-01-01

    Seeds of brushbox, lemon-gum eucalyptus, and cluster pine were sown in separate seed spots on the Mokuleia Forest Reserve, Oahu. Half the seed spots were mulched. After 1 year, only two brushbox seed spots were stocked; lemon-gum eucalyptus had significantly (5 percent level) more seed spots stocked in the mulched plots; cluster pine had significantly less. These two...

  12. What's bugging you—slime molds

    Treesearch

    Kevin T. Smith

    2013-01-01

    Summer rains in the northeastern US bring out fist-sized masses of grainy yellow goo, frequently on wood chip mulch or decaying wood. The first concerned "what is that" phone call usually is followed the next day by a more alarmed "what is that", when the blob has moved a foot or two across the mulch. All too often, alarm moves to...

  13. The influence of crop management on banana weevil, Cosmopolites sordidus (Coleoptera: Curculionidae) populations and yield of highland cooking banana (cv. Atwalira) in Uganda.

    PubMed

    Rukazambuga, N D T M; Gold, C S; Gowen, S R; Ragama, P

    2002-10-01

    A field study was undertaken in Uganda using highland cooking banana (cv. Atwalira) to test the hypothesis that bananas grown under stressed conditions are more susceptible to attack by Cosmopolites sordidus (Germar). Four banana treatments were employed to create different levels of host-plant vitality: (1) high stress: intercrop with finger millet; (2) moderate stress: monoculture without soil amendments; (3) low stress: monoculture with manure; (4) high vigour: monoculture with continuous mulch and manure. Adult C. sordidus were released at the base of banana mats 11 months after planting and populations were monitored for three years using mark and recapture methods. Cosmopolites sordidus density was greatest in the mulched plots which may have reflected increased longevity and/or longer tenure time in moist soils. Lowest C. sordidus numbers were found in intercropped banana. Damage, estimated as percentage corm tissue consumed by larvae, was similar among treatments. However, the total amount of tissue consumed was greater in mulched banana than in other systems. Plants supporting the heaviest levels of C. sordidus damage displayed bunch size reductions of 40-55%. Banana yield losses ranged from 14-20% per plot with similar levels in the intercropped and mulched systems. Yield reductions, reported as t ha-1, were twice as high in the mulched system as in the intercrop. The results from this study indicate that C. sordidus problems are not confined to stressed banana systems or those with low levels of management, but that the weevil can also attain pest status in well-managed and productive banana stands.

  14. Workshop on In Situ Biogeochemical Transformation of Chlorinated Solvents

    DTIC Science & Technology

    2008-02-01

    sites across the country, and also has its own internal research programs. In situ bioremediation has become a widely- used technology for...concern [e.g., dithionite, sulfate (at high concentrations), pesticides , and agri-chemicals that are residues in mulch used in biowalls, as well as... Bioremediation of Chlorinated Solvents in Groundwater Using a Permeable Mulch Biowall, Operable Unit 1, Altus Air Force Base, Oklahoma. Prepared

  15. A Water Balance Study of Four Landfill Cover Designs at Material Disposal Area B in Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David D. Breshears; Fairley J. Barnes; John W. Nyhan

    1998-09-01

    The goal of disposing of low-level radioactive and hazardous waste in shallow landfills is to reduce risk to human health and the environment by isolating contaminants until they no longer pose an unacceptable hazard. In order to achieve this, the Department of Energy Environmental Restoration Program is comparing the performance of several different surface covers at Material Disposal Area (MDA) B in Los Alamos. Two conventional landfill were compared with an improved cover designed to minimize plant and animal intrusion and to minimize water infiltration into the underlying wastes. The conventional covers varied in depth and both conventional and improvedmore » designs had different combinations of vegetation (grass verses shrub) and gravel mulch (no mulch verses mulch). These treatments were applied to each of 12 plots and water balance parameters were measured from March1987 through June 1995. Adding a gravel mulch significantly influenced the plant covered field plots receiving no gravel mulch averaged 21.2% shrub cover, while plots with gravel had a 20% larger percent cover of shrubs. However, the influence of gravel mulch on the grass cover was even larger than the influence on shrub cover, average grass cover on the plots with no gravel was 16.3%, compared with a 42% increase in grass cover due to gravel mulch. These cover relationships are important to reduce runoff on the landfill cover, as shown by a regression model that predicts that as ground cover is increased from 30 to 90%,annual runoff is reduced from 8.8 to 0.98 cm-a nine-fold increase. We also found that decreasing the slope of the landfill cover from 6 to 2% reduced runoff from the landfill cover by 2.7-fold. To minimize the risk of hazardous waste from landfills to humans, runoff and seepage need to be minimized and evapotranspiration maximized on the landfill cover. This has to be accomplished for dry and wet years at MDA B. Seepage consisted of 1.9% and 6.2% of the precipitation in the

  16. Rational Water and Nitrogen Management Improves Root Growth, Increases Yield and Maintains Water Use Efficiency of Cotton under Mulch Drip Irrigation

    PubMed Central

    Zhang, Hongzhi; Khan, Aziz; Tan, Daniel K. Y.; Luo, Honghai

    2017-01-01

    There is a need to optimize water-nitrogen (N) applications to increase seed cotton yield and water use efficiency (WUE) under a mulch drip irrigation system. This study evaluated the effects of four water regimes [moderate drip irrigation from the third-leaf to the boll-opening stage (W1), deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W2), pre-sowing and moderate drip irrigation from the third-leaf to the boll-opening stage (W3), pre-sowing and deficit drip irrigation from the third-leaf to the flowering stage and sufficient drip irrigation thereafter (W4)] and N fertilizer at a rate of 520 kg ha-1 in two dressing ratios [7:3 (N1), 2:8 (N2)] on cotton root morpho-physiological attributes, yield, WUE and the relationship between root distribution and dry matter production. Previous investigations have shown a strong correlation between root activity and water consumption in the 40–120 cm soil layer. The W3 and especially W4 treatments significantly increased root length density (RLD), root volume density (RVD), root mass density (RMD), and root activity in the 40–120 cm soil layer. Cotton RLD, RVD, RMD was decreased by 13.1, 13.3, and 20.8%, respectively, in N2 compared with N1 at 70 days after planting (DAP) in the 0–40 cm soil layer. However, root activity in the 40–120 cm soil layer at 140 DAP was 31.6% higher in N2 than that in N1. Total RMD, RLD and root activity in the 40–120 cm soil were significantly and positively correlated with shoot dry weight. RLD and root activity in the 40–120 cm soil layer was highest in the W4N2 treatments. Therefore increased water consumption in the deep soil layers resulted in increased shoot dry weight, seed cotton yield and WUE. Our data can be used to develop a water-N management strategy for optimal cotton yield and high WUE. PMID:28611817

  17. [Interactive impact of water and nitrogen on yield, quality of watermelon and use of water and nitrogen in gravel-mulched field].

    PubMed

    Du, Shao-ping; Ma, Zhong-ming; Xue, Liang

    2015-12-01

    In order to develop the optimal coupling model of water and nitrogen of watermelon under limited irrigation in gravel-mulched field, a field experiment with split-plot design was conducted to study the effects of supplementary irrigation volume, nitrogen fertilization, and their interactions on the growth, yield, quality and water and nitrogen use efficiency of watermelon with 4 supplementary irrigation levels (W: 0, 35, 70, and 105 m³ · hm⁻²) in main plots and 3 nitrogen fertilization levels (N: 0, 120, and 200 kg N · hm⁻²) in sub-plots. The results showed that the photosynthetic rate, yield, and water and nitrogen use efficiency of watermelon increased with the increasing supplementary irrigation, but the nitrogen partial productivity and nitrogen use efficiency decreased with increasing nitrogen fertilization level. The photosynthetic rate and quality indicators increased with increasing nitrogen fertilization level as the nitrogen rate changed from 0 to 120 kg N · hm⁻², but no further significant increase as the nitrogen rate exceeded 120 kg · hm⁻². The interactive effects between water and nitrogen was significant for yield and water and nitrogen use efficiency of watermelon, supplementary irrigation volume was a key factor for the increase yield compared with the nitrogen fertilizer, and the yield reached the highest for the W₇₀N₂₀₀ and W₁₀₅ N₁₂₀ treatments, for which the yield increased by 42.4% and 40.4% compared to CK. Water use efficiency (WUE) was improved by supplementary irrigation and nitrogen rate, the WUE of all nitrogen fertilizer treatments were more than 26 kg · m⁻³ under supplemental irrigation levels 70 m³ · hm⁻² and 105 m³ · hm⁻². The nitrogen partial productivity and nitrogen use efficiency reached the highest in the treatment of W₁₀₅N₁₂₀. It was considered that under the experimental condition, 105 m³ · hm⁻² of supplementary irrigation plus 120 kg · hm⁻² of nitrogen

  18. Black plastic mulch combined with summer cover crop increases the yield and water use efficiency of apple tree on the rainfed Loess Plateau

    PubMed Central

    Zheng, Wei; Wen, Meijuan; Zhao, Zhiyuan; Liu, Jie; Wang, Zhaohui; Li, Ziyan

    2017-01-01

    Water deficit significantly limits dryland rainfed fruit production, so increasing water conservation is crucial for improving fruit productivity in arid and semiarid areas. In this study, we tested two treatments in an apple orchard: 1) PC treatment comprising black plastic mulch (BPM) (in-row) with weed control (inter-row); 2) and PGC treatment comprising BPM (in-row) combined with a summer cover crop (inter-row) of rape (Brassica campestris L.), which was sown in mid-June and was living from July to September. Under PGC, the inter-row soil water storage increased by 17.9% and 11.5% compared with PC after the harvest in 2013 and 2014, respectively, but there was no significant increase in 2015. The evapotranspiration (ET) from the inter-row areas during the cover crop period was lower under PGC than PC in 2013 (19.6%), 2014 (11.3%), and 2015 (13.3%). However, the differences in the total ET from the inter-row areas between the two treatments were not obvious, and the total ET from in-row areas was higher under PGC than PC due to the increased water uptake by apple trees under PGC. The apple yield, water use efficiency during the cover crop period (WUEg) and total water use efficiency (WUE) fluctuated during the experimental years. Compared with PC, the apple yield increased by 14.1%, 18.8%, and 26.7% under PGC in 2013, 2014, and 2015, respectively. In addition, the WUEg was 26.4%, 24.7%, and 32.7% higher under PGC compared with PC in 2013, 2014, and 2015, respectively. Thus, the WUE under PGC was 13.8% and 11.7% higher than that under PC in 2013 and 2014, respectively, but the difference was not significant in 2015 (p = 0.0527). Thus, BPM combined with a summer cover crop is recommended for decreasing the summer ET and promoting apple production in rainfed dryland areas where the rainy season is usually the hot season. PMID:28957428

  19. Hardwood tree growth on amended mine soils in west virginia.

    PubMed

    Wilson-Kokes, Lindsay; Delong, Curtis; Thomas, Calene; Emerson, Paul; O'Dell, Keith; Skousen, Jeff

    2013-09-01

    Each year surface mining in Appalachia disrupts large areas of forested land. The Surface Mining Control and Reclamation Act requires coal mine operators to establish a permanent vegetative cover after mining, and current practice emphasizes soil compaction and planting of competitive forage grasses to stabilize the site and control erosion. These practices hinder recolonization of native hardwood trees on these reclaimed sites. Recently reclamation scientists and regulators have encouraged re-establishment of hardwood forests on surface mined land through careful selection and placement of rooting media and proper selection and planting of herbaceous and tree species. To evaluate the effect of rooting media and soil amendments, a 2.8-ha experimental plot was established, with half of the plot being constructed of weathered brown sandstone and half constructed of unweathered gray sandstone. Bark mulch was applied to an area covering both sandstone types, and the ends of the plot were hydroseeded with a tree-compatible herbaceous seed mix, resulting in eight soil treatments. Twelve hardwood tree species were planted, and soil chemical properties and tree growth were measured annually from 2007 to 2012. After six growing seasons, average tree volume index was higher for trees grown on brown sandstone (5333 cm) compared with gray sandstone (3031 cm). Trees planted in mulch outperformed trees on nonmulched treatments (volume index of 6187 cm vs. 4194 cm). Hydroseeding with a tree-compatible mix produced greater ground cover (35 vs. 15%) and resulted in greater tree volume index than nonhydroseed areas (5809 vs. 3403 cm). Soil chemical properties were improved by mulch and improved tree growth, especially on gray sandstone. The average pH of brown sandstone was 5.0 to 5.4, and gray sandstone averaged pH 6.9 to 7.7. The mulch treatment on gray sandstone resulted in tree growth similar to brown sandstone alone and with mulch. After 6 yr, tree growth on brown sandstone was

  20. Irrigation Alternatives to Meet Army Net Zero Water Goals

    DTIC Science & Technology

    2012-05-01

    Use of mulches  Appropriate maintenance BUILDING STRONG® Soil Additives/Amendments  Maximize soil moisture retention ► Compost to improve water...holding capacity ►Polyacrylamides to prolong soil moisture release ► Ideal soil texture (mix of clay, silt, and sand) maintained to adequate depths...BUILDING STRONG® Mulches  Organic ► Compost ►Shredded barks and other landscape wastes  Inorganic ►Gravel ►Rock ►Crumb rubber ►Fabrics and

  1. Long-term experiment with orchard floor management systems: influence on apple yield and chemical composition.

    PubMed

    Slatnar, Ana; Licznar-Malanczuk, Maria; Mikulic-Petkovsek, Maja; Stampar, Franci; Veberic, Robert

    2014-05-07

    The study focuses on the response of apple primary and secondary metabolism and some important quality parameters to three living mulch treatments, classical herbicide fallow, and black polypropylene strip application in two apple cultivars. Primary and secondary metabolites were analyzed after 10 years of ground cover experiments. Soluble solids, firmness, and color measurements indicate differences among orchard floor management treatments. Significantly, lower levels of individual sugars have been measured in fruit of different living mulch treatments compared with fruit harvested from trees subjected to the herbicide strip treatment. Total sugar content was higher in fruit of the herbicide strip treatment in both cultivars analyzed. Significantly higher levels of total organic acids were only detected in 'Pinova' fruit of the Festuca ovina L. treatment. Long-term response of both cultivars to living mulch treatments indicated that apples increase the accumulation of almost all analyzed individual phenolic compounds.

  2. Changes in herbivore control in arable fields by detrital subsidies depend on predator species and vary in space.

    PubMed

    von Berg, Karsten; Thies, Carsten; Tscharntke, Teja; Scheu, Stefan

    2010-08-01

    Prey from the decomposer subsystem may help sustain predator populations in arable fields. Adding organic residues to agricultural systems may therefore enhance pest control. We investigated whether resource addition (maize mulch) strengthens aboveground trophic cascades in winter wheat fields. Evaluating the flux of the maize-borne carbon into the food web after 9 months via stable isotope analysis allowed differentiating between prey in predator diets originating from the above- and belowground subsystems. Furthermore, we recorded aphid populations in predator-reduced and control plots of no-mulch and mulch addition treatments. All analyzed soil dwelling species incorporated maize-borne carbon. In contrast, only 2 out of 13 aboveground predator species incorporated maize carbon, suggesting that these 2 predators forage on prey from the above- and belowground systems. Supporting this conclusion, densities of these two predator species were increased in the mulch addition fields. Nitrogen isotope signatures suggested that these generalist predators in part fed on Collembola thereby benefiting indirectly from detrital resources. Increased density of these two predator species was associated by increased aphid control but the identity of predators responsible for aphid control varied in space. One of the three wheat fields studied even lacked aphid control despite of mulch-mediated increased density of generalist predators. The results suggest that detrital subsidies quickly enter belowground food webs but only a few aboveground predator species include prey out of the decomposer system into their diet. Variation in the identity of predator species benefiting from detrital resources between sites suggest that, depending on locality, different predator species are subsidised by prey out of the decomposer system and that these predators contribute to aphid control. Therefore, by engineering the decomposer subsystem via detrital subsidies, biological control by

  3. Long-term intensive management increased carbon occluded in phytolith (PhytOC) in bamboo forest soils

    NASA Astrophysics Data System (ADS)

    Huang, Zhang-Ting; Li, Yong-Fu; Jiang, Pei-Kun; Chang, Scott X.; Song, Zhao-Liang; Liu, Juan; Zhou, Guo-Mo

    2014-01-01

    Carbon (C) occluded in phytolith (PhytOC) is highly stable at millennium scale and its accumulation in soils can help increase long-term C sequestration. Here, we report that soil PhytOC storage significantly increased with increasing duration under intensive management (mulching and fertilization) in Lei bamboo (Phyllostachys praecox) plantations. The PhytOC storage in 0-40 cm soil layer in bamboo plantations increased by 217 Mg C ha-1, 20 years after being converted from paddy fields. The PhytOC accumulated at 79 kg C ha-1 yr-1, a rate far exceeding the global mean long-term soil C accumulation rate of 24 kg C ha-1 yr-1 reported in the literature. Approximately 86% of the increased PhytOC came from the large amount of mulch applied. Our data clearly demonstrate the decadal scale management effect on PhytOC accumulation, suggesting that heavy mulching is a potential method for increasing long-term organic C storage in soils for mitigating global climate change.

  4. Response of young ponderosa pines, shrubs, and grasses to two release treatments. Forest Service research note

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, P.M.; Everest, G.A.

    1996-07-01

    To release a young pine plantation on a medium site in central California, herbicides and mulches were applied soon after planting to study their effectiveness. Bearclover is an aggressive shrub species that resprouts from rhizomes after disturbance, and must be controlled if young conifer seedlings are to become established. After 4 years, resprouting bearclover plants numbered 282,000 per acre in the control, but less than 4,000 per acre in the plots treated by herbicides. Mean foliar cover was 63 percent versus 1 percent for control and herbicide plots, respectively. Ponderosa pine seedlings were significantly taller, had larger mean diameters, andmore » survived better in the herbicide treatment than counterparts in mulched plots and control. The 5-foot square mulches were ineffective for controlling bearclover. Cheatgrass invaded the plantation in the second year, and after 2 more years became abundant in herbicide plots and plentiful in the control.« less

  5. [Optimal irrigation index for cotton drip irrigation under film mulching based on the evaporation from pan with constant water level].

    PubMed

    Shen, Xiao-Jun; Zhang, Ji-Yang; Sun, Jing-Sheng; Gao, Yang; Li, Ming-Si; Liu, Hao; Yang, Gui-Sen

    2013-11-01

    A field experiment with two irrigation cycles and two irrigating water quotas at squaring stage and blossoming-boll forming stage was conducted in Urumqi of Xinjiang Autonomous Region, Northwest China in 2008-2009, aimed to explore the high-efficient irrigation index of cotton drip irrigation under film mulching. The effects of different water treatments on the seed yield, water consumption, and water use efficiency (WUE) of cotton were analyzed. In all treatments, there was a high correlation between the cotton water use and the evaporation from pan installed above the plant canopy. In high-yield cotton field (including the treatment T4 which had 10 days and 7 days of irrigation cycle with 30.0 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2008, and the treatment T1 having 7 days of irrigation cycle with 22.5 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2009), the pan-crop coefficient (Kp) at seedling stage, squaring stage, blossoming-boll forming stage, and boll opening stage was 0.29-0.30, 0.52-0.53, 0.74-0.88, and 0.19-0.20, respectively. As compared with the other treatments, T4 had the highest seed cotton yield (5060 kg x hm(-2)) and the highest WUE (1.00 kg x m(-3)) in 2008, whereas T1 had the highest seed cotton yield (4467 kg x hm(-2)) and the highest WUE (0.99 kg x m(-3)) in 2009. The averaged cumulative pan evaporation in 7 days and 10 days at squaring stage was 40-50 mm and 60-70 mm, respectively, and that in 7 days at blossoming-boll forming stage was 40-50 mm. It was suggested that in Xinjiang cotton area, irrigating 45 mm water for seedling emergence, no irrigation both at seedling stage and at boll opening stage, and irrigation was started when the pan evaporation reached 45-65 mm and 45 mm at squaring stage and blossoming-boll stage, respectively, the irrigating water quota could be determined by multiplying cumulative

  6. Long-term intensive management increased carbon occluded in phytolith (PhytOC) in bamboo forest soils

    PubMed Central

    Huang, Zhang-ting; Li, Yong-fu; Jiang, Pei-kun; Chang, Scott X.; Song, Zhao-liang; Liu, Juan; Zhou, Guo-mo

    2014-01-01

    Carbon (C) occluded in phytolith (PhytOC) is highly stable at millennium scale and its accumulation in soils can help increase long-term C sequestration. Here, we report that soil PhytOC storage significantly increased with increasing duration under intensive management (mulching and fertilization) in Lei bamboo (Phyllostachys praecox) plantations. The PhytOC storage in 0–40 cm soil layer in bamboo plantations increased by 217 Mg C ha−1, 20 years after being converted from paddy fields. The PhytOC accumulated at 79 kg C ha−1 yr−1, a rate far exceeding the global mean long-term soil C accumulation rate of 24 kg C ha−1 yr−1 reported in the literature. Approximately 86% of the increased PhytOC came from the large amount of mulch applied. Our data clearly demonstrate the decadal scale management effect on PhytOC accumulation, suggesting that heavy mulching is a potential method for increasing long-term organic C storage in soils for mitigating global climate change. PMID:24398703

  7. In-vessel composting of household wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyengar, Srinath R.; Bhave, Prashant P.

    The process of composting has been studied using five different types of reactors, each simulating a different condition for the formation of compost; one of which was designed as a dynamic complete-mix type household compost reactor. A lab-scale study was conducted first using the compost accelerators culture (Trichoderma viridae, Trichoderma harzianum, Trichorus spirallis, Aspergillus sp., Paecilomyces fusisporus, Chaetomium globosum) grown on jowar (Sorghum vulgare) grains as the inoculum mixed with cow-dung slurry, and then by using the mulch/compost formed in the respective reactors as the inoculum. The reactors were loaded with raw as well as cooked vegetable waste for amore » period of 4 weeks and then the mulch formed was allowed to maturate. The mulch was analysed at various stages for the compost and other environmental parameters. The compost from the designed aerobic reactor provides good humus to build up a poor physical soil and some basic plant nutrients. This proves to be an efficient, eco-friendly, cost-effective, and nuisance-free solution for the management of household solid wastes.« less

  8. [Effects of fertilizer application on water consumption characteristics and yield of potato cultured under ridge-furrow and whole filed plastic mulching in rain-fed area.

    PubMed

    Yu, Xian Feng; Zhang, Xu Cheng; Wang, Hong Li; Ma, Yi Fan; Hou, Hui Zhi; Fang, Yan Jie

    2016-03-01

    Chemical fertilizer reduction and organic manure substitution are the useful methods to increase potato water-and nutrient use efficiency, which is cultured under ridge-furrow and whole soil surface mulched by plastic film in semiarid rain-fed area. A 4-year field experiment was carried out from 2011 to 2014 with three treatments: 1) traditional chemical fertilizer application (F), 2) chemical nitrogen fertilizer reduced by 25% and dressing at flowering stage (DF), and 3) chemical nitrogen fertilizer reduced by 50% and organic manure substitution (OF). The soil moisture and potato yield were investigated, and seasonal water consumption, water use efficiency (WUE) were calculated to study the regulations of different nutrient management methods on potato water use process, as well as its effects on potato tuber yield and WUE. The results showed that soil water storage in potato flowering stage was the highest under DF treatment, but there were no significant difference among these three treatments. The depth of soil water depletion in DF and OF showed an increasing trend at post-flowering stage. Potato water consumption decreased significantly at pre-flowering stage, but increased by 36.2%, 23.2%, 24.8% and 19.0% respectively at post-flowering stage in 2011-2014 under DF treatment, as compared with those under F treatment. OF treatment increased potato water consumption by 20.7% and 16.3% than that under F treatment at post-flowering stage from 2011 to 2012, respectively, but exerted no significant effect at pre-flowering stage. Compared with F, DF increased potato tuber yield averagely by 2595.1 kg·hm -2 from 2012 to 2014 and significantly increased the WUE by 14.4% and 6.3% in 2013 and 2014, respectively; OF significantly increased potato tuber yield averagely by 2945 kg·hm -2 tuber yield in 4 experimental years and WUE was significantly higher than that under F from 2012 to 2014. It was indicated that both DF and OF could regulate water consumption between pre

  9. Location and agricultural practices influence spring use of harvested cornfields by cranes and geese in Nebraska

    USGS Publications Warehouse

    Anteau, Michael J.; Sherfy, Mark H.; Bishop, Andrew A.

    2011-01-01

    Millions of ducks, geese, and sandhill cranes (Grus canadensis; hereafter cranes) stop in the Central Platte River Valley (CPRV) of Nebraska to store nutrients for migration and reproduction by consuming corn remaining in fields after harvest. We examined factors that influence use of cornfields by cranes and geese (all mid-continent species combined; e.g., Anser, Chen, and Branta spp.) because it is a key step to efficient conservation planning aimed at ensuring that adequate food resources are available to migratory birds stopping in the CPRV. Distance to night-time roost site, segment of the CPRV (west to east), and agricultural practices (post-harvest treatment of cornfields: idle, grazed, mulched, mulched and grazed, and tilled) were the most important and influential variables in our models for geese and cranes. Probability of cornfield use by geese and cranes decreased with increasing distance from the closest potential roosting site. The use of cornfields by geese increased with the density of corn present there during the early migration period, but field use by cranes appeared not to be influenced by early migration corn density. However, probability of cornfield use by cranes did increase with the amount of wet grassland habitat within 4.8 km of the field. Geese were most likely to use fields that were tilled and least likely to use fields that were mulched and grazed. Cranes were most likely to use fields that were mulched and least likely to use fields that were tilled, but grazing appeared not to influence the likelihood of field use by cranes. Geese were more likely to use cornfields in western segments of the CPRV, but cranes were more likely to use cornfields in eastern segments. Our data suggest that managers could favor crane use of fields and reduce direct competition with geese by reducing fall and spring tilling and increasing mulching. Moreover, crane conservation efforts would be most beneficial if they were focused in the eastern portions

  10. Location and agricultural practices influence spring use of harvested cornfields by cranes and geese in Nebraska

    USGS Publications Warehouse

    Anteau, M.J.; Sherfy, M.H.; Bishop, A.A.

    2011-01-01

    Millions of ducks, geese, and sandhill cranes (Grus canadensis; hereafter cranes) stop in the Central Platte River Valley (CPRV) of Nebraska to store nutrients for migration and reproduction by consuming corn remaining in fields after harvest. We examined factors that influence use of cornfields by cranes and geese (all mid-continent species combined; e.g., Anser, Chen, and Branta spp.) because it is a key step to efficient conservation planning aimed at ensuring that adequate food resources are available to migratory birds stopping in the CPRV. Distance to night-time roost site, segment of the CPRV (west to east), and agricultural practices (post-harvest treatment of cornfields: idle, grazed, mulched, mulched and grazed, and tilled) were the most important and influential variables in our models for geese and cranes. Probability of cornfield use by geese and cranes decreased with increasing distance from the closest potential roosting site. The use of cornfields by geese increased with the density of corn present there during the early migration period, but field use by cranes appeared not to be influenced by early migration corn density. However, probability of cornfield use by cranes did increase with the amount of wet grassland habitat within 4.8 km of the field. Geese were most likely to use fields that were tilled and least likely to use fields that were mulched and grazed. Cranes were most likely to use fields that were mulched and least likely to use fields that were tilled, but grazing appeared not to influence the likelihood of field use by cranes. Geese were more likely to use cornfields in western segments of the CPRV, but cranes were more likely to use cornfields in eastern segments. Our data suggest that managers could favor crane use of fields and reduce direct competition with geese by reducing fall and spring tilling and increasing mulching. Moreover, crane conservation efforts would be most beneficial if they were focused in the eastern portions

  11. Marginal cost curves for water footprint reduction in irrigated agriculture: a policy and decision making guide for efficient water use in crop production

    NASA Astrophysics Data System (ADS)

    Chukalla, Abebe; Krol, Maarten; Hoekstra, Arjen

    2016-04-01

    Reducing water footprints (WF) in irrigated crop production is an essential element in water management, particularly in water-scarce areas. To achieve this, policy and decision making need to be supported with information on marginal cost curves that rank measures to reduce the WF according to their cost-effectiveness and enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a certain reasonable WF benchmark. This paper aims to develop marginal cost curves (MCC) for WF reduction. The AquaCrop model is used to explore the effect of different measures on evapotranspiration and crop yield and thus WF that is used as input in the MCC. Measures relate to three dimensions of management practices: irrigation techniques (furrow, sprinkler, drip and subsurface drip); irrigation strategies (full and deficit irrigation); and mulching practices (no mulching, organic and synthetic mulching). A WF benchmark per crop is calculated as resulting from the best-available production technology. The marginal cost curve is plotted using the ratios of the marginal cost to WF reduction of the measures as ordinate, ranking with marginal costs rise with the increase of the reduction effort. For each measure, the marginal cost to reduce WF is estimated by comparing the associated WF and net present value (NPV) to the reference case (furrow irrigation, full irrigation, no mulching). The NPV for each measure is based on its capital costs, operation and maintenances costs (O&M) and revenues. A range of cases is considered, including: different crops, soil types and different environments. Key words: marginal cost curve, water footprint benchmark, soil water balance, crop growth, AquaCrop

  12. Experimental enhancement of pickleweed, Suisun Bay, California

    USGS Publications Warehouse

    Miles, A. Keith; Van Vuren, Dirk H.; Tsao, Danika C.; Yee, Julie L.

    2015-01-01

    As mitigation for habitat impacted by the expansion of a pier on Suisun Bay, California, two vehicle parking lots (0.36 ha and 0.13 ha) were restored by being excavated, graded, and contoured using dredged sediments to the topography or elevation of nearby wetlands. We asked if pickleweed (Sarcocornia pacifica L, [Amaranthaceae]) colonization could be enhanced by experimental manipulation on these new wetlands. Pickleweed dominates ecologically important communities at adjacent San Francisco Bay, but is not typically dominant at Suisun Bay probably because of widely fluctuating water salinity and is outcompeted by other brackish water plants. Experimental treatments (1.0-m2 plots) included mulching with pickleweed cuttings in either the fall or the spring, tilling in the fall, or applying organic enrichments in the fall. Control plots received no treatment. Pickleweed colonization was most enhanced at treatment plots that were mulched with pickleweed in the fall. Since exotic vegetation can colonize bare sites within the early phases of restoration and reduce habitat quality, we concluded that mulching was most effective in the fall by reducing invasive plant cover while facilitating native plant colonization.

  13. Effects of topsoil treatments on afforestation in a dry Mediterranean climate (southern Spain)

    NASA Astrophysics Data System (ADS)

    Hueso-González, Paloma; Francisco Martínez-Murillo, Juan; Damian Ruiz-Sinoga, Jose

    2016-10-01

    Afforestation programs in semiarid areas are associated with a high level of sapling mortality. Therefore, the development of alternative low-cost and low-environmental-impact afforestation methods that ensure the survival of seedlings is crucial for improving the efficiency of Mediterranean forest management. This study assessed the effects of five types of soil amendments on the afforestation success (e.g., plant growth and survival) of a Mediterranean semiarid area. The amendments tested were (i) straw mulch; (ii) mulch containing chipped branches of Aleppo pine (Pinus halepensis L.); (iii) sheep manure compost; (iv) sewage sludge from a wastewater treatment plant; and (v) TerraCottem hydroabsorbent polymer. We hypothesized that in the context of dry Mediterranean climatic conditions, the use of organic amendments would enhance plant establishment and ensure successful afforestation. The results showed that afforestation success varied among the various soil amendment treatments in the experimental plots. The amendments had no effect on soil organic carbon, pH, or salinity, but the results indicated that the addition of mulch or hydroabsorbent polymer can reduce transplant stress by increasing the soil water available for plant growth throughout the hydrological year, and potentially improve the success of afforestation by reducing plant mortality.

  14. Available water modifications by topsoil treatments under mediterranean semiarid conditions: afforestation plan

    NASA Astrophysics Data System (ADS)

    Hueso Gonzalez, Paloma; Francisco Martinez Murillo, Juan; Damian Ruiz Sinoga, Jose

    2016-04-01

    During dry periods in the Mediterranean area, the lack of water entering the soil matrix reduces organic contributions to the soil. These processes lead to reduced soil fertility and soil vegetation recovery which creates a positive feedback process that can lead to desertification. Restoration of native vegetation is the most effective way to regenerate soil health, and control runoff and sediment yield. In Mediterranean areas, after a forestry proposal, it is highly common to register a significant number of losses for the saplings that have been introduced due to the lack of rainfall. When no vegetation is established, organic amendments can be used to rapidly protect the soil surface against the erosive forces of rain and runoff. In this study we investigated the hydrological effects of five soil treatments in relation to the temporal variability of the available water for plants. Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis L.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and control. Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. In control plots, during June, July, August and September, soils were registered below the wilting point, and therefore, in the area of water unusable by plants. These months were coinciding with the summer mediterranean drought. This fact justifies the high mortality found on plants after the seeding plan. Similarly, soils have never exceeded the field capacity value measured for control plots. Conversely, in the straw and pinus mulch, soils were above the wilting point during a longer time than in control plots. Thus, the soil moisture only has stayed below the 4.2 pF suction in July, July and August. Regarding the amount of water available was also higher, especially in the months of December, January and February. However, the field capacity

  15. A conceptual framework for an ecosystem services-based assessment of the so-called "emergency stabilization" measures following wildfire

    NASA Astrophysics Data System (ADS)

    Valente, Sandra; Prats, Sergio; Ribeiro, Cristina; Verheijen, Frank; Fleskens, Luuk; Keizer, Jacob

    2015-04-01

    Wildfires have become a major environmental concern in many Southern European countries over the past few decades. This includes Portugal, where, on average, some 100 000 ha of rural lands are affected by wildfire every year. While policies, laws, plans and public expenditure in Portugal continue to be largely directed towards fire combat and, arguably, to a lesser extent fire prevention, there has only recently been increasing attention for post-fire land management. For example following frequent and several large wildfires during the summer of 2010, so-called emergency stabilization measures were implemented in 16 different burnt areas in northern and central Portugal, using funds of the EU Rural Development Plan in Portugal (PRODER). The measures that were implemented included mulching (i.e. application of a protective layer of organic material), seeding and the construction of log barriers. However, the effectiveness of the implemented measures has not been monitored or otherwise assessed in a systematic manner. In fact, until very recently none of the post-fire emergency stabilization measures contemplated under PRODER seem to have been studied in an exhaustive manner in Portugal, whether under laboratory or field conditions. Prats et al. (2012, 2013, 2014) tested two of these measures by field trials, i.e. hydro-mulching and forest residue mulching. The authors found both measures to be highly effective in terms of reducing overland flow and especially erosion. It remains a challenge, however, to assess the effectiveness of these and other measures in a broader context, not only beyond overland flow and sediment losses but also beyond the spatio-temporal scale that are typical for such field trials (plots and the first two years after fire). This challenge will be addressed in the Portuguese case study of the RECARE project. Nonetheless, the present study wants to be a first attempt at an ecosystem services-based assessment of mulching as a post

  16. 7 CFR 1416.401 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... season's plastic. Plasticulture means production practices where the soil has been bedded, fumigated, fertilized, an irrigation system installed, and covered with plastic mulch. Specialty crop means any...

  17. Examining the Potential of Forest Residue-Based Amendments for Post-Wildfire Rehabilitation in Colorado, USA

    PubMed Central

    Minatre, Kerri L.; Pierson, Derek N.; Fegel, Timothy S.; Cotrufo, M. Francesca; Kelly, Eugene F.

    2017-01-01

    Wildfire is a natural disturbance, though elemental losses and changes that occur during combustion and post-fire erosion can have long-term impacts on soil properties, ecosystem productivity, and watershed condition. Here we evaluate the potential of forest residue-based materials to rehabilitate burned soils. We compare soil nutrient and water availability, and plant recovery after application of 37 t ha−1 of wood mulch, 20 t ha−1 of biochar, and the combination of the two amendments with untreated, burned soils. We also conducted a greenhouse trial to examine how biochar influenced soil nutrient and water content under two wetting regimes. The effects of wood mulch on plant-available soil N and water content were significant and seasonally consistent during the three-year field study. Biochar applied alone had few effects under field conditions, but significantly increased soil pH, Ca, P, and water in the greenhouse. The mulched biochar treatment had the greatest effects on soil N and water availability and increased cover of the most abundant native plant. We found that rehabilitation treatments consisting of forest residue-based products have potential to enhance soil N and water dynamics and plant recovery following severe wildfire and may be justified where erosion risk or water supply protection are crucial. PMID:28321358

  18. Examining the Potential of Forest Residue-Based Amendments for Post-Wildfire Rehabilitation in Colorado, USA.

    PubMed

    Rhoades, Charles C; Minatre, Kerri L; Pierson, Derek N; Fegel, Timothy S; Cotrufo, M Francesca; Kelly, Eugene F

    2017-01-01

    Wildfire is a natural disturbance, though elemental losses and changes that occur during combustion and post-fire erosion can have long-term impacts on soil properties, ecosystem productivity, and watershed condition. Here we evaluate the potential of forest residue-based materials to rehabilitate burned soils. We compare soil nutrient and water availability, and plant recovery after application of 37 t ha -1 of wood mulch, 20 t ha -1 of biochar, and the combination of the two amendments with untreated, burned soils. We also conducted a greenhouse trial to examine how biochar influenced soil nutrient and water content under two wetting regimes. The effects of wood mulch on plant-available soil N and water content were significant and seasonally consistent during the three-year field study. Biochar applied alone had few effects under field conditions, but significantly increased soil pH, Ca, P, and water in the greenhouse. The mulched biochar treatment had the greatest effects on soil N and water availability and increased cover of the most abundant native plant. We found that rehabilitation treatments consisting of forest residue-based products have potential to enhance soil N and water dynamics and plant recovery following severe wildfire and may be justified where erosion risk or water supply protection are crucial.

  19. Laboratory study of biological retention for urban stormwater management.

    PubMed

    Davis, A P; Shokouhian, M; Sharma, H; Minami, C

    2001-01-01

    Urban stormwater runoff contains a broad range of pollutants that are transported to natural water systems. A practice known as biological retention (bioretention) has been suggested to manage stormwater runoff from small, developed areas. Bioretention facilities consist of porous soil, a topping layer of hardwood mulch, and a variety of different plant species. A detailed study of the characteristics and performance of bioretention systems for the removal of several heavy metals (copper, lead, and zinc) and nutrients (phosphorus, total Kjeldahl nitrogen [TKN], ammonium, and nitrate) from a synthetic urban stormwater runoff was completed using batch and column adsorption studies along with pilot-scale laboratory systems. The roles of the soil, mulch, and plants in the removal of heavy metals and nutrients were evaluated to estimate the treatment capacity of laboratory bioretention systems. Reductions in concentrations of all metals were excellent (> 90%) with specific metal removals of 15 to 145 mg/m2 per event. Moderate reductions of TKN, ammonium, and phosphorus levels were found (60 to 80%). Little nitrate was removed, and nitrate production was noted in several cases. The importance of the mulch layer in metal removal was identified. Overall results support the use of bioretention as a stormwater best management practice and indicate the need for further research and development.

  20. Enzymatic activities in a semiarid soil amended with different soil treatment: Soil quality improvement

    NASA Astrophysics Data System (ADS)

    Hueso González, Paloma; Elbl, Jakub; Dvořáčková, Helena; Francisco Martinez Murillo, Juan; Damian Ruiz Sinoga, Jose

    2017-04-01

    The use of soil quality indicators may be an effective approach to assess the positive effect of the organic amendment as good restoration methods. Relying on the natural fertility of the soil, the most commonly chemical and physical parameters used to evaluate soil quality are depend to the soil biological parameters. The measurement of soil basal respiration and the mineralization of organic matter are commonly accepted as a key indicator for measuring changes to soil quality. Thus, the simultaneous measurement of various enzymes seems to be useful to evaluate soil biochemical activity and related processes. In this line, Dehydrogenase activity is widely used in evaluating the metabolic activity of soil microorganisms and to evaluate the effects caused by the addition of organic amendments. Variations in phosphatase activity, apart from indicating changes in the quantity and quality of soil phosphorated substrates, are also good indicators of soil biological status. This study assesses the effect of five soil amendments as restoration techniques for semiarid Mediterrenean ecosystems. The goal is to interpret the status of biological and chemical parameters in each treatment as soil quality indicators in degraded forests. The main objectives were to: i) analyze the effect of various organic amendments on the enzimatic activity of soil; ii) analyze the effect of the amendments on soil respiration; iii) assess the effect of these parameters on the soil chemical properties which are indicative of soil healthy; and iv) evaluated form the land management point of view which amendment could result a effective method to restore Mediterranean degraded areas. An experimental paired-plot layout was established in southern of Spain (homogeneous slope gradient: 7.5%; aspect: N170). Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis Mill.); TerraCotten hydroabsobent polymers; sewage

  1. Aerial mulching techniques-trough fire

    Treesearch

    Robert Faust

    2008-01-01

    The Trough fire occurred in August 2001 on the Mendocino National Forest of northern California. A burned area emergency rehabilitation team evaluated the fire effects on the watershed. Concerns were soil from the denuded slopes moving into streams affecting fishery values, reservoir sedimentation and storm runoff plugging culverts leading to road wash outs. Past...

  2. Certified organic herb mulching demonstration

    USDA-ARS?s Scientific Manuscript database

    The objective of organo-pestiphytology (the study of organic weed control) is to investigate and develop weed control strategies that are fundamental to the cropping system rather than afterthoughts to a production system. The scarcity of approved organic herbicides reinforces the necessity for org...

  3. Allelopathy in agroecosystems: Wheat phytotoxicity and its possible roles in crop rotation.

    PubMed

    Lodhi, M A; Bilal, R; Malik, K A

    1987-08-01

    The germination rates of cotton and wheat seeds were significantly affected by various extracts of wheat mulch and soils collected from the wheat field. This toxicity was even more pronounced against seedling growth. Five allelochemics: ferulic,p-coumaric,p-OH benzoic, syringic, and vanillic acids, were identified from the wheat mulch and its associated soil. Quantitatively, ferulic acid was found at higher concentrations thanp-coumaric acid in the soil. Various concentrations of ferulic andp-coumaric acids were toxic to the growth of radish in a bioassay. The functional aspects of allelochemic transfer from decaying residue to soil and the subsequent microbial degradation within agroecosystems are discussed, particularly as they relate to wheat crop rotation, with wheat and cotton, in Pakistan.

  4. [Change characteristics of soil moisture and nutrients in rain-fed winter wheat field under different fertilization modes in Southern Shanxi of China during summer fallow period].

    PubMed

    Li, Ting-Liang; Xie, Ying-He; Hong, Jian-Ping; Feng, Qian; Sun, Cheng-Hong; Wang, Zhi-Wei

    2013-06-01

    In 2009-2011, a field experiment was conducted in a rain-fed winter wheat field in Southern Shanxi of China to study the effects of different fertilization modes on the change characteristics of soil moisture and nitrate-N contents in 0-200 cm layer and of soil available phosphorus (Oslen-P) and potassium contents in 0-40 cm layer during summer fallow period (from June to September). Three fertilization modes were installed, i. e., conventional fertilization (CF), recommended fertilization (RF), and ridge film furrow planting (RFFP) combined with straw mulch. The results showed that the rainfall in summer fallow period could complement the consumed water in 0-200 cm soil layer in dryland wheat field throughout the growth season, and more than 94% of the water storage was in 0-140 cm soil layer, with the fallow efficiency ranged from 6% to 27%. The rainfall in summer fallow period caused the soil nitrate-N moving downward. 357-400 mm rainfall could make the soil nitrate-N leaching down to 100 cm soil layer, with the peak in 20-40 cm soil layer. Straw mulching or plastic film with straw mulch in summer fallow period could effectively increase the Oslen-P and available K contents in 0-40 cm soil layer, and the accumulative increment in three summer fallow periods was 16-45% and 36-49%, respectively. Among the three modes, the binary coverage mode of RFFP plus furrow straw mulching had the best effect in maintaining soil water and fertility. The accumulative water storage and mineral N in 0-200 cm soil layer in three summer fallow periods were up to 215 mm and 90 kg x hm(-2), and the accumulative Oslen-P and available K contents in plough layer were increased by 2.7 mg x kg(-1) and 83 mg x kg(-1), respectively, being significantly higher than those in treatments CF and RF. There were no significant differences in the change characteristics in the soil moisture and nutrients between treatments CF and RF.

  5. Response of the soil physical properties to restoration techniques in limestone quarries

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Miralles Mellado, Isabel; Vignozzi, Nadia; Solé-Benet, Albert

    2016-04-01

    The devastating effects of soil erosion in mining areas from arid/semiarid environments have prompted efforts geared toward an improvement of the soil physical conditions for a fast establishment of vegetal cover. Restoration practices that increase soil moisture content are essential in drylands where rainfall is irregular or insufficient in order to accelerate ecological restoration. The aim of this study was to analyse the influence of organic amendments and mulches on the soil porosity as well as their impact on infiltration, five years after the beginning of an experimental restoration from limestone quarries in Sierra de Gádor (Almería, SE Spain). Nine plots 15 x 5 m were prepared at the site in a completely randomized 2 x 3 factorial design. The first factor, organic amendment, had three levels: sewage sludge (SA), compost from domestic organic residues (CA) and no amendment (NA). The second factor, mulches, also had three levels: gravel (GM), woodchip (WM) and no mulch (NM). In each experimental plot 75 native plants (Macrochloa tenacissima, Anthyllis terniflora and Anthyllis cytisoides) were planted. Infiltration was determined from rainfall simulations and soil porosity was assessed by image analysis of soil thin sections. Total porosity and pores distribution were measured according to pore shape (regular, irregular and elongated) and size (transmission pores [50-500 μm] and fissures [>500 μm]). Natural undisturbed soils around the mine area were used as a reference soil (RS). Restoration treatments showed higher total porosity, fissures and elongated pores than RS and we observed the highest values in treatments with WM. This fact is due to the disruption caused by the application of treatments rather that a good soil structure. Each combination exhibited different values of transmission pores, being greater in the combinations of NA-GM, SA-NM and CA-WM. Infiltration increased with the increase of the total porosity, fissures and elongated pores

  6. The influence of organic amendments on soil aggregate stability from semiarid sites

    NASA Astrophysics Data System (ADS)

    Hueso Gonzalez, Paloma; Francisco Martinez Murillo, Juan; Damian Ruiz Sinoga, Jose

    2016-04-01

    Restoring the native vegetation is the most effective way to regenerate soil health. Under these conditions, vegetation cover in areas having degraded soils may be better sustained if the soil is amended with an external source of organic matter. The addition of organic materials to soils also increases infiltration rates and reduces erosion rates; these factors contribute to an available water increment and a successful and sustainable land management. The goal of this study was to analyze the effect of various organic amendments on the aggregate stability of soils in afforested plots. An experimental paired-plot layout was established in southern of Spain (homogeneous slope gradient: 7.5%; aspect: N170). Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis L.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and control. Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. The vegetation was planted in a grid pattern with 0.5 m between plants in each plot. During the afforestation process the soil was tilled to 25 cm depth from the surface. Soil from the afforested plots was sampled in: i) 6 months post-afforestation; ii) 12 months post-afforestation; iii) 18 months post-afforestation; and iv) 24 months post-afforestation. The sampling strategy for each plot involved collection of 4 disturbed soil samples taken from the surface (0-10 cm depth). The stability of aggregates was measured by wet-sieving. Regarding to soil aggregate stability, the percentage of stable aggregates has increased slightly in all the treatments in relation to control. Specifically, the differences were recorded in the fraction of macroaggregates (≥ 0.250 mm). The largest increases have been associated with straw mulch, pinus mulch and sludge. Similar results have been registered for the soil organic carbon content

  7. Response of crownvetch planted on anthracite breaker refuse

    Treesearch

    Miroslaw M. Czapowskyj; John P. Mikulecky; Edward A. Sowa

    1968-01-01

    Lime applications were essential to establishment of crownvetch (Coronilla vuria L.) on coal breaker refuse in the Pennsylvania Anthracite Region, and mulch treatments were highly beneficial. Fertilizer applications had only slight effect on either establishment or growth.

  8. Napropamide residues in runoff and infiltration water from pepper production.

    PubMed

    Antonious, George F; Patterson, Matthew A

    2005-01-01

    A field study was conducted on a Lowell silty loam soil of 2.7% organic matter at the Kentucky State University Research Farm, Franklin County, Kentucky. Eighteen universal soil loss equation (USLE) standard plots (22 x 3.7 m each) were established on a 10% slope. Three soil management practices were used: (i) class-A biosolids (sewage sludge), (ii) yard waste compost, each mixed with native soil at a rate of 50 ton acre(-1) on a dry-weight basis, and (iii) a no-mulch (NM) treatment (rototilled bare soil), used for comparison purposes. Devrinol 50-DF "napropamide" [N,N-diethyl-2-(1-naphthyloxy) propionamide] was applied as a preemergent herbicide, incorporated into the soil surface, and the plots were planted with 60-day-old sweet bell pepper seedlings. Napropamide residues one hour following spraying averaged 0.8, 0.4, and 0.3 microg g(-1) dry soil in sewage sludge, yard waste compost, and no-mulch treatments, respectively. Surface runoff water, runoff sediment, and napropamide residues in runoff were significantly reduced by the compost and biosolid treatments. Yard waste compost treatments increased water infiltration and napropamide residues in the vadose zone compared to sewage sludge and NM treatments. Total pepper yields from yard waste compost amended soils (9187 lbs acre(-1)) was significantly higher (P < 0.05) than yield from either the soil amended with class-A biosolids (6984 lbs acre(-1)) or the no-mulch soil (7162 lbs acre(-1)).

  9. Nematode Community Response to Green Infrastructure Design in a Semiarid City.

    PubMed

    Pavao-Zuckerman, Mitchell A; Sookhdeo, Christine

    2017-05-01

    Urbanization affects ecosystem function and environmental quality through shifts in ecosystem fluxes that are brought on by features of the built environment. Green infrastructure (GI) has been suggested as a best management practice (BMP) to address urban hydrologic and ecological impacts of the built environment, but GI practice has only been studied from a limited set of climatic conditions and disciplinary approaches. Here, we evaluate GI features in a semiarid city from the perspective of soil ecology through the application of soil nematode community analysis. This study was conducted to investigate soil ecological interactions in small-scale GI as a means of assessing curb-cut rain garden basin design in a semiarid city. We looked at the choice of mulching approaches (organic vs. rock) and how this design choice affects the soil ecology of rain basins in Tucson, AZ. We sampled soils during the monsoon rain season and assessed the soil nematode community as a bioindicator of soil quality and biogeochemical processes. We found that the use of organic mulch in GI basins promotes enhanced soil organic matter contents and larger nematode populations. Nematode community indices point to enhanced food web structure in streetscape rain garden basins that are mulched with organic material. Results from this study suggest that soil management practices for GI can help promote ecological interactions and ecosystem services in urban ecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Investigation of In-situ Biogeochemical Reduction of Chlorinated Solvents in Groundwater by Reduced Iron Minerals

    EPA Science Inventory

    Biogeochemical transformation is a process in which chlorinated solvents are degraded abiotically by reactive minerals formed by, at least in part or indirectly from, anaerobic biological processes. Five mulch biowall and/or vegetable oil-based bioremediation applications for tr...

  11. Early results of planting English oak in an Ozark clearcut.

    Treesearch

    Paul S. Johnson

    1981-01-01

    Shoot growth and survival of container-grown and 1-0 bare-root English oak (Quercus robur L.) seedlings are reported for a 3-year period after planting in a clearcut. Effects of mulching with black polyethylene are also reported.

  12. Soil Bioengineering - Major Gully Washout Repair, Silverhill Airfield, Baldwin County, Alabama

    DTIC Science & Technology

    1991-09-01

    commercially available species: Pensacola bahia- grass (Paspalum notatum), bermudagrass ( Cynodon dactylon), Abbruzzi ryegrass (Lobium multiflorum), and...surrounding area was not inhibited. Fertiliz- ing, liming , and mulching recommendations were made after eval- uation of the soil analysis. Two (2) types of

  13. Chemical characteristics of custom compost for highbush blueberry

    USDA-ARS?s Scientific Manuscript database

    Recent development of markets for blueberry (Vaccinium corymbosum L.) produced under Organic certification has stimulated interest in production of composts specifically tailored to its edaphic requirements. Blueberry is a calcifuge (acid-loving) plant that responds favorably to mulching and incorpo...

  14. Fruit metabolite networks in engineered and non-engineered tomato genotypes reveal fluidity in a hormone and agroecosystem specific manner

    USDA-ARS?s Scientific Manuscript database

    Multiple strategies have been explored throughout the world to meet food security. These include molecular breeding, transgenic genotype development, reduced-tillage crop production, modification of the soil environment with cover crops or polyethylene mulches and tunnels, and organic farming. Unde...

  15. Fuel-reduction treatments with a gyrotrac GT-25

    Treesearch

    Dana Mitchell

    2005-01-01

    Land managers in urban areas are turning to mulching equipment as a tool for managing their timberlands. Prescribed burning to reduce fire risk may not be an option, due to smoke management concerns and the level of current fuel loading.

  16. PCE/TCE DEGRADATION USING MULCH BIOWALLS

    EPA Science Inventory

    A passive reactive barrier (Biowall) was installed at the OU-1 site at Altus Air Force Base, Oklahoma to treat TCE contamination in ground water from a landfill. Depth to ground water varies from 1.8 to 2.4 meters below land surface. To intercept and treat the plume of contamin...

  17. Soil nitrate nitrogen dynamics after biosolids application in a tobosagrass desert grassland.

    PubMed

    Jurado-Guerra, Pedro; Wester, David B; Fish, Ernest B

    2006-01-01

    Dormant-season application of biosolids increases desert grass production more than growing season application in the first growing season after application. Differential patterns of NO3-N (plant available N) release following seasonal biosolids application may explain this response. Experiments were conducted to determine soil nitrate nitrogen dynamics following application of biosolids during two seasons in a tobosagrass [Hilaria mutica (Buckl.) Benth.] Chihuahuan Desert grassland. Biosolids were applied either in the dormant (early April) or growing (early July) season at 0, 18, or 34 dry Mg ha(-1). A polyester-nylon mulch was also applied to serve as a control that approximated the same physical effects on the soil surface as the biosolids but without any chemical effects. Supplemental irrigation was applied to half of the plots. Soil NO3-N was measured at two depths (0-5 and 5-15 cm) underneath biosolids (or mulch) and in interspace positions relative to surface location of biosolids (or mulch). Dormant-season biosolids application significantly increased soil NO3-N during the first growing season, and also increased soil NO3-N throughout the first growing season compared to growing-season biosolids application in a year of higher-than-average spring precipitation. In a year of lower-than-average spring precipitation, season of application did not affect soil NO3-N. Soil NO3-N was higher at both biosolids rates for both seasons of application than in the control treatment. Biosolids increased soil NO3-N compared to the inert mulch. Irrigation did not significantly affect soil NO3-N. Soil NO3-N was not significantly different underneath biosolids and in interspace positions. Surface soil NO3-N was higher during the first year of biosolids application, and subsurface soil NO3-N increased during the second year. Results showed that biosolids rate and season of application affected soil NO3-N measured during the growing season. Under dry spring-normal summer

  18. Modeling the Impact of Soil and Water Conservation on Surface and Ground Water Based on the SCS and Visual Modflow

    PubMed Central

    Wang, Hong; Gao, Jian-en; Zhang, Shao-long; Zhang, Meng-jie; Li, Xing-hua

    2013-01-01

    Soil and water conservation measures can impact hydrological cycle, but quantitative analysis of this impact is still difficult in a watershed scale. To assess the effect quantitatively, a three-dimensional finite-difference groundwater flow model (MODFLOW) with a surface runoff model–the Soil Conservation Service (SCS) were calibrated and applied based on the artificial rainfall experiments. Then, three soil and water conservation scenarios were simulated on the sand-box model to assess the effect of bare slope changing to grass land and straw mulching on water volume, hydraulic head, runoff process of groundwater and surface water. Under the 120 mm rainfall, 60 mm/h rainfall intensity, 5 m2 area, 3° slope conditions, the comparative results indicated that the trend was decrease in surface runoff and increase in subsurface runoff coincided with the land-use converted from bare slope to grass land and straw mulching. The simulated mean surface runoff modulus was 3.64×10−2 m3/m2/h in the bare slope scenario, while the observed values were 1.54×10−2 m3/m2/h and 0.12×10−2 m3/m2/h in the lawn and straw mulching scenarios respectively. Compared to the bare slope, the benefits of surface water reduction were 57.8% and 92.4% correspondingly. At the end of simulation period (T = 396 min), the simulated mean groundwater runoff modulus was 2.82×10−2 m3/m2/h in the bare slope scenario, while the observed volumes were 3.46×10−2 m3/m2/h and 4.91×10−2 m3/m2/h in the lawn and straw mulching scenarios respectively. So the benefits of groundwater increase were 22.7% and 60.4% correspondingly. It was concluded that the soil and water conservation played an important role in weakening the surface runoff and strengthening the underground runoff. Meanwhile the quantitative analysis using a modeling approach could provide a thought for the study in a watershed scale to help decision-makers manage water resources. PMID:24244427

  19. Hydroseeding on anthracite coal-mine spoils

    Treesearch

    Miroslaw M. Czapowskyj; Ross Writer

    1970-01-01

    A study was made of the performance of selected species of legumes, grasses, and trees hydroseeded on anthracite coal-mine spoils in a slurry of lime, fertilizer, and mulch. Hydroseeding failed on coal-breaker refuse, but was partially successful on strip-mine spoils.

  20. 75 FR 81112 - Montana Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... Supplemental Planting of Tree and Shrub Seedlings (III.A.); Mechanical Practices, Supplemental Mulching... Shrub Seedlings. Montana proposes to add the following language regarding Interseeding and Supplemental.... Interseeding may also be used to improve or alter the compositional balance between forage species and shrubs...

  1. A liquid bioplastic formulation for film coating of agronomic seeds

    USDA-ARS?s Scientific Manuscript database

    Interest in industrial and domestic applications of biodegradable plastics from renewable sources is increasing, but their use in agriculture is still limited (e.g., mulching films, plant pots, and plant clips). However, a sprayable liquid bioplastic formulation was recently evaluated for applicati...

  2. Evaluation of non-fumigant pesticides as methyl bromide alternatives for managing weeds in vegetables

    USDA-ARS?s Scientific Manuscript database

    The phase out of methyl bromide challenged vegetable growers’ abilities to control weeds in low-density polyethylene (LDPE) mulch production systems. The herbicides halosulfuron, fomesafen, s-metolachlor, and clomazone are needed as part of the pesticide program in LDP vegetable production to contr...

  3. Extending the uses of bioplastic granules for the application of Trichoderma biocontrol isolates in flori/horticulture and turf grass.

    USDA-ARS?s Scientific Manuscript database

    Bioplastic materials are gaining increasing interest in a variety of different industrial and domestic applications. Beside its usage as mulching films and plant clips in horticulture, no other agricultural applications have been proposed. In 2009 we demonstrated that granules made of the bioplastic...

  4. NITRATE REDUCTION AND TRANSFORMATION IN ORGANIC COMPOST MEDIA: LABORATORY BATCH STUDIES

    EPA Science Inventory

    We studied the effectiveness of three organic solid reactive media (cotton burr compost, mulch compost, and Canadian sphagnum peat) that may be potentially used in permeable reactive barriers (PRBs) for groundwater nitrate removal. We aimed at answering the question about the na...

  5. Hydrologic response of mechanical mastication in juniper woodland in Utah

    USDA-ARS?s Scientific Manuscript database

    Various vegetation control methods have been used to reduce juniper (Juniperus ssp.) woodland encroachment. Mechanical mastication (reducing trees to a mulch residue) has recently been used in some western states. We investigated the hydrologic impacts of rubber tire tracks from the masticating vehi...

  6. Passive Biobarrier for Treating Co-Mingled Perchlorate and RDX in Groundwater at an Active Range

    DTIC Science & Technology

    2016-12-31

    GAC (Parette et al., 2005), 2. ZVI PRBs, and 3. Mulch biowall. Additional technologies, including in situ chemical oxidation using permanganate ...contaminated groundwater with permanganate at the Nebraska Ordnance Plant. Ground Water Monitoring & Remediation 30:96-106. 2. Bell, C. F. 1996

  7. Fuels planning: science synthesis and integration; economic uses fact sheet 01: mastication treatments and costs

    Treesearch

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    Mastication, or mulching, is a mechanical fuel treatment that changes the structure and size of fuels in the stand. This fact sheet describes the kinds of equipment available, where mastication should be used, and treatment factors affecting cost.Other publications in this...

  8. Processed eucalyptus trees as a substrate component for greenhouse crop production

    USDA-ARS?s Scientific Manuscript database

    Fast growing eucalyptus species are selected for commercial plantings worldwide and are harvested for a variety of uses. Eucalyptus plantings in south Florida are harvested for landscape mulch production, yet this material may have potential as a container substrate for horticulture crop production....

  9. Extending the Use of Bioplastic Granules for the Application of Trichoderma Biocontrol Isolates in Flori/Horticulture and Turfgrass

    USDA-ARS?s Scientific Manuscript database

    Bioplastic materials are gaining increasing interest in a variety of different industrial and domestic applications. Beside its usage as mulching films and plant clips in horticulture, no other agricultural applications have been proposed. In 2009 we demonstrated that granules made of the bioplastic...

  10. Study on the reduction and hysteresis effect of soil nitrogen pollution by Alfalfa in channel buffer bank

    NASA Astrophysics Data System (ADS)

    Chi, Yixia; Xue, Lianqing; Zhang, Zhanyu; Li, Dongying

    2018-01-01

    Based on the simulation experiments of solute transport in channel buffer bank and pot experiments, this study analyzed the transport of nitrogen pollution from farmland drains along the South-North Water Transfer east route project; and compared the nitrogen transport rule and purification effect of alfalfa in channel buffer bank soil under situations of bare land and alfalfa mulching. The results showed that: (1) soil nitrogen content decreased gradually with the width increase of channel buffer bank by the soil adsorption and decomposition; (2) the migration rates of nitrogen were 0.06 g·kg-1 by the alfalfa mulching; (3) the removed rates of nitrogen from the soil were 0.088 g·kg-1 by cutting alfalfa; (4) the residual nitrogen of soil with alfalfa was 10% of the bare land. Alfalfa in channel buffer bank had obvious reduction and hysteresis effect to soil nitrogen pollution.

  11. Modeling Soil Moisture in Support of the Revegetation of Military Lands in Arid Regions.

    NASA Astrophysics Data System (ADS)

    Caldwell, T. G.; McDonald, E. V.; Young, M. H.

    2003-12-01

    The National Training Center (NTC), the Army's primary mechanized maneuver training facility, covers approximately 2600 km2 within the Mojave Desert in southern California, and is the subject of ongoing studies to support the sustainability of military lands in desert environments. Revegetation of these lands by the Integrated Training Areas Management (ITAM) Program requires the identification of optimum growing conditions to reestablish desert vegetation from seed and seedling, especially with regard to the timing and abundance of plant-available water. Water content, soil water potential, and soil temperature were continuously monitored and used to calibrate the Simultaneous Heat And Water (SHAW) model at 3 re-seeded sites. Modeled irrigation scenarios were used to further evaluate the most effective volume, frequency, and timing of irrigation required to maximize revegetation success and minimize water use. Surface treatments including straw mulch, gravel mulch, soil tackifier and plastic sheet

  12. Sustainable oil and grease removal from synthetic stormwater runoff using bench-scale bioretention studies.

    PubMed

    Hong, Eunyoung; Seagren, Eric A; Davis, Allen P

    2006-02-01

    One of the principal components of the contaminant load in urban stormwater runoff is oil and grease (O&G) pollution, resulting from vehicle emissions. A mulch layer was used as a contaminant trap to remove O&G (dissolved and particulate-associated naphthalene, dissolved toluene, and dissolved motor oil hydrocarbons) from a synthetic runoff during a bench-scale infiltration study. Approximately 80 to 95% removal of all contaminants from synthetic runoff was found via sorption and filtration. Subsequently, approximately 90% of the sorbed naphthalene, toluene, oil, and particulate-associated naphthalene was biodegraded within approximately 3, 4, 8, and 2 days after the event, respectively, based on decreases in contaminant concentrations coupled with increases of microbial populations. These results indicate the effectiveness and sustainability of placing a thin layer of mulch on the surface of a bioretention facility for reducing O&G pollution from urban stormwater runoff.

  13. Influence of carbon source amendment on effectiveness of anaerobic soil disinfestation

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD; also termed biological soil disinfestation or soil reductive sterilization) is a non-chemical soil disinfestation process which includes 1) soil incorporation of a labile carbon (C) source, 2) mulching with a polyethylene film to limit gas exchange, and 3) drip ir...

  14. Field based plastic contamination sensing

    USDA-ARS?s Scientific Manuscript database

    The United States has a long-held reputation of being a dependable source of high quality, contaminant-free cotton. Recently, increased incidence of plastic contamination from sources such as shopping bags, vegetable mulch, surface irrigation tubing, and module covers has threatened the reputation o...

  15. Mechanical removal of Chinese privet

    Treesearch

    John Klepac; Robert B. Rummer; James L. Hanula; Scott Horn

    2007-01-01

    Chinese privet (Ligustrum sinense Lour.), a highly invasive nonnative plant, is prevalent in the Southern United States. Chinese privet infestations can hinder regeneration of desirable species, reduce stand productivity, and have other undesirable consequences. A combined mechanical (mulching) and chemical (triclopyr) treatment was applied to...

  16. Mobility of olive fruit fly (Diptera: Tephritidae) late third instars and teneral adults in test arenas

    USDA-ARS?s Scientific Manuscript database

    The mobility of olive fruit fly, Bactrocera oleae (Rossi), late third instars before pupation, teneral adults before flight, and mature adults restricted from flight was studied under mulches in greenhouse cage tests, in horizontal pipes, vertical bottles and pipes filled with sand, and by observati...

  17. TREATMENT OF URBAN STORMWATER FOR DISSOLVED POLLUTANTS: A COMPARATIVE STUDY OF THREE NATURAL ORGANIC MEDIA

    EPA Science Inventory

    The feasibility of using hard and soft wood tree mulch and processed jute fiber, as filter media, for treating mixtures of dissolved pollutants (toxic organic compounds and heavy metals) in urban stormwater (SW) runoff was evaluated. Copper (Cu), cadmium (Cd), chromium (Cr+6), l...

  18. POTENTIAL ENVIRONMENTAL IMPACTS OF DUST SUPPRESSANTS: "ADVOIDING ANOTHER TIMES BEACH"

    EPA Science Inventory

    In the past decade, there has been an increased use of chemical dust suppressants such as i water, salts, asphalt emulsion, vegetable oils, molasses, synthetic polymers, mulches, and lignin 1 products. Dust suppressants abate dust by changing the physical properties of the soil s...

  19. Ecophysiology of horse chestnut (Aesculus Hippocastanum L.) in degraded and restored urban sites

    Treesearch

    Jacek Oleksyn; Brian D. Kloeppel; Szymon Lukasiewicz; Piotr Karolewski; Peter B. Reich

    2007-01-01

    We explored changes in growth, phenology, net CO2 assimilation rate, water use efficiency, secondary defense compounds, substrate and foliage nutrient concentration of a degraded urban horse chestnut (Aesculus hippocastanum L.) site restored for three years using mulching (tree branches including foliage) and fertilization (...

  20. Evaluation of anaerobic soil disinfestation amendments and rates for conventional tomato production in Florida

    USDA-ARS?s Scientific Manuscript database

    Methyl bromide and other soil fumigants have been heavily relied upon to control soilborne plant pathogens, nematodes, and weeds in polyethylene-mulched vegetable production in Florida. However, negative aspects of their use on the environment and human health have increased the interest in non-chem...

  1. 40 CFR 247.15 - Landscaping products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydroseeding and as an over-spray for straw mulch in landscaping, erosion control, and soil reclamation. (b) Compost made from recovered organic materials. (c) Garden and soaker hoses containing recovered plastic or... timbers and posts containing recovered materials. (f) Fertilizer made from recovered organic materials...

  2. 40 CFR 247.15 - Landscaping products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydroseeding and as an over-spray for straw mulch in landscaping, erosion control, and soil reclamation. (b) Compost made from recovered organic materials. (c) Garden and soaker hoses containing recovered plastic or... timbers and posts containing recovered materials. (f) Fertilizer made from recovered organic materials...

  3. 40 CFR 247.15 - Landscaping products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydroseeding and as an over-spray for straw mulch in landscaping, erosion control, and soil reclamation. (b) Compost made from recovered organic materials. (c) Garden and soaker hoses containing recovered plastic or... timbers and posts containing recovered materials. (f) Fertilizer made from recovered organic materials...

  4. 40 CFR 247.15 - Landscaping products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydroseeding and as an over-spray for straw mulch in landscaping, erosion control, and soil reclamation. (b) Compost made from recovered organic materials. (c) Garden and soaker hoses containing recovered plastic or... timbers and posts containing recovered materials. (f) Fertilizer made from recovered organic materials...

  5. Cover crop water quality benefits in intensive production

    USDA-ARS?s Scientific Manuscript database

    Fresh market tomatoes are typically grown in in raised beds covered in polyethylene mulch with bare-soil furrows between the beds. Field experiments were conducted over five years to examine two alternative management strategies. In side-by-side comparison with the traditional management practice, t...

  6. Biobased alternatives to guar gum as tackifiers for hydromulch

    USDA-ARS?s Scientific Manuscript database

    Guar gum, obtained from guar [Cyamopsis tetragonoloba (L.) Taub.] seeds, is currently the principal gum used as a tackifier (binder) for hydraulically-applied mulches (hydromulches) used in erosion control. The oil industry’s increased use of guar gum in hydraulic fracturing together with lower glo...

  7. Effects of seeding rate and poultry litter on weed suppression from a rolled cereal rye cover crop

    USDA-ARS?s Scientific Manuscript database

    Growing enough cover crop biomass to adequately suppress weeds is one of the primary challenges in reduced-tillage systems that rely on mulch-based weed suppression. We investigated two approaches to increasing cereal rye biomass for improved weed suppression: (1) increasing soil fertility and (2) i...

  8. Effect of roller/crimper designs in terminating rye cover crop in small-scale conservation systems

    USDA-ARS?s Scientific Manuscript database

    In recent years, use of cover crops in no-till organic production systems has steadily increased. When cover crops are terminated at an appropriate growth stage, the unincorporated residue mulch protects the soil from erosion, runoff, soil compaction, and weed pressure, and conserves soil water. In ...

  9. Evaluation of Irrigation Methods for Highbush Blueberry. I. Growth and Water Requirements of Young Plants

    USDA-ARS?s Scientific Manuscript database

    A study was conducted in a new field of northern highbush blueberry (Vaccinium corymbosum L. 'Elliott') to determine the effects of different irrigation methods on growth and water requirements of uncropped plants during the first 2 years after planting. The plants were grown on mulched, raised beds...

  10. Short-term effects of fuel reduction treatments on soil mycorrhizal inoculum potential in beetle-killed stands

    Treesearch

    Aaron D. Stottlemyer; G. Geoff Wang; Thomas A. Waldrop; Christina E. Wells; Mac A. Callaham

    2013-01-01

    Heavy fuel loads were created by southern pine beetle (Dendroctonus frontalis Ehrh.) outbreak throughout the southeastern Piedmont during the early 2000s. Prescribed burning and mechanical mulching (mastication) were used to reduce fuel loading, but many ecological impacts are unknown. Successful forest regeneration depends on ectomycorrhizal (ECM)...

  11. A Tracer Test to Characterize Treatment of TCE in a Permeable Reactive Barrier

    EPA Science Inventory

    A tracer test was conducted to characterize the flow of ground water surrounding a permeable reactive barrier constructed with plant mulch (a biowall) at the OU-1 site on Altus Air Force Base, Oklahoma. This biowall is intended to intercept and treat ground water contaminated by ...

  12. Low carbon amendment rates during anaerobic soil disinfestation (ASD) at moderate soil temperatures do not decrease viability of Sclerotinia sclerotiorum sclerotia or Fusarium root rot of common bean

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD; also termed biological soil disinfestation) is a non-chemical process which includes 1) soil incorporation of a labile carbon (C) source, 2) mulching with polyethylene film to limit gas exchange, and 3) drip irrigation to saturation of the topsoil or bedded area. ...

  13. Evaluation of tempera paints to reduce occurrence of tomato spotted wilt virus

    USDA-ARS?s Scientific Manuscript database

    Thrips occur in lower numbers on certain colors of flowers and with the use of certain reflective mulches. A series of experiments was conducted to evaluate the potential of foliar application of selected colors of tempera paints on tomato [Solanum lycopersicum L. (syn.: Lycopersicon esculentum Mill...

  14. Long-term conventional and no-tillage effects on field hydrology and yields of a dryland crop rotation

    USDA-ARS?s Scientific Manuscript database

    Semiarid dryland crop yields with no-till, NT, residue management are often greater than stubble-mulch, SM, tillage as a result of improved soil conditions and water conservation, but information on long-term tillage effects on field hydrology and sustained crop production are needed. Our objective ...

  15. Sustainable semiarid dryland production in relation to tillage effects on Hydrology: 1983-2013

    USDA-ARS?s Scientific Manuscript database

    Semiarid dryland crop yields with no-till, NT, residue management are often greater than stubble-mulch tillage, SM, as a result of improved soil conditions or water conservation, but knowledge of long-term tillage effects on the comprehensive field hydrology and sustained crop production is needed. ...

  16. Pollen collection and honey bee forager distribution in cantaloupe

    USDA-ARS?s Scientific Manuscript database

    Honey bee (Apis mellifera, L.) pollen collection and forager distribution were examined during the summer of 2002 in a cantaloupe (Cucumis melo, L., Cruiser cv.) field provided with plastic mulch and drip irrigation. The experimental site was located near the INIFAP Campo Experimental La Laguna, Ma...

  17. Gardening can induce pulmonary failure: Aspergillus ARDS in an immunocompetent patient, a case report.

    PubMed

    Jung, Nina; Mronga, Silke; Schroth, Susanne; Vassiliou, Timon; Sommer, Frank; Walthers, Eduard; Aepinus, Christian; Jerrentrup, Andreas; Vogelmeier, Claus; Holland, Angelique; Koczulla, Rembert

    2014-11-26

    Acute Aspergillus fumigatus infection in immunocompetent patients is rare. This is the first known case of a patient who survived Aspergillus sepsis after being treated early with veno-venous extracorporeal membrane (ECMO) and antifungal therapy. An immunocompetent 54-year-old woman was exposed to plant mulch during gardening and subsequently developed pulmonary failure that progressed to sepsis with multiorgan failure. Owing to her severe clinical condition, she was treated for acute respiratory distress syndrome (ARDS) with veno-venous ECMO. Empiric antifungal therapy comprising voriconazole was also initiated owing to her history and a previous case report of aspergillosis after plant mulch exposure, though there was no microbiological proof at the time. A. fumigatus was later cultured and detected on antibody testing. The patient recovered, and ECMO was discontinued 1 week later. After 7 days of antifungal treatment, Aspergillus antibodies were undetectable. In cases of sepsis that occur after gardening, clinicians should consider Aspergillus inhalation as an aetiology, and early antimycotic therapy is recommended.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitford, W.G.; Elkins, N.Z.; Parker, L.W.

    In laboratory microcosms of coal mine spoil amended with bark and wood chips, the activity of termites increased organic matter and increased total nitrogen. Termite survival was reduced in microcosms with spoil and paper or straw amendments. Field studies evaluating the efficacy of organic amendments in developing a soil biota showed that decomposition rates of wood chip-bark amended spoil were the same as unmined soil and that decomposition rates were lower than all other mulch-spoil combinations. Wood and bark amended-spoil had the highest density and diversity of soil fauna. Top dressing spoils with borrow soil did not improve any ofmore » the soil biological parameters measured. Based on these data it was recommended that reclamation procedures be changed to eliminate borrow soil top-dressing and that wood removed from mined areas be returned to the contoured spoil as wood chip amendment in addition to straw mulch.« less

  19. Carbon and nitrogen mineralization and persistence of organic residues under conservation and conventional tillage

    USDA-ARS?s Scientific Manuscript database

    A combination of high biomass cover crops with organic mulches may be an option for no-till vegetable production, but mineralization rates from these residues is lacking. The objective of this study was to assess nutrient release rates and persistence from mimosa, lespedeza, oat straw, and soybean r...

  20. Update: Our morels are named!

    USDA-ARS?s Scientific Manuscript database

    Preliminary investigations revealed that at least three morel species grow in Newfoundland and Labrador: Morchella importuna and two undescribed species, Mel-19 and Mel-36.1 M. importuna, the mulch morel, is known from Europe, Asia and North America.2,3 Mel-19 is cosmopolitan, known from Asia, Europ...

  1. Integrated weed management strategies in cover crop-based, organic rotational no-till corn and soybean in the mid-Atlantic region

    USDA-ARS?s Scientific Manuscript database

    Cover crop-based, organic rotational no-till (CCORNT) corn and soybean systems have been developed in the mid-Atlantic region to build soil health, increase management flexibility, and reduce labor. In this system, a roll-crimped cover crop mulch provides within-season weed suppression in no-till co...

  2. Cover crop biomass harvest for bioenergy: implications for crop productivity

    USDA-ARS?s Scientific Manuscript database

    Winter cover crops, such as rye (Secale cereale), are usually used in conservation agriculture systems in the Southeast. Typically, the cover crop is terminated two to three weeks before planting the summer crop, with the cover biomass left on the soil surface as a mulch. However, these cover crops ...

  3. Pros in Parks: Integrated Programming for Reaching Our Urban Park Operations Audience

    ERIC Educational Resources Information Center

    Miller, Laura M.; Walker, Jamie Rae

    2016-01-01

    In addition to regular job duties, such as tree care, mulching, irrigation, and pesticide management, urban park workers have faced environmental changes due to drought, wildfires, and West Nile virus. They simultaneously have endured expectations to manage growing, diversifying park usage and limitations on career development. An integrated…

  4. Soils under conservation agriculture with vegetables in Siem Reap, Cambodia

    USDA-ARS?s Scientific Manuscript database

    Smallholder vegetable farmers in Siem Reap, Cambodia experienced declining crop productivity. It could be a result of a mixture of factors such as nutrient and pest problems and extreme weather events such as droughts and/or heavy rains. The no-till, continuous mulch and diverse species principles o...

  5. Post-fire treatment effectiveness for hillslope stabilization

    Treesearch

    Peter R. Robichaud; Louise E. Ashmun; Bruce D. Sims

    2010-01-01

    This synthesis of post-fire treatment effectiveness reviews the past decade of research, monitoring, and product development related to post-fire hillslope emergency stabilization treatments, including erosion barriers, mulching, chemical soil treatments, and combinations of these treatments. In the past ten years, erosion barrier treatments (contour-felled logs and...

  6. Pollen as a tool for tracking stable flies.

    USDA-ARS?s Scientific Manuscript database

    The stable fly, (Stomoxys calcitrans L.), is an important pest of humans and livestock in many parts of the world. Its immature stages develop in decaying vegetation, e.g. hya, silage, feed, mulch and grass clippings, in agricultural and urban areas. although both sexes are oligate blood feeders, ...

  7. Long-term changes in soil organic carbon and nitrogen under semiarid tillage and cropping practices

    USDA-ARS?s Scientific Manuscript database

    Understanding long-term changes in soil organic carbon (SOC) and total soil nitrogen (TSN) is important for evaluating C fluxes and optimizing N management. We evaluated long-term SOC and TSN changes under dryland rotations for historical stubble-mulch (HSM) and graded terrace (GT) plots on a clay l...

  8. Healing the wounds in the landscape-reclaiming gravel roads in conservation areas.

    PubMed

    Tarvainen, Oili; Tolvanen, Anne

    2016-07-01

    Reclaiming abandoned and unmaintained roads, built originally for forestry and mineral extraction, is an important part of ecological restoration, because the roads running through natural habitats cause fragmentation. The roads can be reclaimed in a passive way by blocking access to the road, but successful seedling recruitment may require additional management due to the physical constraints present at the road. We established a full factorial study to compare the effects of three road reclaiming measures, namely ripping, creation of safe sites by adding mulch and pine seed addition, on soil processes, recovery of understorey vegetation and seedling recruitment in three conservation areas in eastern Finland. We surveyed soil organic matter, frequency and cover of plant functional types, litter and mineral soil, and number of tree seedlings. The soil organic matter was, on average, 1.3-fold in the 50-cm-deep ripping treatment relative to unripped and 20-cm-deep ripping treatments. The germination and survival of deciduous seedlings and grass establishment were promoted by adding mulch. The addition of pine seeds counteracted the seed limitation and enhanced the regeneration of trees. The treatment combination consisting of ripping, adding mulch and pine seed addition enhanced the vegetation succession and tree-seedling recruitment most: the cover of grasses, herbs and ericaceous dwarf shrubs was 1.3-7.6-fold and the number of coniferous tree seedlings was 3.4-7.1-fold relative to the other treatment combinations. Differences between short-term (1-3 years) and longer-term (6 years) results indicate the need for a sufficient observation period in road reclamation studies.

  9. Effects of organic amendments on water use efficiency evaluated by a stable isotope technique. A case study in experimental mine restoration.

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Delgado Huertas, Antonio; Miralles Mellado, Isabel; Solé Benet, Albert

    2017-04-01

    Water deficit and low infiltration reduce restoration success in semiarid post-mine soils, where high mortality of plants has been observed in early years of the restoration. Species that originate from arid and semi-arid regions are often considered appropriate for xeriscaping, but there have been relatively few direct measurements of main water related parameters as water use efficiency (WUE) in restoration strategies. In this respect, the goal of this study was to analyse the efficiency with which native plants use water when organic amendments and mulches are applied in mine soil restorations. The experimental design was established in a calcareous quarry in Almería (SE Spain), under arid climate. We tested two organic amendments (sewage sludge from water treatment plant and compost from vegetable residues) and gravel mulch. Three plant species were planted in 50 m2 experimental plots: Macrochloa tenacissima, Genista umbellata and Anthyllis cytisoides. Soil moisture was monitored at a depth of 0.1 m during 4 years and at the end of this period stable isotope of Carbon (δ13C), considered as an effective method to evaluate the plant intrinsic WUE, was measured. We did not observe significant differences in soil moisture among the different soil restoration treatments. With regard to WUE, species is the factor most important to establish differences. Anthyllis cytisoides showed the lowest mean δ13C values, indicating low WUE. On the contrary, Macrochloa tenacissima presented high δ13C values. Moreover, species showed higher δ13C values when gravel mulch was applied. To increase WUE in restored soils under arid conditions it is necessary to apply water conservation methods and to use the most appropriate species.

  10. Keeping soil in the field - runoff and erosion management in asparagus crops

    NASA Astrophysics Data System (ADS)

    Niziolomski, Joanna; Simmons, Robert; Rickson, Jane; Hann, Mike

    2016-04-01

    Row crop production (including potatoes, onions, carrots, asparagus, bulbs and lettuce) is regarded as one of the most erosive agricultural cropping systems. This is a result of the many practices involved that increase erosion risk including: fine seedbed preparation, a typically short growing season where adequate ground cover protects the soil, permanent bare soil areas between crops, and often intensive harvesting methods that can damage soil structure and result in soil compaction. Sustained exposure of bare soil coupled with onsite compaction on slightly sloping land results in soil and water issues in asparagus production. Asparagus production is a growing British industry covering > 2000 ha and is worth approximately £30 million yr-1. However, no tried and tested erosion control measurements currently exist to manage associated problems. Research has recently been undertaken investigating the effectiveness of erosion control measures suitable for asparagus production systems. These consisted of surface applied wheat straw mulch and shallow soil disturbance (< 350 mm) using several tine configurations: a currently adopted winged tine, a narrow with two shallow leading tines, and a modified para-plough. These treatments were tested individually and in combination (straw mulch with each shallow soil disturbance tine configuration) using triplicated field plots situated on a working asparagus farm in Herefordshire, UK. Testing was conducted between May and November 2013. Rainfall-event based runoff and erosion measurements were taken including; runoff volume, runoff rate and total soil loss. Runoff and soil erosion was observed from all treatments. However, the surface application of straw mulch alone out performed each shallow soil disturbance practice. This suggests that runoff and erosion from asparagus production can be reduced using the simple surface application of straw.

  11. Fruit metabolite networks in engineered and non-engineered tomato genotypes reveal fluidity in a hormone and agroecosystem specific manner.

    PubMed

    Fatima, Tahira; Sobolev, Anatoly P; Teasdale, John R; Kramer, Matthew; Bunce, Jim; Handa, Avtar K; Mattoo, Autar K

    Metabolomics provides a view of endogenous metabolic patterns not only during plant growth, development and senescence but also in response to genetic events, environment and disease. The effects of the field environment on plant hormone-specific metabolite profiles are largely unknown. Few studies have analyzed useful phenotypes generated by introducing single or multiple gene events alongside the non-engineered wild type control at field scale to determine the robustness of the genetic trait and its modulation in the metabolome as a function of specific agroecosystem environments. We evaluated the influence of genetic background (high polyamine lines; low methyl jasmonate line; low ethylene line; and isogenic genotypes carrying double transgenic events) and environments (hairy vetch, rye, plastic black mulch and bare soil mulching systems) on the metabolomic profile of isogenic reverse genetic mutations and selected mulch based cropping systems in tomato fruit. Net photosynthesis and fruit yield were also determined. NMR spectroscopy was used for quantifying metabolites that are central to primary metabolism. We analyzed both the first moment (means) of metabolic response to genotypes and agroecosystems by traditional univariate/multivariate methods, and the second moment (covariances) of responses by creating networks that depicted changes in correlations of paired metabolites. This particular approach is novel and was necessary because our experimental material yielded highly variable metabolic responses that could not be easily understood using the traditional analytical approaches for first moment statistics. High endogenous spermidine and spermine content exhibited strong effects on amino acids, Krebs cycle intermediates and energy molecules (ADP + ATP) in ripening fruits of plants grown under different agroecosystem environments. The metabolic response to high polyamine genotypes was similar to the response to hairy vetch cover crop mulch; supported by

  12. Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

    NASA Astrophysics Data System (ADS)

    Chukalla, Abebe D.; Krol, Maarten S.; Hoekstra, Arjen Y.

    2017-07-01

    Reducing the water footprint (WF) of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs) that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3  ha-1 per season) or to a certain WF benchmark (expressed in m3  t-1 of crop). This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip); irrigation strategy (full or deficit irrigation); and mulching practice (no, organic or synthetic mulching). The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour). Different cases are considered, including three crops (maize, tomato and potato); four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel); three hydrologic years (wet, normal and dry years) and three soil types (loam, silty clay loam and sandy loam). For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF by

  13. [Soil respiration and carbon balance in wheat field under conservation tillage].

    PubMed

    Zhang, Sai; Wang, Long-Chang; Huang, Zhao-Cun; Jia, Hui-Juan; Ran, Chun-Yan

    2014-06-01

    In order to study the characteristics of carbon sources and sinks in the winter wheat farmland ecosystem in southwest hilly region of China, the LI6400-09 respiratory chamber was adopted in the experiment conducted in the experimental field in Southwest University in Chongqing. The soil respiration and plant growth dynamics were analyzed during the growth period of wheat in the triple intercropping system of wheat-maize-soybean. Four treatments including T (traditional tillage), R (ridge tillage), TS (traditional tillage + straw mulching), and RS (ridge tillage + straw mulching) were designed. Root biomass regression (RR) and root exclusion (RE) were used to compare the contribution of root respiration to total soil respiration. The results showed that the average soil respiration rate was 1.71 micromol x (m2 x s)(-1) with a variation of 0.62-2.91 micromol x (m2 x s)(-1). Significant differences in soil respiration rate were detected among different treatments. The average soil respiration rate of T, R, TS and RS were 1.29, 1.59, 1.99 and 1.96 micromol x (m2 x s)(-1), respectively. R treatment did not increase the soil respiration rate significantly until the jointing stage. Straw mulching treatment significantly increased soil respiration, with a steadily high rate during the whole growth period. During the 169 days of growth, the total soil respiration was 2 266.82, 2799.52, 3 483.73 and 3 443.89 kg x hm(-2) while the cumulative aboveground biomasses were 51 800.84, 59 563.20, 66 015.37 and 7 1331.63 kg x hm(-2). Compared with the control, the yield of R, TS and RS increased by 14.99%, 27.44% and 37.70%, respectively. The contribution of root respiration to total soil respiration was 47.05% by RBR, while it was 53.97% by RE. In the early growth period, the carbon source was weak. The capacity of carbon sink started to increase at the jointing stage and reached the maximum during the filling stage. The carbon budget of wheat field was 5 924.512, 6743.807, 8350

  14. Northern highbush blueberry cultivars differed in yield and fruit quality in two organic production systems from planting to maturity

    USDA-ARS?s Scientific Manuscript database

    ‘Northern highbush blueberry cultivars were evaluated in a certified organic research site. The treatments included cultivar and amendment-mulch and “weed mat”. Plant traits and yield were collected from the 2nd through 8th growing seasons. Adding on-farm compost as a pre-plant amendment and as part...

  15. Chemical Composition of the Essential Oils from Leaves of Edible (Arachis hypogaea L.) and Perennial (Arachis glabrata Benth.) Peanut Plants

    USDA-ARS?s Scientific Manuscript database

    Peanuts or groundnuts (Arachis hypogaea L.) are a valuable oilseed crop, but other than the seed, the rest of the plant is of minimal value. Plant material including the leaves is used as mulch or as animal feed. Perennial peanut (Arachis glabrata Benth) known as forage or rhizoma peanut produces...

  16. Managing cover crops on strawberry furrow bottoms

    USDA-ARS?s Scientific Manuscript database

    Bare furrows in strawberry fields with plastic mulch covered beds can lead to lots of soil erosion and runoff during winter rainy periods. This article describes how growers can plant and manage cover crops in these furrows to minimize runoff and soil erosion. This is based on on-going research at...

  17. Chinese Privet (Ligustrum sinense) removal and its effect on native plant communities of Riparian Forests

    Treesearch

    James Hanula; Scott Horn; John W. Taylor

    2010-01-01

    Chinese privet is a major invasive shrub within riparian zones throughout the southeastern United States. Weremoved privet shrubs from four riparian forests in October 2005 with a GyrotracH mulching machine or by handfelling with chainsaws and machetes to determine how well these treatments controlled privet and how they affected plant...

  18. Using photographic image analysis to assess ground cover: a case study of forest road cutbanks

    Treesearch

    Kevin C. Bold; Frederica Wood; Pamela J. Edwards; Karl W.J. Williard; Jon E. Schoonover

    2010-01-01

    Road prisms, including cutbanks, road surfaces, and fillslopes, can be important contributors of sediment to streams in forested watersheds. Following road construction, cutbanks and fillslopes are often seeded, mulched, and sometimes fertilized to limit erosion and sedimentation. Assessing the success of vegetation establishment on cutbanks and fillslopes is a common...

  19. Restoring abandoned agricultural lands in cold desert shrublands: Tradeoffs between water availability and invasive species

    Treesearch

    Jeanne C. Chambers; Eric P. Eldredge; Keirith A. Snyder; David I. Board; Tara Forbis de Queiroz; Vada Hubbard

    2014-01-01

    Restoration of abandoned agricultural lands to create resilient ecosystems in arid and semi-arid ecosystems typically requires seeding or transplanting native species, improving plant-soil-water relations, and controlling invasive species. We asked if improving water relations via irrigation or surface mulch would result in negative tradeoffs between native species...

  20. Impacts of removing Chinese privet from riparian forests on plant communities and tree growth five years later

    Treesearch

    Jacob R. Hudson; James L. Hanula; Scott Horn

    2014-01-01

    An invasive shrub, Chinese privet (Ligustrum sinense Lour.), was removed from heavily infested riparian forests in the Georgia Piedmont in 2005 by mulching machine or chainsaw felling. Subsequent herbicide treatment eliminated almost all privet by 2007. Recovery of plant communities, return of Chinese privet, and canopy tree growth were measured on...

  1. 75 FR 57496 - Notice of Proposed Supplementary Rule To Require the Use of Certified Noxious-Weed-Free Forage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... mulch for project work. This action is a cooperative effort between the BLM, the U.S. Forest Service... a week. SUPPLEMENTARY INFORMATION: I. Public Comment Procedures You may mail comments to Roger... work. Once this rule becomes effective, there will be a 60-day grace period for enforcement of this...

  2. Removing Chinese privet from riparian forests still benefits pollinators five years later

    Treesearch

    Jacob R. Hudson; James Hanula; Scott Horn

    2014-01-01

    Chinese privet (Ligustrum sinense) is an invasive shrub of the Southeastern U.S. that forms dense stands and limits biodiversity. It was removed from heavily infested riparian forests of the Georgia Piedmont in 2005 by mulching machine or chainsaw felling and subsequent herbicide application. Abundance and species richness of bees and butterflies...

  3. Final Environmental Assessment for Beddown of 24th Air Force

    DTIC Science & Technology

    2009-08-01

    mulch, straw , plastic netting, or a combination of these protective coverings • Implementation of site grading procedures to limit the time soils are...applied paint. This change was made under the Consumer Safety Act of 1977, P.L. 101-608, as implemented by 16 CFR Part 1303. DOD implemented a ban of

  4. Does position in the canopy affect fruit bud and berry development in highbush blueberry?

    USDA-ARS?s Scientific Manuscript database

    The study was conducted in a 7-year-old field of certified organic highbush blueberry. Plants were grown on raised beds, and treatments included ‘Duke’ and ‘Liberty’ plants mulched with 1) weed mat or compost topped with sawdust and 2) fertilized with feather meal or fish emulsion. One-year-old frui...

  5. Effectiveness of three post-fire rehabilitation treatments in the Colorado Front Range

    Treesearch

    J. W. Wagenbrenner; L. H. MacDonald; D. Rough

    2006-01-01

    Post-fire rehabilitation treatments are commonly implemented after high-severity wildfires, but few data are available about the efficacy of these treatments. This study assessed post-fire erosion rates and the effectiveness of seeding, straw mulching, and contour felling in reducing erosion after a June 2000 wildfire northwest of Loveland, Colorado. Site...

  6. Geotextiles : a specific application of biofibers

    Treesearch

    B. W. English

    1995-01-01

    Geotextiles are any textile like material used to enhance soil structural performance. Biobased geotextiles are used for short term (6 months to 10 year) applications where biodegradability is a positive attribute, such as mulching and erosion control. Fiber options for biobased geotextiles include cereal straws, coir, jute, kenaf, flax, sisal, hemp, cotton, woodfiber...

  7. 30 CFR 817.71 - Disposal of excess spoil: General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (1) All vegetative and organic materials shall be removed from the disposal area prior to placement... § 817.22. If approved by the regulatory authority, organic material may be used as mulch or may be... of the soil. (2) Excess spoil shall be transported and placed in a controlled manner in horizontal...

  8. 30 CFR 817.71 - Disposal of excess spoil: General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (1) All vegetative and organic materials shall be removed from the disposal area prior to placement... § 817.22. If approved by the regulatory authority, organic material may be used as mulch or may be... of the soil. (2) Excess spoil shall be transported and placed in a controlled manner in horizontal...

  9. 30 CFR 817.71 - Disposal of excess spoil: General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (1) All vegetative and organic materials shall be removed from the disposal area prior to placement... § 817.22. If approved by the regulatory authority, organic material may be used as mulch or may be... of the soil. (2) Excess spoil shall be transported and placed in a controlled manner in horizontal...

  10. 30 CFR 816.71 - Disposal of excess spoil: General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (1) All vegetative and organic materials shall be removed from the disposal area prior to placement... with § 816.22. If approved by the regulatory authority, organic material may be used as mulch or may be... of the soil. (2) Excess spoil shall be transported and placed in a controlled manner in horizontal...

  11. 30 CFR 816.71 - Disposal of excess spoil: General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (1) All vegetative and organic materials shall be removed from the disposal area prior to placement... with § 816.22. If approved by the regulatory authority, organic material may be used as mulch or may be... of the soil. (2) Excess spoil shall be transported and placed in a controlled manner in horizontal...

  12. 30 CFR 816.71 - Disposal of excess spoil: General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (1) All vegetative and organic materials shall be removed from the disposal area prior to placement... with § 816.22. If approved by the regulatory authority, organic material may be used as mulch or may be... of the soil. (2) Excess spoil shall be transported and placed in a controlled manner in horizontal...

  13. 30 CFR 816.71 - Disposal of excess spoil: General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (1) All vegetative and organic materials shall be removed from the disposal area prior to placement... with § 816.22. If approved by the regulatory authority, organic material may be used as mulch or may be... of the soil. (2) Excess spoil shall be transported and placed in a controlled manner in horizontal...

  14. 30 CFR 816.71 - Disposal of excess spoil: General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (1) All vegetative and organic materials shall be removed from the disposal area prior to placement... with § 816.22. If approved by the regulatory authority, organic material may be used as mulch or may be... of the soil. (2) Excess spoil shall be transported and placed in a controlled manner in horizontal...

  15. 30 CFR 817.71 - Disposal of excess spoil: General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (1) All vegetative and organic materials shall be removed from the disposal area prior to placement... § 817.22. If approved by the regulatory authority, organic material may be used as mulch or may be... of the soil. (2) Excess spoil shall be transported and placed in a controlled manner in horizontal...

  16. 30 CFR 817.71 - Disposal of excess spoil: General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (1) All vegetative and organic materials shall be removed from the disposal area prior to placement... § 817.22. If approved by the regulatory authority, organic material may be used as mulch or may be... of the soil. (2) Excess spoil shall be transported and placed in a controlled manner in horizontal...

  17. Alternatives to preplant soil fumigation for Western forest nurseries.

    Treesearch

    Diane M. Hildebrand; Jeffrey K. Stone; Robert L. James; Susan J. Frankel

    2004-01-01

    Field trials at six bare-root forest tree nurseries in the Western United States compared cultural treatments including timing and depth of sowing; bare fallow (with and without periodic tilling); organic amendments including sawdust, composts, and cover crops; mulches including pine needles, sawdust, and rice straw; and fumigation with methyl bromide/chloropicrin or...

  18. Flora and fauna associated with prairie dog colonies and adjacent ungrazed mixed-grass prairie in western South Dakota

    Treesearch

    William Agnew; Daniel W. Uresk; Richard M. Hansen

    1986-01-01

    Vegetation, small rodents, and birds were sampled during the growing seasons of 2 years on prairie dog (Cynomys ludovicianus) colonies and adjacent mixed-grass prairie in western South Dakota. Prairie dog grazing decreased mulch cover, maximum height of vegetation, plant species richness, and tended to decrease live plant canopy cover compared to...

  19. A comparison of methods for determining field evapotranspiration: photosynthesis system, sap flow, and eddy covariance

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Tian, F.; Hu, H.; Yang, P.

    2014-03-01

    A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: a photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. To upscale the evapotranspiration from the leaf to plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. To upscale the evapotranspiration from the plant to field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationship between leaf areas and stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling was slightly higher (18%) than that obtained by sap flow. At the field scale, the estimates of transpiration derived from sap flow with upscaling and eddy covariance showed reasonable consistency during the cotton's open-boll growth stage, during which soil evaporation can be neglected. The results indicate that the proposed upscaling approaches are reasonable and valid. Based on the measurements and upscaling approaches, evapotranspiration components were analyzed for a cotton field under mulched drip irrigation. During the two analyzed sub-periods in July and August, evapotranspiration rates were 3.94 and 4.53 m day-1, respectively. The fraction of transpiration to evapotranspiration reached 87.1% before drip irrigation and 82.3% after irrigation. The high fraction of transpiration over evapotranspiration was principally due to the mulched film above the drip pipe, low soil water content in the inter-film zone, well-closed canopy, and high water requirement of the crop.

  20. A comparison of methods for determining field evapotranspiration: photosynthesis system, sap flow, and eddy covariance

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Tian, F.; Hu, H. C.; Hu, H. P.

    2013-11-01

    A multi-scale, multi-technique study was conducted to measure evapotranspiration and its components in a cotton field under mulched drip irrigation conditions in northwestern China. Three measurement techniques at different scales were used: photosynthesis system (leaf scale), sap flow (plant scale), and eddy covariance (field scale). The experiment was conducted from July to September 2012. To upscale the evapotranspiration from the leaf to the plant scale, an approach that incorporated the canopy structure and the relationships between sunlit and shaded leaves was proposed. To upscale the evapotranspiration from the plant to the field scale, an approach based on the transpiration per unit leaf area was adopted and modified to incorporate the temporal variability in the relationships between leaf area and stem diameter. At the plant scale, the estimate of the transpiration based on the photosynthesis system with upscaling was slightly higher (18%) than that obtained by sap flow. At the field scale, the estimates of transpiration derived from sap flow with upscaling and eddy covariance shown reasonable consistency during the cotton open boll growth stage when soil evaporation can be neglected. The results indicate that the upscaling approaches are reasonable and valid. Based on the measurements and upscaling approaches, evapotranspiration components were analyzed under mulched drip irrigation. During the two analysis sub-periods in July and August, evapotranspiration rates were 3.94 and 4.53 mm day-1, respectively. The fraction of transpiration to evapotranspiration reached 87.1% before drip irrigation and 82.3% after irrigation. The high fraction of transpiration over evapotranspiration was principally due to the mulched film above drip pipe, low soil water content in the inter-film zone, well-closed canopy, and high water requirement of the crop.

  1. Effects of Interannual Climate Variability on Water Availability and Productivity in Capoeira and Crops Under Traditional and Alternative Shifting Cultivation

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Sa, Tatiana D. A.; Carvalho, Claudio J. R.; Potter, Christopher S.; Wickel, Albert J.; Brienza, Silvio, Jr.; Kato, Maria doSocorro A.; Kato, Osvaldo; Brass, James (Technical Monitor)

    2002-01-01

    Regenerating forests play an important role in long-term carbon sequestration and sustainable landuse as they act as potentially important carbon and nutrient sinks during the shifting agriculture fallow period. The long-term functioning of capoeira. is increasingly threatened by a shortening fallow period during shifting cultivation due to demographic pressures and associated increased vulnerability to severe climatic events. Declining productivity and functioning of fallow forests of shifting cultivation combined with progressive loss of nutrients by successive burning and cropping activities has resulted in declining agricultural productivity. In addition to the effects of intense land use practices, droughts associated with El Nino events are becoming more frequent and severe in moist tropical forests and negative effects on capoeira productivity could be considerable. In Igarape-Acu (near Belem, Para), we hypothesize that experimental alternative landuse/clearing practices (mulching and fallow vegetation improvement by planting with fast-growing leguminous tree species) may make capoeira and agriculture more resilient to the effects of agricultural pressures and drought through (1) increased biomass, soil organic matter and associated increase in soil water storage, and nutrient retention and (2) greater rooting depth of trees planted for fallow improvement. This experimental practice (moto mechanized chop-and-mulch with fallow improvement) has resulted increased soil moisture during the cropping phase, reduced loss of nutrients and organic matter, and higher rates of secondary-forest biomass accumulation. We present preliminary data on water relations during the dry season of 2001 in capoeira and crops for both traditional slash-and-burn and alternative chop-and-mulch practices. These data will be used to test IKONOS data for the detection of moisture status differences. The principal goal of the research is to determine the extent to which capoeira and

  2. BOA detoxification of four summer weeds during germination and seedling growth.

    PubMed

    Schulz, Margot; Marocco, Adriano; Tabaglio, Vincenzo

    2012-07-01

    A recent greenhouse study revealed a significant reduction of germination and growth of redroot pigweed (Amaranthus retroflexus) and common purslane (Portulaca oleracea) by rye mulch, whereas velvetleaf (Abutilon theophrasti) and common lambsquarters (Chenopodium album) were not suppressed. Since BOA detoxification by metabolic alteration may influence the relation between the benzoxazinoid content of the soil mulch and weed suppression, we tested the dynamics in BOA detoxification in different plant organs of three and 10-day-old seedlings of four warm season weeds incubated with five BOA concentrations (4, 20, 40, 80, and 200 μmol g(-1) fresh weight). In addition, germination and length of 3-day-old seedlings were measured after exposure to 0, 0.3, 1.5, 3, 6, and 15 μmol BOA. Finally, we tested the influence of the MDR translocator inhibitors verapamil, nifedipine, and the GST inhibitor ethycrynic acid on BOA accumulation and detoxification activity. Due to BOA-detoxification, all weeds were able to grow in environments with low BOA contents. At higher contents, Abutilon theophrasti and Chenopodium album had a better chance to survive because of highly active mechanisms that avoided the uptake of BOA (A. theophrasti) and of efficient detoxification activities in youngest seedlings (C. album). The interpretation of all of the data gave the following sequence of increasing sensitivity: A. theophrasti < C. album < P. oleracea ≤ A. retroflexus. The results were in agreement with recent findings of the suppression of these weeds by rye mulches and their benzoxazinoid contents. Our studies demonstrate for the first time that the detoxification of BOA influences the survival of certain weeds in environments enriched with this allelochemical. Therefore, detoxification processes affect the potential for weed suppression by soil allelochemicals in sustainable weed management.

  3. Performance of red pine and Japanese larch planted on anthracite coal-breaker refuse

    Treesearch

    Miroslaw M. Czapowskyj

    1973-01-01

    Red pine (Pinus resinosa Ait.) and Japanese larch (Larix leptolepis (Sieb. and Zucc.) Gord.) seedlings were planted on coal-breaker refuse with all combinations of two levels of lime, two levels of fertilizer, and four mulch treatments. The site was highly unfavorable as a medium for tree growth, and the 4-year results show...

  4. Minimum Input Techniques for Valley Oak Restocking

    Treesearch

    Elizabeth A. Bernhardt; Tedmund J. Swiecki

    1991-01-01

    We set up experiments at four locations in northern California to demonstrate minimum input techniques for restocking valley oak, Quercus lobata. Overall emergence of acorns planted in 1989 ranged from 47 to 61 percent. Use of supplemental irrigation had a significant positive effect on seedling growth at two of three sites. Mulch, of organic...

  5. Evaluating cypress sustainability - "FIA in the hot seat"

    Treesearch

    Mark J. Brown

    2009-01-01

    The use of cypress (Taxodium species) for mulch boomed during the 1990s, and its growth in popularity created concerns about the sustainability of cypress forests in the Southern United States. A combination of factors, including Hurricane Katrina, cypress harvesting practices, and the unique requirements for successful regeneration of cypress drew media attention and...

  6. Response of young ponderosa pines, shrubs, and grasses to two release treatments

    Treesearch

    Philip M. McDonald; Glen A. Everest

    1996-01-01

    To release a young pine plantation on a medium site in central California, herbicides and mulches were applied soon after planting to study their effectiveness. Bearclover is an aggressive shrub species that resprouts from rhizomes after disturbance, and must be controlled if young conifer seedlings are to become established. After 4 years, resprouting bearclover...

  7. Ground cover management in walnut and other hardwood plantings

    Treesearch

    J.W. Van Sambeek; H.E. Garrett

    2004-01-01

    Ground cover management in walnut plantings and established stands can include (1) manipulating the resident vegetation, (2) mechanical control, (3) chemical control, (4) mulching, (5) planting cover crops, or (6) interplanting woody nurse crops. Data from over 110 reports were used to compile a database that compared growth of black walnut and other hardwoods under...

  8. Beetle-killed stands in the South Carolina piedmont: from fuel hazards to regenerating oak forests

    Treesearch

    Aaron D. Stottlemyer; G. Geoff Wang; Thomas A. Waldrop

    2012-01-01

    Impacts of spring prescribed fire, mechanical mastication, and no-treatment (control) on fuels and natural hardwood tree regeneration were examined in beetle-killed stands in the South Carolina Piedmont. Mechanical mastication ground the down and standing dead trees and live vegetation into mulch and deposited it onto the forest floor. The masticated debris layer had...

  9. Efficacy of Fluensulfone in a Tomato–Cucumber Double Cropping System

    PubMed Central

    Morris, Kelly A.; Langston, David B.; Dickson, Donald W.; Davis, Richard F.; Timper, Patricia; Noe, James P.

    2015-01-01

    Vegetable crops in the southeastern United States are commonly grown on plastic mulch with two crop cycles produced on a single mulch application. Field trials were conducted in 2013 and 2014 in two locations to evaluate the efficacy of fluensulfone for controlling Meloidogyne spp. when applied through drip irrigation to cucumber in a tomato–cucumber double-cropping system. In the spring tomato crop, 1,3-dichloropropene (1,3-D), fluensulfone, and a resistant cultivar significantly decreased root galling by 91%, 73%, and 97%, respectively, compared to the untreated control. Tomato plots from the spring were divided into split plots for the fall where the main plots were the spring treatment and the subplots were cucumber either treated with fluensulfone (3.0 kg a.i./ha. via drip irrigation) or left untreated. The fall application of fluensulfone improved cucumber vigor and reduced gall ratings compared to untreated subplots. Fluensulfone reduced damage from root-knot nematodes when applied to the first crop as well as provided additional protection to the second crop when it was applied through a drip system. PMID:26941459

  10. [Functions of different cultivation modes in oasis agriculture on soil wind erosion control and soil moisture conservation].

    PubMed

    Su, Peixi; Zhao, Aifen; Du, Mingwu

    2004-09-01

    During 2001-2002, the effects of different cultivation modes including winter irrigation and zero tillage, crop-grass intercropping, and early spring film mulching on sand entrainment, wind velocity gradient and soil moisture conservation were studied in the middle reaches of the Heihe River in the Hexi Corridor region. The results showed that all these modes could reduce soil wind erosion and halt sand entrainment to different degrees. Compared with the bare fields exposed by spring plowing, early spring film mulching could increase soil moisture storage by 35.6%. At present, spring plowing and sowing was a main factor responsible to the occurrence of sand storms and the increase in suspended dust content. Farmlands in the upper and middle reaches of the Heihe River generally produced a dust transport up to 4.8-6.0 million tons per year, which was higher than that of sandy desert in the same region. In the Hexi Corridor region, the suspended dust amount produced from 1 hm2 farmland was equivalent to that of 1.5 hm2 desert.

  11. An alternative agriculture system is defined by a distinct expression profile of select gene transcripts and proteins

    PubMed Central

    Kumar, Vinod; Mills, Douglas J.; Anderson, James D.; Mattoo, Autar K.

    2004-01-01

    Conventional agriculture has relied heavily on chemical inputs that have negatively impacted the environment and increased production costs. Transition to agricultural sustainability is a major challenge and requires that alternative agricultural practices are scientifically analyzed to provide a sufficiently informative knowledge base in favor of alternative farming practices. We show a molecular basis for delayed leaf senescence and tolerance to diseases in tomato plants cultivated in a legume (hairy vetch) mulch-based alternative agricultural system. In the hairy vetch-cultivated plants, expression of specific and select classes of genes is up-regulated compared to those grown on black polyethylene mulch. These include N-responsive genes such as NiR, GS1, rbcL, rbcS, and G6PD; chaperone genes such as hsp70 and BiP; defense genes such as chitinase and osmotin; a cytokinin-responsive gene CKR; and gibberellic acid 20 oxidase. We present a model of how their protein products likely complement one another in a field scenario to effect efficient utilization and mobilization of C and N, promote defense against disease, and enhance longevity. PMID:15249656

  12. Lemonade from lemons: the taphonomic effect of lawn mowers on skeletal remains.

    PubMed

    Martin, D C; Dabbs, Gretchen R; Roberts, Lindsey G

    2013-09-01

    This study provides a descriptive analysis of the taphonomic changes produced by passing over skeletonized remains (n = 4, Sus scrofa) with three common lawn mowers. Two skeletons were mowed over with a riding lawn mower set at multiple blade heights (10.16, 7.62, 5.08 cm) and one each with a rotary mower (9.53, 6.35 cm) and a mulching mower (6.35 cm). Results show that different types of common lawn mowers will produce different patterns of bone dispersal and fragmentation rates. Overall, skeletal elements projecting upward from the surface frequently exhibited a sheared morphology characterized by a smooth, flat, cut surface (7.0-7.6% of elements). The push mowers yielded a higher frequency of undamaged bone than the riding mower (54.8-61.2% vs. 17.7%), and the riding mower created more catastrophic damage to skeletal elements. Additionally, each mower produced a distinct dispersal pattern of skeletal fragments. The dispersal patterns have been identified as "bull's-eye" (riding), circular (mulching), and discontinuous rectangle (rotary). © 2013 American Academy of Forensic Sciences.

  13. An evaluation of three wood shred blends for post-fire erosion control using indoor simulated rain events on small plots

    Treesearch

    R. B. Foltz; N. S. Wagenbrenner

    2010-01-01

    The assessment teams who make post-fire stabilization and treatment decisions are under pressure to employ more effective and economic post-fire treatments, as wild fire activity and severity has increased in recent years across the western United States. Use of forest-native wood-based materials for hillslope mulching has been on the rise due to potential...

  14. Removing an exotic shrub from riparian forests increases butterfly abundance and diversity

    Treesearch

    James Hanula; Scott Horn

    2011-01-01

    Invasive plants are one of the greatest threats to endangered insect species and a major threat to Lepidoptera in eastern North America. We investigated the effects of the invasive shrub Chinese privet (Ligustrum sinense) and two methods (mulching or hand-felling) of removing it from riparian forests on butterfly communities and compared them to untreated, heavily...

  15. Hydromulch: a potential use for hardwood bark residue

    Treesearch

    David M. Emanual

    1976-01-01

    Hardwood bark fines and two hardwood bark fibers were compared with wood-cellulose fiber and paper fiber mulch to determine their effectiveness as hydromulches in revegetating disturbed soil. The results showed that either bark fines or bark fibers can be utilized as a hydromulch to aid in the revegetation of strip mines, highway construction sites, and similar earth-...

  16. Direct seeding of lemon-gum eucalyptus, redwood, and brushbox in Hawaii

    Treesearch

    Gerald A. Waiters

    1970-01-01

    Direct seeding has economic and silvicultural advantages over planted seedlings. To see if three selected timber species could be direct-seeded, trials were held at Kulani Camp, island of Hawaii. After 1 year, lemon-gum eucalyptus had fair stocking and height growth, but redwood and brushbox had not progressed satisfactorily. Mulch had no real effect on either stocking...

  17. New technology in postfire rehab

    Treesearch

    Joe Sabel

    2007-01-01

    PAM-12™ is a recycled office paper byproduct made into a spreadable mulch with added Water Soluble Polyacrylamide (WSPAM), a previously difficult polymer to apply. PAM-12 is extremely versatile and can be applied through several methods. In a field test, PAM-12 outperformed straw in every targeted performance area: erosion control, improving soil hydrophobicity, and...

  18. Impacts of erosion control treatments on native vegetation recovery after severe wildfire in the Eastern Cascades, USA

    Treesearch

    Erich Kyle Dodson; David W. Peterson; Richy J. Harrod

    2010-01-01

    Slope stabilization treatments like mulching and seeding are used to increase soil cover and reduce runoff and erosion following severe wildfires, but may also retard native vegetation recovery. We evaluated the effects of seeding and fertilization on the cover and richness of native and exotic plants and on individual plant species following the 2004 Pot Peak wildfire...

  19. Weed barriers for tree seedling establishment in the Central Great Plains

    Treesearch

    Wayne A. Geyer

    2003-01-01

    Horticultural-type mulches were tested on alluvial sites in two studies to examine survival and growth of black walnut, Scotch pine, and cottonwood seedlings. In one study, black walnut and Scotch pine were established with three weed control treatments using either an annual herbicide or two types of landscape polypropylene fabric barriers. After three years, walnut...

  20. Using low-grade hardwoods for CLT production: a yield analysis

    Treesearch

    R. Edward Thomas; Urs Buehlmann

    2017-01-01

    Low-grade hardwood logs are the by-product of logging operations and, more frequently today, urban tree removals. The market prices for these logs is low, as is the value recovered from their logs when producing traditional forest products such as pallet parts, railroad ties, landscaping mulch, or chips for pulp. However, the emergence of cross-laminated timber (CLT)...

  1. Restoration of riparian areas within the Megram Fire

    Treesearch

    Tom Leskiw

    2002-01-01

    A variety of treatments have been employed to restore riparian areas affected by wildland fire on the Six Rivers National Forest in northwestern California. The Megram Fire began as a series of lightning strikes on August 23,1999, eventually burning 125,040 acres. Specific treatments have included contour felling of dead trees, straw mulching, placement of straw...

  2. Panel Discussion: Weed Management

    Treesearch

    Don Stringfield

    2005-01-01

    Successful weed management must be an incorporation of techniques and ideas. Habitual practices of cleaning equipment, using the proper cover crop, spraying small amounts of herbicides early and more often, timing of applications, and the use of the correct mulch/resin are all important lines of attack in keeping the nursery free of competing vegetation. The methods...

  3. Long-term effectiveness of restoration treatments on closed wilderness campsites

    Treesearch

    David N. Cole

    2013-01-01

    This study assessed long-term recovery of vegetation on six wilderness campsites in subalpine forests in Oregon that were closed to use and that received common restoration treatments (scarification, soil amendments, mulch, transplanting, and seeding). Vegetation cover was assessed every year for the first 7 years following treatment, as well as 10 and 15 years after...

  4. Unified Facilities Criteria (UFC) Design Guide. Army Reserve Facilities

    DTIC Science & Technology

    2010-02-01

    Laser ...Including Change 3, 1 February 2010 42 use. 3-2.3.1.8 Provide painted striping in POV and MEP areas, and elsewhere as needed. 3-2.3.2 Curb and Gutter...have to meet physical security requirements for security fencing. Most Tenants prefer that fences are located in a strip of rock mulch or

  5. Successful approaches to recycling urban wood waste

    Treesearch

    Solid Waste Association of North America

    2002-01-01

    This report presents eight case studies of successful urban wood waste recycling projects and businesses. These studies document the success of recovered products such as lumber and lumber products, mulch, boiler fuel, and alternative cover for landfills. Overall, wood waste accounts for about 17% of the total waste received at municipal solid waste landfills in the...

  6. Response of direct seeded Pinus palustris and herbaceous vegetation to fertilization, burning, and pine straw harvesting

    Treesearch

    James D. Haywood; Allan E. Tiarks; Michael L. Elliott-Smith; Henry A. Pearson

    1998-01-01

    Fallen pine straw (needles) is a renewable biological resource valued as a mulch in horticulture and for landscaping. However, its harvesting may have detrimental long-term effects on forest soils and vegetation. To compare current pine straw harvesting practices, a randomized complete block splitplot study was established during 1990 in a 34-year-old stand of direct-...

  7. Lime helps establish crownvetch on coal-breaker refuse

    Treesearch

    Miroslaw M. Czapowskyj; Edward A. Sowa

    1976-01-01

    A study was begun in 1965 to determine the effect of lime fertilizer, and mulch on the establishment and growth of crownvetch crowns planted on anthracite coal-breaker refuse. After 7 years the lime application had by far the strongest effect. Both 2.5 and 5.0 tons per acre increased survival and ground cover manyfold, and both treatments were equally beneficial from...

  8. Response of beetles (Coleoptera) at three heights to the experimental removal of an invasive shrub, Chinese privet (Lingustrum sinense), from floodplain forests

    Treesearch

    Michael D. Ulyshen; Scott Horn; James L. Hanula

    2010-01-01

    Chinese privet (Ligustrum sinense Lour.), an invasive shrub from Asia, is well established in the southeastern United States where it dominates many floodplain forests. We used flight intercept traps to sample beetles at three heights (0.5, 5 and 15 m) in *2 ha plots in which L. sinense had (by chainsaws or mulching machine) or had not been removed...

  9. Midstory reduction treatments with a Woodgator T-5

    Treesearch

    Dana Mitchell; Bob Rummer

    2001-01-01

    Many stands in the Southern U.S. have developed an increased amount of non-commercial midstory and understory components. Managers may not be able to prescribe burn these stands, due to smoke management concerns or risk of fire climbing into the crowns of the overstory trees. A variety of machines have been designed to mulch, shred, or chop standing vegetation to clear...

  10. Final Environmental Assessment for Maintaining the Rim Canal at Avon Park Air Force Range, Florida

    DTIC Science & Technology

    2011-02-01

    Alternative would improve safety by more efficiently draining water off the runways and taxiways. Soil disturbance within the canal would temporarily...taxiways. Soil disturbance within the canal would temporarily attract foraging birds and increase the BASH hazard. The mulch and sediment mixture placed...maintain the canal. The Preferred Alternative would improve safety by more efficiently draining water off the runways and taxiways. Soil

  11. Cypress facts for the South, 2010—forest inventory and analysis factsheet

    Treesearch

    John G. Greis; Mark J. Brown; James W. Bentley

    2012-01-01

    With the expansion of markets for cypress mulch, continued interest in cypress for use in construction and furniture manufacturing, and its prominence as a component of the South’s forested wetlands, it is important to understand the status of this uniquely southern resource. This factsheet is intended to provide a brief look at the geographic occurrence and extent of...

  12. Library Orientation Transformation: From Paper Map to Augmented Reality

    ERIC Educational Resources Information Center

    Mulch, Beth Ebenstein

    2014-01-01

    In this article, high school librarian Beth Ebenstein Mulch describes how she used iPads to introduce students at T. C. Williams High School (Alexandria, Virginia) to the school library. Her goal was for the library to come to life in front of new students and for them to learn from peers about all the great resources and services their library…

  13. Environmental Assessment for Construction of Storm Water Detection System at Storm Water Outfall #3, Malmstrom Air Force Base, Montana

    DTIC Science & Technology

    2007-08-01

    germination success for grass (i.e. hydro-mulch seeding ); 6. To prevent overloading of the aforementioned water containment methods, this work shall...12. DISTRIBUTION/ AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The United...was made available for a 30-day federal, state, and local agency and public review and comment period through publication of a notice of

  14. Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents

    DTIC Science & Technology

    2004-09-01

    high - fructose corn syrup (HFCS), whey, bark mulch and compost, chitin, and gaseous hydrogen. Table 1.2...Benzoate Injection wells or circulation systems Dissolved in water Continuous to monthly Molasses, High Fructose Corn Syrup Injection wells...to 0.35 High (> 100) Refined Sugars ( high fructose corn syrup ) 0.25 to 0.30 Moderate (> 20) Soluble substrates may be used for source

  15. Accelerated In-vessel Composting for Household Waste

    NASA Astrophysics Data System (ADS)

    Bhave, Prashant P.; Joshi, Yadnyeshwar S.

    2017-12-01

    Composting at household level will serve as a viable solution in managing and treating the waste efficiently. The aim of study was to design and study household composting reactors which would treat the waste at source itself. Keeping this aim in mind, two complete mix type aerobic reactors were fabricated. A comparative study between manually operated and mechanically operated reactor was conducted which is the value addition aspect of present study as it gives an effective option of treatment saving the time and manpower. Reactors were loaded with raw vegetable waste and cooked food waste i.e. kitchen waste for a period of 30 days after which mulch was allowed to mature for 10 days. Mulch was analyzed for its C/N ratio, nitrate, phosphorous, potassium and other parameters to determine compost quality, every week during its period of operation. The results showed that compost obtained from both the reactors satisfied almost all compost quality criteria as per CPHEEO manual on municipal solid waste management and thus can be used as soil amendment to increase the fertility of soil.In terms of knowledge contribution, this study puts forth an effective way of decentralized treatment.

  16. Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland.

    PubMed

    Nivala, J; Hoos, M B; Cross, C; Wallace, S; Parkin, G

    2007-07-15

    A pilot-scale subsurface-flow constructed wetland was installed at the Jones County Municipal Landfill, near Anamosa, Iowa, in August 1999 to demonstrate the use of constructed wetlands as a viable low-cost treatment option for leachate generated at small landfills. The system was equipped with a patented wetland aeration process to aid in removal of organic matter and ammonia nitrogen. The high iron content of the leachate caused the aeration system to cease 2 years into operation. Upon the installation of a pretreatment chamber for iron removal and a new aeration system, treatment efficiencies dramatically improved. Seasonal performance with and without aeration is reported for 5-day biochemical oxygen demand (BOD(5)), chemical oxygen demand (COD), ammonia nitrogen (NH(4)-N), and nitrate nitrogen (NO(3)-N). Since winter air temperatures in Iowa can be very cold, a layer of mulch insulation was installed on top of the wetland bed to keep the system from freezing. When the insulation layer was properly maintained (either through sufficient litterfall or replenishing the mulch layer), the wetland sustained air temperatures of as low as -26 degrees C without freezing problems.

  17. Deep convolutional neural network for classifying Fusarium wilt of radish from unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Ha, Jin Gwan; Moon, Hyeonjoon; Kwak, Jin Tae; Hassan, Syed Ibrahim; Dang, Minh; Lee, O. New; Park, Han Yong

    2017-10-01

    Recently, unmanned aerial vehicles (UAVs) have gained much attention. In particular, there is a growing interest in utilizing UAVs for agricultural applications such as crop monitoring and management. We propose a computerized system that is capable of detecting Fusarium wilt of radish with high accuracy. The system adopts computer vision and machine learning techniques, including deep learning, to process the images captured by UAVs at low altitudes and to identify the infected radish. The whole radish field is first segmented into three distinctive regions (radish, bare ground, and mulching film) via a softmax classifier and K-means clustering. Then, the identified radish regions are further classified into healthy radish and Fusarium wilt of radish using a deep convolutional neural network (CNN). In identifying radish, bare ground, and mulching film from a radish field, we achieved an accuracy of ≥97.4%. In detecting Fusarium wilt of radish, the CNN obtained an accuracy of 93.3%. It also outperformed the standard machine learning algorithm, obtaining 82.9% accuracy. Therefore, UAVs equipped with computational techniques are promising tools for improving the quality and efficiency of agriculture today.

  18. Responses of soil biota to organic amendments in stripmine spoils in Northwestern New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkins, N.Z.; Parker, L.W.; Aldon, E.

    The effects of organic amendments and topsoiling on the soil biota and decomposition were examined in order to evaluate the relative efficacy of the amendments in restarting soil processes. Decomposition of barley straw (Hordeum vulgare) and populations of soil biota on strip coal-mine spoils in northwestern New Mexico were studied. The spoils had been amended with straw mulch, bark, topsoil, or no organic additives. Decomposition rates were highest in the unmined area and the bark, amended spoils, and lowest on the topsoil amendment and unamended spoil. Few differences were observed in the populations of soil microflora. Where differences were observed,more » the bark-amended spoils had the highest populations and biomass. Soil microflora activity, as indicated by decomposition rates, was enhanced by bark amendment. Soil microfaunal populations were highest on the bark-amended spoils and unmined soil. Important soil mites (soil Acari), the oribatids, were found only in the bark-amended spoils and the unmined soils. These studies suggest that addition of selected organic amendments (bark) to mine spoils may be as effective in developing a soil as the more expensive topsoil/mulch procedures currently used in reclamation procedures. 25 references.« less

  19. Plant Mulches Can Help Weed Management in Ukraine

    USDA-ARS?s Scientific Manuscript database

    Producers in the United States are interested in restoring the health of their soils to improve crop production. Decades of tillage have severely damaged soil structure and functioning. Eliminating tillage from production systems has repaired some of this damage to soil. Producers and scientists ...

  20. Co-pyrolyzing plastic mulch waste with animal manures

    USDA-ARS?s Scientific Manuscript database

    Pyrolyzing various livestock and agricultural wastes produces power and value-added byproducts. It also substantially reduces ultimate waste volume to be disposed of and improves soil fertility and promotes carbon sequestration via soil application of biochar. Researchers found that manure-derived ...

  1. 7 CFR 3201.56 - Mulch and compost materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... protective covering placed over the soil, primarily to keep down weeds and to improve the appearance of landscaping. Compost is the aerobically decomposed remnants of organic materials used in gardening and agriculture as a soil amendment, and commercially by the landscaping and container nursery industries. (b...

  2. 7 CFR 3201.56 - Mulch and compost materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... protective covering placed over the soil, primarily to keep down weeds and to improve the appearance of landscaping. Compost is the aerobically decomposed remnants of organic materials used in gardening and agriculture as a soil amendment, and commercially by the landscaping and container nursery industries. (b...

  3. 7 CFR 2902.56 - Mulch and compost materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... covering placed over the soil, primarily to keep down weeds and to improve the appearance of landscaping. Compost is the aerobically decomposed remnants of organic materials used in gardening and agriculture as a soil amendment, and commercially by the landscaping and container nursery industries. (b) Minimum...

  4. 7 CFR 3201.56 - Mulch and compost materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... protective covering placed over the soil, primarily to keep down weeds and to improve the appearance of landscaping. Compost is the aerobically decomposed remnants of organic materials used in gardening and agriculture as a soil amendment, and commercially by the landscaping and container nursery industries. (b...

  5. Treatment of RDX & HMX Plumes Using Mulch Biowalls

    DTIC Science & Technology

    2008-08-01

    Classification TAL Target Analyte List TCLP Toxicity Characteristic Leachate Procedure TNB 1,3,5-Trinitobenzene TNT 2,4,6-Trinitrotoluene TNX...active phytoremediation process in the source area (i.e., the former Pink Water pond area) that might already be contributing dissolved TOC...Technical Report i. Presence of other remediation technologies in the immediate vicinity No 4 No Yes; active phytoremediation in Pink

  6. Final Environmental Assessment for the Military Housing Privatization Initiative (MHPI) Whiteman Air Force Base, Missouri

    DTIC Science & Technology

    2010-05-01

    implementing best management practices (BMPs). The SWPPP outlines several BMPs such as permanent seeding, mulching, silt fence, straw barrier, filter strips...The DoD banned LBP use in 1978. Exposure to lead is usually through inhalation during renovation and demolition activities or through ingestion of...for Hazardous Air Pollutants (NESHAP), which requires all suspect material (anything other than wood, glass, plastic , metal) to be assumed to be

  7. Environmental Assessment, Repair of the Dam at Non-Potable Reservoir #1, United States Air Force Academy, Colorado

    DTIC Science & Technology

    2015-08-01

    crimping alone is insufficient. Hydro-mulch shall be applied using a color dye and the manufacturer’s recommended rate of an organic tackifier. D...drainage areas where erosion is probable. All erosion control blanket shall be 100% biodegradable , net- free, wood fiber (excelsior) or coconut...Manufactured biodegradable stakes (6-inch minimum) or wooden stakes (8-inch minimum) shall be used to anchor any erosion materials; metal staples

  8. Effective mitigation of debris flows at Lemon Dam, La Plata County, Colorado

    USGS Publications Warehouse

    deWolfe, V.G.; Santi, P.M.; Ey, J.; Gartner, J.E.

    2008-01-01

    To reduce the hazards from debris flows in drainage basins burned by wildfire, erosion control measures such as construction of check dams, installation of log erosion barriers (LEBs), and spreading of straw mulch and seed are common practice. After the 2002 Missionary Ridge Fire in southwest Colorado, these measures were implemented at Knight Canyon above Lemon Dam to protect the intake structures of the dam from being filled with sediment. Hillslope erosion protection measures included LEBs at concentrations of 220-620/ha (200-600% of typical densities), straw mulch was hand spread at concentrations up to 5.6??metric tons/hectare (125% of typical densities), and seeds were hand spread at 67-84??kg/ha (150% of typical values). The mulch was carefully crimped into the soil to keep it in place. In addition, 13 check dams and 3 debris racks were installed in the main drainage channel of the basin. The technical literature shows that each mitigation method working alone, or improperly constructed or applied, was inconsistent in its ability to reduce erosion and sedimentation. At Lemon Dam, however, these methods were effective in virtually eliminating sedimentation into the reservoir, which can be attributed to a number of factors: the density of application of each mitigation method, the enhancement of methods working in concert, the quality of installation, and rehabilitation of mitigation features to extend their useful life. The check dams effectively trapped the sediment mobilized during rainstorms, and only a few cubic meters of debris traveled downchannel, where it was intercepted by debris racks. Using a debris volume-prediction model developed for use in burned basins in the Western U.S., recorded rainfall events following the Missionary Ridge Fire should have produced a debris flow of approximately 10,000??m3 at Knight Canyon. The mitigation measures, therefore, reduced the debris volume by several orders of magnitude. For comparison, rainstorm

  9. Effective mitigation of debris flows at Lemon Dam, La Plata County, Colorado

    NASA Astrophysics Data System (ADS)

    deWolfe, Victor G.; Santi, Paul M.; Ey, J.; Gartner, Joseph E.

    2008-04-01

    To reduce the hazards from debris flows in drainage basins burned by wildfire, erosion control measures such as construction of check dams, installation of log erosion barriers (LEBs), and spreading of straw mulch and seed are common practice. After the 2002 Missionary Ridge Fire in southwest Colorado, these measures were implemented at Knight Canyon above Lemon Dam to protect the intake structures of the dam from being filled with sediment. Hillslope erosion protection measures included LEBs at concentrations of 220-620/ha (200-600% of typical densities), straw mulch was hand spread at concentrations up to 5.6 metric tons/hectare (125% of typical densities), and seeds were hand spread at 67-84 kg/ha (150% of typical values). The mulch was carefully crimped into the soil to keep it in place. In addition, 13 check dams and 3 debris racks were installed in the main drainage channel of the basin. The technical literature shows that each mitigation method working alone, or improperly constructed or applied, was inconsistent in its ability to reduce erosion and sedimentation. At Lemon Dam, however, these methods were effective in virtually eliminating sedimentation into the reservoir, which can be attributed to a number of factors: the density of application of each mitigation method, the enhancement of methods working in concert, the quality of installation, and rehabilitation of mitigation features to extend their useful life. The check dams effectively trapped the sediment mobilized during rainstorms, and only a few cubic meters of debris traveled downchannel, where it was intercepted by debris racks. Using a debris volume-prediction model developed for use in burned basins in the Western U.S., recorded rainfall events following the Missionary Ridge Fire should have produced a debris flow of approximately 10,000 m 3 at Knight Canyon. The mitigation measures, therefore, reduced the debris volume by several orders of magnitude. For comparison, rainstorm-induced debris

  10. Bacterial and fungal growth for monitoring the impact of wildfire combined or not with different soil stabilization treatments

    NASA Astrophysics Data System (ADS)

    Barreiro, Ana; Baath, Erland; Díaz-Raviña, Montserrat

    2015-04-01

    Soil stabilization techniques are rapidly gaining acceptance as efficient tool for reducing post-fire erosion. However, despite its interest, information concerning their impact on soil biota is scarce. We examined, under field conditions, the bacterial and fungal medium-term responses in a hillslope area located in Laza (NW Spain) affected by a high severity wildfire with the following treatments established by triplicate (4 x 20 m plots): unburnt control soil, burnt control soil, burnt soil with rye seeding and burnt soil with straw mulch. The bacterial and fungal growth, as well as respiration, were measured 4 years after fire and application of treatments using leucine incorporation for bacterial growth and acetate-in-ergosterol incorporation for fungal growth. The results showed that soil respiration and fungal biomass were negatively affected by fire, in the top layer (0-5 cm), while bacterial and fungal growth was stimulated. These microbial changes induced by fire were associated with modifications in organic matter (50% reduction in C content) and soil pH (increase of 0.5-0.9 units). Thus, the results suggested that under acid environment (pH in water 3.5) post-fire conditions might have favoured both microbial groups, which is supported by the fact that estimated bacterial and fungal growth were positive and significant correlated with soil pH (range of 3.5-4.5). This contrast with the well-known reported investigations showing that bacteria rather than fungi proliferation occurred after prescribed fire or wildfire; it should be noticed, however, that soils with a higher pH than that in the present study were used. Our data also indicated that bacterial and fungal communities were not significantly affected by seeding and mulching treatments. The results highlighted the importance of pre-fire soil pH as key factor in determining the microbial response after fire. Acknowledgements. A. Barreiro is recipient of FPU grant from Spanish Ministry of Education

  11. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].

    PubMed

    Zhang, Qian-qian; Wang, Fei; Liu, Tao; Chu, Gui-xin

    2015-09-01

    Brackish water irrigation utilization is an important way to alleviate water resource shortage in arid region. A field-plot experiment was set up to study the impact of the salinity level (0.31, 3.0 or 5.0 g · L(-1) NaCl) of irrigated water on activities of soil catalase, invertase, β-glucosidase, cellulase and polyphenoloxidase in drip irrigation condition, and the responses of soil CO2 flux and organic matter decomposition were also determined by soil carbon dioxide flux instrument (LI-8100) and nylon net bag method. The results showed that in contrast with fresh water irrigation treatment (CK), the activities of invertase, β-glucosidase and cellulase in the brackish water (3.0 g · L(-1)) irrigation treatment declined by 31.7%-32.4%, 29.7%-31.6%, 20.8%-24.3%, respectively, while soil polyphenoloxidase activity was obviously enhanced with increasing the salinity level of irrigated water. Compared to CK, polyphenoloxidase activity increased by 2.4% and 20.5%, respectively, in the brackish water and saline water irrigation treatments. Both soil microbial biomass carbon and microbial quotient decreased with increasing the salinity level, whereas, microbial metabolic quotient showed an increasing tendency with increasing the salinity level. Soil CO2 fluxes in the different treatments were in the order of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) ≥ saline water irrigation (5.0 g · L(-1)). Moreover, CO2 flux from plastic film mulched soil was always much higher than that from no plastic film mulched soil, regardless the salinity of irrigated water. Compared with CK, soil CO2 fluxes in the saline water and brackish water treatments decreased by 29.8% and 28.2% respectively in the boll opening period. The decomposition of either cotton straw or alfalfa straw in the different treatments was in the sequence of CK (0.31 g · L(-1)) > brackish water irrigation (3.0 g · L(-1)) > saline water treatment (5.0 g · L(-1)). The organic matter

  12. Salty bark as a soil amendment

    Treesearch

    W.B. Bollen

    1971-01-01

    Bark from Douglas-fir logs floated in sea water contained 0.75 to 1.94 percent salt (NaCl). Leaching by natural and simulated rainfall and by soaking readily removed this salt. Bush bean and tomato plants were grown in the greenhouse on a sandy loam soil to which bark of three different proportions of salt was applied as a mulch and as an incorporation at the rate of...

  13. Controlling herbaceous competition in pasture planted with loblolly pine seedlings. Forest Service research note

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haywood, J.D.

    1995-09-01

    Three treatments designed to control herbaceous vegetation competing with loblolly pine (Pinus taeda L.) seedlings planted in grazed and ungrazed pasture were tested. Effects of the treatments on seedling survival and growth during the first 3 years after planting were determined. The treatments were directed application of herbicides (glyphosate in the first 2 years and hexazinone in the third year), rotary mowing, and mulching with pine straw around individual pine seedlings.

  14. AmeriFlux US-Ro6 Rosemount I18_North

    DOE Data Explorer

    Baker, John [USDA-ARS; Griffis, Tim [University of Minnesota

    2018-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ro6 Rosemount I18_North. Site Description - This tower is located in a farm field farmed in accordance with a conservation type agricultural practice in the region: a corn/soybean/clover (living mulch/cover crop) rotation with chisel plow tillage in the fall following corn harvest and in the spring following soybeans.

  15. Biological denitrification in marine aquaculture systems: A multiple electron donor microcosm study.

    PubMed

    He, Qiaochong; Zhang, Dongqing; Main, Kevan; Feng, Chuanping; Ergas, Sarina J

    2018-05-08

    There is a lack of information on denitrification of saline wastewaters, such as those from marine recirculating aquaculture systems (RAS), ion exchange brines and wastewater in areas where sea water is used for toilet flushing. In this study, side-by-side microcosms were used to compare methanol, fish waste (FW), wood chips, elemental sulfur (S 0 ) and a combination of wood chips and sulfur for saline wastewater denitrification. The highest denitrification rate was obtained with methanol (23.4 g N/(m 3 ·d)), followed by FW (4.5 g N/(m 3 ·d)), S 0 (3.5 g N/(m 3 ·d)), eucalyptus mulch (2.6 g N/(m 3 ·d)), and eucalyptus mulch with sulfur (2.2 g N/(m 3 ·d)). Significant differences were observed in denitrification rate for different wood species (pine > oak ≫ eucalyptus) due to differences in readily biodegradable organic carbon released. A pine wood-sulfur heterotrophic-autotrophic denitrification (P-WSHAD) process provided a high denitrification rate (7.2-11.9 g N/(m 3 ·d)), with lower alkalinity consumption and sulfate generation than sulfur alone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Seasonal Changes Affect Root Prunasin Concentration in Prunus serotina and Override Species Interactions between P. serotina and Quercus petraea.

    PubMed

    Robakowski, Piotr; Bielinis, Ernest; Stachowiak, Jerzy; Mejza, Iwona; Bułaj, Bartosz

    2016-03-01

    The allocation of resources to chemical defense can decrease plant growth and photosynthesis. Prunasin is a cyanogenic glycoside known for its role in defense against herbivores and other plants. In the present study, fluctuations of prunasin concentrations in roots of Prunus serotina seedlings were hypothesized to be: (1) dependent on light, air temperature, and humidity; (2) affected by competition between Prunus serotina and Quercus petraea seedlings, with mulching with Prunus serotina leaves; (3) connected with optimal allocation of resources. For the first time, we determined prunasin concentration in roots on several occasions during the vegetative season. The results indicate that seasonal changes have more pronounced effects on prunasin concentration than light regime and interspecific competition. Prunus serotina invested more nitrogen in the synthesis of prunasin under highly restricted light conditions than in higher light environments. In full sun, prunasin in roots of Prunus serotina growing in a monoculture was correlated with growth and photosynthesis, whereas these relationships were not found when interspecific competition with mulching was a factor. The study demonstrates that prunasin concentration in Prunus serotina roots is the result of species-specific adaptation, light and temperature conditions, ontogenetic shift, and, to a lesser extent, interspecific plant-plant interactions.

  17. Restoring lepidopteran diversity in a tropical dry forest: relative importance of restoration treatment, tree identity and predator pressure

    PubMed Central

    Solis-Gabriel, Lizet; Mendoza-Arroyo, Wendy

    2017-01-01

    Tropical dry forests (TDFs) have been widely transformed by human activities worldwide and the ecosystem services they provide are diminishing. There has been an urgent call for conservation and restoration of the degraded lands previously occupied by TDFs. Restoration experiences aim to recover species diversity and ecological functions. Different restoration strategies have been used to maximize plant performance including weeding, planting or using artificial mulching. In this investigation, we evaluated whether different restoration practices influence animal arrival and the reestablishment of biotic interactions. We particularly evaluated lepidopteran larvae diversity and caterpillar predation on plants established under different restoration treatments (mulching, weeding and control) in the Pacific West Coast of México. This study corroborated the importance of plant host identity for lepidopteran presence in a particular area. Lepidopteran diversity and herbivory rates were not affected by the restoration treatment but they were related to tree species. In contrast, caterpillar predation marks were affected by restoration treatment, with a greater number of predation marks in control plots, while caterpillar predation marks among plant species were not significantly different. This study highlights the importance of considering the introduction of high plant species diversity when planning TDF restoration to maximize lepidopteran diversity and ecosystem functioning. PMID:28560101

  18. Productivity and sustainability of rainfed wheat-soybean system in the North China Plain: results from a long-term experiment and crop modelling

    PubMed Central

    Qin, Wei; Wang, Daozhong; Guo, Xisheng; Yang, Taiming; Oenema, Oene

    2015-01-01

    A quantitative understanding of yield response to water and nutrients is key to improving the productivity and sustainability of rainfed cropping systems. Here, we quantified the effects of rainfall, fertilization (NPK) and soil organic amendments (with straw and manure) on yields of a rainfed wheat-soybean system in the North China Plain (NCP), using 30-years’ field experimental data (1982–2012) and the simulation model-AquaCrop. On average, wheat and soybean yields were 5 and 2.5 times higher in the fertilized treatments than in the unfertilized control (CK), respectively. Yields of fertilized treatments increased and yields of CK decreased over time. NPK + manure increased yields more than NPK alone or NPK + straw. The additional effect of manure is likely due to increased availability of K and micronutrients. Wheat yields were limited by rainfall and can be increased through soil mulching (15%) or irrigation (35%). In conclusion, combined applications of fertilizer NPK and manure were more effective in sustaining high crop yields than recommended fertilizer NPK applications. Manure applications led to strong accumulation of NPK and relatively low NPK use efficiencies. Water deficiency in wheat increased over time due to the steady increase in yields, suggesting that the need for soil mulching increases. PMID:26627707

  19. Measurement of the effect of playground surface materials on hand impact forces during upper limb fall arrests.

    PubMed

    Choi, Woochol J; Kaur, Harjinder; Robinovitch, Stephen N

    2014-04-01

    Distal radius fractures are common on playgrounds. Yet current guidelines for the selection of playground surface materials are based only on protection against fall-related head injuries. We conducted "torso release" experiments to determine how common playground surface materials affect impact force applied to the hand during upper limb fall arrests. Trials were acquired for falls onto a rigid surface, and onto five common playground surface materials: engineered wood fiber, gravel, mulch, rubber tile, and sand. Measures were acquired for arm angles of 20 and 40 degrees from the vertical. Playground surface materials influenced the peak resultant and vertical force (P<.001), but not the peak horizontal force (P=.159). When compared with the rigid condition, peak resultant force was reduced 17% by sand (from 1039 to 864 N), 16% by gravel, 7% by mulch, 5% by engineered wood fiber, and 2% by rubber tile. The best performing surface provided only a 17% reduction in peak resultant force. These results help to explain the lack of convincing evidence from clinical studies on the effectiveness of playground surface materials in preventing distal radius fractures during playground falls, and highlight the need to develop playground surface materials that provide improved protection against these injuries.

  20. Restoring lepidopteran diversity in a tropical dry forest: relative importance of restoration treatment, tree identity and predator pressure.

    PubMed

    Solis-Gabriel, Lizet; Mendoza-Arroyo, Wendy; Boege, Karina; Del-Val, Ek

    2017-01-01

    Tropical dry forests (TDFs) have been widely transformed by human activities worldwide and the ecosystem services they provide are diminishing. There has been an urgent call for conservation and restoration of the degraded lands previously occupied by TDFs. Restoration experiences aim to recover species diversity and ecological functions. Different restoration strategies have been used to maximize plant performance including weeding, planting or using artificial mulching. In this investigation, we evaluated whether different restoration practices influence animal arrival and the reestablishment of biotic interactions. We particularly evaluated lepidopteran larvae diversity and caterpillar predation on plants established under different restoration treatments (mulching, weeding and control) in the Pacific West Coast of México. This study corroborated the importance of plant host identity for lepidopteran presence in a particular area. Lepidopteran diversity and herbivory rates were not affected by the restoration treatment but they were related to tree species. In contrast, caterpillar predation marks were affected by restoration treatment, with a greater number of predation marks in control plots, while caterpillar predation marks among plant species were not significantly different. This study highlights the importance of considering the introduction of high plant species diversity when planning TDF restoration to maximize lepidopteran diversity and ecosystem functioning.