Science.gov

Sample records for mullerian hoxa10 gene

  1. Regulation of CDX4 gene transcription by HoxA9, HoxA10, the Mll-Ell oncogene and Shp2 during leukemogenesis

    PubMed Central

    Bei, L; Shah, C; Wang, H; Huang, W; Platanias, L C; Eklund, E A

    2014-01-01

    Cdx and Hox proteins are homeodomain transcription factors that regulate hematopoiesis. Transcription of the HOX and CDX genes decreases during normal myelopoiesis, but is aberrantly sustained in leukemias with translocation or partial tandem duplication of the MLL1 gene. Cdx4 activates transcription of the HOXA9 and HOXA10 genes, and HoxA10 activates CDX4 transcription. The events that break this feedback loop, permitting a decreased Cdx4 expression during normal myelopoiesis, were previously undefined. In the current study, we find that HoxA9 represses CDX4 transcription in differentiating myeloid cells, antagonizing activation by HoxA10. We determine that tyrosine phosphorylation of HoxA10 impairs transcriptional activation of CDX4, but tyrosine phosphorylation of HoxA9 facilitates repression of this gene. As HoxA9 and HoxA10 are phosphorylated during myelopoiesis, this provides a mechanism for differentiation stage-specific Cdx4 expression. HoxA9 and HoxA10 are increased in cells expressing Mll-Ell, a leukemia-associated MLL1 fusion protein. We find that Mll-Ell induces a HoxA10-dependent increase in Cdx4 expression in myeloid progenitor cells. However, Cdx4 decreases in a HoxA9-dependent manner on exposure of Mll-Ell-expressing cells to differentiating cytokines. Leukemia-associated, constitutively active mutants of Shp2 block cytokine-induced tyrosine phosphorylation of HoxA9 and HoxA10. In comparison with myeloid progenitor cells that are expressing Mll-Ell alone, we find increased CDX4 transcription and Cdx4 expression in cells co-expressing Mll-Ell plus constitutively active Shp2. Increased Cdx4 expression is sustained on exposure of these cells to differentiating cytokines. Our results identify a mechanism for increased and sustained CDX4 transcription in leukemias co-overexpressing HoxA9 and HoxA10 in combination with constitutive activation of Shp2. This is clinically relevant, because MLL1 translocations and constitutive Shp2 activation co-exist in

  2. Mixed lineage leukaemia histone methylases 1 collaborate with ERα to regulate HOXA10 expression in AML

    PubMed Central

    Yao, Jie; Fang, Li-Chao; Yang, Zai-Lin; Huang, Hui; Li, Yan; Deng, Jun; Zheng, Junsong

    2014-01-01

    HOXA10, a homeobox-containing gene involved in definitive haematopoiesis, which implicated in the pathogenesis of AML (acute myeloid leukaemia), has been studied extensively. But the regulatory mechanism that drives HOXA10 expression is still unclear. In the present paper, HOXA10 regulated by MLL1 (mixed lineage leukaemia histone methylase 1) with an epigenetic way has been demonstrated. The HOXA10 promoter contains several EREs (oestrogen response elements), including ERE1 and ERE2, which are close to the transcription start site, and are associated with E2-mediated activation of HOXA10. It has been shown that knockdown of the ERα (oestrogen receptor α) suppresses E2-mediated activation of HOXA10. Similarly, knockdown of MLL1 suppresses activation of HOXA10 and is bound to the ERE of HOXA10 promoter in an E2-dependent manner by forming complex with ERα. Knockdown of ERα affects the E2-dependent binding of MLL1 into HOXA10 EREs, suggesting critical roles of ERα in recruiting MLL on the HOXA10 promoter. More interestingly, the methylation status of histone protein H3K4 (H3 at lysine 4) with E2 is much higher than without E2 treatment in leukaemia cell. On the contrary, the methylation status of HOXA10 promoter with E2 treatment is much lower, which elevate the HOXA10 expression. Moreover, with ERα knockdown, the H3K4 methylation level is also decrease in myeloid cell. Overall, it has been clearly demonstrated that HOXA10 is transcriptionally regulated by MLL1, which, in coordination with ERα, plays a critical role in this process with epigenetic way and suggests a potential anti-E2 treatment of AML. PMID:25307539

  3. [Expression of HoxA10 in acute leukemia and its significance].

    PubMed

    Huang, Ying; Li, Wei-Jia; Wei, Cai-Xia; Zhou, Zhi; Nie, Bo

    2005-12-01

    To investigate the expression of HoxA(10) mRNA in acute leukemia patients and its significance, HoxA(10) level was detected by reverse transcription polymerase chain reaction (RT-PCR) in 50 patients with acute leukemias, 7 healthy volunteers and 3 patients with ITP (idiopathic thrombocytopenic purpura). The regularity of the expression of HoxA(10) gene in acute leukemia and the relationship between HoxA(10) level and the prognosis of leukemia was explored. The results showed that HoxA(10) was expressed in all types of acute myelogenous leukemia; HoxA(10) message was also observed in acute lymphoblastic leukemia patients and part of control groups. 3 normal donors were found not to express HoxA(10). The level of HoxA(10) mRNA of acute myelogenous leukemia patients was significantly higher than that of acute lymphoblastic leukemia patients and controls (P < 0.01). HoxA(10) gene appeared to be more strongly expressed in AML-M(1) and -M(2) subtypes than in AML-M(4) and -M(5) subtypes, and the gene was notable high expressed in acute promyelocytic leukemia. The number of blast and promyeloid cells in the bone marrow was positive related with the level of HoxA (r = 0.635, P < 0.01). The level of HoxA(10) of 9 non-responsive patients was higher than that of 8 remission patients, but there was no significant difference between them (P = 0.258). HoxA(10) was overexpressed in acute myelogenous leukemia. It is concluded that HoxA(10) is a major transcription factor regulating hematopoiesis and a mark to differentiate lymphoid leukemia and myelogenous leukemia, but not a specific gene of cancer. The level of HoxA(10) is related with load of leukemic cells and curative effect, and can affect occurrence and development of leukemia in combination with many cytokines, HoxA(10) may facilitate the leukemia progression with another cofactors. PMID:16403259

  4. HOXA10 controls proliferation, migration and invasion in oral squamous cell carcinoma

    PubMed Central

    Carrera, Manoela; Bitu, Carolina C; de Oliveira, Carine Ervolino; Cervigne, Nilva K; Graner, Edgard; Manninen, Aki; Salo, Tuula; Coletta, Ricardo D

    2015-01-01

    Although HOX genes are best known for acting in the regulation of important events during embryogenesis, including proliferation, differentiation and migration, alterations in their expression patterns have been frequently described in cancers. In previous studies we analyzed the expression profile of the members of the HOX family of homeobox genes in oral samples of normal mucosa and squamous cell carcinoma (OSCC) and identified differently expressed genes such as HOXA10. The present study aimed to validate the increased expression of HOXA10 in OSCCs, and to investigate the effects arising from its knockdown in OSCC cells. The levels of HOXA10 mRNA were determined in human OSCC samples and cell lines by quantitative PCR, and HOXA10-mediated effects on proliferation, apoptosis, adhesion, epithelial-mesenchymal transition (EMT), migration and invasion were studied in HSC-3 tongue carcinoma cells by using retrovirus-mediated RNA interference. Higher expression of HOXA10 mRNA was observed in OSCC cell lines and in tumor tissues compared to normal controls. HOXA10 knockdown significantly reduced the proliferation of the tumor cells which was accompanied by increased levels of p21. HOXA10 silencing also significantly induced the expression of EMT markers and enhanced the adhesion, migration and invasion of HSC-3 cells. No effects on cell death were observed after HOXA10 knockdown. The results of the current study confirm the overexpression of HOXA10 in OSCCs, and further demonstrate that its expression is functionally associated with several important biological processes related to oral tumorigenesis, such as proliferation, migration and invasion. PMID:26097543

  5. Activation of matrix metalloproteinase-26 by HOXA10 promotes embryo adhesion in vitro.

    PubMed

    Jiang, Yue; Yan, Guijun; Zhang, Hui; Shan, Huizhi; Kong, Chengcai; Yan, Qiang; Xue, Bai; Diao, Zhenyu; Hu, Yali; Sun, Haixiang

    2014-03-14

    Successful embryonic implantation requires an effective maternal-embryonic molecular dialogue. However, the detailed mechanisms of epithelial-embryo adhesion remain poorly understood. Here, we report that matrix metalloproteinase-26 (MMP-26) is a novel downstream target gene of homeobox a 10 (HOXA10) in human endometrial cells. HOXA10 binds directly to a conserved TTAT unit (-442 to -439) located within the 5' regulatory region of the MMP-26 gene and regulates the expression and secretion of MMP-26 in a concentration-dependent manner. Moreover, the adenovirus-mediated overexpression of MMP-26 in Ishikawa cells markedly increased BeWo spheroid adhesion. An antibody blocking assay further demonstrated that the promotion of BeWo spheroid adhesion by HOXA10 and MMP-26 was significantly inhibited by pre-treatment with a specific antibody against MMP-26. These results demonstrate that the HOXA10-mediated expression of MMP-26 promotes embryo adhesion during the process of embryonic implantation. PMID:24565841

  6. Effect of intramural myomectomy on endometrial HOXA10 and HOXA11 mRNA expression at the time of implantation window

    PubMed Central

    Alizadeh, Zohreh; Faramarzi, Shamila; Saidijam, Massoud; Alizamir, Tahereh; Esna-Ashari, Farzaneh; Shabab, Nooshin; Farimani Sanoee, Marzieh

    2013-01-01

    Background: HOXA11 and HOXA10 are expressed in endometrium throughout the menstrual cycle and show a dramatic increase during the mid-luteal phase at the time of implantation. The expression of these genes is decreased in women with myomas. Objective: To determine whether myomectomy would reverse HOXA11 and HOXA10 expression, we evaluated the transcript levels of these genes in the endometria of patients before and after myomectomy. Materials and Methods: Expression of HOXA11 and HOXA10 were examined prospectively during the midluteal phase in endometrium obtained from infertile women (n=12) with myoma before and three months after myomectomy. Endometrial HOXA11 and HOXA10 expression were evaluated using quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Results: Endometrial HOXA11 and HOXA10 mRNAs expression levels (normalized to 18SrRNA) were increased insignificantly in endometrium of patients after myomectomy (p=0.7 and p=0.15 respectively). Conclusion: The results suggest that the alteration in expression pattern of these genes could not account for some aspects of fertility after myomectomy. This article extracted from M.Sc. thesis. (Shamila Faramarzi) PMID:24639724

  7. Traditional Chinese Medicine, the Zishen Yutai Pill, Ameliorates Precocious Endometrial Maturation Induced by Controlled Ovarian Hyperstimulation and Improves Uterine Receptivity via Upregulation of HOXA10

    PubMed Central

    Gao, Qi; Han, Lu; Li, Xiumei; Cai, Xia

    2015-01-01

    Controlled ovarian hyperstimulation (COH) is widely used in assisted reproductive technology (ART), but it often leads to precocious maturation of the endometrium such that it impairs embryonic implantation and limits pregnancy rates. Previous studies have shown the traditional Chinese medicine, the Zishen Yutai pill (ZYP), to be effective in treatment of threatened as well as recurrent miscarriages, and it can improve embryonic implantation rates in patients undergoing IVF treatment. In the present study, the ZYP has been found to ameliorate precocious endometrial maturation in a mouse model of different COH. Molecular evaluations, real-time PCR, relative RT-PCR, Western blotting, and immunohistochemistry have indicated that the ZYP increased the expression of HOXA10, an important marker of uterine receptivity. Elevation of HOXA10 led to further upregulation of its target gene, integrin β3, and downregulation of EMX2, two additional markers of uterine receptivity. In this way, the ZYP may mitigate COH-induced precocious maturation of the endometrium and improve uterine receptivity by upregulating HOXA10. PMID:25792996

  8. Increased Engraftment of Human Short Term Repopulating Hematopoietic Cells in NOD/SCID/IL2rγnull Mice by Lentiviral Expression of NUP98-HOXA10HD

    PubMed Central

    Zhao, Huifen; Humphries, Keith; Persons, Derek A.

    2016-01-01

    Techniques to expand human hematopoietic stem cells ex-vivo could be beneficial to the fields of clinical hematopoietic stem cell transplantation and gene therapy targeted at hematopoietic stem cells. NUP98-HOXA10HD is a relatively newly discovered fusion gene that in mouse transplant experiments has been shown to increase numbers of hematopoietic stem cells. We evaluated whether this fusion gene could be used to expand engrafting human primitive CD34+ cells in an immunodeficient mouse model. Gene transfer was achieved using a lentiviral based vector. The engraftment of mobilized peripheral blood human CD34+ cells grown in culture for one week after gene transfer was evaluated 3–4 months after transplant and found to be 2–3 fold higher in the NUP98-HOXA10HD groups as compared to controls. These data suggest an expansive effect at least at the short term human repopulating cell level. Further evaluation in long term repopulating models and investment in a NUP98-HOXA10HD protein seems worthy of consideration. Additionally, the results here provide strong impetus to utilize NUP98-HOXA10HD as a tool to search for underlying genes and pathways involved in hematopoietic stem cell expansion that can be enhanced and have an even more potent expansive effect. PMID:26761813

  9. Genetic variants in anti-Mullerian hormone and anti-Mullerian hormone receptor genes and breast cancer risk in Caucasians and African Americans.

    PubMed

    Nan, Hongmei; Dorgan, Joanne F; Rebbeck, Timothy R

    2014-01-01

    Anti-Mullerian hormone (AMH) regulates ovarian folliculogenesis by signaling via its receptors, and elevated serum AMH levels are associated with an increased risk of breast cancer. No previous studies have examined the effects of genetic variants in AMH-related genes on breast cancer risk. We evaluated the associations of 62 single nucleotide polymorphisms (SNPs) in AMH and its receptor genes, including AMH type 1 receptor (ACVR1) and AMH type 2 receptor (AMHR2), with the risk of breast cancer in the Women's Insights and Shared Experiences (WISE) Study of Caucasians (346 cases and 442 controls), as well as African Americans (149 cases and 246 controls). Of the 62 SNPs evaluated, two showed a nominal significant association (P for trend < 0.05) with breast cancer risk among Caucasians, and another two among African Americans. The age-adjusted additive odds ratios (ORs) (95% confidence interval (95% CI)) of those two SNPs (ACVR1 rs12694937[C] and ACVR1 rs2883605[T]) for the risk of breast cancer among Caucasian women were 2.33 (1.20-4.52) and 0.68 (0.47-0.98), respectively. The age-adjusted additive ORs (95% CI) of those two SNPs (ACVR1 rs1146031[G] and AMHR2 functional SNP rs2002555[G]) for the risk of breast cancer among African American women were 0.63 (0.44-0.92) and 1.67 (1.10-2.53), respectively. However, these SNPs did not show significant associations after correction for multiple testing. Our findings do not provide strong supportive evidence for the contribution of genetic variants in AMH-related genes to the risk of developing breast cancer in either Caucasians or African Americans. PMID:25379134

  10. Genetic variants in anti-Mullerian hormone and anti-Mullerian hormone receptor genes and breast cancer risk in Caucasians and African Americans

    PubMed Central

    Nan, Hongmei; Dorgan, Joanne F; Rebbeck, Timothy R

    2014-01-01

    Anti-Mullerian hormone (AMH) regulates ovarian folliculogenesis by signaling via its receptors, and elevated serum AMH levels are associated with an increased risk of breast cancer. No previous studies have examined the effects of genetic variants in AMH-related genes on breast cancer risk. We evaluated the associations of 62 single nucleotide polymorphisms (SNPs) in AMH and its receptor genes, including AMH type 1 receptor (ACVR1) and AMH type 2 receptor (AMHR2), with the risk of breast cancer in the Women’s Insights and Shared Experiences (WISE) Study of Caucasians (346 cases and 442 controls), as well as African Americans (149 cases and 246 controls). Of the 62 SNPs evaluated, two showed a nominal significant association (P for trend < 0.05) with breast cancer risk among Caucasians, and another two among African Americans. The age-adjusted additive odds ratios (ORs) (95% confidence interval (95% CI)) of those two SNPs (ACVR1 rs12694937[C] and ACVR1 rs2883605[T]) for the risk of breast cancer among Caucasian women were 2.33 (1.20-4.52) and 0.68 (0.47-0.98), respectively. The age-adjusted additive ORs (95% CI) of those two SNPs (ACVR1 rs1146031[G] and AMHR2 functional SNP rs2002555[G]) for the risk of breast cancer among African American women were 0.63 (0.44-0.92) and 1.67 (1.10-2.53), respectively. However, these SNPs did not show significant associations after correction for multiple testing. Our findings do not provide strong supportive evidence for the contribution of genetic variants in AMH-related genes to the risk of developing breast cancer in either Caucasians or African Americans. PMID:25379134

  11. Knockdown of HOXA10 reverses the multidrug resistance of human chronic mylogenous leukemia K562/ADM cells by downregulating P-gp and MRP-1.

    PubMed

    Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Li, You-Jie; Wang, Hong; Xie, Shu-Yang

    2016-05-01

    Multidrug resistance (MDR) of leukemia cells is a major obstacle in chemotherapeutic treatment. The high expression and constitutive activation of P-glycoprotein (P-gp) and multidrug resistance protein-1 (MRP-1) have been reported to play a vital role in enhancing cell resistance to anticancer drugs in many tumors. The present study aimed to investigate the reversal of MDR by silencing homeobox A10 (HOXA10) in adriamycin (ADR)-resistant human chronic myelogenous leukemia (CML) K562/ADM cells by modulating the expression of P-gp and MRP-1. K562/ADM cells were stably transfected with HOXA10-targeted short hairpin RNA (shRNA). The results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis showed that the mRNA and protein expression of HOXA10 was markedly suppressed following transfection with a shRNA-containing vector. The sensitivity of the K562/ADM cells to ADR was enhanced by the silencing of HOXA10, due to the increased intracellular accumulation of ADR. The accumulation of ADR induced by the silencing of HOXA10 may be due to the downregulation of P-gp and MRP-1. Western blot analysis revealed that downregulating HOXA10 inhibited the protein expression of P-gp and MRP-1. Taken together, these results suggest that knockdown of HOXA10 combats resistance and that HOXA10 is a potential target for resistant human CML. PMID:27035504

  12. Control of regional decidualization in implantation: Role of FoxM1 downstream of Hoxa10 and cyclin D3

    PubMed Central

    Gao, Fei; Bian, Fenghua; Ma, Xinghong; Kalinichenko, Vladimir V.; Das, Sanjoy K.

    2015-01-01

    Appropriate regulation of regional uterine stromal cell decidualization in implantation, at the mesometrial triangle and secondary decidual zone (SDZ) locations, is critical for successful pregnancy, although the regulatory mechanisms remain poorly understood. In this regard, the available animal models that would specifically allow mechanistic analysis of site-specific decidualization are strikingly limited. Our study found that heightened expression of FoxM1, a Forkhead box transcription factor, is regulated during decidualization, and its conditional deletion in mice reveals failure of implantation with regional decidualization defects such as a much smaller mesometrial decidua with enlarged SDZ. Analysis of cell cycle progression during decidualization both in vivo and in vitro demonstrates that the loss of FoxM1 elicits diploid cell deficiency with enhanced arrests prior to mitosis and concomitant upregulation of polyploidy. We further showed that Hoxa10 and cyclin D3, two decidual markers, control transcriptional regulation and intra-nuclear protein translocation of FoxM1 in polyploid cells, respectively. Overall, we suggest that proper regional decidualization and polyploidy development requires FoxM1 signaling downstream of Hoxa10 and cyclin D3. PMID:26350477

  13. Mullerian Duct Cyst Causing Bladder Outlet Obstruction in a Patient with HNF-1β Gene Deletion

    PubMed Central

    Honore, Matthew; Fowler, Ross; Kiosoglous, Anthony J.

    2016-01-01

    A 24-year-old male was referred to a tertiary hospital for a possible prostatic abscess. The patient went into acute urinary retention. Transurethral drainage was performed. MRI pelvis three days post-operatively identified the prostatic cystic structure as a müllerian duct cyst. Several other phenotypical features were noted on examination as well as findings on investigations. From these diagnosis of hepatocyte nuclear factor-1β (HNF-1β) gene deletion was made. PMID:27390584

  14. AAV9 delivering a modified human Mullerian inhibiting substance as a gene therapy in patient-derived xenografts of ovarian cancer

    PubMed Central

    Pépin, David; Sosulski, Amanda; Zhang, Lihua; Wang, Dan; Vathipadiekal, Vinod; Hendren, Katherine; Coletti, Caroline M.; Yu, Aaron; Castro, Cesar M.; Birrer, Michael J.; Gao, Guangping; Donahoe, Patricia K.

    2015-01-01

    To improve ovarian cancer patient survival, effective treatments addressing chemoresistant recurrences are particularly needed. Mullerian inhibiting substance (MIS) has been shown to inhibit the growth of a stem-like population of ovarian cancer cells. We have recently engineered peptide modifications to human MIS [albumin leader Q425R MIS (LRMIS)] that increase production and potency in vitro and in vivo. To test this novel therapeutic peptide, serous malignant ascites from highly resistant recurrent ovarian cancer patients were isolated and amplified to create low-passage primary cell lines. Purified recombinant LRMIS protein successfully inhibited the growth of cancer spheroids in vitro in a panel of primary cell lines in four of six patients tested. Adeno-associated virus (AAV) -delivered gene therapy has undergone a clinical resurgence with a good safety profile and sustained gene expression. Therefore, AAV9 was used as a single i.p. injection to deliver LRMIS to test its efficacy in inhibiting growth of palpable tumors in patient-derived ovarian cancer xenografts from ascites (PDXa). AAV9-LRMIS monotherapy resulted in elevated and sustained blood concentrations of MIS, which significantly inhibited the growth of three of five lethal chemoresistant serous adenocarcinoma PDXa models without signs of measurable or overt toxicity. Finally, we tested the frequency of MIS type II receptor expression in a tissue microarray of serous ovarian tumors by immunohistochemistry and found that 88% of patients bear tumors that express the receptor. Taken together, these preclinical data suggest that AAV9-LRMIS provides a potentially well-tolerated and effective treatment strategy poised for testing in patients with chemoresistant serous ovarian cancer. PMID:26216943

  15. AAV9 delivering a modified human Mullerian inhibiting substance as a gene therapy in patient-derived xenografts of ovarian cancer.

    PubMed

    Pépin, David; Sosulski, Amanda; Zhang, Lihua; Wang, Dan; Vathipadiekal, Vinod; Hendren, Katherine; Coletti, Caroline M; Yu, Aaron; Castro, Cesar M; Birrer, Michael J; Gao, Guangping; Donahoe, Patricia K

    2015-08-11

    To improve ovarian cancer patient survival, effective treatments addressing chemoresistant recurrences are particularly needed. Mullerian inhibiting substance (MIS) has been shown to inhibit the growth of a stem-like population of ovarian cancer cells. We have recently engineered peptide modifications to human MIS [albumin leader Q425R MIS (LRMIS)] that increase production and potency in vitro and in vivo. To test this novel therapeutic peptide, serous malignant ascites from highly resistant recurrent ovarian cancer patients were isolated and amplified to create low-passage primary cell lines. Purified recombinant LRMIS protein successfully inhibited the growth of cancer spheroids in vitro in a panel of primary cell lines in four of six patients tested. Adeno-associated virus (AAV) -delivered gene therapy has undergone a clinical resurgence with a good safety profile and sustained gene expression. Therefore, AAV9 was used as a single i.p. injection to deliver LRMIS to test its efficacy in inhibiting growth of palpable tumors in patient-derived ovarian cancer xenografts from ascites (PDXa). AAV9-LRMIS monotherapy resulted in elevated and sustained blood concentrations of MIS, which significantly inhibited the growth of three of five lethal chemoresistant serous adenocarcinoma PDXa models without signs of measurable or overt toxicity. Finally, we tested the frequency of MIS type II receptor expression in a tissue microarray of serous ovarian tumors by immunohistochemistry and found that 88% of patients bear tumors that express the receptor. Taken together, these preclinical data suggest that AAV9-LRMIS provides a potentially well-tolerated and effective treatment strategy poised for testing in patients with chemoresistant serous ovarian cancer. PMID:26216943

  16. The Role of Hox Genes in Female Reproductive Tract Development, Adult Function, and Fertility.

    PubMed

    Du, Hongling; Taylor, Hugh S

    2016-01-01

    HOX genes convey positional identity that leads to the proper partitioning and adult identity of the female reproductive track. Abnormalities in reproductive tract development can be caused by HOX gene mutations or altered HOX gene expression. Diethylstilbestrol (DES) and other endocrine disruptors cause Müllerian defects by changing HOX gene expression. HOX genes are also essential regulators of adult endometrial development. Regulated HOXA10 and HOXA11 expression is necessary for endometrial receptivity; decreased HOXA10 or HOXA11 expression leads to decreased implantation rates. Alternation of HOXA10 and HOXA11 expression has been identified as a mechanism of the decreased implantation associated with endometriosis, polycystic ovarian syndrome, leiomyoma, polyps, adenomyosis, and hydrosalpinx. Alteration of HOX gene expression causes both uterine developmental abnormalities and impaired adult endometrial development that prevent implantation and lead to female infertility. PMID:26552702

  17. Persistent Mullerian Duct Syndrome with Transverse Testicular Ectopia

    PubMed Central

    Kumar, P. Naresh; Venugopala, Kandgal

    2015-01-01

    Persistent Mullerian duct syndrome (PMDS) is a rare form of male pseudohermaphroditism characterized by the presence of Mullerian duct structures in a normal male with 46, XY karyotype. Transverse testicular ectopia (TTE) is rare form of testicular ectopia in which two testes are located on one inguinal side. The opposite scrotum is empty. PMDS with TTE is rare. We report a case of PMDS with TTE discovered during surgery for a right inguinal hernia in a 25-year-old male. PMID:27512542

  18. Serous Ovarian Carcinoma Recurring as Malignant Mixed Mullerian Tumor

    PubMed Central

    Hale, Demir; Senem, Demiroz Ahu; Ovgu, Aydin; Hakan, Erenel; Sennur, Ilvan; Zerrin, Calay; Fuat, Demirkiran

    2015-01-01

    Only five cases of recurrence of malignant mixed Mullerian tumor (carcinosarcoma) from the ovarian carcinoma have been published in the literature to our knowledge. A 64-year-old woman first underwent a total abdominal hysterectomy and bilateral salpingo-oophorectomy because of pelvic mass. Histological diagnosis was serous papillary carcinoma of the left ovary. After six courses of chemotherapy, CA125 level returned to normal range. However, she had persistent multiple mediastinal and para-aortic lymphadenopathies in spite of additional six courses of chemotherapy. Then she underwent the second operation about 2 years after primary surgery. Multiple excisional biopsies were taken from subcutaneous tissue, over the bowels and the left external iliac artery. The histopathological diagnosis which was confirmed by immunohistochemical study was malignant mixed Mullerian tumor for all metastatic foci. A rare case of ovarian serous papillary carcinoma recurring as malignant mixed Mullerian tumor is reported. PMID:26713165

  19. Persistent mullerian duct syndrome presenting as retractile testis with hypospadias: A rare entity

    PubMed Central

    Vanikar, Aruna V; Nigam, Lovelesh A; Patel, Rashmi D; Kanodia, Kamal V; Suthar, Kamlesh S; Thakkar, Umang G

    2016-01-01

    A rare entity of persistent mullerian duct syndrome usually presents with a common symptom of undescended testis (UDT) or hernia. Male pseudo-hermaphroditism with persistent internal mullerian duct structures can present with a 46, XY karyotype with normal external genitalia and. It arises due to deficiency of anti-mullerian substance, resulting from reduced production/responsiveness to mullerian duct, leading to persistence of mullerian duct along with normal development of Wolffian duct structures. Presence of mullerian structure prevents testicular descent increasing the risk of testicular vanishing syndrome. The authors here report a case of 16 years old phenotypical male who came with retractile right sided testis and left side UDT in the urology out-patient department. Explorative laparotomy was performed and an ill-defined mass was excised and sent for histopathological examination. Histopathology revealed presence of mullerian structures. The serum testosterone level was normal, buccal smear cytology and karyotyping revealed a 46, XY genotype of the patient. PMID:27326401

  20. Persistent mullerian duct syndrome presenting as retractile testis with hypospadias: A rare entity.

    PubMed

    Vanikar, Aruna V; Nigam, Lovelesh A; Patel, Rashmi D; Kanodia, Kamal V; Suthar, Kamlesh S; Thakkar, Umang G

    2016-06-16

    A rare entity of persistent mullerian duct syndrome usually presents with a common symptom of undescended testis (UDT) or hernia. Male pseudo-hermaphroditism with persistent internal mullerian duct structures can present with a 46, XY karyotype with normal external genitalia and. It arises due to deficiency of anti-mullerian substance, resulting from reduced production/responsiveness to mullerian duct, leading to persistence of mullerian duct along with normal development of Wolffian duct structures. Presence of mullerian structure prevents testicular descent increasing the risk of testicular vanishing syndrome. The authors here report a case of 16 years old phenotypical male who came with retractile right sided testis and left side UDT in the urology out-patient department. Explorative laparotomy was performed and an ill-defined mass was excised and sent for histopathological examination. Histopathology revealed presence of mullerian structures. The serum testosterone level was normal, buccal smear cytology and karyotyping revealed a 46, XY genotype of the patient. PMID:27326401

  1. A rare case of Turner's syndrome presenting with Mullerian agenesis.

    PubMed

    Vaddadi, Suresh; Murthy, Ramana S V; Rahul, C H; Kumar, Vinod L

    2013-10-01

    Turner's syndrome also called as Ullrich Turner's syndrome, is a disease of unclear pathogenesis characterized by complete or partial absence of one sex chromosome, with or without cell line mosaicism in a phenotypic female with short stature. Various anomalies result in a constellation of features, of which the most disturbing is primary amenorrhea due to gonadal dysgenesis. Hormone therapy in these patients can often result in successful menstruation, and scope for subsequent pregnancy because of anatomically normal uterus and vagina. Coexisting Mullerian agenesis in these patients can jeopardize the chances of future pregnancy as they have associated structural abnormalities of the uterus and vagina. We report a rare case of middle-aged female with Turner's syndrome and Mullerian agenesis having absent secondary sexual characters and missing uterus with incompletely formed vagina. PMID:24672170

  2. Persistent Mullerian Duct Syndrome with Ovarian Endometriosis-A Rare Case Report

    PubMed Central

    Hippargi, Surekha B.; Mestri, Namrata B.; Mehrotra, Nikhil M.

    2016-01-01

    Persistent Mullerian Duct Syndrome (PMDS) is a rare form of internal male pseudohermaphroditism, characterised by presence of Mullerian duct derivatives in a genotypic and phenotypic male. It is caused by absence of anti- Mullerian hormone or defective functioning of its receptors. We report a case of 19-year-old cryptorchid male with history of orchideopexy who was clinically and radiologically diagnosed as left sided chylocele. A definitive diagnosis of PMDS with ovarian endometriosis was made on histopathological examination which is important for genetic counselling and to reduce complications like infertility and neoplastic transformation. We report this case of PMDS with ovary showing evidence of endometriosis for its rarity. PMID:27042476

  3. [A case of Mullerian duct cyst torsion combined with bladder cancer].

    PubMed

    Zhu, Fangpei; Ren, Qingling

    2016-06-28

    The diagnosis and treatment of a patient with Mullerian duct cyst torsion combined with bladder cancer were retrospectively analyzed. The patient received an open abdominal operation with right accessory resection plus pelvic adhesion release, and conducted microscopic examination for the bladder under general anesthesia. The results of histopathological examination confirmed the diagnosis of Mullerian duct cyst and papillary urothelial carcinoma at low level. After surgery, the patient received chemotherapy and follow-up observation, and all the indices for the patient were normal and no obvious discomfort. Although the final diagnosis of Mullerian duct cysts is based on histopathological examination, ultrasonography, CT scan and MRI can also detect it. Most of the Mullerian duct cysts are benign, and surgical excision is safe and effective. PMID:27374452

  4. Anti-mullerian hormon level and polycystic ovarian syndrome diagnosis

    PubMed Central

    Zadehmodarres, Shahrzad; Heidar, Zahra; Razzaghi, Zahra; Ebrahimi, Leili; Soltanzadeh, Kaveh; Abed, Farhang

    2015-01-01

    Background: Polycystic ovarian syndrome (PCOS) is a common endocrinopathy that accompanied with long term complications. The early diagnosis of this syndrome can prevent it. Objective: The aim was to determine the role of anti-mullerian hormon (AMH) in PCOS diagnosis and to find cut off level of it. Materials and Methods: In this cross sectional study, 117 women between 20-40 years old were participated in two groups: 60 PCOS women (based on Rotterdam criteria consensus) as the case group and 57 normal ovulatory women as the control group. In day 2-4 of cycle, transvaginal sonography was performed and serum hormonal level of AMH, luteinizing hormone (LH), follicle stimulating hormone (FSH), estradiol (E2), testosterone, fasting blood sugar (FBS), thyroid stimulating hormone (TSH), and prolactin (PRL) were measured in all of participants. For all of them score of hirsutism (base on Freeman-Galloway scoring) was determined. Results: There were statistically significant in irregular pattern of menstruation, AMH and FSH level, and presence of hirsutism between two groups. But regarding mean of age, body mass index, plasma level of PRL, TSH, LH, Testosterone, FBS, and E2 differences were not significant. Construction by ROC curve present 3.15 ng/ml as AMH cut off with 70.37% sensitivity and 77.36% specificity in order to PCOS diagnosis. Conclusion: AMH with cut off level of 3.15 ng/ml with sensitivity 70.37% and specificity 77.36% could use for early diagnosis of PCOS patients. PMID:26131012

  5. Development of an efficiently cleaved, bioactive, highly pure FLAG-tagged recombinant human Mullerian Inhibiting Substance

    PubMed Central

    Papakostas, Thanos D.; Pieretti-Vanmarcke, Rafael; Nicolaou, Fotini; Thanos, Aristomenis; Trichonas, George; Koufomichali, Xanthi; Anago, Kosisochukwu; Donahoe, Patricia K.; Teixeira, Jose; MacLaughlin, David T.; Vavvas, Demetrios

    2013-01-01

    Mullerian Inhibiting Substance (MIS), a member of the TGF-β family, causes regression of the Mullerian duct in male embryos, after binding to Mullerian Inhibiting Substance Receptor II (MISRII). It has also been extensively demonstrated that it can inhibit proliferation of various cancer cell lines such as ovarian, prostate, and breast cancer in vitro and in vivo. Hence, the availability of a recombinant, epitope tagged, bioactive MIS is important for the selection of patients for treatment and for probing novel molecular targets for MIS in various tissues. To this end, we have expressed a recombinant, internally FLAG-tagged form of hMIS with the tag (DYKDDDDK) immediately after the cleavage site (427–428) of MIS at the C-terminus with a modified dibasic cleavage motif sequence. We show that this construct results in a highly pure, endogenously processed (cleaved) FLAG MIS, that causes complete regression of the Mullerian Duct in an organ culture assay. In addition, purified FLAG MIS was able to bind and affinity purify both transfected and endogenous MIS type II receptor. The availability of this fully functional, epitope tagged form of MIS should facilitate scale-up for preclinical and clinical use and should also be used for the study of MIS binding proteins and for tracking in pharmacokinetic studies. PMID:19755162

  6. CHANGES IN PLASMA MULLERIAN INHIBITING SUBSTANCE AND BRAIN-DERIVED NEUROTROPHIC FACTOR AFTER CHEMOTHERAPY IN PREMENOPAUSAL WOMEN

    PubMed Central

    Aslam, Muhammad Faisal; Merhi, Zaher O; Ahmed, Safaa; Kuzbari, Oumar; Seifer, David B.; Minkoff, Howard

    2010-01-01

    Eight premenopausal women with cancer had blood drawn for brain-derived neurotrophic factor (BDNF) and Mullerian Inhibiting Substance (MIS) before and three months after receiving chemotherapy. Unlike MIS, BDNF levels were not reduced following chemotherapy. PMID:21075370

  7. A Rare Case Report of Inguinal Hernia with Persistent Mullerian Duct and Klinefelter Syndrome.

    PubMed

    Dadheech, Darpan; Om, Prabha; Shridatt, Sharma Ankit; Patni, Ankur; Verma, Naveen

    2016-06-01

    Inguinal hernia in male is a common problem but having female reproductive organs in hernial sac is rare. It occur because of failure of mullerian duct to regress in a male fetus during embryonic development, result in a syndrome known as Persistent Mullerian Duct Syndrome (PMDS), which is a rare entity of male pseudohermaphroditism. We hereby present a case of 21-year-old male patient reported with complains of cryptorchidism and inguinal hernia. Generally diagnosis of PMDS was established during investigation like ultrasonography, MRI for localization of undescended testis and during surgical exploration for inguinal hernia or cryptorchidism. Our patient was operated by bilateral inguinal incision; hernial sac contained adult size uterus fallopian tube and upper 2/3(rd) of vagina. On karyotyping it was found that he was a case of klinefelter syndrome also. Association of PMDS with klinefelter syndrome is very rare. PMID:27504355

  8. A Rare Case Report of Inguinal Hernia with Persistent Mullerian Duct and Klinefelter Syndrome

    PubMed Central

    Om, Prabha; Shridatt, Sharma Ankit; Patni, Ankur; Verma, Naveen

    2016-01-01

    Inguinal hernia in male is a common problem but having female reproductive organs in hernial sac is rare. It occur because of failure of mullerian duct to regress in a male fetus during embryonic development, result in a syndrome known as Persistent Mullerian Duct Syndrome (PMDS), which is a rare entity of male pseudohermaphroditism. We hereby present a case of 21-year-old male patient reported with complains of cryptorchidism and inguinal hernia. Generally diagnosis of PMDS was established during investigation like ultrasonography, MRI for localization of undescended testis and during surgical exploration for inguinal hernia or cryptorchidism. Our patient was operated by bilateral inguinal incision; hernial sac contained adult size uterus fallopian tube and upper 2/3rd of vagina. On karyotyping it was found that he was a case of klinefelter syndrome also. Association of PMDS with klinefelter syndrome is very rare. PMID:27504355

  9. Persistent Mullerian Duct Syndrome with Embryonal Cell Carcinoma along with Ectopic Cross Fused Kidney

    PubMed Central

    Bharath, NR Manju; Narayana, V; Raja, V Om Pramod Kumar; Jambula, Pranav Reddy

    2016-01-01

    Persistent Mullerian Duct Syndrome (PMDS) is a form of internal male pseudohermaphroditism, where there is normal development of male secondary sexual characters, along with the presence of bilateral fallopian tubes and uterus. Majority of these cases go undetected and some cases are accidentally diagnosed while investigating for other problems. Cross fused renal ectopia is a condition where one kidney lies in the opposite side, fused to the other kidney. We present an extremely rare case of a phenotypical male presenting with mass per abdomen and bilateral cryptorchidism, turned out to have uterus with bilateral fallopian tubes, ectopic cross fused right kidney and Embryonal cell carcinoma of left undescended testis. PMID:26894123

  10. Measurement of anti-Mullerian hormone: performances of a new ultrasensitive immunoassay.

    PubMed

    Gruson, Damien; Homsak, Evgenija

    2015-04-01

    The measurement of anti-Mullerian hormone (AMH) is relevant for the evaluation of primary ovarian insufficiency, success of assisted reproductive therapies, and also to support the diagnosis of polycystic ovary syndrome. Our study demonstrated excellent analytical performances for the Ansh Laboratories AMH immunoassay and an overall good agreement with the AMH Gen II assay. Nevertheless, the two AMH immunoassays are not using the same couple of antibodies and therefore not commutable and the definition of specific reference values and cut-point remains necessary. PMID:25575745

  11. Prolonged Survival of a Patient With Pelvic Recurrence of Ovarian Malignant Mixed Mullerian Tumor After Chemoradiotherapy

    PubMed Central

    Homaei Shandiz, Fatemeh; Kadkhodayan, Sima; Hsanzade Mofrad, Malihe; Yousefi Roodsari, Zohre; Sharifi Sistani, Noorieh; Nabizadeh Marvast, Majid; Sadeghei, Mahbobe

    2014-01-01

    Introduction: Malignant Mixed Mullerian Tumor (MMMT) is a very rare tumor, accounting for less than 1% of all ovarian cancers. Case Presentation: We present a 64-year-old woman with stage III MMMT of ovary that was treated with platinum-based chemotherapy after optimal cytoreductive surgery. After 25 months of being disease free, she had a pelvic recurrence and a good response to chemoradiotherapy. Conclusions: Optimal cytoreductive surgery and chemotherapy may be the best treatment in MMMT but more discussion and experiences are needed regarding the effectiveness of radiotherapy. PMID:25593719

  12. Mullerian Inhibiting Substance inhibits cervical cancer cell growth via a pathway involving p130 and p107.

    PubMed

    Barbie, Thanh U; Barbie, David A; MacLaughlin, David T; Maheswaran, Shyamala; Donahoe, Patricia K

    2003-12-23

    In addition to causing regression of the Mullerian duct in the male embryo, Mullerian Inhibiting Substance (MIS) inhibits the growth of epithelial ovarian cancer cells, which are known to be of Mullerian origin. Because the uterine cervix is derived from the same Mullerian duct precursor as the epithelium of the ovary, we tested the hypothesis that cervical cancer cells might also respond to MIS. A number of cervical cancer cell lines express the MIS type II receptor, and MIS inhibits the growth of both human papilloma virus-transformed and non-human papilloma virus-transformed cervical cell lines, with a more dramatic effect seen in the latter. As in the ovarian cancer cell line OVCAR8, suppression of growth of the C33A cervical cancer cell line by MIS is associated with induction of the p16 tumor suppressor protein. However, in contrast to OVCAR8 cells, induction of p130 and p107 appears to play an important role in the inhibition of growth of C33A cells by MIS. Finally, normal cervical tissue expresses the MIS type II receptor in vivo, supporting the idea that MIS could be a targeted therapy for cervical cancer. PMID:14671316

  13. Secretory and basal cells of the epithelium of the tubular glands in the male Mullerian gland of the caecilian Uraeotyphlus narayani (Amphibia: Gymnophiona).

    PubMed

    George, Jancy M; Smita, Matthew; Kadalmani, Balamuthu; Girija, Ramankutty; Oommen, Oommen V; Akbarsha, Mohammad A

    2004-12-01

    Caecilians are exceptional among the vertebrates in that males retain the Mullerian duct as a functional glandular structure. The Mullerian gland on each side is formed from a large number of tubular glands connecting to a central duct, which either connects to the urogenital duct or opens directly into the cloaca. The Mullerian gland is believed to secrete a substance to be added to the sperm during ejaculation. Thus, the Mullerian gland could function as a male accessory reproductive gland. Recently, we described the male Mullerian gland of Uraeotyphlus narayani using light and transmission electron microscopy (TEM) and histochemistry. The present TEM study reports that the secretory cells of both the tubular and basal portions of the tubular glands of the male Mullerian gland of this caecilian produce secretion granules in the same manner as do other glandular epithelial cells. The secretion granules are released in the form of structured granules into the lumen of the tubular glands, and such granules are traceable to the lumen of the central duct of the Mullerian gland. This is comparable to the situation prevailing in the epididymal epithelium of several reptiles. In the secretory cells of the basal portion of the tubular glands, mitochondria are intimately associated with fabrication of the secretion granules. The structural and functional organization of the epithelium of the basal portion of the tubular glands is complicated by the presence of basal cells. This study suggests the origin of the basal cells from peritubular tissue leukocytes. The study also indicates a role for the basal cells in acquiring secretion granules from the neighboring secretory cells and processing them into lipofuscin material in the context of regression of the Mullerian gland during the period of reproductive quiescence. In these respects the basal cells match those in the epithelial lining of the epididymis of amniotes. PMID:15487004

  14. Expression and regulation of anti-mullerian hormone in an oviparous species, the hen.

    PubMed

    Johnson, P A; Kent, T R; Urick, M E; Giles, J R

    2008-01-01

    Anti-mullerian hormone (AMH) has a critical role in regression of the mullerian duct system during development in male mammalian and avian species and in regression of the right oviduct in female avian species. AMH in adult female birds has not been investigated. Chicken-specific cDNA primers were used to isolate Amh by RT-PCR. This probe was used in Northern blot analysis to identify a 2.8-kb band with expression in total ovarian RNA and in granulosa cell RNA. Quantitative real-time PCR was used to assess Amh expression in follicles of different maturity (1, 3, 5, and 6-12 mm and the largest F1 follicle; n = 4-6 of each size). There was an increased amount of Amh mRNA in the granulosa layer of the smaller follicles and a lower amount in the granulosa layer of the larger follicles (P < 0.01). There was no difference in granulosa Amh expression between the germinal disc and non-germinal disc region of 6- to 12-mm follicles, although expression differed with follicle size (P < 0.01). To examine hormone regulation of Amh, granulosa cells (from 6- to 8-mm follicles) were cultured with various concentrations of estradiol (E(2)) and progesterone (P(4)), and Amh mRNA was assessed. Neither E(2) nor P(4) influenced Amh mRNA accumulation. Granulosa cells were also cultured in the presence of oocyte-conditioned medium (OCM), which decreased Amh mRNA expression in a dose-related manner (P < 0.05); FSH receptor expression was not affected. Heat treatment of OCM abolished the effect, but growth differentiation factor 9 antiserum did not block the suppression. Immunohistochemistry confirmed that the granulosa layer was the predominant source of AMH in the small follicles of the hen and indicated that AMH was present early in follicle development, with expression in very small follicles (approximately 150 mum). PMID:17881771

  15. A patient with Mullerian abnormalities, renal dysplasia, cervical spine fusion, cataracts and intellectual disability: MURCS-plus?

    PubMed

    Tan, Tiong Yang; Whitelaw, Charlotte; Savarirayan, Ravi

    2007-10-01

    We report a 15-year-old girl with features of the MURCS (Mullerian abnormalities, renal agenesis/ectopy and cervicothoracic somite dysplasia) association and birth defects not typically associated with MURCS. In addition to seizures and intellectual disability, she has cortical brain heterotopia, bilateral subclinical cataracts, submucous cleft palate and patent ductus arteriosus. We propose that this patient represents a more severe form of MURCS, or 'MURCS-plus', which may represent a defect of or insult to mesodermal morphogenesis. PMID:17786121

  16. Coevolution of neoplastic epithelial cells and multilineage stroma via polyploid giant cells during immortalization and transformation of mullerian epithelial cells

    PubMed Central

    Zhang, Shiwu; Mercado-Uribe, Imelda; Sood, Anil; Bast, Robert C.; Liu, Jinsong

    2016-01-01

    Stromal cells are generally considered to be derived primarily from the host's normal mesenchymal stromal cells or bone marrow. However, the origins of stromal cells have been quite controversial. To determine the role of polyploidy in tumor development, we examined the fate of normal mullerian epithelial cells during the immortalization and transformation process by tracing the expression of SV40 large T antigen. Here we show that immortalized or HRAS-transformed mullerian epithelial cells contain a subpopulation of polyploid giant cells that grow as multicellular spheroids expressing hematopoietic markers in response to treatment with CoCl2. The immortalized or transformed epithelial cells can transdifferentiate into stromal cells when transplanted into nude mice. Immunofluorescent staining revealed expression of stem cell factors OCT4, Nanog, and SOX-2 in spheroid, whereas expression of embryonic stem cell marker SSEA1 was increased in HRAS-transformed cells compared with their immortalized isogenic counterparts. These results suggest that normal mullerian epithelial cells are intrinsically highly plastic, via the formation of polyploid giant cells and activation of embryonic stem-like program, which work together to promote the coevolution of neoplastic epithelial cells and multiple lineage stromal cells. PMID:27382431

  17. Zebrafish Hoxa and Evx-2 genes: cloning, developmental expression and implications for the functional evolution of posterior Hox genes.

    PubMed

    Sordino, P; Duboule, D; Kondo, T

    1996-10-01

    Vertebrate Hox genes are required for the establishment of regional identities along body axes. This gene family is strongly conserved among vertebrates, even in bony fish which display less complex ranges of axial morphologies. We have analysed the structural organization and expression of Abd-B related zebrafish HoxA cluster genes (Hoxa-9, Hoxa-10, Hoxa-11 and Hoxa-13) as well as of Evx-2, a gene closely linked to the HoxD complex. We show that the genomic organization of Hoxa genes in fish resembles that of tetrapods albeit intergenic distances are shorter. During development of the fish trunk, Hoxa genes are coordinately expressed, whereas in pectoral fins, they display transcript domains similar to those observed in developing tetrapod limbs. Likewise, the Evx-2 gene seems to respond to both Hox- and Evx-types of regulation. During fin development, this latter gene is expressed as the neighbouring Hox genes, in contrast to its expression in the central nervous system which does not comply with colinearity and extends up to anterior parts of the brain. These results are discussed in the context of the functional evolution of Hoxa versus Hoxd genes and their different roles in building up paired appendages. PMID:8951794

  18. Primary Ovarian Malignant Mixed Mullerian Tumour: A Case Report and Brief Review of Literature

    PubMed Central

    Çakir, Tansel; Ilhan, Tolgay Tuyan; Karabagli, Pinar; Çelik, Çetin

    2016-01-01

    Malignant Mixed Mullerian Tumour of the Ovary (OMMMT), also referred to as carcinosarcoma is a very rare tumour accounting for less than 1% of all ovarian cancers. Due to the rarity of OMMMT, little is known about the disease course and outcome of women with these tumours. It is important to evaluate because of its aggressive behaviour with extremely unfavourable prognosis. These tumours are composed of both malignant epithelial and mesenchymal elements. Current data in the literature is still limited to small case series and case reports, therefore, its optimal treatment is somewhat controversial. In the current report, we introduce a case of OMMMT which was successfully treated with Platinum-based combination chemotherapy after optimal cytoreductive surgery. The clinical manifestations, pathologic characteristics, diagnosis and management of these tumours are reviewed here. Although the most effective treatment is currently unknown, optimal cytoreductive surgery and platinum-based chemotherapy appears to improve the outcomes. Despite the aggressive nature of this tumour and its poor response to the treatment, management works best when cancer is found early. The stage of the disease is the most important prognostic factor. Therefore, the crucial question is how to diagnose the cancer at earlier stages rather than seeking the optimal treatment. PMID:27134951

  19. Assay Reproducibility and Within-Person Variation of Mullerian Inhibiting Substance

    PubMed Central

    Dorgan, Joanne F.; Spittle, Cynthia S.; Egleston, Brian L.; Shaw, Christiana M.; Kahle, L. L.; Brinton, Louise A.

    2009-01-01

    Objectives To assess reproducibility of a commercial mullerian inhibiting substance (MIS) assay and evaluate within-person variation in serum MIS levels. Design Assay reproducibility was evaluated by measuring MIS in multiple serum aliquots from the same blood collection. Within-person variation was assessed by measuring MIS in serum collected twice from the same individuals. Setting Fox Chase Cancer Center, Philadelphia, PA Patient(s) Assay reproducibility was evaluated using serum from 5 volunteers with regular menstrual cycles. Within-person variation was evaluated in serum from 20 premenopausal women who donated blood twice at least 1 year apart. Intervention(s) For both studies, samples were randomly ordered in batches and laboratory personnel were blinded to which aliquots were from the same subject. Main Outcome Measure(s) MIS was measured using an enzyme-linked immunosorbent assay. Results Within- and between-batch coefficients of variation (CVs) of the assay were 7.9% and 12.3%, respectively. After deleting one subject with extreme values, these CVs decreased to 7.6% and 7.7%, respectively. Within- and between-subject variance in MIS measurements were 2.19 and 0.31, respectively, and the intraclass correlation coefficient was .88 (95% confidence interval = .77 – .98). Conclusion(s) MIS serum concentration is relatively stable over one year in premenopausal women and can be measured with good reproducibility using a commercial kit. PMID:19409547

  20. Anti-Mullerian Hormone: Above and Beyond Conventional Ovarian Reserve Markers

    PubMed Central

    Jamil, Zehra; Fatima, Syeda Sadia; Ahmed, Khalid; Malik, Rabia

    2016-01-01

    Management of ovarian dysfunctions requires accurate estimation of ovarian reserve (OR). Therefore, reproductive hormones and antral follicle count (AFC) are assessed to indicate OR. Serum anti-Mullerian hormone (AMH) is a unique biomarker that has a critical role in folliculogenesis as well as steroidogenesis within ovaries. Secretion from preantral and early antral follicles renders AMH as the earliest marker to show OR decline. In this review we discuss the dynamics of circulating AMH that remarkably vary with sex and age. As it emerges as a marker of gonadal development and reproductive disorders, here we summarize the role of AMH in female reproductive physiology and provide evidence of higher accuracy in predicting ovarian response to stimulation. Further, we attempt to compile potential clinical applications in children and adults. We propose that AMH evaluation has a potential role in effectively monitoring chemotherapy and pelvic radiation induced ovarian toxicity. Furthermore, AMH guided ovarian stimulation can lead to individualization of therapeutic strategies for infertility treatment. However future research on AMH levels within follicular fluid may pave the way to establish it as a marker of “quality” besides “quantity” of the growing follicles. PMID:26977116

  1. Comparative analysis of P16 and P53 expression in uterine malignant mixed mullerian tumors.

    PubMed

    Buza, Natalia; Tavassoli, Fattaneh A

    2009-11-01

    Recent studies have shown that, in addition to cervical carcinomas, a substantial proportion of endometrial adenocarcinomas are also immunoreactive with p16. The expression of p16 in uterine malignant mixed mullerian tumors (MMMTs), in contrast, has not yet been analyzed in a large series. To our knowledge, we present the first study assessing p16 expression in both components of MMMTs. We performed p16 and p53 immunostains on 30 cases of uterine MMMTs. Both the epithelial and mesenchymal components were subclassified; p16 and p53 immunoreactions were assessed using a semiquantitative scoring system. p16 overexpression was noted in the carcinomatous component in 96.7% (29/30), and in the sarcomatous component in 86.7% (26/30) of cases. In comparison, p53 immunoreactivity was present in the carcinomatous component in 76.7% (23/30), and in the sarcomatous component in 83.3% (25/30) of cases. p16 immunoreactivity was more intense and diffuse than p53 in 40% of type I, 30% of type II carcinomas, and 27% of sarcomatous components. There was no significant difference in p16 or p53 immunoreactivity between the homologous and heterologous sarcomas. The concordance rates for p16 and p53 immunoreactivity between the 2 components were 83% and 90%, respectively. We conclude that p16 immunostain is positive in the vast majority of uterine MMMTs with no significant difference in staining between the 2 components. Compared with p53, p16 immunoreactivity is significantly more intense and diffuse in both components. Our findings indicate that alterations in the p16-Rb pathway play an important role in the pathogenesis of uterine MMMTs. PMID:19851197

  2. Epigenetic control of fetal bone development through HoxA10 in the rat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epidemiological studies show that quality of nutrition during intrauterine and early postnatal life impact the risk of low bone mass and fracture later in life. Maternal consumption of high-fat diets has been demonstrated to affect health outcomes, such as: brain development; obesity; insulin resist...

  3. Contribution of the secretory material of caecilian (amphibia: Gymnophiona) male Mullerian gland to motility of sperm: a study in Uraeotyphlus narayani.

    PubMed

    George, Jancy M; Smita, Mathew; Kadalmani, Balamuthu; Girija, Ramankutty; Oommen, Oommen V; Akbarsha, Mohammad A

    2005-02-01

    Caecilians are a unique group of limbless burrowing amphibians with discontinuous distribution. Several caecilian species are viviparous, and all practice internal fertilization. In amniotic vertebrates the sperm undergo post-testicular physiological maturation when they are initiated into motility under the influence of an epididymal secretion. Further, during ejaculation mammalian sperm are suspended in a fluid secreted by the male accessory sex glands, viz., prostate gland and seminal vesicles. Caecilians lack comparable glands, but still practice internal fertilization. Uniquely, male caecilians retain the Mullerian ducts in the adults as a pair of functional glands. It has long been hypothesized, based on indirect evidence, that the Mullerian gland would be a male accessory sex gland, secreting a fluid in which sperm are suspended during ejaculation and which would also provide nutritional support to the ejaculated sperm. In the present study, the secretory material of the Mullerian gland of Uraeotyphlus narayani was mixed with sperm obtained from the testis, and the changes in motility were recorded. Uraeotyphlus narayani sperm possess a perforatorium of the acrosome proceeding deep into the endonuclear canal of the nucleus. The midpiece is characterized by closely applied centrioles, the anterior ends of the axoneme and axial fiber, and a mitochondrial sheath. The long tail has an undulating membrane on one side, supported by the axoneme and an axial fiber. The live sperm possess a mitochondrial vesicle, also known as the cytoplasmic droplet, anywhere along the head and the midpiece, as in anuran sperm, which is shed from sperm that have ceased motility. Uraeotyphlus narayani sperm are motile the moment they are released directly from the testis, indicating that the sperm do not require post-testicular physiological maturation. On being mixed with the secretory material of the Mullerian gland, the spermatozoa are enhanced in speed as well as duration of

  4. Impact of breast cancer on anti-mullerian hormone levels in young women.

    PubMed

    Su, H I; Flatt, S W; Natarajan, L; DeMichele, A; Steiner, A Z

    2013-01-01

    Young women with breast cancer face treatments that impair ovarian function, but it is not known if malignancy itself impacts ovarian reserve. As more breast cancer patients consider future fertility, it is important to determine if ovarian reserve is impacted by cancer, prior to any therapeutic intervention. A cross-sectional study was conducted comparing if ovarian reserve, as measured by anti-mullerian hormone (AMH), follicle stimulating hormone (FSH), and inhibin B (inhB), differed between 108 women with newly diagnosed breast cancer and 99 healthy women without breast cancer. Breast cancer participants were ages 28-44 and were recruited from two clinical breast programs. Healthy women ages 30-44 without a history of infertility were recruited from gynecology clinics and the community. The median age (interquartile range) was 40.2(5.5) years for breast cancer participants and 33.0(4.6) years for healthy controls. The unadjusted geometric mean AMH levels (SD) for breast cancer participants and controls were 0.66(3.6) and 1.1(2.9) ng/mL, respectively. Adjusting for age, body mass index, gravidity, race, menstrual pattern, and smoking, mean AMH levels were not significantly different between breast cancer participants and healthy controls (0.85 vs. 0.76 ng/mL, p = 0.60). FSH and inhB levels did not differ by breast cancer status. In exploratory analysis, the association between AMH and breast cancer status differed by age (p-interaction = 0.02). AMH may be lower with breast cancer status in women older than 37. In younger women, AMH levels did not differ significantly by breast cancer status. Among the youngest of breast cancer patients, ovarian reserve as measured by AMH, FSH, and inhibin B did not differ significantly from healthy women of similar age. In older breast cancer patients, ovarian reserve may be adversely impacted by cancer status. These findings support the potential success and need for fertility preservation strategies prior to institution of

  5. The Anti Mullerian Hormone- A Novel Marker for Assessing the Ovarian Reserve in Women with Regular Menstrual Cycles

    PubMed Central

    Kalaiselvi, V. S; P, Saikumar; K, Prabhu; Krishna G, Prashanth

    2012-01-01

    Background Ovarian Reserve (OR) is a term which describes the functional potential of the ovary, which constitutes the size of the ovarian follicle pool and reflects the number and quality of the oocytes which are within it. Assessment of the OR helps in reflecting the reproductive potential of women. Various markers are available for assessing the OR and the best marker is the Anti Mullerian Hormone (AMH) which reflects the ovarian follicular pool in the ovary. In this study, the serum level of AMH/MIS(Mullerian Inhibiting Substance)was estimated to assess the ovarian reserve in both fertile and infertile women. Objective To assess the ovarian reserve in women of the fertile and subfertile groups with regular cycles, who were in the age range of 26 -33yrs, by estimating the level of AMH and those of other hormones like FSH and E2 and also to calculate the ovarian volume and the Antral follicular count by an ultrasonographic method. Materials and Methods Thirty fertile and thirty sub fertile women whose ages ranged from 26-33yrs were included as group 1 and group 2 respectively. The hormones like AMH ,FSH and oestradiol were assayed. Measurement of the ovarian volume and the antral follicular count by doing a transvaginal ultrasonogram, was done in all the subjects who were involved in both the groups. The correlation test was studied between the variables and the test of significance of the variables between the 2 groups was also analyzed by the Statistical Package Of Social Sciences (SPSS). Results The Antral Follicular Count (AFC) and the ovarian volume were negatively correlated with the age. The ovarian volume was positively correlated with the AFC. The FSH negatively correlated with the AFC. The Anti Mullerian Hormone negatively correlated with the age, and it positively correlated with the AFC. The mean values of AFC, FSH, and AMH were also statistically significant between the two groups. Conclusion AMH can be considered as a marker for assessing the

  6. Gene identification for risk of relapse in stage I lung adenocarcinoma patients: a combined methodology of gene expression profiling and computational gene network analysis.

    PubMed

    Ludovini, Vienna; Bianconi, Fortunato; Siggillino, Annamaria; Piobbico, Danilo; Vannucci, Jacopo; Metro, Giulio; Chiari, Rita; Bellezza, Guido; Puma, Francesco; Della Fazia, Maria Agnese; Servillo, Giuseppe; Crinò, Lucio

    2016-05-24

    Risk assessment and treatment choice remains a challenge in early non-small-cell lung cancer (NSCLC). The aim of this study was to identify novel genes involved in the risk of early relapse (ER) compared to no relapse (NR) in resected lung adenocarcinoma (AD) patients using a combination of high throughput technology and computational analysis. We identified 18 patients (n.13 NR and n.5 ER) with stage I AD. Frozen samples of patients in ER, NR and corresponding normal lung (NL) were subjected to Microarray technology and quantitative-PCR (Q-PCR). A gene network computational analysis was performed to select predictive genes. An independent set of 79 ADs stage I samples was used to validate selected genes by Q-PCR.From microarray analysis we selected 50 genes, using the fold change ratio of ER versus NR. They were validated both in pool and individually in patient samples (ER and NR) by Q-PCR. Fourteen increased and 25 decreased genes showed a concordance between two methods. They were used to perform a computational gene network analysis that identified 4 increased (HOXA10, CLCA2, AKR1B10, FABP3) and 6 decreased (SCGB1A1, PGC, TFF1, PSCA, SPRR1B and PRSS1) genes. Moreover, in an independent dataset of ADs samples, we showed that both high FABP3 expression and low SCGB1A1 expression was associated with a worse disease-free survival (DFS).Our results indicate that it is possible to define, through gene expression and computational analysis, a characteristic gene profiling of patients with an increased risk of relapse that may become a tool for patient selection for adjuvant therapy. PMID:27081700

  7. Three-dimensional culture of a mixed mullerian tumor of the ovary: expression of in vivo characteristics

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Prewett, T. L.; Spaulding, G. F.; Becker, J. L.

    1997-01-01

    The Rotating-Wall Vessel (RWV) is a novel in vitro cell culture system used to successfully culture a cell line derived from a heterologous mixed mullerian tumor cell of the ovary. Although the original tumor was comprised of both epithelial and mesodermal components, long-term culture in conventional flasks established a cell line from this tumor with homogeneous epitheliallike growth characteristics (1). Cells from Passage 36 were seeded into a Rotating-Wall Vessel containing Cytodex-3 microcarrier beads. Scanning electron micrographs of tumor cells cultured for 32 d in the RWV showed the presence of heterogeneous cell populations organized into three-dimensional tissuelike architecture. Immunocytochemical analysis confirmed the cellular heterogeneity, as demonstrated by expression of both epithelial and mesenchymal antigens. Reverse transcription polymerase chain reaction amplification demonstrated the presence of mRNA for cellular oncogenes HER-2/neu, H-ras, K-ras, and tumor suppressor p53. Thus, there are two advantages to propagation of tissue in the RWV culture system:(a) tissue diversification representing populations present in the original tumor, and (b) the three-dimensional freedom to organize tissues morphologically akin to those observed in vivo. These data indicate that the RWV culture system is suitable for generating large quantities of ovarian tumor cells in vitro that are amenable to immunocytochemical, oncogenic, morphologic characteristics demonstrated in vivo.

  8. Can anti-Mullerian hormone replace ultrasonographic evaluation in polycystic ovary syndrome? A review of current progress

    PubMed Central

    Singh, Awadhesh Kumar; Singh, Ritu

    2015-01-01

    Several studies over the past decade have now consistently indicated that the serum anti-Mullerian hormone (AMH) levels are at least 2–3-fold higher in the patients with polycystic ovary syndrome (PCOS), which also corresponds to the increased number of AMH producing preantral and small antral follicles. Moreover, AMH levels have been found to be associated in direct proportion to the follicle numbers per ovary or antral follicular count, assessed by the transvaginal ultrasound (TVS). Furthermore, AMH correlates directly with the rising serum testosterone and luteinizing hormone levels in PCOS. Hence, serum AMH in women with oligo-anovulation and/or hyperandrogenemia could indicate the presence of underlying PCOS, when reliable TVS is not feasible, or not acceptable, either due to the virginal status or psycho-social issue. In addition, the imaging quality of abdominal ultrasound is often impaired by obesity, which typically occurs in PCOS women. Indeed, PCOS occurs most commonly in young females who cannot be subjected to invasive TVS for various reasons; therefore, a desirable alternative to TVS is urgently required to diagnose the most prevalent endocrine abnormality of young women. This review will analyze the currently available evidence regarding the role of AMH in the diagnosis of PCOS. PMID:26693422

  9. Antigenic Protein In Microgravity-Grown Human Mixed Mullerian Tumor (LN1) Cells Preserved In RNA Stabilizing Agent

    NASA Technical Reports Server (NTRS)

    Hammond, Dianne K.; Becker, Jeanne; Elliott, T. F.; Holubec, K.; Baker, T. L.; Love, J. E.

    2004-01-01

    Cells treated with RNAlater(TradeMark) have previously been shown to contain antigenic proteins that can be visualized using Western blot analysis. These proteins seem to be stable for several months when stored in RNA stabilizer at 4 C. Antigenic protein can be recovered from cells that have been processed using an Ambion RNAqueous(Registered TradeMark) kit to remove RNA. In this set of experiments, human mixed Mullerian tumor (LNI) cells grown on the International Space Station during Expedition 3 were examined for antigenic stability after removal of RNA. The cells were stored for three months in RNAlater(TradeMark) and RNA was extracted. The RNA filtrate containing the protein was precipitated, washed, and suspended in buffer containing sodium dodecyl sulfate (SDS). Samples containing equal concentrations of protein were loaded onto SDS-polyacrylamide gels. Proteins were separated by electrophoresis and transferred by Western blot to polyvinylidene fluoride (PVDF) membrane. The Western blots were stained with an enhanced chemiluminescent ECL(Registered Trademark) Plus detection kit (Amersham) and scanned using a Storm 840 gel image analyzer (Amersham, Molecular Dynamics). ImageQuant(Registered TradeMark) software was used to quantify the densities of the protein bands. The ground control and flight LN1 cell samples showed a similar staining pattern over time with antibodies to vimentin, glyceraldehyde-3-phosphate dehydrogenase, and epithelial membrane antigens.

  10. Antigenic Protein In Microgravity-Grown Human Mixed Mullerian Tumor (LN1) Cells Preserved In RNA Stabilizing Agent

    NASA Technical Reports Server (NTRS)

    Hammond, Dianne K.; Becker, Jeanne; Holubec, K.; Baker, T. L.; Love, J. E.

    2004-01-01

    Cells treated with RNAlater(TradeMark) have previously been shown to contain antigenic proteins that can be visualized using Western blot analysis. These proteins seem to be stable for several months when stored in RNA stabilizer at 4 C. Antigenic protein can be recovered from cells that have been processed using an Ambion RNAqueous(Registered TradeMark) kit to remove RNA. In this set of experiments, human mixed Mullerian tumor (LN1) cells grown on the International Space Station during Expedition 3 were examined for antigenic stability after removal of RNA. The cells were stored for three months in RNAlater(TradeMark) and RNA was extracted. The RNA filtrate Containing the protein was precipitated, washed, and suspended in buffer containing sodium dodecyl sulfate (SDS). Samples containing equal concentrations of protein were loaded onto SDS-polyacrylamide gels. Proteins were separated by electrophoresis and transferred by Western blot to polyvinylidene fluoride (PVDF) membrane. The Western blots were stained with an enhanced chemiluminescent ECL(Registered TradeMark)Plus detection kit (Amersham) and scanned using a Storm 840 gel image analyzer (Amersham, Molecular Dynamics). ImageQuant(Registered TradeMark)a software was used to quantify the densities of the protein bands. The ground control and flight LN1 cell samples showed a similar staining pattern over time with antibodies to vimentin, glyceraldehyde-3-phosphate dehydrogenase, and epithelial membrane antigens.

  11. Comparison of anti-mullerian hormone level in non-endometriotic benign ovarian cyst before and after laparoscopic cystectomy

    PubMed Central

    Amooee, Sedigheh; Gharib, Mahboubeh; Ravanfar, Parsa

    2015-01-01

    Background: Benign ovarian cysts are common among both pre- and postmenstrual women. Surgical intervention for excision of an ovarian cyst is mandated when symptomatic, or chance for malignancy is high. The damaging effect of surgical ovarian cystectomy on ovarian reserve is debated in recent studies. Objective: In the present study we investigated serum level of anti-mullerian hormone (AMH) as an indicator of ovarian reserve before and after surgical cystectomy. Materials and Methods: 60 patients with dermoid cyst, serous cystadenoma, and mucinous cystadenoma were recruited. Measurement of serum AMH was performed prior to surgery, and at one and 3 months after laparoscopic cystectomy. Serum AMH levels were compared before and after the surgery and between various types of ovarian cyst. Results: Serum AMH level declined significantly after the surgery which recovered to 65% of its baseline value three months later. Conclusion: Decreased serum AMH can be contributed to decreased ovarian reserve after laparoscopic ovarian cystectomy. This can result from thermo-coagulation used for hemostasis during the operation. PMID:26000005

  12. Is anti-mullerian hormone a marker of acute cyclophosphamide-induced ovarian follicular destruction in mice pretreated with cetrorelix?

    PubMed Central

    Browne, Hyacinth N.; Moon, Kimberly S.; Mumford, Sunni L.; Schisterman, Enrique F.; DeCherney, Alan H.; Segars, James H.; Armstrong, Alicia Y.

    2011-01-01

    Objective To define whether anti-mullerian hormone may be a marker of acute cyclophosphamide-induced germ cell destruction in mice pretreated with the GnRH antagonist, cetrorelix. Design Controlled, experimental study. Setting Research laboratory in a federal research facility. Animals Balb/c female mice (6 weeks old). Interventions Mice were treated with GnRH antagonist (cetrorelix) or saline for 15 days followed by 75 mg/kg or 100 mg/kg of cyclophosphamide or saline control on day 9. Main Outcome Measure(s) Number of primordial follicles (PMF), DNA damage, AMH protein expression, and AMH serum levels. Results Ovaries in mice pre-treated with cetrorelix had significantly more PMF and reduced DNA damage compared to those exposed to cyclophosphamide alone. Immunohistochemical staining for AMH expression and serum AMH levels did not differ significantly between treatment groups. Conclusions Cetrorelix protected primordial follicles and reduced DNA damage in follicles of mice treated with cyclophosphamide, but AMH levels in tissue and serum did not correlate with germ cell destruction. Further research is needed to determine the mechanism responsible for the protective effects on PMF counts observed with cetrorelix. PMID:21550044

  13. Systemic and local anti-Mullerian hormone reflects differences in the reproduction potential of Zebu and European type cattle.

    PubMed

    Carter, Anja Stojsin-; Mahboubi, Kiana; Costa, Nathalia N; Gillis, Daniel J; Carter, Timothy F; Neal, Michael S; Miranda, Moyses S; Ohashi, Otavio M; Favetta, Laura A; King, W Allan

    2016-04-01

    This study was conducted to evaluate plasma anti-Mullerian hormone (Pl AMH), follicular fluid AMH (FF AMH) and granulosa cell AMH transcript (GC AMH) levels and their relationships with reproductive parameters in two cattle subspecies, Bos taurus indicus (Zebu), and Bos taurus taurus (European type cattle). Two-dimensional ultrasound examination and serum collection were performed on Zebu, European type and crossbreed cows to determine antral follicle count (AFC), ovary diameter (OD) and Pl AMH concentration. Slaughterhouse ovaries for Zebu and European type cattle were collected to determine FF AMH concentrations, GC AMH RNA levels, AFC, oocyte number, cleavage and blastocyst rate. Additionally GC AMH receptor 2 (AMHR2) RNA level was measured for European type cattle. Relationship between AMH and reproductive parameters was found to be significantly greater in Zebu compared to European cattle. Average Pl AMH mean±SE for Zebu and European cattle was 0.77±0.09 and 0.33±0.24ng/ml respectively (p=0.01), whereas average antral FF AMH mean±SE for Zebu and European cattle was 4934.3±568.5 and 2977.9±214.1ng/ml respectively (p<0.05). This is the first published report of FF and GC AMH in Zebu cattle. Levels of GC AMHR2 RNA in European cattle were correlated to oocyte number (p=0.01). Crossbred animals were found more similar to their maternal Zebu counterparts with respect to their Pl AMH to AFC and OD relationships. These results demonstrate that AMH reflects differences between reproduction potential of the two cattle subspecies therefore can potentially be used as a reproductive marker. Furthermore these results reinforce the importance of separately considering the genetic backgrounds of animals when collecting or interpreting bovine AMH data for reproductive performance. PMID:26898391

  14. Anti-Mullerian hormone may be a useful adjunct in the diagnosis of polycystic ovary syndrome in nonobese adolescents

    PubMed Central

    Sopher, Aviva B.; Grigoriev, Galina; Laura, Diana; Cameo, Tamara; Lerner, Jodi P.; Chang, R. Jeffrey; McMahon, Donald J.; Oberfield, Sharon E.

    2015-01-01

    Objectives This study aimed to [1] confirm that nonobese adolescents with polycystic ovary syndrome (PCOS) have higher anti-Mullerian hormone (AMH) than controls; [2] examine the relationship of AMH with PCOS features and hormonal profile; and [3] approximate an AMH value that discriminates between adolescents with PCOS and controls. Design Case-control study. Setting Subspecialty ambulatory clinic. Patients Thirty-one nonobese adolescent girls (age 13–21 years), 15 with PCOS diagnosed using the National Institutes of Health (NIH) criteria and 16 healthy control subjects. Subjects and controls were comparable for body mass index z-score, age and ethnicity. Main outcome measure(s) AMH in PCOS subjects and control groups, correlation of AMH with hormonal parameters. Results AMH was higher in PCOS subjects (4.4 ±3.4 ng/mL) than in controls (2.4 ±1.3 ng/mL), when adjusted for menstrual age. In the entire group (PCOS and controls), AMH correlated with androgens, ovarian size and the presence of polycystic ovary (PCO) appearance. There was no difference in average ovarian size between PCOS (7.1 ±2.6 cm3) and controls (6.7 ±1.8 cm3). PCOS subjects were 1.49 times more likely to have AMH >3.4 ng/mL (confidence interval 0.98–2.26 ng/mL). Conclusions Our data suggest that AMH may be a useful adjunct in the diagnosis of PCOS in adolescents. PMID:25003376

  15. Anti-Mullerian hormone (AMH) concentration in follicular fluid and mRNA expression of AMH receptor type II and LH receptor in granulosa cells as predictive markers of good buffalo (Bubalus bubalis) donors.

    PubMed

    Liang, Aixin; Salzano, Angela; D'Esposito, Maurizio; Comin, Antonella; Montillo, Marta; Yang, Liguo; Campanile, Giuseppe; Gasparrini, Bianca

    2016-09-01

    High individual variability in follicular recruitment and hence in the number of embryos produced is a major factor limiting the application of reproductive technologies in buffalo. Therefore, the identification of reliable markers to select embryo donors is critical to enroll buffaloes in embryo production programs. Better understanding of factors involved in follicular growth is also necessary to improve the response to superovulation in this species. The aim of this work was thus to determine the anti-Mullerian hormone (AMH) concentration in follicular fluid (FF) recovered from different size follicles and evaluate the mRNA expression profiles of development-related (AMHR2, CYP19A1, FSHR, and LHR) and apoptosis-related genes (TP53INP1 and CASP3) in the corresponding granulosa cells (GCs) in buffalo. Another objective was to evaluate whether the AMH concentration in FF and gene expression of GCs is associated with the antral follicular count. Ovaries were collected at the slaughterhouse, and all follicles were counted and classified as small (3-5 mm), medium (5-8 mm), and large (>8 mm). Follicular fluid was recovered for AMH determination, and the mRNA expression of AMHR2, FSHR, LHR, CYP19A1, TP53INP1, and CASP3 was analyzed in GCs. The AMH concentration in FF decreased (P < 0.01) at increasing follicular diameter. The mRNA expression of AMHR2 and FSHR was higher (P < 0.05) in small follicles, whereas that of LHR and CYP19A1 was higher (P < 0.05) in large follicles. The intrafollicular AMH concentration was positively correlated with the antral follicular count (r = 0.31; P < 0.05). Interestingly, good donors (≥12 follicles) had a higher (P < 0.05) concentration of AMH and AMHR2 levels in small follicles and higher (P < 0.05) LHR levels in large follicles than bad donors (<12 follicles). These results suggest a potential use of AMH to select buffalo donors to enroll in embryo production programs, laying the basis for further investigations

  16. Anti-Mullerian hormone trend evaluation after laparoscopic surgery of monolateral endometrioma using a new dual wavelengths laser system (DWLS) for hemostasis.

    PubMed

    Nappi, Luigi; Angioni, Stefano; Sorrentino, Felice; Cinnella, Gilda; Lombardi, Michela; Greco, Pantaleo

    2016-01-01

    Operative laparoscopy is the gold standard in the treatment of endometriotic ovarian cysts. Excisional surgery is the best technique to prevent recurrences and improve symptoms but it may result in ovarian reserve damage due to the removal of healthy ovarian cortex. The aim of this study was to assess the impact on ovarian reserve of the use of dual wavelengths laser system (DWLS) hemostasis after stripping technique of monolateral endometrioma, by dosing the anti-Mullerian hormone (AMH). This prospective study was conducted at the Institute of Obstetrics and Gynecology, University of Foggia, from December 2013 to January 2015. Forty-five women underwent excision of monolateral endometriotic ovarian cyst by stripping without using a bipolar coagulation and performing hemostasis with a DWLS. The AMH serum levels were estimated before the surgery (T0), 4-6 weeks (T1) and 6-9 months (T2) after surgery. Our results suggest that an appropriate surgical technique with the use of laser hemostasis does not determine a significant reduction of ovarian reserve. Laser hemostasis could prevent follicular reserve loss after ovarian endometrioma surgery. PMID:26359914

  17. Serum Copeptin, Pentraxin 3, Anti-Mullerian Hormone Levels With Echocardiography and Carotid Artery Intima-Media Thickness in Adolescents With Polycystic Ovary Syndrome

    PubMed Central

    Deveer, Mehmet; Deveer, Ruya; Basaran, Ozcan; Turkcu, Ummuhani Ozel; Akbaba, Eren; Cullu, Nesat; Turhan, Nilgun; Kucuk, Mert; Kasap, Burcu

    2015-01-01

    Background The aim of the study was to investigate the presence of possible markers in the prediction of polycystic ovary syndrome (PCOS)-related metabolic alterations and cardiovascular events in adolescent PCOS cases and also to investigate the applicability of anti-Mullerian hormone (AMH) levels for the diagnosis of PCOS. Methods In this cross-sectional study, a total of 75 non-obese women (adolescent PCOS group, n = 25; adult PCOS group, n = 25; control group, n = 25) were included. Measurements of copeptin, pentraxin 3 (PTX3), and AMH serum levels were performed. Results Serum copeptin, PTX3 and echocardiographic indices were not significantly different in PCOS subjects and they did not have higher common carotid artery intima-media thickness (CIMT) measurement. AMH levels were significantly higher in PCOS patients. There was a positive correlation between AMH and mean ovarian volume (r = 0.58, P < 0.001) and between AMH and total testosterone level (r = 0.63, P < 0.001). In order to predict a threshold value for the diagnosis of PCOS by using AMH, the receiver operating characteristic (ROC) method was used. Area under the curve was 0.820 and cut-off point was 6.66 ng/mL for AMH with a sensitivity of 62% and specificity of 76%. Conclusions Possible markers for PCOS-related metabolic alterations may not present in the adolescent years. Serum AMH may be useful as a diagnostic test for adolescents. PMID:26566413

  18. Role of Baseline Antral Follicle Count and Anti-Mullerian Hormone in Prediction of Cumulative Live Birth in the First In Vitro Fertilisation Cycle: A Retrospective Cohort Analysis

    PubMed Central

    Li, Hang Wun Raymond; Lee, Vivian Chi Yan; Lau, Estella Yee Lan; Yeung, William Shu Biu; Ho, Pak Chung; Ng, Ernest Hung Yu

    2013-01-01

    Objective This retrospective study determined for the first time the role of baseline antral follicle count (AFC) and serum anti-Mullerian hormone (AMH) level in the first in-vitro fertilisation (IVF) cycle in predicting cumulative live birth from one stimulation cycle. Methods We studied 1,156 women (median age 35 years) undergoing the first IVF cycle. Baseline AFC and AMH level on the day before ovarian stimulation were analysed. The main outcome measure was cumulative live birth in the fresh plus all the frozen embryo transfers after the same stimulation cycle. Results Serum AMH was significantly correlated with AFC. Both AMH and AFC showed significant correlation with age and ovarian response in the stimulated cycle and total number of transferrable embryos. Baseline AFC and serum AMH were significantly higher in subjects attaining a live birth than those who did not in the fresh stimulated cycle, as well as those attaining cumulative live birth. There was a significant trend of higher cumulative live birth rate in women with higher AMH or AFC. However, logistic regression revealed that both AMH and AFC were not significant predictors of cumulative live birth after adjusting for age and number of embryos available for transfer. Considering only one single predictor, the areas under the ROC curves for AMH (0.646, 95% CI 0.616–0.675) and age (0.648, 95% CI 0.618–0.677) were slightly higher than that for AFC (0.617, 95% CI 0.587–0.647) in predicting cumulative live birth. However, a model combining AMH (with or without AFC) and age of the women only classified an addition of less than 2% of subjects correctly compared to the model with age alone. Conclusion Baseline AFC and serum AMH have only modest predictive performance on the occurrence of cumulative live birth, and may not give additional value on top of the women's age. PMID:23637787

  19. Effects of GnRH agonists on the expression of developmental follicular anti-mullerian hormone in varying follicular stages in cyclic mice in vivo

    PubMed Central

    HUANG, JILIANG; WANG, XIAOYAN; LI, ZHILING; MA, RUOWU; XIAO, WANFEN

    2015-01-01

    Gonadotrophin-releasing hormone (GnRH) agonists (GnRHa) have been widely used to induce a state of downregulation for in vitro fertilization, and its direct effects on the pituitary are well known. However, the effects of GnRHa on the expression of anti-mullerian hormone (AMH) by follicles in varying stages in vivo remain to be fully elucidated. In the present study 84 cyclic mice were randomly divided equally into four GnRHa groups and three cyclic mice were used as a control group. The expression levels of AMH in follicles of varying stages between days 0 and 7 following GnRHa administration were quantified using immunohistochemistry. The expression of AMH in follicles at various stages revealed dynamic changes during the process of downregulation. AMH in primary follicles initially increased and then decreased gradually. In small and large preantral follicles and in granulosa cells (GCs) surrounding the oocyte of small antral follicles, the expression of AMH began to increase on day 1, was attenuated on day 2, and then increased to a peak. The expression levels of AMH in the GCs surrounding the basement membrane, in contrast to the GCs surrounding the oocyte, were significantly lower and did not increase on day 1. In all stages of follicles, the expression of AMH declined gradually between the peak level and last day of downregulation. On day 7, the varying follicular stages all expressed lower levels of AMH than on day 0. This decrease was more prominent in the higher dose groups, compared with the lower dose groups. In conclusion, GnRHa was observed to induce time-dependent changes in the expression of AMH at varying follicular stages, which occurred in a dose-dependent manner. PMID:26126720

  20. The Correlations of Anti-Mullerian Hormone, Follicle-Stimulating Hormone and Antral Follicle Count in Different Age Groups of Infertile Women

    PubMed Central

    Barbakadze, Ludmila; Kristesashvili, Jenara; Khonelidze, Natalia; Tsagareishvili, Gia

    2015-01-01

    Background The objective of our study was to identify the correlations between the tests currently used in ovarian reserve assessment: anti-Mullerian hormone (AMH), follicle stimulating hormone (FSH) and antral follicle count (AFC) and to distinguish the most reliable markers for ovarian reserve in order to select an adequate strategy for the initial stages of infertility treatment. Materials and Methods In this prospective study, 112 infertile women were assessed. Subjects were divided into three age groups: group I <35 years (n=39), group II 35-40 years (n=31), and group III 41-46 years (n=42). AMH, FSH and AFC were determined on days 2-3 of the patients’ menstrual cycles. Results There was a significantly elevated negative correlation between age and AMH level (rs=-0.67, p<0.0001) and AFC (rs=-0.55, p<0.0001). We observed a significantly positive correlation between age and FSH (rs=0.38, p<0.0001). AMH negatively correlated with FSH (rs=-0.48, p<0.0001) and positively with AFC (r=-0.71, p=0.0001). There was a moderate negative relation between FSH and AFC (r=-0.41, p=0.0001) and moderate positive relation between age and FSH (rs=0.38, p<0.0001). The correlation analysis performed in separate groups showed that AMH and AFC showed a statistically significant positive correlation for group I (r=0.57, p<0.0001), group II (r=0.69, p<0.0001) and group III (r=0.47, p<0.002). A statistically significant correlation between FSH and AMH was detected only in groups I (r=-0.41, p<0.02) and II (r=-0.55, p<0.0001). A statistically significant correlation existed between FSH and AFC only in group III (r=-0.42, p<0.006), as well as between age and AFC only in group I (r=-0.35, p<0.03). Conclusion Currently, AMH should be considered as the more reliable of the ovarian reserve assessments tests compared to FSH. There is a strong positive correlation between serum AMH level and AFC. The use of AMH combined with AFC may improve ovarian reserve evaluation. PMID:25780521

  1. Inhibition of fetal bone development through epigenetic down- regulation of HoxA10 in obese rats fed high fat diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epidemiological studies show that maternal obesity during intrauterine and early postnatal life increases the risk of low bone mass and fracture later in life. Here, we show that bone development is inhibited in GED 18.5 embryos from rat dams made obese by feeding a high fat diet (HFD). Moreover, fe...

  2. Ovarian Response and Cumulative Live Birth Rate of Women Undergoing In-Vitro Fertilisation Who Had Discordant Anti-Mullerian Hormone and Antral Follicle Count Measurements: A Retrospective Study

    PubMed Central

    Li, Hang Wun Raymond; Lee, Vivian Chi Yan; Lau, Estella Yee Lan; Yeung, William Shu Biu; Ho, Pak Chung; Ng, Ernest Hung Yu

    2014-01-01

    Objective To evaluate ovarian response and cumulative live birth rate of women undergoing in-vitro fertilization (IVF) treatment who had discordant baseline serum anti-Mullerian hormone (AMH) level and antral follicle count (AFC). Methods This is a retrospective cohort study on 1,046 women undergoing the first IVF cycle in Queen Mary Hospital, Hong Kong. Subjects receiving standard IVF treatment with the GnRH agonist long protocol were classified according to their quartiles of baseline AMH and AFC measurements after GnRH agonist down-regulation and before commencing ovarian stimulation. The number of retrieved oocytes, ovarian sensitivity index (OSI) and cumulative live-birth rate for each classification category were compared. Results Among our studied subjects, 32.2% were discordant in their AMH and AFC quartiles. Among them, those having higher AMH within the same AFC quartile had higher number of retrieved oocytes and cumulative live-birth rate. Subjects discordant in AMH and AFC had intermediate OSI which differed significantly compared to those concordant in AMH and AFC on either end. OSI of those discordant in AMH and AFC did not differ significantly whether either AMH or AFC quartile was higher than the other. Conclusions When AMH and AFC are discordant, the ovarian responsiveness is intermediate between that when both are concordant on either end. Women having higher AMH within the same AFC quartile had higher number of retrieved oocytes and cumulative live-birth rate. PMID:25313856

  3. Estimates of Selection and Gene Flow from Measures of Cline Width and Linkage Disequilibrium in Heliconius Hybrid Zones

    PubMed Central

    Mallet, J.; Barton, N.; Gerardo, L. M.; Jose, S. C.; Manuel, M. M.; Eeley, H.

    1990-01-01

    Hybrid zones can yield estimates of natural selection and gene flow. The width of a cline in gene frequency is approximately proportional to gene flow (σ) divided by the square root of per-locus selection ( &s). Gene flow also causes gametic correlations (linkage disequilibria) between genes that differ across hybrid zones. Correlations are stronger when the hybrid zone is narrow, and rise to a maximum roughly equal to s. Thus cline width and gametic correlations combine to give estimates of gene flow and selection. These indirect measures of σ and s are especially useful because they can be made from collections, and require no field experiments. The method was applied to hybrid zones between color pattern races in a pair of Peruvian Heliconius butterfly species. The species are Mullerian mimics of one another, and both show the same changes in warning color pattern across their respective hybrid zones. The expectations of cline width and gametic correlation were generated using simulations of clines stabilized by strong frequency-dependent selection. In the hybrid zone in Heliconius erato, clines at three major color pattern loci were between 8.5 and 10.2 km wide, and the pairwise gametic correlations peaked at R & 0.35. These measures suggest that s & 0.23 per locus, and that σ & 2.6 km. In erato, the shapes of the clines agreed with that expected on the basis of dominance. Heliconius melpomene has a nearly coincident hybrid zone. In this species, cline widths at four major color pattern loci varied between 11.7 and 13.4 km. Pairwise gametic correlations peaked near R & 1.00 for tightly linked genes, and at R & 0.40 for unlinked genes, giving s & 0.25 per locus and σ & 3.7 km. In melpomene, cline shapes did not perfectly fit theoretical shapes based on dominance; this deviation might be explained by long-distance migration and/or strong epistasis. Compared with erato, sample sizes in melpomene are lower and the genetics of its color patterns are less well

  4. Genes and Gene Therapy

    MedlinePlus

    ... a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  5. Genes and Gene Therapy

    MedlinePlus

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  6. Chromosomal assignment of the genes for proprotein convertases PC4, PC5, and PACE 4 in mouse and human

    SciTech Connect

    Mbikay, M.; Seidah, N.G.; Chretien, M.

    1995-03-01

    The genes for three subtilisin/kexin-like proprotein convertases, PC4, PC5, and PACE4, were mapped in the mouse by RFLP analysis of a DNA panel from a (C57BL/6JEi x SPRET/Ei) F{sub 1} x SPRET/Ei backcross. The chromosomal locations of the human homologs were determined by Southern blot analysis of a DNA panel from human-rodent somatic cell hybrids, most of which contained a single human chromosome each. The gene for PC4 (Pcsk4 locus) mapped to mouse chromosome 10, close to the Adn (adipsin, a serine protease) locus and near the Amh (anti-Mullerian hormone) locus; in a human, the gene was localized to chromosome 19. The gene for PC5 (Pcsk5 locus) mapped to mouse chromosome 19 close to the Lpc1 (lipoacortin-1) locus and, in human, was localized to chromosome 9. The gene for PACE4 (Pcsk6 locus) mapped to mouse chromosome 7, at a distance of 13 cM from the Pcsk3 locus, which specifies furin, another member of this family of enzymes previoulsy mapped to this chromosome. This is in concordance with the known close proximity of these two loci in the homologous region on human chromosome 15q25-qter. Pcsk3 and Pcsk6 mapped to a region of mouse chromosome 7 that has been associated cytogenetically with postnatal lethality in maternal disomy, suggesting that these genes might be candidates for imprinting. 43 refs., 3 figs., 2 tabs.

  7. Prepubertal bisphenol A exposure interferes with ovarian follicle development and its relevant gene expression.

    PubMed

    Li, Yuchen; Zhang, Wenchang; Liu, Jin; Wang, Wenxiang; Li, Hong; Zhu, Jianling; Weng, Shaozheng; Xiao, Shihua; Wu, Tingting

    2014-04-01

    Bisphenol A (BPA) is recognized as one of several environmental estrogens. Pre-puberty is an important part of reproductive system development, and even a short-term exposure to BPA during this period may cause serious damage to the reproductive system. In this study, Pre-puberty female Wistar rats were exposed to BPA for one week. The effects of BPA on ovarian structure and function were assessed. The expression levels of follicle development-related genes were analyzed. Our study showed that BPA reduced rat ovarian weights and follicle numbers, and interferes with the constituent ratio of follicles. With increasing doses of BPA, the expression of factor in the germline alpha (FIGLA) and oocyte-specific histone H1 variant (H1FOO) genes decreased, and anti-mullerian hormone (AMH) genes expression increased, suggesting that BPA exposure during the pre-pubertal period may inhibit the development of ovaries, and follicle development-related genes may play certain roles in this process. PMID:24051130

  8. Serous carcinomatous component championed by heparin-binding EGF-like growth factor (HB-EGF) predisposing to metastasis and recurrence in stage I uterine malignant mixed mullerian tumor.

    PubMed

    Zhang, Lei; Shimizu, David; Killeen, Jeffrey L; Honda, Stacey A; Lu, Di; Stanoyevitch, Alexander; Lin, Fritz; Wang, Beverly; Monuki, Edwin S; Carbone, Michele

    2016-07-01

    The stage I uterine malignant mixed mullerian tumor (MMMT) shows different potential for progression. We reason that MMMTs with high-grade carcinomatous component and positivity for HB-EGF are prone to recurrence/metastasis in the early stage. A retrospective clinical and histopathologic review with immunohistochemical staining for HB-EGF, EGFR, and integrin-α5 was performed for 62 surgically staged MMMT cases. Recurrence/metastasis (RM) is 6/18 (33%) in stage I disease. Of all the clinicopathologic variables and biomarkers analyzed for stage I MMMT, serous carcinomatous component (83% [5/6] versus 17% [1/12], P = .0015) and HB-EGF expression (100% [6/6] versus 50% [6/12], P=.0339) were significantly different between groups with RM and without RM. The presence of serous carcinoma in all stages was 83% (5/6) in stage I with RM, 8% (1/12) in stage I without RM, 20% (1/5) in stage II, 36.4% (8/22) in stage III and 64.7% (11/17) in stage IV; this was paralleled by HB-EGF expression of 100% (6/6), 50% (6/12), 40% (2/5), 50% (11/22) and 71% (12/17) with a correlation coefficient r=0.9131 (P=.027). HB-EGF and integrin-α5 were highly expressed in MMMTs bearing serous carcinoma component, compared to endometrioid and unclassifiable/miscellaneous subtypes (84.6%/47.6%/33.3%, P=.025 for HB-EGF; and 61.5%/42.9%/20.0%, P=.021 for integrin-α5). The EGFR positivity was comparable among the three subtypes (48.1%, 47.6% and 26.7%, P=.326). This study indicates that serous carcinomatous component championed by expression of HB-EGF predisposes to recurrence/metastasis in stage I MMMT. This process might involve integrin-α5 and does not seem to require overexpression of EGFR. Further study is required. PMID:26980026

  9. Gene Alterations of Ovarian Cancer Cells Expressing Estrogen Receptors by Estrogen and Bisphenol A Using Microarray Analysis

    PubMed Central

    Hwang, Kyung-A; Park, Se-Hyung; Yi, Bo-Rim

    2011-01-01

    Since endocrine disrupting chemicals (EDCs) may interfere with the endocrine system(s) of our body and have an estrogenicity, we evaluated the effect(s) of bisphenol A (BPA) on the transcriptional levels of altered genes in estrogen receptor (ER)-positive BG-1 ovarian cancer cells by microarray and real-time polymerase-chain reaction. In this study, treatment with 17β-estradiol (E2) or BPA increased mRNA levels of E2-responsive genes related to apoptosis, cancer and cell cycle, signal transduction and nucleic acid binding etc. In parallel with their microarray data, the mRNA levels of some altered genes including RAB31_MEMBER RAS ONCOGENE FAMILY (U59877), CYCLIN D1 (X59798), CYCLIN-DEPENDENT KINASE 4 (U37022), IGF-BINDING PROTEIN 4 (U20982), and ANTI-MULLERIAN HORMONE (NM_000479) were significantly induced by E2 or BPA in this cell model. These results indicate that BPA in parallel with E2 induced the transcriptional levels of E2-responsive genes in an estrogen receptor (ER)-positive BG-1 cells. In conclusion, these microarray and real-time polymerase-chain reaction results indicate that BPA, a potential weak estrogen, may have estrogenic effect by regulating E2-responsive genes in ER-positive BG-1 cells and BG-1 cells would be the best in vitro model to detect these estrogenic EDCs. PMID:21826169

  10. Ovarian reserve status in young women is associated with altered gene expression in membrana granulosa cells

    PubMed Central

    Skiadas, Christine C.; Duan, Shenghua; Correll, Mick; Rubio, Renee; Karaca, Nilay; Ginsburg, Elizabeth S.; Quackenbush, John; Racowsky, Catherine

    2012-01-01

    Diminished ovarian reserve (DOR) is a challenging diagnosis of infertility, as there are currently no tests to predict who may become affected with this condition, or at what age. We designed the present study to compare the gene expression profile of membrana granulosa cells from young women affected with DOR with those from egg donors of similar age and to determine if distinct genetic patterns could be identified to provide insight into the etiology of DOR. Young women with DOR were identified based on FSH level in conjunction with poor follicular development during an IVF cycle (n = 13). Egg donors with normal ovarian reserve (NOR) comprised the control group (n = 13). Granulosa cells were collected following retrieval, RNA was extracted and microarray analysis was conducted to evaluate genetic differences between the groups. Confirmatory studies were undertaken with quantitative RT–PCR (qRT–PCR). Multiple significant differences in gene expression were observed between the DOR patients and egg donors. Two genes linked with ovarian function, anti-Mullerian hormone (AMH) and luteinizing hormone receptor (LHCGR), were further analyzed with qRT–PCR in all patients. The average expression of AMH was significantly higher in egg donors (adjusted P-value = 0.01), and the average expression of LHCGR was significantly higher in DOR patients (adjusted P-value = 0.005). Expression levels for four additional genes, progesterone receptor membrane component 2 (PGRMC2), prostaglandin E receptor 3 (subtype EP3) (PTGER3), steroidogenic acute regulatory protein (StAR), and StAR-related lipid transfer domain containing 4 (StarD4), were validated in a group consisting of five NOR and five DOR patients. We conclude that gene expression analysis has substantial potential to determine which young women may be affected with DOR. More importantly, our analysis suggests that DOR patients fall into two distinct subgroups based on gene expression profiles, indicating that different

  11. Genes and gene regulation

    SciTech Connect

    MacLean, N.

    1988-01-01

    Genetics has long been a central topic for biologists, and recent progress has captured the public imagination as well. This book addresses questions that are at the leading edge of this continually advancing discipline. In tune with the increasing emphasis on molecular biology and genetic engineering, this text emphasizes the molecular aspects of gene expression, and the evolution of gene sequence organization and control. It reviews the genetic material of viruses, bacteria, and of higher organisms. Cells and organisms are compared in terms of gene numbers, their arrangements within a cell, and the control mechanisms which regulate the activity of genes.

  12. Studying Genes

    MedlinePlus

    ... Area What are genes? Genes are sections of DNA that contain instructions for making the molecules—many ... material in an organism. This includes genes and DNA elements that control the activity of genes. Does ...

  13. Antimullerian Hormone and Its Receptor Gene Expression in Prenatally Androgenized Female Rats

    PubMed Central

    Daneshian, Zahra; Ramezani Tehrani, Fahimeh; Zarkesh, Maryam; Norooz Zadeh, Mahsa; Mahdian, Reza; Zadeh Vakili, Azita

    2015-01-01

    Background: Anti-mullerian hormone (AMH) levels reflect the number of small antral follicles in ovaries and expression changes of AMH and its receptor are suspected to be involved in the pathogenesis of polycystic ovary syndrome (PCOS). Objectives: The aim of this study was to evaluate gene expression of AMH and its receptor in immature and adult rats prenatally exposed to androgen excess. Materials and Methods: Six pregnant Wistar rats in the experimental group were treated by subcutaneous injection of 5 mg free testosterone on day 20 of pregnancy, while controls (n = 6) received only 500 mL of solvent. Female pups of each mother were randomly divided into three groups as day 0 (newborn), 10-day old and days 75-85 (adult). RNAs were extracted from ovarian tissues and relative expression levels for AMH and its receptor genes were measured using TaqMan Real-Time PCR. Serum AMH and testosterone levels were measured using ELISA method. Results: Relative AMH expression decreased in newborns, 10-day olds and adults (0.806, 0.443 and 0.809 fold, respectively). AMHR expression was higher in newborns and adults (1.432 and 1.057 fold, respectively), while it decreased by 0.263 fold in 10-day olds, although none of them were significant (P > 0.05). In addition, AMH levels were consistent with the results of gene expression. Testosterone hormone levels from 10 day-olds to adults were significantly increased in both study groups (P = 0.016). Conclusions: While AMH receptor expression was higher in experimental rats, their serum concentrations of AMH were decreased. Further researches with greater sample sizes and measurement of bioactive forms of hormones are recommended to confirm the findings of this study. PMID:25745494

  14. Loss of oocytes due to conditional ablation of Murine double minute 2 (Mdm2) gene is p53-dependent and results in female sterility.

    PubMed

    Livera, Gabriel; Uzbekov, Rustem; Jarrier, Peggy; Fouchécourt, Sophie; Duquenne, Clotilde; Parent, Anne-Simone; Marine, Jean-Christophe; Monget, Philippe

    2016-08-01

    Murine double minute 2 and 4 (Mdm2, Mdm4) are major p53-negative regulators, preventing thus uncontrolled apoptosis induction in numerous cell types, although their function in the female germ line has received little attention. In the present work, we have generated mice with specific invalidation of Mdm2 and Mdm4 genes in the mouse oocyte (Mdm2(Ocko) and Mdm4(Ocko) mice), to test their implication in survival of these germ cells. Most of the Mdm2(Ocko) but not Mdm4(Ocko) mice were sterile, with a dramatic reduction of the weight of ovaries and genital tract, a strong increase in follicle-stimulating hormone and luteinizing hormone serum levels, and a reduction of anti-mullerian hormone serum levels. Histological analyses revealed an obvious decrease of the number of growing follicles beyond the primary stage in Mdm2(Ocko) ovaries in comparison to controls, with a pronounced increase in the apparition of primary atretic follicles, most being devoid of oocyte. Similar phenotypes were observed with Mdm2(Ocko) Mdm4(Ocko) ovaries, with no worsening of the phenotype. However, we failed to detect any increase in p53 level in mutant oocytes, nor any other apoptotic marker, introgression of this targeted invalidation in p53-/- mice restored the fertility of females. This study is the first to show that Mdm2, but not Mdm4, has a critical role in oocyte survival and would be involved in premature ovarian insufficiency phenotype. PMID:27364741

  15. Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats

    SciTech Connect

    Armenti, AnnMarie E.; Zama, Aparna Mahakali; Passantino, Lisa; Uzumcu, Mehmet

    2008-12-01

    Methoxychlor (MXC) is an organochlorine pesticide with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether transient developmental exposure to MXC could cause adult ovarian dysfunction, we exposed Fischer rats to 20 {mu}g/kg/day (low dose; environmentally relevant dose) or 100 mg/kg/day (high dose) MXC between 19 days post coitum and postnatal day 7. Multiple reproductive parameters, serum hormone levels, and ovarian morphology and molecular markers were examined from prepubertal through adult stages. High dose MXC accelerated pubertal onset and first estrus, reduced litter size, and increased irregular cyclicity (P < 0.05). MXC reduced superovulatory response to exogenous gonadotropins in prepubertal females (P < 0.05). Rats exposed to high dose MXC had increasing irregular estrous cyclicity beginning at 4 months of age, with all animals showing abnormal cycles by 6 months. High dose MXC reduced serum progesterone, but increased luteinizing hormone (LH). Follicular composition analysis revealed an increase in the percentage of preantral and early antral follicles and a reduction in the percentage of corpora lutea in high dose MXC-treated ovaries (P < 0.05). Immunohistochemical staining and quantification of the staining intensity showed that estrogen receptor {beta} was reduced by high dose MXC while anti-Mullerian hormone was upregulated by both low- and high dose MXC in preantral and early antral follicles (P < 0.05). High dose MXC significantly reduced LH receptor expression in large antral follicles (P < 0.01), and down-regulated cytochrome P450 side-chain cleavage. These results demonstrated that developmental MXC exposure results in reduced ovulation and fertility and premature aging, possibly by altering ovarian gene expression and folliculogenesis.

  16. Developmental Methoxychlor Exposure Affects Multiple Reproductive Parameters and Ovarian: Folliculogenesis and Gene Expression in Adult Rats

    PubMed Central

    Armenti, AnnMarie E.; Zama, Aparna Mahakali; Passantino, Lisa; Uzumcu, Mehmet

    2008-01-01

    Methoxychlor (MXC) is an organochlorine pesticide with estrogenic, anti-estrogenic, and anti-androgenic properties. To investigate whether transient developmental exposure to MXC could cause adult ovarian dysfunction, we exposed Fischer rats to 20 μg/kg/day (low dose; environmentally relevant dose) or 100 mg/kg/day (high dose) MXC between 19 days post-coitum and postnatal day 7. Multiple reproductive parameters, serum hormone levels, and ovarian morphology and molecular markers were examined from prepubertal through adult stages. High dose MXC accelerated pubertal onset and first estrus, reduced litter size, and increased irregular cyclicity (P < 0.05). MXC reduced superovulatory response to exogenous gonadotropins in prepubertal females (P < 0.05). Rats exposed to high dose MXC had increasing irregular estrous cyclicity beginning at 4 months of age, with all animals showing abnormal cycles by 6 months. High dose MXC reduced serum progesterone, but increased luteinizing hormone (LH). Follicular composition analysis revealed an increase in the percentage of preantral and early antral follicles and a reduction in the percentage of corpora lutea in high dose MXC-treated ovaries (P < 0.05). Immunohistochemical staining and quantification of the staining intensity showed that estrogen receptor β was reduced by high dose MXC while anti-Mullerian hormone was upregulated by both low- and high dose MXC in preantral and early antral follicles (P < 0.05). High dose MXC significantly reduced LH receptor expression in large antral follicles (P < 0.01), and down-regulated cytochrome P450 side-chain cleavage. These results demonstrated that developmental MXC exposure results in reduced ovulation and fertility and premature aging, possibly by altering ovarian gene expression and folliculogenesis. PMID:18848953

  17. Gene Therapy

    PubMed Central

    Baum, Bruce J

    2014-01-01

    Applications of gene therapy have been evaluated in virtually every oral tissue, and many of these have proved successful at least in animal models. While gene therapy will not be used routinely in the next decade, practitioners of oral medicine should be aware of the potential of this novel type of treatment that doubtless will benefit many patients with oral diseases. PMID:24372817

  18. Trichoderma genes

    DOEpatents

    Foreman, Pamela; Goedegebuur, Frits; Van Solingen, Pieter; Ward, Michael

    2012-06-19

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.

  19. [Language gene].

    PubMed

    Takahashi, Hiroshi

    2006-11-01

    The human capacity for acquiring speech and language must derive, at least in part, from the genome. Recent advance in the field of molecular genetics finally discovered 'Language Gene'. Disruption of FOXP2 gene, the firstly identified 'language gene' causes severe speech and language disorder. To elucidate the anatomical basis of language processing in the brain, we examined the expression pattern of FOXP2/Foxp2 genes in the monkey and rat brains through development. We found the preferential expression of FOXP2/Foxp2 in the striosomal compartment of the developing striatum. Thus, we suggest the striatum, particularly striosomal system may participate in neural information processing for language and speech. Our suggestion is consistent with the declarative/ procedural model of language proposed by Ullman (1997, 2001), which the procedural memory-dependent mental grammar is rooted in the basal ganglia and the frontal cortex, and the declarative memory-dependent mental lexicon is rooted in the temporal lobe. PMID:17432197

  20. Genes V.

    SciTech Connect

    Lewin, B.

    1994-12-31

    This fifth edition book encompasses a wide range of topics covering 1,272 pages. The book is arranged into nine parts with a total of 36 chapters. These nine parts include Introduction; DNA as a Store of Information; Translation; Constructing Cells; Control of Prokaryotypic Gene Expression; Perpetuation of DNA; Organization of the Eukaryotypic Genome; Eukaryotypic Transcription and RNA Processing; The Dynamic Genome; and Genes in Development.

  1. Attention Genes

    ERIC Educational Resources Information Center

    Posner, Michael I.; Rothbart, Mary K.; Sheese, Brad E.

    2007-01-01

    A major problem for developmental science is understanding how the cognitive and emotional networks important in carrying out mental processes can be related to individual differences. The last five years have seen major advances in establishing links between alleles of specific genes and the neural networks underlying aspects of attention. These…

  2. Designer Genes.

    ERIC Educational Resources Information Center

    Miller, Judith; Miller, Mark

    1983-01-01

    Genetic technologies may soon help fill some of the most important needs of humanity from food to energy to health care. The research of major designer genes companies and reasons why the initial mad rush for biotechnology has slowed are reviewed. (SR)

  3. Anti-Mullerian-hormone levels during pregnancy and postpartum

    PubMed Central

    2013-01-01

    Background The number of unintentionally childless couples is increasing as more couples seek to conceive for the first time in the third or fourth decade of the woman’s life. Determination of ovarian reserve is an essential component of infertility assessment. The Anti-Müllerian-Hormone (AMH) seems to be the most reliable predictor of ovarian reserve. In this study we analyzed AMH in a cohort of pregnant women without fertility impairment to determine age-dependent decline and possible AMH fluctuations during pregnancy and postpartum. Methods A total of 554 healthy women aged 16 to 47 years without history of infertility or previous surgery on the ovaries were enrolled in the study between 1995 and 2012. In 450 women, a single measurement of AMH was taken during pregnancy, allowing for cross sectional analysis of trimester- and age-related differences in AMH levels. For another 15 women longitudinal data on AMH levels for all trimesters was recorded. In addition, for 69 women AMH was measured at the time just before and after delivery, and for another 20 AMH was measured just before delivery and once on each of the first four days after delivery. We used AMH-Gen-II ELISA (Beckman Coulter, Immunotech, Webster, USA) for the assessment of AMH levels. Non-parametric statistical tests were used to compare AMH levels between age groups, trimesters and postpartum. Results Comparison between the trimesters revealed a significant difference in AMH values at each trimester (first trimester: 1.69 ng/ml (IQR 0.71–3.10), second trimester: 0.8 ng/ml (IQR 0.48–1.41), third trimester: 0.5 ng/ml (IQR 0.18–1.00)). AMH significantly dropped during the course of pregnancy and immediately after delivery, whereas an increase was observed over the first four days postpartum. Women, greater than or equal to 35 years, showed significant lower AMH levels than those <35 years across all trimesters. Conclusions AMH levels decrease during pregnancy. The decline in AMH levels during pregnancy indicates ovarian suppression. AMH levels recover quickly after delivery. AMH levels assessed in pregnant women are not an accurate indicator of ovarian reserve, since AMH levels during pregnancy seem not to be independent of gestational age. PMID:23844593

  4. Genes and Hearing Loss

    MedlinePlus

    ... Meeting Calendar Find an ENT Doctor Near You Genes and Hearing Loss Genes and Hearing Loss Patient ... mutation may only have dystopia canthorum. How Do Genes Work? Genes are a road map for the ...

  5. Compare Gene Profiles

    SciTech Connect

    2014-05-31

    Compare Gene Profiles (CGP) performs pairwise gene content comparisons among a relatively large set of related bacterial genomes. CGP performs pairwise BLAST among gene calls from a set of input genome and associated annotation files, and combines the results to generate lists of common genes, unique genes, homologs, and genes from each genome that differ substantially in length from corresponding genes in the other genomes. CGP is implemented in Python and runs in a Linux environment in serial or parallel mode.

  6. Gene gymnastics

    PubMed Central

    Vijayachandran, Lakshmi S; Thimiri Govinda Raj, Deepak B; Edelweiss, Evelina; Gupta, Kapil; Maier, Josef; Gordeliy, Valentin; Fitzgerald, Daniel J; Berger, Imre

    2013-01-01

    Most essential activities in eukaryotic cells are catalyzed by large multiprotein assemblies containing up to ten or more interlocking subunits. The vast majority of these protein complexes are not easily accessible for high resolution studies aimed at unlocking their mechanisms, due to their low cellular abundance and high heterogeneity. Recombinant overproduction can resolve this bottleneck and baculovirus expression vector systems (BEVS) have emerged as particularly powerful tools for the provision of eukaryotic multiprotein complexes in high quality and quantity. Recently, synthetic biology approaches have begun to make their mark in improving existing BEVS reagents by de novo design of streamlined transfer plasmids and by engineering the baculovirus genome. Here we present OmniBac, comprising new custom designed reagents that further facilitate the integration of heterologous genes into the baculovirus genome for multiprotein expression. Based on comparative genome analysis and data mining, we herein present a blueprint to custom design and engineer the entire baculovirus genome for optimized production properties using a bottom-up synthetic biology approach. PMID:23328086

  7. Gene doping: gene delivery for olympic victory

    PubMed Central

    Gould, David

    2013-01-01

    With one recently recommended gene therapy in Europe and a number of other gene therapy treatments now proving effective in clinical trials it is feasible that the same technologies will soon be adopted in the world of sport by unscrupulous athletes and their trainers in so called ‘gene doping’. In this article an overview of the successful gene therapy clinical trials is provided and the potential targets for gene doping are highlighted. Depending on whether a doping gene product is secreted from the engineered cells or is retained locally to, or inside engineered cells will, to some extent, determine the likelihood of detection. It is clear that effective gene delivery technologies now exist and it is important that detection and prevention plans are in place. PMID:23082866

  8. Autism and Genes

    ERIC Educational Resources Information Center

    National Institutes of Health, 2005

    2005-01-01

    This document defines and discusses autism and how genes play a role in the condition. Answers to the following questions are covered: (1) What are genes? (2) What is autism? (3) What causes autism? (4) Why study genes to learn about autism? (5) How do researchers look for the genes involved in autism? (screen the whole genome; conduct cytogenetic…

  9. Compare Gene Profiles

    Energy Science and Technology Software Center (ESTSC)

    2014-05-31

    Compare Gene Profiles (CGP) performs pairwise gene content comparisons among a relatively large set of related bacterial genomes. CGP performs pairwise BLAST among gene calls from a set of input genome and associated annotation files, and combines the results to generate lists of common genes, unique genes, homologs, and genes from each genome that differ substantially in length from corresponding genes in the other genomes. CGP is implemented in Python and runs in a Linuxmore » environment in serial or parallel mode.« less

  10. Myeloid ecotropic viral integration site 1 (MEIS) 1 involvement in embryonic implantation

    PubMed Central

    Xu, Bei; Geerts, Dirk; Qian, Kun; Zhang, Hanwang; Zhu, Guijin

    2008-01-01

    BACKGROUND The HOXA10 homeobox gene controls embryonic uterine development and adult endometrial receptivity. The three-amino-acid loop extension (TALE) family homeobox genes like myeloid ecotropic viral integration site 1 (MEIS) provide enhanced target gene activation and specificity in HOX-regulated cellular processes by acting as HOX cofactors. METHODS AND RESULTS Analysis of an Affymetrix data set in the public domain showed high expression of MEIS1 in human endometrium. MEIS1 expression was confirmed during the human menstrual cycle by RT–PCR and in situ hybridization and was increased during the secretory compared with proliferative phase of the cycle (P = 0.0001), the time of implantation. To assess the importance of maternal Meis1 expression in a mouse model, the uteri of Day 2 pregnant mice were injected with Meis1 over-expression or small interfering RNA (siRNA) constructs. Blocking Meis1 expression by siRNA before implantation significantly reduced average implantation rates (P = 0.00001). Increased or decreased Meis1 expression significantly increased or decreased the expression of integrin β3, a transcriptional target of HOXA10 and an important factor in early embryo-endometrium interactions (P = 0.006). Manipulating Meis1 expression before implantation also dramatically affected the number of pinopodes, uterine endometrial epithelial projections that develop at the time of endometrial receptivity. CONCLUSIONS The results suggest that in mouse, meis1 contributes to regulating endometrial development during the menstrual cycle and establishing the conditions necessary for implantation. PMID:18408019

  11. Evolution by gene loss.

    PubMed

    Albalat, Ricard; Cañestro, Cristian

    2016-07-01

    The recent increase in genomic data is revealing an unexpected perspective of gene loss as a pervasive source of genetic variation that can cause adaptive phenotypic diversity. This novel perspective of gene loss is raising new fundamental questions. How relevant has gene loss been in the divergence of phyla? How do genes change from being essential to dispensable and finally to being lost? Is gene loss mostly neutral, or can it be an effective way of adaptation? These questions are addressed, and insights are discussed from genomic studies of gene loss in populations and their relevance in evolutionary biology and biomedicine. PMID:27087500

  12. Human Gene Therapy: Genes without Frontiers?

    ERIC Educational Resources Information Center

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  13. Evolution of gene expression after gene amplification.

    PubMed

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-05-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat-maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  14. Evolution of Gene Expression after Gene Amplification

    PubMed Central

    Garcia, Nelson; Zhang, Wei; Wu, Yongrui; Messing, Joachim

    2015-01-01

    We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat–maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators. PMID:25912045

  15. Reading and Generalist Genes

    ERIC Educational Resources Information Center

    Haworth, Claire M. A.; Meaburn, Emma L.; Harlaar, Nicole; Plomin, Robert

    2007-01-01

    Twin-study research suggests that many (but not all) of the same genes contribute to genetic influence on diverse learning abilities and disabilities, a hypothesis called "generalist genes". This generalist genes hypothesis was tested using a set of 10 DNA markers (single nucleotide polymorphisms [SNPs]) found to be associated with early reading…

  16. Accepting Foreign Genes.

    PubMed

    Boto, Luis

    2016-05-01

    Three recent papers underline the importance of the host genomic background in allowing the stable maintenance of horizontally acquired genes. These studies suggest that post-transfer changes in both host genome and acquired genes contribute to the stable integration of foreign genes. PMID:27075565

  17. [Imprinted genes in plants].

    PubMed

    Zhang, Li-Geng; Yang, Ruo-Fei; Fu, Feng-Ling; Li, Wan-Chen

    2010-12-01

    The expression of imprinted genes is regulated by epigenetic mechanism. In plant endosperm, the allele of imprinted genes is expressed in a pattern of parent-of-origin-dependent. The expression of imprinted genes plays essential roles in the development of embryos and their annexe structures, as well as seed size, reproductive barriers and apomixis. Along with the progress of plant epigenetic research, the exploration of imprinted genes is becoming hotspot in epigenetic research. This review focused on the parental conflict theory about the origin of imprinted genes, and the latest research advances in expression regulation mechanism of plant imprinted genes, using the examples of the important imprinted genes MEA, FIS2, FWA, MPC, and PHE1 in Arabidopsis, and FIEI and FIE2 in maize. PMID:21513148

  18. Retrieval with gene queries

    PubMed Central

    Sehgal, Aditya K; Srinivasan, Padmini

    2006-01-01

    Background Accuracy of document retrieval from MEDLINE for gene queries is crucially important for many applications in bioinformatics. We explore five information retrieval-based methods to rank documents retrieved by PubMed gene queries for the human genome. The aim is to rank relevant documents higher in the retrieved list. We address the special challenges faced due to ambiguity in gene nomenclature: gene terms that refer to multiple genes, gene terms that are also English words, and gene terms that have other biological meanings. Results Our two baseline ranking strategies are quite similar in performance. Two of our three LocusLink-based strategies offer significant improvements. These methods work very well even when there is ambiguity in the gene terms. Our best ranking strategy offers significant improvements on three different kinds of ambiguities over our two baseline strategies (improvements range from 15.9% to 17.7% and 11.7% to 13.3% depending on the baseline). For most genes the best ranking query is one that is built from the LocusLink (now Entrez Gene) summary and product information along with the gene names and aliases. For others, the gene names and aliases suffice. We also present an approach that successfully predicts, for a given gene, which of these two ranking queries is more appropriate. Conclusion We explore the effect of different post-retrieval strategies on the ranking of documents returned by PubMed for human gene queries. We have successfully applied some of these strategies to improve the ranking of relevant documents in the retrieved sets. This holds true even when various kinds of ambiguity are encountered. We feel that it would be very useful to apply strategies like ours on PubMed search results as these are not ordered by relevance in any way. This is especially so for queries that retrieve a large number of documents. PMID:16630348

  19. Do Housekeeping Genes Exist?

    PubMed Central

    Sun, Bingyun

    2015-01-01

    The searching of human housekeeping (HK) genes has been a long quest since the emergence of transcriptomics, and is instrumental for us to understand the structure of genome and the fundamentals of biological processes. The resolved genes are frequently used in evolution studies and as normalization standards in quantitative gene-expression analysis. Within the past 20 years, more than a dozen HK-gene studies have been conducted, yet none of them sampled human tissues completely. We believe an integration of these results will help remove false positive genes owing to the inadequate sampling. Surprisingly, we only find one common gene across 15 examined HK-gene datasets comprising 187 different tissue and cell types. Our subsequent analyses suggest that it might not be appropriate to rigidly define HK genes as expressed in all tissue types that have diverse developmental, physiological, and pathological states. It might be beneficial to use more robustly identified HK functions for filtering criteria, in which the representing genes can be a subset of genome. These genes are not necessarily the same, and perhaps need not to be the same, everywhere in our body. PMID:25970694

  20. Do housekeeping genes exist?

    PubMed

    Zhang, Yijuan; Li, Ding; Sun, Bingyun

    2015-01-01

    The searching of human housekeeping (HK) genes has been a long quest since the emergence of transcriptomics, and is instrumental for us to understand the structure of genome and the fundamentals of biological processes. The resolved genes are frequently used in evolution studies and as normalization standards in quantitative gene-expression analysis. Within the past 20 years, more than a dozen HK-gene studies have been conducted, yet none of them sampled human tissues completely. We believe an integration of these results will help remove false positive genes owing to the inadequate sampling. Surprisingly, we only find one common gene across 15 examined HK-gene datasets comprising 187 different tissue and cell types. Our subsequent analyses suggest that it might not be appropriate to rigidly define HK genes as expressed in all tissue types that have diverse developmental, physiological, and pathological states. It might be beneficial to use more robustly identified HK functions for filtering criteria, in which the representing genes can be a subset of genome. These genes are not necessarily the same, and perhaps need not to be the same, everywhere in our body. PMID:25970694

  1. Towards Consensus Gene Ages.

    PubMed

    Liebeskind, Benjamin J; McWhite, Claire D; Marcotte, Edward M

    2016-01-01

    Correctly estimating the age of a gene or gene family is important for a variety of fields, including molecular evolution, comparative genomics, and phylogenetics, and increasingly for systems biology and disease genetics. However, most studies use only a point estimate of a gene's age, neglecting the substantial uncertainty involved in this estimation. Here, we characterize this uncertainty by investigating the effect of algorithm choice on gene-age inference and calculate consensus gene ages with attendant error distributions for a variety of model eukaryotes. We use 13 orthology inference algorithms to create gene-age datasets and then characterize the error around each age-call on a per-gene and per-algorithm basis. Systematic error was found to be a large factor in estimating gene age, suggesting that simple consensus algorithms are not enough to give a reliable point estimate. We also found that different sources of error can affect downstream analyses, such as gene ontology enrichment. Our consensus gene-age datasets, with associated error terms, are made fully available at so that researchers can propagate this uncertainty through their analyses (geneages.org). PMID:27259914

  2. The gap gene network

    PubMed Central

    2010-01-01

    Gap genes are involved in segment determination during the early development of the fruit fly Drosophila melanogaster as well as in other insects. This review attempts to synthesize the current knowledge of the gap gene network through a comprehensive survey of the experimental literature. I focus on genetic and molecular evidence, which provides us with an almost-complete picture of the regulatory interactions responsible for trunk gap gene expression. I discuss the regulatory mechanisms involved, and highlight the remaining ambiguities and gaps in the evidence. This is followed by a brief discussion of molecular regulatory mechanisms for transcriptional regulation, as well as precision and size-regulation provided by the system. Finally, I discuss evidence on the evolution of gap gene expression from species other than Drosophila. My survey concludes that studies of the gap gene system continue to reveal interesting and important new insights into the role of gene regulatory networks in development and evolution. PMID:20927566

  3. Metastasis Suppressor Genes

    PubMed Central

    Yan, Jinchun; Yang, Qin; Huang, Qihong

    2014-01-01

    Metastasis is a major cause of cancer mortality. Metastasis is a complex process that requires the regulation of both metastasis-promoting and metastasis suppressor genes. The discovery of metastasis suppressor genes contributes significantly to our understanding of metastasis mechanisms and provides prognostic markers and therapeutic targets in clinical cancer management. In this review, we summarize the methods that have been used to identify metastasis suppressors and the potential clinical impact of these genes. PMID:23348381

  4. Towards Consensus Gene Ages

    PubMed Central

    Liebeskind, Benjamin J.; McWhite, Claire D.; Marcotte, Edward M.

    2016-01-01

    Correctly estimating the age of a gene or gene family is important for a variety of fields, including molecular evolution, comparative genomics, and phylogenetics, and increasingly for systems biology and disease genetics. However, most studies use only a point estimate of a gene’s age, neglecting the substantial uncertainty involved in this estimation. Here, we characterize this uncertainty by investigating the effect of algorithm choice on gene-age inference and calculate consensus gene ages with attendant error distributions for a variety of model eukaryotes. We use 13 orthology inference algorithms to create gene-age datasets and then characterize the error around each age-call on a per-gene and per-algorithm basis. Systematic error was found to be a large factor in estimating gene age, suggesting that simple consensus algorithms are not enough to give a reliable point estimate. We also found that different sources of error can affect downstream analyses, such as gene ontology enrichment. Our consensus gene-age datasets, with associated error terms, are made fully available at so that researchers can propagate this uncertainty through their analyses (geneages.org). PMID:27259914

  5. History of gene therapy.

    PubMed

    Wirth, Thomas; Parker, Nigel; Ylä-Herttuala, Seppo

    2013-08-10

    Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results. In this review, we will take a historical view and highlight some of the milestones that had an important impact on the development of gene therapy. We will also discuss briefly the safety and ethical aspects of gene therapy and address some concerns that have been connected with gene therapy as an important therapeutic modality. PMID:23618815

  6. [The gene or genes of allergic asthma?].

    PubMed

    Demoly, P; Bousquet, J; Godard, P; Michel, F B

    1993-05-15

    Asthma is a multifactorial disease in which the hereditary component has been demonstrated by familial and identical twin studies. Allergy is important in the aetiology of asthma and is characterized by a hyperreaction to allergens triggering predominantly the immunoglobulines E. The levels of these antibodies are found to be elevated even in non allergic asthmatics. The majority of genetic research in this area is focused on either the genes of the specific immune response or that of the non allergic response. These are the genes of the class II MHC, and the APY gene on chromosome 11q respectively. The modern techniques of molecular genetics and in particular those of inverse genetics have recently contributed to a more comprehensive understanding of this disease. PMID:8316547

  7. GENE EXPRESSION NETWORKS

    EPA Science Inventory

    "Gene expression network" is the term used to describe the interplay, simple or complex, between two or more gene products in performing a specific cellular function. Although the delineation of such networks is complicated by the existence of multiple and subtle types of intera...

  8. Your Genes, Your Choices

    MedlinePlus

    Table of Contents Your Genes, Your Choices describes the Human Genome Project, the science behind it, and the ethical, legal, and social issues that are ... Nothing could be further from the truth. Your Genes, Your Choices points out how the progress of ...

  9. What Is a Gene?

    MedlinePlus

    ... a new kind of medicine — so new that scientists are still doing experiments to see if it works. It uses the technology of genetic engineering to treat a disease caused by a gene that has changed in some way. One method being tested is replacing sick genes with healthy ...

  10. Gene expression networks.

    PubMed

    Thomas, Reuben; Portier, Christopher J

    2013-01-01

    With the advent of microarrays and next-generation biotechnologies, the use of gene expression data has become ubiquitous in biological research. One potential drawback of these data is that they are very rich in features or genes though cost considerations allow for the use of only relatively small sample sizes. A useful way of getting at biologically meaningful interpretations of the environmental or toxicological condition of interest would be to make inferences at the level of a priori defined biochemical pathways or networks of interacting genes or proteins that are known to perform certain biological functions. This chapter describes approaches taken in the literature to make such inferences at the biochemical pathway level. In addition this chapter describes approaches to create hypotheses on genes playing important roles in response to a treatment, using organism level gene coexpression or protein-protein interaction networks. Also, approaches to reverse engineer gene networks or methods that seek to identify novel interactions between genes are described. Given the relatively small sample numbers typically available, these reverse engineering approaches are generally useful in inferring interactions only among a relatively small or an order 10 number of genes. Finally, given the vast amounts of publicly available gene expression data from different sources, this chapter summarizes the important sources of these data and characteristics of these sources or databases. In line with the overall aims of this book of providing practical knowledge to a researcher interested in analyzing gene expression data from a network perspective, the chapter provides convenient publicly accessible tools for performing analyses described, and in addition describe three motivating examples taken from the published literature that illustrate some of the relevant analyses. PMID:23086841

  11. 4. AERIAL VIEW OF GENE WASH RESERVOIR AND GENE CAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. AERIAL VIEW OF GENE WASH RESERVOIR AND GENE CAMP LOOKING SOUTHWEST. DAM AND SPILLWAY VISIBLE IN BOTTOM OF PHOTO. - Gene Wash Reservoir & Dam, 2 miles west of Parker Dam, Parker Dam, San Bernardino County, CA

  12. Genes and Social Behavior

    PubMed Central

    Robinson, Gene E.; Fernald, Russell D.; Clayton, David F.

    2011-01-01

    What specific genes and regulatory sequences contribute to the organization and functioning of brain circuits that support social behavior? How does social experience interact with information in the genome to modulate these brain circuits? Here we address these questions by highlighting progress that has been made in identifying and understanding two key “vectors of influence” that link genes, brain, and social behavior: 1) social information alters gene readout in the brain to influence behavior; and 2) genetic variation influences brain function and social behavior. We also briefly discuss how evolutionary changes in genomic elements influence social behavior and outline prospects for a systems biology of social behavior. PMID:18988841

  13. GeneLab

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Thompson, Terri G.

    2015-01-01

    NASA GeneLab is expected to capture and distribute omics data and experimental and process conditions most relevant to research community in their statistical and theoretical analysis of NASAs omics data.

  14. Terplex Gene Delivery System.

    PubMed

    Kim, Sung Wan

    2005-01-01

    Polymeric gene delivery systems have been developed to overcome problems caused by viral carriers. They are low cytotoxic, have no size limit, are convenient in handling, of low cost and reproducible. A Terplex gene delivery system consisting of plasmid DNA, low density lipoprotein and hydropholized poly-L-lysine was designed and characterized. The plasmid DNA, when formulated with stearyl PLL and LDL, forms a stable and hydrophobicity/charge-balanced Terplex system of optimal size for efficient cellular uptake. DNA is still intact after the Terplex formation. This information is expected to be utilized for the development of improved transfection vector for in vivo gene therapy. Terplex DNA complex showed significantly longer retention in the vascular space than naked DNA. This system was used in the augmentation of myocardial transfection at an infarction site with the VEGF gene. PMID:16243067

  15. Terplex gene delivery system.

    PubMed

    Kim, Sung Wan

    2005-01-01

    Polymeric gene delivery systems have been developed to overcome problems caused by viral carriers. They are low cytotoxic, have no size limit, are convenient in handling, of low cost and reproducible. A Terplex gene delivery system consisting of plasmid DNA, low density lipoprotein and hydropholized poly-L-lysine was designed and characterized. The plasmid DNA, when formulated with stearyl PLL and LDL, forms a stable and hydrophobicity/charge-balanced Terplex system of optimal size for efficient cellular uptake. DNA is still intact after the Terplex formation. This information is expected to be utilized for the development of improved transfection vector for in vivo gene therapy. Terplex DNA complex showed significantly longer retention in the vascular space than naked DNA. This system was used in the augmentation of myocardial transfection at an infarction site with the VEGF gene. PMID:16240997

  16. Vaginal gene therapy.

    PubMed

    Rodríguez-Gascón, Alicia; Del Pozo-Rodríguez, Ana; Isla, Arantxazu; Solinís, María Angeles

    2015-09-15

    In the last years, vaginal gene therapy has gained increasing attention mainly for the treatment and control of sexually transmitted infections. DNA delivery has been also suggested to improve reproductive outcomes for women with deficiencies in the female reproductive tract. Although no product has reached clinical phase, preclinical investigations reveal the potential of the vaginal tract as an effective administration route for gene delivery. This review focuses on the main advantages and challenges of vaginal gene therapy, and on the most used nucleic acid delivery systems, including viral and non-viral vectors. Additionally, the advances in the application of vaginal gene therapy for the treatment and/or prevention of infectious diseases such as the human immunodeficiency virus (HIV), the human papillomavirus (HPV) or the herpes simplex virus (HSV) are presented. PMID:26189799

  17. "Bad genes" & criminal responsibility.

    PubMed

    González-Tapia, María Isabel; Obsuth, Ingrid

    2015-01-01

    The genetics of the accused is trying to break into the courts. To date several candidate genes have been put forward and their links to antisocial behavior have been examined and documented with some consistency. In this paper, we focus on the so called "warrior gene", or the low-activity allele of the MAOA gene, which has been most consistently related to human behavior and specifically to violence and antisocial behavior. In preparing this paper we had two objectives. First, to summarize and analyze the current scientific evidence, in order to gain an in depth understanding of the state of the issue and determine whether a dominant line of generally accepted scientific knowledge in this field can be asserted. Second, to derive conclusions and put forward recommendations related to the use of genetic information, specifically the presence of the low-activity genotype of the MAOA gene, in modulation of criminal responsibility in European and US courts. PMID:25708001

  18. Fibrinogen gene regulation.

    PubMed

    Fish, Richard J; Neerman-Arbez, Marguerite

    2012-09-01

    The Aα, Bβ and γ polypeptide chains of fibrinogen are encoded by a three gene cluster on human chromosome four. The fibrinogen genes (FGB-FGA-FGG) are expressed almost exclusively in hepatocytes where their output is coordinated to ensure a sufficient mRNA pool for each chain and maintain an abundant plasma fibrinogen protein level. Fibrinogen gene expression is controlled by the activity of proximal promoters which contain binding sites for hepatocyte transcription factors, including proteins which influence fibrinogen transcription in response to acute-phase inflammatory stimuli. The fibrinogen gene cluster also contains cis regulatory elements; enhancer sequences with liver activities identified by sequence conservation and functional genomics. While the transcriptional control of this gene cluster is fascinating biology, the medical impetus to understand fibrinogen gene regulation stems from the association of cardiovascular disease risk with high level circulating fibrinogen. In the general population this level varies from about 1.5 to 3.5 g/l. This variation between individuals is influenced by genotype, suggesting there are genetic variants contributing to fibrinogen levels which reside in fibrinogen regulatory loci. A complete picture of how fibrinogen genes are regulated will therefore point towards novel sources of regulatory variants. In this review we discuss regulation of the fibrinogen genes from proximal promoters and enhancers, the influence of acute-phase stimulation, post-transcriptional regulation by miRNAs and functional regulatory variants identified in genetic studies. Finally, we discuss the fibrinogen locus in light of recent advances in understanding chromosomal architecture and suggest future directions for researching the mechanisms that control fibrinogen expression. PMID:22836683

  19. Gene therapy in epilepsy

    PubMed Central

    Riban, Véronique; Fitzsimons, Helen L.; During, Matthew J.

    2009-01-01

    SUMMARY Results from animal models suggest gene therapy is a promising new approach for the treatment of epilepsy. Several candidate genes such as neuropeptide Y and galanin have been demonstrated in preclinical studies to have a positive effect on seizure activity. For a successful gene therapy-based treatment, efficient delivery of a transgene to target neurons is also essential. To this end, advances have been made in the areas of cell transplantation and in the development of recombinant viral vectors for gene delivery. Recombinant adeno-associated viral (rAAV) vectors in particular show promise for gene therapy of neurological disorders due to their neuronal tropism, lack of toxicity, and stable persistence in neurons, which results in robust, long-term expression of the transgene. rAAV vectors have been recently used in phase I clinical trials of Parkinson’s disease with an excellent safety profile. Prior to commencement of phase I trials for gene therapy of epilepsy, further preclinical studies are ongoing including evaluation of the therapeutic benefit in chronicmodels of epileptogenesis, as well as assessment of safety intoxicological studies. PMID:18717707

  20. Evidence for homosexuality gene

    SciTech Connect

    Pool, R.

    1993-07-16

    A genetic analysis of 40 pairs of homosexual brothers has uncovered a region on the X chromosome that appears to contain a gene or genes for homosexuality. When analyzing the pedigrees of homosexual males, the researcheres found evidence that the trait has a higher likelihood of being passed through maternal genes. This led them to search the X chromosome for genes predisposing to homosexuality. The researchers examined the X chromosomes of pairs of homosexual brothers for regions of DNA that most or all had in common. Of the 40 sets of brothers, 33 shared a set of five markers in the q28 region of the long arm of the X chromosome. The linkage has a LOD score of 4.0, which translates into a 99.5% certainty that there is a gene or genes in this area that predispose males to homosexuality. The chief researcher warns, however, that this one site cannot explain all instances of homosexuality, since there were some cases where the trait seemed to be passed paternally. And even among those brothers where there was no evidence that the trait was passed paternally, seven sets of brothers did not share the Xq28 markers. It seems likely that homosexuality arises from a variety of causes.

  1. Identification of four soybean reference genes for gene expression normalization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene expression analysis requires the use of reference genes stably expressed independently of specific tissues or environmental conditions. Housekeeping genes (e.g., actin, tubulin, ribosomal, polyubiquitin and elongation factor 1-alpha) are commonly used as reference genes with the assumption tha...

  2. 5. OVERHEAD VIEW OF GENE CAMP LOOKING SOUTH. GENE PUMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. OVERHEAD VIEW OF GENE CAMP LOOKING SOUTH. GENE PUMP PLANT IS AT CENTER WITH ADMINISTRATIVE COMPLEX IN FOREGROUND AND RESIDENTIAL AREA BEYOND PLANT. - Gene Pump Plant, South of Gene Wash Reservoir, 2 miles west of Whitsett Pump Plant, Parker Dam, San Bernardino County, CA

  3. Prospects for gene therapy.

    PubMed

    Ali, Robin R

    2004-01-01

    Inherited retinal disease, which includes conditions such as retinitis pigmentosa (RP), affects about 1/3000 of the population in the Western world. It is characterized by gradual loss of vision and results from mutations in any one of 60 or so different genes. There are currently no effective treatments, but many of the genes have now been identified and their functions elucidated, providing a major impetus to develop gene-based treatments. Many of the disease genes are photoreceptor- or retinal pigment epithelium (RPE) cell specific. Since adeno-associated viral (AAV) vectors can be used for efficient gene transfer to these two cell types, we are developing AAV-mediated gene therapy approaches for inherited retinal degeneration using animal models that have defects in these cells. The retinal degeneration slow (rds or Prph2Rd2/Rd) mouse, a model of recessive RP, lacks a functional gene encoding peripherin 2, which is a photoreceptor-specific protein required for the formation of outer segment discs. We have previously demonstrated restoration of photoreceptor ultrastructure and function by AAV-mediated gene transfer of peripherin 2. We have now extended our assessment to central visual neuronal responses in order to show an improvement of central visual function. The Royal College of Surgeons (RCS) rat, provides another model of recessive RP. Here the defect is due to a defect in Mertk, a gene that is expressed in the RPE and encodes a receptor tyrosine kinase that is thought to be involved in the recognition and binding of outer segment debris. The gene defect results in the inability of the RPE to phagocytose the shed outer segments from photoreceptor cells. The resulting accumulation of debris between the RPE and the neuroretina leads to progressive loss of photoreceptor cells. AAV-mediated delivery of Mertk to the RPE results in reduction of debris indicating that the phagocytosing function of the RPE is restored and delays the degeneration of the

  4. Classification of genes based on gene expression analysis

    NASA Astrophysics Data System (ADS)

    Angelova, M.; Myers, C.; Faith, J.

    2008-05-01

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  5. Classification of genes based on gene expression analysis

    SciTech Connect

    Angelova, M. Myers, C. Faith, J.

    2008-05-15

    Systems biology and bioinformatics are now major fields for productive research. DNA microarrays and other array technologies and genome sequencing have advanced to the point that it is now possible to monitor gene expression on a genomic scale. Gene expression analysis is discussed and some important clustering techniques are considered. The patterns identified in the data suggest similarities in the gene behavior, which provides useful information for the gene functionalities. We discuss measures for investigating the homogeneity of gene expression data in order to optimize the clustering process. We contribute to the knowledge of functional roles and regulation of E. coli genes by proposing a classification of these genes based on consistently correlated genes in expression data and similarities of gene expression patterns. A new visualization tool for targeted projection pursuit and dimensionality reduction of gene expression data is demonstrated.

  6. GeneCards Version 3: the human gene integrator.

    PubMed

    Safran, Marilyn; Dalah, Irina; Alexander, Justin; Rosen, Naomi; Iny Stein, Tsippi; Shmoish, Michael; Nativ, Noam; Bahir, Iris; Doniger, Tirza; Krug, Hagit; Sirota-Madi, Alexandra; Olender, Tsviya; Golan, Yaron; Stelzer, Gil; Harel, Arye; Lancet, Doron

    2010-01-01

    GeneCards (www.genecards.org) is a comprehensive, authoritative compendium of annotative information about human genes, widely used for nearly 15 years. Its gene-centric content is automatically mined and integrated from over 80 digital sources, resulting in a web-based deep-linked card for each of >73,000 human gene entries, encompassing the following categories: protein coding, pseudogene, RNA gene, genetic locus, cluster and uncategorized. We now introduce GeneCards Version 3, featuring a speedy and sophisticated search engine and a revamped, technologically enabling infrastructure, catering to the expanding needs of biomedical researchers. A key focus is on gene-set analyses, which leverage GeneCards' unique wealth of combinatorial annotations. These include the GeneALaCart batch query facility, which tabulates user-selected annotations for multiple genes and GeneDecks, which identifies similar genes with shared annotations, and finds set-shared annotations by descriptor enrichment analysis. Such set-centric features address a host of applications, including microarray data analysis, cross-database annotation mapping and gene-disorder associations for drug targeting. We highlight the new Version 3 database architecture, its multi-faceted search engine, and its semi-automated quality assurance system. Data enhancements include an expanded visualization of gene expression patterns in normal and cancer tissues, an integrated alternative splicing pattern display, and augmented multi-source SNPs and pathways sections. GeneCards now provides direct links to gene-related research reagents such as antibodies, recombinant proteins, DNA clones and inhibitory RNAs and features gene-related drugs and compounds lists. We also portray the GeneCards Inferred Functionality Score annotation landscape tool for scoring a gene's functional information status. Finally, we delineate examples of applications and collaborations that have benefited from the GeneCards suite. Database

  7. How old is my gene?

    PubMed Central

    Capra, John A.; Stolzer, Maureen; Durand, Dannie; Pollard, Katherine S.

    2013-01-01

    Gene functions, interactions, disease associations, and ecological distributions are all correlated with gene age. However, it is challenging to estimate the intricate series of evolutionary events leading to a modern day gene and then reduce this history to a single age estimate. Focusing on eukaryotic gene families, we introduce a framework in which to compare current strategies for quantifying gene age, discuss key differences between these methods, and highlight several common problems. We argue that genes with complex evolutionary histories do not have a single well-defined age. As a result, care must be taken to articulate the goals and assumptions of any analysis that uses gene age estimates. Recent algorithmic advances offer the promise of gene age estimates that are fast, accurate, and consistent across gene families. This will enable a shift to integrated genome-wide analyses of all events in gene evolutionary histories in the near future. PMID:23915718

  8. Saporin suicide gene therapy.

    PubMed

    Zarovni, Natasa; Vago, Riccardo; Fabbrini, Maria Serena

    2009-01-01

    New genes useful in suicide gene therapy are those encoding toxins such as plant ribosome-inactivating proteins (RIPs), which can irreversibly block protein synthesis, triggering apoptotic cell death. Plasmids expressing a cytosolic saporin (SAP) gene from common soapwort (Saponaria officinalis) are generated by placing the region encoding the mature plant toxin under the control of strong viral promoters and may be placed under tumor-specific promoters. The ability of the resulting constructs to inhibit protein synthesis is tested in cultured tumor cells co-transfected with a luciferase reporter gene. SAP expression driven by the cytomegalovirus (CMV) promoter (pCI-SAP) demonstrates that only 10 ng ofplasmid DNA per 1.6 x 10(4) B16 melanoma cells drastically reduces luciferase reporter activity to 18% of that in control cells (1). Direct intratumoral injections are performed in an aggressive melanoma model. B16 melanoma-bearing mice injected with pCI-SAP complexed with lipofectamine or N-(2,3-dioleoyloxy-1-propyl) trimethylammonium methyl sulfate (DOTAP) show a noteworthy attenuation in tumor growth, and this effect is significantly augmented by repeated administrations of the DNA complexes. Here, we describe in detail this cost-effective and safe suicide gene approach. PMID:19565907

  9. Hox genes and evolution

    PubMed Central

    Hrycaj, Steven M.; Wellik, Deneen M.

    2016-01-01

    Hox proteins are a deeply conserved group of transcription factors originally defined for their critical roles in governing segmental identity along the antero-posterior (AP) axis in Drosophila. Over the last 30 years, numerous data generated in evolutionarily diverse taxa have clearly shown that changes in the expression patterns of these genes are closely associated with the regionalization of the AP axis, suggesting that Hox genes have played a critical role in the evolution of novel body plans within Bilateria. Despite this deep functional conservation and the importance of these genes in AP patterning, key questions remain regarding many aspects of Hox biology. In this commentary, we highlight recent reports that have provided novel insight into the origins of the mammalian Hox cluster, the role of Hox genes in the generation of a limbless body plan, and a novel putative mechanism in which Hox genes may encode specificity along the AP axis. Although the data discussed here offer a fresh perspective, it is clear that there is still much to learn about Hox biology and the roles it has played in the evolution of the Bilaterian body plan. PMID:27239281

  10. LQTS gene LOVD database.

    PubMed

    Zhang, Tao; Moss, Arthur; Cong, Peikuan; Pan, Min; Chang, Bingxi; Zheng, Liangrong; Fang, Quan; Zareba, Wojciech; Robinson, Jennifer; Lin, Changsong; Li, Zhongxiang; Wei, Junfang; Zeng, Qiang; Qi, Ming

    2010-11-01

    The Long QT Syndrome (LQTS) is a group of genetically heterogeneous disorders that predisposes young individuals to ventricular arrhythmias and sudden death. LQTS is mainly caused by mutations in genes encoding subunits of cardiac ion channels (KCNQ1, KCNH2,SCN5A, KCNE1, and KCNE2). Many other genes involved in LQTS have been described recently(KCNJ2, AKAP9, ANK2, CACNA1C, SCNA4B, SNTA1, and CAV3). We created an online database(http://www.genomed.org/LOVD/introduction.html) that provides information on variants in LQTS-associated genes. As of February 2010, the database contains 1738 unique variants in 12 genes. A total of 950 variants are considered pathogenic, 265 are possible pathogenic, 131 are unknown/unclassified, and 292 have no known pathogenicity. In addition to these mutations collected from published literature, we also submitted information on gene variants, including one possible novel pathogenic mutation in the KCNH2 splice site found in ten Chinese families with documented arrhythmias. The remote user is able to search the data and is encouraged to submit new mutations into the database. The LQTS database will become a powerful tool for both researchers and clinicians. PMID:20809527

  11. Engineered Gene Circuits

    NASA Astrophysics Data System (ADS)

    Hasty, Jeff

    2003-03-01

    Uncovering the structure and function of gene regulatory networks has become one of the central challenges of the post-genomic era. Theoretical models of protein-DNA feedback loops and gene regulatory networks have long been proposed, and recently, certain qualitative features of such models have been experimentally corroborated. This talk will focus on model and experimental results that demonstrate how a naturally occurring gene network can be used as a ``parts list'' for synthetic network design. The model formulation leads to computational and analytical approaches relevant to nonlinear dynamics and statistical physics, and the utility of such a formulation will be demonstrated through the consideration of specific design criteria for several novel genetic devices. Fluctuations originating from small molecule-number effects will be discussed in the context of model predictions, and the experimental validation of these stochastic effects underscores the importance of internal noise in gene expression. Potential biotech applications will be highlighted within the framework of cellular control schemes. Specifically, the coupling of an oscillating cellular process to a synthetic oscillator will be considered, and the resulting model behavior will be analyzed in the context of synchronization. The underlying methodology highlights the utility of engineering-based methods in the design of synthetic gene regulatory networks.

  12. FunGene: the functional gene pipeline and repository

    PubMed Central

    Fish, Jordan A.; Chai, Benli; Wang, Qiong; Sun, Yanni; Brown, C. Titus; Tiedje, James M.; Cole, James R.

    2013-01-01

    Ribosomal RNA genes have become the standard molecular markers for microbial community analysis for good reasons, including universal occurrence in cellular organisms, availability of large databases, and ease of rRNA gene region amplification and analysis. As markers, however, rRNA genes have some significant limitations. The rRNA genes are often present in multiple copies, unlike most protein-coding genes. The slow rate of change in rRNA genes means that multiple species sometimes share identical 16S rRNA gene sequences, while many more species share identical sequences in the short 16S rRNA regions commonly analyzed. In addition, the genes involved in many important processes are not distributed in a phylogenetically coherent manner, potentially due to gene loss or horizontal gene transfer. While rRNA genes remain the most commonly used markers, key genes in ecologically important pathways, e.g., those involved in carbon and nitrogen cycling, can provide important insights into community composition and function not obtainable through rRNA analysis. However, working with ecofunctional gene data requires some tools beyond those required for rRNA analysis. To address this, our Functional Gene Pipeline and Repository (FunGene; http://fungene.cme.msu.edu/) offers databases of many common ecofunctional genes and proteins, as well as integrated tools that allow researchers to browse these collections and choose subsets for further analysis, build phylogenetic trees, test primers and probes for coverage, and download aligned sequences. Additional FunGene tools are specialized to process coding gene amplicon data. For example, FrameBot produces frameshift-corrected protein and DNA sequences from raw reads while finding the most closely related protein reference sequence. These tools can help provide better insight into microbial communities by directly studying key genes involved in important ecological processes. PMID:24101916

  13. GeneCards Version 3: the human gene integrator

    PubMed Central

    Safran, Marilyn; Dalah, Irina; Alexander, Justin; Rosen, Naomi; Iny Stein, Tsippi; Shmoish, Michael; Nativ, Noam; Bahir, Iris; Doniger, Tirza; Krug, Hagit; Sirota-Madi, Alexandra; Olender, Tsviya; Golan, Yaron; Stelzer, Gil; Harel, Arye; Lancet, Doron

    2010-01-01

    GeneCards (www.genecards.org) is a comprehensive, authoritative compendium of annotative information about human genes, widely used for nearly 15 years. Its gene-centric content is automatically mined and integrated from over 80 digital sources, resulting in a web-based deep-linked card for each of >73 000 human gene entries, encompassing the following categories: protein coding, pseudogene, RNA gene, genetic locus, cluster and uncategorized. We now introduce GeneCards Version 3, featuring a speedy and sophisticated search engine and a revamped, technologically enabling infrastructure, catering to the expanding needs of biomedical researchers. A key focus is on gene-set analyses, which leverage GeneCards’ unique wealth of combinatorial annotations. These include the GeneALaCart batch query facility, which tabulates user-selected annotations for multiple genes and GeneDecks, which identifies similar genes with shared annotations, and finds set-shared annotations by descriptor enrichment analysis. Such set-centric features address a host of applications, including microarray data analysis, cross-database annotation mapping and gene-disorder associations for drug targeting. We highlight the new Version 3 database architecture, its multi-faceted search engine, and its semi-automated quality assurance system. Data enhancements include an expanded visualization of gene expression patterns in normal and cancer tissues, an integrated alternative splicing pattern display, and augmented multi-source SNPs and pathways sections. GeneCards now provides direct links to gene-related research reagents such as antibodies, recombinant proteins, DNA clones and inhibitory RNAs and features gene-related drugs and compounds lists. We also portray the GeneCards Inferred Functionality Score annotation landscape tool for scoring a gene’s functional information status. Finally, we delineate examples of applications and collaborations that have benefited from the GeneCards suite

  14. Human DNA repair genes.

    PubMed

    Wood, R D; Mitchell, M; Sgouros, J; Lindahl, T

    2001-02-16

    Cellular DNA is subjected to continual attack, both by reactive species inside cells and by environmental agents. Toxic and mutagenic consequences are minimized by distinct pathways of repair, and 130 known human DNA repair genes are described here. Notable features presently include four enzymes that can remove uracil from DNA, seven recombination genes related to RAD51, and many recently discovered DNA polymerases that bypass damage, but only one system to remove the main DNA lesions induced by ultraviolet light. More human DNA repair genes will be found by comparison with model organisms and as common folds in three-dimensional protein structures are determined. Modulation of DNA repair should lead to clinical applications including improvement of radiotherapy and treatment with anticancer drugs and an advanced understanding of the cellular aging process. PMID:11181991

  15. Virus induced gene silencing of Arabidopsis gene homologues in wheat identify genes conferring improved drought tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a non-model staple crop like wheat, functional validation of potential drought stress responsive genes identified in Arabidopsis could provide gene targets for wheat breeding. Virus induced gene silencing (VIGS) of genes of interest can overcome the inherent problems of polyploidy and limited tra...

  16. Neighboring Genes Show Correlated Evolution in Gene Expression

    PubMed Central

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  17. Prokaryotic gene prediction using GeneMark and GeneMark.hmm.

    PubMed

    Borodovsky, Mark; Mills, Ryan; Besemer, John; Lomsadze, Alex

    2003-05-01

    In this unit, the GeneMark and GeneMark.hmm programs are presented as two different methods for the in silico prediction of genes in prokaryotes. GeneMark can be used for whole genome analysis as well as for the local analysis of a particular gene and its surrounding regions. GeneMark.hmm makes use of Hidden Markov models to find the transition points (boundaries) between protein coding states and noncoding states and can be efficiently used for larger genome sequences. These methods can be used in conjunction with each other for a higher sensitivity of gene detection. PMID:18428700

  18. Genes and Vocal Learning

    PubMed Central

    White, Stephanie A.

    2009-01-01

    Could a mutation in a single gene be the evolutionary lynchpin supporting the development of human language? A rare mutation in the molecule known as FOXP2 discovered in a human family seemed to suggest so, and its sequence phylogeny reinforced a Chomskian view that language emerged wholesale in humans. Spurred by this discovery, research in primates, rodents and birds suggests that FoxP2 and other language-related genes are interactors in the neuromolecular networks that underlie subsystems of language, such symbolic understanding, vocal learning and theory of mind. The whole picture will only come together through comparative and integrative study into how the human language singularity evolved. PMID:19913899

  19. The gene tree delusion.

    PubMed

    Springer, Mark S; Gatesy, John

    2016-01-01

    Higher-level relationships among placental mammals are mostly resolved, but several polytomies remain contentious. Song et al. (2012) claimed to have resolved three of these using shortcut coalescence methods (MP-EST, STAR) and further concluded that these methods, which assume no within-locus recombination, are required to unravel deep-level phylogenetic problems that have stymied concatenation. Here, we reanalyze Song et al.'s (2012) data and leverage these re-analyses to explore key issues in systematics including the recombination ratchet, gene tree stoichiometry, the proportion of gene tree incongruence that results from deep coalescence versus other factors, and simulations that compare the performance of coalescence and concatenation methods in species tree estimation. Song et al. (2012) reported an average locus length of 3.1 kb for the 447 protein-coding genes in their phylogenomic dataset, but the true mean length of these loci (start codon to stop codon) is 139.6 kb. Empirical estimates of recombination breakpoints in primates, coupled with consideration of the recombination ratchet, suggest that individual coalescence genes (c-genes) approach ∼12 bp or less for Song et al.'s (2012) dataset, three to four orders of magnitude shorter than the c-genes reported by these authors. This result has general implications for the application of coalescence methods in species tree estimation. We contend that it is illogical to apply coalescence methods to complete protein-coding sequences. Such analyses amalgamate c-genes with different evolutionary histories (i.e., exons separated by >100,000 bp), distort true gene tree stoichiometry that is required for accurate species tree inference, and contradict the central rationale for applying coalescence methods to difficult phylogenetic problems. In addition, Song et al.'s (2012) dataset of 447 genes includes 21 loci with switched taxonomic names, eight duplicated loci, 26 loci with non-homologous sequences that are

  20. XLMR genes: Update 1994

    SciTech Connect

    Neri, G.; Chiurazzi, P.; Arena, J.F.; Lubs, H.A.

    1994-07-15

    We provide a comprehensive list of all known forms of X-linked mental retardation. It comprises 127 entries, subdivided into 5 categories (syndromes, dominant disorders, and nonspecific mental retardation). Map location of 69 putative loci demonstrates several overlaps, which will only be resolved by more refined mapping or cloning of the respective genes. The ultimate goal of identifying all the genes on the X chromosome whose mutations cause mental retardation will require a concerted effort between clinical and molecular investigators. 74 refs., 2 figs., 5 tabs.

  1. Gene therapy: progress and predictions

    PubMed Central

    Collins, Mary; Thrasher, Adrian

    2015-01-01

    The first clinical gene delivery, which involved insertion of a marker gene into lymphocytes from cancer patients, was published 25 years ago. In this review, we describe progress since then in gene therapy. Patients with some inherited single-gene defects can now be treated with their own bone marrow stem cells that have been engineered with a viral vector carrying the missing gene. Patients with inherited retinopathies and haemophilia B can also be treated by local or systemic injection of viral vectors. There are also a number of promising gene therapy approaches for cancer and infectious disease. We predict that the next 25 years will see improvements in safety, efficacy and manufacture of gene delivery vectors and introduction of gene-editing technologies to the clinic. Gene delivery may also prove a cost-effective method for the delivery of biological medicines. PMID:26702034

  2. Multidimensional gene search with Genehopper

    PubMed Central

    Munz, Matthias; Tönnies, Sascha; Balke, Wolf-Tilo; Simon, Eric

    2015-01-01

    The high abundance of genetic information enables researchers to gain new insights from the comparison of human genes according to their similarities. However, existing tools that allow the exploration of such gene-to-gene relationships, apply each similarity independently. To make use of multidimensional scoring, we developed a new search engine named Genehopper. It can handle two query types: (i) the typical use case starts with a term-to-gene search, i.e. an optimized full-text search for an anchor gene of interest. The web-interface can handle one or more terms including gene symbols and identifiers of Ensembl, UniProt, EntrezGene and RefSeq. (ii) When the anchor gene is defined, the user can explore its neighborhood by a gene-to-gene search as the weighted sum of nine normalized gene similarities based on sequence homology, protein domains, mRNA expression profiles, Gene Ontology Annotation, gene symbols and other features. Each weight can be adjusted by the user, allowing flexible customization of the gene search. All implemented similarities have a low pairwise correlation (max r2 = 0.4) implying a low linear dependency, i.e. any change in a single weight has an effect on the ranking. Thus, we treated them as separate dimensions in the search space. Genehopper is freely available at http://genehopper.ifis.cs.tu-bs.de. PMID:25990726

  3. Multidimensional gene search with Genehopper.

    PubMed

    Munz, Matthias; Tönnies, Sascha; Balke, Wolf-Tilo; Simon, Eric

    2015-07-01

    The high abundance of genetic information enables researchers to gain new insights from the comparison of human genes according to their similarities. However, existing tools that allow the exploration of such gene-to-gene relationships, apply each similarity independently. To make use of multidimensional scoring, we developed a new search engine named Genehopper. It can handle two query types: (i) the typical use case starts with a term-to-gene search, i.e. an optimized full-text search for an anchor gene of interest. The web-interface can handle one or more terms including gene symbols and identifiers of Ensembl, UniProt, EntrezGene and RefSeq. (ii) When the anchor gene is defined, the user can explore its neighborhood by a gene-to-gene search as the weighted sum of nine normalized gene similarities based on sequence homology, protein domains, mRNA expression profiles, Gene Ontology Annotation, gene symbols and other features. Each weight can be adjusted by the user, allowing flexible customization of the gene search. All implemented similarities have a low pairwise correlation (max r(2) = 0.4) implying a low linear dependency, i.e. any change in a single weight has an effect on the ranking. Thus, we treated them as separate dimensions in the search space. Genehopper is freely available at http://genehopper.ifis.cs.tu-bs.de. PMID:25990726

  4. Gene therapy in pancreatic cancer

    PubMed Central

    Liu, Si-Xue; Xia, Zhong-Sheng; Zhong, Ying-Qiang

    2014-01-01

    Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC. PMID:25309069

  5. Association Between a Prognostic Gene Signature and Functional Gene Sets

    PubMed Central

    Hummel, Manuela; Metzeler, Klaus H.; Buske, Christian; Bohlander, Stefan K.; Mansmann, Ulrich

    2008-01-01

    Background The development of expression-based gene signatures for predicting prognosis or class membership is a popular and challenging task. Besides their stringent validation, signatures need a functional interpretation and must be placed in a biological context. Popular tools such as Gene Set Enrichment have drawbacks because they are restricted to annotated genes and are unable to capture the information hidden in the signature’s non-annotated genes. Methodology We propose concepts to relate a signature with functional gene sets like pathways or Gene Ontology categories. The connection between single signature genes and a specific pathway is explored by hierarchical variable selection and gene association networks. The risk score derived from an individual patient’s signature is related to expression patterns of pathways and Gene Ontology categories. Global tests are useful for these tasks, and they adjust for other factors. GlobalAncova is used to explore the effect on gene expression in specific functional groups from the interaction of the score and selected mutations in the patient’s genome. Results We apply the proposed methods to an expression data set and a corresponding gene signature for predicting survival in Acute Myeloid Leukemia (AML). The example demonstrates strong relations between the signature and cancer-related pathways. The signature-based risk score was found to be associated with development-related biological processes. Conclusions Many authors interpret the functional aspects of a gene signature by linking signature genes to pathways or relevant functional gene groups. The method of gene set enrichment is preferred to annotating signature genes to specific Gene Ontology categories. The strategies proposed in this paper go beyond the restriction of annotation and deepen the insights into the biological mechanisms reflected in the information given by a signature. PMID:19812786

  6. Old genes experience stronger translational selection than young genes.

    PubMed

    Yin, Hongyan; Ma, Lina; Wang, Guangyu; Li, Mengwei; Zhang, Zhang

    2016-09-15

    Selection on synonymous codon usage for translation efficiency and/or accuracy has been identified as a widespread mechanism in many living organisms. However, it remains unknown whether translational selection associates closely with gene age and acts differentially on genes with different evolutionary ages. To address this issue, here we investigate the strength of translational selection acting on different aged genes in human. Our results show that old genes present stronger translational selection than young genes, demonstrating that translational selection correlates positively with gene age. We further explore the difference of translational selection in duplicates vs. singletons and in housekeeping vs. tissue-specific genes. We find that translational selection acts comparably in old singletons and old duplicates and stronger translational selection in old genes is contributed primarily by housekeeping genes. For young genes, contrastingly, singletons experience stronger translational selection than duplicates, presumably due to redundant function of duplicated genes during their early evolutionary stage. Taken together, our results indicate that translational selection acting on a gene would not be constant during all stages of evolution, associating closely with gene age. PMID:27259662

  7. Genes2FANs: connecting genes through functional association networks

    PubMed Central

    2012-01-01

    Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs), researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI) network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our finding that disease genes in

  8. Gene Manipulation In Cereals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum, the most abundant metal on earth, is detrimental to plant growth and agricultural production. There are about 2.5 billion hectares of acid soils high in aluminum around the world. Molecular markers linked to aluminum tolerance gene complexes in rye would be of value in marker-mediated ge...

  9. Ultrasound mediated gene transfection

    NASA Astrophysics Data System (ADS)

    Williamson, Rene G.; Apfel, Robert E.; Brandsma, Janet L.

    2002-05-01

    Gene therapy is a promising modality for the treatment of a variety of human diseases both inherited and acquired, such as cystic fibrosis and cancer. The lack of an effective, safe method for the delivery of foreign genes into the cells, a process known as transfection, limits this effort. Ultrasound mediated gene transfection is an attractive method for gene delivery since it is a noninvasive technique, does not introduce any viral particles into the host and can offer very good temporal and spatial control. Previous investigators have shown that sonication increases transfection efficiency with and without ultrasound contrast agents. The mechanism is believed to be via a cavitation process where collapsing bubble nuclei permeabilize the cell membrane leading to increased DNA transfer. The research is focused on the use of pulsed wave high frequency focused ultrasound to transfect DNA into mammalian cells in vitro and in vivo. A better understanding of the mechanism behind the transfection process is also sought. A summary of some in vitro results to date will be presented, which includes the design of a sonication chamber that allows us to model the in vivo case more accurately.

  10. Resistance gene capture.

    PubMed

    Rowe-Magnus, D A; Mazel, D

    1999-10-01

    Integrons are the primary mechanism for antibiotic-resistance gene capture and dissemination among Gram-negative bacteria. The recent finding of super-integron structures in the genomes of several bacterial species has expanded their role in genome evolution and suggests that they are the source of mobile multi-resistant integrons. PMID:10508722

  11. Naming genes beyond Caenorhabditis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nomenclature of genes in Caenorhabditis elegans is based on long-standing, successful guidelines established in the late 1970s. Over time these guidelines have matured into a comprehensive, systematic nomenclature that is easy to apply, descriptive and therefore highly informative. Recently, a f...

  12. Gene stacking by recombinases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efficient methods of stacking genes into plant genomes are needed to expedite transfer of multigenic traits into diverse crops grown in a variety of environments. Over two decades of research has identified several site-specific recombinases that carry out efficient cis and trans recombination betw...

  13. Genes and Vocal Learning

    ERIC Educational Resources Information Center

    White, Stephanie A.

    2010-01-01

    Could a mutation in a single gene be the evolutionary lynchpin supporting the development of human language? A rare mutation in the molecule known as FOXP2 discovered in a human family seemed to suggest so, and its sequence phylogeny reinforced a Chomskian view that language emerged wholesale in humans. Spurred by this discovery, research in…

  14. Entrez Gene: gene-centered information at NCBI.

    PubMed

    Maglott, Donna; Ostell, Jim; Pruitt, Kim D; Tatusova, Tatiana

    2007-01-01

    Entrez Gene (www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene) is NCBI's database for gene-specific information. Entrez Gene includes records from genomes that have been completely sequenced, that have an active research community to contribute gene-specific information or that are scheduled for intense sequence analysis. The content of Entrez Gene represents the result of both curation and automated integration of data from NCBI's Reference Sequence project (RefSeq), from collaborating model organism databases and from other databases within NCBI. Records in Entrez Gene are assigned unique, stable and tracked integers as identifiers. The content (nomenclature, map location, gene products and their attributes, markers, phenotypes and links to citations, sequences, variation details, maps, expression, homologs, protein domains and external databases) is provided via interactive browsing through NCBI's Entrez system, via NCBI's Entrez programing utilities (E-Utilities), and for bulk transfer by ftp. PMID:17148475

  15. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis

    PubMed Central

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  16. Optimal Reference Genes for Gene Expression Normalization in Trichomonas vaginalis.

    PubMed

    dos Santos, Odelta; de Vargas Rigo, Graziela; Frasson, Amanda Piccoli; Macedo, Alexandre José; Tasca, Tiana

    2015-01-01

    Trichomonas vaginalis is the etiologic agent of trichomonosis, the most common non-viral sexually transmitted disease worldwide. This infection is associated with several health consequences, including cervical and prostate cancers and HIV acquisition. Gene expression analysis has been facilitated because of available genome sequences and large-scale transcriptomes in T. vaginalis, particularly using quantitative real-time polymerase chain reaction (qRT-PCR), one of the most used methods for molecular studies. Reference genes for normalization are crucial to ensure the accuracy of this method. However, to the best of our knowledge, a systematic validation of reference genes has not been performed for T. vaginalis. In this study, the transcripts of nine candidate reference genes were quantified using qRT-PCR under different cultivation conditions, and the stability of these genes was compared using the geNorm and NormFinder algorithms. The most stable reference genes were α-tubulin, actin and DNATopII, and, conversely, the widely used T. vaginalis reference genes GAPDH and β-tubulin were less stable. The PFOR gene was used to validate the reliability of the use of these candidate reference genes. As expected, the PFOR gene was upregulated when the trophozoites were cultivated with ferrous ammonium sulfate when the DNATopII, α-tubulin and actin genes were used as normalizing gene. By contrast, the PFOR gene was downregulated when the GAPDH gene was used as an internal control, leading to misinterpretation of the data. These results provide an important starting point for reference gene selection and gene expression analysis with qRT-PCR studies of T. vaginalis. PMID:26393928

  17. Magnetic nanoparticles: Applications in gene delivery and gene therapy.

    PubMed

    Majidi, Sima; Zeinali Sehrig, Fatemeh; Samiei, Mohammad; Milani, Morteza; Abbasi, Elham; Dadashzadeh, Kianoosh; Akbarzadeh, Abolfazl

    2016-06-01

    Gene therapy is defined as the direct transfer of genetic material to tissues or cells for the treatment of inherited disorders and acquired diseases. For gene delivery, magnetic nanoparticles (MNPs) are typically combined with a delivery platform to encapsulate the gene, and promote cell uptake. Delivery technologies that have been used with MNPs contain polymeric, viral, as well as non-viral platforms. In this review, we focus on targeted gene delivery using MNPs. PMID:25727710

  18. Dominance from the perspective of gene-gene and gene-chemical interactions.

    PubMed

    Gladki, Arkadiusz; Zielenkiewicz, Piotr; Kaczanowski, Szymon

    2016-02-01

    In this study, we used genetic interaction (GI) and gene-chemical interaction (GCI) data to compare mutations with different dominance phenotypes. Our analysis focused primarily on Saccharomyces cerevisiae, where haploinsufficient genes (HI; genes with dominant loss-of-function mutations) were found to be participating in gene expression processes, namely, the translation and regulation of gene transcription. Non-ribosomal HI genes (mainly regulators of gene transcription) were found to have more GIs and GCIs than haplosufficient (HS) genes. Several properties seem to lead to the enrichment of interactions, most notably, the following: importance, pleiotropy, gene expression level and gene expression variation. Importantly, after these properties were appropriately considered in the analysis, the correlation between dominance and GI/GCI degrees was still observed. Strikingly, for the GCIs of heterozygous strains, haploinsufficiency was the only property significantly correlated with the number of GCIs. We found ribosomal HI genes to be depleted in GIs/GCIs. This finding can be explained by their high variation in gene expression under different genetic backgrounds and environmental conditions. We observed the same distributions of GIs among non-ribosomal HI, ribosomal HI and HS genes in three other species: Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens. One potentially interesting exception was the lack of significant differences in the degree of GIs between non-ribosomal HI and HS genes in Schizosaccharomyces pombe. PMID:26613610

  19. Avirulence Genes in Cereal Powdery Mildews: The Gene-for-Gene Hypothesis 2.0

    PubMed Central

    Bourras, Salim; McNally, Kaitlin E.; Müller, Marion C.; Wicker, Thomas; Keller, Beat

    2016-01-01

    The gene-for-gene hypothesis states that for each gene controlling resistance in the host, there is a corresponding, specific gene controlling avirulence in the pathogen. Allelic series of the cereal mildew resistance genes Pm3 and Mla provide an excellent system for genetic and molecular analysis of resistance specificity. Despite this opportunity for molecular research, avirulence genes in mildews remain underexplored. Earlier work in barley powdery mildew (B.g. hordei) has shown that the reaction to some Mla resistance alleles is controlled by multiple genes. Similarly, several genes are involved in the specific interaction of wheat mildew (B.g. tritici) with the Pm3 allelic series. We found that two mildew genes control avirulence on Pm3f: one gene is involved in recognition by the resistance protein as demonstrated by functional studies in wheat and the heterologous host Nicotiana benthamiana. A second gene is a suppressor, and resistance is only observed in mildew genotypes combining the inactive suppressor and the recognized Avr. We propose that such suppressor/avirulence gene combinations provide the basis of specificity in mildews. Depending on the particular gene combinations in a mildew race, different genes will be genetically identified as the “avirulence” gene. Additionally, the observation of two LINE retrotransposon-encoded avirulence genes in B.g. hordei further suggests that the control of avirulence in mildew is more complex than a canonical gene-for-gene interaction. To fully understand the mildew–cereal interactions, more knowledge on avirulence determinants is needed and we propose ways how this can be achieved based on recent advances in the field. PMID:26973683

  20. Gene prediction and gene classes in Arabidopsis thaliana.

    PubMed

    Mathé, C; Déhais, P; Pavy, N; Rombauts, S; Van Montagu, M; Rouzé, P

    2000-03-31

    Gene prediction methods for eukaryotic genomes still are not fully satisfying. One way to improve gene prediction accuracy, proven to be relevant for prokaryotes, is to consider more than one model of genes. Thus, we used our classification of Arabidopsis thaliana genes in two classes (CU(1) and CU(2)), previously delineated according to statistical features, in the GeneMark gene identification program. For each gene class, as well as for the two classes combined, a Markov model was developed (respectively, GM-CU(1), GM-CU(2) and GM-all) and then used on a test set of 168 genes to compare their respective efficiency. We concluded from this analysis that GM-CU(1) is more sensitive than GM-CU(2) which seems to be more specific to a gene type. Besides, GM-all does not give better results than GM-CU(1) and combining results from GM-CU(1) and GM-CU(2) greatly improve prediction efficiency in comparison with predictions made with GM-all only. Thus, this work confirms the necessity to consider more than one gene model for gene prediction in eukaryotic genomes, and to look for gene classes in order to build these models. PMID:10751690

  1. GENE METHYLATION CHANGES IN TUMOR SUPPRESSOR GENES INDUCED BY ARSENIC

    EPA Science Inventory

    The choice of a dose-response model used for extrapolation can be influenced by knowledge of mechanism of action. We have already showed that arsenic affects methylation of the human p53 gene promoter. Evidence that genes other than the p53 tumor suppressor gene are affected woul...

  2. Eukaryotic gene prediction using GeneMark.hmm-E and GeneMark-ES.

    PubMed

    Borodovsky, Mark; Lomsadze, Alex

    2011-09-01

    This unit describes how to use the gene-finding programs GeneMark.hmm-E and GeneMark-ES for finding protein-coding genes in the genomic DNA of eukaryotic organisms. These bioinformatics tools have been demonstrated to have state-of-the-art accuracy for many fungal, plant, and animal genomes, and have frequently been used for gene annotation in novel genomic sequences. An additional advantage of GeneMark-ES is that the problem of algorithm parameterization is solved automatically, with parameters estimated by iterative self-training (unsupervised training). PMID:21901742

  3. Chapter 15: Disease Gene Prioritization

    PubMed Central

    Bromberg, Yana

    2013-01-01

    Disease-causing aberrations in the normal function of a gene define that gene as a disease gene. Proving a causal link between a gene and a disease experimentally is expensive and time-consuming. Comprehensive prioritization of candidate genes prior to experimental testing drastically reduces the associated costs. Computational gene prioritization is based on various pieces of correlative evidence that associate each gene with the given disease and suggest possible causal links. A fair amount of this evidence comes from high-throughput experimentation. Thus, well-developed methods are necessary to reliably deal with the quantity of information at hand. Existing gene prioritization techniques already significantly improve the outcomes of targeted experimental studies. Faster and more reliable techniques that account for novel data types are necessary for the development of new diagnostics, treatments, and cure for many diseases. PMID:23633938

  4. SOX genes: architects of development.

    PubMed Central

    Prior, H. M.; Walter, M. A.

    1996-01-01

    Development in higher organisms involves complex genetic regulation at the molecular level. The emerging picture of development control includes several families of master regulatory genes which can affect the expression of down-stream target genes in developmental cascade pathways. One new family of such development regulators is the SOX gene family. The SOX genes are named for a shared motif called the SRY box a region homologous to the DNA-binding domain of SRY, the mammalian sex determining gene. Like SRY, SOX genes play important roles in chordate development. At least a dozen human SOX genes have been identified and partially characterized (Tables 1 and 2). Mutations in SOX9 have recently been linked to campomelic dysplasia and autosomal sex reversal, and other SOX genes may also be associated with human disease. Images FIG. 1 FIG. 2 PMID:8827711

  5. Gene Therapy for Lung Cancer.

    PubMed

    Lara-Guerra, Humberto; Roth, Jack A

    2016-01-01

    Gene therapy was originally conceived to treat monogenic diseases. The replacement of a defective gene with a functional gene can theoretically cure the disease. In cancer, multiple genetic defects are present and the molecular profile changes during the course of the disease, making the replacement of all defective genes impossible. To overcome these difficulties, various gene therapy strategies have been adopted, including immune stimulation, transfer of suicide genes, inhibition of driver oncogenes, replacement of tumor-suppressor genes that could mediate apoptosis or anti-angiogenesis, and transfer of genes that enhance conventional treatments such as radiotherapy and chemotherapy. Some of these strategies have been tested successfully in non-small-cell lung cancer patients and the results of laboratory studies and clinical trials are reviewed herein. PMID:27481008

  6. On atavisms and atavistic genes.

    PubMed

    Cantú, J M; Ruiz, C

    1985-01-01

    The authors propose the term atavistic to designate a gene producing an ancestral phenotype (atavism). Several examples are presented, and the possible origin of atavistic genes, as well as their pathological implications discussed. PMID:3879145

  7. Gene Testing for Hereditary Ataxia

    MedlinePlus

    ... have a family history of ataxia, but diagnostic tests for known ataxia genes cannot explain the ataxia in their family. In recent years, scientists have developed technologies to sequence thousands of genes at the same ...

  8. Gene therapy in keratoconus

    PubMed Central

    Farjadnia, Mahgol; Naderan, Mohammad; Mohammadpour, Mehrdad

    2015-01-01

    Keratoconus (KC) is the most common ectasia of the cornea and is a common reason for corneal transplant. Therapeutic strategies that can arrest the progression of this disease and modify the underlying pathogenesis are getting more and more popularity among scientists. Cumulating data represent strong evidence of a genetic role in the pathogenesis of KC. Different loci have been identified, and certain mutations have also been mapped for this disease. Moreover, Biophysical properties of the cornea create an appropriate candidate of this tissue for gene therapy. Immune privilege, transparency and ex vivo stability are among these properties. Recent advantage in vectors, besides the ability to modulate the corneal milieu for accepting the target gene for a longer period and fruitful translation, make a big hope for stupendous results reasonable. PMID:25709266

  9. Graphene based gene transfection

    NASA Astrophysics Data System (ADS)

    Feng, Liangzhu; Zhang, Shuai; Liu, Zhuang

    2011-03-01

    Graphene as a star in materials research has been attracting tremendous attentions in the past few years in various fields including biomedicine. In this work, for the first time we successfully use graphene as a non-toxic nano-vehicle for efficient gene transfection. Graphene oxide (GO) is bound with cationic polymers, polyethyleneimine (PEI) with two different molecular weights at 1.2 kDa and 10 kDa, forming GO-PEI-1.2k and GO-PEG-10k complexes, respectively, both of which are stable in physiological solutions. Cellular toxicity tests reveal that our GO-PEI-10k complex exhibits significantly reduced toxicity to the treated cells compared to the bare PEI-10k polymer. The positively charged GO-PEI complexes are able to further bind with plasmid DNA (pDNA) for intracellular transfection of the enhanced green fluorescence protein (EGFP) gene in HeLa cells. While EGFP transfection with PEI-1.2k appears to be ineffective, high EGFP expression is observed using the corresponding GO-PEI-1.2k as the transfection agent. On the other hand, GO-PEI-10k shows similar EGFP transfection efficiency but lower toxicity compared with PEI-10k. Our results suggest graphene to be a novel gene delivery nano-vector with low cytotoxicity and high transfection efficiency, promising for future applications in non-viral based gene therapy.Graphene as a star in materials research has been attracting tremendous attentions in the past few years in various fields including biomedicine. In this work, for the first time we successfully use graphene as a non-toxic nano-vehicle for efficient gene transfection. Graphene oxide (GO) is bound with cationic polymers, polyethyleneimine (PEI) with two different molecular weights at 1.2 kDa and 10 kDa, forming GO-PEI-1.2k and GO-PEG-10k complexes, respectively, both of which are stable in physiological solutions. Cellular toxicity tests reveal that our GO-PEI-10k complex exhibits significantly reduced toxicity to the treated cells compared to the bare PEI

  10. Brains, Genes and Primates

    PubMed Central

    Belmonte, Juan Carlos Izpisua; Callaway, Edward M.; Churchland, Patricia; Caddick, Sarah J.; Feng, Guoping; Homanics, Gregg E.; Lee, Kuo-Fen; Leopold, David A.; Miller, Cory T.; Mitchell, Jude F.; Mitalipov, Shoukhrat; Moutri, Alysson R.; Movshon, J. Anthony; Okano, Hideyuki; Reynolds, John H.; Ringach, Dario; Sejnowski, Terrence J.; Silva, Afonso C.; Strick, Peter L.; Wu, Jun; Zhang, Feng

    2015-01-01

    One of the great strengths of the mouse model is the wide array of genetic tools that have been developed. Striking examples include methods for directed modification of the genome, and for regulated expression or inactivation of genes. Within neuroscience, it is now routine to express reporter genes, neuronal activity indicators and opsins in specific neuronal types in the mouse. However, there are considerable anatomical, physiological, cognitive and behavioral differences between the mouse and the human that, in some areas of inquiry, limit the degree to which insights derived from the mouse can be applied to understanding human neurobiology. Several recent advances have now brought into reach the goal of applying these tools to understanding the primate brain. Here we describe these advances, consider their potential to advance our understanding of the human brain and brain disorders, discuss bioethical considerations, and describe what will be needed to move forward. PMID:25950631

  11. Gene expression technology

    SciTech Connect

    Goeddel, D.V. )

    1990-01-01

    The articles in this volume were assemble to enable the reader to design effective strategies for the expression of cloned genes and cDNAs. More than a compilation of papers describing the multitude of techniques now available for expressing cloned genes, this volume provides a manual that should prove useful for solving the majority of expression problems one likely to encounter. The four major expression systems commonly available to most investigators are stressed: Escherichia coli, Bacillus subtilis, yeast, and mammalian cells. Each of these system has its advantages and disadvantages, details of which are found in Chapter 1 and the strategic overviews for the four major sections of the volume. The papers in each of these sections provide many suggestions on how to proceed if initial expression levels are not sufficient.

  12. Eukaryotic gene prediction using GeneMark.hmm.

    PubMed

    Borodovsky, Mark; Lomsadze, Alex; Ivanov, Nikolai; Mills, Ryan

    2003-05-01

    In this unit, eukaryotic GeneMark.hmm is presented as a method for detecting genes in eukaryotic DNA sequences. The eukaryotic GeneMark.hmm uses Markov models of protein coding and noncoding sequences, as well as positional nucleotide frequency matrices for prediction of the translational start, translational termination and splice sites. All these models along with length distributions of exons, introns and intergenic regions are integrated into one Hidden Markov model. The unit describes running the program over the Internet and locally on a Unix machine. It also discusses GeneMarkS EV, which can be used to detect genes in eukaryotic viruses. PMID:18428701

  13. Independent Gene Discovery and Testing

    ERIC Educational Resources Information Center

    Palsule, Vrushalee; Coric, Dijana; Delancy, Russell; Dunham, Heather; Melancon, Caleb; Thompson, Dennis; Toms, Jamie; White, Ashley; Shultz, Jeffry

    2010-01-01

    A clear understanding of basic gene structure is critical when teaching molecular genetics, the central dogma and the biological sciences. We sought to create a gene-based teaching project to improve students' understanding of gene structure and to integrate this into a research project that can be implemented by instructors at the secondary level…

  14. Time ordering of gene coexpression.

    PubMed

    Leng, Xiaoyan; Müller, Hans-Georg

    2006-10-01

    Temporal microarray gene expression profiles allow characterization of gene function through time dynamics of gene coexpression within the same genetic pathway. In this paper, we define and estimate a global time shift characteristic for each gene via least squares, inferred from pairwise curve alignments. These time shift characteristics of individual genes reflect a time ordering that is derived from ob- served temporal gene expression profiles. Once these time shift characteristics are obtained for each gene, they can be entered into further analyses, such as clustering. We illustrate the proposed methodology using Drosophila embryonic development and yeast cell-cycle gene expression profiles, as well as simulations. Feasibility is demonstrated through the successful recovery of time ordering. Estimated time shifts for Drosophila maternal and zygotic genes provide excellent discrimination between these two categories and confirm known genetic pathways through the time order of gene expression. The application to yeast cell-cycle data establishes a natural time order of genes that is in line with cell-cycle phases. The method does not require periodicity of gene expression profiles. Asymptotic justifications are also provided. PMID:16495429

  15. Gene Porter Bridwell

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Gene Porter Bridwell served as the director of the Marshall Space Flight Center from January 6, 1994 until February 3, 1996, when he retired from NASA after thirty-four years service. Bridwell, a Marshall employee since 1962, had been Marshall's Space Shuttle Projects Office Director and Space Station Redesign Team deputy manager. Under Bridwell, Marshall worked to develop its role as a Center of Excellence for propulsion and for providing access to space.

  16. Genes and athletes.

    PubMed

    Patel, Dilip R; Greydanus, Donald E

    2002-06-01

    Genetics plays an important role in determining characteristics desired for success in a given sport. Advances in biotechnology pose interesting and perplexing dilemmas for athletes, parents, health care providers, and society at large. Gene therapy holds great prospects for disease prevention and treatment. The same techniques also can be misused for genetic manipulation to enhance athletic prowess. This chapter reviews selective aspects of genotype influence on sport performance, uses and misuses of genetic technology, and ethical as well as legal dilemmas. PMID:11986034

  17. Gene variants associated with age at menopause are also associated with polycystic ovary syndrome, gonadotrophins and ovarian volume

    PubMed Central

    Saxena, R.; Bjonnes, A.C.; Georgopoulos, N.A.; Koika, V.; Panidis, D.; Welt, C.K.

    2015-01-01

    STUDY QUESTION Is there a relationship between the genetic risk for polycystic ovary syndrome (PCOS) and genetic variants that influence timing of menopause? SUMMARY ANSWER The genetic risk score, which sums the contribution of variants at all menopause loci, was associated with PCOS. WHAT IS ALREADY KNOWN Ovarian parameters and anti-Mullerian hormone levels suggest that women with PCOS should have a later age at menopause. STUDY DESIGN, SIZE, DURATION The study was a case–control examination of genetic variants associated with age at menopause in a discovery cohort of women with PCOS (n = 485) and controls (n = 407) from Boston recruited from 2003 to 2012. Replication was performed in women from Greece (cases, n = 884 and controls, n = 311). PARTICIPANTS/MATERIALS, SETTINGS, METHODS PCOS was defined by the National Institutes of Health criteria in Boston and Greece (n = 783), with additional subjects fulfilling the Rotterdam criteria (hyperandrogenism, polycystic ovary morphology and regular menses) in Greece (n = 101). Controls in Boston and Greece had regular menstrual cycles and no hyperandrogenism. Allele frequencies for variants previously associated with age at menopause were examined in PCOS cases and controls, along with the relationship to quantitative traits. MAIN RESULTS AND ROLE OF CHANCE The variant rs11668344-G was associated with decreased risk of PCOS (odds ratio: 0.77 [0.59–0.93]; P = 0.004). There was a strong relationship between the late menopause allele rs12294104-T and increased LH levels (β ± SE; 0.26 ± 0.06; P = 5.2 × 10−5) and the LH:FSH ratio (0.28 ± 0.06; P = 2.7 × 10−6). The minor allele at rs10852344-T was associated with smaller ovarian volume (−0.16 ± 0.05; P = 0.0012). A genetic risk score calculated from 16 independent variants associated with age at menopause was also associated with PCOS (P < 0.02), LH and the LH:FSH ratio (both P < 0.05). LIMITATIONS, REASONS FOR CAUTION The variant rs11668344 was not associated

  18. nanosheets for gene therapy

    NASA Astrophysics Data System (ADS)

    Kou, Zhongyang; Wang, Xin; Yuan, Renshun; Chen, Huabin; Zhi, Qiaoming; Gao, Ling; Wang, Bin; Guo, Zhaoji; Xue, Xiaofeng; Cao, Wei; Guo, Liang

    2014-10-01

    A new class of two-dimensional (2D) nanomaterial, transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, and WSe2 which have fantastic physical and chemical properties, has drawn tremendous attention in different fields recently. Herein, we for the first time take advantage of the great potential of MoS2 with well-engineered surface as a novel type of 2D nanocarriers for gene delivery and therapy of cancer. In our system, positively charged MoS2-PEG-PEI is synthesized with lipoic acid-modified polyethylene glycol (LA-PEG) and branched polyethylenimine (PEI). The amino end of positively charged nanomaterials can bind to the negatively charged small interfering RNA (siRNA). After detection of physical and chemical characteristics of the nanomaterial, cell toxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Polo-like kinase 1 (PLK1) was investigated as a well-known oncogene, which was a critical regulator of cell cycle transmission at multiple levels. Through knockdown of PLK1 with siRNA carried by novel nanovector, qPCR and Western blot were used to measure the interfering efficiency; apoptosis assay was used to detect the transfection effect of PLK1. All results showed that the novel nanocarrier revealed good biocompatibility, reduced cytotoxicity, as well as high gene-carrying ability without serum interference, thus would have great potential for gene delivery and therapy.

  19. Extracting gene-gene interactions through curve fitting.

    PubMed

    Das, Ranajit; Mitra, Sushmita; Murthy, C A

    2012-12-01

    This paper presents a simple and novel curve fitting approach for generating simple gene regulatory subnetworks from time series gene expression data. Microarray experiments simultaneously generate massive data sets and help immensely in the large-scale study of gene expression patterns. Initial biclustering reduces the search space in the high-dimensional microarray data. The least-squares error between fitting of gene pairs is minimized to extract a set of gene-gene interactions, involving transcriptional regulation of genes. The higher error values are eliminated to retain only the strong interacting gene pairs in the resultant gene regulatory subnetwork. Next the algorithm is extended to a generalized framework to enhance its capability. The methodology takes care of the higher-order dependencies involving multiple genes co-regulating a single gene, while eliminating the need for user-defined parameters. It has been applied to the time-series Yeast data, and the experimental results biologically validated using standard databases and literature. PMID:22997274

  20. From SNPs to Genes: Disease Association at the Gene Level

    PubMed Central

    Lehne, Benjamin; Lewis, Cathryn M.; Schlitt, Thomas

    2011-01-01

    Interpreting Genome-Wide Association Studies (GWAS) at a gene level is an important step towards understanding the molecular processes that lead to disease. In order to incorporate prior biological knowledge such as pathways and protein interactions in the analysis of GWAS data it is necessary to derive one measure of association for each gene. We compare three different methods to obtain gene-wide test statistics from Single Nucleotide Polymorphism (SNP) based association data: choosing the test statistic from the most significant SNP; the mean test statistics of all SNPs; and the mean of the top quartile of all test statistics. We demonstrate that the gene-wide test statistics can be controlled for the number of SNPs within each gene and show that all three methods perform considerably better than expected by chance at identifying genes with confirmed associations. By applying each method to GWAS data for Crohn's Disease and Type 1 Diabetes we identified new potential disease genes. PMID:21738570

  1. Advances in Gene Delivery Systems

    PubMed Central

    Kamimura, Kenya; Suda, Takeshi; Zhang, Guisheng; Liu, Dexi

    2011-01-01

    The transfer of genes into cells, both in vitro and in vivo, is critical for studying gene function and conducting gene therapy. Methods that utilize viral and nonviral vectors, as well as physical approaches, have been explored. Viral vector-mediated gene transfer employs replication-deficient viruses such as retro-virus, adenovirus, adeno-associated virus and herpes simplex virus. A major advantage of viral vectors is their high gene delivery efficiency. The nonviral vectors developed so far include cationic liposomes, cationic polymers, synthetic peptides and naturally occurring compounds. These nonviral vectors appear to be highly effective in gene delivery to cultured cells in vitro but are significantly less effective in vivo. Physical methods utilize mechanical pressure, electric shock or hydrodynamic force to transiently permeate the cell membrane to transfer DNA into target cells. They are simpler than viral- and nonviral-based systems and highly effective for localized gene delivery. The past decade has seen significant efforts to establish the most desirable method for safe, effective and target-specific gene delivery, and good progress has been made. The objectives of this review are to (i) explain the rationale for the design of viral, nonviral and physical methods for gene delivery; (ii) provide a summary on recent advances in gene transfer technology; (iii) discuss advantages and disadvantages of each of the most commonly used gene delivery methods; and (iv) provide future perspectives. PMID:22200988

  2. The Gene Wiki: community intelligence applied to human gene annotation.

    PubMed

    Huss, Jon W; Lindenbaum, Pierre; Martone, Michael; Roberts, Donabel; Pizarro, Angel; Valafar, Faramarz; Hogenesch, John B; Su, Andrew I

    2010-01-01

    Annotating the function of all human genes is a critical, yet formidable, challenge. Current gene annotation efforts focus on centralized curation resources, but it is increasingly clear that this approach does not scale with the rapid growth of the biomedical literature. The Gene Wiki utilizes an alternative and complementary model based on the principle of community intelligence. Directly integrated within the online encyclopedia, Wikipedia, the goal of this effort is to build a gene-specific review article for every gene in the human genome, where each article is collaboratively written, continuously updated and community reviewed. Previously, we described the creation of Gene Wiki 'stubs' for approximately 9000 human genes. Here, we describe ongoing systematic improvements to these articles to increase their utility. Moreover, we retrospectively examine the community usage and improvement of the Gene Wiki, providing evidence of a critical mass of users and editors. Gene Wiki articles are freely accessible within the Wikipedia web site, and additional links and information are available at http://en.wikipedia.org/wiki/Portal:Gene_Wiki. PMID:19755503

  3. Identification of genes and gene products necessary for bacterial bioluminescence.

    PubMed

    Engebrecht, J; Silverman, M

    1984-07-01

    Expression of luminescence in Escherichia coli was recently achieved by cloning genes from the marine bacterium Vibrio fischeri. One DNA fragment on a hybrid plasmid encoded regulatory functions and enzymatic activities necessary for light production. We report the results of a genetic analysis to identify the luminescence genes (lux) that reside on this recombinant plasmid. lux gene mutations were generated by hydroxylamine treatment, and these mutations were ordered on a linear map by complementation in trans with a series of polar transposon insertions on other plasmids. lux genes were defined by complementation of lux gene defects on pairs of plasmids in trans in E. coli. Hybrid plasmids were also used to direct the synthesis of polypeptides in the E. coli minicell system. Seven lux genes and the corresponding gene products were identified from the complementation analysis and the minicell programing experiments. These genes, in the order of their position on a linear map, and the apparent molecular weights of the gene products are luxR (27,000), luxI (25,000), luxC (53,000), luxD (33,000), luxA (40,000), luxB (38,000), and luxE (42,000). From the luminescence phenotypes of E. coli containing mutant plasmids, functions were assigned to these genes: luxA, luxB, luxC, luxD, and luxE encode enzymes for light production and luxR and luxI encode regulatory functions. PMID:6377310

  4. Progress in gene targeting and gene therapy for retinitis pigmentosa

    SciTech Connect

    Farrar, G.J.; Humphries, M.M.; Erven, A.

    1994-09-01

    Previously, we localized disease genes involved in retinitis pigmentosa (RP), an inherited retinal degeneration, close to the rhodopsin and peripherin genes on 3q and 6p. Subsequently, we and others identified mutations in these genes in RP patients. Currently animal models for human retinopathies are being generated using gene targeting by homologous recombination in embryonic stem (ES) cells. Genomic clones for retinal genes including rhodopsin and peripherin have been obtained from a phage library carrying mouse DNA isogenic with the ES cell line (CC1.2). The peripherin clone has been sequenced to establish the genomic structure of the mouse gene. Targeting vectors for rhodopsin and peripherin including a neomycin cassette for positive selection and thymidine kinase genes enabling selection against random intergrants are under construction. Progress in vector construction will be presented. Simultaneously we are developing systems for delivery of gene therapies to retinal tissues utilizing replication-deficient adenovirus (Ad5). Efficacy of infection subsequent to various methods of intraocular injection and with varying viral titers is being assayed using an adenovirus construct containing a CMV promoter LacZ fusion as reporter and the range of tissues infected and the level of duration of LacZ expression monitored. Viral constructs with the LacZ reporter gene under the control of retinal specific promoters such as rhodopsin and IRBP cloned into pXCJL.1 are under construction. An update on developments in photoreceptor cell-directed expression of virally delivered genes will be presented.

  5. Gene Circuit Analysis of the Terminal Gap Gene huckebein

    PubMed Central

    Ashyraliyev, Maksat; Siggens, Ken; Janssens, Hilde; Blom, Joke; Akam, Michael; Jaeger, Johannes

    2009-01-01

    The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the regulatory effect of the terminal gap gene huckebein (hkb) on gap gene expression. We present quantitative expression data for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models of gene networks used as computational tools to extract regulatory information from spatial expression data. This is achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which predict a specific network topology. We show how considering variability in the data combined with analysis of parameter determinability significantly improves the biological relevance and consistency of the approach. Our models are in agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the regulation of the posterior hunchback (hb) domain, but does not have any other essential function. Specifically, Hkb is required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models. Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network. PMID:19876378

  6. Identifying Gene Interaction Networks

    PubMed Central

    Bebek, Gurkan

    2016-01-01

    In this chapter, we introduce interaction networks by describing how they are generated, where they are stored, and how they are shared. We focus on publicly available interaction networks and describe a simple way of utilizing these resources. As a case study, we used Cytoscape, an open source and easy-to-use network visualization and analysis tool to first gather and visualize a small network. We have analyzed this network’s topological features and have looked at functional enrichment of the network nodes by integrating the gene ontology database. The methods described are applicable to larger networks that can be collected from various resources. PMID:22307715

  7. Computation in gene networks

    NASA Astrophysics Data System (ADS)

    Ben-Hur, Asa; Siegelmann, Hava T.

    2004-03-01

    Genetic regulatory networks have the complex task of controlling all aspects of life. Using a model of gene expression by piecewise linear differential equations we show that this process can be considered as a process of computation. This is demonstrated by showing that this model can simulate memory bounded Turing machines. The simulation is robust with respect to perturbations of the system, an important property for both analog computers and biological systems. Robustness is achieved using a condition that ensures that the model equations, that are generally chaotic, follow a predictable dynamics.

  8. Genes for sexual behavior.

    PubMed

    Yamamoto, D; Nakano, Y

    1998-05-01

    The mating behavior of Drosophila melanogaster is a stereotyped sequence of fixed action patterns, composed of orientation, tapping, singing, licking, attempted copulation and copulation. Mutations that block a unique aspect of mating behavior were isolated and analyzed at the cellular and molecular levels. The wild-type counterparts of the mutated genes were shown to rescue the phenotypes by their ubiquitous or targeted expression in some of the mutants. This strategy of artificial control of fly behavior opens up an avenue for studies to identify the neural center for individual behavioral actions. PMID:9600058

  9. Gene transfer: transduction.

    PubMed

    Frangipani, Emanuela

    2014-01-01

    Bacteriophages able to propagate on Pseudomonas strains are very common and can be easily isolated from natural environments or lysogenic strains. The development of transducing systems has allowed bacterial geneticists to perform chromosome analyses and mutation mapping. Moreover, these systems have also been proved to be a successful tool for molecular microbiologists to introduce a foreign gene or a mutation into the chromosome of a bacterial cell. This chapter provides a description of the phage methodology illustrated by Adams in 1959 and applicable to strain PAO1 derivatives. PMID:24818891

  10. Anti-Mullerian hormone as a predictive endocrine marker for embryo production in the goat.

    PubMed

    Monniaux, Danielle; Baril, Gérard; Laine, Anne-Lyse; Jarrier, Peggy; Poulin, Natividad; Cognié, Juliette; Fabre, Stéphane

    2011-12-01

    Recently, we demonstrated the relationship between anti-Müllerian hormone (AMH) circulating concentrations, ovarian follicles, and embryo production in cattle. However, they have not yet been established in a species with a seasonal breeding activity. Thus, goats were subjected to repeated in vivo embryo production during the breeding season, at the end of the breeding season, and at the end of the anestrus season. Embryo production after FSH treatment was highly repeatable for each goat. Plasma AMH concentrations, measured before the first FSH treatment, were highly correlated with the number of collected, transferable, and freezable embryos, resulting from the three sessions of embryo production. Plasma AMH concentrations transiently decreased after each exogenous FSH treatment, but they showed little change with season, and no relationship was observed between AMH and endogenous FSH concentrations during seasonal transitions. Follicles of 1-5 mm in diameter were the main target of the FSH treatment and were major contributors to circulating AMH concentrations. Granulosa cell AMH expression decreased as the follicle approached terminal development, while the expression of maturation markers (CYP19A1 and FSHR) increased. In conclusion, circulating AMH concentrations can be predictive of the capacity of a donor goat to produce high or low numbers of high-quality embryos. This prediction could be accurately made from a single blood measurement of AMH during either breeding or anestrus seasons. Variability in the number of gonadotropin-responsive follicles of 1-5 mm in diameter between individuals resulted in the differences in circulating AMH concentrations measured between individuals. PMID:21930684

  11. Mullerian inhibiting substance inhibits ovarian cell growth through an Rb-independent mechanism.

    PubMed

    Ha, T U; Segev, D L; Barbie, D; Masiakos, P T; Tran, T T; Dombkowski, D; Glander, M; Clarke, T R; Lorenzo, H K; Donahoe, P K; Maheswaran, S

    2000-11-24

    Müllerian inhibiting substance (MIS), a transforming growth factor-beta family member, causes regression of the Müllerian duct in male embryos. MIS overexpression in transgenic mice ablates the ovary, and MIS inhibits the growth of ovarian cancer cell lines in vitro, suggesting a key role for this hormone in postnatal development of the ovary. This report describes a mechanism for MIS-mediated growth inhibition in both a human epithelial ovarian cancer cell line and a cell line derived from normal ovarian surface epithelium, which is the origin of human epithelial ovarian cancers. MIS-treated cells accumulated in the G(1) phase of the cell cycle and subsequently underwent apoptosis. MIS up-regulated the cyclin-dependent kinase inhibitor p16 through an MIS type II receptor-mediated mechanism and inhibited growth in the absence of detectable or inactive Rb protein. Prolonged treatment with MIS down-regulated the Rb-related protein p130 and increased the Rb family-regulated transcription factor E2F1, overexpression of which inhibited growth. These findings demonstrate that p16 is required for MIS-mediated growth inhibition in ovarian epithelial cells and tumor cells and suggest that up-regulation of E2F1 also plays a role in this process. PMID:10958795

  12. Recanalization of azoospermia due to a Mullerian duct cyst by Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Gaboardi, Franco; Bozzola, Andrea; Zago, Tiziano; Gulfi, Gildo M.; Galli, Luigi

    1991-07-01

    The Nd:YAG laser treatment of a 32-year-old man affected by azoospermia is presented. Preoperative evaluations showed fructose absence in the ejaculate and transrectal echothomography showed bilateral seminal vesicles dilatation. Before the surgical procedure a transperineal vesicledeferentography echographycally guided was carried out. The exam showed the absence of ejaculatory duct and the presence of cystic dilatation in which both seminal vesicles joined. During the exam a mixture of contrast medium and methylen blue was injected into the seminal vesicles. Later, transurethrally and by means of a sapphire contact tip, a new channel, over the veru montanum, was created by a Nd:YAG laser irradiation (25 Watts/2 seconds). The irradiation was carried out until an efflow of seminal material mixed with blue came out through the new channel. Ten months later the patient has 32.106/ml spermatozoa with good quality of semen analysis.

  13. Mullerian adenosarcoma of the cervix with heterologous elements and sarcomatous overgrowth

    PubMed Central

    Pinto, Karen R.

    2016-01-01

    Cervical adenosarcomas are exceedingly infrequent tumors that occur most often in women of reproductive age. Adenosarcomas comprise benign epithelial elements and malignant stromal elements. The malignant stromal elements can either be homologous, such as fibroblasts or smooth muscle, or heterologous, like cartilage, striated muscle, or bone. We report a case of adenosarcoma of the cervix with heterologous elements and sarcomatous overgrowth in a 38-year-old woman. PMID:26722175

  14. The physiology and clinical utility of anti-Mullerian hormone in women.

    PubMed

    Dewailly, Didier; Andersen, Claus Yding; Balen, Adam; Broekmans, Frank; Dilaver, Nafi; Fanchin, Renato; Griesinger, Georg; Kelsey, Tom W; La Marca, Antonio; Lambalk, Cornelius; Mason, Helen; Nelson, Scott M; Visser, Jenny A; Wallace, W Hamish; Anderson, Richard A

    2014-01-01

    BACKGROUND The measurement of circulating anti-Müllerian hormone (AMH) has been applied to a wide array of clinical applications, mainly based on its ability to reflect the number of antral and pre-antral follicles present in the ovaries. AMH has been suggested to predict the ovarian response to hyperstimulation of the ovaries for IVF and the timing of menopause, and to indicate iatrogenic damage to the ovarian follicle reserve. It has also been proposed as a surrogate for antral follicle count (AFC) in the diagnosis of polycystic ovary syndrome (PCOS). METHODS This paper is a summary of presentations at a European Society of Human Reproduction and Embryology campus workshop on AMH, with literature cited until September 2013. Published peer-reviewed medical literature about AMH was searched through MEDLINE and was subjected to systematic review and critical assessment by the panel of authors. RESULTS Physiologically, recent data confirm that AMH is a follicular gatekeeper limiting follicle growth initiation, and subsequently estradiol production from small antral follicles prior to selection. AMH assays continue to evolve and technical issues remain; the absence of an international standard is a key issue. The dynamics of circulating AMH levels throughout life can be split into several distinct phases, with a peak in the early 20s before a decline to the menopause, with a strong and positive correlation with non-growing follicle recruitment. There is a more complex rise during childhood and adolescence, which is likely to be more reflective of different stages of follicle development. AMH shows limited short-term variability, but the influence of states such as prolonged oral contraceptive use need to be considered in clinical assessment. There are only very limited data on relationships between AMH and natural fertility at different stages of reproductive life, and while it has a relationship to age at menopause the marked variability in this needs further exploration. AMH may be useful in assessing the need for fertility preservation strategies and detecting post-chemotherapy or surgical damage to the ovarian reserve. Long-term follow-up of patients to ascertain fully the value of post-cancer serum AMH in predicting long-term ovarian function is required. There is a linear relationship between AMH and oocyte yield after ovarian stimulation, which is of value in predicting ovarian hyperstimulation. AMH can also identify 'poor responders', but it seems inappropriate at present to withhold IVF purely on this basis. Women with PCOS show markedly raised AMH levels, due to both the increased number of small antral follicles and intrinsic characteristics of those granulosa cells, and this may contribute to anovulation. The value of AMH in the diagnosis of PCOS remains controversial, but it may replace AFC in the future. CONCLUSIONS For the first time in female reproductive biology, it is possible to measure the submerged part of the iceberg of follicle growth, i.e. the intrinsic, so-called 'acyclic' ovarian activity. An international standard for AMH and improved assay validity are urgently needed to maximize the clinical utility of this very promising biomarker of ovarian function in a large array of clinical situations, both in childhood and adulthood. PMID:24430863

  15. Alternative Gene Form Discovery and Candidate Gene Selection from Gene Indexing Projects

    PubMed Central

    Burke, John; Wang, Hui; Hide, Winston; Davison, Daniel B.

    1998-01-01

    Several efforts are under way to partition single-read expressed sequence tag (EST), as well as full-length transcript data, into large-scale gene indices, where transcripts are in common index classes if and only if they share a common progenitor gene. Accurate gene indexing facilitates gene expression studies, as well as inexpensive and early gene sequence discovery through assembly of ESTs that are derived from genes that have not been sequenced by classical methods. We extend, correct, and enhance the information obtained from index groups by splitting index classes into subclasses based on sequence dissimilarity (diversity). Two applications of this are highlighted in this report. First it is shown that our method can ameliorate the damage that artifacts, such as chimerism, inflict on index integrity. Additionally, we demonstrate how the organization imposed by an effective subpartition can greatly increase the sensitivity of gene expression studies by accounting for the existence and tissue- or pathology-specific regulation of novel gene isoforms and polymorphisms. We apply our subpartitioning treatment to the UniGene gene indexing project to measure a marked increase in information quality and abundance (in terms of assembly length and insertion/deletion error) after treatment and demonstrate cases where new levels of information concerning differential expression of alternate gene forms, such as regulated alternative splicing, are discovered. [Tables 2 and 3 can be viewed in their entirety as Online Supplements at http://www.genome.org.] PMID:9521931

  16. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function.

    PubMed

    Warde-Farley, David; Donaldson, Sylva L; Comes, Ovi; Zuberi, Khalid; Badrawi, Rashad; Chao, Pauline; Franz, Max; Grouios, Chris; Kazi, Farzana; Lopes, Christian Tannus; Maitland, Anson; Mostafavi, Sara; Montojo, Jason; Shao, Quentin; Wright, George; Bader, Gary D; Morris, Quaid

    2010-07-01

    GeneMANIA (http://www.genemania.org) is a flexible, user-friendly web interface for generating hypotheses about gene function, analyzing gene lists and prioritizing genes for functional assays. Given a query list, GeneMANIA extends the list with functionally similar genes that it identifies using available genomics and proteomics data. GeneMANIA also reports weights that indicate the predictive value of each selected data set for the query. Six organisms are currently supported (Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, Homo sapiens and Saccharomyces cerevisiae) and hundreds of data sets have been collected from GEO, BioGRID, Pathway Commons and I2D, as well as organism-specific functional genomics data sets. Users can select arbitrary subsets of the data sets associated with an organism to perform their analyses and can upload their own data sets to analyze. The GeneMANIA algorithm performs as well or better than other gene function prediction methods on yeast and mouse benchmarks. The high accuracy of the GeneMANIA prediction algorithm, an intuitive user interface and large database make GeneMANIA a useful tool for any biologist. PMID:20576703

  17. Long-lasting effects of neonatal bisphenol A exposure on the implantation process.

    PubMed

    Varayoud, Jorgelina; Ramos, Jorge G; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2014-01-01

    Successful implantation is the result of complex molecular interactions between the hormonally primed uterus and a mature blastocyst. This very carefully synchronized interplay of hormonal signals and feedback loops is potentially vulnerable to chemicals such as endocrine disruptors that may disrupt endocrine signaling. Bisphenol A (BPA) is one of the highest-volume chemicals produced worldwide. This chapter describes the effects of brief postnatal exposure to BPA on female reproductive performance and specifically on the uterine adaptations during the preimplantation period. We propose that an early alteration in Hoxa10 gene expression affects the functional differentiation of the preimplantation uterus as part of an altered endocrine signal transduction pathway. These molecular alterations could explain, at least in part, the adverse effects of BPA on uterine implantation. Exposure to endocrine disruptors, such as BPA, could contribute to the impaired female fertility noted over the past decades. PMID:24388194

  18. Adenovirus Vectors for Gene Therapy, Vaccination and Cancer Gene Therapy

    PubMed Central

    Wold, William S.M.; Toth, Karoly

    2015-01-01

    Adenovirus vectors are the most commonly employed vector for cancer gene therapy. They are also used for gene therapy and as vaccines to express foreign antigens. Adenovirus vectors can be replication-defective; certain essential viral genes are deleted and replaced by a cassette that expresses a foreign therapeutic gene. Such vectors are used for gene therapy, as vaccines, and for cancer therapy. Replication-competent (oncolytic) vectors are employed for cancer gene therapy. Oncolytic vectors are engineered to replicate preferentially in cancer cells and to destroy cancer cells through the natural process of lytic virus replication. Many clinical trials indicate that replication-defective and replication-competent adenovirus vectors are safe and have therapeutic activity. PMID:24279313

  19. Gene function prediction with knowledge from gene ontology.

    PubMed

    Shen, Ying; Zhang, Lin

    2015-01-01

    Gene function prediction is an important problem in bioinformatics. Due to the inherent noise existing in the gene expression data, the attempt to improve the prediction accuracy resorting to new classification techniques is limited. With the emergence of Gene Ontology (GO), extra knowledge about the gene products can be extracted from GO and facilitates solving the gene function prediction problem. In this paper, we propose a new method which utilises GO information to improve the classifiers' performance in gene function prediction. Specifically, our method learns a distance metric under the supervision of the GO knowledge using the distance learning technique. Compared with the traditional distance metrics, the learned one produces a better performance and consequently classification accuracy can be improved. The effectiveness of our proposed method has been corroborated by the extensive experimental results. PMID:26529907

  20. Human AZU-1 gene, variants thereof and expressed gene products

    DOEpatents

    Chen, Huei-Mei; Bissell, Mina

    2004-06-22

    A human AZU-1 gene, mutants, variants and fragments thereof. Protein products encoded by the AZU-1 gene and homologs encoded by the variants of AZU-1 gene acting as tumor suppressors or markers of malignancy progression and tumorigenicity reversion. Identification, isolation and characterization of AZU-1 and AZU-2 genes localized to a tumor suppressive locus at chromosome 10q26, highly expressed in nonmalignant and premalignant cells derived from a human breast tumor progression model. A recombinant full length protein sequences encoded by the AZU-1 gene and nucleotide sequences of AZU-1 and AZU-2 genes and variant and fragments thereof. Monoclonal or polyclonal antibodies specific to AZU-1, AZU-2 encoded protein and to AZU-1, or AZU-2 encoded protein homologs.

  1. Endocrine regulation of HOX genes.

    PubMed

    Daftary, Gaurang S; Taylor, Hugh S

    2006-06-01

    Hox genes have a well-characterized role in embryonic development, where they determine identity along the anteroposterior body axis. Hox genes are expressed not only during embryogenesis but also in the adult, where they are necessary for functional differentiation. Despite the known function of these genes as transcription factors, few regulatory mechanisms that drive Hox expression are known. Recently, several hormones and their cognate receptors have been shown to regulate Hox gene expression and thereby mediate development in the embryo as well as functional differentiation in the adult organism. Estradiol, progesterone, testosterone, retinoic acid, and vitamin D have been shown to regulate Hox gene expression. In the embryo, the endocrine system directs axial Hox gene expression; aberrant Hox gene expression due to exposure to endocrine disruptors contributes to the teratogenicity of these compounds. In the adult, endocrine regulation of Hox genes is necessary to enable such diverse functions as hematopoiesis and reproduction; endocrinopathies can result in dysregulated HOX gene expression affecting physiology. By regulating HOX genes, hormonal signals utilize a conserved mechanism that allows generation of structural and functional diversity in both developing and adult tissues. This review discusses endocrine Hox regulation and its impact on physiology and human pathology. PMID:16632680

  2. Imprinting genes associated with endometriosis

    PubMed Central

    Kobayashi, Hiroshi

    2014-01-01

    Purpose: Much work has been carried out to investigate the genetic and epigenetic basis of endometriosis and proposed that endometriosis has been described as an epigenetic disease. The purpose of this study was to extract the imprinting genes that are associated with endometriosis development. Methods: The information on the imprinting genes can be accessed publicly from a web-based interface at http://www.geneimprint.com/site/genes-by-species. Results: In the current version, the database contains 150 human imprinted genes derived from the literature. We searched gene functions and their roles in particular biological processes or events, such as development and pathogenesis of endometriosis. From the genomic imprinting database, we picked 10 genes that were highly associated with female reproduction; prominent among them were paternally expressed genes (DIRAS3, BMP8B, CYP1B1, ZFAT, IGF2, MIMT1, or MIR296) and maternally expressed genes (DVL1, FGFRL1, or CDKN1C). These imprinted genes may be associated with reproductive biology such as endometriosis, pregnancy loss, decidualization process and preeclampsia. Discussion: This study supports the possibility that aberrant epigenetic dysregulation of specific imprinting genes may contribute to endometriosis predisposition. PMID:26417259

  3. Vectors for cancer gene therapy.

    PubMed

    Zhang, J; Russell, S J

    1996-09-01

    Many viral and non-viral vector systems have now been developed for gene therapy applications. In this article, the pros and cons of these vector systems are discussed in relation to the different cancer gene therapy strategies. The protocols used in cancer gene therapy can be broadly divided into six categories including gene transfer to explanted cells for use as cell-based cancer vaccines; gene transfer to a small number of tumour cells in situ to achieve a vaccine effect; gene transfer to vascular endothelial cells (VECs) lining the blood vessels of the tumour to interfere with tumour angiogenesis; gene transfer to T lymphocytes to enhance their antitumour effector capability; gene transfer to haemopoietic stem cells (HSCs) to enhance their resistance to cytotoxic drugs and gene transfer to a large number of tumour cells in situ to achieve nonimmune tumour reduction with or without bystander effect. Each of the six strategies makes unique demands on the vector system and these are discussed with reference to currently available vectors. Aspects of vector biology that are in need of further development are discussed in some detail. The final section points to the potential use of replicating viruses as delivery vehicles for efficient in vivo gene transfer to disseminated cancers. PMID:9034598

  4. Aberrant Gene Expression in Humans

    PubMed Central

    Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.

    2015-01-01

    Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating

  5. The Zebrafish Annexin Gene Family

    PubMed Central

    Farber, Steven A.; De Rose, Robert A.; Olson, Eric S.; Halpern, Marnie E.

    2003-01-01

    The Annexins (ANXs) are a family of calcium- and phospholipid-binding proteins that have been implicated in many cellular processes, including channel formation, membrane fusion, vesicle transport, and regulation of phospholipase A2 activity. As a first step toward understanding in vivo function, we have cloned 11 zebrafish anx genes. Four genes (anx1a, anx2a, anx5,and anx11a) were identified by screening a zebrafish cDNA library with a Xenopus anx2 fragment. For these genes, full-length cDNA sequences were used to cluster 212 EST sequences generated by the Zebrafish Genome Resources Project. The EST analysis revealed seven additional anx genes that were subsequently cloned. The genetic map positions of all 11 genes were determined by using a zebrafish radiation hybrid panel. Sequence and syntenic relationships between zebrafish and human genes indicate that the 11 genes represent orthologs of human anx1,2,4,5,6,11,13,and suggest that several zebrafish anx genes resulted from duplications that arose after divergence of the zebrafish and mammalian genomes. Zebrafish anx genes are expressed in a wide range of tissues during embryonic and larval stages. Analysis of the expression patterns of duplicated genes revealed both redundancy and divergence, with the most similar genes having almost identical tissue-specific patterns of expression and with less similar duplicates showing no overlap. The differences in gene expression of recently duplicated anx genes could explain why highly related paralogs were maintained in the genome and did not rapidly become pseudogenes. PMID:12799347

  6. Gene-gene interaction between tuberculosis candidate genes in a South African population.

    PubMed

    de Wit, Erika; van der Merwe, Lize; van Helden, Paul D; Hoal, Eileen G

    2011-02-01

    In a complex disease such as tuberculosis (TB) it is increasingly evident that gene-gene interactions play a far more important role in an individual's susceptibility to develop the disease than single polymorphisms on their own, as one gene can enhance or hinder the expression of another gene. Gene-gene interaction analysis is a new approach to elucidate susceptibility to TB. The possibility of gene-gene interactions was assessed, focusing on 11 polymorphisms in nine genes (DC-SIGN, IFN-γ, IFNGR1, IL-8, IL-1Ra, MBL, NRAMP1, RANTES, and SP-D) that have been associated with TB, some repeatedly. An optimal model, which best describes and predicts TB case-control status, was constructed. Significant interactions were detected between eight pairs of variants. The models fitted the observed data extremely well, with p < 0.0001 for all eight models. A highly significant interaction was detected between INFGR1 and NRAMP1, which is not surprising because macrophage activation is greatly enhanced by IFN-γ and IFN-γ response elements that are present in the human NRAMP1 promoter region, providing further evidence for their interaction. This study enabled us to test the theory that disease outcome may be due to interaction of several gene effects. With eight instances of statistically significant gene-gene interactions, the importance of epistasis is clearly identifiable in this study. Methods for studying gene-gene interactions are based on a multilocus and multigene approach, consistent with the nature of complex-trait diseases, and may provide the paradigm for future genetic studies of TB. PMID:20799037

  7. Ancient origins of axial patterning genes: Hox genes and ParaHox genes in the Cnidaria.

    PubMed

    Finnerty, J R; Martindale, M Q

    1999-01-01

    Among the bilaterally symmetrical, triploblastic animals (the Bilateria), a conserved set of developmental regulatory genes are known to function in patterning the anterior-posterior (AP) axis. This set includes the well-studied Hox cluster genes, and the recently described genes of the ParaHox cluster, which is believed to be the evolutionary sister of the Hox cluster (Brooke et al. 1998). The conserved role of these axial patterning genes in animals as diverse as frogs and flies is believed to reflect an underlying homology (i.e., all bilaterians derive from a common ancestor which possessed an AP axis and the developmental mechanisms responsible for patterning the axis). However, the origin and early evolution of Hox genes and ParaHox genes remain obscure. Repeated attempts have been made to reconstruct the early evolution of Hox genes by analyzing data from the triphoblastic animals, the Bilateria (Schubert et al. 1993; Zhang and Nei 1996). A more precise dating of Hox origins has been elusive due to a lack of sufficient information from outgroup taxa such as the phylum Cnidaria (corals, hydras, jellyfishes, and sea anemones). In combination with outgroup taxa, another potential source of information about Hox origins is outgroup genes (e.g., the genes of the ParaHox cluster). In this article, we present cDNA sequences of two Hox-like genes (anthox2 and anthox6) from the sea anemone, Nematostella vectensis. Phylogenetic analysis indicates that anthox2 (= Cnox2) is homologous to the GSX class of ParaHox genes, and anthox6 is homologous to the anterior class of Hox genes. Therefore, the origin of Hox genes and ParaHox genes occurred prior to the evolutionary split between the Cnidaria and the Bilateria and predated the evolution of the anterior-posterior axis of bilaterian animals. Our analysis also suggests that the central Hox class was invented in the bilaterian lineage, subsequent to their split from the Cnidaria. PMID:11324016

  8. Identifying Driver Genes in Cancer by Triangulating Gene Expression, Gene Location, and Survival Data

    PubMed Central

    Rouam, Sigrid; Miller, Lance D; Karuturi, R Krishna Murthy

    2014-01-01

    Driver genes are directly responsible for oncogenesis and identifying them is essential in order to fully understand the mechanisms of cancer. However, it is difficult to delineate them from the larger pool of genes that are deregulated in cancer (ie, passenger genes). In order to address this problem, we developed an approach called TRIAngulating Gene Expression (TRIAGE through clinico-genomic intersects). Here, we present a refinement of this approach incorporating a new scoring methodology to identify putative driver genes that are deregulated in cancer. TRIAGE triangulates – or integrates – three levels of information: gene expression, gene location, and patient survival. First, TRIAGE identifies regions of deregulated expression (ie, expression footprints) by deriving a newly established measure called the Local Singular Value Decomposition (LSVD) score for each locus. Driver genes are then distinguished from passenger genes using dual survival analyses. Incorporating measurements of gene expression and weighting them according to the LSVD weight of each tumor, these analyses are performed using the genes located in significant expression footprints. Here, we first use simulated data to characterize the newly established LSVD score. We then present the results of our application of this refined version of TRIAGE to gene expression data from five cancer types. This refined version of TRIAGE not only allowed us to identify known prominent driver genes, such as MMP1, IL8, and COL1A2, but it also led us to identify several novel ones. These results illustrate that TRIAGE complements existing tools, allows for the identification of genes that drive cancer and could perhaps elucidate potential future targets of novel anticancer therapeutics. PMID:25949096

  9. Introns in gene evolution.

    PubMed

    Fedorova, Larisa; Fedorov, Alexei

    2003-07-01

    Introns are integral elements of eukaryotic genomes that perform various important functions and actively participate in gene evolution. We review six distinct roles of spliceosomal introns: (1) sources of non-coding RNA; (2) carriers of transcription regulatory elements; (3) actors in alternative and trans-splicing; (4) enhancers of meiotic crossing over within coding sequences; (5) substrates for exon shuffling; and (6) signals for mRNA export from the nucleus and nonsense-mediated decay. We consider transposable capacities of introns and the current state of the long-lasting debate on the 'early-or-late' origin of introns. Cumulative data on known types of contemporary exon shuffling and the estimation of the size of the underlying exon universe are also discussed. We argue that the processes central to introns-early (exon shuffling) and introns-late (intron insertion) theories are entirely compatible. Each has provided insight: the latter through elucidating the transposon capabilities of introns, and the former through understanding the importance of introns in genomic recombination leading to gene rearrangements and evolution. PMID:12868603

  10. Conotoxin Gene Superfamilies

    PubMed Central

    Robinson, Samuel D.; Norton, Raymond S.

    2014-01-01

    Conotoxins are the peptidic components of the venoms of marine cone snails (genus Conus). They are remarkably diverse in terms of structure and function. Unique potency and selectivity profiles for a range of neuronal targets have made several conotoxins valuable as research tools, drug leads and even therapeutics, and has resulted in a concerted and increasing drive to identify and characterise new conotoxins. Conotoxins are translated from mRNA as peptide precursors, and cDNA sequencing is now the primary method for identification of new conotoxin sequences. As a result, gene superfamily, a classification based on precursor signal peptide identity, has become the most convenient method of conotoxin classification. Here we review each of the described conotoxin gene superfamilies, with a focus on the structural and functional diversity present in each. This review is intended to serve as a practical guide to conotoxin superfamilies and to facilitate interpretation of the increasing number of conotoxin precursor sequences being identified by targeted-cDNA sequencing and more recently high-throughput transcriptome sequencing. PMID:25522317

  11. GeneMark.hmm: new solutions for gene finding.

    PubMed

    Lukashin, A V; Borodovsky, M

    1998-02-15

    The number of completely sequenced bacterial genomes has been growing fast. There are computer methods available for finding genes but yet there is a need for more accurate algorithms. The GeneMark. hmm algorithm presented here was designed to improve the gene prediction quality in terms of finding exact gene boundaries. The idea was to embed the GeneMark models into naturally derived hidden Markov model framework with gene boundaries modeled as transitions between hidden states. We also used the specially derived ribosome binding site pattern to refine predictions of translation initiation codons. The algorithm was evaluated on several test sets including 10 complete bacterial genomes. It was shown that the new algorithm is significantly more accurate than GeneMark in exact gene prediction. Interestingly, the high gene finding accuracy was observed even in the case when Markov models of order zero, one and two were used. We present the analysis of false positive and false negative predictions with the caution that these categories are not precisely defined if the public database annotation is used as a control. PMID:9461475

  12. Gene: a gene-centered information resource at NCBI

    PubMed Central

    Brown, Garth R.; Hem, Vichet; Katz, Kenneth S.; Ovetsky, Michael; Wallin, Craig; Ermolaeva, Olga; Tolstoy, Igor; Tatusova, Tatiana; Pruitt, Kim D.; Maglott, Donna R.; Murphy, Terence D.

    2015-01-01

    The National Center for Biotechnology Information's (NCBI) Gene database (www.ncbi.nlm.nih.gov/gene) integrates gene-specific information from multiple data sources. NCBI Reference Sequence (RefSeq) genomes for viruses, prokaryotes and eukaryotes are the primary foundation for Gene records in that they form the critical association between sequence and a tracked gene upon which additional functional and descriptive content is anchored. Additional content is integrated based on the genomic location and RefSeq transcript and protein sequence data. The content of a Gene record represents the integration of curation and automated processing from RefSeq, collaborating model organism databases, consortia such as Gene Ontology, and other databases within NCBI. Records in Gene are assigned unique, tracked integers as identifiers. The content (citations, nomenclature, genomic location, gene products and their attributes, phenotypes, sequences, interactions, variation details, maps, expression, homologs, protein domains and external databases) is available via interactive browsing through NCBI's Entrez system, via NCBI's Entrez programming utilities (E-Utilities and Entrez Direct) and for bulk transfer by FTP. PMID:25355515

  13. Bacteriophage phiX174: gene A overlaps gene B.

    PubMed Central

    Weisbeek, P J; Borrias, W E; Langeveld, S A; Baas, P D; Van Arkel, G A

    1977-01-01

    The map position of several phiX174 mutations in the genes A and B was determined by marker rescue with DNA fragments produced by the restriction enzymes Hha I, HindII, Hae III, and Alu I. All the gene B mutants were found to be located within gene A. Genetic complementation and analysis of phage-specific protein synthesis show that, under restrictive conditions, nonsense mutants in gene A do not block the synthesis and activity of the B protein and nonsense mutants in gene B do not affect the gene A function. The map position of the COOH-terminal end of gene A was determined using an amber mutant that synthesizes slightly shortened A and A proteins. It is concluded from these experiments that gene A overlaps gene B completely (or almost completely) and that the overlap region can be translated in two ways with different reading frames: one frame for the synthesis of the A and A proteins and another for the synthesis of the B protein. Images PMID:267943

  14. Immunity-related genes and gene families in Anopheles gambiae.

    PubMed

    Christophides, George K; Zdobnov, Evgeny; Barillas-Mury, Carolina; Birney, Ewan; Blandin, Stephanie; Blass, Claudia; Brey, Paul T; Collins, Frank H; Danielli, Alberto; Dimopoulos, George; Hetru, Charles; Hoa, Ngo T; Hoffmann, Jules A; Kanzok, Stefan M; Letunic, Ivica; Levashina, Elena A; Loukeris, Thanasis G; Lycett, Gareth; Meister, Stephan; Michel, Kristin; Moita, Luis F; Müller, Hans-Michael; Osta, Mike A; Paskewitz, Susan M; Reichhart, Jean-Marc; Rzhetsky, Andrey; Troxler, Laurent; Vernick, Kenneth D; Vlachou, Dina; Volz, Jennifer; von Mering, Christian; Xu, Jiannong; Zheng, Liangbiao; Bork, Peer; Kafatos, Fotis C

    2002-10-01

    We have identified 242 Anopheles gambiae genes from 18 gene families implicated in innate immunity and have detected marked diversification relative to Drosophila melanogaster. Immune-related gene families involved in recognition, signal modulation, and effector systems show a marked deficit of orthologs and excessive gene expansions, possibly reflecting selection pressures from different pathogens encountered in these insects' very different life-styles. In contrast, the multifunctional Toll signal transduction pathway is substantially conserved, presumably because of counterselection for developmental stability. Representative expression profiles confirm that sequence diversification is accompanied by specific responses to different immune challenges. Alternative RNA splicing may also contribute to expansion of the immune repertoire. PMID:12364793

  15. Gene-targeting pharmaceuticals for single-gene disorders.

    PubMed

    Beaudet, Arthur L; Meng, Linyan

    2016-04-15

    The concept of orphan drugs for treatment of orphan genetic diseases is perceived enthusiastically at present, and this is leading to research investment on the part of governments, disease-specific foundations and industry. This review attempts to survey the potential to use traditional pharmaceuticals as opposed to biopharmaceuticals to treat single-gene disorders. The available strategies include the use of antisense oligonucleotides (ASOs) to alter splicing or knock-down expression of a transcript, siRNAs to knock-down gene expression and drugs for nonsense mutation read-through. There is an approved drug for biallelic knock-down of the APOB gene as treatment for familial hypercholesterolemia. Both ASOs and siRNAs are being explored to knock-down the transthyretin gene to prevent the related form of amyloidosis. The use of ASOs to alter gene-splicing to treat spinal muscular atrophy is in phase 3 clinical trials. Work is progressing on the use of ASOs to activate the normally silent paternal copy of the imprinted UBE3A gene in neurons as a treatment for Angelman syndrome. A gene-activation or gene-specific ramp-up strategy would be generally helpful if such could be developed. There is exciting theoretical potential for converting biopharmaceutical strategies such gene correction and CRISPR-Cas9 editing to a synthetic pharmaceutical approach. PMID:26628634

  16. Sexually antagonistic genes: experimental evidence.

    PubMed

    Rice, W R

    1992-06-01

    When selection differs between the sexes, a mutation beneficial to one sex may be harmful to the other (sexually antagonistic). Because the sexes share a common gene pool, selection in one sex can interfere with the other's adaptive evolution. Theory predicts that sexually antagonistic mutations should accumulate in tight linkage with a new sex-determining gene, even when the harm to benefit ratio is high. Genetic markers and artificial selection were used to make a pair of autosomal genes segregate like a new pair of sex-determining genes in a Drosophila melanogaster model system. A 29-generation study provides experimental evidence that sexually antagonistic genes may be common in nature and will accumulate in response to a new sex-determining gene. PMID:1604317

  17. Gene Therapy for Cartilage Repair

    PubMed Central

    Madry, Henning; Orth, Patrick; Cucchiarini, Magali

    2011-01-01

    The concept of using gene transfer strategies for cartilage repair originates from the idea of transferring genes encoding therapeutic factors into the repair tissue, resulting in a temporarily and spatially defined delivery of therapeutic molecules to sites of cartilage damage. This review focuses on the potential benefits of using gene therapy approaches for the repair of articular cartilage and meniscal fibrocartilage, including articular cartilage defects resulting from acute trauma, osteochondritis dissecans, osteonecrosis, and osteoarthritis. Possible applications for meniscal repair comprise meniscal lesions, meniscal sutures, and meniscal transplantation. Recent studies in both small and large animal models have demonstrated the applicability of gene-based approaches for cartilage repair. Chondrogenic pathways were stimulated in the repair tissue and in osteoarthritic cartilage using genes for polypeptide growth factors and transcription factors. Although encouraging data have been generated, a successful translation of gene therapy for cartilage repair will require an ongoing combined effort of orthopedic surgeons and of basic scientists. PMID:26069580

  18. Gene targeting with retroviral vectors

    SciTech Connect

    Ellis, J.; Bernstein, A. )

    1989-04-01

    The authors have designed and constructed integration-defective retroviral vectors to explore their potential for gene targeting in mammalian cells. Two nonoverlapping deletion mutants of the bacterial neomycin resistance (neo) gene were used to detect homologous recombination events between viral and chromosomal sequences. Stable neo gene correction events were selected at a frequency of approximately 1 G418/sup r/ cell per 3 x 10/sup 6/ infected cells. Analysis of the functional neo gene in independent targeted cell clones indicated that unintegrated retroviral linear DNA recombined with the target by gene conversion for variable distances into regions of nonhomology. In addition, transient neo gene correction events which were associated with the complete loss of the chromosomal target sequences were observed. These results demonstrated that retroviral vectors can recombine with homologous chromosomal sequences in rodent and human cells.

  19. The Perils of Gene Patents

    PubMed Central

    Salzberg, SL

    2013-01-01

    I argue here that gene patents, and patented genetic tests based on them, are a very bad idea. First, I discuss whether genes can reasonably be the subject of patents in the first place; I maintain that the answer is no. Second, I explain how gene patents interfere with scientific progress, slowing down the development of new cures and treatments for genetic diseases. PMID:22609909

  20. Combinatorial approaches to gene recognition.

    PubMed

    Roytberg, M A; Astakhova, T V; Gelfand, M S

    1997-01-01

    Recognition of genes via exon assembly approaches leads naturally to the use of dynamic programming. We consider the general graph-theoretical formulation of the exon assembly problem and analyze in detail some specific variants: multicriterial optimization in the case of non-linear gene-scoring functions; context-dependent schemes for scoring exons and related procedures for exon filtering; and highly specific recognition of arbitrary gene segments, oligonucleotide probes and polymerase chain reaction (PCR) primers. PMID:9440930

  1. Symmetry and Stochastic Gene Regulation

    NASA Astrophysics Data System (ADS)

    Ramos, Alexandre F.; Hornos, José E. M.

    2007-09-01

    Lorentz-like noncompact Lie symmetry SO(2,1) is found in a spin-boson stochastic model for gene expression. The invariant of the algebra characterizes the switch decay to equilibrium. The azimuthal eigenvalue describes the affinity between the regulatory protein and the gene operator site. Raising and lowering operators are constructed and their actions increase or decrease the affinity parameter. The classification of the noise regime of the gene arises from the group theoretical numbers.

  2. Serial analysis of gene expression.

    PubMed

    Velculescu, V E; Zhang, L; Vogelstein, B; Kinzler, K W

    1995-10-20

    The characteristics of an organism are determined by the genes expressed within it. A method was developed, called serial analysis of gene expression (SAGE), that allows the quantitative and simultaneous analysis of a large number of transcripts. To demonstrate this strategy, short diagnostic sequence tags were isolated from pancreas, concatenated, and cloned. Manual sequencing of 1000 tags revealed a gene expression pattern characteristic of pancreatic function. New pancreatic transcripts corresponding to novel tags were identified. SAGE should provide a broadly applicable means for the quantitative cataloging and comparison of expressed genes in a variety of normal, developmental, and disease states. PMID:7570003

  3. Gene therapy for Parkinson's disease.

    PubMed

    Lawlor, Patricia A; During, Matthew J

    2004-03-01

    Parkinson's disease (PD) is a debilitating neurodegenerative disorder arising from loss of dopaminergic neurons in the substantia nigra pars compacta and subsequent depletion of striatal dopamine levels, which results in distressing motor symptoms. The current standard pharmacological treatment for PD is direct replacement of dopamine by treatment with its precursor, levodopa (L-dopa). However, this does not significantly alter disease progression and might contribute to the ongoing pathology. Several features of PD make this disease one of the most promising targets for clinical gene therapy of any neurological disease. The confinement of the major pathology to a compact, localised neuronal population and the anatomy of the basal ganglia circuitry mean that global gene transfer is not required and there are well-defined sites for gene transfer. The multifactorial aetiology of idiopathic PD means that it is unlikely any single gene will cure the disease, and as a result at least three separate gene-transfer strategies are currently being pursued: transfer of genes for enzymes involved in dopamine production; transfer of genes for growth factors involved in dopaminergic cell survival and regeneration; and transfer of genes to reset neuronal circuitry by switching cellular phenotype. The merits of these strategies are discussed here, along with remaining hurdles that might impede transfer of gene therapy technology to the clinic as a treatment for PD. PMID:15000692

  4. ERGDB: Estrogen Responsive Genes Database.

    PubMed

    Tang, Suisheng; Han, Hao; Bajic, Vladimir B

    2004-01-01

    ERGDB is an integrated knowledge database dedicated to genes responsive to estrogen. Genes included in ERGDB are those whose expression levels are experimentally proven to be either up-regulated or down-regulated by estrogen. Genes included are identified based on publications from the PubMed database and each record has been manually examined, evaluated and selected for inclusion by biologists. ERGDB aims to be a unified gateway to store, search, retrieve and update information about estrogen responsive genes. Each record contains links to relevant databases, such as GenBank, LocusLink, Refseq, PubMed and ATCC. The unique feature of ERGDB is that it contains information on the dependence of gene reactions on experimental conditions. In addition to basic information about the genes, information for each record includes gene functional description, experimental methods used, tissue or cell type, gene reaction, estrogen exposure time and the summary of putative estrogen response elements if the gene's promoter sequence was available. Through a web interface at http://sdmc.i2r.a-star.edu.sg/ergdb/ cgi-bin/explore.pl users can either browse or query ERGDB. Access is free for academic and non-profit users. PMID:14681475

  5. Cardiac Gene Therapy

    PubMed Central

    Chaanine, Antoine H.; Kalman, Jill; Hajjar, Roger J.

    2010-01-01

    Heart failure is a chronic progressive disorder where frequent and recurrent hospitalizations are associated with high mortality and morbidity. The incidence and the prevalence of this disease will increase with the increase in the number of the aging population of the United States. Understanding the molecular pathology and pathophysiology of this disease will uncover novel targets and therapies that can restore the function or attenuate the damage of malfunctioning cardiomyocytes by gene therapy that becomes an interesting and a promising field for the treatment of heart failure as well as other diseases in the future. Of equal importance is developing vectors and delivery methods that can efficiently transduce the majority of the cardiomyocytes, that can offer a long term expression and that can escape the host immune response. Recombinant adeno-associated virus vectors have the potential to become a promising novel therapeutic vehicles for molecular medicine in the future. PMID:21092890

  6. Taste Receptor Genes

    PubMed Central

    Bachmanov, Alexander A.; Beauchamp, Gary K.

    2009-01-01

    In the past several years, tremendous progress has been achieved with the discovery and characterization of vertebrate taste receptors from the T1R and T2R families, which are involved in recognition of bitter, sweet, and umami taste stimuli. Individual differences in taste, at least in some cases, can be attributed to allelic variants of the T1R and T2R genes. Progress with understanding how T1R and T2R receptors interact with taste stimuli and with identifying their patterns of expression in taste cells sheds light on coding of taste information by the nervous system. Candidate mechanisms for detection of salts, acids, fat, complex carbohydrates, and water have also been proposed, but further studies are needed to prove their identity. PMID:17444812

  7. New genes for boys

    SciTech Connect

    Sinclair, A.H.

    1995-11-01

    Sex is a fascinating topic, particularly at the level of molecular genetics, since it represents a wonderful paradigm for mammalian organ development. Recently, interest in the molecular basis for mammalian sex determination has been heating up as new pieces are added to the jigsaw puzzle of testis development. In mammals, the Y chromosome is male determining and encodes a gene referred to as TDF (testis-determining factor), which induces the indifferent embryonic gonad to develop as a testis. Subsequent male sexual differentiation is largely a consequence of hormonal secretion from the testis. In the absence of the Y chromosome, the testis-determining pathway fails to be initiated, and the embryonic gonad develops as an ovary, resulting in female development. 32 refs.

  8. Gene Express Inc.

    PubMed

    Saccomanno, Colette F

    2006-07-01

    Gene Express, Inc. is a technology-licensing company and provider of Standardized Reverse Transcription Polymerase Chain Reaction (StaRT-PCR) services. Designed by and for clinical researchers involved in pharmaceutical, biomarker and molecular diagnostic product development, StaRT-PCR is a unique quantitative and standardized multigene expression measurement platform. StaRT-PCR meets all of the performance characteristics defined by the US FDA as required to support regulatory submissions [101,102] , and by the Clinical Laboratory Improvement Act of 1988 (CLIA) as necessary to support diagnostic testing [1] . A standardized mixture of internal standards (SMIS), manufactured in bulk, provides integrated quality control wherein each native template target gene is measured relative to a competitive template internal standard. Bulk production enables the compilation of a comprehensive standardized database from across multiple experiments, across collaborating laboratories and across the entire clinical development lifecycle of a given compound or diagnostic product. For the first time, all these data are able to be directly compared. Access to such a database can dramatically shorten the time from investigational new drug (IND) to new drug application (NDA), or save time and money by hastening a substantiated 'no-go' decision. High-throughput StaRT-PCR is conducted at the company's automated Standardized Expression Measurement (SEM) Center. Currently optimized for detection on a microcapillary electrophoretic platform, StaRT-PCR products also may be analyzed on microarray, high-performance liquid chromatography (HPLC), or matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) platforms. SEM Center services deliver standardized genomic data--data that will accelerate the application of pharmacogenomic technology to new drug and diagnostic test development and facilitate personalized medicine. PMID:16886903

  9. DIFFERENTIAL GENE EXPRESSION OF PUTATIVE VIRULENCE GENES IN Flavobacterium columnare

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A shot-gun genomic library of the Flavobacterium columnare ALG-530 virulent strain has been constructed and more than 3,000 clones have been sequenced to date (800 contigs). Based on sequence identity with putative known virulence genes from related species, seven genes were selected for differentia...

  10. Candidate reference genes for gene expression studies in water lily.

    PubMed

    Luo, Huolin; Chen, Sumei; Wan, Hongjian; Chen, Fadi; Gu, Chunsun; Liu, Zhaolei

    2010-09-01

    The selection of an appropriate reference gene(s) is a prerequisite for the proper interpretation of quantitative Real-Time polymerase chain reaction data. We report the evaluation of eight candidate reference genes across various tissues and treatments in the water lily by the two software packages geNorm and NormFinder. Across all samples, clathrin adaptor complexes medium subunit (AP47) and actin 11 (ACT11) emerged as the most suitable reference genes. Across different tissues, ACT11 and elongation factor 1-alpha (EF1alpha) exhibited a stable expression pattern. ACT11 and AP47 also stably expressed in roots subjected to various treatments, but in the leaves of the same plants the most stably expressed genes were ubiquitin-conjugating enzyme 16 (UBC16) and ACT11. PMID:20452325

  11. Determining Semantically Related Significant Genes.

    PubMed

    Taha, Kamal

    2014-01-01

    GO relation embodies some aspects of existence dependency. If GO term xis existence-dependent on GO term y, the presence of y implies the presence of x. Therefore, the genes annotated with the function of the GO term y are usually functionally and semantically related to the genes annotated with the function of the GO term x. A large number of gene set enrichment analysis methods have been developed in recent years for analyzing gene sets enrichment. However, most of these methods overlook the structural dependencies between GO terms in GO graph by not considering the concept of existence dependency. We propose in this paper a biological search engine called RSGSearch that identifies enriched sets of genes annotated with different functions using the concept of existence dependency. We observe that GO term xcannot be existence-dependent on GO term y, if x- and y- have the same specificity (biological characteristics). After encoding into a numeric format the contributions of GO terms annotating target genes to the semantics of their lowest common ancestors (LCAs), RSGSearch uses microarray experiment to identify the most significant LCA that annotates the result genes. We evaluated RSGSearch experimentally and compared it with five gene set enrichment systems. Results showed marked improvement. PMID:26357049

  12. Candidate gene prioritization with Endeavour.

    PubMed

    Tranchevent, Léon-Charles; Ardeshirdavani, Amin; ElShal, Sarah; Alcaide, Daniel; Aerts, Jan; Auboeuf, Didier; Moreau, Yves

    2016-07-01

    Genomic studies and high-throughput experiments often produce large lists of candidate genes among which only a small fraction are truly relevant to the disease, phenotype or biological process of interest. Gene prioritization tackles this problem by ranking candidate genes by profiling candidates across multiple genomic data sources and integrating this heterogeneous information into a global ranking. We describe an extended version of our gene prioritization method, Endeavour, now available for six species and integrating 75 data sources. The performance (Area Under the Curve) of Endeavour on cross-validation benchmarks using 'gold standard' gene sets varies from 88% (for human phenotypes) to 95% (for worm gene function). In addition, we have also validated our approach using a time-stamped benchmark derived from the Human Phenotype Ontology, which provides a setting close to prospective validation. With this benchmark, using 3854 novel gene-phenotype associations, we observe a performance of 82%. Altogether, our results indicate that this extended version of Endeavour efficiently prioritizes candidate genes. The Endeavour web server is freely available at https://endeavour.esat.kuleuven.be/. PMID:27131783

  13. Using Genes to Guide Prescriptions

    MedlinePlus

    ... Science > Using Genes to Guide Prescriptions Inside Life Science View All Articles | Inside Life Science Home Page Using Genes to Guide Prescriptions By ... to Zoloft: Ways Medicines Work This Inside Life Science article also appears on LiveScience . Learn about related ...

  14. Gene therapy on the move

    PubMed Central

    Kaufmann, Kerstin B; Büning, Hildegard; Galy, Anne; Schambach, Axel; Grez, Manuel

    2013-01-01

    The first gene therapy clinical trials were initiated more than two decades ago. In the early days, gene therapy shared the fate of many experimental medicine approaches and was impeded by the occurrence of severe side effects in a few treated patients. The understanding of the molecular and cellular mechanisms leading to treatment- and/or vector-associated setbacks has resulted in the development of highly sophisticated gene transfer tools with improved safety and therapeutic efficacy. Employing these advanced tools, a series of Phase I/II trials were started in the past few years with excellent clinical results and no side effects reported so far. Moreover, highly efficient gene targeting strategies and site-directed gene editing technologies have been developed and applied clinically. With more than 1900 clinical trials to date, gene therapy has moved from a vision to clinical reality. This review focuses on the application of gene therapy for the correction of inherited diseases, the limitations and drawbacks encountered in some of the early clinical trials and the revival of gene therapy as a powerful treatment option for the correction of monogenic disorders. PMID:24106209

  15. Multifunctional nanorods for gene delivery

    NASA Astrophysics Data System (ADS)

    Salem, Aliasger K.; Searson, Peter C.; Leong, Kam W.

    2003-10-01

    The goal of gene therapy is to introduce foreign genes into somatic cells to supplement defective genes or provide additional biological functions, and can be achieved using either viral or synthetic non-viral delivery systems. Compared with viral vectors, synthetic gene-delivery systems, such as liposomes and polymers, offer several advantages including ease of production and reduced risk of cytotoxicity and immunogenicity, but their use has been limited by the relatively low transfection efficiency. This problem mainly stems from the difficulty in controlling their properties at the nanoscale. Synthetic inorganic gene carriers have received limited attention in the gene-therapy community, the only notable example being gold nanoparticles with surface-immobilized DNA applied to intradermal genetic immunization by particle bombardment. Here we present a non-viral gene-delivery system based on multisegment bimetallic nanorods that can simultaneously bind compacted DNA plasmids and targeting ligands in a spatially defined manner. This approach allows precise control of composition, size and multifunctionality of the gene-delivery system. Transfection experiments performed in vitro and in vivo provide promising results that suggest potential in genetic vaccination applications.

  16. Gene Expression in Oligodendroglial Tumors

    PubMed Central

    Shaw, Elisabeth J.; Haylock, Brian; Husband, David; du Plessis, Daniel; Sibson, D. Ross; Warnke, Peter C.; Walker, Carol

    2010-01-01

    Background: Oligodendroglial tumors with 1p/19q loss are more likely to be chemosensitive and have longer survival than those with intact 1p/19q, but not all respond to chemotherapy, warranting investigation of the biological basis of chemosensitivity. Methods: Gene expression profiling was performed using amplified antisense RNA from 28 oligodendroglial tumors treated with chemotherapy (26 serial stereotactic biopsy, 2 resection). Expression of differentially expressed genes was validated by real-time PCR. Results: Unsupervised hierarchical clustering showed clustering of multiple samples from the same case in 14/17 cases and identified subgroups associated with tumor grade and 1p/19q status. 176 genes were differentially expressed, 164 being associated with 1p/19q loss (86% not on 1p or 19q). 94 genes differed between responders and non-responders to chemotherapy; 12 were not associated with 1p/19q loss. Significant differential expression was confirmed in 11/13 selected genes. Novel genes associated with response to therapy included SSBP2, GFRA1, FAP and RASD1. IQGAP1, INA, TGIF1, NR2F2 and MYCBP were differentially expressed in oligodendroglial tumors with 1p/19q loss. Conclusion: Gene expression profiling using serial stereotactic biopsies indicated greater homogeneity within tumors than between tumors. Genes associated with 1p/19q status or response were identified warranting further elucidation of their role in oligodendroglial tumors. PMID:20966545

  17. From genes to genome biology

    SciTech Connect

    Pennisi, E.

    1996-06-21

    This article describes a change in the approach to mapping genomes, from looking at one gene at a time, to other approaches. Strategies include everything from lab techniques to computer programs designed to analyze whole batches of genes at once. Also included is a update on the work on the human genome.

  18. Method of controlling gene expression

    DOEpatents

    Peters, Norman K.; Frost, John W.; Long, Sharon R.

    1991-12-03

    A method of controlling expression of a DNA segment under the control of a nod gene promoter which comprises administering to a host containing a nod gene promoter an amount sufficient to control expression of the DNA segment of a compound of the formula: ##STR1## in which each R is independently H or OH, is described.

  19. Susceptibility Genes in Thyroid Autoimmunity

    PubMed Central

    Ban, Yoshiyuki; Tomer, Yaron

    2005-01-01

    The autoimmune thyroid diseases (AITD) are complex diseases which are caused by an interaction between susceptibility genes and environmental triggers. Genetic susceptibility in combination with external factors (e.g. dietary iodine) is believed to initiate the autoimmune response to thyroid antigens. Abundant epidemiological data, including family and twin studies, point to a strong genetic influence on the development of AITD. Various techniques have been employed to identify the genes contributing to the etiology of AITD, including candidate gene analysis and whole genome screening. These studies have enabled the identification of several loci (genetic regions) that are linked with AITD, and in some of these loci, putative AITD susceptibility genes have been identified. Some of these genes/loci are unique to Graves' disease (GD) and Hashimoto's thyroiditis (HT) and some are common to both the diseases, indicating that there is a shared genetic susceptibility to GD and HT. The putative GD and HT susceptibility genes include both immune modifying genes (e.g. HLA, CTLA-4) and thyroid specific genes (e.g. TSHR, Tg). Most likely, these loci interact and their interactions may influence disease phenotype and severity. PMID:15712599

  20. Uncovering trends in gene naming

    PubMed Central

    Seringhaus, Michael R; Cayting, Philip D; Gerstein, Mark B

    2008-01-01

    We take stock of current genetic nomenclature and attempt to organize strange and notable gene names. We categorize, for instance, those that involve a naming system transferred from another context (for example, Pavlov’s dogs). We hope this analysis provides clues to better steer gene naming in the future. PMID:18254929

  1. Nonviral Vectors for Gene Delivery

    NASA Astrophysics Data System (ADS)

    Baoum, Abdulgader Ahmed

    2011-12-01

    The development of nonviral vectors for safe and efficient gene delivery has been gaining considerable attention recently. An ideal nonviral vector must protect the gene against degradation by nuclease in the extracellular matrix, internalize the plasma membrane, escape from the endosomal compartment, unpackage the gene at some point and have no detrimental effects. In comparison to viruses, nonviral vectors are relatively easy to synthesize, less immunogenic, low in cost, and have no limitation in the size of a gene that can be delivered. Significant progress has been made in the basic science and applications of various nonviral gene delivery vectors; however, the majority of nonviral approaches are still inefficient and often toxic. To this end, two nonviral gene delivery systems using either biodegradable poly(D,L-lactide- co-glycolide) (PLG) nanoparticles or cell penetrating peptide (CPP) complexes have been designed and studied using A549 human lung epithelial cells. PLG nanoparticles were optimized for gene delivery by varying particle surface chemistry using different coating materials that adsorb to the particle surface during formation. A variety of cationic coating materials were studied and compared to more conventional surfactants used for PLG nanoparticle fabrication. Nanoparticles (˜200 nm) efficiently encapsulated plasmids encoding for luciferase (80-90%) and slowly released the same for two weeks. After a delay, moderate levels of gene expression appeared at day 5 for certain positively charged PLG particles and gene expression was maintained for at least two weeks. In contrast, gene expression mediated by polyethyleneimine (PEI) ended at day 5. PLG particles were also significantly less cytotoxic than PEI suggesting the use of these vehicles for localized, sustained gene delivery to the pulmonary epithelium. On the other hand, a more simple method to synthesize 50-200 nm complexes capable of high transfection efficiency or high gene knockdown was

  2. Gene Therapy for Retinal Diseases

    PubMed Central

    Samiy, Nasrollah

    2014-01-01

    Gene therapy has a growing research potential particularly in the field of ophthalmic and retinal diseases owing to three main characteristics of the eye; accessibility in terms of injections and surgical interventions, its immune-privileged status facilitating the accommodation to the antigenicity of a viral vector, and tight blood-ocular barriers which save other organs from unwanted contamination. Gene therapy has tremendous potential for different ocular diseases. In fact, the perspective of gene therapy in the field of eye research does not confine to exclusive monogenic ophthalmic problems and it has the potential to include gene based pharmacotherapies for non-monogenic problems such as age related macular disease and diabetic retinopathy. The present article has focused on how gene transfer into the eye has been developed and used to treat retinal disorders with no available therapy at present. PMID:25709778

  3. Fast parsers for Entrez Gene.

    PubMed

    Liu, Mingyi; Grigoriev, Andrei

    2005-07-15

    NCBI completed the transition of its main genome annotation database from Locuslink to Entrez Gene in Spring 2005. However, to this date few parsers exist for the Entrez Gene annotation file. Owing to the widespread use of Locuslink and the popularity of Perl programming language in bioinformatics, a publicly available high performance Entrez Gene parser in Perl is urgently needed. We present four such parsers that were developed using several parsing approaches (Parse::RecDescent, Parse::Yapp, Perl-byacc and Perl 5 regular expressions) and provide the first in-depth comparison of these sophisticated Perl tools. Our fastest parser processes the entire human Entrez Gene annotation file in under 12 min on one Intel Xeon 2.4 GHz CPU and can be of help to the bioinformatics community during and after the transition from Locuslink to Entrez Gene. PMID:15879451

  4. The Gene Network Underlying Hypodontia.

    PubMed

    Yin, W; Bian, Z

    2015-07-01

    Mammalian tooth development is a precise and complicated procedure. Several signaling pathways, such as nuclear factor (NF)-κB and WNT, are key regulators of tooth development. Any disturbance of these signaling pathways can potentially affect or block normal tooth development, and presently, there are more than 150 syndromes and 80 genes known to be related to tooth agenesis. Clarifying the interaction and crosstalk among these genes will provide important information regarding the mechanisms underlying missing teeth. In the current review, we summarize recently published findings on genes related to isolated and syndromic tooth agenesis; most of these genes function as positive regulators of cell proliferation or negative regulators of cell differentiation and apoptosis. Furthermore, we explore the corresponding networks involving these genes in addition to their implications for the clinical management of tooth agenesis. We conclude that this requires further study to improve patients' quality of life in the future. PMID:25910507

  5. Genes and gene networks implicated in aggression related behaviour.

    PubMed

    Malki, Karim; Pain, Oliver; Du Rietz, Ebba; Tosto, Maria Grazia; Paya-Cano, Jose; Sandnabba, Kenneth N; de Boer, Sietse; Schalkwyk, Leonard C; Sluyter, Frans

    2014-10-01

    Aggressive behaviour is a major cause of mortality and morbidity. Despite of moderate heritability estimates, progress in identifying the genetic factors underlying aggressive behaviour has been limited. There are currently three genetic mouse models of high and low aggression created using selective breeding. This is the first study to offer a global transcriptomic characterization of the prefrontal cortex across all three genetic mouse models of aggression. A systems biology approach has been applied to transcriptomic data across the three pairs of selected inbred mouse strains (Turku Aggressive (TA) and Turku Non-Aggressive (TNA), Short Attack Latency (SAL) and Long Attack Latency (LAL) mice and North Carolina Aggressive (NC900) and North Carolina Non-Aggressive (NC100)), providing novel insight into the neurobiological mechanisms and genetics underlying aggression. First, weighted gene co-expression network analysis (WGCNA) was performed to identify modules of highly correlated genes associated with aggression. Probe sets belonging to gene modules uncovered by WGCNA were carried forward for network analysis using ingenuity pathway analysis (IPA). The RankProd non-parametric algorithm was then used to statistically evaluate expression differences across the genes belonging to modules significantly associated with aggression. IPA uncovered two pathways, involving NF-kB and MAPKs. The secondary RankProd analysis yielded 14 differentially expressed genes, some of which have previously been implicated in pathways associated with aggressive behaviour, such as Adrbk2. The results highlighted plausible candidate genes and gene networks implicated in aggression-related behaviour. PMID:25142712

  6. Immunoglobulin λ Gene Rearrangement Can Precede κ Gene Rearrangement

    DOE PAGESBeta

    Berg, Jörg; Mcdowell, Mindy; Jäck, Hans-Martin; Wabl, Matthias

    1990-01-01

    Imore » mmunoglobulin genes are generated during differentiation of B lymphocytes by joining gene segments. A mouse pre-B cell contains a functional immunoglobulin heavy-chain gene, but no light-chain gene. Although there is only one heavy-chain locus, there are two lightchain loci: κ and λ .It has been reported that κ loci in the germ-line configuration are never (in man) or very rarely (in the mouse) present in cells with functionally rearranged λ -chain genes. Two explanations have been proposed to explain this: (a) the ordered rearrangement theory, which postulates that light-chain gene rearrangement in the pre-B cell is first attempted at the κ locus, and that only upon failure to produce a functional κ chain is there an attempt to rearrange the λ locus; and (b) the stochastic theory, which postulates that rearrangement at the λ locus proceeds at a rate that is intrinsically much slower than that at the κ locus. We show here that λ -chain genes are generated whether or not the κ locus has lost its germ-line arrangement, a result that is compatible only with the stochastic theory.« less

  7. Gene therapy progress and prospects: gene therapy for diabetes mellitus.

    PubMed

    Yechoor, V; Chan, L

    2005-01-01

    Diabetes mellitus has long been targeted, as yet unsuccessfully, as being curable with gene therapy. The main hurdles have not only been vector-related toxicity but also the lack of physiological regulation of the expressed insulin. Recent advances in understanding the developmental biology of beta-cells and the transcriptional cascade that drives it have enabled both in vivo and ex vivo gene therapy combined with cell therapy to be used in animal models of diabetes with success. The associated developments in the stem cell biology and immunology have opened up further opportunities for gene therapy to be applied to target autoimmune diabetes. PMID:15496957

  8. Genes, Economics, and Happiness.

    PubMed

    De Neve, Jan-Emmanuel; Christakis, Nicholas A; Fowler, James H; Frey, Bruno S

    2012-11-01

    We explore the influence of genetic variation on subjective well-being by employing a twin design and genetic association study. In a nationally-representative twin sample, we first show that about 33% of the variation in life satisfaction is explained by genetic variation. Although previous studies have shown that baseline happiness is significantly heritable, little research has considered molecular genetic associations with subjective well-being. We study the relationship between a functional polymorphism on the serotonin transporter gene (5-HTTLPR) and life satisfaction. We initially find that individuals with the longer, transcriptionally more efficient variant of this genotype report greater life satisfaction (n=2,545, p=0.012). However, our replication attempts on independent samples produce mixed results indicating that more work needs to be done to better understand the relationship between this genotype and subjective well-being. This work has implications for how economists think about the determinants of utility, and the extent to which exogenous shocks might affect individual well-being. PMID:24349601

  9. Environment, genes, and cancer

    SciTech Connect

    Manuel, J.

    1996-03-01

    In January, comedian George Burns turned 100 years old. In recent appearances in the media, he still seems sharp as a tack, and is still seen smoking his trademark cigars. Others of us, however, were never very funny, and would die of cancer at age 60 if we continuously smoked cigars or cigarettes. Burns presents a common but perplexing paradox; some people are able to tolerate at least moderate exposure to toxins such as cigarette smoke with little adverse affect, while others develop cancer, emphysema, or heart disease. New studies support the idea that there is an interaction between genes and the environment, and that this interaction may be an important determinant of cancer risk. To understand such risks, it is essential to look at both an individual`s genetic makeup and environmental exposures. Such studies require the collaboration of molecular epidemiologists and molecular biologists. At the NIEHS, Jack A. Taylor, a lead clinical investigator in the Epidemiology Branch, and Douglas A. Bell, an investigator with the Genetic Risk Group of the Laboratory of Biochemical Risk Analysis, have worked together and with other scientists to uncover new information in this area.

  10. Genes and equality.

    PubMed

    Farrelly, C

    2004-12-01

    The way people think about equality as a value will influence how they think genetic interventions should be regulated. In this paper the author uses the taxonomy of equality put forth by Derek Parfit and applies this to the issue of genetic interventions. It is argued that telic egalitarianism is untenable and that deontic egalitarianism collapses into prioritarianism. The priority view maintains that it is morally more important to benefit the people who are worse off. Once this precision has been given to the concerns egalitarians have, a number of diverse issues must be considered before determining what the just regulation of genetic interventions would be. Consideration must be given to the current situation of the least advantaged, the fiscal realities behind genetic interventions, the budget constraints on other social programmes egalitarians believe should receive scarce public funds, and the interconnected nature of genetic information. These considerations might lead egalitarians to abandon what they take to be the obvious policy recommendations for them to endorse regarding the regulation of gene therapies and enhancements. PMID:15574450

  11. Genes, Economics, and Happiness *

    PubMed Central

    De Neve, Jan-Emmanuel; Christakis, Nicholas A.; Fowler, James H.; Frey, Bruno S.

    2012-01-01

    We explore the influence of genetic variation on subjective well-being by employing a twin design and genetic association study. In a nationally-representative twin sample, we first show that about 33% of the variation in life satisfaction is explained by genetic variation. Although previous studies have shown that baseline happiness is significantly heritable, little research has considered molecular genetic associations with subjective well-being. We study the relationship between a functional polymorphism on the serotonin transporter gene (5-HTTLPR) and life satisfaction. We initially find that individuals with the longer, transcriptionally more efficient variant of this genotype report greater life satisfaction (n=2,545, p=0.012). However, our replication attempts on independent samples produce mixed results indicating that more work needs to be done to better understand the relationship between this genotype and subjective well-being. This work has implications for how economists think about the determinants of utility, and the extent to which exogenous shocks might affect individual well-being. PMID:24349601

  12. GenePRIMP: A GENE PRediction IMprovement Pipeline for Prokaryotic genomes

    SciTech Connect

    Pati, Amrita; Ivanova, Natalia N.; Mikhailova, Natalia; Ovchinnikova, Galina; Hooper, Sean D.; Lykidis, Athanasios; Kyrpides, Nikos C.

    2010-04-01

    We present 'gene prediction improvement pipeline' (GenePRIMP; http://geneprimp.jgi-psf.org/), a computational process that performs evidence-based evaluation of gene models in prokaryotic genomes and reports anomalies including inconsistent start sites, missed genes and split genes. We found that manual curation of gene models using the anomaly reports generated by GenePRIMP improved their quality, and demonstrate the applicability of GenePRIMP in improving finishing quality and comparing different genome-sequencing and annotation technologies.

  13. Simulating evolution by gene duplication.

    PubMed

    Ohta, T

    1987-01-01

    By considering the recent finding that unequal crossing over and other molecular interactions are contributing to the evolution of multigene families, a model of the origin of repetitive genes was studied by Monte Carlo simulations. Starting from a single gene copy, how genetic systems evolve was examined under unequal crossing over, random drift and natural selection. Both beneficial and deteriorating mutations were incorporated, and the latter were assumed to occur ten times more frequently than the former. Positive natural selection favors those chromosomes with more beneficial mutations in redundant copies than others in the population, but accumulation of deteriorating mutations (pseudogenes) have no effect on fitness so long as there remains a functional gene. The results imply the following: Positive natural selection is needed in order to acquire gene families with new functions. Without it, too many pseudogenes accumulate before attaining a functional gene family. There is a large fluctuation in the outcome even if parameters are the same. When unequal crossing over occurs more frequently, the system evolves more rapidly. It was also shown, under realistic values of parameters, that the genetic load for acquiring a new gene is not as large as J.B.S. Haldane suggested, but not so small as in a model in which a system for selection started from already redundant genes. PMID:3557113

  14. GENES IN SPORT AND DOPING

    PubMed Central

    Kaliszewski, P.; Majorczyk, E.; Zembroń-Łacny, A.

    2013-01-01

    Genes control biological processes such as muscle production of energy, mitochondria biogenesis, bone formation, erythropoiesis, angiogenesis, vasodilation, neurogenesis, etc. DNA profiling for athletes reveals genetic variations that may be associated with endurance ability, muscle performance and power exercise, tendon susceptibility to injuries and psychological aptitude. Already, over 200 genes relating to physical performance have been identified by several research groups. Athletes’ genotyping is developing as a tool for the formulation of personalized training and nutritional programmes to optimize sport training as well as for the prediction of exercise-related injuries. On the other hand, development of molecular technology and gene therapy creates a risk of non-therapeutic use of cells, genes and genetic elements to improve athletic performance. Therefore, the World Anti-Doping Agency decided to include prohibition of gene doping within their World Anti-Doping Code in 2003. In this review article, we will provide a current overview of genes for use in athletes’ genotyping and gene doping possibilities, including their development and detection techniques. PMID:24744482

  15. Gene Electrotransfer: A Mechanistic Perspective.

    PubMed

    Rosazza, Christelle; Meglic, Sasa Haberl; Zumbusch, Andreas; Rols, Marie-Pierre; Miklavcic, Damijan

    2016-01-01

    Gene electrotransfer is a powerful method of DNA delivery offering several medical applications, among the most promising of which are DNA vaccination and gene therapy for cancer treatment. Electroporation entails the application of electric fields to cells which then experience a local and transient change of membrane permeability. Although gene electrotransfer has been extensively studied in in vitro and in vivo environments, the mechanisms by which DNA enters and navigates through cells are not fully understood. Here we present a comprehensive review of the body of knowledge concerning gene electrotransfer that has been accumulated over the last three decades. For that purpose, after briefly reviewing the medical applications that gene electrotransfer can provide, we outline membrane electropermeabilization, a key process for the delivery of DNA and smaller molecules. Since gene electrotransfer is a multipart process, we proceed our review in describing step by step our current understanding, with particular emphasis on DNA internalization and intracellular trafficking. Finally, we turn our attention to in vivo testing and methodology for gene electrotransfer. PMID:27029943

  16. Linking Genes to Cardiovascular Diseases: Gene Action and Gene-Environment Interactions.

    PubMed

    Pasipoularides, Ares

    2015-12-01

    A unique myocardial characteristic is its ability to grow/remodel in order to adapt; this is determined partly by genes and partly by the environment and the milieu intérieur. In the "post-genomic" era, a need is emerging to elucidate the physiologic functions of myocardial genes, as well as potential adaptive and maladaptive modulations induced by environmental/epigenetic factors. Genome sequencing and analysis advances have become exponential lately, with escalation of our knowledge concerning sometimes controversial genetic underpinnings of cardiovascular diseases. Current technologies can identify candidate genes variously involved in diverse normal/abnormal morphomechanical phenotypes, and offer insights into multiple genetic factors implicated in complex cardiovascular syndromes. The expression profiles of thousands of genes are regularly ascertained under diverse conditions. Global analyses of gene expression levels are useful for cataloging genes and correlated phenotypes, and for elucidating the role of genes in maladies. Comparative expression of gene networks coupled to complex disorders can contribute insights as to how "modifier genes" influence the expressed phenotypes. Increasingly, a more comprehensive and detailed systematic understanding of genetic abnormalities underlying, for example, various genetic cardiomyopathies is emerging. Implementing genomic findings in cardiology practice may well lead directly to better diagnosing and therapeutics. There is currently evolving a strong appreciation for the value of studying gene anomalies, and doing so in a non-disjointed, cohesive manner. However, it is challenging for many-practitioners and investigators-to comprehend, interpret, and utilize the clinically increasingly accessible and affordable cardiovascular genomics studies. This survey addresses the need for fundamental understanding in this vital area. PMID:26545598

  17. Gene Insertion Into Genomic Safe Harbors for Human Gene Therapy.

    PubMed

    Papapetrou, Eirini P; Schambach, Axel

    2016-04-01

    Genomic safe harbors (GSHs) are sites in the genome able to accommodate the integration of new genetic material in a manner that ensures that the newly inserted genetic elements: (i) function predictably and (ii) do not cause alterations of the host genome posing a risk to the host cell or organism. GSHs are thus ideal sites for transgene insertion whose use can empower functional genetics studies in basic research and therapeutic applications in human gene therapy. Currently, no fully validated GSHs exist in the human genome. Here, we review our formerly proposed GSH criteria and discuss additional considerations on extending these criteria, on strategies for the identification and validation of GSHs, as well as future prospects on GSH targeting for therapeutic applications. In view of recent advances in genome biology, gene targeting technologies, and regenerative medicine, gene insertion into GSHs can potentially catalyze nearly all applications in human gene therapy. PMID:26867951

  18. COMPARISON OF THE METHYL REDUCTASE GENES AND GENE PRODUCTS

    EPA Science Inventory

    The DNA sequences encoding component C of methyl coenzyme M reductase (mcr genes) in Methanothermus fervidus, Methanobacterium thermoautotrophicum, Methanococcus vannielii, and Methanosarcina barkeri have been published. omparisons of transcription initiation and termination site...

  19. BRCA1 and BRCA2 gene testing

    MedlinePlus

    ... gov/ency/patientinstructions/000690.htm BRCA1 and BRCA2 gene testing To use the sharing features on this ... br east ca ncer. What is the BRCA Gene Mutation? BRCA1 and BRCA2 are genes that suppress ...

  20. Genomics screens for metastasis genes

    PubMed Central

    Yan, Jinchun; Huang, Qihong

    2014-01-01

    Metastasis is responsible for most cancer mortality. The process of metastasis is complex, requiring the coordinated expression and fine regulation of many genes in multiple pathways in both the tumor and host tissues. Identification and characterization of the genetic programs that regulate metastasis is critical to understanding the metastatic process and discovering molecular targets for the prevention and treatment of metastasis. Genomic approaches and functional genomic analyses can systemically discover metastasis genes. In this review, we summarize the genetic tools and methods that have been used to identify and characterize the genes that play critical roles in metastasis. PMID:22684367

  1. The design of synthetic genes.

    PubMed Central

    Presnell, S R; Benner, S A

    1988-01-01

    Computer programs are described that aid in the design of synthetic genes coding for proteins that are targets of a research program in site directed mutagenesis. These programs "reverse-translate" protein sequences into general nucleic acid sequences (those where codons have not yet been selected), map restriction sites into general DNA sequences, identify points in the synthetic gene where unique restriction sites can be introduced, and assist in the design of genes coding for hybrids and evolutionary intermediates between homologous proteins. Application of these programs therefore facilitates the use of modular mutagenesis to create variants of proteins, and the implementation of evolutionary guidance as a strategy for selecting mutants. PMID:2451218

  2. Gene networks controlling petal organogenesis.

    PubMed

    Huang, Tengbo; Irish, Vivian F

    2016-01-01

    One of the biggest unanswered questions in developmental biology is how growth is controlled. Petals are an excellent organ system for investigating growth control in plants: petals are dispensable, have a simple structure, and are largely refractory to environmental perturbations that can alter their size and shape. In recent studies, a number of genes controlling petal growth have been identified. The overall picture of how such genes function in petal organogenesis is beginning to be elucidated. This review will focus on studies using petals as a model system to explore the underlying gene networks that control organ initiation, growth, and final organ morphology. PMID:26428062

  3. The Ensembl gene annotation system.

    PubMed

    Aken, Bronwen L; Ayling, Sarah; Barrell, Daniel; Clarke, Laura; Curwen, Valery; Fairley, Susan; Fernandez Banet, Julio; Billis, Konstantinos; García Girón, Carlos; Hourlier, Thibaut; Howe, Kevin; Kähäri, Andreas; Kokocinski, Felix; Martin, Fergal J; Murphy, Daniel N; Nag, Rishi; Ruffier, Magali; Schuster, Michael; Tang, Y Amy; Vogel, Jan-Hinnerk; White, Simon; Zadissa, Amonida; Flicek, Paul; Searle, Stephen M J

    2016-01-01

    The Ensembl gene annotation system has been used to annotate over 70 different vertebrate species across a wide range of genome projects. Furthermore, it generates the automatic alignment-based annotation for the human and mouse GENCODE gene sets. The system is based on the alignment of biological sequences, including cDNAs, proteins and RNA-seq reads, to the target genome in order to construct candidate transcript models. Careful assessment and filtering of these candidate transcripts ultimately leads to the final gene set, which is made available on the Ensembl website. Here, we describe the annotation process in detail.Database URL: http://www.ensembl.org/index.html. PMID:27337980

  4. The Ensembl gene annotation system

    PubMed Central

    Aken, Bronwen L.; Ayling, Sarah; Barrell, Daniel; Clarke, Laura; Curwen, Valery; Fairley, Susan; Fernandez Banet, Julio; Billis, Konstantinos; García Girón, Carlos; Hourlier, Thibaut; Howe, Kevin; Kähäri, Andreas; Kokocinski, Felix; Martin, Fergal J.; Murphy, Daniel N.; Nag, Rishi; Ruffier, Magali; Schuster, Michael; Tang, Y. Amy; Vogel, Jan-Hinnerk; White, Simon; Zadissa, Amonida; Flicek, Paul

    2016-01-01

    The Ensembl gene annotation system has been used to annotate over 70 different vertebrate species across a wide range of genome projects. Furthermore, it generates the automatic alignment-based annotation for the human and mouse GENCODE gene sets. The system is based on the alignment of biological sequences, including cDNAs, proteins and RNA-seq reads, to the target genome in order to construct candidate transcript models. Careful assessment and filtering of these candidate transcripts ultimately leads to the final gene set, which is made available on the Ensembl website. Here, we describe the annotation process in detail. Database URL: http://www.ensembl.org/index.html PMID:27337980

  5. Saporin as a novel suicide gene in anticancer gene therapy.

    PubMed

    Zarovni, N; Vago, R; Soldà, T; Monaco, L; Fabbrini, M S

    2007-02-01

    We used a non-viral gene delivery approach to explore the potential of the plant saporin (SAP) gene as an alternative to the currently employed suicide genes in cancer therapy. Plasmids expressing cytosolic SAP were generated by placing the region encoding the mature plant ribosome-inactivating protein under the control of cytomegalovirus (CMV) or simian virus 40 (SV40) promoters. Their ability to inhibit protein synthesis was first tested in cultured tumor cells co-transfected with a luciferase reporter gene. In particular, SAP expression driven by CMV promoter (pCI-SAP) demonstrated that only 10 ng of plasmid per 1.6 x 10(4) B16 cells drastically reduced luciferase activity to 18% of that in control cells. Direct intratumoral injection of pCI-SAP complexed with either lipofectamine or N-(2,3-dioleoyloxy-1-propyl) trimethylammonium methyl sulfate (DOTAP) in B16 melanoma-bearing mice resulted in a noteworthy attenuation of tumor growth. This antitumor effect was increased in mice that received repeated intratumoral injections. A SAP catalytic inactive mutant (SAP-KQ) failed to exert any antitumor effect demonstrating that this was specifically owing to the SAP N-glycosidase activity. Our overall data strongly suggest that the gene encoding SAP, owing to its rapid and effective action and its independence from the proliferative state of target cells might become a suitable candidate suicide gene for oncologic applications. PMID:17008932

  6. Gene Cernan on Apollo 17

    NASA Video Gallery

    Apollo 17 Commander Gene Cernan recalls fixing a lunar rover problem with duct tape during his December 1972 mission. Cernan's interview was part of the commemoration of NASA's 50th anniversary in ...

  7. How eukaryotic genes are transcribed

    PubMed Central

    Venters, Bryan J.; Pugh, B. Franklin

    2009-01-01

    Summary Regulation of eukaryotic gene expression is far more complex than one might have imagined thirty years ago. However, progress towards understanding gene regulatory mechanisms has been rapid and comprehensive, which has made the integration of detailed observations into broadly connected concepts a challenge. This review attempts to integrate the following concepts: 1) a well-defined organization of nucleosomes and modification states at most genes, 2) regulatory networks of sequence-specific transcription factors, 3) chromatin remodeling coupled to promoter assembly of the general transcription factors and RNA polymerase II, and 4) phosphorylation states of RNA polymerase II coupled to chromatin modification states during transcription. The wealth of new insights arising from the tools of biochemistry, genomics, cell biology, and genetics is providing a remarkable view into the mechanics of gene regulation. PMID:19514890

  8. [Genes Responsible for Epileptic Syndromes].

    PubMed

    Kato, Mitsuhiro

    2016-02-01

    The first causative gene for epileptic syndrome was revealed 20 years ago. Since then, many genes responsible for epileptic syndrome, particularly sporadic epileptic encephalopathies, such as Ohtahara syndrome, West syndrome, and focal cortical dysplasia, have been identified. Although epilepsy was recognized as a channelopathy in the beginning stages of gene discovery, other molecular mechanisms for epileptic syndromes, such as interneuronopathy, synaptic vesicle release, and mTOR signal transduction, are emerging. A new technique for gene analysis using the next-generation sequencer is now available for clinical purpose abroad and precision medicine based on the molecular mechanisms has started. Infrastructural development of the official framework, from molecular diagnosis to personalized therapy, is urgently required in Japan. PMID:26873236

  9. Why genes are like lemons.

    PubMed

    Boem, F; Ratti, E; Andreoletti, M; Boniolo, G

    2016-06-01

    In the last few years, the lack of a unitary notion of gene across biological sciences has troubled the philosophy of biology community. However, the debate on this concept has remained largely historical or focused on particular cases presented by the scientific empirical advancements. Moreover, in the literature there are no explicit and reasonable arguments about why a philosophical clarification of the concept of gene is needed. In our paper, we claim that a philosophical clarification of the concept of gene does not contribute to biology. Unlike the question, for example, "What is a biological function?", we argue that the question "What is a gene?" could be answered by means of empirical research, in the sense that biologists' labour is enough to shed light on it. PMID:27155220

  10. Gene Therapy for Cardiovascular Disease

    PubMed Central

    2003-01-01

    The last decade has seen substantial advances in the development of gene therapy strategies and vector technology for the treatment of a diverse number of diseases, with a view to translating the successes observed in animal models into the clinic. Perhaps the overwhelming drive for the increase in vascular gene transfer studies is the current lack of successful long-term pharmacological treatments for complex cardiovascular diseases. The increase in cardiovascular disease to epidemic proportions has also led many to conclude that drug therapy may have reached a plateau in its efficacy and that gene therapy may represent a realistic solution to a long-term problem. Here, we discuss gene delivery approaches and target diseases. PMID:12721517

  11. Transgenic Arabidopsis Gene Expression System

    NASA Technical Reports Server (NTRS)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  12. [Genes for extreme violent behaviour?].

    PubMed

    Jordan, Bertrand

    2015-01-01

    A new genetic study focussing on the degree of violence in criminals and using both candidate gene and GWAS approaches finds statistically significant associations of extreme violent behaviour with low activity alleles of monoamine oxydase A (MAOA) and with the CD13 gene. However, the alleles implicated are common in the general population, thus they cannot be causal, and only represent potential indicators of increased risk. PMID:25658738

  13. Gene Transfer into Cardiac Myocytes

    PubMed Central

    Lang, Sarah E.; Westfall, Margaret V.

    2016-01-01

    Traditional methods for DNA transfection are often inefficient and toxic for terminally differentiated cells, such as cardiac myocytes. Vector-based gene transfer is an efficient approach for introducing exogenous cDNA into these types of primary cell cultures. In this chapter, separate protocols for adult rat cardiac myocyte isolation and gene transfer with recombinant adenovirus are provided and are routinely utilized for studying the effects of sarcomeric proteins on myofilament function. PMID:25836585

  14. Gene therapy for paediatric leukaemia.

    PubMed

    Rousseau, R F; Bollard, C M; Heslop, H E

    2001-07-01

    Improvements in the chemotherapeutic and transplant regimens have had a significant impact in improving survival rates for paediatric leukaemia. However, there are still important problems to address including what options are available for patients with chemoresistant disease and what strategies are available to avoid the concerns regarding the toxicity associated with highly cytotoxic treatment regimens. Gene therapy and immunotherapy protocols hold great promise. Using gene transfer of a marker gene, a number of biological issues in the therapy of leukaemia have been addressed. For example, by gene marking autologous bone marrow grafts it has been possible to demonstrate that infused marrow contributes to relapse in acute and chronic myeloid leukaemias. In the allogeneic transplant setting, genetically modified T-cells have proven valuable for the prophylaxis and treatment of viral diseases and may have an important role in preventing or treating disease relapse. Gene transfer is also being used to modify tumour function, enhance immunogenicity, and confer drug-resistance to normal haematopoietic stem cells. With the continued scientific advancements in this field, gene therapy will almost certainly have a major impact on the treatment of paediatric leukaemia in the future. PMID:11727502

  15. Homologous gene replacement in Physarum

    SciTech Connect

    Burland, T.G.; Pallotta, D.

    1995-01-01

    The protist Physarum polycephalum is useful for analysis of several aspects of cellular and developmental biology. To expand the opportunities for experimental analysis of this organism, we have developed a method for gene replacement. We transformed Physarum amoebae with plasmid DNA carrying a mutant allele, ardD{Delta}1, of the ardD actin gene; ardD{Delta}1 mutates the critical carboxy-terminal region of the gene product. Because ardD is not expressed in the amoeba, replacement of ardD{sup +} with ardD{Delta}1 should not be lethal for this cell type. Transformants were obtained only when linear plasmid DNA was used. Most transformants carried one copy of ardD{Delta}1 in addition to ardD{sup +}, but in two (5%), ardD{sup +} was replaced by a single copy of ardD{Delta}1. This is the first example of homologous gene replacement in Physarum. ardD{Delta}1 was stably maintained in the genome through growth, development and meiosis. We found no effect of ardD{Delta}l on viability, growth, or development of any of the various cell types of Physarum. Thus, the carboxy-terminal region of the ardD product appears not to perform a unique essential role in growth or development. Nevertheless, this method for homologous gene replacement can be applied to analyze the function of any cloned gene. 38 refs., 6 figs., 1 tab.

  16. Gene-gene, gene-environment, gene-nutrient interactions and single nucleotide polymorphisms of inflammatory cytokines.

    PubMed

    Nadeem, Amina; Mumtaz, Sadaf; Naveed, Abdul Khaliq; Aslam, Muhammad; Siddiqui, Arif; Lodhi, Ghulam Mustafa; Ahmad, Tausif

    2015-05-15

    Inflammation plays a significant role in the etiology of type 2 diabetes mellitus (T2DM). The rise in the pro-inflammatory cytokines is the essential step in glucotoxicity and lipotoxicity induced mitochondrial injury, oxidative stress and beta cell apoptosis in T2DM. Among the recognized markers are interleukin (IL)-6, IL-1, IL-10, IL-18, tissue necrosis factor-alpha (TNF-α), C-reactive protein, resistin, adiponectin, tissue plasminogen activator, fibrinogen and heptoglobins. Diabetes mellitus has firm genetic and very strong environmental influence; exhibiting a polygenic mode of inheritance. Many single nucleotide polymorphisms (SNPs) in various genes including those of pro and anti-inflammatory cytokines have been reported as a risk for T2DM. Not all the SNPs have been confirmed by unifying results in different studies and wide variations have been reported in various ethnic groups. The inter-ethnic variations can be explained by the fact that gene expression may be regulated by gene-gene, gene-environment and gene-nutrient interactions. This review highlights the impact of these interactions on determining the role of single nucleotide polymorphism of IL-6, TNF-α, resistin and adiponectin in pathogenesis of T2DM. PMID:25987962

  17. Transcriptional gene silencing in humans.

    PubMed

    Weinberg, Marc S; Morris, Kevin V

    2016-08-19

    It has been over a decade since the first observation that small non-coding RNAs can functionally modulate epigenetic states in human cells to achieve functional transcriptional gene silencing (TGS). TGS is mechanistically distinct from the RNA interference (RNAi) gene-silencing pathway. TGS can result in long-term stable epigenetic modifications to gene expression that can be passed on to daughter cells during cell division, whereas RNAi does not. Early studies of TGS have been largely overlooked, overshadowed by subsequent discoveries of small RNA-directed post-TGS and RNAi. A reappraisal of early work has been brought about by recent findings in human cells where endogenous long non-coding RNAs function to regulate the epigenome. There are distinct and common overlaps between the proteins involved in small and long non-coding RNA transcriptional regulatory mechanisms, suggesting that the early studies using small non-coding RNAs to modulate transcription were making use of a previously unrecognized endogenous mechanism of RNA-directed gene regulation. Here we review how non-coding RNA plays a role in regulation of transcription and epigenetic gene silencing in human cells by revisiting these earlier studies and the mechanistic insights gained to date. We also provide a list of mammalian genes that have been shown to be transcriptionally regulated by non-coding RNAs. Lastly, we explore how TGS may serve as the basis for development of future therapeutic agents. PMID:27060137

  18. Building Developmental Gene Regulatory Networks

    PubMed Central

    Li, Enhu; Davidson, Eric H.

    2009-01-01

    Animal development is an elaborate process programmed by genomic regulatory instructions. Regulatory genes encode transcription factors and signal molecules, and their expression is under the control of cis-regulatory modules that define the logic of transcriptional responses to the inputs of other regulatory genes. The functional linkages amongst regulatory genes constitute the gene regulatory networks (GRNs) that govern cell specification and patterning in development. Constructing such networks requires identification of the regulatory genes involved and characterization of their temporal and spatial expression patterns. Interactions (activation/repression) among transcription factors or signals can be investigated by large-scale perturbation analysis, in which the function of each gene is specifically blocked. Resultant expression changes are then integrated to identify direct linkages, and to reveal the structure of the GRN. Predicted GRN linkages can be tested and verified by cis-regulatory analysis. The explanatory power of the GRN was shown in the lineage specification of sea urchin endomesoderm. Acquiring such networks is essential for a systematic and mechanistic understanding of the developmental process. PMID:19530131

  19. Gene-gene, gene-environment, gene-nutrient interactions and single nucleotide polymorphisms of inflammatory cytokines

    PubMed Central

    Nadeem, Amina; Mumtaz, Sadaf; Naveed, Abdul Khaliq; Aslam, Muhammad; Siddiqui, Arif; Lodhi, Ghulam Mustafa; Ahmad, Tausif

    2015-01-01

    Inflammation plays a significant role in the etiology of type 2 diabetes mellitus (T2DM). The rise in the pro-inflammatory cytokines is the essential step in glucotoxicity and lipotoxicity induced mitochondrial injury, oxidative stress and beta cell apoptosis in T2DM. Among the recognized markers are interleukin (IL)-6, IL-1, IL-10, IL-18, tissue necrosis factor-alpha (TNF-α), C-reactive protein, resistin, adiponectin, tissue plasminogen activator, fibrinogen and heptoglobins. Diabetes mellitus has firm genetic and very strong environmental influence; exhibiting a polygenic mode of inheritance. Many single nucleotide polymorphisms (SNPs) in various genes including those of pro and anti-inflammatory cytokines have been reported as a risk for T2DM. Not all the SNPs have been confirmed by unifying results in different studies and wide variations have been reported in various ethnic groups. The inter-ethnic variations can be explained by the fact that gene expression may be regulated by gene-gene, gene-environment and gene-nutrient interactions. This review highlights the impact of these interactions on determining the role of single nucleotide polymorphism of IL-6, TNF-α, resistin and adiponectin in pathogenesis of T2DM. PMID:25987962

  20. Vectors for airway gene delivery.

    PubMed

    Davis, Pamela B; Cooper, Mark J

    2007-01-01

    Delivery of genes to the airway epithelium for therapeutic purposes seemed easy at first, because the epithelial cells interface with the environment and are therefore accessible. However, problems encountered were more substantial than were originally expected. Nonviral systems may be preferred for long-term gene expression, for they can be dosed repeatedly. Two nonviral gene transfer systems have been in clinical trials, lipid-mediated gene transfer and DNA nanoparticles. Both have sufficient efficiency to be candidates for correction of the cystic fibrosis defect, and both can be dosed repeatedly. However, lipid-mediated gene transfer in the first generation provokes significant inflammatory toxicity, which may be engineered out by adjustments of the lipids, the plasmid CpG content, or both. Both lipid-mediated gene transfer and DNA nanoparticles in the first generation have short duration of expression, but reengineering of the plasmid DNA to contain mostly eukaryotic sequences may address this problem. Considerable advances in the understanding of the cellular uptake and expression of these agents and in their practical utility have occurred in the last few years; these advances are reviewed here. PMID:17408235

  1. Cationic Bolaamphiphiles for Gene Delivery

    NASA Astrophysics Data System (ADS)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  2. PET genes of Saccharomyces cerevisiae.

    PubMed Central

    Tzagoloff, A; Dieckmann, C L

    1990-01-01

    We describe a collection of nuclear respiratory-defective mutants (pet mutants) of Saccharomyces cerevisiae consisting of 215 complementation groups. This set of mutants probably represents a substantial fraction of the total genetic information of the nucleus required for the maintenance of functional mitochondria in S. cerevisiae. The biochemical lesions of mutants in approximately 50 complementation groups have been related to single enzymes or biosynthetic pathways, and the corresponding wild-type genes have been cloned and their structures have been determined. The genes defined by an additional 20 complementation groups were identified by allelism tests with mutants characterized in other laboratories. Mutants representative of the remaining complementation groups have been assigned to one of the following five phenotypic classes: (i) deficiency in cytochrome oxidase, (ii) deficiency in coenzyme QH2-cytochrome c reductase, (iii) deficiency in mitochondrial ATPase, (iv) absence of mitochondrial protein synthesis, and (v) normal composition of respiratory-chain complexes and of oligomycin-sensitive ATPase. In addition to the genes identified through biochemical and genetic analyses of the pet mutants, we have cataloged PET genes not matched to complementation groups in the mutant collection and other genes whose products function in the mitochondria but are not necessary for respiration. Together, this information provides an up-to-date list of the known genes coding for mitochondrial constituents and for proteins whose expression is vital for the respiratory competence of S. cerevisiae. PMID:2215420

  3. Gene Therapy in Heart Failure

    PubMed Central

    Vinge, Leif Erik; Raake, Philip W.; Koch, Walter J.

    2008-01-01

    With increasing knowledge of basic molecular mechanisms governing the development of heart failure (HF), the possibility of specifically targeting key pathological players is evolving. Technology allowing for efficient in vivo transduction of myocardial tissue with long-term expression of a transgene enables translation of basic mechanistic knowledge into potential gene therapy approaches. Gene therapy in HF is in its infancy clinically with the predominant amount of experience being from animal models. Nevertheless, this challenging and promising field is gaining momentum as recent preclinical studies in larger animals have been carried out and, importantly, there are 2 newly initiated phase I clinical trials for HF gene therapy. To put it simply, 2 parameters are needed for achieving success with HF gene therapy: (1) clearly identified detrimental/beneficial molecular targets; and (2) the means to manipulate these targets at a molecular level in a sufficient number of cardiac cells. However, several obstacles do exist on our way to efficient and safe gene transfer to human myocardium. Some of these obstacles are discussed in this review; however, it primarily focuses on the molecular target systems that have been subjected to intense investigation over the last decade in an attempt to make gene therapy for human HF a reality. PMID:18566312

  4. Homology-dependent Gene Silencing in Paramecium

    PubMed Central

    Ruiz, Françoise; Vayssié, Laurence; Klotz, Catherine; Sperling, Linda; Madeddu, Luisa

    1998-01-01

    Microinjection at high copy number of plasmids containing only the coding region of a gene into the Paramecium somatic macronucleus led to a marked reduction in the expression of the corresponding endogenous gene(s). The silencing effect, which is stably maintained throughout vegetative growth, has been observed for all Paramecium genes examined so far: a single-copy gene (ND7), as well as members of multigene families (centrin genes and trichocyst matrix protein genes) in which all closely related paralogous genes appeared to be affected. This phenomenon may be related to posttranscriptional gene silencing in transgenic plants and quelling in Neurospora and allows the efficient creation of specific mutant phenotypes thus providing a potentially powerful tool to study gene function in Paramecium. For the two multigene families that encode proteins that coassemble to build up complex subcellular structures the analysis presented herein provides the first experimental evidence that the members of these gene families are not functionally redundant. PMID:9529389

  5. PoplarGene: poplar gene network and resource for mining functional information for genes from woody plants

    PubMed Central

    Liu, Qi; Ding, Changjun; Chu, Yanguang; Chen, Jiafei; Zhang, Weixi; Zhang, Bingyu; Huang, Qinjun; Su, Xiaohua

    2016-01-01

    Poplar is not only an important resource for the production of paper, timber and other wood-based products, but it has also emerged as an ideal model system for studying woody plants. To better understand the biological processes underlying various traits in poplar, e.g., wood development, a comprehensive functional gene interaction network is highly needed. Here, we constructed a genome-wide functional gene network for poplar (covering ~70% of the 41,335 poplar genes) and created the network web service PoplarGene, offering comprehensive functional interactions and extensive poplar gene functional annotations. PoplarGene incorporates two network-based gene prioritization algorithms, neighborhood-based prioritization and context-based prioritization, which can be used to perform gene prioritization in a complementary manner. Furthermore, the co-functional information in PoplarGene can be applied to other woody plant proteomes with high efficiency via orthology transfer. In addition to poplar gene sequences, the webserver also accepts Arabidopsis reference gene as input to guide the search for novel candidate functional genes in PoplarGene. We believe that PoplarGene (http://bioinformatics.caf.ac.cn/PoplarGene and http://124.127.201.25/PoplarGene) will greatly benefit the research community, facilitating studies of poplar and other woody plants. PMID:27515999

  6. [Synthesis of new gene-loaded microbubbles serve as gene delivery vehicle applied in reporter gene transfer into cardiac myocytes].

    PubMed

    Wang, Guozhong; Hu, Shenjiang; Zheng, Zhelan; Sun, Jian; Zheng, Xia; Zhu, Zhaohui; Li, Jiang; Yao, Yumei

    2006-08-01

    To improve the stability and gene-carried capability of gene-attached microbubbles, the method for manufacture of albumin microbubbles was modified and new gene-loaded microbubbles were synthesized by incorporated gene-PEI complex into the shell of microbubbles. Agarose gel electrophoresis and bacteria transformation showed that PEI had the ability to provide the protection of plasmid DNA from ultrasonic degradation. The new gene-loaded microbubbles exhibited excellent acoustical and hemorheological properties. Moreover, they could carry more plasmid DNA than gene-attached microbubbles. beta-galactosidase plasmid transfection into cardiac myocytes was performed by using ultrasound targeted destruction of new gene-loaded microbubbles or gene-attached microbubbles. Gene expression in cardiac myocytes was detected by beta-galactosidase in situ staining and quantitive assay. It was shown that beta-galactosidase activity in cardiac myocytes was enhanced 107-fold by ultrasonic destruction of gene-loaded microbubbles compared with naked plasmid transfection and new gene-loaded microbubbles resulted in 6.85-fold increase in beta-galactosidase activity compared with optimal transfection mediated by gene-attached microbubbles. These results suggested that ultrasonic destruction of the gene-loaded microbubbles can enhance the cardiac myocytes exogenous gene transfer efficiency significantly and new gene-loaded microbubbles is an efficient and safe gene delivery vehicle. PMID:17002125

  7. PoplarGene: poplar gene network and resource for mining functional information for genes from woody plants.

    PubMed

    Liu, Qi; Ding, Changjun; Chu, Yanguang; Chen, Jiafei; Zhang, Weixi; Zhang, Bingyu; Huang, Qinjun; Su, Xiaohua

    2016-01-01

    Poplar is not only an important resource for the production of paper, timber and other wood-based products, but it has also emerged as an ideal model system for studying woody plants. To better understand the biological processes underlying various traits in poplar, e.g., wood development, a comprehensive functional gene interaction network is highly needed. Here, we constructed a genome-wide functional gene network for poplar (covering ~70% of the 41,335 poplar genes) and created the network web service PoplarGene, offering comprehensive functional interactions and extensive poplar gene functional annotations. PoplarGene incorporates two network-based gene prioritization algorithms, neighborhood-based prioritization and context-based prioritization, which can be used to perform gene prioritization in a complementary manner. Furthermore, the co-functional information in PoplarGene can be applied to other woody plant proteomes with high efficiency via orthology transfer. In addition to poplar gene sequences, the webserver also accepts Arabidopsis reference gene as input to guide the search for novel candidate functional genes in PoplarGene. We believe that PoplarGene (http://bioinformatics.caf.ac.cn/PoplarGene and http://124.127.201.25/PoplarGene) will greatly benefit the research community, facilitating studies of poplar and other woody plants. PMID:27515999

  8. Newer Gene Editing Technologies toward HIV Gene Therapy

    PubMed Central

    Manjunath, N.; Yi, Guohua; Dang, Ying; Shankar, Premlata

    2013-01-01

    Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called “Berlin patient” who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy. PMID:24284874

  9. Noninvasive Tracking of Gene Transcript and Neuroprotection after Gene Therapy

    PubMed Central

    Ren, Jiaqian; Chen, Y. Iris; Liu, Christina H.; Chen, Po-Chih; Prentice, Howard; Wu, Jang-Yen; Liu, Philip K.

    2015-01-01

    Gene therapy holds exceptional potential for translational medicine by improving the products of defective genes in diseases and/or providing necessary biologics from endogenous sources during recovery processes. However, validating methods for the delivery, distribution and expression of the exogenous genes from such therapy can generally not be applicable to monitor effects over the long term because they are invasive. We report here that human granulocyte colony-stimulating factor (hG-CSF) cDNA encoded in scAAV-type 2 adeno-associated virus, as delivered through eye drops at multiple time points after cerebral ischemia using bilateral carotid occlusion for 60 min (BCAO-60) led to significant reduction in mortality rates, cerebral atrophy, and neurological deficits in C57black6 mice. Most importantly, we validated hG-CSF cDNA expression using translatable magnetic resonance imaging (MRI) in living brains. This noninvasive approach for monitoring exogenous gene expression in the brains has potential for great impact in the area of experimental gene therapy in animal models of heart attack, stroke, Alzheimer’s dementia, Parkinson’s disorder and amyotrophic lateral sclerosis, and the translation of such techniques to emergency medicine. PMID:26207935

  10. Noninvasive tracking of gene transcript and neuroprotection after gene therapy.

    PubMed

    Ren, J; Chen, Y I; Liu, C H; Chen, P-C; Prentice, H; Wu, J-Y; Liu, P K

    2016-01-01

    Gene therapy holds exceptional potential for translational medicine by improving the products of defective genes in diseases and/or providing necessary biologics from endogenous sources during recovery processes. However, validating methods for the delivery, distribution and expression of the exogenous genes from such therapy can generally not be applicable to monitor effects over the long term because they are invasive. We report here that human granulocyte colony-stimulating factor (hG-CSF) complimentary DNA (cDNA) encoded in self-complementary adeno-associated virus-type 2 adeno-associated virus, as delivered through eye drops at multiple time points after cerebral ischemia using bilateral carotid occlusion for 60 min (BCAO-60) led to significant reduction in mortality rates, cerebral atrophy and neurological deficits in C57black6 mice. Most importantly, we validated hG-CSF cDNA expression using translatable magnetic resonance imaging (MRI) in living brains. This noninvasive approach for monitoring exogenous gene expression in the brains has potential for great impact in the area of experimental gene therapy in animal models of heart attack, stroke, Alzheimer's dementia, Parkinson's disorder and amyotrophic lateral sclerosis, and the translation of such techniques to emergency medicine. PMID:26207935

  11. The biology of novel animal genes: Mouse APEX gene knockout

    SciTech Connect

    MacInnes, M.; Altherr, M.R.; Ludwig, D.; Pedersen, R.; Mold, C.

    1997-07-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The controlled breeding of novel genes into mice, including the gene knockout (KO), or conversely by adding back transgenes provide powerful genetic technologies that together suffice to determine in large part the biological role(s) of novel genes. Inbred mouse remains the best understood and most useful mammalian experimental system available for tackling the biology of novel genes. The major mammalian apurinic/apyrimidinic (AP) endonuclease (APE), is involved in a key step in the repair of spontaneous and induced AP sites in DNA. Efficient repair of these lesions is imperative to prevent the stable incorporation of mutations into the cellular genome which may lead to cell death or transformation. Loss or modulation of base excison repair activity in vivo may elevate the spontaneous mutation rate in cells, and may lead to a substantial increase in the incidence of cancer. Despite extensive biochemical analysis, however, the significance of these individual APE functions in vivo has not been elucidated. Mouse embryonic stem (ES) cells heterozygous for a deletion mutation in APE have been generated and whole animals containing the APE mutation have been derived from these ES cells. Animals homozygous for the APE null mutation die early in gestation, underscoring the biological significance of this DNA repair gene.

  12. Combining Hierarchical and Associative Gene Ontology Relations with Textual Evidence in Estimating Gene and Gene Product Similarity

    SciTech Connect

    Sanfilippo, Antonio P.; Posse, Christian; Gopalan, Banu; Riensche, Roderick M.; Beagley, Nathaniel; Baddeley, Bob L.; Tratz, Stephen C.; Gregory, Michelle L.

    2007-03-01

    Gene and gene product similarity is a fundamental diagnostic measure in analyzing biological data and constructing predictive models for functional genomics. With the rising influence of the Gene Ontology, two complementary approaches have emerged where the similarity between two genes or gene products is obtained by comparing Gene Ontology (GO) annotations associated with the genes or gene products. One approach captures GO-based similarity in terms of hierarchical relations within each gene subontology. The other approach identifies GO-based similarity in terms of associative relations across the three gene subontologies. We propose a novel methodology where the two approaches can be merged with ensuing benefits in coverage and accuracy, and demonstrate that further improvements can be obtained by integrating textual evidence extracted from relevant biomedical literature.

  13. The Influence of Gene-Gene and Gene-Environment Interactions on the Risk of Asbestosis

    PubMed Central

    Franko, A.; Dolžan, V.; Arnerić, N.; Dodič-Fikfak, M.

    2013-01-01

    This study investigated the influence of gene-gene and gene-environment interactions on the risk of developing asbestosis. The study comprised 262 cases with asbestosis and 265 controls with no asbestos-related disease previously studied for MnSOD, ECSOD, CAT, GSTT1, GSTM1, GSTP1, and iNOS polymorphisms. Data on cumulative asbestos and smoking were available for all subjects. To assess gene-gene and gene-environmental interactions, logistic regression was used. The associations between MnSOD Ala −9Val polymorphism and the risk of asbestosis and between iNOS genotypes and asbestosis were modified by CAT –262 C > T polymorphism (P = 0.038; P = 0.031). A strong interaction was found between GSTM1-null polymorphism and smoking (P = 0.007), iNOS (CCTTT)n polymorphism and smoking (P = 0.054), and between iNOS (CCTTT)n polymorphism and cumulative asbestos exposure (P = 0.037). The findings of this study suggest that the interactions between different genotypes, genotypes and smoking, and between genotypes and asbestos exposure have an important influence on the development of asbestosis and should be seriously considered in future research on occupational/environmental asbestos-related diseases. PMID:23984360

  14. [Review of cancer gene therapy].

    PubMed

    Tani, K

    2000-09-01

    Since the first introduction of gene-marking technology to the clinical field in 1989 by Rosenberg et al, more than 4,000 patients have participated gene therapy clinical trials worldwide. Most of those patients had malignancies. Nearly 90% of clinical trials, however, are still in phase I-II stage, and only 3 protocols are in the phase III stage in early 2000. As current clinical gene therapy protocols are intended essentially to examine the safety and feasibility of the new strategy, more careful and steady steps may be required before these clinical trials really produce clinical benefits. Focused on cancer gene therapy, direct and indirect approaches are undertaken. In the direct approach, HSV-TK, HLA-B7, or p53 tumor suppressor gene therapies are the three major approaches historically. In for the indirect approach, cytokine or adhesion molecule gene-transferred tumor cells or immunocompetent cells are considered to be promising to enhance patients' antitumor immunity. In particular, we have concentrated on developing immuno gene therapy using GM-CSF-transduced autologous tumor cells. We have already recruited three patients with stage IV renal cell cancer. In all patients, peripheral blood T cells were mobilized after vaccination with GM-CSF-transduced tumor cells, and two of the three patients showed the persistence of cytotoxic T cells against autologous tumor cells. Clinically, one patient has been followed up with stable disease for more than one year since the start of vaccination. Further clinical studies are required to obtain conclusive results. PMID:11022677

  15. Genes and Abdominal Aortic Aneurysm

    PubMed Central

    Hinterseher, Irene; Tromp, Gerard; Kuivaniemi, Helena

    2010-01-01

    Abdominal aortic aneurysm (AAA) is a multifactorial disease with a strong genetic component. Since first candidate gene studies were published 20 years ago, nearly 100 genetic association studies using single nucleotide polymorphisms (SNPs) in biologically relevant genes have been reported on AAA. The studies investigated SNPs in genes of the extracellular matrix, the cardiovascular system, the immune system, and signaling pathways. Very few studies were large enough to draw firm conclusions and very few results could be replicated in another sample set. The more recent unbiased approaches are family-based DNA linkage studies and genome-wide genetic association studies, which have the potential of identifying the genetic basis for AAA, if appropriately powered and well-characterized large AAA cohorts are used. SNPs associated with AAA have already been identified in these large multicenter studies. One significant association was of a variant in a gene called CNTN3 which is located on chromosome 3p12.3. Two follow-up studies, however, could not replicate the association. Two other SNPs, which are located on chromosome 9p21 and 9q33 were replicated in other samples. The two genes with the strongest supporting evidence of contribution to the genetic risk for AAA are the CDKN2BAS gene, also known as ANRIL, which encodes an antisense RNA that regulates expression of the cyclin-dependent kinase inhibitors CDKN2A and CDKN2B, and DAB2IP, which encodes an inhibitor of cell growth and survival. Functional studies are now needed to establish the mechanisms by which these genes contribute to AAA pathogenesis. PMID:21146954

  16. Gene expression during memory formation.

    PubMed

    Igaz, Lionel Muller; Bekinschtein, Pedro; Vianna, Monica M R; Izquierdo, Ivan; Medina, Jorge H

    2004-01-01

    For several decades, neuroscientists have provided many clues that point out the involvement of de novo gene expression during the formation of long-lasting forms of memory. However, information regarding the transcriptional response networks involved in memory formation has been scarce and fragmented. With the advent of genome-based technologies, combined with more classical approaches (i.e., pharmacology and biochemistry), it is now feasible to address those relevant questions--which gene products are modulated, and when that processes are necessary for the proper storage of memories--with unprecedented resolution and scale. Using one-trial inhibitory (passive) avoidance training of rats, one of the most studied tasks so far, we found two time windows of sensitivity to transcriptional and translational inhibitors infused into the hippocampus: around the time of training and 3-6 h after training. Remarkably, these periods perfectly overlap with the involvement of hippocampal cAMP/PKA (protein kinase A) signaling pathways in memory consolidation. Given the complexity of transcriptional responses in the brain, particularly those related to processing of behavioral information, it was clearly necessary to address this issue with a multi-variable, parallel-oriented approach. We used cDNA arrays to screen for candidate inhibitory avoidance learning-related genes and analyze the dynamic pattern of gene expression that emerges during memory consolidation. These include genes involved in intracellular kinase networks, synaptic function, DNA-binding and chromatin modification, transcriptional activation and repression, translation, membrane receptors, and oncogenes, among others. Our findings suggest that differential and orchestrated hippocampal gene expression is necessary in both early and late periods of long-term memory consolidation. Additionally, this kind of studies may lead to the identification and characterization of genes that are relevant for the pathogenesis

  17. Integrating heterogeneous gene expression data for gene regulatory network modelling.

    PubMed

    Sîrbu, Alina; Ruskin, Heather J; Crane, Martin

    2012-06-01

    Gene regulatory networks (GRNs) are complex biological systems that have a large impact on protein levels, so that discovering network interactions is a major objective of systems biology. Quantitative GRN models have been inferred, to date, from time series measurements of gene expression, but at small scale, and with limited application to real data. Time series experiments are typically short (number of time points of the order of ten), whereas regulatory networks can be very large (containing hundreds of genes). This creates an under-determination problem, which negatively influences the results of any inferential algorithm. Presented here is an integrative approach to model inference, which has not been previously discussed to the authors' knowledge. Multiple heterogeneous expression time series are used to infer the same model, and results are shown to be more robust to noise and parameter perturbation. Additionally, a wavelet analysis shows that these models display limited noise over-fitting within the individual datasets. PMID:21948152

  18. A Hybrid Approach of Gene Sets and Single Genes for the Prediction of Survival Risks with Gene Expression Data

    PubMed Central

    Seok, Junhee; Davis, Ronald W.; Xiao, Wenzhong

    2015-01-01

    Accumulated biological knowledge is often encoded as gene sets, collections of genes associated with similar biological functions or pathways. The use of gene sets in the analyses of high-throughput gene expression data has been intensively studied and applied in clinical research. However, the main interest remains in finding modules of biological knowledge, or corresponding gene sets, significantly associated with disease conditions. Risk prediction from censored survival times using gene sets hasn’t been well studied. In this work, we propose a hybrid method that uses both single gene and gene set information together to predict patient survival risks from gene expression profiles. In the proposed method, gene sets provide context-level information that is poorly reflected by single genes. Complementarily, single genes help to supplement incomplete information of gene sets due to our imperfect biomedical knowledge. Through the tests over multiple data sets of cancer and trauma injury, the proposed method showed robust and improved performance compared with the conventional approaches with only single genes or gene sets solely. Additionally, we examined the prediction result in the trauma injury data, and showed that the modules of biological knowledge used in the prediction by the proposed method were highly interpretable in biology. A wide range of survival prediction problems in clinical genomics is expected to benefit from the use of biological knowledge. PMID:25933378

  19. Consensus gene regulatory networks: combining multiple microarray gene expression datasets

    NASA Astrophysics Data System (ADS)

    Peeling, Emma; Tucker, Allan

    2007-09-01

    In this paper we present a method for modelling gene regulatory networks by forming a consensus Bayesian network model from multiple microarray gene expression datasets. Our method is based on combining Bayesian network graph topologies and does not require any special pre-processing of the datasets, such as re-normalisation. We evaluate our method on a synthetic regulatory network and part of the yeast heat-shock response regulatory network using publicly available yeast microarray datasets. Results are promising; the consensus networks formed provide a broader view of the potential underlying network, obtaining an increased true positive rate over networks constructed from a single data source.

  20. Gene methylation in gastric cancer.

    PubMed

    Qu, Yiping; Dang, Siwen; Hou, Peng

    2013-09-23

    Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs, and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hallmark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies of application in gastric cancer. This review focuses on the most common and important phenomenon of epigenetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field. PMID:23669186

  1. Gene amplification during myogenic differentiation

    PubMed Central

    Fischer, Ulrike; Ludwig, Nicole; Raslan, Abdulrahman; Meier, Carola; Meese, Eckart

    2016-01-01

    Gene amplifications are mostly an attribute of tumor cells and drug resistant cells. Recently, we provided evidence for gene amplifications during differentiation of human and mouse neural progenitor cells. Here, we report gene amplifications in differentiating mouse myoblasts (C2C12 cells) covering a period of 7 days including pre-fusion, fusion and post-fusion stages. After differentiation induction we found an increase in copy numbers of CDK4 gene at day 3, of NUP133 at days 4 and 7, and of MYO18B at day 4. The amplification process was accompanied by gamma-H2AX foci that are indicative of double stand breaks. Amplifications during the differentiating process were also found in primary human myoblasts with the gene CDK4 and NUP133 amplified both in human and mouse myoblasts. Amplifications of NUP133 and CDK4 were also identified in vivo on mouse transversal cryosections at stage E11.5. In the course of myoblast differentiation, we found amplifications in cytoplasm indicative of removal of amplified sequences from the nucleus. The data provide further evidence that amplification is a fundamental mechanism contributing to the differentiation process in mammalians. PMID:26760505

  2. Gene Ontology Consortium: going forward.

    PubMed

    2015-01-01

    The Gene Ontology (GO; http://www.geneontology.org) is a community-based bioinformatics resource that supplies information about gene product function using ontologies to represent biological knowledge. Here we describe improvements and expansions to several branches of the ontology, as well as updates that have allowed us to more efficiently disseminate the GO and capture feedback from the research community. The Gene Ontology Consortium (GOC) has expanded areas of the ontology such as cilia-related terms, cell-cycle terms and multicellular organism processes. We have also implemented new tools for generating ontology terms based on a set of logical rules making use of templates, and we have made efforts to increase our use of logical definitions. The GOC has a new and improved web site summarizing new developments and documentation, serving as a portal to GO data. Users can perform GO enrichment analysis, and search the GO for terms, annotations to gene products, and associated metadata across multiple species using the all-new AmiGO 2 browser. We encourage and welcome the input of the research community in all biological areas in our continued effort to improve the Gene Ontology. PMID:25428369

  3. Gene Ontology Consortium: going forward

    PubMed Central

    2015-01-01

    The Gene Ontology (GO; http://www.geneontology.org) is a community-based bioinformatics resource that supplies information about gene product function using ontologies to represent biological knowledge. Here we describe improvements and expansions to several branches of the ontology, as well as updates that have allowed us to more efficiently disseminate the GO and capture feedback from the research community. The Gene Ontology Consortium (GOC) has expanded areas of the ontology such as cilia-related terms, cell-cycle terms and multicellular organism processes. We have also implemented new tools for generating ontology terms based on a set of logical rules making use of templates, and we have made efforts to increase our use of logical definitions. The GOC has a new and improved web site summarizing new developments and documentation, serving as a portal to GO data. Users can perform GO enrichment analysis, and search the GO for terms, annotations to gene products, and associated metadata across multiple species using the all-new AmiGO 2 browser. We encourage and welcome the input of the research community in all biological areas in our continued effort to improve the Gene Ontology. PMID:25428369

  4. Metazoan Gene Families from Metazome

    DOE Data Explorer

    Metazome is a joint project of the Department of Energy's Joint Genome Institute and the Center for Integrative Genomics to facilitate comparative genomic studies amongst metazoans. Clusters of orthologous and paralogous genes that represent the modern descendents of ancestral gene sets are constructed at key phylogenetic nodes. These clusters allow easy access to clade specific orthology/paralogy relationships as well as clade specific genes and gene expansions. As of version 2.0.4, Metazome provides access to twenty-four sequenced and annotated metazoan genomes, clustered at nine evolutionarily significant nodes. Where possible, each gene has been annotated with PFAM, KOG, KEGG, and PANTHER assignments, and publicly available annotations from RefSeq, UniProt, Ensembl, and JGI are hyper-linked and searchable. The included organisms (by common name) are: Human, Mouse, Rat, Dog, Opossum, Chicken, Frog, Stickleback, Medaka, Fugu pufferfish; Zebrafish, Seasquirt - savignyi, Seasquirt - intestinalis, Amphioxus, Sea Urchin, Fruitfly, Mosquite, Yellow Fever Mosquito, Silkworm, Red Flour Beetle, Worm, Briggsae Worm, Owl limpet (snail), and Sea anemone. [Copied from Metazome Overview at http://www.metazome.net/Metazome_info.php

  5. Systems Biophysics of Gene Expression

    PubMed Central

    Vilar, Jose M.G.; Saiz, Leonor

    2013-01-01

    Gene expression is a process central to any form of life. It involves multiple temporal and functional scales that extend from specific protein-DNA interactions to the coordinated regulation of multiple genes in response to intracellular and extracellular changes. This diversity in scales poses fundamental challenges to the use of traditional approaches to fully understand even the simplest gene expression systems. Recent advances in computational systems biophysics have provided promising avenues to reliably integrate the molecular detail of biophysical process into the system behavior. Here, we review recent advances in the description of gene regulation as a system of biophysical processes that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. There is now basic mechanistic understanding on how promoters controlled by multiple, local and distal, DNA binding sites for transcription factors can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including precision and flexibility of the transcriptional responses. PMID:23790365

  6. Control of Renin Gene Expression

    PubMed Central

    Glenn, Sean T.; Jones, Craig A.; Gross, Kenneth W.; Pan, Li

    2015-01-01

    Renin, as part of the renin-angiotensin system, plays a critical role in the regulation of blood pressure, electrolyte homeostasis, mammalian renal development and progression of fibrotic/hypertrophic diseases. Renin gene transcription is subject to complex developmental and tissue-specific regulation. Initial studies using the mouse As4.1 cell line, which has many characteristics of the renin-expressing juxtaglomerular cells of the kidney, have identified a proximal promoter region (−197 to −50 bp) and an enhancer (−2866 to −2625 bp) upstream of the Ren-1c gene, which are critical for renin gene expression. The proximal promoter region contains several transcription factor-binding sites including a binding site for the products of the developmental control genes Hox. The enhancer consists of at least 11 transcription factor-binding sites and is responsive to various signal transduction pathways including cAMP, retinoic acid, endothelin-1, and cytokines, all of which are known to alter renin mRNA levels. Furthermore, in vivo models have validated several of these key components found within the proximal promoter region and the enhancer as well as other key sites necessary for renin gene transcription. PMID:22576577

  7. Combinatorial methods for gene recognition

    SciTech Connect

    Pevzner, P.A.

    1997-10-29

    The major result of the project is the development of a new approach to gene recognition called spliced alignment algorithm. They have developed an algorithm and implemented a software tool (for both IBM PC and UNIX platforms) which explores all possible exon assemblies in polynomial time and finds the multi-exon structure with the best fit to a related protein. Unlike other existing methods, the algorithm successfully performs exons assemblies even in the case of short exons or exons with unusual codon usage; they also report correct assemblies for the genes with more than 10 exons provided a homologous protein is already known. On a test sample of human genes with known mammalian relatives the average overlap between the predicted and the actual genes was 99%, which is remarkably well as compared to other existing methods. At that, the algorithm absolute correctly reconstructed 87% of genes. The rare discrepancies between the predicted and real axon-intron structures were restricted either to extremely short initial or terminal exons or proved to be results of alternative splicing. Moreover, the algorithm performs reasonably well with non-vertebrate and even prokaryote targets. The spliced alignment software PROCRUSTES has been in extensive use by the academic community since its announcement in August, 1996 via the WWW server (www-hto.usc.edu/software/procrustes) and by biotech companies via the in-house UNIX version.

  8. Gene Body Methylation Patterns in Daphnia Are Associated with Gene Family Size

    PubMed Central

    Asselman, Jana; De Coninck, Dieter I. M.; Pfrender, Michael E.; De Schamphelaere, Karel A. C.

    2016-01-01

    The relation between gene body methylation and gene function remains elusive. Yet, our understanding of this relationship can contribute significant knowledge on how and why organisms target specific gene bodies for methylation. Here, we studied gene body methylation patterns in two Daphnia species. We observed both highly methylated genes and genes devoid of methylation in a background of low global methylation levels. A small but highly significant number of genes was highly methylated in both species. Remarkably, functional analyses indicate that variation in methylation within and between Daphnia species is primarily targeted to small gene families whereas large gene families tend to lack variation. The degree of sequence similarity could not explain the observed pattern. Furthermore, a significant negative correlation between gene family size and the degree of methylation suggests that gene body methylation may help regulate gene family expansion and functional diversification of gene families leading to phenotypic variation. PMID:27017526

  9. Activities of Human Gene Nomenclature Committee

    SciTech Connect

    2002-07-16

    The objective of this project, shared between NIH and DOE, has been and remains to enable the medical genetics communities to use common names for genes that are discovered by different gene hunting groups, in different species. This effort provides consistent gene nomenclature and approved gene symbols to the community at large. This contributes to a uniform and consistent understanding of genomes, particularly the human as well as functional genomics based on comparisons between homologous genes in related species (human and mice).

  10. Characterization of the mammalian DNA polymerase gene(s) and enzyme(s). Annual progress report

    SciTech Connect

    Mishra, N.C.

    1995-01-01

    Two Genes for DNA polymerase delta were identified from the wild type Chinese hamster ovary cells. These genes were cloned via RT-PCR from mRNA prepared the Chinese hamster ovary cells using primers specific to conserved sequences of the DNA polymerase {delta} gene. The first gene encodes a PCNA dependent DNA polymerase {delta} gene whereas the second gene encodes a PCNA independent DNA polymerase {delta} gene. Methods were developed to clone these genes in expression vector and host systems. The role of the two genes in DNA replication and repair was determined.

  11. Gene-Gene and Gene-Environment Interactions in Ulcerative Colitis

    PubMed Central

    Wang, Ming-Hsi; Fiocchi, Claudio; Zhu, Xiaofeng; Ripke, Stephan; Kamboh, M. Ilyas; Rebert, Nancy; Duerr, Richard H.; Achkar, Jean-Paul

    2014-01-01

    Genome-wide association studies (GWAS) have identified at least 133 ulcerative colitis (UC) associated loci. The role of genetic factors in clinical practice is not clearly defined. The relevance of genetic variants to disease pathogenesis is still uncertain because of not characterized gene-gene and gene-environment interactions. We examined the predictive value of combining the 133 UC risk loci with genetic interactions in an ongoing inflammatory bowel disease (IBD) GWAS. The Wellcome Trust Case-Control Consortium (WTCCC) IBD GWAS was used as a replication cohort. We applied logic regression (LR), a novel adaptive regression methodology, to search for high order interactions. Exploratory genotype correlations with UC sub-phenotypes (extent of disease, need of surgery, age of onset, extra-intestinal manifestations and primary sclerosing cholangitis (PSC)) were conducted. The combination of 133 UC loci yielded good UC risk predictability (area under the curve [AUC] of 0.86). A higher cumulative allele score predicted higher UC risk. Through LR, several lines of evidence for genetic interactions were identified and successfully replicated in the WTCCC cohort. The genetic interactions combined with the gene-smoking interaction significantly improved predictability in the model (AUC, from 0.86 to 0.89, P=3.26E-05). Explained UC variance increased from 37% to 42% after adding the interaction terms. A within case analysis found suggested genetic association with PSC. Our study demonstrates that the LR methodology allows the identification and replication of high order genetic interactions in UC GWAS datasets. UC risk can be predicted by a 133 loci and improved by adding gene-gene and gene-environment interactions. PMID:24241240

  12. [Gene therapy for osteoarticular disorders].

    PubMed

    Gouze, Jean-Noël; Evans, Christopher H; Ghivizzani, Steven C; Gouze, Elvire

    2007-03-01

    Osteoarticular disorders are the major cause of disability in Europe and North America. It is estimated that rheumatoid arthritis affects 1 % of the population and that more than two third of people over age 55 develop osteoarthritis. Because there are no satisfactory treatments, gene therapy offers a new therapeutic approach. The delivery of cDNA encoding anti-arthritic proteins to articular cells has shown therapeutic efficacy in numerous animal models in vivo. Through the development and the experimental progresses that have been made for both rheumatoid arthritis and osteoarthritis, this review discusses the different gene therapy strategies available today and the safety issues with which they may be associated. Among the different vectors available today, adeno-associated virus seems the best candidate for a direct in vivo gene delivery approach for the treatment of joint disorders. PMID:17349293

  13. Nuclear Neighborhoods and Gene Expression

    PubMed Central

    Zhao, Rui; Bodnar, Megan S.; Spector, David L.

    2009-01-01

    Summary The eukaryotic nucleus is a highly compartmentalized and dynamic environment. Chromosome territories are arranged non-randomly within the nucleus and numerous studies have indicated that a gene’s position in the nucleus can impact its transcriptional activity. Here, we focus on recent advances in our understanding of the influence of specific nuclear neighborhoods on gene expression or repression. Nuclear neighborhoods associated with transcriptional repression include the inner nuclear membrane/nuclear lamina and peri-nucleolar chromatin, whereas neighborhoods surrounding the nuclear pore complex, PML nuclear bodies, and nuclear speckles seem to be transcriptionally permissive. While nuclear position appears to play an important role in gene expression, it is likely to be only one piece of a flexible puzzle that incorporates numerous parameters. We are still at a very early, yet exciting stage in our journey toward deciphering the mechanism(s) that govern the permissiveness of gene expression/repression within different nuclear neighborhoods. PMID:19339170

  14. Lateral gene transfer in eukaryotes.

    PubMed

    Andersson, J O

    2005-06-01

    Lateral gene transfer -- the transfer of genetic material between species -- has been acknowledged as a major mechanism in prokaryotic genome evolution for some time. Recently accumulating data indicate that the process also occurs in the evolution of eukaryotic genomes. However, there are large rate variations between groups of eukaryotes; animals and fungi seem to be largely unaffected, with a few exceptions, while lateral gene transfer frequently occurs in protists with phagotrophic lifestyles, possibly with rates comparable to prokaryotic organisms. Gene transfers often facilitate the acquisition of functions encoded in prokaryotic genomes by eukaryotic organisms, which may enable them to colonize new environments. Transfers between eukaryotes also occur, mainly into larger phagotrophic eukaryotes that ingest eukaryotic cells, but also between plant lineages. These findings have implications for eukaryotic genomic research in general, and studies of the origin and phylogeny of eukaryotes in particular. PMID:15761667

  15. Search for Basonuclin Target Genes

    PubMed Central

    Wang, Junwen; Zhang, Shengliang; Schultz, Richard M.; Tseng, Hung

    2006-01-01

    Basonuclin (Bnc 1) is a transcription factor that has an unusual ability to interact with promoters of both RNA polymerases I and II. The action of basonuclin is mediated through three pairs of evolutionarily conserved zinc fingers, which produce three DNase I footprints on the promoters of rDNA and the basonuclin gene. Using these DNase footprints, we built a computational model for the basonuclin DNA-binding module, which was used to identify in silico potential RNA polymerase II target genes in the human and mouse promoter databases. The target genes of basonuclin show that it regulates the expression of proteins involved in chromatin structure, transcription/DNA-binding, ion-channels, adhesion/cell-cell junction, signal transduction and intracellular transport. Our results suggest that basonuclin, like MYC, may coordinate transcriptional activities among the three RNA polymerases. But basonuclin regulates a distinctive set of pathways, which differ from that regulated by MYC. PMID:16919236

  16. Gene Therapy in Corneal Transplantation

    PubMed Central

    Qazi, Yureeda; Hamrah, Pedram

    2014-01-01

    Corneal transplantation is the most commonly performed organ transplantation. Immune privilege of the cornea is widely recognized, partly because of the relatively favorable outcome of corneal grafts. The first-time recipient of corneal allografts in an avascular, low-risk setting can expect a 90% success rate without systemic immunosuppressive agents and histocompatibility matching. However, immunologic rejection remains the major cause of graft failure, particularly in patients with a high risk for rejection. Corticosteroids remain the first-line therapy for the prevention and treatment of immune rejection. However, current pharmacological measures are limited in their side-effect profiles, repeated application, lack of targeted response, and short duration of action. Experimental ocular gene therapy may thus present new horizons in immunomodulation. From efficient viral vectors to sustainable alternative splicing, we discuss the progress of gene therapy in promoting graft survival and postulate further avenues for gene-mediated prevention of allogeneic graft rejection. PMID:24138037

  17. Gene encoding plant asparagine synthetase

    DOEpatents

    Coruzzi, Gloria M.; Tsai, Fong-Ying

    1993-10-26

    The identification and cloning of the gene(s) for plant asparagine synthetase (AS), an important enzyme involved in the formation of asparagine, a major nitrogen transport compound of higher plants is described. Expression vectors constructed with the AS coding sequence may be utilized to produce plant AS; to engineer herbicide resistant plants, salt/drought tolerant plants or pathogen resistant plants; as a dominant selectable marker; or to select for novel herbicides or compounds useful as agents that synchronize plant cells in culture. The promoter for plant AS, which directs high levels of gene expression and is induced in an organ specific manner and by darkness, is also described. The AS promoter may be used to direct the expression of heterologous coding sequences in appropriate hosts.

  18. Differential Gene Expression in Glaucoma

    PubMed Central

    Jakobs, Tatjana C.

    2014-01-01

    In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell–matrix interactions and adhesion, the cell cycle, and the endothelin system. PMID:24985133

  19. Gene Expression Studies in Mosquitoes

    PubMed Central

    Chen, Xlao-Guang; Mathur, Geetika; James, Anthony A.

    2009-01-01

    Research on gene expression in mosquitoes is motivated by both basic and applied interests. Studies of genes involved in hematophagy, reproduction, olfaction, and immune responses reveal an exquisite confluence of biological adaptations that result in these highly-successful life forms. The requirement of female mosquitoes for a bloodmeal for propagation has been exploited by a wide diversity of viral, protozoan and metazoan pathogens as part of their life cycles. Identifying genes involved in host-seeking, blood feeding and digestion, reproduction, insecticide resistance and susceptibility/refractoriness to pathogen development is expected to provide the bases for the development of novel methods to control mosquito-borne diseases. Advances in mosquito transgenesis technologies, the availability of whole genome sequence information, mass sequencing and analyses of transcriptomes and RNAi techniques will assist development of these tools as well as deepen the understanding of the underlying genetic components for biological phenomena characteristic of these insect species. PMID:19161831

  20. Metagenomics and novel gene discovery

    PubMed Central

    Culligan, Eamonn P; Sleator, Roy D; Marchesi, Julian R; Hill, Colin

    2014-01-01

    Metagenomics provides a means of assessing the total genetic pool of all the microbes in a particular environment, in a culture-independent manner. It has revealed unprecedented diversity in microbial community composition, which is further reflected in the encoded functional diversity of the genomes, a large proportion of which consists of novel genes. Herein, we review both sequence-based and functional metagenomic methods to uncover novel genes and outline some of the associated problems of each type of approach, as well as potential solutions. Furthermore, we discuss the potential for metagenomic biotherapeutic discovery, with a particular focus on the human gut microbiome and finally, we outline how the discovery of novel genes may be used to create bioengineered probiotics. PMID:24317337

  1. Gene transfer for erythropoiesis enhancement.

    PubMed

    Naffakh, N; Danos, O

    1996-08-01

    The spectrum of anemias treated with recombinant human erythropoietin is rapidly broadening. Lifelong treatment with very high doses is now under evaluation for beta-thalassemia and sickle cell anemia. These indications make it worthwhile to search for methods that will allow a permanent systemic delivery of the hormone. Here, we review experimental gene-transfer-based procedures for erythropoietin delivery in vivo. In mice, both ex vivo and direct in vivo approaches for gene transfer have resulted in the long-term production of therapeutic levels of the hormone. Gene transfer of erythropoietin could become a viable alternative to the injection of the purified recombinant protein once reliable procedures for controlling transgene expression are available. PMID:8796920

  2. GeneMANIA prediction server 2013 update.

    PubMed

    Zuberi, Khalid; Franz, Max; Rodriguez, Harold; Montojo, Jason; Lopes, Christian Tannus; Bader, Gary D; Morris, Quaid

    2013-07-01

    GeneMANIA (http://www.genemania.org) is a flexible user-friendly web interface for generating hypotheses about gene function, analyzing gene lists and prioritizing genes for functional assays. Given a query gene list, GeneMANIA extends the list with functionally similar genes that it identifies using available genomics and proteomics data. GeneMANIA also reports weights that indicate the predictive value of each selected data set for the query. GeneMANIA can also be used in a function prediction setting: given a query gene, GeneMANIA finds a small set of genes that are most likely to share function with that gene based on their interactions with it. Enriched Gene Ontology categories among this set can sometimes point to the function of the gene. Seven organisms are currently supported (Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, Homo sapiens, Rattus norvegicus and Saccharomyces cerevisiae), and hundreds of data sets have been collected from GEO, BioGRID, IRefIndex and I2D, as well as organism-specific functional genomics data sets. Users can customize their search by selecting specific data sets to query and by uploading their own data sets to analyze. PMID:23794635

  3. Gene expression throughout a vertebrate's embryogenesis

    PubMed Central

    2011-01-01

    Background Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in the teleost Fundulus heteroclitus using four biological replicates per stage. Results Patterns of gene expression for 7,000 genes appear to be important as they recapitulate developmental timing. Among the 45% of genes with significant expression differences between pairs of temporally adjacent stages, significant differences in gene expression vary from as few as five to more than 660. Five adjacent stages have disproportionately more significant changes in gene expression (> 200 genes) relative to other stages: four to eight and eight to sixteen cell stages, onset of circulation, pre and post-hatch, and during complete yolk absorption. The fewest differences among adjacent stages occur during gastrulation. Yet, at stage 16, (pre-mid-gastrulation) the largest number of genes has peak expression. This stage has an over representation of genes in oxidative respiration and protein expression (ribosomes, translational genes and proteases). Unexpectedly, among all ribosomal genes, both strong positive and negative correlations occur. Similar correlated patterns of expression occur among all significant genes. Conclusions These data provide statistical support for the temporal dynamics of developmental gene expression during all stages of vertebrate development. PMID:21356103

  4. Does inbreeding affect gene expression in birds?

    PubMed Central

    Hansson, Bengt; Naurin, Sara; Hasselquist, Dennis

    2014-01-01

    Inbreeding increases homozygosity, exposes genome-wide recessive deleterious alleles and often reduces fitness. The physiological and reproductive consequences of inbreeding may be manifested already during gene regulation, but the degree to which inbreeding influences gene expression is unknown in most organisms, including in birds. To evaluate the pattern of inbreeding-affected gene expression over the genome and in relation to sex, we performed a transcriptome-wide gene expression (10 695 genes) study of brain tissue of 10-day-old inbred and outbred, male and female zebra finches. We found significantly lower gene expression in females compared with males at Z-linked genes, confirming that dosage compensation is incomplete in female birds. However, inbreeding did not affect gene expression at autosomal or sex-linked genes, neither in males nor in females. Analyses of single genes again found a clear sex-biased expression at Z-linked genes, whereas only a single gene was significantly affected by inbreeding. The weak effect of inbreeding on gene expression in zebra finches contrasts to the situation, for example, in Drosophila where inbreeding has been found to influence gene expression more generally and at stress-related genes in particular. PMID:25232028

  5. Gene Therapy for Coagulation Disorders.

    PubMed

    Swystun, Laura L; Lillicrap, David

    2016-04-29

    Molecular genetic details of the human coagulation system were among the first successes of the genetic revolution in the 1980s. This information led to new molecular diagnostic strategies for inherited disorders of hemostasis and the development of recombinant clotting factors for the treatment of the common inherited bleeding disorders. A longer term goal of this knowledge has been the establishment of gene transfer to provide continuing access to missing or defective hemostatic proteins. Because of the relative infrequency of inherited coagulation factor disorders and the availability of safe and effective alternative means of management, the application of gene therapy for these conditions has been slow to realize clinical application. Nevertheless, the tools for effective and safe gene transfer are now much improved, and we have started to see examples of clinical gene therapy successes. Leading the way has been the use of adeno-associated virus-based strategies for factor IX gene transfer in hemophilia B. Several small phase 1/2 clinical studies using this approach have shown prolonged expression of therapeutically beneficial levels of factor IX. Nevertheless, before the application of gene therapy for coagulation disorders becomes widespread, several obstacles need to be overcome. Immunologic responses to the vector and transgenic protein need to be mitigated, and production strategies for clinical grade vectors require enhancements. There is little doubt that with the development of more efficient and facile strategies for genome editing and the application of other nucleic acid-based approaches to influence the coagulation system, the future of genetic therapies for hemostasis is bright. PMID:27126652

  6. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression.

    PubMed Central

    van der Krol, A R; Mur, L A; Beld, M; Mol, J N; Stuitje, A R

    1990-01-01

    To evaluate the effect of increased expression of genes involved in flower pigmentation, additional dihydroflavonol-4-reductase (DFR) or chalcone synthase (CHS) genes were transferred to petunia. In most transformants, the increased expression had no measurable effect on floral pigmentation. Surprisingly, however, in up to 25% of the transformants, a reduced floral pigmentation, accompanied by a dramatic reduction of DFR or CHS gene expression, respectively, was observed. This phenomenon was obtained with both chimeric gene constructs and intact CHS genomic clones. The reduction in gene expression was independent of the promoter driving transcription of the transgene and involved both the endogenous gene and the homologous transgene. The gene-specific collapse in expression was obtained even after introduction of only a single gene copy. The similarity between the sense transformants and regulatory CHS mutants suggests that this mechanism of gene silencing may operate in naturally occurring regulatory circuits. PMID:2152117

  7. The yeast ubiquitin genes: a family of natural gene fusions.

    PubMed

    Ozkaynak, E; Finley, D; Solomon, M J; Varshavsky, A

    1987-05-01

    Ubiquitin is a 76-residue protein highly conserved among eukaryotes. Conjugation of ubiquitin to intracellular proteins mediates their selective degradation in vivo. We describe a family of four ubiquitin-coding loci in the yeast Saccharomyces cerevisiae. UB11, UB12 and UB13 encode hybrid proteins in which ubiquitin is fused to unrelated ('tail') amino acid sequences. The ubiquitin coding elements of UB11 and UB12 are interrupted at identical positions by non-homologous introns. UB11 and UB12 encode identical 52-residue tails, whereas UB13 encodes a different 76-residue tail. The tail amino acid sequences are highly conserved between yeast and mammals. Each tail contains a putative metal-binding, nucleic acid-binding domain of the form Cys-X2-4-Cys-X2-15-Cys-X2-4-Cys, suggesting that these proteins may function by binding to DNA. The fourth gene, UB14, encodes a polyubiquitin precursor protein containing five ubiquitin repeats in a head-to-tail, spacerless arrangement. All four ubiquitin genes are expressed in exponentially growing cells, while in stationary-phase cells the expression of UB11 and UB12 is repressed. The UB14 gene, which is strongly inducible by starvation, high temperatures and other stresses, contains in its upstream region strong homologies to the consensus 'heat shock box' nucleotide sequence. Elsewhere we show that the essential function of the UB14 gene is to provide ubiquitin to cells under stress. PMID:3038523

  8. Identification of genes and gene clusters involved in mycotoxin synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research methods to identify and characterize genes involved in mycotoxin biosynthetic pathways have evolved considerably over the years. Before whole genome sequences were available (e.g. pre-genomics), work focused primarily on chemistry, biosynthetic mutant strains and molecular analysis of sing...

  9. Horizontal gene transfer of stress resistance genes through plasmid transport.

    PubMed

    Shoeb, Erum; Badar, Uzma; Akhter, Jameela; Shams, Hina; Sultana, Maria; Ansari, Maqsood A

    2012-03-01

    The horizontal gene transfer of plasmid-determined stress tolerance was achieved under lab conditions. Bacterial isolates, Enterobacter cloacae (DGE50) and Escherichia coli (DGE57) were used throughout the study. Samples were collected from contaminated marine water and soil to isolate bacterial strains having tolerance against heavy metals and antimicrobial agents. We have demonstrated plasmid transfer, from Amp(+)Cu(+)Zn(-) strain (DGE50) to Amp(-)Cu(-)Zn(+) strain (DGE57), producing Amp(+)Cu(+)Zn(+) transconjugants (DGE(TC50→57)) and Amp(+)Cu(-)Zn(+) transformants (DGE(TF50→57)). DGE57 did not carry any plasmid, therefore, it can be speculated that zinc tolerance gene in DGE57 is located on chromosome. DGE50 was found to carry three plasmids, out of which two were transferred through conjugation into DGE57, and only one was transferred through transformation. Plasmid transferred through transformation was one out of the two transferred through conjugation. Through the results of transformation it was revealed that the genes of copper and ampicillin tolerance in DGE50 were located on separate plasmids, since only ampicillin tolerance genes were transferred through transformation as a result of one plasmid transfer. By showing transfer of plasmids under lab conditions and monitoring retention of respective phenotype via conjugation and transformation, it is very well demonstrated how multiple stress tolerant strains are generated in nature. PMID:22805823

  10. The KCNE genes in hypertrophic cardiomyopathy: a candidate gene study

    PubMed Central

    2011-01-01

    Background The gene family KCNE1-5, which encode modulating β-subunits of several repolarising K+-ion channels, has been associated with genetic cardiac diseases such as long QT syndrome, atrial fibrillation and Brugada syndrome. The minK peptide, encoded by KCNE1, is attached to the Z-disc of the sarcomere as well as the T-tubules of the sarcolemma. It has been suggested that minK forms part of an "electro-mechanical feed-back" which links cardiomyocyte stretching to changes in ion channel function. We examined whether mutations in KCNE genes were associated with hypertrophic cardiomyopathy (HCM), a genetic disease associated with an improper hypertrophic response. Results The coding regions of KCNE1, KCNE2, KCNE3, KCNE4, and KCNE5 were examined, by direct DNA sequencing, in a cohort of 93 unrelated HCM probands and 188 blood donor controls. Fifteen genetic variants, four previously unknown, were identified in the HCM probands. Eight variants were non-synonymous and one was located in the 3'UTR-region of KCNE4. No disease-causing mutations were found and no significant difference in the frequency of genetic variants was found between HCM probands and controls. Two variants of likely functional significance were found in controls only. Conclusions Mutations in KCNE genes are not a common cause of HCM and polymorphisms in these genes do not seem to be associated with a propensity to develop arrhythmia PMID:21967835

  11. Lipid Nanoparticles for Gene Delivery

    PubMed Central

    Zhao, Yi; Huang, Leaf

    2016-01-01

    Nonviral vectors which offer a safer and versatile alternative to viral vectors have been developed to overcome problems caused by viral carriers. However, their transfection efficacy or level of expression is substantially lower than viral vectors. Among various nonviral gene vectors, lipid nanoparticles are an ideal platform for the incorporation of safety and efficacy into a single delivery system. In this chapter, we highlight current lipidic vectors that have been developed for gene therapy of tumors and other diseases. The pharmacokinetic, toxic behaviors and clinic trials of some successful lipids particles are also presented. PMID:25409602

  12. GENE PROFILING: IMPLICATIONS IN DERMATOLOGY

    PubMed Central

    Blumenberg, Miroslav; Tomic-Canic, Marjana

    2016-01-01

    Summary DNA microarrays are capable of following the level of expression of, virtually, all genes in a human tissue. This has been employed to determine the aberrant gene expression profiles in many skin diseases, including ultraviolet light damage, inflammatory processes and cancers. Because of its accessibility, skin also served as one of the initial targets of basic research using DNA microarrays. Both the epidermis and dermis have been extensively investigated. Development of bed-side uses of DNA arrays, and the concomitant price reduction of the materials and methods of microarray analyses, holds great promise for improved diagnosis, treatment and prevention of dermatologic disorders.

  13. Cytoskeletal genes regulating brain size.

    PubMed

    Bond, Jacquelyn; Woods, C Geoffrey

    2006-02-01

    One of the most notable trends in human evolution is the dramatic increase in brain size that has occurred in the great ape clade, culminating in humans. Of particular interest is the vast expanse of the cerebral cortex, which is believed to have resulted in our ability to perform higher cognitive functions. Recent investigations of congenital microcephaly in humans have resulted in the identification of several genes that non-redundantly and specifically influence mammalian brain size. These genes appear to affect neural progenitor cell number through microtubular organisation at the centrosome. PMID:16337370

  14. Persistence drives gene clustering in bacterial genomes

    PubMed Central

    Fang, Gang; Rocha, Eduardo PC; Danchin, Antoine

    2008-01-01

    Background Gene clustering plays an important role in the organization of the bacterial chromosome and several mechanisms have been proposed to explain its extent. However, the controversies raised about the validity of each of these mechanisms remind us that the cause of this gene organization remains an open question. Models proposed to explain clustering did not take into account the function of the gene products nor the likely presence or absence of a given gene in a genome. However, genomes harbor two very different categories of genes: those genes present in a majority of organisms – persistent genes – and those present in very few organisms – rare genes. Results We show that two classes of genes are significantly clustered in bacterial genomes: the highly persistent and the rare genes. The clustering of rare genes is readily explained by the selfish operon theory. Yet, genes persistently present in bacterial genomes are also clustered and we try to understand why. We propose a model accounting specifically for such clustering, and show that indispensability in a genome with frequent gene deletion and insertion leads to the transient clustering of these genes. The model describes how clusters are created via the gene flux that continuously introduces new genes while deleting others. We then test if known selective processes, such as co-transcription, physical interaction or functional neighborhood, account for the stabilization of these clusters. Conclusion We show that the strong selective pressure acting on the function of persistent genes, in a permanent state of flux of genes in bacterial genomes, maintaining their size fairly constant, that drives persistent genes clustering. A further selective stabilization process might contribute to maintaining the clustering. PMID:18179692

  15. Gene therapy on demand: site specific regulation of gene therapy.

    PubMed

    Jazwa, Agnieszka; Florczyk, Urszula; Jozkowicz, Alicja; Dulak, Jozef

    2013-08-10

    Since 1990 when the first clinical gene therapy trial was conducted, much attention and considerable promise have been given to this form of treatment. Gene therapy has been used with success in patients suffering from severe combined immunodeficiency syndromes (X-SCID and ADA-deficiency), Leber's congenital amaurosis, hemophilia, β-thalassemia and adrenoleukodystrophy. Last year, the first therapeutic vector (Glybera) for treatment of lipoprotein lipase deficiency has been registered in the European Union. Nevertheless, there are still several numerous issues that need to be improved to make this technique more safe, effective and easily accessible for patients. Introduction of the therapeutic gene to the given cells should provide the level of expression which will restore the production of therapeutic protein to normal values or will provide therapeutic efficacy despite not fully physiological expression. However, in numerous diseases the expression of therapeutic genes has to be kept at certain level for some time, and then might be required to be switched off to be activated again when worsening of the symptoms may aggravate the risk of disease relapse. In such cases the promoters which are regulated by local conditions may be more required. In this article the special emphasis is to discuss the strategies of regulation of gene expression by endogenous stimuli. Particularly, the hypoxia- or miRNA-regulated vectors offer the possibilities of tight but, at the same time, condition-dependent and cell-specific expression. Such means have been already tested in certain pathophysiological conditions. This creates the chance for the translational approaches required for development of effective treatments of so far incurable diseases. PMID:23566848

  16. Identification of Significant Association and Gene-Gene Interaction of GABA Receptor Subunit Genes in Autism

    PubMed Central

    Ma, D. Q.; Whitehead, P. L.; Menold, M. M.; Martin, E. R.; Ashley-Koch, A. E.; Mei, H.; Ritchie, M. D.; DeLong, G. R.; Abramson, R. K.; Wright, H. H.; Cuccaro, M. L.; Hussman, J. P.; Gilbert, J. R.; Pericak-Vance, M. A.

    2005-01-01

    Autism is a common neurodevelopmental disorder with a significant genetic component. Existing research suggests that multiple genes contribute to autism and that epigenetic effects or gene-gene interactions are likely contributors to autism risk. However, these effects have not yet been identified. Gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the adult brain, has been implicated in autism etiology. Fourteen known autosomal GABA receptor subunit genes were studied to look for the genes associated with autism and their possible interactions. Single-nucleotide polymorphisms (SNPs) were screened in the following genes: GABRG1, GABRA2, GABRA4, and GABRB1 on chromosome 4p12; GABRB2, GABRA6, GABRA1, GABRG2, and GABRP on 5q34-q35.1; GABRR1 and GABRR2 on 6q15; and GABRA5, GABRB3, and GABRG3 on 15q12. Intronic and/or silent mutation SNPs within each gene were analyzed in 470 white families with autism. Initially, SNPs were used in a family-based study for allelic association analysis—with the pedigree disequilibrium test and the family-based association test—and for genotypic and haplotypic association analysis—with the genotype-pedigree disequilibrium test (geno-PDT), the association in the presence of linkage (APL) test, and the haplotype family-based association test. Next, with the use of five refined independent marker sets, extended multifactor-dimensionality reduction (EMDR) analysis was employed to identify the models with locus joint effects, and interaction was further verified by conditional logistic regression. Significant allelic association was found for markers RS1912960 (in GABRA4; P = .01) and HCV9866022 (in GABRR2; P = .04). The geno-PDT found significant genotypic association for HCV8262334 (in GABRA2), RS1912960 and RS2280073 (in GABRA4), and RS2617503 and RS12187676 (in GABRB2). Consistent with the allelic and genotypic association results, EMDR confirmed the main effect at RS1912960 (in GABRA4). EMDR also identified a

  17. Evolution of Gene Duplication in Plants.

    PubMed

    Panchy, Nicholas; Lehti-Shiu, Melissa; Shiu, Shin-Han

    2016-08-01

    Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication. PMID:27288366

  18. Genome Majority Vote Improves Gene Predictions

    PubMed Central

    Wall, Michael E.; Raghavan, Sindhu; Cohn, Judith D.; Dunbar, John

    2011-01-01

    Recent studies have noted extensive inconsistencies in gene start sites among orthologous genes in related microbial genomes. Here we provide the first documented evidence that imposing gene start consistency improves the accuracy of gene start-site prediction. We applied an algorithm using a genome majority vote (GMV) scheme to increase the consistency of gene starts among orthologs. We used a set of validated Escherichia coli genes as a standard to quantify accuracy. Results showed that the GMV algorithm can correct hundreds of gene prediction errors in sets of five or ten genomes while introducing few errors. Using a conservative calculation, we project that GMV would resolve many inconsistencies and errors in publicly available microbial gene maps. Our simple and logical solution provides a notable advance toward accurate gene maps. PMID:22131910

  19. Genes and Syndromic Hearing Loss.

    ERIC Educational Resources Information Center

    Keats, Bronya J. B.

    2002-01-01

    This article provides a description of the human genome and patterns of inheritance and discusses genes that are associated with some of the syndromes for which hearing loss is a common finding, including: Waardenburg, Stickler, Jervell and Lange-Neilsen, Usher, Alport, mitochondrial encephalomyopathy, and sensorineural hearing loss. (Contains…

  20. Circadian gene variants in cancer

    PubMed Central

    Kettner, Nicole M.; Katchy, Chinenye A.; Fu, Loning

    2014-01-01

    Humans as diurnal beings are active during the day and rest at night. This daily oscillation of behavior and physiology is driven by an endogenous circadian clock not environmental cues. In modern societies, changes in lifestyle have led to a frequent disruption of the endogenous circadian homeostasis leading to increased risk of various diseases including cancer. The clock is operated by the feedback loops of circadian genes and controls daily physiology by coupling cell proliferation and metabolism, DNA damage repair, and apoptosis in peripheral tissues with physical activity, energy homeostasis, immune and neuroendocrine functions at the organismal level. Recent studies have revealed that defects in circadian genes due to targeted gene ablation in animal models or single nucleotide polymorphism, deletion, deregulation and/or epigenetic silencing in humans are closely associated with increased risk of cancer. In addition, disruption of circadian rhythm can disrupt the molecular clock in peripheral tissues in the absence of circadian gene mutations. Circadian disruption has recently been recognized as an independent cancer risk factor. Further study of the mechanism of clock-controlled tumor suppression will have a significant impact on human health by improving the efficiencies of cancer prevention and treatment. PMID:24901356

  1. Gene-Culture Coevolutionary Games

    ERIC Educational Resources Information Center

    Blute, Marion

    2006-01-01

    Gene-culture interactions have largely been modelled employing population genetic-type models. Moreover, in the most notable application to date, the "interactive" modes have been one way rather than bidirectional. This paper suggests using game theoretic, fully interactive models. Employing the logic utilized in population ecology for coevolution…

  2. Genes, Environment, and Human Behavior.

    ERIC Educational Resources Information Center

    Bloom, Mark V.; Cutter, Mary Ann; Davidson, Ronald; Dougherty, Michael J.; Drexler, Edward; Gelernter, Joel; McCullough, Laurence B.; McInerney, Joseph D.; Murray, Jeffrey C.; Vogler, George P.; Zola, John

    This curriculum module explores genes, environment, and human behavior. This book provides materials to teach about the nature and methods of studying human behavior, raise some of the ethical and public policy dilemmas emerging from the Human Genome Project, and provide professional development for teachers. An extensive Teacher Background…

  3. Gene therapy for bone healing

    PubMed Central

    Evans, Christopher H.

    2015-01-01

    Clinical problems in bone healing include large segmental defects, nonunion and delayed union of fractures, and spinal fusions. Gene-transfer technologies have the potential to aid healing by permitting the local delivery and sustained expression of osteogenic gene products within osseous lesions. Key questions for such an approach include the choice of transgene, vector and gene-transfer strategy. Most experimental data have been obtained using cDNAs encoding osteogenic growth factors such as bone morphogenetic protein-2 (BMP-2), BMP-4 and BMP-7, in conjunction with both nonviral and viral vectors using in vivo and ex vivo delivery strategies. Proof of principle has been convincingly demonstrated in small-animal models. Relatively few studies have used large animals, but the results so far are encouraging. Once a reliable method has been developed, it will be necessary to perform detailed pharmacological and toxicological studies, as well as satisfy other demands of the regulatory bodies, before human clinical trials can be initiated. Such studies are very expensive and often protracted. Thus, progress in developing a clinically useful gene therapy for bone healing is determined not only by scientific considerations, but also by financial constraints and the ambient regulatory environment. PMID:20569532

  4. Codon Adaptation of Plastid Genes.

    PubMed

    Suzuki, Haruo; Morton, Brian R

    2016-01-01

    Codon adaptation is codon usage bias that results from selective pressure to increase the translation efficiency of a gene. Codon adaptation has been studied across a wide range of genomes and some early analyses of plastids have shown evidence for codon adaptation in a limited set of highly expressed plastid genes. Here we study codon usage bias across all fully sequenced plastid genomes which includes representatives of the Rhodophyta, Alveolata, Cryptophyta, Euglenozoa, Glaucocystophyceae, Rhizaria, Stramenopiles and numerous lineages within the Viridiplantae, including Chlorophyta and Embryophyta. We show evidence that codon adaptation occurs in all genomes except for two, Theileria parva and Heicosporidium sp., both of which have highly reduced gene contents and no photosynthesis genes. We also show evidence that selection for codon adaptation increases the representation of the same set of codons, which we refer to as the adaptive codons, across this wide range of taxa, which is probably due to common features descended from the initial endosymbiont. We use various measures to estimate the relative strength of selection in the different lineages and show that it appears to be fairly strong in certain Stramenopiles and Chlorophyta lineages but relatively weak in many members of the Rhodophyta, Euglenozoa and Embryophyta. Given these results we propose that codon adaptation in plastids is widespread and displays the same general features as adaptation in eubacterial genomes. PMID:27196606

  5. Codon Adaptation of Plastid Genes

    PubMed Central

    Suzuki, Haruo; Morton, Brian R.

    2016-01-01

    Codon adaptation is codon usage bias that results from selective pressure to increase the translation efficiency of a gene. Codon adaptation has been studied across a wide range of genomes and some early analyses of plastids have shown evidence for codon adaptation in a limited set of highly expressed plastid genes. Here we study codon usage bias across all fully sequenced plastid genomes which includes representatives of the Rhodophyta, Alveolata, Cryptophyta, Euglenozoa, Glaucocystophyceae, Rhizaria, Stramenopiles and numerous lineages within the Viridiplantae, including Chlorophyta and Embryophyta. We show evidence that codon adaptation occurs in all genomes except for two, Theileria parva and Heicosporidium sp., both of which have highly reduced gene contents and no photosynthesis genes. We also show evidence that selection for codon adaptation increases the representation of the same set of codons, which we refer to as the adaptive codons, across this wide range of taxa, which is probably due to common features descended from the initial endosymbiont. We use various measures to estimate the relative strength of selection in the different lineages and show that it appears to be fairly strong in certain Stramenopiles and Chlorophyta lineages but relatively weak in many members of the Rhodophyta, Euglenozoa and Embryophyta. Given these results we propose that codon adaptation in plastids is widespread and displays the same general features as adaptation in eubacterial genomes. PMID:27196606

  6. Buffering in cyclic gene networks

    NASA Astrophysics Data System (ADS)

    Glyzin, S. D.; Kolesov, A. Yu.; Rozov, N. Kh.

    2016-06-01

    We consider cyclic chains of unidirectionally coupled delay differential-difference equations that are mathematical models of artificial oscillating gene networks. We establish that the buffering phenomenon is realized in these system for an appropriate choice of the parameters: any given finite number of stable periodic motions of a special type, the so-called traveling waves, coexist.

  7. Seed Targeted Gene Confinement Strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genetic improvement of plants using biotechnology is now centrally important to agriculture, food security, and the biofuels industry. It is also important to the continued health of the environment as the need for food (on existing arable land) and renewable energy becomes critical. New genes c...

  8. Gene transfer in intact animals

    NASA Astrophysics Data System (ADS)

    Cline, M. J.; Stang, H.; Mercola, K.; Morse, L.; Ruprecht, R.; Browne, J.; Salser, W.

    1980-04-01

    Resistance to methotrexate was induced in bone marrow cells of mice by transformation in vitro with DNA from a drug-resistant cell line. Transformed cells were injected in vivo and haematopoietic cells expressing resistance were selected by drug treatment of recipients. Transformed cells had elevated levels of dihydrofolate reductase and demonstrated a proliferative advantage over untransformed cells, indicating successful gene transfer.

  9. Globin gene switching in primates.

    PubMed

    Johnson, Robert M; Gumucio, Deborah; Goodman, Morris

    2002-11-01

    Evolutionary approaches to the identification of DNA sequences required for transcription of the genes of the beta-globin cluster are reviewed. Sequence alignments of non-coding regions from widely divergent species revealed many conserved motifs (phylogenetic footprints) that were putative transcription factor binding sites and candidate binding proteins were identified. The differential timing of the prosimian and simian gamma-globin genes was analyzed by identifying base changes in the vicinity of the phylogenetic footprints. These differential phylogenetic footprints were shown to bind different nuclear factors, and the behavior of constructs with human or galago gamma-promoters in transgenic mice indicated that DNA motifs near the gamma-globin genes are sufficient to determine the developmental stage of expression. Locus control region alignments have identified many conserved sequence differences outside of the hypersensitive sites. Globin protein and mRNA expression profiles during embryological development in a series of catarrhine (Old World monkeys and apes) and platyrrhine (New World monkeys) primates have been determined. While all catarrhines examined to date have globin expression patterns that are highly similar to the well-established human switching behavior, platyrrhines have inactivated their gamma 1 genes by a variety of mechanisms, and have an earlier gamma-beta switch. PMID:12443943

  10. Ethics of Gene Therapy Debated.

    ERIC Educational Resources Information Center

    Borman, Stu

    1991-01-01

    Presented are the highlights of a press conference featuring biomedical ethicist LeRoy Walters of Georgetown University and attorney Andrew Kimbrell of the Foundation on Economic Trends. The opposing points of view of these two speakers serve to outline the pros and cons of the gene therapy issue. (CW)

  11. Making Your Own Gene Library.

    ERIC Educational Resources Information Center

    Perez-Ortin, Jose E.; Li Del Olmo, Marcel; Matallana, Emilia; Tordera, Vicente

    1997-01-01

    Presents an experiment aimed at constructing a genomic library that can be carried out over a week. Helps students learn concepts such as donor and vector DNAs, construction of recombinant DNA, host strain, and experiments in gene cloning more clearly. (PVD)

  12. Patching genes to fight disease

    SciTech Connect

    Holzman, D.

    1990-09-03

    The National Institutes of Health has approved the first gene therapy experiments, one of which will try to cure cancer by bolstering the immune system. The applications of such therapy are limited, but the potential aid to people with genetic diseases is great.

  13. Gene expression profile of pulpitis.

    PubMed

    Galicia, J C; Henson, B R; Parker, J S; Khan, A A

    2016-06-01

    The cost, prevalence and pain associated with endodontic disease necessitate an understanding of the fundamental molecular aspects of its pathogenesis. This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=20). Normal pulps from teeth extracted for various reasons served as controls (n=20). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the significance analysis of microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients (⩾30 mm on VAS) compared with those with moderate to severe pain. This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology. PMID:27052691

  14. Phytochrome-regulated Gene Expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent compre...

  15. Identification of gene-gene and gene-environment interactions within the fibrinogen gene cluster for fibrinogen levels in three ethnically diverse populations.

    PubMed

    Jeff, Janina M; Brown-Gentry, Kristin; Crawford, Dana C

    2015-01-01

    Elevated levels of plasma fibrinogen are associated with clot formation in the absence of inflammation or injury and is a biomarker for arterial clotting, the leading cause of cardiovascular disease. Fibrinogen levels are heritable with >50% attributed to genetic factors, however little is known about possible genetic modifiers that might explain the missing heritability. The fibrinogen gene cluster is comprised of three genes (FGA, FGB, and FGG) that make up the fibrinogen polypeptide essential for fibrinogen production in the blood. Given the known interaction with these genes, we tested 25 variants in the fibrinogen gene cluster for gene x gene and gene x environment interactions in 620 non-Hispanic blacks, 1,385 non-Hispanic whites, and 664 Mexican Americans from a cross-sectional dataset enriched with environmental data, the Third National Health and Nutrition Examination Survey (NHANES III). Using a multiplicative approach, we added cross product terms (gene x gene or gene x environment) to a linear regression model and declared significance at p < 0.05. We identified 19 unique gene x gene and 13 unique gene x environment interactions that impact fibrinogen levels in at least one population at p < 0.05. Over 90% of the gene x gene interactions identified include a variant in the rate-limiting gene, FGB that is essential for the formation of the fibrinogen polypeptide. We also detected gene x environment interactions with fibrinogen variants and sex, smoking, and body mass index. These findings highlight the potential for the discovery of genetic modifiers for complex phenotypes in multiple populations and give a better understanding of the interaction between genes and/or the environment for fibrinogen levels. The need for more powerful and robust methods to identify genetic modifiers is still warranted. PMID:25592583

  16. IDENTIFICATION OF GENE-GENE AND GENE-ENVIRONMENT INTERACTIONS WITHIN THE FIBRINOGEN GENE CLUSTER FOR FIBRINOGEN LEVELS IN THREE ETHNICALLY DIVERSE POPULATIONS

    PubMed Central

    Jeff, Janina M.; Brown-Gentry, Kristin; Crawford, Dana C.

    2014-01-01

    Elevated levels of plasma fibrinogen are associated with clot formation in the absence of inflammation or injury and is a biomarker for arterial clotting, the leading cause of cardiovascular disease. Fibrinogen levels are heritable with >50% attributed to genetic factors, however little is known about possible genetic modifiers that might explain the missing heritability. The fibrinogen gene cluster is comprised of three genes (FGA, FGB, and FGG) that make up the fibrinogen polypeptide essential for fibrinogen production in the blood. Given the known interaction with these genes, we tested 25 variants in the fibrinogen gene cluster for gene × gene and gene × environment interactions in 620 non-Hispanic blacks, 1,385 non-Hispanic whites, and 664 Mexican Americans from a cross-sectional dataset enriched with environmental data, the Third National Health and Nutrition Examination Survey (NHANES III). Using a multiplicative approach, we added cross product terms (gene × gene or gene × environment) to a linear regression model and declared significance at p < 0.05. We identified 19 unique gene × gene and 13 unique gene × environment interactions that impact fibrinogen levels in at least one population at p <0.05. Over 90% of the gene × gene interactions identified include a variant in the rate-limiting gene, FGB that is essential for the formation of the fibrinogen polypeptide. We also detected gene × environment interactions with fibrinogen variants and sex, smoking, and body mass index. These findings highlight the potential for the discovery of genetic modifiers for complex phenotypes in multiple populations and give a better understanding of the interaction between genes and/or the environment for fibrinogen levels. The need for more powerful and robust methods to identify genetic modifiers is still warranted. PMID:25592583

  17. Evolution of the chicken Toll-like receptor gene family: A story of gene gain and gene loss

    PubMed Central

    Temperley, Nicholas D; Berlin, Sofia; Paton, Ian R; Griffin, Darren K; Burt, David W

    2008-01-01

    Background Toll-like receptors (TLRs) perform a vital role in disease resistance through their recognition of pathogen associated molecular patterns (PAMPs). Recent advances in genomics allow comparison of TLR genes within and between many species. This study takes advantage of the recently sequenced chicken genome to determine the complete chicken TLR repertoire and place it in context of vertebrate genomic evolution. Results The chicken TLR repertoire consists of ten genes. Phylogenetic analyses show that six of these genes have orthologs in mammals and fish, while one is only shared by fish and three appear to be unique to birds. Furthermore the phylogeny shows that TLR1-like genes arose independently in fish, birds and mammals from an ancestral gene also shared by TLR6 and TLR10. All other TLRs were already present prior to the divergence of major vertebrate lineages 550 Mya (million years ago) and have since been lost in certain lineages. Phylogenetic analysis shows the absence of TLRs 8 and 9 in chicken to be the result of gene loss. The notable exception to the tendency of gene loss in TLR evolution is found in chicken TLRs 1 and 2, each of which underwent gene duplication about 147 and 65 Mya, respectively. Conclusion Comparative phylogenetic analysis of vertebrate TLR genes provides insight into their patterns and processes of gene evolution, with examples of both gene gain and gene loss. In addition, these comparisons clarify the nomenclature of TLR genes in vertebrates. PMID:18241342

  18. The P450 gene superfamily: recommended nomenclature.

    PubMed

    Nebert, D W; Adesnik, M; Coon, M J; Estabrook, R W; Gonzalez, F J; Guengerich, F P; Gunsalus, I C; Johnson, E F; Kemper, B; Levin, W

    1987-02-01

    A nomenclature for the P450 gene superfamily is proposed based on evolution. Recommendations include Roman numerals for distinct gene families, capital letters for subfamilies, and Arabic numerals for individual genes. An updating of this list, which presently includes 65 entries, will be required every 1-2 years. Assignment of orthologous genes is presently uncertain in some cases--between widely diverged species and especially in the P450II family due to the large number of genes. As more is known, it might become necessary to change some gene assignments that are based on our present knowledge. PMID:3829886

  19. [Realities and hopes of gene therapy].

    PubMed

    Zdanov, R I; Semenova, N V; Archakov, A I

    2000-01-01

    The work represents an introduction article of editors of special issue of the magazine devoted to gene therapy and therapeutics. The main results of clinical gene therapy in the past decade are critically considered in connection with a changes of paradigms of the field. They are: 1) change of the main target of genetic therapy--correction of defects in chromosomes--onto expression and/or output of target genes for gene therapy; 2) transfer from gene transplantation to cell transplantation; 3) tendency for the use of safe/non-viral vectors instead of viral ones.; and 4) conflict of interests in gene therapy. Outlooks in the field are discussed. PMID:11033881

  20. Delivery of genes into the CF airway.

    PubMed

    Gill, Deborah R; Hyde, Stephen C

    2014-10-01

    Gene therapy was suggested as a potential treatment for cystic fibrosis (CF), even before the identification of the CFTR gene. Initial enthusiasm has been tempered as it became apparent that reintroduction of the CFTR gene into the cells of the lung is more difficult than anticipated. Here, we review the major gene delivery vectors evaluated clinically, and suggest that advances in either plasmid DNA design and/or hybrid lentivirus biology may finally facilitate lung gene transfer with efficiencies sufficient for CF gene therapy to offer clinical benefit. PMID:25015239

  1. The MDM2 gene family.

    PubMed

    Mendoza, Michael; Mandani, Garni; Momand, Jamil

    2014-03-01

    MDM2 is an oncoprotein that blocks p53 tumor suppressor-mediated transcriptional transactivation, escorts p53 from the cell nucleus to the cytoplasm, and polyubiquitylates p53. Polyubiquitylated p53 is rapidly degraded in the cytoplasm by the 26S proteasome. MDM2 is abnormally upregulated in several types of cancers, especially those of mesenchymal origin. MDM4 is a homolog of MDM2 that also inhibits p53 by blocking p53-mediated transactivation. MDM4 is required for MDM2-mediated polyubiquitylated of p53 and is abnormally upregulated in several cancer types. MDM2 and MDM4 genes have been detected in all vertebrates to date and only a single gene homolog, named MDM, has been detected in some invertebrates. MDM2, MDM4, and MDM have similar gene structures, suggesting that MDM2 and MDM4 arose through a duplication event more than 440 million years ago. All members of this small MDM2 gene family contain a single really interesting new gene (RING) domain (with the possible exception of lancelet MDM) which places them in the RING-domain superfamily. Similar to MDM2, the vast majority of proteins with RING domains are E3 ubiquitin ligases. Other RING domain E3 ubiquitin ligases that target p53 are COP1, Pirh2, and MSL2. In this report, we present evidence that COP1, Pirh2, and MSL2 evolved independently of MDM2 and MDM4. We also show, through structure homology models of invertebrate MDM RING domains, that MDM2 is more evolutionarily conserved than MDM4. PMID:25372739

  2. Gene losses during human origins.

    PubMed

    Wang, Xiaoxia; Grus, Wendy E; Zhang, Jianzhi

    2006-03-01

    Pseudogenization is a widespread phenomenon in genome evolution, and it has been proposed to serve as an engine of evolutionary change, especially during human origins (the "less-is-more" hypothesis). However, there has been no comprehensive analysis of human-specific pseudogenes. Furthermore, it is unclear whether pseudogenization itself can be selectively favored and thus play an active role in human evolution. Here we conduct a comparative genomic analysis and a literature survey to identify 80 nonprocessed pseudogenes that were inactivated in the human lineage after its separation from the chimpanzee lineage. Many functions are involved among these genes, with chemoreception and immune response being outstandingly overrepresented, suggesting potential species-specific features in these aspects of human physiology. To explore the possibility of adaptive pseudogenization, we focus on CASPASE12, a cysteinyl aspartate proteinase participating in inflammatory and innate immune response to endotoxins. We provide population genetic evidence that the nearly complete fixation of a null allele at CASPASE12 has been driven by positive selection, probably because the null allele confers protection from severe sepsis. We estimate that the selective advantage of the null allele is about 0.9% and the pseudogenization started shortly before the out-of-Africa migration of modern humans. Interestingly, two other genes related to sepsis were also pseudogenized in humans, possibly by selection. These adaptive gene losses might have occurred because of changes in our environment or genetic background that altered the threat from or response to sepsis. The identification and analysis of human-specific pseudogenes open the door for understanding the roles of gene losses in human origins, and the demonstration that gene loss itself can be adaptive supports and extends the "less-is-more" hypothesis. PMID:16464126

  3. Identification of essential genes and synthetic lethal gene combinations in Escherichia coli K-12.

    PubMed

    Mori, Hirotada; Baba, Tomoya; Yokoyama, Katsushi; Takeuchi, Rikiya; Nomura, Wataru; Makishi, Kazuichi; Otsuka, Yuta; Dose, Hitomi; Wanner, Barry L

    2015-01-01

    Here we describe the systematic identification of single genes and gene pairs, whose knockout causes lethality in Escherichia coli K-12. During construction of precise single-gene knockout library of E. coli K-12, we identified 328 essential gene candidates for growth in complex (LB) medium. Upon establishment of the Keio single-gene deletion library, we undertook the development of the ASKA single-gene deletion library carrying a different antibiotic resistance. In addition, we developed tools for identification of synthetic lethal gene combinations by systematic construction of double-gene knockout mutants. We introduce these methods herein. PMID:25636612

  4. Gene Therapy in the Cornea: 2005-present

    PubMed Central

    Mohan, Rajiv R.; Tovey, Jonathan C.K.; Sharma, Ajay; Tandon, Ashish

    2011-01-01

    Successful restoration of vision in human patients with gene therapy affirmed its promise to cure ocular diseases and disorders. The efficacy of gene therapy is contingent upon vector and mode of therapeutic DNA introduction into targeted cells/tissues. The cornea is an ideal tissue for gene therapy due to its ease of access and relative immune-privilege. Considerable progress has been made in the field of corneal gene therapy in last 5 years. Several new gene transfer vectors, techniques and approaches have evolved. Although corneal gene therapy is still in its early stages of development, the potential of gene-based interventions to treat corneal abnormalities have begun to surface. Identification of next generation viral and nanoparticle vectors, characterization of delivered gene levels, localization, and duration in the cornea, and significant success in controlling corneal disorders, particularly fibrosis and angiogenesis, in experimental animal disease models, with no major side effects have propelled gene therapy a step closer towards establishing gene-based therapies for corneal blindness. Recently, researchers have assessed the delivery of therapeutic genes for corneal diseases and disorders due to trauma, infections, chemical, mechanical, and surgical injury, and/or abnormal wound healing. This review provides an update on the developments in gene therapy for corneal diseases and discusses the barriers that hinder its utilization for delivering genes in the cornea. PMID:21967960

  5. Gene family matters: expanding the HGNC resource

    PubMed Central

    2012-01-01

    The HUGO Gene Nomenclature Committee (HGNC) assigns approved gene symbols to human loci. There are currently over 33,000 approved gene symbols, the majority of which represent protein-coding genes, but we also name other locus types such as non-coding RNAs, pseudogenes and phenotypic loci. Where relevant, the HGNC organise these genes into gene families and groups. The HGNC website http://www.genenames.org/ is an online repository of HGNC-approved gene nomenclature and associated resources for human genes, and includes links to genomic, proteomic and phenotypic information. In addition to this, we also have dedicated gene family web pages and are currently expanding and generating more of these pages using data curated by the HGNC and from information derived from external resources that focus on particular gene families. Here, we review our current online resources with a particular focus on our gene family data, using it to highlight our new Gene Symbol Report and gene family data downloads. PMID:23245209

  6. Gene family matters: expanding the HGNC resource.

    PubMed

    Daugherty, Louise C; Seal, Ruth L; Wright, Mathew W; Bruford, Elspeth A

    2012-01-01

    The HUGO Gene Nomenclature Committee (HGNC) assigns approved gene symbols to human loci. There are currently over 33,000 approved gene symbols, the majority of which represent protein-coding genes, but we also name other locus types such as non-coding RNAs, pseudogenes and phenotypic loci. Where relevant, the HGNC organise these genes into gene families and groups. The HGNC website http://www.genenames.org/ is an online repository of HGNC-approved gene nomenclature and associated resources for human genes, and includes links to genomic, proteomic and phenotypic information. In addition to this, we also have dedicated gene family web pages and are currently expanding and generating more of these pages using data curated by the HGNC and from information derived from external resources that focus on particular gene families. Here, we review our current online resources with a particular focus on our gene family data, using it to highlight our new Gene Symbol Report and gene family data downloads. PMID:23245209

  7. Bayesian Variable Selection for Hierarchical Gene-Environment and Gene-Gene Interactions

    PubMed Central

    Liu, Changlu; Ma, Jianzhong; Amos, Christopher I.

    2014-01-01

    We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions and gene by environment interactions in the same model. Our approach incorporates the natural hierarchical structure between the main effects and interaction effects into a mixture model, such that our methods tend to remove the irrelevant interaction effects more effectively, resulting in more robust and parsimonious models. We consider both strong and weak hierarchical models. For a strong hierarchical model, both of the main effects between interacting factors must be present for the interactions to be considered in the model development, while for a weak hierarchical model, only one of the two main effects is required to be present for the interaction to be evaluated. Our simulation results show that the proposed strong and weak hierarchical mixture models work well in controlling false positive rates and provide a powerful approach for identifying the predisposing effects and interactions in gene-environment interaction studies, in comparison with the naive model that does not impose this hierarchical constraint in most of the scenarios simulated. We illustrated our approach using data for lung cancer and cutaneous melanoma. PMID:25154630

  8. Structures of two molluscan hemocyanin genes: Significance for gene evolution

    PubMed Central

    Lieb, Bernhard; Altenhein, Benjamin; Markl, Jürgen; Vincent, Alexandra; van Olden, Erin; van Holde, Kensal E.; Miller, Karen I.

    2001-01-01

    We present here the description of genes coding for molluscan hemocyanins. Two distantly related mollusks, Haliotis tuberculata and Octopus dofleini, were studied. The typical architecture of a molluscan hemocyanin subunit, which is a string of seven or eight globular functional units (FUs, designated a to h, about 50 kDa each), is reflected by the gene organization: a series of eight structurally related coding regions in Haliotis, corresponding to FU-a to FU-h, with seven highly variable linker introns of 174 to 3,198 bp length (all in phase 1). In Octopus seven coding regions (FU-a to FU-g) are found, separated by phase 1 introns varying in length from 100 bp to 910 bp. Both genes exhibit typical signal (export) sequences, and in both cases these are interrupted by an additional intron. Each gene also contains an intron between signal peptide and FU-a and in the 3′ untranslated region. Of special relevance for evolutionary considerations are introns interrupting those regions that encode a discrete functional unit. We found that five of the eight FUs in Haliotis each are encoded by a single exon, whereas FU-f, FU-g, and FU-a are encoded by two, three and four exons, respectively. Similarly, in Octopus four of the FUs each correspond to an uninterrupted exon, whereas FU-b, FU-e, and FU-f each contain a single intron. Although the positioning of the introns between FUs is highly conserved in the two mollusks, the introns within FUs show no relationship either in location nor phase. It is proposed that the introns between FUs were generated as the eight-unit polypeptide evolved from a monomeric precursor, and that the internal introns have been added later. A hypothesis for evolution of the ring-like quaternary structure of molluscan hemocyanins is presented. PMID:11287637

  9. Sequence and gene expression evolution of paralogous genes in willows.

    PubMed

    Harikrishnan, Srilakshmy L; Pucholt, Pascal; Berlin, Sofia

    2015-01-01

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows. PMID:26689951

  10. Gene-gene interactions in breast cancer susceptibility.

    PubMed

    Turnbull, Clare; Seal, Sheila; Renwick, Anthony; Warren-Perry, Margaret; Hughes, Deborah; Elliott, Anna; Pernet, David; Peock, Susan; Adlard, Julian W; Barwell, Julian; Berg, Jonathan; Brady, Angela F; Brewer, Carole; Brice, Glen; Chapman, Cyril; Cook, Jackie; Davidson, Rosemarie; Donaldson, Alan; Douglas, Fiona; Greenhalgh, Lynn; Henderson, Alex; Izatt, Louise; Kumar, Ajith; Lalloo, Fiona; Miedzybrodzka, Zosia; Morrison, Patrick J; Paterson, Joan; Porteous, Mary; Rogers, Mark T; Shanley, Susan; Walker, Lisa; Ahmed, Munaza; Eccles, Diana; Evans, D Gareth; Donnelly, Peter; Easton, Douglas F; Stratton, Michael R; Rahman, Nazneen

    2012-02-15

    There have been few definitive examples of gene-gene interactions in humans. Through mutational analyses in 7325 individuals, we report four interactions (defined as departures from a multiplicative model) between mutations in the breast cancer susceptibility genes ATM and CHEK2 with BRCA1 and BRCA2 (case-only interaction between ATM and BRCA1/BRCA2 combined, P = 5.9 × 10(-4); ATM and BRCA1, P= 0.01; ATM and BRCA2, P= 0.02; CHEK2 and BRCA1/BRCA2 combined, P = 2.1 × 10(-4); CHEK2 and BRCA1, P= 0.01; CHEK2 and BRCA2, P= 0.01). The interactions are such that the resultant risk of breast cancer is lower than the multiplicative product of the constituent risks, and plausibly reflect the functional relationships of the encoded proteins in DNA repair. These findings have important implications for models of disease predisposition and clinical translation. PMID:22072393

  11. Sequence and gene expression evolution of paralogous genes in willows

    PubMed Central

    Harikrishnan, Srilakshmy L.; Pucholt, Pascal; Berlin, Sofia

    2015-01-01

    Whole genome duplications (WGD) have had strong impacts on species diversification by triggering evolutionary novelties, however, relatively little is known about the balance between gene loss and forces involved in the retention of duplicated genes originating from a WGD. We analyzed putative Salicoid duplicates in willows, originating from the Salicoid WGD, which took place more than 45 Mya. Contigs were constructed by de novo assembly of RNA-seq data derived from leaves and roots from two genotypes. Among the 48,508 contigs, 3,778 pairs were, based on fourfold synonymous third-codon transversion rates and syntenic positions, predicted to be Salicoid duplicates. Both copies were in most cases expressed in both tissues and 74% were significantly differentially expressed. Mean Ka/Ks was 0.23, suggesting that the Salicoid duplicates are evolving by purifying selection. Gene Ontology enrichment analyses showed that functions related to DNA- and nucleic acid binding were over-represented among the non-differentially expressed Salicoid duplicates, while functions related to biosynthesis and metabolism were over-represented among the differentially expressed Salicoid duplicates. We propose that the differentially expressed Salicoid duplicates are regulatory neo- and/or subfunctionalized, while the non-differentially expressed are dose sensitive, hence, functionally conserved. Multiple evolutionary processes, thus drive the retention of Salicoid duplicates in willows. PMID:26689951

  12. Gene identification and classification in the Synechocystis genomic sequence by recursive gene mark analysis.

    PubMed

    Hirosawa, M; Isono, K; Hayes, W; Borodovsky, M

    1997-01-01

    The GeneMark method has proven to be an efficient gene-finding tool for the analysis of prokaryotic genomic sequence data. We have developed a procedure of deriving and utilizing several GeneMark models in order to get better gene-detection performance. Upon applying this procedure to the 1.0 Mb contiguous DNA sequence of Synechocystis sp. strain PCC6803, we were able to cluster predicted genes into distinct classes and to produce the class-specific GeneMark models reflecting statistical characteristics of each gene class. One gene class apparently includes genes of exogenous origin. Using class-specific models reduces the gene under prediction error rate down to 1.7% in comparison with 8.1% reported in the previous study when only one GeneMark model was used. PMID:9522117

  13. Optimal search-based gene subset selection for gene array cancer classification.

    PubMed

    Li, Jiexun; Su, Hua; Chen, Hsinchun; Futscher, Bernard W

    2007-07-01

    High dimensionality has been a major problem for gene array-based cancer classification. It is critical to identify marker genes for cancer diagnoses. We developed a framework of gene selection methods based on previous studies. This paper focuses on optimal search-based subset selection methods because they evaluate the group performance of genes and help to pinpoint global optimal set of marker genes. Notably, this paper is the first to introduce tabu search (TS) to gene selection from high-dimensional gene array data. Our comparative study of gene selection methods demonstrated the effectiveness of optimal search-based gene subset selection to identify cancer marker genes. TS was shown to be a promising tool for gene subset selection. PMID:17674622

  14. Plant Evolution: Evolving Antagonistic Gene Regulatory Networks.

    PubMed

    Cooper, Endymion D

    2016-06-20

    Developing a structurally complex phenotype requires a complex regulatory network. A new study shows how gene duplication provides a potential source of antagonistic interactions, an important component of gene regulatory networks. PMID:27326708

  15. Five New Genes Linked to Colon Cancer

    MedlinePlus

    ... nih.gov/medlineplus/news/fullstory_159556.html Five New Genes Linked to Colon Cancer But researchers say ... 24, 2016 (HealthDay News) -- Scientists have identified five new gene mutations that may be tied to colon ...

  16. Genes and Disease: Prader-Willi Syndrome

    MedlinePlus

    ... Medicine, National Institutes of Health. National Center for Biotechnology Information (US). Genes and Disease [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 1998-. Genes and Disease [Internet]. Show ...

  17. Gene Therapy and Children (For Parents)

    MedlinePlus

    ... screenings or other regular exams. previous continue The Future of Gene Therapy To cure genetic diseases, scientists ... Gene therapy's potential to revolutionize medicine in the future is exciting, and hopes are high for its ...

  18. 'Freckle' Gene Might Make You Look Older

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_158556.html 'Freckle' Gene Might Make You Look Older Scientists say certain ... 28, 2016 (HealthDay News) -- Variations in a particular gene may help explain why some people appear more ...

  19. 'Freckle' Gene Might Make You Look Older

    MedlinePlus

    ... nih.gov/medlineplus/news/fullstory_158556.html 'Freckle' Gene Might Make You Look Older Scientists say certain ... 28, 2016 (HealthDay News) -- Variations in a particular gene may help explain why some people appear more ...

  20. 'Sunscreen' Gene May Guard Against Skin Cancer

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_158935.html 'Sunscreen' Gene May Guard Against Skin Cancer Researchers hope ... Scientists say they've identified a so-called "sunscreen" gene that may help protect against skin cancer. ...

  1. NIH Researchers Identify OCD Risk Gene

    MedlinePlus

    ... News From NIH NIH Researchers Identify OCD Risk Gene Past Issues / Summer 2006 Table of Contents For ... and Alcoholism (NIAAA) have identified a previously unknown gene variant that doubles an individual's risk for obsessive- ...

  2. In The Genes? Searching for Methuselah

    MedlinePlus

    ... Current Issue Past Issues Special Section In The Genes? Searching for Methuselah Past Issues / Winter 2007 Table ... 18 million effort to learn more about the genes, lifestyle or other factors that contribute to long, ...

  3. Alzheimer's Gene May Show Effects in Childhood

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_159854.html Alzheimer's Gene May Show Effects in Childhood Brain scans reveal ... 2016 WEDNESDAY, July 13, 2016 (HealthDay News) -- A gene related to Alzheimer's disease may start to show ...

  4. Gene Conversion in Human Genetic Disease

    PubMed Central

    Chen, Jian-Min; Férec, Claude; Cooper, David N.

    2010-01-01

    Gene conversion is a specific type of homologous recombination that involves the unidirectional transfer of genetic material from a ‘donor’ sequence to a highly homologous ‘acceptor’. We have recently reviewed the molecular mechanisms underlying gene conversion, explored the key part that this process has played in fashioning extant human genes, and performed a meta-analysis of gene-conversion events known to have caused human genetic disease. Here we shall briefly summarize some of the latest developments in the study of pathogenic gene conversion events, including (i) the emerging idea of minimal efficient sequence homology (MESH) for homologous recombination, (ii) the local DNA sequence features that appear to predispose to gene conversion, (iii) a mechanistic comparison of gene conversion and transient hypermutability, and (iv) recently reported examples of pathogenic gene conversion events. PMID:24710102

  5. Five New Genes Linked to Colon Cancer

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_159556.html Five New Genes Linked to Colon Cancer But researchers say ... 24, 2016 (HealthDay News) -- Scientists have identified five new gene mutations that may be tied to colon ...

  6. Gene Coexpression Network Analysis as a Source of Functional Annotation for Rice Genes

    PubMed Central

    Childs, Kevin L.; Davidson, Rebecca M.; Buell, C. Robin

    2011-01-01

    With the existence of large publicly available plant gene expression data sets, many groups have undertaken data analyses to construct gene coexpression networks and functionally annotate genes. Often, a large compendium of unrelated or condition-independent expression data is used to construct gene networks. Condition-dependent expression experiments consisting of well-defined conditions/treatments have also been used to create coexpression networks to help examine particular biological processes. Gene networks derived from either condition-dependent or condition-independent data can be difficult to interpret if a large number of genes and connections are present. However, algorithms exist to identify modules of highly connected and biologically relevant genes within coexpression networks. In this study, we have used publicly available rice (Oryza sativa) gene expression data to create gene coexpression networks using both condition-dependent and condition-independent data and have identified gene modules within these networks using the Weighted Gene Coexpression Network Analysis method. We compared the number of genes assigned to modules and the biological interpretability of gene coexpression modules to assess the utility of condition-dependent and condition-independent gene coexpression networks. For the purpose of providing functional annotation to rice genes, we found that gene modules identified by coexpression analysis of condition-dependent gene expression experiments to be more useful than gene modules identified by analysis of a condition-independent data set. We have incorporated our results into the MSU Rice Genome Annotation Project database as additional expression-based annotation for 13,537 genes, 2,980 of which lack a functional annotation description. These results provide two new types of functional annotation for our database. Genes in modules are now associated with groups of genes that constitute a collective functional annotation of those

  7. Connected gene neighborhoods in prokaryotic genomes

    PubMed Central

    Rogozin, Igor B.; Makarova, Kira S.; Murvai, Janos; Czabarka, Eva; Wolf, Yuri I.; Tatusov, Roman L.; Szekely, Laszlo A.; Koonin, Eugene V.

    2002-01-01

    A computational method was developed for delineating connected gene neighborhoods in bacterial and archaeal genomes. These gene neighborhoods are not typically present, in their entirety, in any single genome, but are held together by overlapping, partially conserved gene arrays. The procedure was applied to comparing the orders of orthologous genes, which were extracted from the database of Clusters of Orthologous Groups of proteins (COGs), in 31 prokaryotic genomes and resulted in the identification of 188 clusters of gene arrays, which included 1001 of 2890 COGs. These clusters were projected onto actual genomes to produce extended neighborhoods including additional genes, which are adjacent to the genes from the clusters and are transcribed in the same direction, which resulted in a total of 2387 COGs being included in the neighborhoods. Most of the neighborhoods consist predominantly of genes united by a coherent functional theme, but also include a minority of genes without an obvious functional connection to the main theme. We hypothesize that although some of the latter genes might have unsuspected roles, others are maintained within gene arrays because of the advantage of expression at a level that is typical of the given neighborhood. We designate this phenomenon ‘genomic hitchhiking’. The largest neighborhood includes 79 genes (COGs) and consists of overlapping, rearranged ribosomal protein superoperons; apparent genome hitchhiking is particularly typical of this neighborhood and other neighborhoods that consist of genes coding for translation machinery components. Several neighborhoods involve previously undetected connections between genes, allowing new functional predictions. Gene neighborhoods appear to evolve via complex rearrangement, with different combinations of genes from a neighborhood fixed in different lineages. PMID:12000841

  8. Plant nitrogen regulatory P-PII genes

    DOEpatents

    Coruzzi, Gloria M.; Lam, Hon-Ming; Hsieh, Ming-Hsiun

    2001-01-01

    The present invention generally relates to plant nitrogen regulatory PII gene (hereinafter P-PII gene), a gene involved in regulating plant nitrogen metabolism. The invention provides P-PII nucleotide sequences, expression constructs comprising said nucleotide sequences, and host cells and plants having said constructs and, optionally expressing the P-PII gene from said constructs. The invention also provides substantially pure P-PII proteins. The P-PII nucleotide sequences and constructs of the

  9. Gene therapy in monogenic congenital myopathies.

    PubMed

    Guan, Xuan; Goddard, Melissa A; Mack, David L; Childers, Martin K

    2016-04-15

    Current treatment options for patients with monogenetic congenital myopathies (MCM) ameliorate the symptoms of the disorder without resolving the underlying cause. However, gene therapies are being developed where the mutated or deficient gene target is replaced. Preclinical findings in animal models appear promising, as illustrated by gene replacement for X-linked myotubular myopathy (XLMTM) in canine and murine models. Prospective applications and approaches to gene replacement therapy, using these disorders as examples, are discussed in this review. PMID:26454198

  10. Graph ranking for exploratory gene data analysis

    PubMed Central

    2009-01-01

    Background Microarray technology has made it possible to simultaneously monitor the expression levels of thousands of genes in a single experiment. However, the large number of genes greatly increases the challenges of analyzing, comprehending and interpreting the resulting mass of data. Selecting a subset of important genes is inevitable to address the challenge. Gene selection has been investigated extensively over the last decade. Most selection procedures, however, are not sufficient for accurate inference of underlying biology, because biological significance does not necessarily have to be statistically significant. Additional biological knowledge needs to be integrated into the gene selection procedure. Results We propose a general framework for gene ranking. We construct a bipartite graph from the Gene Ontology (GO) and gene expression data. The graph describes the relationship between genes and their associated molecular functions. Under a species condition, edge weights of the graph are assigned to be gene expression level. Such a graph provides a mathematical means to represent both species-independent and species-dependent biological information. We also develop a new ranking algorithm to analyze the weighted graph via a kernelized spatial depth (KSD) approach. Consequently, the importance of gene and molecular function can be simultaneously ranked by a real-valued measure, KSD, which incorporates the global and local structure of the graph. Over-expressed and under-regulated genes also can be separately ranked. Conclusion The gene-function bigraph integrates molecular function annotations into gene expression data. The relevance of genes is described in the graph (through a common function). The proposed method provides an exploratory framework for gene data analysis. PMID:19811684

  11. Seasonal Effects on Gene Expression

    PubMed Central

    Goldinger, Anita; Shakhbazov, Konstantin; Henders, Anjali K.; McRae, Allan F.; Montgomery, Grant W.; Powell, Joseph E.

    2015-01-01

    Many health conditions, ranging from psychiatric disorders to cardiovascular disease, display notable seasonal variation in severity and onset. In order to understand the molecular processes underlying this phenomenon, we have examined seasonal variation in the transcriptome of 606 healthy individuals. We show that 74 transcripts associated with a 12-month seasonal cycle were enriched for processes involved in DNA repair and binding. An additional 94 transcripts demonstrated significant seasonal variability that was largely influenced by blood cell count levels. These transcripts were enriched for immune function, protein production, and specific cellular markers for lymphocytes. Accordingly, cell counts for erythrocytes, platelets, neutrophils, monocytes, and CD19 cells demonstrated significant association with a 12-month seasonal cycle. These results demonstrate that seasonal variation is an important environmental regulator of gene expression and blood cell composition. Notable changes in leukocyte counts and genes involved in immune function indicate that immune cell physiology varies throughout the year in healthy individuals. PMID:26023781

  12. Horizontal gene transfer in plants.

    PubMed

    Gao, Caihua; Ren, Xiaodong; Mason, Annaliese S; Liu, Honglei; Xiao, Meili; Li, Jiana; Fu, Donghui

    2014-03-01

    Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries. HGT often occurs in microbic and eukaryotic genomes. However, the pathways by which HGTs occur in multicellular eukaryotes, especially in plants, are not well understood. We systematically summarized more than ten possible pathways for HGT. The intimate contact which frequently occurs in parasitism, symbiosis, pathogen, epiphyte, entophyte, and grafting interactions could promote HGTs between two species. Besides these direct transfer methods, genes can be exchanged with a vector as a bridge: possible vectors include pollen, fungi, bacteria, viruses, viroids, plasmids, transposons, and insects. HGT, especially when involving horizontal transfer of transposable elements, is recognized as a significant force propelling genomic variation and biological innovation, playing an important functional and evolutionary role in both eukaryotic and prokaryotic genomes. We proposed possible mechanisms by which HGTs can occur, which is useful in understanding the genetic information exchange among distant species or distant cellular components. PMID:24132513

  13. Muscle Gene Therapy for Hemophilia

    PubMed Central

    Sabatino, Denise E.; Arruda, Valder R.

    2013-01-01

    Muscle-directed gene therapy for hemophilia is an attractive strategy for expression of therapeutic levels of clotting factor as evident from preclinical studies and an early phase clinical trial. Notably, local FIX expression by AAV-mediated direct intramuscular injection to skeletal muscle persists for years. Development of intravascular delivery of AAV vector approaches to skeletal muscle resulted in vector in widespread areas of the limb and increased expression of FIX in hemophilia B dogs. The use of FIX variants with improved biological activity may provide the opportunity to increase the efficacy of these approaches. Studies for hemophilia A are less developed at this point, but utilizing transgenes that improve hemostasis independent of FIX and FVIII has potential therapeutic application for both hemophilia A and B. Continuous monitoring of humoral and T cell responses to the transgene and AAV capsid in human trials will be critical for the translation of these promising approaches for muscle gene therapy for hemophilia. PMID:24883231

  14. Gene mapping and chromosome 19.

    PubMed Central

    Shaw, D J; Brook, J D; Meredith, A L; Harley, H G; Sarfarazi, M; Harper, P S

    1986-01-01

    Chromosome 19 is currently the most fully mapped of the smaller chromosomes, with about 40 loci assigned to it (HGM8). Major inherited disorders on this chromosome include myotonic dystrophy and familial hypercholesterolaemia. Other loci include five blood groups, a cluster of apolipoprotein genes, and the receptors for insulin and polio virus. A number of cloned genes and random DNA sequences identify polymorphisms which, together with blood group and other protein polymorphisms, have been used to establish a framework for ordering the loci and estimating genetic distances. Hybrid cell lines allow loci to be assigned to one of eight different regions and a detailed genetic map of the chromosome will be possible in the near future. PMID:3081724

  15. Gene mutations in Cushing's disease

    PubMed Central

    Xiong, Qi; Ge, Wei

    2016-01-01

    Cushing's disease (CD) is a severe (and potentially fatal) disease caused by adrenocorticotropic hormone (ACTH)-secreting adenomas of the pituitary gland (often termed pituitary adenomas). The majority of ACTH-secreting corticotroph tumors are sporadic and CD rarely appears as a familial disorder, thus, the genetic mechanisms underlying CD are poorly understood. Studies have reported that various mutated genes are associated with CD, such as those in menin 1, aryl hydrocarbon receptor-interacting protein and the nuclear receptor subfamily 3 group C member 1. Recently it was identified that ubiquitin-specific protease 8 mutations contribute to CD, which was significant towards elucidating the genetic mechanisms of CD. The present study reviews the associated gene mutations in CD patients. PMID:27588171

  16. Phenotypic deconstruction of gene circuitry

    NASA Astrophysics Data System (ADS)

    Lomnitz, Jason G.; Savageau, Michael A.

    2013-06-01

    It remains a challenge to obtain a global perspective on the behavioral repertoire of complex nonlinear gene circuits. In this paper, we describe a method for deconstructing complex systems into nonlinear sub-systems, based on mathematically defined phenotypes, which are then represented within a system design space that allows the repertoire of qualitatively distinct phenotypes of the complex system to be identified, enumerated, and analyzed. This method efficiently characterizes large regions of system design space and quickly generates alternative hypotheses for experimental testing. We describe the motivation and strategy in general terms, illustrate its use with a detailed example involving a two-gene circuit with a rich repertoire of dynamic behavior, and discuss experimental means of navigating the system design space.

  17. Evolution of alternative splicing after gene duplication.

    PubMed

    Su, Zhixi; Wang, Jianmin; Yu, Jun; Huang, Xiaoqiu; Gu, Xun

    2006-02-01

    Alternative splicing and gene duplication are two major sources of proteomic function diversity. Here, we study the evolutionary trend of alternative splicing after gene duplication by analyzing the alternative splicing differences between duplicate genes. We observed that duplicate genes have fewer alternative splice (AS) forms than single-copy genes, and that a negative correlation exists between the mean number of AS forms and the gene family size. Interestingly, we found that the loss of alternative splicing in duplicate genes may occur shortly after the gene duplication. These results support the subfunctionization model of alternative splicing in the early stage after gene duplication. Further analysis of the alternative splicing distribution in human duplicate pairs showed the asymmetric evolution of alternative splicing after gene duplications; i.e., the AS forms between duplicates may differ dramatically. We therefore conclude that alternative splicing and gene duplication may not evolve independently. In the early stage after gene duplication, young duplicates may take over a certain amount of protein function diversity that previously was carried out by the alternative splicing mechanism. In the late stage, the gain and loss of alternative splicing seem to be independent between duplicates. PMID:16365379

  18. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression.

    PubMed

    Jourdain, Alexis A; Boehm, Erik; Maundrell, Kinsey; Martinou, Jean-Claude

    2016-03-14

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized "mitochondrial RNA granules," mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  19. Repetitive sequence environment distinguishes housekeeping genes

    PubMed Central

    Eller, C. Daniel; Regelson, Moira; Merriman, Barry; Nelson, Stan; Horvath, Steve; Marahrens, York

    2007-01-01

    Housekeeping genes are expressed across a wide variety of tissues. Since repetitive sequences have been reported to influence the expression of individual genes, we employed a novel approach to determine whether housekeeping genes can be distinguished from tissue-specific genes their repetitive sequence context. We show that Alu elements are more highly concentrated around housekeeping genes while various longer (>400-bp) repetitive sequences ("repeats"), including Long Interspersed Nuclear Element 1 (LINE-1) elements, are excluded from these regions. We further show that isochore membership does not distinguish housekeeping genes from tissue-specific genes and that repetitive sequence environment distinguishes housekeeping genes from tissue-specific genes in every isochore. The distinct repetitive sequence environment, in combination with other previously published sequence properties of housekeeping genes, were used to develop a method of predicting housekeeping genes on the basis of DNA sequence alone. Using expression across tissue types as a measure of success, we demonstrate that repetitive sequence environment is by far the most important sequence feature identified to date for distinguishing housekeeping genes. PMID:17141428

  20. Problem-Solving Test: Targeted Gene Disruption

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    Mutational inactivation of a specific gene is the most powerful technique to analyze the biological function of the gene. This approach has been used for a long time in viruses, bacteria, yeast, and fruit fly, but looked quite hopeless in more complex organisms. Targeted inactivation of specific genes (also known as knock-out mutation) in mice is…

  1. Jumping Genes: The Transposable DNAs of Bacteria.

    ERIC Educational Resources Information Center

    Berg, Claire M.; Berg, Douglas E.

    1984-01-01

    Transposons are transposable elements that carry genes for antibiotic resistance. Provides background information on the structure and organization of these "jumping genes" in bacteria. Also describes the use of transposons in tagging genes and lists pertinent references and resource materials. (DH)

  2. Uses of antimicrobial genes from microbial genome

    DOEpatents

    Sorek, Rotem; Rubin, Edward M.

    2013-08-20

    We describe a method for mining microbial genomes to discover antimicrobial genes and proteins having broad spectrum of activity. Also described are antimicrobial genes and their expression products from various microbial genomes that were found using this method. The products of such genes can be used as antimicrobial agents or as tools for molecular biology.

  3. Discovery of Tumor Suppressor Gene Function.

    ERIC Educational Resources Information Center

    Oppenheimer, Steven B.

    1995-01-01

    This is an update of a 1991 review on tumor suppressor genes written at a time when understanding of how the genes work was limited. A recent major breakthrough in the understanding of the function of tumor suppressor genes is discussed. (LZ)

  4. ALCOdb: Gene Coexpression Database for Microalgae.

    PubMed

    Aoki, Yuichi; Okamura, Yasunobu; Ohta, Hiroyuki; Kinoshita, Kengo; Obayashi, Takeshi

    2016-01-01

    In the era of energy and food shortage, microalgae have gained much attention as promising sources of biofuels and food ingredients. However, only a small fraction of microalgal genes have been functionally characterized. Here, we have developed the Algae Gene Coexpression database (ALCOdb; http://alcodb.jp), which provides gene coexpression information to survey gene modules for a function of interest. ALCOdb currently supports two model algae: the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschyzon merolae. Users can retrieve coexpression information for genes of interest through three unique data pages: (i) Coexpressed Gene List; (ii) Gene Information; and (iii) Coexpressed Gene Network. In addition to the basal coexpression information, ALCOdb also provides several advanced functionalities such as an expression profile viewer and a differentially expressed gene search tool. Using these user interfaces, we demonstrated that our gene coexpression data have the potential to detect functionally related genes and are useful in extrapolating the biological roles of uncharacterized genes. ALCOdb will facilitate molecular and biochemical studies of microalgal biological phenomena, such as lipid metabolism and organelle development, and promote the evolutionary understanding of plant cellular systems. PMID:26644461

  5. ALCOdb: Gene Coexpression Database for Microalgae

    PubMed Central

    Aoki, Yuichi; Okamura, Yasunobu; Ohta, Hiroyuki; Kinoshita, Kengo; Obayashi, Takeshi

    2016-01-01

    In the era of energy and food shortage, microalgae have gained much attention as promising sources of biofuels and food ingredients. However, only a small fraction of microalgal genes have been functionally characterized. Here, we have developed the Algae Gene Coexpression database (ALCOdb; http://alcodb.jp), which provides gene coexpression information to survey gene modules for a function of interest. ALCOdb currently supports two model algae: the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschyzon merolae. Users can retrieve coexpression information for genes of interest through three unique data pages: (i) Coexpressed Gene List; (ii) Gene Information; and (iii) Coexpressed Gene Network. In addition to the basal coexpression information, ALCOdb also provides several advanced functionalities such as an expression profile viewer and a differentially expressed gene search tool. Using these user interfaces, we demonstrated that our gene coexpression data have the potential to detect functionally related genes and are useful in extrapolating the biological roles of uncharacterized genes. ALCOdb will facilitate molecular and biochemical studies of microalgal biological phenomena, such as lipid metabolism and organelle development, and promote the evolutionary understanding of plant cellular systems. PMID:26644461

  6. Zebrafish orthologs of human muscular dystrophy genes

    PubMed Central

    Steffen, Leta S; Guyon, Jeffrey R; Vogel, Emily D; Beltre, Rosanna; Pusack, Timothy J; Zhou, Yi; Zon, Leonard I; Kunkel, Louis M

    2007-01-01

    Background Human muscular dystrophies are a heterogeneous group of genetic disorders which cause decreased muscle strength and often result in premature death. There is no known cure for muscular dystrophy, nor have all causative genes been identified. Recent work in the small vertebrate zebrafish Danio rerio suggests that mutation or misregulation of zebrafish dystrophy orthologs can also cause muscular degeneration phenotypes in fish. To aid in the identification of new causative genes, this study identifies and maps zebrafish orthologs for all known human muscular dystrophy genes. Results Zebrafish sequence databases were queried for transcripts orthologous to human dystrophy-causing genes, identifying transcripts for 28 out of 29 genes of interest. In addition, the genomic locations of all 29 genes have been found, allowing rapid candidate gene discovery during genetic mapping of zebrafish dystrophy mutants. 19 genes show conservation of syntenic relationships with humans and at least two genes appear to be duplicated in zebrafish. Significant sequence coverage on one or more BAC clone(s) was also identified for 24 of the genes to provide better local sequence information and easy updating of genomic locations as the zebrafish genome assembly continues to evolve. Conclusion This resource supports zebrafish as a dystrophy model, suggesting maintenance of all known dystrophy-associated genes in the zebrafish genome. Coupled with the ability to conduct genetic screens and small molecule screens, zebrafish are thus an attractive model organism for isolating new dystrophy-causing genes/pathways and for use in high-throughput therapeutic discovery. PMID:17374169

  7. [Development genes encoding transcription factors and dysmorphology].

    PubMed

    Lacombe, Didier

    2009-04-01

    Studies of children with developmental abnormalities of genetic origin are necessary for accurate diagnosis, prognostication, patient management, and genetic counseling. Such studies can also help to identify genes involved in normal and abnormal morphogenesis, which often act as patterning genes and are also potential oncogenes. Many encode transcription factors that regulate other genes during embryonic development. PMID:20120282

  8. Aeromonas hydrophila Lateral Flagellar Gene Transcriptional Hierarchy

    PubMed Central

    Wilhelms, Markus; Gonzalez, Victor; Merino, Susana

    2013-01-01

    Aeromonas hydrophila AH-3 lateral flagella are not assembled when bacteria grow in liquid media; however, lateral flagellar genes are transcribed. Our results indicate that A. hydrophila lateral flagellar genes are transcribed at three levels (class I to III genes) and share some similarities with, but have many important differences from, genes of Vibrio parahaemolyticus. A. hydrophila lateral flagellum class I gene transcription is σ70 dependent, which is consistent with the fact that lateral flagellum is constitutively transcribed, in contrast to the characteristics of V. parahaemolyticus. The fact that multiple genes are included in class I highlights that lateral flagellar genes are less hierarchically transcribed than polar flagellum genes. The A. hydrophila lafK-fliEJL gene cluster (where the subscript L distinguishes genes for lateral flagella from those for polar flagella) is exclusively from class I and is in V. parahaemolyticus class I and II. Furthermore, the A. hydrophila flgAMNL cluster is not transcribed from the σ54/LafK-dependent promoter and does not contain class II genes. Here, we propose a gene transcriptional hierarchy for the A. hydrophila lateral flagella. PMID:23335410

  9. Rotavirus gene structure and function.

    PubMed Central

    Estes, M K; Cohen, J

    1989-01-01

    Knowledge of the structure and function of the genes and proteins of the rotaviruses has expanded rapidly. Information obtained in the last 5 years has revealed unexpected and unique molecular properties of rotavirus proteins of general interest to virologists, biochemists, and cell biologists. Rotaviruses share some features of replication with reoviruses, yet antigenic and molecular properties of the outer capsid proteins, VP4 (a protein whose cleavage is required for infectivity, possibly by mediating fusion with the cell membrane) and VP7 (a glycoprotein), show more similarities with those of other viruses such as the orthomyxoviruses, paramyxoviruses, and alphaviruses. Rotavirus morphogenesis is a unique process, during which immature subviral particles bud through the membrane of the endoplasmic reticulum (ER). During this process, transiently enveloped particles form, the outer capsid proteins are assembled onto particles, and mature particles accumulate in the lumen of the ER. Two ER-specific viral glycoproteins are involved in virus maturation, and these glycoproteins have been shown to be useful models for studying protein targeting and retention in the ER and for studying mechanisms of virus budding. New ideas and approaches to understanding how each gene functions to replicate and assemble the segmented viral genome have emerged from knowledge of the primary structure of rotavirus genes and their proteins and from knowledge of the properties of domains on individual proteins. Localization of type-specific and cross-reactive neutralizing epitopes on the outer capsid proteins is becoming increasingly useful in dissecting the protective immune response, including evaluation of vaccine trials, with the practical possibility of enhancing the production of new, more effective vaccines. Finally, future analyses with recently characterized immunologic and gene probes and new animal models can be expected to provide a basic understanding of what regulates the

  10. Adaptive Models for Gene Networks

    PubMed Central

    Shin, Yong-Jun; Sayed, Ali H.; Shen, Xiling

    2012-01-01

    Biological systems are often treated as time-invariant by computational models that use fixed parameter values. In this study, we demonstrate that the behavior of the p53-MDM2 gene network in individual cells can be tracked using adaptive filtering algorithms and the resulting time-variant models can approximate experimental measurements more accurately than time-invariant models. Adaptive models with time-variant parameters can help reduce modeling complexity and can more realistically represent biological systems. PMID:22359614

  11. The insect SNMP gene family.

    PubMed

    Vogt, Richard G; Miller, Natalie E; Litvack, Rachel; Fandino, Richard A; Sparks, Jackson; Staples, Jon; Friedman, Robert; Dickens, Joseph C

    2009-07-01

    SNMPs are membrane proteins observed to associate with chemosensory neurons in insects; in Drosophila melanogaster, SNMP1 has been shown to be essential for the detection of the pheromone cis-vaccenyl acetate (CVA). SNMPs are one of three insect gene clades related to the human fatty acid transporter CD36. We previously characterized the CD36 gene family in 4 insect Orders that effectively cover the Holometabola, or some 80% of known insect species and the 300 million years of evolution since this lineage emerged: Lepidoptera (e.g. Bombyx mori, Antheraea polyphemus, Manduca sexta, Heliothis virescens, Helicoverpa assulta, Helicoverpa armigera, Mamestra brassicae); Diptera (D. melanogaster, Drosophila pseudoobscura, Aedes aegypti, Anopheles gambiae, Culex pipiens quinquefasciatus); Hymenoptera (Apis mellifera); and Coleoptera (Tribolium castaneum). This previous study suggested a complex topography within the SNMP clade including a strongly supported SNMP1 sub-clade plus additional SNMP genes. To further resolve the SNMP clade here, we used cDNA sequences of SNMP1 and SNMP2 from various Lepidoptera species, D. melanogaster and Ae. aegypti, as well as BAC derived genomic sequences from Ae. aegypti as models for proposing corrected sequences of orthologues in the D. pseudoobscura and An. gambiae genomes, and for identifying orthologues in the B. mori and C. pipiens q. genomes. We then used these sequences to analyze the SNMP clade of the insect CD36 gene family, supporting the existence of two well supported sub-clades, SNMP1 and SNMP2, throughout the dipteran and lepidopteran lineages, and plausibly throughout the Holometabola and across a broad evolutionary time scale. We present indirect evidence based on evolutionary selection (dN/dS) that the dipteran SNMPs are expressed as functional proteins. We observed expansions of the SNMP1 sub-clade in C. pipiens q. and T. castaneum suggesting that the SNMP1s may have an expanded functional role in these species. PMID

  12. Method for determining gene knockouts

    DOEpatents

    Maranas, Costas D.; Burgard, Anthony R.; Pharkya, Priti

    2011-09-27

    A method for determining candidates for gene deletions and additions using a model of a metabolic network associated with an organism, the model includes a plurality of metabolic reactions defining metabolite relationships, the method includes selecting a bioengineering objective for the organism, selecting at least one cellular objective, forming an optimization problem that couples the at least one cellular objective with the bioengineering objective, and solving the optimization problem to yield at least one candidate.

  13. Method for determining gene knockouts

    DOEpatents

    Maranas, Costa D; Burgard, Anthony R; Pharkya, Priti

    2013-06-04

    A method for determining candidates for gene deletions and additions using a model of a metabolic network associated with an organism, the model includes a plurality of metabolic reactions defining metabolite relationships, the method includes selecting a bioengineering objective for the organism, selecting at least one cellular objective, forming an optimization problem that couples the at least one cellular objective with the bioengineering objective, and solving the optimization problem to yield at least one candidate.

  14. The Gene Expression Omnibus database

    PubMed Central

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  15. The Gene Expression Omnibus Database.

    PubMed

    Clough, Emily; Barrett, Tanya

    2016-01-01

    The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011

  16. Chromosomal destabilization during gene amplification.

    PubMed Central

    Ruiz, J C; Wahl, G M

    1990-01-01

    Acentric extrachromosomal elements, such as submicroscopic autonomously replicating circular molecules (episomes) and double minute chromosomes, are common early, and in some cases initial, intermediates of gene amplification in many drug-resistant and tumor cell lines. In order to gain a more complete understanding of the amplification process, we investigated the molecular mechanisms by which such extrachromosomal elements are generated and we traced the fate of these amplification intermediates over time. The model system consists of a Chinese hamster cell line (L46) created by gene transfer in which the initial amplification product was shown previously to be an unstable extrachromosomal element containing an inverted duplication spanning more than 160 kilobases (J. C. Ruiz and G. M. Wahl, Mol. Cell. Biol. 8:4302-4313, 1988). In this study, we show that these molecules were formed by a process involving chromosomal deletion. Fluorescence in situ hybridization was performed at multiple time points on cells with amplified sequences. These studies reveal that the extrachromosomal molecules rapidly integrate into chromosomes, often near or at telomeres, and once integrated, the amplified sequences are themselves unstable. These data provide a molecular and cytogenetic chronology for gene amplification in this model system; an early event involves deletion to generate extrachromosomal elements, and subsequent integration of these elements precipitates a cascade of chromosome instability. Images PMID:2188107

  17. Revisiting MHC genes in spondyloarthritis.

    PubMed

    Breban, Maxime; Costantino, Félicie; André, Claudine; Chiocchia, Gilles; Garchon, Henri-Jean

    2015-06-01

    Spondyloarthritis (SpA) refers to a variety of inflammatory rheumatic disorders with strong heritability. Shared genetic predisposition, as shown by familial aggregation, is largely attributable to the major histocompatibility complex (MHC) locus, which was estimated to account for approximately half of the whole disease heritability. The first predisposing allele identified more than 40 years ago is HLA-B27, which is a major gene predisposing to all forms of SpA. However, despite intensive research, its pathogenesis remains uncertain. Other MHC alleles belonging to the class I and class II regions have been identified to exert additional effect. Candidate-gene approaches and genome-wide studies have recently allowed identification of several new loci residing outside of the MHC region that are involved in the predisposition to SpA. Interestingly, some of those new genes, such as ERAP1, ERAP2, and NPEPPS, code for aminopeptidases that are involved in MHC class I presentation and were shown to interact with HLA-B27. PMID:25903667

  18. Targeted gene flow for conservation.

    PubMed

    Kelly, Ella; Phillips, Ben L

    2016-04-01

    Anthropogenic threats often impose strong selection on affected populations, causing rapid evolutionary responses. Unfortunately, these adaptive responses are rarely harnessed for conservation. We suggest that conservation managers pay close attention to adaptive processes and geographic variation, with an eye to using them for conservation goals. Translocating pre-adapted individuals into recipient populations is currently considered a potentially important management tool in the face of climate change. Targeted gene flow, which involves moving individuals with favorable traits to areas where these traits would have a conservation benefit, could have a much broader application in conservation. Across a species' range there may be long-standing geographic variation in traits or variation may have rapidly developed in response to a threatening process. Targeted gene flow could be used to promote natural resistance to threats to increase species resilience. We suggest that targeted gene flow is a currently underappreciated strategy in conservation that has applications ranging from the management of invasive species and their impacts to controlling the impact and virulence of pathogens. PMID:26332195

  19. Chromatin Structure Regulates Gene Conversion

    PubMed Central

    Cummings, W. Jason; Yabuki, Munehisa; Ordinario, Ellen C; Bednarski, David W; Quay, Simon; Maizels, Nancy

    2007-01-01

    Homology-directed repair is a powerful mechanism for maintaining and altering genomic structure. We asked how chromatin structure contributes to the use of homologous sequences as donors for repair using the chicken B cell line DT40 as a model. In DT40, immunoglobulin genes undergo regulated sequence diversification by gene conversion templated by pseudogene donors. We found that the immunoglobulin Vλ pseudogene array is characterized by histone modifications associated with active chromatin. We directly demonstrated the importance of chromatin structure for gene conversion, using a regulatable experimental system in which the heterochromatin protein HP1 (Drosophila melanogaster Su[var]205), expressed as a fusion to Escherichia coli lactose repressor, is tethered to polymerized lactose operators integrated within the pseudo-Vλ donor array. Tethered HP1 diminished histone acetylation within the pseudo-Vλ array, and altered the outcome of Vλ diversification, so that nontemplated mutations rather than templated mutations predominated. Thus, chromatin structure regulates homology-directed repair. These results suggest that histone modifications may contribute to maintaining genomic stability by preventing recombination between repetitive sequences. PMID:17880262

  20. Evaluation of Quantitative PCR Reference Genes for Gene Expression Studies in Tribolium castaneum After Fungal Challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate gene expression in Tribolium castaneum exposed to Beauveria bassiana, reference genes for qPCR were evaluated. Of these, the widely used genes for ß-actin, a-tubulin, and RPS6 were not stable. The most stable were ribosomal protein genes, RPS3, RPS18, and RPL13a. Syntaxin1, syntaxin6...

  1. Evolutionary and Topological Properties of Genes and Community Structures in Human Gene Regulatory Networks.

    PubMed

    Szedlak, Anthony; Smith, Nicholas; Liu, Li; Paternostro, Giovanni; Piermarocchi, Carlo

    2016-06-01

    The diverse, specialized genes present in today's lifeforms evolved from a common core of ancient, elementary genes. However, these genes did not evolve individually: gene expression is controlled by a complex network of interactions, and alterations in one gene may drive reciprocal changes in its proteins' binding partners. Like many complex networks, these gene regulatory networks (GRNs) are composed of communities, or clusters of genes with relatively high connectivity. A deep understanding of the relationship between the evolutionary history of single genes and the topological properties of the underlying GRN is integral to evolutionary genetics. Here, we show that the topological properties of an acute myeloid leukemia GRN and a general human GRN are strongly coupled with its genes' evolutionary properties. Slowly evolving ("cold"), old genes tend to interact with each other, as do rapidly evolving ("hot"), young genes. This naturally causes genes to segregate into community structures with relatively homogeneous evolutionary histories. We argue that gene duplication placed old, cold genes and communities at the center of the networks, and young, hot genes and communities at the periphery. We demonstrate this with single-node centrality measures and two new measures of efficiency, the set efficiency and the interset efficiency. We conclude that these methods for studying the relationships between a GRN's community structures and its genes' evolutionary properties provide new perspectives for understanding evolutionary genetics. PMID:27359334

  2. Genome-scale comparative analysis of gene fusions, gene fissions, and the fungal tree of life

    PubMed Central

    Leonard, Guy; Richards, Thomas A.

    2012-01-01

    During the course of evolution genes undergo both fusion and fission by which ORFs are joined or separated. These processes can amend gene function and represent an important factor in the evolution of protein interaction networks. Gene fusions have been suggested to be useful characters for identifying evolutionary relationships because they constitute synapomorphies or cladistic characters. To investigate the fidelity of gene-fusion characters, we developed an approach for identifying differentially distributed gene fusions among whole-genome datasets: fdfBLAST. Applying this tool to the Fungi, we identified 63 gene fusions present in two or more genomes. Using a combination of phylogenetic and comparative genomic analyses, we then investigated the evolution of these genes across 115 fungal genomes, testing each gene fusion for evidence of homoplasy, including gene fission, convergence, and horizontal gene transfer. These analyses demonstrated 110 gene-fission events. We then identified a minimum of three mechanisms that drive gene fission: separation, degeneration, and duplication. These data suggest that gene fission plays an important and hitherto underestimated role in gene evolution. Gene fusions therefore are highly labile characters, and their use for polarizing evolutionary relationships, without reference to gene and species phylogenies, is limited. Accounting for these considerable sources of homoplasy, we identified fusion characters that provide support for multiple nodes in the phylogeny of the Fungi, including relationships within the deeply derived flagellum-forming fungi (i.e., the chytrids). PMID:23236161

  3. Reranking candidate gene models with cross-species comparison for improved gene prediction

    PubMed Central

    Liu, Qian; Crammer, Koby; Pereira, Fernando CN; Roos, David S

    2008-01-01

    Background Most gene finders score candidate gene models with state-based methods, typically HMMs, by combining local properties (coding potential, splice donor and acceptor patterns, etc). Competing models with similar state-based scores may be distinguishable with additional information. In particular, functional and comparative genomics datasets may help to select among competing models of comparable probability by exploiting features likely to be associated with the correct gene models, such as conserved exon/intron structure or protein sequence features. Results We have investigated the utility of a simple post-processing step for selecting among a set of alternative gene models, using global scoring rules to rerank competing models for more accurate prediction. For each gene locus, we first generate the K best candidate gene models using the gene finder Evigan, and then rerank these models using comparisons with putative orthologous genes from closely-related species. Candidate gene models with lower scores in the original gene finder may be selected if they exhibit strong similarity to probable orthologs in coding sequence, splice site location, or signal peptide occurrence. Experiments on Drosophila melanogaster demonstrate that reranking based on cross-species comparison outperforms the best gene models identified by Evigan alone, and also outperforms the comparative gene finders GeneWise and Augustus+. Conclusion Reranking gene models with cross-species comparison improves gene prediction accuracy. This straightforward method can be readily adapted to incorporate additional lines of evidence, as it requires only a ranked source of candidate gene models. PMID:18854050

  4. Human protein kinase CK2 genes.

    PubMed

    Wirkner, U; Voss, H; Lichter, P; Pyerin, W

    1994-01-01

    We have analyzed the genomic structure of human protein kinase CK2. Of the presumably four genes, the gene encoding the regulatory subunit beta and a processed (pseudo)gene of the catalytic subunit alpha have been characterized completely. In addition, a 18.9 kb-long central part of the gene encoding the catalytic subunit alpha has been characterized. The subunit beta gene spans 4.2 kb and is composed of seven exons. Its promoter region shows several features of a "housekeeping gene" and shares common features with the promoter of the regulatory subunit of cAMP-dependent protein kinase. Conforming to the genomic structure, the beta gene transcripts form a band around 1.1 kb. The central part of the subunit alpha gene contains eight exons comprising bases 102 to 824 of the translated region. Within the introns, 16 Alu repeats were identified, some of which arranged in tandems. The structure of both human CK2 coding genes, alpha and beta, is highly conserved. Several introns are located at corresponding positions in the respective genes of the nematode Caenorhabditis elegans. The processed alpha (pseudo)gene has a complete open reading frame and is 99% homologous to the coding region of the CK2 alpha cDNA. Although the gene has a promoter-like upstream region, no transcript could be identified so far. The genomic clones were used for localization in the human genome. The beta gene was mapped to locus 6p21, the alpha gene to locus 20p13 and the alpha (pseudo)gene to locus 11p15. There is no evidence for additional alpha or beta loci in the human genome. PMID:7735323

  5. Integrating Ontological Knowledge and Textual Evidence in Estimating Gene and Gene Product Similarity

    SciTech Connect

    Sanfilippo, Antonio P.; Posse, Christian; Gopalan, Banu; Tratz, Stephen C.; Gregory, Michelle L.

    2006-06-08

    With the rising influence of the Gene On-tology, new approaches have emerged where the similarity between genes or gene products is obtained by comparing Gene Ontology code annotations associ-ated with them. So far, these approaches have solely relied on the knowledge en-coded in the Gene Ontology and the gene annotations associated with the Gene On-tology database. The goal of this paper is to demonstrate that improvements to these approaches can be obtained by integrating textual evidence extracted from relevant biomedical literature.

  6. A Review for Detecting Gene-Gene Interactions Using Machine Learning Methods in Genetic Epidemiology

    PubMed Central

    Koo, Ching Lee; Liew, Mei Jing; Mohamad, Mohd Saberi

    2013-01-01

    Recently, the greatest statistical computational challenge in genetic epidemiology is to identify and characterize the genes that interact with other genes and environment factors that bring the effect on complex multifactorial disease. These gene-gene interactions are also denoted as epitasis in which this phenomenon cannot be solved by traditional statistical method due to the high dimensionality of the data and the occurrence of multiple polymorphism. Hence, there are several machine learning methods to solve such problems by identifying such susceptibility gene which are neural networks (NNs), support vector machine (SVM), and random forests (RFs) in such common and multifactorial disease. This paper gives an overview on machine learning methods, describing the methodology of each machine learning methods and its application in detecting gene-gene and gene-environment interactions. Lastly, this paper discussed each machine learning method and presents the strengths and weaknesses of each machine learning method in detecting gene-gene interactions in complex human disease. PMID:24228248

  7. A review for detecting gene-gene interactions using machine learning methods in genetic epidemiology.

    PubMed

    Koo, Ching Lee; Liew, Mei Jing; Mohamad, Mohd Saberi; Salleh, Abdul Hakim Mohamed

    2013-01-01

    Recently, the greatest statistical computational challenge in genetic epidemiology is to identify and characterize the genes that interact with other genes and environment factors that bring the effect on complex multifactorial disease. These gene-gene interactions are also denoted as epitasis in which this phenomenon cannot be solved by traditional statistical method due to the high dimensionality of the data and the occurrence of multiple polymorphism. Hence, there are several machine learning methods to solve such problems by identifying such susceptibility gene which are neural networks (NNs), support vector machine (SVM), and random forests (RFs) in such common and multifactorial disease. This paper gives an overview on machine learning methods, describing the methodology of each machine learning methods and its application in detecting gene-gene and gene-environment interactions. Lastly, this paper discussed each machine learning method and presents the strengths and weaknesses of each machine learning method in detecting gene-gene interactions in complex human disease. PMID:24228248

  8. Thermostable cellulase from a thermomonospora gene

    DOEpatents

    Wilson, D.B.; Walker, L.P.; Zhang, S.

    1997-10-14

    The invention relates to a gene isolated from Thermomonospora fusca, wherein the gene encodes a thermostable cellulase. Disclosed is the nucleotide sequence of the T. fusca gene; and nucleic acid molecules comprising the gene, or a fragment of the gene, that can be used to recombinantly express the cellulase or a catalytically active polypeptide thereof, respectively. The isolated and purified recombinant cellulase or catalytically active polypeptide may be used to hydrolyze substrate either by itself; or in combination with other cellulases, with the resultant combination having unexpected hydrolytic activity. 3 figs.

  9. Thermostable cellulase from a thermomonospora gene

    DOEpatents

    Wilson, David B.; Walker, Larry P.; Zhang, Sheng

    1997-10-14

    The invention relates to a gene isolated from Thermomonospora fusca, wherein the gene encodes a thermostable cellulase. Disclosed is the nucleotide sequence of the T. fusca gene; and nucleic acid molecules comprising the gene, or a fragment of the gene, that can be used to recombinantly express the cellulase or a catalytically active polypeptide thereof, respectively. The isolated and purified recombinant cellulase or catalytically active polypeptide may be used to hydrolyze substrate either by itself; or in combination with other cellulases, with the resultant combination having unexpected hydrolytic activity.

  10. Gene marking and gene therapy directed at primary hematopoietic cells.

    PubMed

    Dunbar, C E; Young, N S

    1996-11-01

    The past year has been a very active one in the field of gene transfer to hematopoietic targets, specifically stem cells and T cells. A number of clinical trials were published that both demonstrated progress as well as identified problems that investigators will face in trying to make the technology therapeutically applicable. Important laboratory and animal experiments focused on predictive models for human stem cell behavior, methods for culturing and expanding primitive cells ex vivo, immune responses against transgenes, in vitro and in vivo selection of transduced cells, and alternatives to standard retroviral vectors. PMID:9372114

  11. Gene therapy: Biological pacemaker created by gene transfer

    NASA Astrophysics Data System (ADS)

    Miake, Junichiro; Marbán, Eduardo; Nuss, H. Bradley

    2002-09-01

    The pacemaker cells of the heart initiate the heartbeat, sustain the circulation, and dictate the rate and rhythm of cardiac contraction. Circulatory collapse ensues when these specialized cells are damaged by disease, a situation that currently necessitates the implantation of an electronic pacemaker. Here we report the use of viral gene transfer to convert quiescent heart-muscle cells into pacemaker cells, and the successful generation of spontaneous, rhythmic electrical activity in the ventricle in vivo. Our results indicate that genetically engineered pacemakers could be developed as a possible alternative to implantable electronic devices.

  12. Reconstruction of a Functional Human Gene Network, with an Application for Prioritizing Positional Candidate Genes

    PubMed Central

    Franke, Lude; Bakel, Harm van; Fokkens, Like; de Jong, Edwin D.; Egmont-Petersen, Michael; Wijmenga, Cisca

    2006-01-01

    Most common genetic disorders have a complex inheritance and may result from variants in many genes, each contributing only weak effects to the disease. Pinpointing these disease genes within the myriad of susceptibility loci identified in linkage studies is difficult because these loci may contain hundreds of genes. However, in any disorder, most of the disease genes will be involved in only a few different molecular pathways. If we know something about the relationships between the genes, we can assess whether some genes (which may reside in different loci) functionally interact with each other, indicating a joint basis for the disease etiology. There are various repositories of information on pathway relationships. To consolidate this information, we developed a functional human gene network that integrates information on genes and the functional relationships between genes, based on data from the Kyoto Encyclopedia of Genes and Genomes, the Biomolecular Interaction Network Database, Reactome, the Human Protein Reference Database, the Gene Ontology database, predicted protein-protein interactions, human yeast two-hybrid interactions, and microarray coexpressions. We applied this network to interrelate positional candidate genes from different disease loci and then tested 96 heritable disorders for which the Online Mendelian Inheritance in Man database reported at least three disease genes. Artificial susceptibility loci, each containing 100 genes, were constructed around each disease gene, and we used the network to rank these genes on the basis of their functional interactions. By following up the top five genes per artificial locus, we were able to detect at least one known disease gene in 54% of the loci studied, representing a 2.8-fold increase over random selection. This suggests that our method can significantly reduce the cost and effort of pinpointing true disease genes in analyses of disorders for which numerous loci have been reported but for which

  13. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms[OPEN

    PubMed Central

    Li, Zhen; Van de Peer, Yves; De Smet, Riet

    2016-01-01

    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of “gene duplicability” is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes. PMID:26744215

  14. Supervised classification for gene network reconstruction.

    PubMed

    Soinov, L A

    2003-12-01

    One of the central problems of functional genomics is revealing gene expression networks - the relationships between genes that reflect observations of how the expression level of each gene affects those of others. Microarray data are currently a major source of information about the interplay of biochemical network participants in living cells. Various mathematical techniques, such as differential equations, Bayesian and Boolean models and several statistical methods, have been applied to expression data in attempts to extract the underlying knowledge. Unsupervised clustering methods are often considered as the necessary first step in visualization and analysis of the expression data. As for supervised classification, the problem mainly addressed so far has been how to find discriminative genes separating various samples or experimental conditions. Numerous methods have been applied to identify genes that help to predict treatment outcome or to confirm a diagnosis, as well as to identify primary elements of gene regulatory circuits. However, less attention has been devoted to using supervised learning to uncover relationships between genes and/or their products. To start filling this gap a machine-learning approach for gene networks reconstruction is described here. This approach is based on building classifiers--functions, which determine the state of a gene's transcription machinery through expression levels of other genes. The method can be applied to various cases where relationships between gene expression levels could be expected. PMID:14641098

  15. Gene Targeting in Mice: a Review

    PubMed Central

    Bouabe, Hicham; Okkenhaug, Klaus

    2015-01-01

    Summary The ability to introduce DNA sequences (e.g. genes) of interest into the germline genome has rendered the mouse a powerful and indispensable experimental model in fundamental and medical research. The DNA sequences can be integrated into the genome randomly or into a specific locus by homologous recombination, in order to: (i) delete or insert mutations into genes of interest to determine their function, (ii) introduce human genes into the genome of mice to generate animal models enabling study of human-specific genes and diseases, e.g. mice susceptible to infections by human-specific pathogens of interest, (iii) introduce individual genes or genomes of pathogens (such as viruses) in order to examine the contributions of such genes to the pathogenesis of the parent pathogens, (iv) and last but not least introduce reporter genes that allow monitoring in vivo or ex vivo the expression of genes of interest. Furthermore, the use of recombination systems, such as Cre/loxP or FRT/FLP, enables conditional induction or suppression of gene expression of interest in a restricted period of mouse’s lifetime, in a particular cell type, or in a specific tissue. In this review, we will give an updated summary of the gene targeting technology and discuss some important considerations in the design of gene-targeted mice. PMID:23996268

  16. Integrating various resources for gene name normalization.

    PubMed

    Hu, Yuncui; Li, Yanpeng; Lin, Hongfei; Yang, Zhihao; Cheng, Liangxi

    2012-01-01

    The recognition and normalization of gene mentions in biomedical literature are crucial steps in biomedical text mining. We present a system for extracting gene names from biomedical literature and normalizing them to gene identifiers in databases. The system consists of four major components: gene name recognition, entity mapping, disambiguation and filtering. The first component is a gene name recognizer based on dictionary matching and semi-supervised learning, which utilizes the co-occurrence information of a large amount of unlabeled MEDLINE abstracts to enhance feature representation of gene named entities. In the stage of entity mapping, we combine the strategies of exact match and approximate match to establish linkage between gene names in the context and the EntrezGene database. For the gene names that map to more than one database identifiers, we develop a disambiguation method based on semantic similarity derived from the Gene Ontology and MEDLINE abstracts. To remove the noise produced in the previous steps, we design a filtering method based on the confidence scores in the dictionary used for NER. The system is able to adjust the trade-off between precision and recall based on the result of filtering. It achieves an F-measure of 83% (precision: 82.5% recall: 83.5%) on BioCreative II Gene Normalization (GN) dataset, which is comparable to the current state-of-the-art. PMID:22984434

  17. Gene Expression Profiling of Gastric Cancer

    PubMed Central

    Marimuthu, Arivusudar; Jacob, Harrys K.C.; Jakharia, Aniruddha; Subbannayya, Yashwanth; Keerthikumar, Shivakumar; Kashyap, Manoj Kumar; Goel, Renu; Balakrishnan, Lavanya; Dwivedi, Sutopa; Pathare, Swapnali; Dikshit, Jyoti Bajpai; Maharudraiah, Jagadeesha; Singh, Sujay; Sameer Kumar, Ghantasala S; Vijayakumar, M.; Veerendra Kumar, Kariyanakatte Veeraiah; Premalatha, Chennagiri Shrinivasamurthy; Tata, Pramila; Hariharan, Ramesh; Roa, Juan Carlos; Prasad, T.S.K; Chaerkady, Raghothama; Kumar, Rekha Vijay; Pandey, Akhilesh

    2015-01-01

    Gastric cancer is the second leading cause of cancer death worldwide, both in men and women. A genomewide gene expression analysis was carried out to identify differentially expressed genes in gastric adenocarcinoma tissues as compared to adjacent normal tissues. We used Agilent’s whole human genome oligonucleotide microarray platform representing ~41,000 genes to carry out gene expression analysis. Two-color microarray analysis was employed to directly compare the expression of genes between tumor and normal tissues. Through this approach, we identified several previously known candidate genes along with a number of novel candidate genes in gastric cancer. Testican-1 (SPOCK1) was one of the novel molecules that was 10-fold upregulated in tumors. Using tissue microarrays, we validated the expression of testican-1 by immunohistochemical staining. It was overexpressed in 56% (160/282) of the cases tested. Pathway analysis led to the identification of several networks in which SPOCK1 was among the topmost networks of interacting genes. By gene enrichment analysis, we identified several genes involved in cell adhesion and cell proliferation to be significantly upregulated while those corresponding to metabolic pathways were significantly downregulated. The differentially expressed genes identified in this study are candidate biomarkers for gastric adenoacarcinoma. PMID:27030788

  18. HOXB homeobox gene expression in cervical carcinoma.

    PubMed

    López, R; Garrido, E; Piña, P; Hidalgo, A; Lazos, M; Ochoa, R; Salcedo, M

    2006-01-01

    The homeobox (HOX) genes are a family of transcription factors that bind to specific DNA sequences in target genes regulating gene expression. Thirty-nine HOX genes have been mapped in four conserved clusters: A, B, C, and D; they act as master genes regulating the identity of body segments along the anteroposterior axis of the embryo. The role played by HOX genes in adult cell differentiation is unclear to date, but growing evidence suggests that they may play an important role in the development of cancer. To study the role played by HOX genes in cervical cancer, in the present work, we analyzed the expression of HOXB genes and the localization of their transcripts in human cervical tissues. Reverse transcription-polymerase chain reaction analysis and nonradioactive RNA in situ hybridization were used to detect HOXB expression in 11 normal cervical tissues and 17 cervical carcinomas. It was determined that HOXB1, B3, B5, B6, B7, B8, and B9 genes are expressed in normal adult cervical epithelium and squamous cervical carcinomas. Interestingly, HOXB2, HOXB4, and HOXB13 gene expression was found only in tumor tissues. Our findings suggest that the new expression of HOXB2, HOXB4, and B13 genes is involved in cervical cancer. PMID:16445654

  19. The evolution of invertebrate gene body methylation.

    PubMed

    Sarda, Shrutii; Zeng, Jia; Hunt, Brendan G; Yi, Soojin V

    2012-08-01

    DNA methylation of transcription units (gene bodies) occurs in the genomes of many animal and plant species. Phylogenetic persistence of gene body methylation implies biological significance; yet, the functional roles of gene body methylation remain elusive. In this study, we analyzed methylation levels of orthologs from four distantly related invertebrate species, including the honeybee, silkworm, sea squirt, and sea anemone. We demonstrate that in all four species, gene bodies distinctively cluster to two groups, which correspond to high and low methylation levels. This pattern resembles that of sequence composition arising from the mutagenetic effect of DNA methylation. In spite of this effect, our results show that protein sequences of genes targeted by high levels of methylation are conserved relative to genes lacking methylation. Our investigation identified many genes that either gained or lost methylation during the course of invertebrate evolution. Most of these genes appear to have lost methylation in the insect lineages we investigated, particularly in the honeybee. We found that genes that are methylated in all four invertebrate taxa are enriched for housekeeping functions related to transcription and translation, whereas the loss of DNA methylation occurred in genes whose functions include cellular signaling and reproductive processes. Overall, our study helps to illuminate the functional significance of gene body methylation and its impacts on genome evolution in diverse invertebrate taxa. PMID:22328716

  20. MRI Reporter Genes for Noninvasive Molecular Imaging.

    PubMed

    Yang, Caixia; Tian, Rui; Liu, Ting; Liu, Gang

    2016-01-01

    Magnetic resonance imaging (MRI) is one of the most important imaging technologies used in clinical diagnosis. Reporter genes for MRI can be applied to accurately track the delivery of cell in cell therapy, evaluate the therapy effect of gene delivery, and monitor tissue/cell-specific microenvironments. Commonly used reporter genes for MRI usually include genes encoding the enzyme (e.g., tyrosinase and β-galactosidase), the receptor on the cells (e.g., transferrin receptor), and endogenous reporter genes (e.g., ferritin reporter gene). However, low sensitivity limits the application of MRI and reporter gene-based multimodal imaging strategies are common including optical imaging and radionuclide imaging. These can significantly improve diagnostic efficiency and accelerate the development of new therapies. PMID:27213309

  1. Cardiac gene therapy: are we there yet?

    PubMed

    Matkar, P N; Leong-Poi, H; Singh, K K

    2016-08-01

    The incidence of cardiovascular disease (CVD) is increasing throughout the world and is associated with elevated morbidity and mortality. Gene therapy to treat cardiac dysfunction is gaining importance because of the limited therapeutic benefit offered by pharmacotherapies. The growing knowledge of the complex signaling pathways and the development of sophisticated vectors and delivery systems, are facilitating identification and targeting of specific molecular candidates involved in initiation and progression of CVDs. Several preclinical and clinical studies have shown the therapeutic efficiency of gene therapy in different disease models and patients. Hence, gene therapy might plausibly become an unconventional treatment modality for CVD patients. In this review, we summarize the gene delivery carriers, modes of delivery, recent preclinical/clinical studies and potential therapeutic targets. We also briefly discuss the existing limitations of gene therapy, technical challenges surrounding gene carriers and delivery systems, and some approaches to overcome these limitations for bringing CVD gene therapy one step closer to reality. PMID:27128687

  2. Apolipoprotein gene involved in lipid metabolism

    DOEpatents

    Rubin, Edward; Pennacchio, Len A.

    2007-07-03

    Methods and materials for studying the effects of a newly identified human gene, APOAV, and the corresponding mouse gene apoAV. The sequences of the genes are given, and transgenic animals which either contain the gene or have the endogenous gene knocked out are described. In addition, single nucleotide polymorphisms (SNPs) in the gene are described and characterized. It is demonstrated that certain SNPs are associated with diseases involving lipids and triglycerides and other metabolic diseases. These SNPs may be used alone or with SNPs from other genes to study individual risk factors. Methods for intervention in lipid diseases, including the screening of drugs to treat lipid-related or diabetic diseases are also disclosed.

  3. Gene therapy oversight: lessons for nanobiotechnology.

    PubMed

    Wolf, Susan M; Gupta, Rishi; Kohlhepp, Peter

    2009-01-01

    Oversight of human gene transfer research ("gene therapy") presents an important model with potential application to oversight of nanobiology research on human participants. Gene therapy oversight adds centralized federal review at the National Institutes of Health's Office of Biotechnology Activities and its Recombinant DNA Advisory Committee to standard oversight of human subjects research at the researcher's institution (by the Institutional Review Board and, for some research, the Institutional Biosafety Committee) and at the federal level by the Office for Human Research Protections. The Food and Drug Administration's Center for Biologics Evaluation and Research oversees human gene transfer research in parallel, including approval of protocols and regulation of products. This article traces the evolution of this dual oversight system; describes how the system is already addressing nanobiotechnology in gene transfer: evaluates gene therapy oversight based on public opinion, the literature, and preliminary expert elicitation; and offers lessons of the gene therapy oversight experience for oversight of nanobiotechnology. PMID:20122108

  4. Xenbase: gene expression and improved integration.

    PubMed

    Bowes, Jeff B; Snyder, Kevin A; Segerdell, Erik; Jarabek, Chris J; Azam, Kenan; Zorn, Aaron M; Vize, Peter D

    2010-01-01

    Xenbase (www.xenbase.org), the model organism database for Xenopus laevis and X. (Silurana) tropicalis, is the principal centralized resource of genomic, development data and community information for Xenopus research. Recent improvements include the addition of the literature and interaction tabs to gene catalog pages. New content has been added including a section on gene expression patterns that incorporates image data from the literature, large scale screens and community submissions. Gene expression data are integrated into the gene catalog via an expression tab and is also searchable by multiple criteria using an expression search interface. The gene catalog has grown to contain over 15,000 genes. Collaboration with the European Xenopus Research Center (EXRC) has resulted in a stock center section with data on frog lines supplied by the EXRC. Numerous improvements have also been made to search and navigation. Xenbase is also the source of the Xenopus Anatomical Ontology and the clearinghouse for Xenopus gene nomenclature. PMID:19884130

  5. Gene Tied to Breast Cancer Raises Uterine Cancer Risk Too

    MedlinePlus

    ... Services, or federal policy. More Health News on: Genes and Gene Therapy Recent Health News Related MedlinePlus Health Topics Genes and Gene Therapy Uterine Cancer About MedlinePlus Site Map FAQs Contact ...

  6. Lineage-Specific Expansion of IFIT Gene Family: An Insight into Coevolution with IFN Gene Family

    PubMed Central

    Liu, Ying; Zhang, Yi-Bing; Liu, Ting-Kai; Gui, Jian-Fang

    2013-01-01

    In mammals, IFIT (Interferon [IFN]-induced proteins with Tetratricopeptide Repeat [TPR] motifs) family genes are involved in many cellular and viral processes, which are tightly related to mammalian IFN response. However, little is known about non-mammalian IFIT genes. In the present study, IFIT genes are identified in the genome databases from the jawed vertebrates including the cartilaginous elephant shark but not from non-vertebrates such as lancelet, sea squirt and acorn worm, suggesting that IFIT gene family originates from a vertebrate ancestor about 450 million years ago. IFIT family genes show conserved gene structure and gene arrangements. Phylogenetic analyses reveal that this gene family has expanded through lineage-specific and species-specific gene duplication. Interestingly, IFN gene family seem to share a common ancestor and a similar evolutionary mechanism; the function link of IFIT genes to IFN response is present early since the origin of both gene families, as evidenced by the finding that zebrafish IFIT genes are upregulated by fish IFNs, poly(I:C) and two transcription factors IRF3/IRF7, likely via the IFN-stimulated response elements (ISRE) within the promoters of vertebrate IFIT family genes. These coevolution features creates functional association of both family genes to fulfill a common biological process, which is likely selected by viral infection during evolution of vertebrates. Our results are helpful for understanding of evolution of vertebrate IFN system. PMID:23818968

  7. GeneTack database: genes with frameshifts in prokaryotic genomes and eukaryotic mRNA sequences.

    PubMed

    Antonov, Ivan; Baranov, Pavel; Borodovsky, Mark

    2013-01-01

    Database annotations of prokaryotic genomes and eukaryotic mRNA sequences pay relatively low attention to frame transitions that disrupt protein-coding genes. Frame transitions (frameshifts) could be caused by sequencing errors or indel mutations inside protein-coding regions. Other observed frameshifts are related to recoding events (that evolved to control expression of some genes). Earlier, we have developed an algorithm and software program GeneTack for ab initio frameshift finding in intronless genes. Here, we describe a database (freely available at http://topaz.gatech.edu/GeneTack/db.html) containing genes with frameshifts (fs-genes) predicted by GeneTack. The database includes 206 991 fs-genes from 1106 complete prokaryotic genomes and 45 295 frameshifts predicted in mRNA sequences from 100 eukaryotic genomes. The whole set of fs-genes was grouped into clusters based on sequence similarity between fs-proteins (conceptually translated fs-genes), conservation of the frameshift position and frameshift direction (-1, +1). The fs-genes can be retrieved by similarity search to a given query sequence via a web interface, by fs-gene cluster browsing, etc. Clusters of fs-genes are characterized with respect to their likely origin, such as pseudogenization, phase variation, etc. The largest clusters contain fs-genes with programed frameshifts (related to recoding events). PMID:23161689

  8. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies

    PubMed Central

    Chapman, Joanne R.; Waldenström, Jonas

    2015-01-01

    The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies. PMID:26555275

  9. Lineage-specific expansion of IFIT gene family: an insight into coevolution with IFN gene family.

    PubMed

    Liu, Ying; Zhang, Yi-Bing; Liu, Ting-Kai; Gui, Jian-Fang

    2013-01-01

    In mammals, IFIT (Interferon [IFN]-induced proteins with Tetratricopeptide Repeat [TPR] motifs) family genes are involved in many cellular and viral processes, which are tightly related to mammalian IFN response. However, little is known about non-mammalian IFIT genes. In the present study, IFIT genes are identified in the genome databases from the jawed vertebrates including the cartilaginous elephant shark but not from non-vertebrates such as lancelet, sea squirt and acorn worm, suggesting that IFIT gene family originates from a vertebrate ancestor about 450 million years ago. IFIT family genes show conserved gene structure and gene arrangements. Phylogenetic analyses reveal that this gene family has expanded through lineage-specific and species-specific gene duplication. Interestingly, IFN gene family seem to share a common ancestor and a similar evolutionary mechanism; the function link of IFIT genes to IFN response is present early since the origin of both gene families, as evidenced by the finding that zebrafish IFIT genes are upregulated by fish IFNs, poly(I:C) and two transcription factors IRF3/IRF7, likely via the IFN-stimulated response elements (ISRE) within the promoters of vertebrate IFIT family genes. These coevolution features creates functional association of both family genes to fulfill a common biological process, which is likely selected by viral infection during evolution of vertebrates. Our results are helpful for understanding of evolution of vertebrate IFN system. PMID:23818968

  10. Gene expression in major depressive disorder.

    PubMed

    Jansen, R; Penninx, B W J H; Madar, V; Xia, K; Milaneschi, Y; Hottenga, J J; Hammerschlag, A R; Beekman, A; van der Wee, N; Smit, J H; Brooks, A I; Tischfield, J; Posthuma, D; Schoevers, R; van Grootheest, G; Willemsen, G; de Geus, E J; Boomsma, D I; Wright, F A; Zou, F; Sun, W; Sullivan, P F

    2016-03-01

    The search for genetic variants underlying major depressive disorder (MDD) has not yet provided firm leads to its underlying molecular biology. A complementary approach is to study gene expression in relation to MDD. We measured gene expression in peripheral blood from 1848 subjects from The Netherlands Study of Depression and Anxiety. Subjects were divided into current MDD (N=882), remitted MDD (N=635) and control (N=331) groups. MDD status and gene expression were measured again 2 years later in 414 subjects. The strongest gene expression differences were between the current MDD and control groups (129 genes at false-discovery rate, FDR<0.1). Gene expression differences across MDD status were largely unrelated to antidepressant use, inflammatory status and blood cell counts. Genes associated with MDD were enriched for interleukin-6 (IL-6)-signaling and natural killer (NK) cell pathways. We identified 13 gene expression clusters with specific clusters enriched for genes involved in NK cell activation (downregulated in current MDD, FDR=5.8 × 10(-5)) and IL-6 pathways (upregulated in current MDD, FDR=3.2 × 10(-3)). Longitudinal analyses largely confirmed results observed in the cross-sectional data. Comparisons of gene expression results to the Psychiatric Genomics Consortium (PGC) MDD genome-wide association study results revealed overlap with DVL3. In conclusion, multiple gene expression associations with MDD were identified and suggest a measurable impact of current MDD state on gene expression. Identified genes and gene clusters are enriched with immune pathways previously associated with the etiology of MDD, in line with the immune suppression and immune activation hypothesis of MDD. PMID:26008736

  11. Evolutionary Signatures amongst Disease Genes Permit Novel Methods for Gene Prioritization and Construction of Informative Gene-Based Networks

    PubMed Central

    Priedigkeit, Nolan; Wolfe, Nicholas; Clark, Nathan L.

    2015-01-01

    Genes involved in the same function tend to have similar evolutionary histories, in that their rates of evolution covary over time. This coevolutionary signature, termed Evolutionary Rate Covariation (ERC), is calculated using only gene sequences from a set of closely related species and has demonstrated potential as a computational tool for inferring functional relationships between genes. To further define applications of ERC, we first established that roughly 55% of genetic diseases posses an ERC signature between their contributing genes. At a false discovery rate of 5% we report 40 such diseases including cancers, developmental disorders and mitochondrial diseases. Given these coevolutionary signatures between disease genes, we then assessed ERC's ability to prioritize known disease genes out of a list of unrelated candidates. We found that in the presence of an ERC signature, the true disease gene is effectively prioritized to the top 6% of candidates on average. We then apply this strategy to a melanoma-associated region on chromosome 1 and identify MCL1 as a potential causative gene. Furthermore, to gain global insight into disease mechanisms, we used ERC to predict molecular connections between 310 nominally distinct diseases. The resulting “disease map” network associates several diseases with related pathogenic mechanisms and unveils many novel relationships between clinically distinct diseases, such as between Hirschsprung's disease and melanoma. Taken together, these results demonstrate the utility of molecular evolution as a gene discovery platform and show that evolutionary signatures can be used to build informative gene-based networks. PMID:25679399

  12. Gene flow from transgenic common beans expressing the bar gene.

    PubMed

    Faria, Josias C; Carneiro, Geraldo E S; Aragão, Francisco J L

    2010-01-01

    Gene flow is a common phenomenon even in self-pollinated plant species. With the advent of genetically modified plants this subject has become of the utmost importance due to the need for controlling the spread of transgenes. This study was conducted to determine the occurrence and intensity of outcrossing in transgenic common beans. In order to evaluate the outcross rates, four experiments were conducted in Santo Antonio de Goiás (GO, Brazil) and one in Londrina (PR, Brazil), using transgenic cultivars resistant to the herbicide glufosinate ammonium and their conventional counterparts as recipients of the transgene. Experiments with cv. Olathe Pinto and the transgenic line Olathe M1/4 were conducted in a completely randomized design with ten replications for three years in one location, whereas the experiments with cv. Pérola and the transgenic line Pérola M1/4 were conducted at two locations for one year, with the transgenic cultivar surrounded on all sides by the conventional counterpart. The outcross occurred at a negligible rate of 0.00741% in cv. Pérola, while none was observed (0.0%) in cv. Olathe Pinto. The frequency of gene flow was cultivar dependent and most of the observed outcross was within 2.5 m from the edge of the pollen source. Index terms: Phaseolus vulgaris, outcross, glufosinate ammonium. PMID:21865877

  13. Gene therapy for prostate cancer.

    PubMed

    Tangney, Mark; Ahmad, Sarfraz; Collins, Sara A; O'Sullivan, Gerald C

    2010-05-01

    Cancer remains a leading cause of morbidity and mortality. Despite advances in understanding, detection, and treatment, it accounts for almost one-fourth of all deaths per year in Western countries. Prostate cancer is currently the most commonly diagnosed noncutaneous cancer in men in Europe and the United States, accounting for 15% of all cancers in men. As life expectancy of individuals increases, it is expected that there will also be an increase in the incidence and mortality of prostate cancer. Prostate cancer may be inoperable at initial presentation, unresponsive to chemotherapy and radiotherapy, or recur following appropriate treatment. At the time of presentation, patients may already have metastases in their tissues. Preventing tumor recurrence requires systemic therapy; however, current modalities are limited by toxicity or lack of efficacy. For patients with such metastatic cancers, the development of alternative therapies is essential. Gene therapy is a realistic prospect for the treatment of prostate and other cancers, and involves the delivery of genetic information to the patient to facilitate the production of therapeutic proteins. Therapeutics can act directly (eg, by inducing tumor cells to produce cytotoxic agents) or indirectly by upregulating the immune system to efficiently target tumor cells or by destroying the tumor's vasculature. However, technological difficulties must be addressed before an efficient and safe gene medicine is achieved (primarily by developing a means of delivering genes to the target cells or tissue safely and efficiently). A wealth of research has been carried out over the past 20 years, involving various strategies for the treatment of prostate cancer at preclinical and clinical trial levels. The therapeutic efficacy observed with many of these approaches in patients indicates that these treatment modalities will serve as an important component of urological malignancy treatment in the clinic, either in isolation or

  14. NME genes in epithelial morphogenesis

    PubMed Central

    2012-01-01

    The NME family of genes encodes highly conserved multifunctional proteins that have been shown to participate in nucleic acid metabolism, energy homeostasis, cell signaling, and cancer progression. Some family members, particularly isoforms 1 and 2, have attracted extensive interests because of their potential anti-metastasis activity. Unfortunately, there have been few consensus mechanistic explanations for this critical function because of the numerous molecular functions ascribed to these proteins, including nucleoside diphosphate kinase, protein kinase, nuclease, transcription factor, growth factor, among others. In addition, different studies showed contradictory prognostic correlations between NME expression levels and tumor progression in clinical samples. Thus, analyses using pliable in vivo systems have become critical for unraveling at least some aspects of the complex functions of this family of genes. Recent works using the Drosophila genetic system have suggested a role for NME in regulating epithelial cell motility and morphogenesis, which has also been demonstrated in mammalian epithelial cell culture. This function is mediated by promoting internalization of growth factor receptors in motile epithelial cells, and the adherens junction components such as E-cadherin and β-catenin in epithelia that form the tissue linings. Interestingly, NME genes in epithelial cells appear to function in a defined range of expression levels. Either down-regulation or over-expression can perturb epithelial integrity, resulting in different aspects of epithelial abnormality. Such biphasic functions provide a plausible explanation for the documented anti-metastatic activity and the suspected oncogenic function. This review summarizes these recent findings and discusses their implications. PMID:21336542

  15. Altered patterns of gene duplication and differential gene gain and loss in fungal pathogens

    PubMed Central

    Powell, Amy J; Conant, Gavin C; Brown, Douglas E; Carbone, Ignazio; Dean, Ralph A

    2008-01-01

    Background Duplication, followed by fixation or random loss of novel genes, contributes to genome evolution. Particular outcomes of duplication events are possibly associated with pathogenic life histories in fungi. To date, differential gene gain and loss have not been studied at genomic scales in fungal pathogens, despite this phenomenon's known importance in virulence in bacteria and viruses. Results To determine if patterns of gene duplication differed between pathogens and non-pathogens, we identified gene families across nine euascomycete and two basidiomycete species. Gene family size distributions were fit to power laws to compare gene duplication trends in pathogens versus non-pathogens. Fungal phytopathogens showed globally altered patterns of gene duplication, as indicated by differences in gene family size distribution. We also identified sixteen examples of gene family expansion and five instances of gene family contraction in pathogenic lineages. Expanded gene families included those predicted to be important in melanin biosynthesis, host cell wall degradation and transport functions. Contracted families included those encoding genes involved in toxin production, genes with oxidoreductase activity, as well as subunits of the vacuolar ATPase complex. Surveys of the functional distribution of gene duplicates indicated that pathogens show enrichment for gene duplicates associated with receptor and hydrolase activities, while euascomycete pathogens appeared to have not only these differences, but also significantly more duplicates associated with regulatory and carbohydrate binding functions. Conclusion Differences in the overall levels of gene duplication in phytopathogenic species versus non-pathogenic relatives implicate gene inventory flux as an important virulence-associated process in fungi. We hypothesize that the observed patterns of gene duplicate enrichment, gene family expansion and contraction reflect adaptation within pathogenic life

  16. Impact of gene family evolutionary histories on phylogenetic species tree inference by gene tree parsimony.

    PubMed

    Shi, Tao

    2016-03-01

    Complicated history of gene duplication and loss brings challenge to molecular phylogenetic inference, especially in deep phylogenies. However, phylogenomic approaches, such as gene tree parsimony (GTP), show advantage over some other approaches in its ability to use gene families with duplications. GTP searches the 'optimal' species tree by minimizing the total cost of biological events such as duplications, but accuracy of GTP and phylogenetic signal in the context of different gene families with distinct histories of duplication and loss are unclear. To evaluate how different evolutionary properties of different gene families can impact on species tree inference, 3900 gene families from seven angiosperms encompassing a wide range of gene content, lineage-specific expansions and contractions were analyzed. It was found that the gene content and total duplication number in a gene family strongly influence species tree inference accuracy, with the highest accuracy achieved at either very low or very high gene content (or duplication number) and lowest accuracy centered in intermediate gene content (or duplication number), as the relationship can fit a binomial regression. Besides, for gene families of similar level of average gene content, those with relatively higher lineage-specific expansion or duplication rates tend to show lower accuracy. Additional correlation tests support that high accuracy for those gene families with large gene content may rely on abundant ancestral copies to provide many subtrees to resolve conflicts, whereas high accuracy for single or low copy gene families are just subject to sequence substitution per se. Very low accuracy reached by gene families of intermediate gene content or duplication number can be due to insufficient subtrees to resolve the conflicts from loss of alternative copies. As these evolutionary properties can significantly influence species tree accuracy, I discussed the potential weighting of the duplication cost by

  17. Update of Thyroid Developmental Genes.

    PubMed

    Stoupa, Athanasia; Kariyawasam, Dulanjalee; Carré, Aurore; Polak, Michel

    2016-06-01

    Thyroid dysgenesis (TD) is the most common cause of congenital hypothyroidism in iodine-sufficient regions and includes a spectrum of developmental anomalies. The genetic components of TD are complex. Although a sporadic disease, advances in developmental biology have revealed monogenetic forms of TD. Inheritance is not based on a simple Mendelian pattern and additional genetic elements might contribute to the phenotypic spectrum. This article summarizes the key steps of normal thyroid development and provides an update on responsible genes and underlying mechanisms of TD. Up-to-date technologies in genetics and biology will allow us to advance in our knowledge of TD. PMID:27241962

  18. QB1 - Stochastic Gene Regulation

    SciTech Connect

    Munsky, Brian

    2012-07-23

    Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.

  19. Gene flow and bacterial transformation

    SciTech Connect

    Dixon, B.

    1993-07-01

    It is common knowledge that Salmonella which should be removed during the processing of sewage can persist is sewage sludge that is sprayed as agricultural fertilizer. Currently, researchers have found that Salmonella may become nonculturable by conventional means, while remaining viable. The issue raised by this article is the knowledge of lateral gene flow as secure as scientist suppose The author sites several research papers that suggest that intergeneric transformation can and does take place in marine environments such as tropical and subtropical estuaries.

  20. Mathematical Models of Gene Regulation

    NASA Astrophysics Data System (ADS)

    Mackey, Michael C.

    2004-03-01

    This talk will focus on examples of mathematical models for the regulation of repressible operons (e.g. the tryptophan operon), inducible operons (e.g. the lactose operon), and the lysis/lysogeny switch in phage λ. These ``simple" gene regulatory elements can display characteristics experimentally of rapid response to perturbations and bistability, and biologically accurate mathematical models capture these aspects of the dynamics. The models, if realistic, are always nonlinear and contain significant time delays due to transcriptional and translational delays that pose substantial problems for the analysis of the possible ranges of dynamics.

  1. Gene Flow in Seed Alfalfa: A Summary of Recent Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene flow is the mechanism by which a gene from one population becomes established in another population. There are two types of gene flow: pollen-mediated gene flow and seed-mediated gene flow. Pollen-mediated gene flow results from the movement of pollen from one location to another resulting in f...

  2. Human DNA repair and recombination genes

    SciTech Connect

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs.

  3. Arabidopsis gene expression patterns during spaceflight

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.

    The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.

  4. Targeted Gene Therapies: Tools, Applications, Optimization

    PubMed Central

    Humbert, Olivier; Davis, Luther; Maizels, Nancy

    2012-01-01

    Many devastating human diseases are caused by mutations in a single gene that prevent a somatic cell from carrying out its essential functions, or by genetic changes acquired as a result of infectious disease or in the course of cell transformation. Targeted gene therapies have emerged as potential strategies for treatment of such diseases. These therapies depend upon rare-cutting endonucleases to cleave at specific sites in or near disease genes. Targeted gene correction provides a template for homology-directed repair, enabling the cell's own repair pathways to erase the mutation and replace it with the correct sequence. Targeted gene disruption ablates the disease gene, disabling its function. Gene targeting can also promote other kinds of genome engineering, including mutation, insertion, or gene deletion. Targeted gene therapies present significant advantages compared to approaches to gene therapy that depend upon delivery of stably expressing transgenes. Recent progress has been fueled by advances in nuclease discovery and design, and by new strategies that maximize efficiency of targeting and minimize off-target damage. Future progress will build on deeper mechanistic understanding of critical factors and pathways. PMID:22530743

  5. Gene teams with relaxed proximity constraint.

    PubMed

    Kim, Sun; Choi, Jeong-Hyeon; Yang, Jiong

    2005-01-01

    Functionally related genes co-evolve, probably due to the strong selection pressure in evolution. Thus we expect that they are present in multiple genomes. Physical proximity among genes, known as gene team, is a very useful concept to discover functionally related genes in multiple genomes. However, there are also many gene sets that do not preserve physical proximity. In this paper, we generalized the gene team model, that looks for gene clusters in a physically clustered form, to multiple genome cases with relaxed constraint. We propose a novel hybrid pattern model that combines the set and the sequential pattern models. Our model searches for gene clusters with and/or without physical proximity constraint. This model is implemented and tested with 97 genomes (120 replicons). The result was analyzed to show the usefulness of our model. Especially, analysis of gene clusters that belong to B. subtilis and E. coli demonstrated that our model predicted many experimentally verified operons and functionally related clusters. Our program is fast enough to provide a sevice on the web at http://platcom. informatics.indiana.edu/platcom/. Users can select any combination of 97 genomes to predict gene teams. PMID:16447961

  6. The Dynein Gene Family in Chlamydomonas Reinhardtii

    PubMed Central

    Porter, M. E.; Knott, J. A.; Myster, S. H.; Farlow, S. J.

    1996-01-01

    To correlate dynein heavy chain (Dhc) genes with flagellar mutations and gain insight into the function of specific dynein isoforms, we placed eight members of the Dhc gene family on the genetic map of Chlamydomonas. Using a PCR-based strategy, we cloned 11 Dhc genes from Chlamydomonas. Comparisons with other Dhc genes indicate that two clones correspond to genes encoding the alpha and beta heavy chains of the outer dynein arm. Alignment of the predicted amino acid sequences spanning the nucleotide binding site indicates that the remaining nine clones can be subdivided into three groups that are likely to include representatives of the inner-arm Dhc isoforms. Gene-specific probes reveal that each clone represents a single-copy gene that is expressed as a transcript of the appropriate size (>13 kb) sufficient to encode a high molecular weight Dhc polypeptide. The expression of all nine genes is upregulated in response to deflagellation, suggesting a role in axoneme assembly or motility. Restriction fragment length polymorphisms between divergent C. reinhardtii strains have been used to place each Dhc gene on the genetic map of Chlamydomonas. These studies lay the groundwork for correlating defects in different Dhc genes with specific flagellar mutations. PMID:8889521

  7. Targeting Herpetic Keratitis by Gene Therapy

    PubMed Central

    Elbadawy, Hossein Mostafa; Gailledrat, Marine; Desseaux, Carole; Ponzin, Diego; Ferrari, Stefano

    2012-01-01

    Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1) can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis. PMID:23326647

  8. Evolution of the Vertebrate Resistin Gene Family

    PubMed Central

    Hu, Qingda; Tan, Huanran; Irwin, David M.

    2015-01-01

    Resistin (encoded by Retn) was previously identified in rodents as a hormone associated with diabetes; however human resistin is instead linked to inflammation. Resistin is a member of a small gene family that includes the resistin-like peptides (encoded by Retnl genes) in mammals. Genomic searches of available genome sequences of diverse vertebrates and phylogenetic analyses were conducted to determine the size and origin of the resistin-like gene family. Genes encoding peptides similar to resistin were found in Mammalia, Sauria, Amphibia, and Actinistia (coelacanth, a lobe-finned fish), but not in Aves or fish from Actinopterygii, Chondrichthyes, or Agnatha. Retnl originated by duplication and transposition from Retn on the early mammalian lineage after divergence of the platypus, but before the placental and marsupial mammal divergence. The resistin-like gene family illustrates an instance where the locus of origin of duplicated genes can be identified, with Retn continuing to reside at this location. Mammalian species typically have a single copy Retn gene, but are much more variable in their numbers of Retnl genes, ranging from 0 to 9. Since Retn is located at the locus of origin, thus likely retained the ancestral expression pattern, largely maintained its copy number, and did not display accelerated evolution, we suggest that it is more likely to have maintained an ancestral function, while Retnl, which transposed to a new location, displays accelerated evolution, and shows greater variability in gene number, including gene loss, likely evolved new, but potentially lineage-specific, functions. PMID:26076481

  9. Nucleosome repositioning underlies dynamic gene expression.

    PubMed

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions. PMID:26966245

  10. Evolution of the Vertebrate Resistin Gene Family.

    PubMed

    Hu, Qingda; Tan, Huanran; Irwin, David M

    2015-01-01

    Resistin (encoded by Retn) was previously identified in rodents as a hormone associated with diabetes; however human resistin is instead linked to inflammation. Resistin is a member of a small gene family that includes the resistin-like peptides (encoded by Retnl genes) in mammals. Genomic searches of available genome sequences of diverse vertebrates and phylogenetic analyses were conducted to determine the size and origin of the resistin-like gene family. Genes encoding peptides similar to resistin were found in Mammalia, Sauria, Amphibia, and Actinistia (coelacanth, a lobe-finned fish), but not in Aves or fish from Actinopterygii, Chondrichthyes, or Agnatha. Retnl originated by duplication and transposition from Retn on the early mammalian lineage after divergence of the platypus, but before the placental and marsupial mammal divergence. The resistin-like gene family illustrates an instance where the locus of origin of duplicated genes can be identified, with Retn continuing to reside at this location. Mammalian species typically have a single copy Retn gene, but are much more variable in their numbers of Retnl genes, ranging from 0 to 9. Since Retn is located at the locus of origin, thus likely retained the ancestral expression pattern, largely maintained its copy number, and did not display accelerated evolution, we suggest that it is more likely to have maintained an ancestral function, while Retnl, which transposed to a new location, displays accelerated evolution, and shows greater variability in gene number, including gene loss, likely evolved new, but potentially lineage-specific, functions. PMID:26076481

  11. MEL gene polymorphism in the genus Saccharomyces.

    PubMed Central

    Turakainen, H; Aho, S; Korhola, M

    1993-01-01

    In Saccharomyces spp. the ability to use melibiose depends on the presence of a MEL gene encoding alpha-galactosidase. We used two cloned MEL genes as probes to characterize the physical structure and chromosomal location of the MEL genes in several industrial and natural Mel+ strains of Saccharomyces cerevisiae, Saccharomyces pastorianus, and Saccharomyces bayanus. Electrokaryotyping showed that all of the S. pastorianus strains and most of the S. bayanus strains studied had one MEL locus. The MEL gene in S. bayanus strains was similar but not identical to the S. pastorianus MEL gene. Mel+ S. cerevisiae strains had one to seven loci containing MEL sequences. The MEL genes of these strains could be divided into two categories on the basis of hybridization to MEL1, one group exhibiting strong hybridization to MEL1 and the other group exhibiting weak hybridization to MEL1. In S. pastorianus and S. bayanus strains, the MEL gene was expressed as a single 1.5-kb transcript, and the expression was galactose inducible. In some S. cerevisiae strains, the MEL genes were expressed even without induction at fairly high levels. Expression was usually further induced by galactose. In two strains, CBS 5378 and CBS 4903, expression of the MEL genes was at the same level without induction as it was in most other strains with induction. In all S. cerevisiae strains, irrespective of the number of MEL genes, mRNA of only one size (1.6 kb) was observed. Images PMID:8396384

  12. Genes Downregulated in Endometriosis Are Located Near the Known Imprinting Genes

    PubMed Central

    Higashiura, Yumi; Koike, Natsuki; Akasaka, Juria; Uekuri, Chiharu; Iwai, Kana; Niiro, Emiko; Morioka, Sachiko; Yamada, Yuki

    2014-01-01

    There is now accumulating evidence that endometriosis is a disease associated with an epigenetic disorder. Genomic imprinting is an epigenetic phenomenon known to regulate DNA methylation of either maternal or paternal alleles. We hypothesize that hypermethylated endometriosis-associated genes may be enriched at imprinted gene loci. We sought to determine whether downregulated genes associated with endometriosis susceptibility are associated with chromosomal location of the known paternally and maternally expressed imprinting genes. Gene information has been gathered from National Center for Biotechnology Information database geneimprint.com. Several researchers have identified specific loci with strong DNA methylation in eutopic endometrium and ectopic lesion with endometriosis. Of the 29 hypermethylated genes in endometriosis, 19 genes were located near 45 known imprinted foci. There may be an association of the genomic location between genes specifically downregulated in endometriosis and epigenetically imprinted genes. PMID:24615936

  13. Detecting sequence homology at the gene cluster level with MultiGeneBlast.

    PubMed

    Medema, Marnix H; Takano, Eriko; Breitling, Rainer

    2013-05-01

    The genes encoding many biomolecular systems and pathways are genomically organized in operons or gene clusters. With MultiGeneBlast, we provide a user-friendly and effective tool to perform homology searches with operons or gene clusters as basic units, instead of single genes. The contextualization offered by MultiGeneBlast allows users to get a better understanding of the function, evolutionary history, and practical applications of such genomic regions. The tool is fully equipped with applications to generate search databases from GenBank or from the user's own sequence data. Finally, an architecture search mode allows searching for gene clusters with novel configurations, by detecting genomic regions with any user-specified combination of genes. Sources, precompiled binaries, and a graphical tutorial of MultiGeneBlast are freely available from http://multigeneblast.sourceforge.net/. PMID:23412913

  14. Functional-Network-Based Gene Set Analysis Using Gene-Ontology

    PubMed Central

    Chang, Billy; Kustra, Rafal; Tian, Weidong

    2013-01-01

    To account for the functional non-equivalence among a set of genes within a biological pathway when performing gene set analysis, we introduce GOGANPA, a network-based gene set analysis method, which up-weights genes with functions relevant to the gene set of interest. The genes are weighted according to its degree within a genome-scale functional network constructed using the functional annotations available from the gene ontology database. By benchmarking GOGANPA using a well-studied P53 data set and three breast cancer data sets, we will demonstrate the power and reproducibility of our proposed method over traditional unweighted approaches and a competing network-based approach that involves a complex integrated network. GOGANPA’s sole reliance on gene ontology further allows GOGANPA to be widely applicable to the analysis of any gene-ontology-annotated genome. PMID:23418449

  15. Evolution of the insect Sox genes

    PubMed Central

    2008-01-01

    Background The Sox gene family of transcriptional regulators have essential roles during development and have been extensively studied in vertebrates. The mouse, human and fugu genomes contain at least 20 Sox genes, which are subdivided into groups based on sequence similarity of the highly conserved HMG domain. In the well-studied insect Drosophila melanogaster, eight Sox genes have been identified and are involved in processes such as neurogenesis, dorsal-ventral patterning and segmentation. Results We examined the available genome sequences of Apis mellifera, Nasonia vitripennis, Tribolium castaneum, Anopheles gambiae and identified Sox family members which were classified by phylogenetics using the HMG domains. Using in situ hybridisation we determined the expression patterns of eight honeybee Sox genes in honeybee embryo, adult brain and queen ovary. AmSoxB group genes were expressed in the nervous system, brain and Malphigian tubules. The restricted localization of AmSox21b and AmSoxB1 mRNAs within the oocyte, suggested a role in, or that they are regulated by, dorsal-ventral patterning. AmSoxC, D and F were expressed ubiquitously in late embryos and in the follicle cells of the queen ovary. Expression of AmSoxF and two AmSoxE genes was detected in the drone testis. Conclusion Insect genomes contain between eight and nine Sox genes, with at least four members belonging to Sox group B and other Sox subgroups each being represented by a single Sox gene. Hymenopteran insects have an additional SoxE gene, which may have arisen by gene duplication. Expression analyses of honeybee SoxB genes implies that this group of genes may be able to rapidly evolve new functions and expression domains, while the combined expression pattern of all the SoxB genes is maintained. PMID:18439299

  16. Application of multidisciplinary analysis to gene expression.

    SciTech Connect

    Wang, Xuefel; Kang, Huining; Fields, Chris; Cowie, Jim R.; Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy; Mosquera-Caro, Monica P.; Xu, Yuexian; Martin, Shawn Bryan; Helman, Paul; Andries, Erik; Ar, Kerem; Potter, Jeffrey; Willman, Cheryl L.; Murphy, Maurice H.

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  17. Selection of Phototransduction Genes in Homo sapiens

    PubMed Central

    Christopher, Mark; Scheetz, Todd E.; Mullins, Robert F.; Abràmoff, Michael D.

    2013-01-01

    Purpose. We investigated the evidence of recent positive selection in the human phototransduction system at single nucleotide polymorphism (SNP) and gene level. Methods. SNP genotyping data from the International HapMap Project for European, Eastern Asian, and African populations was used to discover differences in haplotype length and allele frequency between these populations. Numeric selection metrics were computed for each SNP and aggregated into gene-level metrics to measure evidence of recent positive selection. The level of recent positive selection in phototransduction genes was evaluated and compared to a set of genes shown previously to be under recent selection, and a set of highly conserved genes as positive and negative controls, respectively. Results. Six of 20 phototransduction genes evaluated had gene-level selection metrics above the 90th percentile: RGS9, GNB1, RHO, PDE6G, GNAT1, and SLC24A1. The selection signal across these genes was found to be of similar magnitude to the positive control genes and much greater than the negative control genes. Conclusions. There is evidence for selective pressure in the genes involved in retinal phototransduction, and traces of this selective pressure can be demonstrated using SNP-level and gene-level metrics of allelic variation. We hypothesize that the selective pressure on these genes was related to their role in low light vision and retinal adaptation to ambient light changes. Uncovering the underlying genetics of evolutionary adaptations in phototransduction not only allows greater understanding of vision and visual diseases, but also the development of patient-specific diagnostic and intervention strategies. PMID:23868983

  18. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    PubMed Central

    Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417

  19. 'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns

    PubMed Central

    Hastie, Trevor; Tibshirani, Robert; Eisen, Michael B; Alizadeh, Ash; Levy, Ronald; Staudt, Louis; Chan, Wing C; Botstein, David; Brown, Patrick

    2000-01-01

    Background: Large gene expression studies, such as those conducted using DNA arrays, often provide millions of different pieces of data. To address the problem of analyzing such data, we describe a statistical method, which we have called 'gene shaving'. The method identifies subsets of genes with coherent expression patterns and large variation across conditions. Gene shaving differs from hierarchical clustering and other widely used methods for analyzing gene expression studies in that genes may belong to more than one cluster, and the clustering may be supervised by an outcome measure. The technique can be 'unsupervised', that is, the genes and samples are treated as unlabeled, or partially or fully supervised by using known properties of the genes or samples to assist in finding meaningful groupings. Results: We illustrate the use of the gene shaving method to analyze gene expression measurements made on samples from patients with diffuse large B-cell lymphoma. The method identifies a small cluster of genes whose expression is highly predictive of survival. Conclusions: The gene shaving method is a potentially useful tool for exploration of gene expression data and identification of interesting clusters of genes worth further investigation. PMID:11178228

  20. Evolutionary and Topological Properties of Genes and Community Structures in Human Gene Regulatory Networks

    PubMed Central

    Szedlak, Anthony; Smith, Nicholas; Liu, Li; Paternostro, Giovanni; Piermarocchi, Carlo

    2016-01-01

    The diverse, specialized genes present in today’s lifeforms evolved from a common core of ancient, elementary genes. However, these genes did not evolve individually: gene expression is controlled by a complex network of interactions, and alterations in one gene may drive reciprocal changes in its proteins’ binding partners. Like many complex networks, these gene regulatory networks (GRNs) are composed of communities, or clusters of genes with relatively high connectivity. A deep understanding of the relationship between the evolutionary history of single genes and the topological properties of the underlying GRN is integral to evolutionary genetics. Here, we show that the topological properties of an acute myeloid leukemia GRN and a general human GRN are strongly coupled with its genes’ evolutionary properties. Slowly evolving (“cold”), old genes tend to interact with each other, as do rapidly evolving (“hot”), young genes. This naturally causes genes to segregate into community structures with relatively homogeneous evolutionary histories. We argue that gene duplication placed old, cold genes and communities at the center of the networks, and young, hot genes and communities at the periphery. We demonstrate this with single-node centrality measures and two new measures of efficiency, the set efficiency and the interset efficiency. We conclude that these methods for studying the relationships between a GRN’s community structures and its genes’ evolutionary properties provide new perspectives for understanding evolutionary genetics. PMID:27359334

  1. Gene therapy of metachromatic leukodystrophy.

    PubMed

    Matzner, Ulrich; Gieselmann, Volkmar

    2005-01-01

    Metachromatic leukodystrophy (MLD) is a lysosomal storage disease that is caused by a deficiency of arylsulfatase A (ASA). The deficiency results in the intralysosomal accumulation of the acidic sphingolipid 3-O-sulfogalactosyl-ceramide (sulfatide). Patients suffer from progressive demyelination and die from multiple neurological deficits. Curative treatment is not available. ASA bears mannose 6-phosphate residues which function as recognition markers in endosome/lysosome-specific targeting pathways. The endocytic targeting route can be exploited to deliver exogenous ASA to the lysosomes of ASA-deficient cells. ASA knockout mice, which develop a disorder related to MLD, have therefore been treated by ex vivo and in vivo gene therapy. Following transplantation of bone marrow cells overexpressing ASA from a retroviral vector, donor-type cells secrete ASA, which is endocytosed by recipient cells. The enzyme transfer results in the metabolic cross-correction of recipient cells and the improvement of biochemical, histological and clinical parameters. For the transfer of the ASA cDNA to non-dividing cells, adenovirus, adeno-associated virus and lentivirus vectors have been constructed. Such vectors might be particularly advantageous for direct ASA gene delivery to the brain, which is the main site of disease in MLD. PMID:15709909

  2. Gene Ontology annotations and resources.

    PubMed

    Blake, J A; Dolan, M; Drabkin, H; Hill, D P; Li, Ni; Sitnikov, D; Bridges, S; Burgess, S; Buza, T; McCarthy, F; Peddinti, D; Pillai, L; Carbon, S; Dietze, H; Ireland, A; Lewis, S E; Mungall, C J; Gaudet, P; Chrisholm, R L; Fey, P; Kibbe, W A; Basu, S; Siegele, D A; McIntosh, B K; Renfro, D P; Zweifel, A E; Hu, J C; Brown, N H; Tweedie, S; Alam-Faruque, Y; Apweiler, R; Auchinchloss, A; Axelsen, K; Bely, B; Blatter, M -C; Bonilla, C; Bouguerleret, L; Boutet, E; Breuza, L; Bridge, A; Chan, W M; Chavali, G; Coudert, E; Dimmer, E; Estreicher, A; Famiglietti, L; Feuermann, M; Gos, A; Gruaz-Gumowski, N; Hieta, R; Hinz, C; Hulo, C; Huntley, R; James, J; Jungo, F; Keller, G; Laiho, K; Legge, D; Lemercier, P; Lieberherr, D; Magrane, M; Martin, M J; Masson, P; Mutowo-Muellenet, P; O'Donovan, C; Pedruzzi, I; Pichler, K; Poggioli, D; Porras Millán, P; Poux, S; Rivoire, C; Roechert, B; Sawford, T; Schneider, M; Stutz, A; Sundaram, S; Tognolli, M; Xenarios, I; Foulgar, R; Lomax, J; Roncaglia, P; Khodiyar, V K; Lovering, R C; Talmud, P J; Chibucos, M; Giglio, M Gwinn; Chang, H -Y; Hunter, S; McAnulla, C; Mitchell, A; Sangrador, A; Stephan, R; Harris, M A; Oliver, S G; Rutherford, K; Wood, V; Bahler, J; Lock, A; Kersey, P J; McDowall, D M; Staines, D M; Dwinell, M; Shimoyama, M; Laulederkind, S; Hayman, T; Wang, S -J; Petri, V; Lowry, T; D'Eustachio, P; Matthews, L; Balakrishnan, R; Binkley, G; Cherry, J M; Costanzo, M C; Dwight, S S; Engel, S R; Fisk, D G; Hitz, B C; Hong, E L; Karra, K; Miyasato, S R; Nash, R S; Park, J; Skrzypek, M S; Weng, S; Wong, E D; Berardini, T Z; Huala, E; Mi, H; Thomas, P D; Chan, J; Kishore, R; Sternberg, P; Van Auken, K; Howe, D; Westerfield, M

    2013-01-01

    The Gene Ontology (GO) Consortium (GOC, http://www.geneontology.org) is a community-based bioinformatics resource that classifies gene product function through the use of structured, controlled vocabularies. Over the past year, the GOC has implemented several processes to increase the quantity, quality and specificity of GO annotations. First, the number of manual, literature-based annotations has grown at an increasing rate. Second, as a result of a new 'phylogenetic annotation' process, manually reviewed, homology-based annotations are becoming available for a broad range of species. Third, the quality of GO annotations has been improved through a streamlined process for, and automated quality checks of, GO annotations deposited by different annotation groups. Fourth, the consistency and correctness of the ontology itself has increased by using automated reasoning tools. Finally, the GO has been expanded not only to cover new areas of biology through focused interaction with experts, but also to capture greater specificity in all areas of the ontology using tools for adding new combinatorial terms. The GOC works closely with other ontology developers to support integrated use of terminologies. The GOC supports its user community through the use of e-mail lists, social media and web-based resources. PMID:23161678

  3. From migraine genes to mechanisms.

    PubMed

    Tolner, Else A; Houben, Thijs; Terwindt, Gisela M; de Vries, Boukje; Ferrari, Michel D; van den Maagdenberg, Arn M J M

    2015-04-01

    Migraine is a common multifactorial episodic brain disorder with strong genetic basis. Monogenic subtypes include rare familial hemiplegic migraine, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, familial advanced sleep-phase syndrome (FASPS), and retinal vasculopathy with cerebral leukodystrophy. Functional studies of disease-causing mutations in cellular and/or transgenic models revealed enhanced (glutamatergic) neurotransmission and abnormal vascular function as key migraine mechanisms. Common forms of migraine (both with and without an aura), instead, are thought to have a polygenic makeup. Genome-wide association studies have already identified over a dozen genes involved in neuronal and vascular mechanisms. Here, we review the current state of molecular genetic research in migraine, also with respect to functional and pathway analyses. We will also discuss how novel experimental approaches for the identification and functional characterization of migraine genes, such as next-generation sequencing, induced pluripotent stem cell, and optogenetic technologies will further our understanding of the molecular pathways involved in migraine pathogenesis. PMID:25789438

  4. Obesity Gene Atlas in Mammals

    PubMed Central

    Kunej, Tanja; Jevsinek Skok, Dasa; Zorc, Minja; Ogrinc, Ana; Michal, Jennifer J.; Kovac, Milena; Jiang, Zhihua

    2013-01-01

    Obesity in humans has increased at an alarming rate over the past two decades and has become one of the leading public health problems worldwide. Studies have revealed a large number of genes/markers that are associated with obesity and/or obesity-related phenotypes, indicating an urgent need to develop a central database for helping the community understand the genetic complexity of obesity. In the present study, we collected a total of 1,736 obesity associated loci and created a freely available obesity database, including 1,515 protein-coding genes and 221 microRNAs (miRNAs) collected from four mammalian species: human, cattle, rat, and mouse. These loci were integrated as orthologs on comparative genomic views in human, cattle, and mouse. The database and genomic views are freely available online at: http://www.integratomics-time.com/fat_deposition. Bioinformatics analyses of the collected data revealed some potential novel obesity related molecular markers which represent focal points for testing more targeted hypotheses and designing experiments for further studies. We believe that this centralized database on obesity and adipogenesis will facilitate development of comparative systems biology approaches to address this important health issue in human and their potential applications in animals. PMID:25031655

  5. Gene therapy for primary immunodeficiencies.

    PubMed

    Fischer, A; Hacein-Bey Abina, S; Touzot, F; Cavazzana, M

    2015-12-01

    Gene therapy has effectively entered Medicine via the field of primary immunodeficiencies (PID). Because hematopoietic stem cells are accessible and because it was understood that genetic correction of lymphocyte progenitor cells carrying a genetic defect impairing differentiation, could result in the production of long-lived T lymphocytes, it was reasoned that ex vivo gene transfer in hematopoietic cells could lead to disease phenotype correction. Retroviral vectors were designed to ex vivo transduce such cells. This has indeed been shown to lead to sustained correction of the T cell immunodeficiency associated with two forms of severe combined immunodeficiencies (SCID) for now more than ten years. Occurrence in some patients of genotoxicity related to retroviral vectors integration close to and transactivation of oncogenes has led to the development of retroviral vectors devoid of its enhancer element. Results of recent trials performed for several forms of PID indeed suggest that their use is both safe and efficacious. It is thus anticipated that their application to the treatment of many more life threatening PID will be developed over the coming years. PMID:25708106

  6. Transcriptional regulation of tenascin genes

    PubMed Central

    Chiovaro, Francesca; Chiquet-Ehrismann, Ruth; Chiquet, Matthias

    2015-01-01

    Extracellular matrix proteins of the tenascin family resemble each other in their domain structure, and also share functions in modulating cell adhesion and cellular responses to growth factors. Despite these common features, the 4 vertebrate tenascins exhibit vastly different expression patterns. Tenascin-R is specific to the central nervous system. Tenascin-C is an “oncofetal” protein controlled by many stimuli (growth factors, cytokines, mechanical stress), but with restricted occurrence in space and time. In contrast, tenascin-X is a constituitive component of connective tissues, and its level is barely affected by external factors. Finally, the expression of tenascin-W is similar to that of tenascin-C but even more limited. In accordance with their highly regulated expression, the promoters of the tenascin-C and -W genes contain TATA boxes, whereas those of the other 2 tenascins do not. This article summarizes what is currently known about the complex transcriptional regulation of the 4 tenascin genes in development and disease. PMID:25793574

  7. Gene networks and liar paradoxes

    PubMed Central

    Isalan, Mark

    2009-01-01

    Network motifs are small patterns of connections, found over-represented in gene regulatory networks. An example is the negative feedback loop (e.g. factor A represses itself). This opposes its own state so that when ‘on’ it tends towards ‘off’ – and vice versa. Here, we argue that such self-opposition, if considered dimensionlessly, is analogous to the liar paradox: ‘This statement is false’. When ‘true’ it implies ‘false’ – and vice versa. Such logical constructs have provided philosophical consternation for over 2000 years. Extending the analogy, other network topologies give strikingly varying outputs over different dimensions. For example, the motif ‘A activates B and A. B inhibits A’ can give switches or oscillators with time only, or can lead to Turing-type patterns with both space and time (spots, stripes or waves). It is argued here that the dimensionless form reduces to a variant of ‘The following statement is true. The preceding statement is false’. Thus, merely having a static topological description of a gene network can lead to a liar paradox. Network diagrams are only snapshots of dynamic biological processes and apparent paradoxes can reveal important biological mechanisms that are far from paradoxical when considered explicitly in time and space. PMID:19722183

  8. The iojap gene in maize

    SciTech Connect

    Martienssen, Robert

    2001-12-01

    The classical maize mutant iojap (Iodent japonica) has variegated green and white leaves. Green sectors have cells with normal chloroplasts whereas white sectors have cells where plastids fail to differentiate. These mutant plastids, when transmitted through the female gametophyte, do not recover in the presence of wild type Iojap. We cloned the Ij locus, and we have investigated the mechanism of epigenetic inheritance and phenotypic expression. More recently, a modifier of this type of variegation, ''Inhibitor of striate'', has also been cloned. Both the iojap and inhibitor of striate proteins have homologs in bacteria and are members of ancient conserved families found in multiple species. These tools can be used to address fundamental questions of inheritance and variegation associated with this classical conundrum of maize genetics. Since the work of Rhoades there has been considerable speculation concerning the nature of the Iojap gene product, the origin of leaf variegation and the mechanism behind the material inheritance of defective plastids. This has made Iojap a textbook paradigm for cytoplasmic inheritance and nuclear-organellar interaction for almost 50 years. Cloning of the Iojap gene in maize, and homologs in other plants and bacteria, provides a new means to address the origin of heteroplastidity, variegation and cytoplasmic inheritance in higher plants.

  9. Gene Ontology Annotations and Resources

    PubMed Central

    2013-01-01

    The Gene Ontology (GO) Consortium (GOC, http://www.geneontology.org) is a community-based bioinformatics resource that classifies gene product function through the use of structured, controlled vocabularies. Over the past year, the GOC has implemented several processes to increase the quantity, quality and specificity of GO annotations. First, the number of manual, literature-based annotations has grown at an increasing rate. Second, as a result of a new ‘phylogenetic annotation’ process, manually reviewed, homology-based annotations are becoming available for a broad range of species. Third, the quality of GO annotations has been improved through a streamlined process for, and automated quality checks of, GO annotations deposited by different annotation groups. Fourth, the consistency and correctness of the ontology itself has increased by using automated reasoning tools. Finally, the GO has been expanded not only to cover new areas of biology through focused interaction with experts, but also to capture greater specificity in all areas of the ontology using tools for adding new combinatorial terms. The GOC works closely with other ontology developers to support integrated use of terminologies. The GOC supports its user community through the use of e-mail lists, social media and web-based resources. PMID:23161678

  10. Herd behavior in designer genes.

    PubMed

    Huang, P H

    1999-01-01

    The ability of individuals to choose their children's genes has increased over time and may ultimately culminate in a world involving free market reprogenetic technologies. Reprogenetic technologies combine advances in reproductive biology and genetics to provide humans increased control over their children's genes. This Article offers economic perspectives that are helpful in understanding the possibly unexpected ethical, legal, and social issues at stake in using reprogenetic technologies for trait enhancement selection. The Appendix analyzes two competitive games that might arise in such a biotechnological society. Specifically, the Article focuses on herd behavior, caused by either a popularity contest or positional competition, in the choice of genetic traits. The analytical game-theoretic models in the Appendix can have several equilibrium outcomes in terms of individual reprogenetic technological choices and corresponding beliefs about such choices by others. This multiplicity of potential social outcomes suggests that a society can attain efficiency if the state or some private organization transforms individual parents' beliefs over the choices of other parents regarding their children's traits and, thus, coordinates parental reprogenetic decisions by selecting, as focal, certain beliefs over parents' reprogenetic decisions. PMID:12664907

  11. Genes That Bias Mendelian Segregation

    PubMed Central

    Grognet, Pierre; Lalucque, Hervé; Malagnac, Fabienne; Silar, Philippe

    2014-01-01

    Mendel laws of inheritance can be cheated by Meiotic Drive Elements (MDs), complex nuclear genetic loci found in various eukaryotic genomes and distorting segregation in their favor. Here, we identify and characterize in the model fungus Podospora anserina Spok1 and Spok2, two MDs known as Spore Killers. We show that they are related genes with both spore-killing distorter and spore-protecting responder activities carried out by the same allele. These alleles act as autonomous elements, exert their effects independently of their location in the genome and can act as MDs in other fungi. Additionally, Spok1 acts as a resistance factor to Spok2 killing. Genetical data and cytological analysis of Spok1 and Spok2 localization during the killing process suggest a complex mode of action for Spok proteins. Spok1 and Spok2 belong to a multigene family prevalent in the genomes of many ascomycetes. As they have no obvious cellular role, Spok1 and Spok2 Spore Killer genes represent a novel kind of selfish genetic elements prevalent in fungal genome that proliferate through meiotic distortion. PMID:24830502

  12. Gene networks and liar paradoxes.

    PubMed

    Isalan, Mark

    2009-10-01

    Network motifs are small patterns of connections, found over-represented in gene regulatory networks. An example is the negative feedback loop (e.g. factor A represses itself). This opposes its own state so that when 'on' it tends towards 'off' - and vice versa. Here, we argue that such self-opposition, if considered dimensionlessly, is analogous to the liar paradox: 'This statement is false'. When 'true' it implies 'false' - and vice versa. Such logical constructs have provided philosophical consternation for over 2000 years. Extending the analogy, other network topologies give strikingly varying outputs over different dimensions. For example, the motif 'A activates B and A. B inhibits A' can give switches or oscillators with time only, or can lead to Turing-type patterns with both space and time (spots, stripes or waves). It is argued here that the dimensionless form reduces to a variant of 'The following statement is true. The preceding statement is false'. Thus, merely having a static topological description of a gene network can lead to a liar paradox. Network diagrams are only snapshots of dynamic biological processes and apparent paradoxes can reveal important biological mechanisms that are far from paradoxical when considered explicitly in time and space. PMID:19722183

  13. Race, genes and preterm delivery.

    PubMed Central

    Fiscella, Kevin

    2005-01-01

    High rates of preterm delivery (PTD) among African Americans are the leading cause of excess infant mortality among African Americans. Failure to fully explain racial disparity in PTD has led to speculation that genetic factors might contribute to this disparity. Current evidence suggests that genetic factors contribute to PTD, but this does not imply that genetic factors contribute to racial disparity in PTD. Environmental factors clearly contribute to PTD. Many of these factors acting over a women's life prior to pregnancy disproportionately affect African Americans and contribute significantly to racial disparity in PTD. Thus, inferring genetic contribution to racial disparity in PTD by attempting to control for environmental factors measured at a single point in time is flawed. There is emerging evidence of gene-environment interactions for PTD, some of which disproportionately affect African Americans. There is also evidence of racial differences in the prevalence of polymorphisms potentially related to PTD. However, to date there is no direct evidence that these differences contribute significantly to racial disparity in PTD. Given the complexity of polygenic conditions such as PTD, the possibility of any single gene contributing substantially to racial disparity in PTD seems remote. PMID:16334498

  14. Chemokine gene variants in schizophrenia.

    PubMed

    Dasdemir, Selcuk; Kucukali, Cem Ismail; Bireller, Elif Sinem; Tuzun, Erdem; Cakmakoglu, Bedia

    2016-08-01

    Background Chemokines are known to play a major role in driving inflammation and immune responses in several neuroinflammatory diseases, including multiple sclerosis, Alzheimer's disease and Parkinson's disease. Inflammation has also been implicated in the pathogenesis of schizophrenia. Aim We aimed to investigate a potential link between chemokines and schizophrenia and analyze the role of MCP-1-A2518G, SDF-1-3'A, CCR5-delta32, CCR5-A55029G, CXCR4-C138T and CCR2-V64I gene polymorphisms in the Turkish population. Methods Genotyping was conducted by PCR-RFLP based on 140 patients and 123 unrelated healthy controls to show the relation between chemokine gene variants and schizophrenia risk. Results Frequencies of CCR5-A55029G A genotypes and CCR5-A55029G AG genotypes were found higher in patients than the controls and even also CCR2-V64I WT: CCR5-A55029G A and CCR2-V64I 64I: CCR5-A55029G A haplotypes significantly associated according to Bonferroni correction. However, no significant association was found for any of the other polymorphisms with the risk of schizophrenia. Conclusions Our findings suggest that CCR5-A55029G polymorphisms and CCR2-V64I WT: CCR5-A55029G A and CCR2-V64I 64I: CCR5-A55029G A haplotypes might have association with schizophrenia pathogenesis. PMID:26906930

  15. Transcriptional regulation of tenascin genes.

    PubMed

    Chiovaro, Francesca; Chiquet-Ehrismann, Ruth; Chiquet, Matthias

    2015-01-01

    Extracellular matrix proteins of the tenascin family resemble each other in their domain structure, and also share functions in modulating cell adhesion and cellular responses to growth factors. Despite these common features, the 4 vertebrate tenascins exhibit vastly different expression patterns. Tenascin-R is specific to the central nervous system. Tenascin-C is an "oncofetal" protein controlled by many stimuli (growth factors, cytokines, mechanical stress), but with restricted occurrence in space and time. In contrast, tenascin-X is a constituitive component of connective tissues, and its level is barely affected by external factors. Finally, the expression of tenascin-W is similar to that of tenascin-C but even more limited. In accordance with their highly regulated expression, the promoters of the tenascin-C and -W genes contain TATA boxes, whereas those of the other 2 tenascins do not. This article summarizes what is currently known about the complex transcriptional regulation of the 4 tenascin genes in development and disease. PMID:25793574

  16. Genes, environment and gene expression in colon tissue: a pathway approach to determining functionality

    PubMed Central

    Slattery, Martha L; Pellatt, Daniel F; Wolff, Roger K; Lundgreen, Abbie

    2016-01-01

    Genetic and environmental factors have been shown to work together to alter cancer risk. In this study we evaluate previously identified gene and lifestyle interactions in a candidate pathway that were associated with colon cancer risk to see if these interactions altered gene expression. We analyzed non-tumor RNA-seq data from 144 colon cancer patients who had genotype, recent cigarette smoking, diet, body mass index (BMI), and recent aspirin/non-steroidal anti-inflammatory use data. Using a false discovery rate of 0.1, we evaluated differential gene expression between high and low levels of lifestyle exposure and genotypes using DESeq2. Thirteen pathway genes and 17 SNPs within those genes were associated with altered expression of other genes in the pathway. BMI, NSAIDs use and dietary components of the oxidative balance score (OBS) also were associated with altered gene expression. SNPs previously identified as interacting with these lifestyle factors, altered expression of pathway genes. NSAIDs interacted with 10 genes (15 SNPs) within those genes to alter expression of 28 pathway genes; recent cigarette smoking interacted with seven genes (nine SNPs) to alter expression of 27 genes. BMI interacted with FLT1, KDR, SEPN1, TERT, TXNRD2, and VEGFA to alter expression of eight genes. Three genes (five SNPs) interacted with OBS to alter expression of 12 genes. These data provide support for previously identified lifestyle and gene interactions associated with colon cancer in that they altered expression of key pathway genes. The need to consider lifestyle factors in conjunction with genetic factors is illustrated. PMID:27186328

  17. Gene-to-gene interaction between sodium channel-related genes in determining the risk of antiepileptic drug resistance.

    PubMed

    Jang, Sin-Young; Kim, Myeong-Kyu; Lee, Kee-Ra; Park, Man-Seok; Kim, Byeong-Chae; Cho, Ki-Hyun; Lee, Min-Cheol; Kim, Yo-Sik

    2009-02-01

    The pathogenesis of antiepileptic drug (AED) resistance is multifactorial. However, most candidate gene association studies typically assess the effects of candidate genes independently of each other, which is partly because of the limitations of the parametric-statistical methods for detecting the gene-to-gene interactions. A total of 200 patients with drug-resistant epilepsy and 200 patients with drug-responsive epilepsy were genotyped for 3 representative the single nucleotide polymorphisms (SNPs) of the voltage-gated sodium channel genes (SCN1A, SCN1B, and SCN2A) by polymerase chain reaction and direct sequencing analysis. Besides the typical parametric statistical method, a new statistical method (multifactor dimensionality reduction [MDR]) was used to determine whether gene-to-gene interactions increase the risk of AED resistance. None of the individual genotypes or alleles tested in the present study showed a significant association with AED resistance, regardless of their theoretical functional value. With the MDR method, of three possible 2-locus genotype combinations, the combination of SCN2A-PM with SCN1B-PM was the best model for predicting susceptibility to AED resistance, with a p value of 0.0547. MDR, as an analysis paradigm for investigating multi-locus effects in complex disorders, may be a useful statistical method for determining the role of gene-to-gene interactions in the pathogenesis of AED resistance. PMID:19270815

  18. Gene-gene interaction of erythropoietin gene polymorphisms and diabetic retinopathy in Chinese Han.

    PubMed

    Fan, YanFei; Fu, Yin-Yu; Chen, Zhi; Hu, Yuan-Yuan; Shen, Jie

    2016-08-01

    The aim of this study was to investigate the association of three single nucleotide polymorphisms in the erythropoietin gene polymorphisms with diabetic retinopathy and additional role of gene-gene interaction on diabetic retinopathy risk. A total of 1193 patients (579 men, 614 women) with type 2 diabetes mellitus were selected, including 397 diabetic retinopathy patients and 796 controls (type 2 diabetes mellitus patients without diabetic retinopathy); the mean age of all participants was 56.7 ± 13.9 years. Three single nucleotide polymorphisms were selected: rs507392, rs1617640, and rs551238. The t-test was used for comparison of erythropoietin protein level erythropoietin levels in patients having different erythropoietin genotypes. Logistic regression model was used to examine the association between three single nucleotide polymorphisms and diabetic retinopathy. Odds ratio (OR) and 95% confident interval (95% CI) were calculated. Generalized multifactor dimensionality reduction was employed to analyze the impact of interaction among three single nucleotide polymorphisms on CVD risk. After covariates adjustment, the carriers of homozygous mutant of three single nucleotide polymorphisms have higher diabetic retinopathy risk than those with wild-type homozygotes, OR (95% CI) were 2.04 (1.12-2.35), 1.87 (1.10-2.41) and 1.15 (1.06-1.76), respectively. Generalized multifactor dimensionality reduction model indicated a significant three-locus model (p = 0.0010) involving rs507392, rs1617640, and rs551238. Overall, the three-locus models had a cross-validation consistency of 10 of 10, and had the testing accuracy of 60.72%. Subjects with TC or CC-TG or GG-AC or CC genotype have the highest diabetic retinopathy risk. In conclusion, our results support an important association of rs507392, rs1617640 and rs551238 minor allele of erythropoietin with increased diabetic retinopathy risk, and additional interaction among three single nucleotide polymorphisms. PMID

  19. Bromodomain-PHD finger protein 1 is critical for leukemogenesis associated with MOZ-TIF2 fusion.

    PubMed

    Shima, Haruko; Yamagata, Kazutsune; Aikawa, Yukiko; Shino, Mika; Koseki, Haruhiko; Shimada, Hiroyuki; Kitabayashi, Issay

    2014-01-01

    Chromosomal translocations that involve the monocytic leukemia zinc finger (MOZ) gene are typically associated with human acute myeloid leukemia (AML) and often predict a poor prognosis. Overexpression of HOXA9, HOXA10, and MEIS1 was observed in AML patients with MOZ fusions. To assess the functional role of HOX upregulation in leukemogenesis by MOZ-TIF2, we focused on bromodomain-PHD finger protein 1 (BRPF1), a component of the MOZ complex that carries out histone acetylation for generating and maintaining proper epigenetic programs in hematopoietic cells. Immunoprecipitation analysis showed that MOZ-TIF2 forms a stable complex with BRPF1, and chromatin immunoprecipitation analysis showed that MOZ-TIF2 and BRPF1 interact with HOX genes in MOZ-TIF2-induced AML cells. Depletion of BRPF1 decreased the MOZ localization on HOX genes, resulting in loss of transformation ability induced by MOZ-TIF2. Furthermore, mutant MOZ-TIF2 engineered to lack histone acetyltransferase activity was incapable of deregulating HOX genes as well as initiating leukemia. These data indicate that MOZ-TIF2/BRPF1 complex upregulates HOX genes mediated by MOZ-dependent histone acetylation, leading to the development of leukemia. We suggest that activation of BRPF1/HOX pathway through MOZ HAT activity is critical for MOZ-TIF2 to induce AML. PMID:24258712

  20. Effects of G-gene Deletion and Replacement on Rabies Virus Vector Gene Expression

    PubMed Central

    Sato, Sho; Ohara, Shinya; Tsutsui, Ken-Ichiro; Iijima, Toshio

    2015-01-01

    The glycoprotein-gene (G gene) -deleted rabies virus (RV) vector is a powerful tool to examine the function and structure of neural circuits. We previously reported that the deletion of the G gene enhances the transgene expression level of the RV vector. However, the mechanism of this enhancement remains to be clarified. We presume that there are two possible factors for this enhancement. The first factor is the glycoprotein of RV, which shows cytotoxicity; thus, may cause a dysfunction in the translation process of infected cells. The second possible factor is the enhanced expression of the L gene, which encodes viral RNA polymerase. In the RV, it is known that the gene expression level is altered depending on the position of the gene. Since G-gene deletion displaces the L gene in the genome, the expression of the L gene and viral transcription may be enhanced. In this study, we compared the transgene expression level and viral transcription of three recombinant RV vectors. The effect of glycoprotein was examined by comparing the viral gene expression of G-gene-intact RV and G-gene-replaced RV. Despite the fact that the L-gene transcription level of these two RV vectors was similar, the G-gene-replaced RV vector showed higher viral transcription and transgene expression level than the G-gene-intact RV vector. To examine the effect of the position of the L gene, we compared the viral gene expression of the G-gene-deleted RV and G-gene-replaced RV. The G-gene-deleted RV vector showed higher L-gene transcription, viral transcription, and transgene expression level than the G-gene-replaced RV vector. These results indicate that G-gene deletion enhances the transgene expression level through at least two factors, the absence of glycoprotein and enhancement of L-gene expression. These findings enable investigators to design a useful viral vector that shows a controlled desirable transgene expression level in applications. PMID:26023771