Science.gov

Sample records for multi level inverter

  1. A single-phase multi-level D-STATCOM inverter using modular multi-level converter (MMC) topology for renewable energy sources

    NASA Astrophysics Data System (ADS)

    Sotoodeh, Pedram

    This dissertation presents the design of a novel multi-level inverter with FACTS capability for small to mid-size (10-20kW) permanent-magnet wind installations using modular multi-level converter (MMC) topology. The aim of the work is to design a new type of inverter with D-STATCOM option to provide utilities with more control on active and reactive power transfer of distribution lines. The inverter is placed between the renewable energy source, specifically a wind turbine, and the distribution grid in order to fix the power factor of the grid at a target value, regardless of wind speed, by regulating active and reactive power required by the grid. The inverter is capable of controlling active and reactive power by controlling the phase angle and modulation index, respectively. The unique contribution of the proposed work is to combine the two concepts of inverter and D-STATCOM using a novel voltage source converter (VSC) multi-level topology in a single unit without additional cost. Simulations of the proposed inverter, with 5 and 11 levels, have been conducted in MATLAB/Simulink for two systems including 20 kW/kVAR and 250 W/VAR. To validate the simulation results, a scaled version (250 kW/kVAR) of the proposed inverter with 5 and 11 levels has been built and tested in the laboratory. Experimental results show that the reduced-scale 5- and 11-level inverter is able to fix PF of the grid as well as being compatible with IEEE standards. Furthermore, total cost of the prototype models, which is one of the major objectives of this research, is comparable with market prices.

  2. Fault-tolerant three-level inverter

    DOEpatents

    Edwards, John; Xu, Longya; Bhargava, Brij B.

    2006-12-05

    A method for driving a neutral point clamped three-level inverter is provided. In one exemplary embodiment, DC current is received at a neutral point-clamped three-level inverter. The inverter has a plurality of nodes including first, second and third output nodes. The inverter also has a plurality of switches. Faults are checked for in the inverter and predetermined switches are automatically activated responsive to a detected fault such that three-phase electrical power is provided at the output nodes.

  3. High performance control of a three-level IGBT inverter fed AC drive

    SciTech Connect

    Zhang, J.

    1995-12-31

    Three-level PWM inverters have been increasingly employed in industry and traction applications where high power and efficiency energy conversions are required. This paper presents a high performance control of a cage induction motor drive fed by a 100 Hp three-level IGBT inverter operating at a low switching frequency. A practical math model of the drive control system is established to aid in the control design to improve the system stability, dynamic performance and robustness over a wide speed range. The modeling and the simulation in Matlab/Simulink facilitate the self-tuning of the regulators in the multi-loop systems. The field oriented control and three-level space-vector modulation together with the drive protection and diagnostics are implemented in software based on a DSP TMS320C31. Experimental results based on the IGBT inverter prototype are given to verify the design and performance. Test results in motor common-mode voltage reduction and inverter neutral-point potential control re also briefly presented.

  4. Advanced Inverter Functions to Support High Levels of Distributed Solar: Policy and Regulatory Considerations (Brochure)

    SciTech Connect

    Not Available

    2014-11-01

    This paper explains how advanced inverter functions (sometimes called 'smart inverters') contribute to the integration of high levels of solar PV generation onto the electrical grid and covers the contributions of advanced functions to maintaining grid stability. Policy and regulatory considerations associated with the deployment of advanced inverter functions are also introduced.

  5. Extreme Cost Reductions with Multi-Megawatt Centralized Inverter Systems

    SciTech Connect

    Schwabe, Ulrich; Fishman, Oleg

    2015-03-20

    The objective of this project was to fully develop, demonstrate, and commercialize a new type of utility scale PV system. Based on patented technology, this includes the development of a truly centralized inverter system with capacities up to 100MW, and a high voltage, distributed harvesting approach. This system promises to greatly impact both the energy yield from large scale PV systems by reducing losses and increasing yield from mismatched arrays, as well as reduce overall system costs through very cost effective conversion and BOS cost reductions enabled by higher voltage operation.

  6. Applications of cascade multilevel inverters.

    PubMed

    Peng, Fang-zen; Qian, Zhao-ming

    2003-01-01

    Cascade multilevel inverters have been developed for electric utility applications. A cascade M-level inverter consists of (M-1)/2 H-bridges in which each bridge's dc voltage is supported by its own dc capacitor. The new inverter can: (1) generate almost sinusoidal waveform voltage while only switching one time per fundamental cycle; (2) dispense with multi-pulse inverters' transformers used in conventional utility interfaces and static var compensators; (3) enables direct parallel or series transformer-less connection to medium- and high-voltage power systems. In short, the cascade inverter is much more efficient and suitable for utility applications than traditional multi-pulse and pulse width modulation (PWM) inverters. The authors have experimentally demonstrated the superiority of the new inverter for power supply, (hybrid) electric vehicle (EV) motor drive, reactive power (var) and harmonic compensation. This paper summarizes the features, feasibility, and control schemes of the cascade inverter for utility applications including utility interface of renewable energy, voltage regulation, var compensation, and harmonic filtering in power systems. Analytical, simulated, and experimental results demonstrated the superiority of the new inverters. PMID:14566981

  7. The metamorphosis in the emission angular profile from an inverted two-level atoms system

    NASA Astrophysics Data System (ADS)

    Friedberg, Richard; Manassah, Jamal T.

    2009-08-01

    A rich variety of angular distributions in the cooperative emission from a sphere of inverted N two-level atoms are shown to result from the eigenstructure of the complex kernel of scalar photon theory exp( ik0R)/( ik0R). This angular distribution is sensitive both to the size of the sphere and to the instant of observation of the emission.

  8. Fundamental Frequency Switching Control of Seven-Level Hybrid Cascaded H-bridge Multilevel Inverter

    SciTech Connect

    Du, Zhong; Chiasson, John N; Ozpineci, Burak; Tolbert, Leon M

    2009-01-01

    This paper presents a cascaded H-bridge multilevel inverter that can be implemented using only a single dc power source and capacitors. Standard cascaded multilevel inverters require n dc sources for 2n + 1 levels. Without requiring transformers, the scheme proposed here allows the use of a single dc power source (e.g., a battery or a fuel cell stack) with the remaining n-1 dc sources being capacitors, which is referred to as hybrid cascaded H-bridge multilevel inverter (HCMLI) in this paper. It is shown that the inverter can simultaneously maintain the dc voltage level of the capacitors and choose a fundamental frequency switching pattern to produce a nearly sinusoidal output. HCMLI using only a single dc source for each phase is promising for high-power motor drive applications as it significantly decreases the number of required dc power supplies, provides high-quality output power due to its high number of output levels, and results in high conversion efficiency and low thermal stress as it uses a fundamental frequency switching scheme. This paper mainly discusses control of seven-level HCMLI with fundamental frequency switching control and how its modulation index range can be extended using triplen harmonic compensation.

  9. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters

    PubMed Central

    Yu, Woo Jong; Li, Zheng; Zhou, Hailong; Chen, Yu; Wang, Yang; Huang, Yu; Duan, Xiangfeng

    2014-01-01

    The layered materials such as graphene have attracted considerable interest for future electronics. Here we report the vertical integration of multi-heterostructures of layered materials to enable high current density vertical field-effect transistors (VFETs). An n-channel VFET is created by sandwiching few-layer molybdenum disulfide (MoS2) as the semiconducting channel between a monolayer graphene and a metal thin film. The VFETs exhibit a room temperature on-off ratio >103, while at same time deliver a high current density up to 5,000 A/cm2, sufficient for high performance logic applications. This study offers a general strategy for the vertical integration of various layered materials to obtain both p- and n-channel transistors for complementary logic functions. A complementary inverter with larger than unit voltage gain is demonstrated by vertically stacking the layered materials of graphene, Bi2Sr2Co2O8 (p-channel), graphene, MoS2 (n-channel), and metal thin film in sequence. The ability to simultaneously achieve high on-off ratio, high current density, and logic integration in the vertically stacked multi-heterostructures can open up a new dimension for future electronics to enable three-dimensional integration. PMID:23241535

  10. A Five-Level Cascade Multilevel Inverter Three-Phase Motor Drive Using a Single DC Source

    SciTech Connect

    Chiasson, J. N.

    2006-10-01

    A method is presented showing that a 5-level cascade multilevel inverter for a three-phase permanent magnet sychronous motor drive can be implemented using only a single DC link to supply a standard 3-leg inverter along with three full H-bridges supplied by capacitors. It is shown that the capacitor voltages can be regulated while achieving an output voltage waveform that is 20% greater than that obained using the standard 3-leg inverter alone. Finally conditions are given in terms of the power factor and modulation index that determine when the capacitor voltage can regulated.

  11. Multi-purpose grid-tied inverter with smart grid capabilities

    NASA Astrophysics Data System (ADS)

    Liyanagedera, Chamika Mihiranga

    Distributed energy storages play an important role in increasing the reliability and efficiency of the grid through means of peak load shaving, grid voltage support, and grid frequency support. It is important to have distributed energy storages that can utilize the functionalities of the modern smart grid to operate more effectively. The grid-tied inverter is one of the major components in a distributed energy storage that controls the power transfer between the grid and an energy storage device. In this research, a grid-tied inverter that can be used in distributed energy storage applications was designed, developed, and tested. This grid-tied inverter was designed with the capability to control both reactive and active power flow in either direction. The grid-tied inverter is equipped with communication capabilities so it can be remotely controlled by commands sent through a smart grid network. For demonstrative purposes, a user interface was developed to control and monitor the operation of the grid-tied inverter. Finally the operation of the grid-tied inverter was evaluated in accordance to IEEE 1547, the Standard for Interconnecting Distributed Resources with Electric Power Systems.

  12. Modelling and control of a seven level NPC voltage source inverter. Application to high power induction machine drive

    NASA Astrophysics Data System (ADS)

    Gheraia, H.; Berkouk, E. M.; Manesse, G.

    2001-08-01

    In this paper, we study a new kind of continuous-alternating converters: a seven-level neutral point clamping (NPC) voltage source inverter (VSI). We propose this inverter for applications in high voltage and high power fields. In the first part, we develop the knowledge and the control models of this inverter using the connections functions of the semi-conductors. After that, we present two pulse width modulation (PWM) algorithms to control this converter using its control model. We propose these algorithms for digital implementation. This multilevel inverter is associated to the induction machine. The performances obtained are full of promise to use it in the high voltage and high power fields of electrical traction.

  13. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect

    Schauder, C.

    2014-03-01

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  14. A Five-Level Three-Phase Cascade Multilevel Inverter Using a Single DC Source for a PM Synchronous Motor Drive

    SciTech Connect

    Ozpineci, Burak; Chiasson, John N; Tolbert, Leon M

    2007-01-01

    The interest here is in using a single DC power source to construct a 3-phase 5-level cascade multilevel inverter to be used as a drive for a PM traction motor. The 5-level inverter consists of a standard 3-leg inverter (one leg for each phase) and an H-bridge in series with each inverter leg, which use a capacitor as a DC source. It is shown that one can simultaneously maintain the regulation of the capacitor voltage while achieving an output voltage waveform which is 25% higher than that obtained using a standard 3-leg inverter by itself.

  15. Multi-level block permutation

    PubMed Central

    Winkler, Anderson M.; Webster, Matthew A.; Vidaurre, Diego; Nichols, Thomas E.; Smith, Stephen M.

    2015-01-01

    Under weak and reasonable assumptions, mainly that data are exchangeable under the null hypothesis, permutation tests can provide exact control of false positives and allow the use of various non-standard statistics. There are, however, various common examples in which global exchangeability can be violated, including paired tests, tests that involve repeated measurements, tests in which subjects are relatives (members of pedigrees) — any dataset with known dependence among observations. In these cases, some permutations, if performed, would create data that would not possess the original dependence structure, and thus, should not be used to construct the reference (null) distribution. To allow permutation inference in such cases, we test the null hypothesis using only a subset of all otherwise possible permutations, i.e., using only the rearrangements of the data that respect exchangeability, thus retaining the original joint distribution unaltered. In a previous study, we defined exchangeability for blocks of data, as opposed to each datum individually, then allowing permutations to happen within block, or the blocks as a whole to be permuted. Here we extend that notion to allow blocks to be nested, in a hierarchical, multi-level definition. We do not explicitly model the degree of dependence between observations, only the lack of independence; the dependence is implicitly accounted for by the hierarchy and by the permutation scheme. The strategy is compatible with heteroscedasticity and variance groups, and can be used with permutations, sign flippings, or both combined. We evaluate the method for various dependence structures, apply it to real data from the Human Connectome Project (HCP) as an example application, show that false positives can be avoided in such cases, and provide a software implementation of the proposed approach. PMID:26074200

  16. Jupiter's Multi-level Clouds

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Clouds and hazes at various altitudes within the dynamic Jovian atmosphere are revealed by multi-color imaging taken by the Near-Infrared Mapping Spectrometer (NIMS) onboard the Galileo spacecraft. These images were taken during the second orbit (G2) on September 5, 1996 from an early-morning vantage point 2.1 million kilometers (1.3 million miles) above Jupiter. They show the planet's appearance as viewed at various near-infrared wavelengths, with distinct differences due primarily to variations in the altitudes and opacities of the cloud systems. The top left and right images, taken at 1.61 microns and 2.73 microns respectively, show relatively clear views of the deep atmosphere, with clouds down to a level about three times the atmospheric pressure at the Earth's surface.

    By contrast, the middle image in top row, taken at 2.17 microns, shows only the highest altitude clouds and hazes. This wavelength is severely affected by the absorption of light by hydrogen gas, the main constituent of Jupiter's atmosphere. Therefore, only the Great Red Spot, the highest equatorial clouds, a small feature at mid-northern latitudes, and thin, high photochemical polar hazes can be seen. In the lower left image, at 3.01 microns, deeper clouds can be seen dimly against gaseous ammonia and methane absorption. In the lower middle image, at 4.99 microns, the light observed is the planet's own indigenous heat from the deep, warm atmosphere.

    The false color image (lower right) succinctly shows various cloud and haze levels seen in the Jovian atmosphere. This image indicates the temperature and altitude at which the light being observed is produced. Thermally-rich red areas denote high temperatures from photons in the deep atmosphere leaking through minimal cloud cover; green denotes cool temperatures of the tropospheric clouds; blue denotes cold of the upper troposphere and lower stratosphere. The polar regions appear purplish, because small-particle hazes allow leakage and

  17. Inverted barometer contributions to recent sea level changes along the northeast coast of North America

    NASA Astrophysics Data System (ADS)

    Piecuch, Christopher G.; Ponte, Rui M.

    2015-07-01

    Regional sea level (SL) changes reflect dynamic and isostatic ocean effects. Recent works have interpreted accelerated and extreme SL changes along the northeast coast of North America primarily in terms of dynamic changes; however, dedicated study of isostatic changes related to surface atmospheric pressure loading—the inverted barometer (IB) effect—has been lacking. This investigation uses five different atmospheric pressure products to analyze the influence of the IB effect on annual mean SL from tide gauge records. The IB effect explains ˜25% of interannual SL variance and accounts for ˜50% of the magnitude of a recent extreme event of SL rise along Atlantic Canada and New England. Estimated IB effects also amount to ˜10-30% of recent multidecadal SL accelerations over the Mid-Atlantic Bight and Southern New England. These findings reiterate the need for careful estimation and removal of isostatic effects for studies of dynamic SL.

  18. Prediction of 2-level PWM inverter efficiency using MATLAB/Simulink

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Ho; Kim, Seong-Je

    2015-10-01

    This article proposes a direct approach for the prediction of inverter efficiency using MATLAB/Simulink, instead of an indirect loss calculation approach based on analytical models. In analytical approach, efficiency is obtained by calculating individual losses separately, such as switching losses, conduction losses and harmonic losses using analytical models. However, this approach requires accurate analytical models and complicated calculations, due to the variation in the switching frequency, switching transient and modulation techniques. In the proposed approach, the actual waveform of the inverter system is directly generated using MATLAB/Simulink. The instantaneous voltage and current waveform including switching transients are generated. Thus, the proposed approach is very simple and convenient for efficiency prediction. The proposed approach also works for any system parameters or control methods, such as various pulse-width modulation (PWM) techniques, different switching frequencies, switching devices and load types. The proposed approach can be adopted for the efficiency prediction of any switching strategies and any types of inverters such as neutral-point-clamped (NPC) inverters, H bridge inverters and H5 topology, since the topologies are modelled as circuits in the MATLAB/Simulink program and no analytical model is required for the proposed approach. Furthermore, the proposed approach can provide operation techniques and conditions such as PWM techniques and switching frequency that offer high efficiency. In this article, inverter performance is evaluated for various PWM techniques and switching frequencies. The PWM technique and switching frequency that offer high efficiency is obtained. Finally, the proposed approach is verified by experimental results.

  19. Multi-Level Document Visualization

    ERIC Educational Resources Information Center

    Ruecker, Stan; Homich, Eric; Sinclair, Stefan

    2005-01-01

    This paper describes a prototype system that allows readers to view an electronic text in multiple simultaneous views, providing insight at several different levels of granularity, including a reading view. This prospect display is combined with a number of tools for manipulating the text, for example by highlighting sections of interest for a…

  20. A Scalable Multi-chain Markov Chain Monte Carlo Method for Inverting Subsurface Hydraulic and Geological Properties

    NASA Astrophysics Data System (ADS)

    Bao, J.; Ren, H.; Hou, Z.; Ray, J.; Swiler, L.; Huang, M.

    2015-12-01

    We developed a novel scalable multi-chain Markov chain Monte Carlo (MCMC) method for high-dimensional inverse problems. The method is scalable in terms of number of chains and processors, and is useful for Bayesian calibration of computationally expensive simulators typically used for scientific and engineering calculations. In this study, we demonstrate two applications of this method for hydraulic and geological inverse problems. The first one is monitoring soil moisture variations using tomographic ground penetrating radar (GPR) travel time data, where challenges exist in the inversion of GPR tomographic data for handling non-uniqueness and nonlinearity and high-dimensionality of unknowns. We integrated the multi-chain MCMC framework with the pilot point concept, a curved-ray GPR forward model, and a sequential Gaussian simulation (SGSIM) algorithm for estimating the dielectric permittivity at pilot point locations distributed within the tomogram, as well as its spatial correlation range, which are used to construct the whole field of dielectric permittivity using SGSIM. The second application is reservoir porosity and saturation estimation using the multi-chain MCMC approach to jointly invert marine seismic amplitude versus angle (AVA) and controlled-source electro-magnetic (CSEM) data for a layered reservoir model, where the unknowns to be estimated include the porosity and fluid saturation in each reservoir layer and the electrical conductivity of the overburden and bedrock. The computational efficiency, accuracy, and convergence behaviors of the inversion approach are systematically evaluated.

  1. Multilevel cascade voltage source inverter with seperate DC sources

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    2002-01-01

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  2. Multilevel cascade voltage source inverter with seperate DC sources

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    1997-01-01

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  3. Multilevel cascade voltage source inverter with separate DC sources

    DOEpatents

    Peng, F.Z.; Lai, J.S.

    1997-06-24

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations. 15 figs.

  4. Multilevel cascade voltage source inverter with seperate DC sources

    DOEpatents

    Peng, Fang Zheng; Lai, Jih-Sheng

    2001-04-03

    A multilevel cascade voltage source inverter having separate DC sources is described herein. This inverter is applicable to high voltage, high power applications such as flexible AC transmission systems (FACTS) including static VAR generation (SVG), power line conditioning, series compensation, phase shifting and voltage balancing and fuel cell and photovoltaic utility interface systems. The M-level inverter consists of at least one phase wherein each phase has a plurality of full bridge inverters equipped with an independent DC source. This inverter develops a near sinusoidal approximation voltage waveform with only one switching per cycle as the number of levels, M, is increased. The inverter may have either single-phase or multi-phase embodiments connected in either wye or delta configurations.

  5. Inverting Glacial Isostatic Adjustment with Paleo Sea Level Records using Bayesian Framework and Burgers Rheology

    NASA Astrophysics Data System (ADS)

    Caron, L.; Metivier, L.; Greff-Lefftz, M.; Fleitout, L.; Rouby, H.

    2015-12-01

    Glacial Isostatic Adjustment models most often assume a mantle with a viscoelastic Maxwell rheology and a given ice history model. Here we use a Bayesian Monte Carlo with Markov Chains formalism to invert the global GIA signal simultaneously for the mechanical properties of the mantle and for the volume of the various ice-sheets using as starting ice models two distinct previously published ice histories. Burgers as well as Maxwell rheologies are considered.The fitted data consist of 5720 paleo sea level records from the last 35kyrs, with a world-wide distribution. Our ambition is to present not only the best fitting model, but also the range of possible solutions (within the explored space of parameters) with their respective probability of explaining the data, and thus reveal the trade-off effects and range of uncertainty affecting the parameters. Our a posteriori probality maps exhibit in all cases two distinct peaks: both are characterized by an upper mantle viscosity around 5.1020Pa.s but one of the peaks features a lower mantle viscosity around 3.1021Pa.s while the other indicates lower mantle viscosity of more than 1.1022Pa.s. The global maximum depends upon the starting ice history and the chosen rheology: the first peak (P1) has the highest probability only in the case with a Maxwell rheology and ice history based on ICE-5G, while the second peak (P2) is favored when using ANU-based ice history or Burgers rheology, and is our preferred solution as it is also consistent with long-term geodynamics and gravity gradients anomalies over Laurentide. P2 is associated with larger volumes for the Laurentian and Fennoscandian ice-sheets and as a consequence of total ice volume balance, smaller volumes for the Antactic ice-sheet. This last point interfers with the estimate of present-day ice-melting in Antarctica from GRACE data. Finally, we find that P2 with Burgers rheology favors the existence of a tectosphere, i.e. a viscous sublithospheric layer.

  6. Phase-dependent high refractive index without absorption in a four-level inverted-Y atomic system

    SciTech Connect

    Zhi-Qiang Zeng; Fu-Ti Liu; Yu-Ping Wang; Zeng-Hui Gao

    2015-01-31

    We consider a closed four-level inverted-Y system in the presence and the absence of a microwave field. It is found that due to the quantum coherence between the two lower levels, either induced by the spontaneous decay or by the microwave field, the refraction – absorption properties of the system can be modulated by controlling the relative phase of the applied fields in both driven ways. In particular, by properly setting the values of the relative phase, the desirable high index of refraction without absorption can be achieved. (nonlinear optical phenomena)

  7. Modes competition in superradiant emission from an inverted sub-wavelength thick slab of two-level atoms

    NASA Astrophysics Data System (ADS)

    Manassah, Jamal T.

    2016-08-01

    Using the expansion in the eigenmodes of 1-D Lienard-Wiechert kernel, the temporal and spectral profiles of the radiation emitted by a fully inverted collection of two-level atoms in a sub-wavelength slab geometry are computed. The initial number of amplifying modes determine the specific regime of radiation. In particular, the temporal profile of the field intensity is oscillatory and the spectral profile is non-Lorentzian with two unequal height peaks in a narrow band centered at the slab thickness value at which the real parts of the lowest order odd and even eigenvalues are equal.

  8. An advanced static var compensator based on a three level IGBT inverter modelling analysis and active power filtering

    NASA Astrophysics Data System (ADS)

    Draou, Azeddine

    2012-12-01

    This paper presents the dynamic performance analysis of an Advanced Static Var Compensator (ASVC) using three-level neutral point-clamped voltage source inverter. The paper presents the principles of operating and the method of reference currents generation. The dynamic behaviour of the system is further analysed using Matlab/Simulink with SimPower Systems toolbox through a set of simulation tests. The results obtained have been applied to an active power filter which might lead to the design of a robust controller for current harmonics and reactive power applications

  9. Analysis and carrier-based modulation of Z-source NPC inverters

    NASA Astrophysics Data System (ADS)

    Dehghan, Seyed Mohammad; Mohamadian, Mustafa; Gharekhani, Reza

    2012-08-01

    Multi-level neutral-point-clamped (NPC) inverters are widely used in high and medium voltage applications. However, these inverters are only buck-type converters. Recently z-source NPC inverters have been proposed as the buck-boost three-level inverter. New inverters use a z-source network as the input stage. This article analyses the features and limitations of two main topologies of z-source NPC inverters (dual z-source network NPC inverter and single z-source network NPC inverter). The low-frequency ripple of the inductor current and the capacitor voltage of the z-source networks in the z-source NPC inverters are surveyed. This article also proposes two novel PWM methods for the z-source NPC inverters, which can be easily implemented experimentally. In the proposed methods, generated switching signals for the conventional NPC inverter are modified for the z-source NPC inverter using a simple logic circuit considering the boost factors and the power sharing ratio. The performance of the proposed simple PWM methods is verified by simulation and experimental results.

  10. Multi-level coupled cluster theory

    SciTech Connect

    Myhre, Rolf H.; Koch, Henrik; Sánchez de Merás, Alfredo M. J.

    2014-12-14

    We present a general formalism where different levels of coupled cluster theory can be applied to different parts of the molecular system. The system is partitioned into subsystems by Cholesky decomposition of the one-electron Hartree-Fock density matrix. In this way the system can be divided across chemical bonds without discontinuities arising. The coupled cluster wave function is defined in terms of cluster operators for each part and these are determined from a set of coupled equations. The total wave function fulfills the Pauli-principle across all borders and levels of electron correlation. We develop the associated response theory for this multi-level coupled cluster theory and present proof of principle applications. The formalism is an essential tool in order to obtain size-intensive complexity in the calculation of local molecular properties.

  11. Multi level programming Paradigm for Extreme Computing

    NASA Astrophysics Data System (ADS)

    Petiton, S.; Sato, M.; Emad, N.; Calvin, C.; Tsuji, M.; Dandouna, M.

    2014-06-01

    Abstract: In order to propose a framework and programming paradigms for post-petascale computing, on the road to exascale computing and beyond, we introduced new languages, associated with a hierarchical multi-level programming paradigm, allowing scientific end-users and developers to program highly hierarchical architectures designed for extreme computing. In this paper, we explain the interest of such hierarchical multi-level programming paradigm for extreme computing and its well adaptation to several large computational science applications, such as for linear algebra solvers used for reactor core physic. We describe the YML language and framework allowing describing graphs of parallel components, which may be developed using PGAS-like language such as XMP, scheduled and computed on supercomputers. Then, we propose experimentations on supercomputers (such as the "K" and "Hooper" ones) of the hybrid method MERAM (Multiple Explicitly Restarted Arnoldi Method) as a case study for iterative methods manipulating sparse matrices, and the block Gauss-Jordan method as a case study for direct method manipulating dense matrices. We conclude proposing evolutions for this programming paradigm.

  12. Electronic multi-purpose material level sensor

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    The present electronic multi-purpose material level sensor is based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line that is partially immersed in a liquid, powder, or other substance such as grain in a silo. The time difference of the reflections at the start of the transmission line and the air/liquid interface are used to determine levels to better than 0.01 inch. The sensor is essentially independent of circuit element and temperature variations, and can be mass produced at an extremely low price. The transmission line may be a Goubau line, microstrip, coaxial cable, twin lead, CPS or CPW, and may typically be a strip placed along the inside wall of a tank. The reflected pulses also contain information about strata within the liquid such as sludge-build-up at the bottom of an oil tank.

  13. Electronic multi-purpose material level sensor

    DOEpatents

    McEwan, T.E.

    1997-03-11

    The present electronic multi-purpose material level sensor is based on time domain reflectometry (TDR) of very short electrical pulses. Pulses are propagated along a transmission line that is partially immersed in a liquid, powder, or other substance such as grain in a silo. The time difference of the reflections at the start of the transmission line and the air/liquid interface are used to determine levels to better than 0.01 inch. The sensor is essentially independent of circuit element and temperature variations, and can be mass produced at an extremely low price. The transmission line may be a Goubau line, microstrip, coaxial cable, twin lead, CPS or CPW, and may typically be a strip placed along the inside wall of a tank. The reflected pulses also contain information about strata within the liquid such as sludge-build-up at the bottom of an oil tank. 9 figs.

  14. Milliwatt dc/dc Inverter

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W.

    1983-01-01

    Compact dc/dc inverter uses single integrated-circuit package containing six inverter gates that generate and amplify 100-kHz square-wave switching signal. Square-wave switching inverts 10-volt local power to isolated voltage at another desired level. Relatively high operating frequency reduces size of filter capacitors required, resulting in small package unit.

  15. Inverting the Linear Algebra Classroom

    ERIC Educational Resources Information Center

    Talbert, Robert

    2014-01-01

    The inverted classroom is a course design model in which students' initial contact with new information takes place outside of class meetings, and students spend class time on high-level sense-making activities. The inverted classroom model is so called because it inverts or "flips" the usual classroom design where typically class…

  16. A DC-Voltage-Balancing Circuit for a Five-Level Diode-Clamped PWM Inverter Intended for Motor Drives

    NASA Astrophysics Data System (ADS)

    Hasegawa, Kazunori; Akagi, Hirofumi

    This paper proposes a new dc-voltage-balancing circuit for a five-level diode-clamped inverter intended for a medium-voltage motor drive. This circuit consists of two unidirectional choppers and a single coupled inductor with two galvanically-isolated windings. The dc magnetic fluxes in the magnetic core, which are generated by the two windings, cancel out each other. Therefore, the inductor does not generate any dc-magnetic flux in the magnetic core. This makes the inductor compact by a factor of six compared to previously used balancing circuits containing two non-coupled inductors. Experimental results obtained from a 200-V 5.5-kW downscaled model verify that the dc mean voltages of the four split dc capacitors are balanced well under all operating conditions.

  17. Ultra-short pulse propagation in multi-level media

    NASA Astrophysics Data System (ADS)

    Clader, B. David

    We consider the propagation of short, intense laser pulses through media consisting of two-level and three-level atoms. We derive the coupled Maxwell-Bloch (MB) equations, which describe such propagation. Many different physical situations have been studied by analyzing various limiting cases of these equations. Most of the recent work has relied on steady-state or adiabatic assumptions to simplify the analysis of the MB equations. However rapid progress has been made in recent years in developing analytic solution techniques that do not require these simplifications, such as BAcklund transformations, inverse scattering methods, and Darboux transformations. We use the Backlund solution method, to derive soliton solutions to the MB equations for various physical situations of interest in multi-level media. In addition we examine the experimental applicability of the exact solutions by numerically integrating the MB equations for more physically realistic pulse shapes and media preparations that may not permit analytic solutions. In two-level inverted gain media, we derive a pulse solution with group velocity exceeding the speed of light in vacuum (fast light). Numerical results confirm that such a pulse can exhibit fractional peak advances exceeding one pulse width despite spontaneous instabilites such as superfluorescence and stimulated instabilities related to the McCall-Hahn area theorem. In three-level Λ type media we derive soliton solutions for two pulses propagating through a medium prepared in an arbitrary mixed-state of the two ground states. We include a tunable parameter in the solutions that allows one to vary the medium between completely mixed state and completely pure-state superpositions known as "phaseonium". This flexibility allows one to study the interplay between stimulated Raman scattering, electromagnetically induced transparency (EIT), self induced transparency (SIT), and pulse matching. Past results have indicated that asymptotic pulse

  18. A low-power inverter-based CMOS level-crossing analog-to-digital converter for low-frequency biosignal sensing

    NASA Astrophysics Data System (ADS)

    Tanaka, Suiki; Niitsu, Kiichi; Nakazato, Kazuo

    2016-03-01

    Low-power analog-to-digital conversion is a key technique for power-limited biomedical applications such as power-limited continuous glucose monitoring. However, a conventional uniform-sampling analog-to-digital converter (ADC) is not suitable for nonuniform biosignals. A level-crossing ADC (LC-ADC) is a promising candidate for low-power biosignal processing because of its event-driven properties. The LC-ADC acquires data by level-crossing sampling. When an input signal crosses the threshold level, the LC-ADC samples the signal. The conventional LC-ADC employs a power-hungry comparator. In this paper, we present a low-power inverter-based LC-ADC. By adjusting the threshold level of the inverter, it can be used as a threshold-fixed window comparator. By using the inverter as an alternative to a comparator, power consumption can be markedly reduced. As a result, the total power consumption is successfully reduced by 90% of that of previous LC-ADC. The inverter-based LC-ADC was found to be very suitable for use in power-limited biomedical devices.

  19. Multilevel DC link inverter

    DOEpatents

    Su, Gui-Jia

    2003-06-10

    A multilevel DC link inverter and method for improving torque response and current regulation in permanent magnet motors and switched reluctance motors having a low inductance includes a plurality of voltage controlled cells connected in series for applying a resulting dc voltage comprised of one or more incremental dc voltages. The cells are provided with switches for increasing the resulting applied dc voltage as speed and back EMF increase, while limiting the voltage that is applied to the commutation switches to perform PWM or dc voltage stepping functions, so as to limit current ripple in the stator windings below an acceptable level, typically 5%. Several embodiments are disclosed including inverters using IGBT's, inverters using thyristors. All of the inverters are operable in both motoring and regenerating modes.

  20. A method for predicting the noise levels of coannular jets with inverted velocity profiles

    NASA Technical Reports Server (NTRS)

    Russell, J. W.

    1979-01-01

    A coannular jet was equated with a single stream equivalent jet with the same mass flow, energy, and thrust. The acoustic characteristics of the coannular jet were then related to the acoustic characteristics of the single jet. Forward flight effects were included by incorporating a forward exponent, a Doppler amplification factor, and a Strouhal frequency shift. Model test data, including 48 static cases and 22 wind tunnel cases, were used to evaluate the prediction method. For the static cases and the low forward velocity wind tunnel cases, the spectral mean square pressure correlation coefficients were generally greater than 90 percent, and the spectral sound pressure level standard deviation were generally less than 3 decibels. The correlation coefficient and the standard deviation were not affected by changes in equivalent jet velocity. Limitations of the prediction method are also presented.

  1. Inverted Barometer Contributions to Accelerated and Extreme Annual Mean Sea Level Changes Along the East Coast of North America

    NASA Astrophysics Data System (ADS)

    Piecuch, C. G.; Ponte, R. M.

    2015-12-01

    Recent works have interpreted accelerated and extreme sea level (SL) changes along the northeast coast of North America primarily in terms of dynamic changes related to the meridional overturning or coastal circulations. Isostatic changes related to surface atmospheric pressure loading —the inverted barometer (IB) effect— have been deemed relatively unimportant, but a comprehensive analysis of the IB effect has been lacking. In this work, we use five different atmospheric pressure products to analyze the influence of the IB effect on annual mean SL from tide gauge records. Consistently across all products, the IB effect accounts for about 50% of the magnitude of a recent extreme event of SL rise in 2009 along Atlantic Canada and New England. In fact, the unique nature of the event was largely a result of the extreme IB signal. Estimated IB effects also amount to about 10-30% of recent multidecadal SL accelerations over the Mid-Atlantic Bight and Southern New England. These findings reiterate the need for careful estimation of IB effects for studies that want to interpret observed SL in terms of dynamic ocean circulation changes.

  2. Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope

    PubMed Central

    Guan, Zeyi; Lee, Juhyun; Jiang, Hao; Dong, Siyan; Jen, Nelson; Hsiai, Tzung; Ho, Chih-Ming; Fei, Peng

    2015-01-01

    We developed a compact plane illumination plugin (PIP) device which enabled plane illumination and light sheet fluorescence imaging on a conventional inverted microscope. The PIP device allowed the integration of microscope with tunable laser sheet profile, fast image acquisition, and 3-D scanning. The device is both compact, measuring approximately 15 by 5 by 5 cm, and cost-effective, since we employed consumer electronics and an inexpensive device molding method. We demonstrated that PIP provided significant contrast and resolution enhancement to conventional microscopy through imaging different multi-cellular fluorescent structures, including 3-D branched cells in vitro and live zebrafish embryos. Imaging with the integration of PIP greatly reduced out-of-focus contamination and generated sharper contrast in acquired 2-D plane images when compared with the stand-alone inverted microscope. As a result, the dynamic fluid domain of the beating zebrafish heart was clearly segmented and the functional monitoring of the heart was achieved. Furthermore, the enhanced axial resolution established by thin plane illumination of PIP enabled the 3-D reconstruction of the branched cellular structures, which leads to the improvement on the functionality of the wide field microscopy. PMID:26819828

  3. Evidencing Learning Outcomes: A Multi-Level, Multi-Dimensional Course Alignment Model

    ERIC Educational Resources Information Center

    Sridharan, Bhavani; Leitch, Shona; Watty, Kim

    2015-01-01

    This conceptual framework proposes a multi-level, multi-dimensional course alignment model to implement a contextualised constructive alignment of rubric design that authentically evidences and assesses learning outcomes. By embedding quality control mechanisms at each level for each dimension, this model facilitates the development of an aligned…

  4. Simplified High-Power Inverter

    NASA Technical Reports Server (NTRS)

    Edwards, D. B.; Rippel, W. E.

    1984-01-01

    Solid-state inverter simplified by use of single gate-turnoff device (GTO) to commutate multiple silicon controlled rectifiers (SCR's). By eliminating conventional commutation circuitry, GTO reduces cost, size and weight. GTO commutation applicable to inverters of greater than 1-kilowatt capacity. Applications include emergency power, load leveling, drives for traction and stationary polyphase motors, and photovoltaic-power conditioning.

  5. Squeezed light from conventionally pumped multi-level lasers

    NASA Technical Reports Server (NTRS)

    Ralph, T. C.; Savage, C. M.

    1992-01-01

    We have calculated the amplitude squeezing in the output of several conventionally pumped multi-level lasers. We present results which show that standard laser models can produce significantly squeezed outputs in certain parameter ranges.

  6. New multi-level codes over GF(q)

    NASA Technical Reports Server (NTRS)

    Wu, Jiantian; Costello, Daniel J., Jr.

    1990-01-01

    Set partitioning to multi-dimensional signal spaces over GF(q), particularly GF sup q-1(q) and GF sup q (q), and show how to construct both multi-level block codes and multi-level trellis codes over GF(q). Two classes of multi-level (n, k, d) block codes over GF(q) with block length n, number of information symbols k, and minimum distance d sub min greater than or = d, are presented. These two classes of codes use Reed-Solomon codes as component codes. They can be easily decoded as block length q-1 Reed-Solomon codes or block length q or q + 1 extended Reed-Solomon codes using multi-stage decoding. Many of these codes have larger distances than comparable q-ary block codes, as component codes. Low rate q-ary convolutional codes, work error correcting convolutional codes, and binary-to-q-ary convolutional codes can also be used to construct multi-level trellis codes over GF(q) or binary-to-q-ary trellis codes, some of which have better performance than the above block codes. All of the new codes have simple decoding algorithms based on hard decision multi-stage decoding.

  7. Hierarchical Classification by Multi-Level Reciprocity

    ERIC Educational Resources Information Center

    McQuitty, Louis L.

    1970-01-01

    A method is developed and illustrated which relaxes the principle of reciprocity in relation to characteristics of data and classifies in terms of successive levels of reciprocity, using two versions: (a) successive linkages, and (b) core assignments. (Author/RF)

  8. Landau Zener scenario in a trapped atomic gas: multi-level multi-particle model

    NASA Astrophysics Data System (ADS)

    Fai, Lukong Cornelius; Tchoffo, Martin; Jipdi, Michael Nana

    2015-07-01

    The paper investigates multi-level and multi-particle Landau-Zener problem applying the dynamic matrix approach. The Landau Zener transitions are observed to depend sensitively on the frequency, phase of interaction and number of levels and particles. The dynamic behaviour of atomic trapped gas is solved for one particle model that permits to deduce different probabilities for particular initial conditions. The generalization of the probabilities permits to solve any multi-level system with an arbitrary number of particles and controlled particle transitions.

  9. Multi-level trellis coded modulation and multi-stage decoding

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Wu, Jiantian; Lin, Shu

    1990-01-01

    Several constructions for multi-level trellis codes are presented and many codes with better performance than previously known codes are found. These codes provide a flexible trade-off between coding gain, decoding complexity, and decoding delay. New multi-level trellis coded modulation schemes using generalized set partitioning methods are developed for Quadrature Amplitude Modulation (QAM) and Phase Shift Keying (PSK) signal sets. New rotationally invariant multi-level trellis codes which can be combined with differential encoding to resolve phase ambiguity are presented.

  10. Multi-level slip-link modeling

    NASA Astrophysics Data System (ADS)

    Schieber, Jay

    2014-03-01

    That the dynamics of concentrated, high-molecular-weight polymers are largely governed by entanglements is now widely accepted, and typically understood by the tube model. Although the original idea for slip-links was proposed at the same time as tubes, only recently have detailed, quantitative mathematical models arisen based on this picture. We argue here for the use of a slip-link model that has strong connections to atomistic, multichain levels of description, agrees with non-equilibrium thermodynamics, applies to any chain architecture and can be used in linear or non-linear rheology. We present a hierarchy of slip-link models that are connected to each other through successive coarse graining. One might choose a particular member of the hierarchy depending on the problem at hand, in order to minimize computational effort. In particular, the most detailed level of description has four parameters, three of which can be determined directly from atomistic simulations. The least-detailed member is suitable for predicting non-linear, non-uniform flow fields. We will show how using this hierarchy of slip-link models we can make predictions about the nonlinear rheology of monodisperse homopolymer melts, polydisperse melts, or blends of different architectures.

  11. Overload protection system for power inverter

    NASA Technical Reports Server (NTRS)

    Nagano, S. (Inventor)

    1977-01-01

    An overload protection system for a power inverter utilized a first circuit for monitoring current to the load from the power inverter to detect an overload and a control circuit to shut off the power inverter, when an overload condition was detected. At the same time, a monitoring current inverter was turned on to deliver current to the load at a very low power level. A second circuit monitored current to the load, from the monitoring current inverter, to hold the power inverter off through the control circuit, until the overload condition was cleared so that the control circuit may be deactivated in order for the power inverter to be restored after the monitoring current inverter is turned off completely.

  12. Multi-level Hierarchical Poly Tree computer architectures

    NASA Technical Reports Server (NTRS)

    Padovan, Joe; Gute, Doug

    1990-01-01

    Based on the concept of hierarchical substructuring, this paper develops an optimal multi-level Hierarchical Poly Tree (HPT) parallel computer architecture scheme which is applicable to the solution of finite element and difference simulations. Emphasis is given to minimizing computational effort, in-core/out-of-core memory requirements, and the data transfer between processors. In addition, a simplified communications network that reduces the number of I/O channels between processors is presented. HPT configurations that yield optimal superlinearities are also demonstrated. Moreover, to generalize the scope of applicability, special attention is given to developing: (1) multi-level reduction trees which provide an orderly/optimal procedure by which model densification/simplification can be achieved, as well as (2) methodologies enabling processor grading that yields architectures with varying types of multi-level granularity.

  13. Multi-stage decoding for multi-level block modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1991-01-01

    In this paper, we investigate various types of multi-stage decoding for multi-level block modulation codes, in which the decoding of a component code at each stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. Based on our study and computation results, we find that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. In particular, we find that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum decoding of the overall code is very small: only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.

  14. Stream, Inverted

    NASA Technical Reports Server (NTRS)

    2006-01-01

    27 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the inverted, eroded remains of a channel -- now standing as a complex ridge that runs across the middle of this scene -- in dust-mantled terrain west of Sinus Meridiani, Mars. The original channel might have been carved by running water, but too little detail remains today to provide any certainty as to whether water was the culprit.

    Location near: 5.6oN, 7.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Northern Spring

  15. Power inverters

    SciTech Connect

    Miller, David H.; Korich, Mark D.; Smith, Gregory S.

    2011-11-15

    Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.

  16. Unconventional Coding Technique Applied to Multi-Level Polarization Modulation

    NASA Astrophysics Data System (ADS)

    Rutigliano, G. G.; Betti, S.; Perrone, P.

    2016-05-01

    A new technique is proposed to improve information confidentiality in optical-fiber communications without bandwidth consumption. A pseudorandom vectorial sequence was generated by a dynamic system algorithm and used to codify a multi-level polarization modulation based on the Stokes vector. Optical-fiber birefringence, usually considered as a disturbance, was exploited to obfuscate the signal transmission. At the receiver end, the same pseudorandom sequence was generated and used to decode the multi-level polarization modulated signal. The proposed scheme, working at the physical layer, provides strong information security without introducing complex processing and thus latency.

  17. Momentum conservation in Multi-Level Multi-Domain (MLMD) simulations

    NASA Astrophysics Data System (ADS)

    Innocenti, M. E.; Beck, A.; Markidis, S.; Lapenta, G.

    2016-05-01

    Momentum conservation and self-forces reduction are challenges for all Particle-In-Cell (PIC) codes using spatial discretization schemes which do not fulfill the requirement of translational invariance of the grid Green's function. We comment here on the topic applied to the recently developed Multi-Level Multi-Domain (MLMD) method. The MLMD is a semi-implicit method for PIC plasma simulations. The multi-scale nature of plasma processes is addressed by using grids with different spatial resolutions in different parts of the domain.

  18. The Dubious Benefits of Multi-Level Modeling

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2007-01-01

    This paper presents an argument against the wider adoption of complex forms of data analysis, using multi-level modeling (MLM) as an extended case study. MLM was devised to overcome some deficiencies in existing datasets, such as the bias caused by clustering. The paper suggests that MLM has an unclear theoretical and empirical basis, has not led…

  19. Flexible Job Shop Scheduling with Multi-level Job Structures

    NASA Astrophysics Data System (ADS)

    Jang, Yang-Ja; Kim, Ki-Dong; Jang, Seong-Yong; Park, Jinwoo

    This paper deals with a scheduling problem in a flexible job shop with multi-level job structures where end products are assembled from sub-assemblies or manufactured components. For such shops MRP (Material Requirement Planning) logic is frequently used to synchronize and pace the production activities for the required parts. However, in MRP, the planning of operational-level activities is left to short term scheduling. So, we need a good scheduling algorithm to generate feasible schedules taking into account shop floor characteristics and multi-level job structures used in MRP. In this paper, we present a GA (Genetic Algorithm) solution for this complex scheduling problem based on a new gene to reflect the machine assignment, operation sequences and the levels of the operations relative to final assembly operation. The relative operation level is the control parameter that paces the completion timing of the components belonging to the same branch in the multi-level job hierarchy. We compare the genetic algorithm with several dispatching rules in terms of total tardiness and the genetic algorithm shows outstanding performance for about forty modified standard job-shop problem instances.

  20. A Study On Direct Selling Through Multi Level Marketing

    NASA Astrophysics Data System (ADS)

    Merlin, F. Mary

    2012-09-01

    Direct selling is a multi-level marketing in which the sales force is compensated not only for the sales they make but also for the sales done through their recruit. This recruited sales force is referred to as the participants who can provide multiple levels of compensation.A person's job would be to recruit others to sell their product, and in return, receive a percentage of their sales. The next person's job then is to recruit people even more so below them, and receive a percentage of their sales. Other terms for Multi-level marketing include network marketing and referral marketing. Commonly, the salespeople are expected to sell products directly to consumers by means of relationship through referrals marketing. Some people use direct selling as a synonym for MLM, although MLM is only one type of direct selling

  1. NOVA: A new multi-level logic simulator

    NASA Technical Reports Server (NTRS)

    Miles, L.; Prins, P.; Cameron, K.; Shovic, J.

    1990-01-01

    A new logic simulator that was developed at the NASA Space Engineering Research Center for VLSI Design was described. The simulator is multi-level, being able to simulate from the switch level through the functional model level. NOVA is currently in the Beta test phase and was used to simulate chips designed for the NASA Space Station and the Explorer missions. A new algorithm was devised to simulate bi-directional pass transistors and a preliminary version of the algorithm is presented. The usage of functional models in NOVA is also described and performance figures are presented.

  2. Multi-level methods and approximating distribution functions

    NASA Astrophysics Data System (ADS)

    Wilson, D.; Baker, R. E.

    2016-07-01

    Biochemical reaction networks are often modelled using discrete-state, continuous-time Markov chains. System statistics of these Markov chains usually cannot be calculated analytically and therefore estimates must be generated via simulation techniques. There is a well documented class of simulation techniques known as exact stochastic simulation algorithms, an example of which is Gillespie's direct method. These algorithms often come with high computational costs, therefore approximate stochastic simulation algorithms such as the tau-leap method are used. However, in order to minimise the bias in the estimates generated using them, a relatively small value of tau is needed, rendering the computational costs comparable to Gillespie's direct method. The multi-level Monte Carlo method (Anderson and Higham, Multiscale Model. Simul. 10:146-179, 2012) provides a reduction in computational costs whilst minimising or even eliminating the bias in the estimates of system statistics. This is achieved by first crudely approximating required statistics with many sample paths of low accuracy. Then correction terms are added until a required level of accuracy is reached. Recent literature has primarily focussed on implementing the multi-level method efficiently to estimate a single system statistic. However, it is clearly also of interest to be able to approximate entire probability distributions of species counts. We present two novel methods that combine known techniques for distribution reconstruction with the multi-level method. We demonstrate the potential of our methods using a number of examples.

  3. Device-Level Models Using Multi-Valley Effective Mass

    NASA Astrophysics Data System (ADS)

    Baczewski, Andrew D.; Frees, Adam; Gamble, John King; Gao, Xujiao; Jacobson, N. Tobias; Mitchell, John A.; Montaño, Inès; Muller, Richard P.; Nielsen, Erik

    2015-03-01

    Continued progress in quantum electronics depends critically on the availability of robust device-level modeling tools that capture a wide range of physics and effective mass theory (EMT) is one means of building such models. Recent developments in multi-valley EMT show quantitative agreement with more detailed atomistic tight-binding calculations of phosphorus donors in silicon (Gamble, et. al., arXiv:1408.3159). Leveraging existing PDE solvers, we are developing a framework in which this multi-valley EMT is coupled to an integrated device-level description of several experimentally active qubit technologies. Device-level simulations of quantum operations will be discussed, as well as the extraction of process matrices at this level of theory. The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  4. On the multi-level solution algorithm for Markov chains

    SciTech Connect

    Horton, G.

    1996-12-31

    We discuss the recently introduced multi-level algorithm for the steady-state solution of Markov chains. The method is based on the aggregation principle, which is well established in the literature. Recursive application of the aggregation yields a multi-level method which has been shown experimentally to give results significantly faster than the methods currently in use. The algorithm can be reformulated as an algebraic multigrid scheme of Galerkin-full approximation type. The uniqueness of the scheme stems from its solution-dependent prolongation operator which permits significant computational savings in the evaluation of certain terms. This paper describes the modeling of computer systems to derive information on performance, measured typically as job throughput or component utilization, and availability, defined as the proportion of time a system is able to perform a certain function in the presence of component failures and possibly also repairs.

  5. Multi-level Hybrid Cache: Impact and Feasibility

    SciTech Connect

    Zhang, Zhe; Kim, Youngjae; Ma, Xiaosong; Shipman, Galen M; Zhou, Yuanyuan

    2012-02-01

    Storage class memories, including flash, has been attracting much attention as promising candidates fitting into in today's enterprise storage systems. In particular, since the cost and performance characteristics of flash are in-between those of DRAM and hard disks, it has been considered by many studies as an secondary caching layer underneath main memory cache. However, there has been a lack of studies of correlation and interdependency between DRAM and flash caching. This paper views this problem as a special form of multi-level caching, and tries to understand the benefits of this multi-level hybrid cache hierarchy. We reveal that significant costs could be saved by using Flash to reduce the size of DRAM cache, while maintaing the same performance. We also discuss design challenges of using flash in the caching hierarchy and present potential solutions.

  6. A multi-level method for sparse linear systems

    SciTech Connect

    Shapira, Y.

    1997-09-01

    A multi-level method for the solution of sparse linear systems is introduced. The definition of the method is based on data from the coefficient matrix alone. An upper bound for the condition number is available for certain symmetric positive definite (SPD) problems. Numerical experiments confirm the analysis and illustrate the efficiency of the method for diffusion problems with discontinuous coefficients with discontinuities which are not aligned with the coarse meshes.

  7. On decoding of multi-level MPSK modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Gupta, Alok Kumar

    1990-01-01

    The decoding problem of multi-level block modulation codes is investigated. The hardware design of soft-decision Viterbi decoder for some short length 8-PSK block modulation codes is presented. An effective way to reduce the hardware complexity of the decoder by reducing the branch metric and path metric, using a non-uniform floating-point to integer mapping scheme, is proposed and discussed. The simulation results of the design are presented. The multi-stage decoding (MSD) of multi-level modulation codes is also investigated. The cases of soft-decision and hard-decision MSD are considered and their performance are evaluated for several codes of different lengths and different minimum squared Euclidean distances. It is shown that the soft-decision MSD reduces the decoding complexity drastically and it is suboptimum. The hard-decision MSD further simplifies the decoding while still maintaining a reasonable coding gain over the uncoded system, if the component codes are chosen properly. Finally, some basic 3-level 8-PSK modulation codes using BCH codes as component codes are constructed and their coding gains are found for hard decision multistage decoding.

  8. Multi-level and multi-scale integrative approach to the understanding of human blastocyst implantation.

    PubMed

    Sengupta, Jayasree; Ghosh, Debabrata

    2014-01-01

    Implantation is a complex process which results in fixation of zona pellucida free blastocyst to the maternal uterine endometrium. In the human, it involves progesterone mediated preparation of endometrium, age- and stage-matched development of pre-implantation embryo, and interaction between embryo and endometrium. In the present essay, we present the case to explain why there is a necessity of undertaking multi-level, multi-scale integrative approach to deconstruct the succession process of endometrial development to the climax of implantation. PMID:24342377

  9. 2.3-MW Medium-Voltage, Three-Level Wind Energy Inverter Applying a Unique Bus Structure and 4.5-kV Si/SiC Hybrid Isolated Power Modules: Preprint

    SciTech Connect

    Erdman, W.; Keller, J.; Grider, D.; VanBrunt, E.

    2014-11-01

    A high-efficiency, 2.3-MW, medium-voltage, three-level inverter utilizing 4.5-kV Si/SiC (silicon carbide) hybrid modules for wind energy applications is discussed. The inverter addresses recent trends in siting the inverter within the base of multimegawatt turbine towers. A simplified split, three-layer laminated bus structure that maintains low parasitic inductances is introduced along with a low-voltage, high-current test method for determining these inductances. Feed-thru bushings, edge fill methods, and other design features of the laminated bus structure provide voltage isolation that is consistent with the 10.4-kV module isolation levels. Inverter efficiency improvement is a result of the (essential) elimination of the reverse recovery charge present in 4.5-kV Si PIN diodes, which can produce a significant reduction in diode turn-off losses as well as insulated-gate bipolar transistor (IGBT) turn-on losses. The hybrid modules are supplied in industry-standard 140 mm x 130 mm and 190 mm x 130 mm packages to demonstrate direct module substitution into existing inverter designs. A focus on laminated bus/capacitor-bank/module subassembly level switching performance is presented.

  10. On codes with multi-level error-correction capabilities

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1987-01-01

    In conventional coding for error control, all the information symbols of a message are regarded equally significant, and hence codes are devised to provide equal protection for each information symbol against channel errors. However, in some occasions, some information symbols in a message are more significant than the other symbols. As a result, it is desired to devise codes with multilevel error-correcting capabilities. Another situation where codes with multi-level error-correcting capabilities are desired is in broadcast communication systems. An m-user broadcast channel has one input and m outputs. The single input and each output form a component channel. The component channels may have different noise levels, and hence the messages transmitted over the component channels require different levels of protection against errors. Block codes with multi-level error-correcting capabilities are also known as unequal error protection (UEP) codes. Structural properties of these codes are derived. Based on these structural properties, two classes of UEP codes are constructed.

  11. Efficient Multidisciplinary Analysis Procedure Using Multi-Level Parallelization Approach

    NASA Technical Reports Server (NTRS)

    Byun, Chansup; Hatay, Ferhat; Farhangnia, Mehrdad; Guruswamy, Guru; VanDalsem, William R. (Technical Monitor)

    1997-01-01

    Multidisciplinary applications are suitable for parallel computing environment by adopting the domain decomposition method. Immediately, a multidisciplinary application can be parallelized by solving each discipline separately. In order to perform coupled multidisciplinary analysis, coupling of each discipline can be accomplished by exchanging boundary data at the interfaces. This is regarded as discipline-level parallelization. Next level could be a "coarse-grain" parallelization of each discipline, which mainly depends on the physical geometry and nature of each discipline. For example, it is almost impossible for structured-grid based computational fluid dynamics codes to do flow analysis of an aircraft by using a single grid because of the complexity of its configuration. Thus, multi-block grid is commonly used to describe the details of complex geometry. Similarly, in structural analysis, the structure is frequently subdivided into substructures. Thus, the computation of each subdomain can be easily parallelized since each subdomain is solved separately independent of other domains. The parallelization is accomplished by solving each subdomain separately on a separate processor and exchanging the boundary conditions at domain interfaces periodically. However, the physical decomposition of the domain introduces explicit boundary conditions at the domain interfaces. This is not desirable for critical areas such as those containing shock waves or flow separations. Thus, a "fine-grain" parallelization is introduced to overcome this problem. The "fine-grain" parallelization is one that solves exactly the same system of equations of a subdomain by using more than one processors without introducing any explicit boundary conditions. An efficient multidisciplinary analysis procedure can be accomplished by successfully combining the above multi-level parallelism. A multidisciplinary analysis code, ENSAERO developed at NASA Ames Research Center is used in this study to

  12. Constrained Multi-Level Algorithm for Trajectory Optimization

    NASA Astrophysics Data System (ADS)

    Adimurthy, V.; Tandon, S. R.; Jessy, Antony; Kumar, C. Ravi

    The emphasis on low cost access to space inspired many recent developments in the methodology of trajectory optimization. Ref.1 uses a spectral patching method for optimization, where global orthogonal polynomials are used to describe the dynamical constraints. A two-tier approach of optimization is used in Ref.2 for a missile mid-course trajectory optimization. A hybrid analytical/numerical approach is described in Ref.3, where an initial analytical vacuum solution is taken and gradually atmospheric effects are introduced. Ref.4 emphasizes the fact that the nonlinear constraints which occur in the initial and middle portions of the trajectory behave very nonlinearly with respect the variables making the optimization very difficult to solve in the direct and indirect shooting methods. The problem is further made complex when different phases of the trajectory have different objectives of optimization and also have different path constraints. Such problems can be effectively addressed by multi-level optimization. In the multi-level methods reported so far, optimization is first done in identified sub-level problems, where some coordination variables are kept fixed for global iteration. After all the sub optimizations are completed, higher-level optimization iteration with all the coordination and main variables is done. This is followed by further sub system optimizations with new coordination variables. This process is continued until convergence. In this paper we use a multi-level constrained optimization algorithm which avoids the repeated local sub system optimizations and which also removes the problem of non-linear sensitivity inherent in the single step approaches. Fall-zone constraints, structural load constraints and thermal constraints are considered. In this algorithm, there is only a single multi-level sequence of state and multiplier updates in a framework of an augmented Lagrangian. Han Tapia multiplier updates are used in view of their special role in

  13. Multi-level Full Virtualization of Power Management

    NASA Astrophysics Data System (ADS)

    Liu, Yongpeng; Chi, Wanqing; Liu, Yongyan

    Virtual machine technique is employed to improve system utilization and energy efficiency. However, isolation effect of virtualization imposes challenges to power management. A multi-level power behavior statistic framework is introduced to support power profiling of virtual device, virtual machine and host. Power management mechanisms are virtualized to map power management operations between virtual device and physical device. The power consumption of a virtual device is virtualized according to its performance share from the physical device. The experiments demonstrated that our power management virtualization solution has negligible decline of system performance.

  14. Bootstrap confidence intervals in multi-level simultaneous component analysis.

    PubMed

    Timmerman, Marieke E; Kiers, Henk A L; Smilde, Age K; Ceulemans, Eva; Stouten, Jeroen

    2009-05-01

    Multi-level simultaneous component analysis (MLSCA) was designed for the exploratory analysis of hierarchically ordered data. MLSCA specifies a component model for each level in the data, where appropriate constraints express possible similarities between groups of objects at a certain level, yielding four MLSCA variants. The present paper discusses different bootstrap strategies for estimating confidence intervals (CIs) on the individual parameters. In selecting a proper strategy, the main issues to address are the resampling scheme and the non-uniqueness of the parameters. The resampling scheme depends on which level(s) in the hierarchy are considered random, and which fixed. The degree of non-uniqueness depends on the MLSCA variant, and, in two variants, the extent to which the user exploits the transformational freedom. A comparative simulation study examines the quality of bootstrap CIs of different MLSCA parameters. Generally, the quality of bootstrap CIs appears to be good, provided the sample sizes are sufficient at each level that is considered to be random. The latter implies that if more than a single level is considered random, the total number of observations necessary to obtain reliable inferential information increases dramatically. An empirical example illustrates the use of bootstrap CIs in MLSCA. PMID:18086338

  15. Politics of innovation in multi-level water governance systems

    NASA Astrophysics Data System (ADS)

    Daniell, Katherine A.; Coombes, Peter J.; White, Ian

    2014-11-01

    Innovations are being proposed in many countries in order to support change towards more sustainable and water secure futures. However, the extent to which they can be implemented is subject to complex politics and powerful coalitions across multi-level governance systems and scales of interest. Exactly how innovation uptake can be best facilitated or blocked in these complex systems is thus a matter of important practical and research interest in water cycle management. From intervention research studies in Australia, China and Bulgaria, this paper seeks to describe and analyse the behind-the-scenes struggles and coalition-building that occurs between water utility providers, private companies, experts, communities and all levels of government in an effort to support or block specific innovations. The research findings suggest that in order to ensure successful passage of the proposed innovations, champions for it are required from at least two administrative levels, including one with innovation implementation capacity, as part of a larger supportive coalition. Higher governance levels can play an important enabling role in facilitating the passage of certain types of innovations that may be in competition with currently entrenched systems of water management. Due to a range of natural biases, experts on certain innovations and disciplines may form part of supporting or blocking coalitions but their evaluations of worth for water system sustainability and security are likely to be subject to competing claims based on different values and expertise, so may not necessarily be of use in resolving questions of "best courses of action". This remains a political values-based decision to be negotiated through the receiving multi-level water governance system.

  16. Single vs multi-level quenching of the hydroxyl airglow

    NASA Astrophysics Data System (ADS)

    Franzen, Christoph; Espy, Patrick J.; Hibbins, Robert; Djupvik, Anlaug Amanda

    2016-04-01

    The reaction in the upper mesosphere between atomic hydrogen and ozone results in hydroxyl (OH) that is produced in excited vibrational levels 6 through 9. The vibrationally excited OH radiates in a thin (~8 km thick) layer near 87 km, giving rise to the strong near infrared airglow emission that has been used for remote sensing of the mesopause region. The interpretation of the emission relies on accurate knowledge of the population and quenching of the upper states, and open questions remain as to whether the quenching takes place through single- or multi-quantum deactivation. Here we will demonstrate how high quality spectral observations of OH (9,7) and (8,6) airglow emissions are available as background measurements during standard K-band astronomical observations from the Nordic Optical Telescope (18°W, 29°N). These emissions have been analysed to ascertain the quenching of the upper vibrational populations. Together with a steady-state model of these emissions, an estimate of the ratio of single to multi-quantum quenching efficiency and the impact on the populations of the lower vibrational levels will be presented.

  17. Multi-Level Bitmap Indexes for Flash Memory Storage

    SciTech Connect

    Wu, Kesheng; Madduri, Kamesh; Canon, Shane

    2010-07-23

    Due to their low access latency, high read speed, and power-efficient operation, flash memory storage devices are rapidly emerging as an attractive alternative to traditional magnetic storage devices. However, tests show that the most efficient indexing methods are not able to take advantage of the flash memory storage devices. In this paper, we present a set of multi-level bitmap indexes that can effectively take advantage of flash storage devices. These indexing methods use coarsely binned indexes to answer queries approximately, and then use finely binned indexes to refine the answers. Our new methods read significantly lower volumes of data at the expense of an increased disk access count, thus taking full advantage of the improved read speed and low access latency of flash devices. To demonstrate the advantage of these new indexes, we measure their performance on a number of storage systems using a standard data warehousing benchmark called the Set Query Benchmark. We observe that multi-level strategies on flash drives are up to 3 times faster than traditional indexing strategies on magnetic disk drives.

  18. Multi-level approach for parametric roll analysis

    NASA Astrophysics Data System (ADS)

    Kim, Taeyoung; Kim, Yonghwan

    2011-03-01

    The present study considers multi-level approach for the analysis of parametric roll phenomena. Three kinds of computation method, GM variation, impulse response function (IRF), and Rankine panel method, are applied for the multi-level approach. IRF and Rankine panel method are based on the weakly nonlinear formulation which includes nonlinear Froude- Krylov and restoring forces. In the computation result of parametric roll occurrence test in regular waves, IRF and Rankine panel method show similar tendency. Although the GM variation approach predicts the occurrence of parametric roll at twice roll natural frequency, its frequency criteria shows a little difference. Nonlinear roll motion in bichromatic wave is also considered in this study. To prove the unstable roll motion in bichromatic waves, theoretical and numerical approaches are applied. The occurrence of parametric roll is theoretically examined by introducing the quasi-periodic Mathieu equation. Instability criteria are well predicted from stability analysis in theoretical approach. From the Fourier analysis, it has been verified that difference-frequency effects create the unstable roll motion. The occurrence of unstable roll motion in bichromatic wave is also observed in the experiment.

  19. Grid coupling mechanism in the semi-implicit adaptive Multi-Level Multi-Domain method

    NASA Astrophysics Data System (ADS)

    Innocenti, M. E.; Tronci, C.; Markidis, S.; Lapenta, G.

    2016-05-01

    The Multi-Level Multi-Domain (MLMD) method is a semi-implicit adaptive method for Particle-In-Cell plasma simulations. It has been demonstrated in the past in simulations of Maxwellian plasmas, electrostatic and electromagnetic instabilities, plasma expansion in vacuum, magnetic reconnection [1, 2, 3]. In multiple occasions, it has been commented on the coupling between the coarse and the refined grid solutions. The coupling mechanism itself, however, has never been explored in depth. Here, we investigate the theoretical bases of grid coupling in the MLMD system. We obtain an evolution law for the electric field solution in the overlap area of the MLMD system which highlights a dependance on the densities and currents from both the coarse and the refined grid, rather than from the coarse grid alone: grid coupling is obtained via densities and currents.

  20. Multi-objective optimization of two-dimensional phoxonic crystals with multi-level substructure scheme

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Yin, J.; Zhang, H. W.; Chen, B. S.

    2016-03-01

    Phoxonic crystal (PXC) is a promising artificial periodic material for optomechanical systems and acousto-optical devices. The multi-objective topology optimization of dual phononic and photonic max relative bandgaps in a kind of two-dimensional (2D) PXC is investigated to find the regular pattern of topological configurations. In order to improve the efficiency, a multi-level substructure scheme is proposed to analyze phononic and photonic band structures, which is stable, efficient and less memory-consuming. The efficient and reliable numerical algorithm provides a powerful tool to optimize and design crystal devices. The results show that with the reduction of the relative phononic bandgap (PTBG), the central dielectric scatterer becomes smaller and the dielectric veins of cross-connections between different dielectric scatterers turn into the horizontal and vertical shape gradually. These characteristics can be of great value to the design and synthesis of new materials with different topological configurations for applications of the PXC.

  1. Evolution of neuroarchitecture, multi-level analyses and calibrative reductionism

    PubMed Central

    Berntson, Gary G.; Norman, Greg J.; Hawkley, Louise C.; Cacioppo, John T.

    2012-01-01

    Evolution has sculpted the incredibly complex human nervous system, among the most complex functions of which extend beyond the individual to an intricate social structure. Although these functions are deterministic, those determinants are legion, heavily interacting and dependent on a specific evolutionary trajectory. That trajectory was directed by the adaptive significance of quasi-random genetic variations, but was also influenced by chance and caprice. With a different evolutionary pathway, the same neural elements could subserve functions distinctly different from what they do in extant human brains. Consequently, the properties of higher level neural networks cannot be derived readily from the properties of the lower level constituent elements, without studying these elements in the aggregate. Thus, a multi-level approach to integrative neuroscience may offer an optimal strategy. Moreover, the process of calibrative reductionism, by which concepts and understandings from one level of organization or analysis can mutually inform and ‘calibrate’ those from other levels (both higher and lower), may represent a viable approach to the application of reductionism in science. This is especially relevant in social neuroscience, where the basic subject matter of interest is defined by interacting organisms across diverse environments. PMID:23386961

  2. Evolution of neuroarchitecture, multi-level analyses and calibrative reductionism.

    PubMed

    Berntson, Gary G; Norman, Greg J; Hawkley, Louise C; Cacioppo, John T

    2012-02-01

    Evolution has sculpted the incredibly complex human nervous system, among the most complex functions of which extend beyond the individual to an intricate social structure. Although these functions are deterministic, those determinants are legion, heavily interacting and dependent on a specific evolutionary trajectory. That trajectory was directed by the adaptive significance of quasi-random genetic variations, but was also influenced by chance and caprice. With a different evolutionary pathway, the same neural elements could subserve functions distinctly different from what they do in extant human brains. Consequently, the properties of higher level neural networks cannot be derived readily from the properties of the lower level constituent elements, without studying these elements in the aggregate. Thus, a multi-level approach to integrative neuroscience may offer an optimal strategy. Moreover, the process of calibrative reductionism, by which concepts and understandings from one level of organization or analysis can mutually inform and 'calibrate' those from other levels (both higher and lower), may represent a viable approach to the application of reductionism in science. This is especially relevant in social neuroscience, where the basic subject matter of interest is defined by interacting organisms across diverse environments. PMID:23386961

  3. Multi-level systems modeling and optimization for novel aircraft

    NASA Astrophysics Data System (ADS)

    Subramanian, Shreyas Vathul

    This research combines the disciplines of system-of-systems (SoS) modeling, platform-based design, optimization and evolving design spaces to achieve a novel capability for designing solutions to key aeronautical mission challenges. A central innovation in this approach is the confluence of multi-level modeling (from sub-systems to the aircraft system to aeronautical system-of-systems) in a way that coordinates the appropriate problem formulations at each level and enables parametric search in design libraries for solutions that satisfy level-specific objectives. The work here addresses the topic of SoS optimization and discusses problem formulation, solution strategy, the need for new algorithms that address special features of this problem type, and also demonstrates these concepts using two example application problems - a surveillance UAV swarm problem, and the design of noise optimal aircraft and approach procedures. This topic is critical since most new capabilities in aeronautics will be provided not just by a single air vehicle, but by aeronautical Systems of Systems (SoS). At the same time, many new aircraft concepts are pressing the boundaries of cyber-physical complexity through the myriad of dynamic and adaptive sub-systems that are rising up the TRL (Technology Readiness Level) scale. This compositional approach is envisioned to be active at three levels: validated sub-systems are integrated to form conceptual aircraft, which are further connected with others to perform a challenging mission capability at the SoS level. While these multiple levels represent layers of physical abstraction, each discipline is associated with tools of varying fidelity forming strata of 'analysis abstraction'. Further, the design (composition) will be guided by a suitable hierarchical complexity metric formulated for the management of complexity in both the problem (as part of the generative procedure and selection of fidelity level) and the product (i.e., is the mission

  4. A multi-level typology of abstract visualization tasks.

    PubMed

    Brehmer, Matthew; Munzner, Tamara

    2013-12-01

    The considerable previous work characterizing visualization usage has focused on low-level tasks or interactions and high-level tasks, leaving a gap between them that is not addressed. This gap leads to a lack of distinction between the ends and means of a task, limiting the potential for rigorous analysis. We contribute a multi-level typology of visualization tasks to address this gap, distinguishing why and how a visualization task is performed, as well as what the task inputs and outputs are. Our typology allows complex tasks to be expressed as sequences of interdependent simpler tasks, resulting in concise and flexible descriptions for tasks of varying complexity and scope. It provides abstract rather than domain-specific descriptions of tasks, so that useful comparisons can be made between visualization systems targeted at different application domains. This descriptive power supports a level of analysis required for the generation of new designs, by guiding the translation of domain-specific problems into abstract tasks, and for the qualitative evaluation of visualization usage. We demonstrate the benefits of our approach in a detailed case study, comparing task descriptions from our typology to those derived from related work. We also discuss the similarities and differences between our typology and over two dozen extant classification systems and theoretical frameworks from the literatures of visualization, human-computer interaction, information retrieval, communications, and cartography. PMID:24051804

  5. Multi-Directional Multi-Level Dual-Cross Patterns for Robust Face Recognition.

    PubMed

    Ding, Changxing; Choi, Jonghyun; Tao, Dacheng; Davis, Larry S

    2016-03-01

    To perform unconstrained face recognition robust to variations in illumination, pose and expression, this paper presents a new scheme to extract "Multi-Directional Multi-Level Dual-Cross Patterns" (MDML-DCPs) from face images. Specifically, the MDML-DCPs scheme exploits the first derivative of Gaussian operator to reduce the impact of differences in illumination and then computes the DCP feature at both the holistic and component levels. DCP is a novel face image descriptor inspired by the unique textural structure of human faces. It is computationally efficient and only doubles the cost of computing local binary patterns, yet is extremely robust to pose and expression variations. MDML-DCPs comprehensively yet efficiently encodes the invariant characteristics of a face image from multiple levels into patterns that are highly discriminative of inter-personal differences but robust to intra-personal variations. Experimental results on the FERET, CAS-PERL-R1, FRGC 2.0, and LFW databases indicate that DCP outperforms the state-of-the-art local descriptors (e.g., LBP, LTP, LPQ, POEM, tLBP, and LGXP) for both face identification and face verification tasks. More impressively, the best performance is achieved on the challenging LFW and FRGC 2.0 databases by deploying MDML-DCPs in a simple recognition scheme. PMID:27046495

  6. Multi-Level Analysis of Pulsed Detonation Engines

    NASA Technical Reports Server (NTRS)

    Ebrahimi, Houshang B.; Mohanraj, Rajendran; Merkle, Charles L.

    2001-01-01

    The present study explores some issues concerning the operational performance of pulsed detonation engines. Zero-, one- and two-dimensional, transient models are employed in a synergistic manner to elucidate the various characteristics that can be expected from each level of analysis. The zero-dimensional model provides rapid parametric trends that help to identify the global characteristics of pulsed detonation engines. The one-dimensional model adds key wave propagation issues that are omitted in the zero-dimensional model and helps to assess its limitations. Finally, the two-dimensional model allows estimates of the first-order multi-dimensional effects and provides an initial multi-dimensional end-correction for the one-dimensional model. The zero-dimensional results indicate that the pulsed detonation engine is competitive with a rocket engine when exhausting to vacuum conditions. At finite back pressures, the PDE out-performs the rocket if the combustion pressure rise from the detonation is added to the chamber pressure in the rocket. If the two peak pressures are the same, the rocket performance is higher. Two-dimensional corrections added to the one-dimensional model result in a modest improvement in predicted specific impulse over the constant pressure boundary condition.

  7. Multi-level segment analysis: definition and applications in turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Lipo

    2015-11-01

    The interaction of different scales is among the most interesting and challenging features in turbulence research. Existing approaches used for scaling analysis such as structure-function and Fourier spectrum method have their respective limitations, for instance scale mixing, i.e. the so-called infrared and ultraviolet effects. For a given function, by specifying different window sizes, the local extremal point set will be different. Such window size dependent feature indicates multi-scale statistics. A new method, multi-level segment analysis (MSA) based on the local extrema statistics, has been developed. The part of the function between two adjacent extremal points is defined as a segment, which is characterized by the functional difference and scale difference. The structure function can be differently derived from these characteristic parameters. Data test results show that MSA can successfully reveal different scaling regimes in turbulence systems such as Lagrangian and two-dimensional turbulence, which have been remaining controversial in turbulence research. In principle MSA can generally be extended for various analyses.

  8. Development of the Multi-Level Seismic Receiver (MLSR)

    SciTech Connect

    Sleefe, G.E.; Engler, B.P.; Drozda, P.M.; Franco, R.J.; Morgan, J.

    1995-02-01

    The Advanced Geophysical Technology Department (6114) and the Telemetry Technology Development Department (2664) have, in conjunction with the Oil Recovery Technology Partnership, developed a Multi-Level Seismic Receiver (MLSR) for use in crosswell seismic surveys. The MLSR was designed and evaluated with the significant support of many industry partners in the oil exploration industry. The unit was designed to record and process superior quality seismic data operating in severe borehole environments, including high temperature (up to 200{degrees}C) and static pressure (10,000 psi). This development has utilized state-of-the-art technology in transducers, data acquisition, and real-time data communication and data processing. The mechanical design of the receiver has been carefully modeled and evaluated to insure excellent signal coupling into the receiver.

  9. Translation Levels Control Multi-Spanning Membrane Protein Expression

    PubMed Central

    Brown, Cecilia; Bostrom, Jenny; Fuh, Germaine; Lee, Chingwei V.; Huang, Arthur; Vandlen, Richard L.; Yansura, Daniel G.

    2012-01-01

    Attempts to express eukaryotic multi-spanning membrane proteins at high-levels have been generally unsuccessful. In order to investigate the cause of this limitation and gain insight into the rate limiting processes involved, we have analyzed the effect of translation levels on the expression of several human membrane proteins in Escherichia coli (E. coli). These results demonstrate that excessive translation initiation rates of membrane proteins cause a block in protein synthesis and ultimately prevent the high-level accumulation of these proteins. Moderate translation rates allow coupling of peptide synthesis and membrane targeting, resulting in a significant increase in protein expression and accumulation over time. The current study evaluates four membrane proteins, CD20 (4-transmembrane (TM) helixes), the G-protein coupled receptors (GPCRs, 7-TMs) RA1c and EG-VEGFR1, and Patched 1 (12-TMs), and demonstrates the critical role of translation initiation rates in the targeting, insertion and folding of integral membrane proteins in the E. coli membrane. PMID:22563408

  10. A Multi-Level Parallelization Concept for High-Fidelity Multi-Block Solvers

    NASA Technical Reports Server (NTRS)

    Hatay, Ferhat F.; Jespersen, Dennis C.; Guruswamy, Guru P.; Rizk, Yehia M.; Byun, Chansup; Gee, Ken; VanDalsem, William R. (Technical Monitor)

    1997-01-01

    The integration of high-fidelity Computational Fluid Dynamics (CFD) analysis tools with the industrial design process benefits greatly from the robust implementations that are transportable across a wide range of computer architectures. In the present work, a hybrid domain-decomposition and parallelization concept was developed and implemented into the widely-used NASA multi-block Computational Fluid Dynamics (CFD) packages implemented in ENSAERO and OVERFLOW. The new parallel solver concept, PENS (Parallel Euler Navier-Stokes Solver), employs both fine and coarse granularity in data partitioning as well as data coalescing to obtain the desired load-balance characteristics on the available computer platforms. This multi-level parallelism implementation itself introduces no changes to the numerical results, hence the original fidelity of the packages are identically preserved. The present implementation uses the Message Passing Interface (MPI) library for interprocessor message passing and memory accessing. By choosing an appropriate combination of the available partitioning and coalescing capabilities only during the execution stage, the PENS solver becomes adaptable to different computer architectures from shared-memory to distributed-memory platforms with varying degrees of parallelism. The PENS implementation on the IBM SP2 distributed memory environment at the NASA Ames Research Center obtains 85 percent scalable parallel performance using fine-grain partitioning of single-block CFD domains using up to 128 wide computational nodes. Multi-block CFD simulations of complete aircraft simulations achieve 75 percent perfect load-balanced executions using data coalescing and the two levels of parallelism. SGI PowerChallenge, SGI Origin 2000, and a cluster of workstations are the other platforms where the robustness of the implementation is tested. The performance behavior on the other computer platforms with a variety of realistic problems will be included as this on

  11. Multi-level Expression Design Language: Requirement level (MEDL-R) system evaluation

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An evaluation of the Multi-Level Expression Design Language Requirements Level (MEDL-R) system was conducted to determine whether it would be of use in the Goddard Space Flight Center Code 580 software development environment. The evaluation is based upon a study of the MEDL-R concept of requirement languages, the functions performed by MEDL-R, and the MEDL-R language syntax. Recommendations are made for changes to MEDL-R that would make it useful in the Code 580 environment.

  12. Realistic mass ratio magnetic reconnection simulations with the Multi Level Multi Domain method

    NASA Astrophysics Data System (ADS)

    Innocenti, Maria Elena; Beck, Arnaud; Lapenta, Giovanni; Markidis, Stefano

    2014-05-01

    Space physics simulations with the ambition of realistically representing both ion and electron dynamics have to be able to cope with the huge scale separation between the electron and ion parameters while respecting the stability constraints of the numerical method of choice. Explicit Particle In Cell (PIC) simulations with realistic mass ratio are limited in the size of the problems they can tackle by the restrictive stability constraints of the explicit method (Birdsall and Langdon, 2004). Many alternatives are available to reduce such computation costs. Reduced mass ratios can be used, with the caveats highlighted in Bret and Dieckmann (2010). Fully implicit (Chen et al., 2011a; Markidis and Lapenta, 2011) or semi implicit (Vu and Brackbill, 1992; Lapenta et al., 2006; Cohen et al., 1989) methods can bypass the strict stability constraints of explicit PIC codes. Adaptive Mesh Refinement (AMR) techniques (Vay et al., 2004; Fujimoto and Sydora, 2008) can be employed to change locally the simulation resolution. We focus here on the Multi Level Multi Domain (MLMD) method introduced in Innocenti et al. (2013) and Beck et al. (2013). The method combines the advantages of implicit algorithms and adaptivity. Two levels are fully simulated with fields and particles. The so called "refined level" simulates a fraction of the "coarse level" with a resolution RF times bigger than the coarse level resolution, where RF is the Refinement Factor between the levels. This method is particularly suitable for magnetic reconnection simulations (Biskamp, 2005), where the characteristic Ion and Electron Diffusion Regions (IDR and EDR) develop at the ion and electron scales respectively (Daughton et al., 2006). In Innocenti et al. (2013) we showed that basic wave and instability processes are correctly reproduced by MLMD simulations. In Beck et al. (2013) we applied the technique to plasma expansion and magnetic reconnection problems. We showed that notable computational time savings

  13. A new balancing three level three dimensional space vector modulation strategy for three level neutral point clamped four leg inverter based shunt active power filter controlling by nonlinear back stepping controllers.

    PubMed

    Chebabhi, Ali; Fellah, Mohammed Karim; Kessal, Abdelhalim; Benkhoris, Mohamed F

    2016-07-01

    In this paper is proposed a new balancing three-level three dimensional space vector modulation (B3L-3DSVM) strategy which uses a redundant voltage vectors to realize precise control and high-performance for a three phase three-level four-leg neutral point clamped (NPC) inverter based Shunt Active Power Filter (SAPF) for eliminate the source currents harmonics, reduce the magnitude of neutral wire current (eliminate the zero-sequence current produced by single-phase nonlinear loads), and to compensate the reactive power in the three-phase four-wire electrical networks. This strategy is proposed in order to gate switching pulses generation, dc bus voltage capacitors balancing (conserve equal voltage of the two dc bus capacitors), and to switching frequency reduced and fixed of inverter switches in same times. A Nonlinear Back Stepping Controllers (NBSC) are used for regulated the dc bus voltage capacitors and the SAPF injected currents to robustness, stabilizing the system and to improve the response and to eliminate the overshoot and undershoot of traditional PI (Proportional-Integral). Conventional three-level three dimensional space vector modulation (C3L-3DSVM) and B3L-3DSVM are calculated and compared in terms of error between the two dc bus voltage capacitors, SAPF output voltages and THDv, THDi of source currents, magnitude of source neutral wire current, and the reactive power compensation under unbalanced single phase nonlinear loads. The success, robustness, and the effectiveness of the proposed control strategies are demonstrated through simulation using Sim Power Systems and S-Function of MATLAB/SIMULINK. PMID:27018144

  14. Multi-hazards risk assessment at different levels

    NASA Astrophysics Data System (ADS)

    Frolova, N.; Larionov, V.; Bonnin, J.

    2012-04-01

    Natural and technological disasters are becoming more frequent and devastating. Social and economic losses due to those events increase annually, which is definitely in relation with evolution of society. Natural hazards identification and analysis, as well natural risk assessment taking into account secondary technological accidents are the first steps in prevention strategy aimed at saving lives and protecting property against future events. The paper addresses methodological issues of natural and technological integrated risk assessment and mapping at different levels [1, 2]. At the country level the most hazardous natural processes, which may results in fatalities, injuries and economic loss in the Russian Federation, are considered. They are earthquakes, landslides, mud flows, floods, storms, avalanches. The special GIS environment for the country territory was developed which includes information about hazards' level and reoccurrence, an impact databases for the last 20 years, as well as models for estimating damage and casualties caused by these hazards. Federal maps of seismic individual and collective risk, as well as multi-hazards natural risk maps are presented. The examples of regional seismic risk assessment taking into account secondary accidents at fire, explosion and chemical hazardous facilities and regional integrated risk assessment are given for the earthquake prone areas of the Russian Federation. The paper also gives examples of loss computations due to scenario earthquakes taking into account accidents trigged by strong events at critical facilities: fire and chemical hazardous facilities, including oil pipe lines routes located in the earthquake prone areas. The estimations of individual seismic risk obtained are used by EMERCOM of the Russian Federation, as well as by other federal and local authorities, for planning and implementing preventive measures, aimed at saving lives and protecting property against future disastrous events. The

  15. PHIL Inverter Test Report: Analysis of High-Penetration Levels of PV into the Distribution Grid in California, March 12 - March 16, 2012

    SciTech Connect

    Kromer, M.

    2013-06-01

    This report describes power hardware-in-the-loop simulation testing of a 500 kW Satcon photovoltaic inverter, conducted at the Center for Advanced Power Systems at Florida State University from March 12th through March 16th, 2012. Testing was led by a team from the National Renewable Energy Laboratory. The report reviews the results of data captured during the course of testing. The tests were used to demonstrate operation of and gather data from the inverter in a simulated operational environment. Testing demonstrated the ability of the inverter to operate in either a Power Factor Control Mode or a Reactive Power Command Mode, and to respond to real power limits.

  16. Multi-level molecular modelling for plasma medicine

    NASA Astrophysics Data System (ADS)

    Bogaerts, Annemie; Khosravian, Narjes; Van der Paal, Jonas; Verlackt, Christof C. W.; Yusupov, Maksudbek; Kamaraj, Balu; Neyts, Erik C.

    2016-02-01

    Modelling at the molecular or atomic scale can be very useful for obtaining a better insight in plasma medicine. This paper gives an overview of different atomic/molecular scale modelling approaches that can be used to study the direct interaction of plasma species with biomolecules or the consequences of these interactions for the biomolecules on a somewhat longer time-scale. These approaches include density functional theory (DFT), density functional based tight binding (DFTB), classical reactive and non-reactive molecular dynamics (MD) and united-atom or coarse-grained MD, as well as hybrid quantum mechanics/molecular mechanics (QM/MM) methods. Specific examples will be given for three important types of biomolecules, present in human cells, i.e. proteins, DNA and phospholipids found in the cell membrane. The results show that each of these modelling approaches has its specific strengths and limitations, and is particularly useful for certain applications. A multi-level approach is therefore most suitable for obtaining a global picture of the plasma-biomolecule interactions.

  17. Design of a Multi-Level/Analog Ferroelectric Memory Device

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.

    2006-01-01

    Increasing the memory density and utilizing the dove1 characteristics of ferroelectric devices is important in making ferroelectric memory devices more desirable to the consumer. This paper describes a design that allows multiple levels to be stored in a ferroelectric based memory cell. It can be used to store multiple bits or analog values in a high speed nonvolatile memory. The design utilizes the hysteresis characteristic of ferroelectric transistors to store an analog value in the memory cell. The design also compensates for the decay of the polarization of the ferroelectric material over time. This is done by utilizing a pair of ferroelectric transistors to store the data. One transistor is used as a reference to determine the amount of decay that has occurred since the pair was programmed. The second transistor stores the analog value as a polarization value between zero and saturated. The design allows digital data to be stored as multiple bits in each memory cell. The number of bits per cell that can be stored will vary with the decay rate of the ferroelectric transistors and the repeatability of polarization between transistors. It is predicted that each memory cell may be able to store 8 bits or more. The design is based on data taken from actual ferroelectric transistors. Although the circuit has not been fabricated, a prototype circuit is now under construction. The design of this circuit is different than multi-level FLASH or silicon transistor circuits. The differences between these types of circuits are described in this paper. This memory design will be useful because it allows higher memory density, compensates for the environmental and ferroelectric aging processes, allows analog values to be directly stored in memory, compensates for the thermal and radiation environments associated with space operations, and relies only on existing technologies.

  18. Multi-Level Modeling of Dyadic Data in Sport Sciences: Conceptual, Statistical, and Practical Issues

    ERIC Educational Resources Information Center

    Gaudreau, Patrick; Fecteau, Marie-Claude; Perreault, Stephane

    2010-01-01

    The goal of this article is to present a series of conceptual, statistical, and practical issues in the modeling of multi-level dyadic data. Distinctions are made between distinguishable and undistinguishable dyads and several types of independent variables modeled at the dyadic level of analysis. Multi-level modeling equations are explained in a…

  19. Antibiotic resistance shaping multi-level population biology of bacteria

    PubMed Central

    Baquero, Fernando; Tedim, Ana P.; Coque, Teresa M.

    2013-01-01

    Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent “population biologies.” Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of “clinical” antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi-level

  20. Switching Characteristics of Ferroelectric Transistor Inverters

    NASA Technical Reports Server (NTRS)

    Laws, Crystal; Mitchell, Coey; MacLeod, Todd C.; Ho, Fat D.

    2010-01-01

    This paper presents the switching characteristics of an inverter circuit using a ferroelectric field effect transistor, FeFET. The propagation delay time characteristics, phl and plh are presented along with the output voltage rise and fall times, rise and fall. The propagation delay is the time-delay between the V50% transitions of the input and output voltages. The rise and fall times are the times required for the output voltages to transition between the voltage levels V10% and V90%. Comparisons are made between the MOSFET inverter and the ferroelectric transistor inverter.

  1. Integrated Inverter And Battery Charger

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.

    1988-01-01

    Circuit combines functions of dc-to-ac inversion (for driving ac motor in battery-powered vehicle) and ac-to-dc conversion (for charging battery from ac line when vehicle not in use). Automatically adapts to either mode. Design of integrated inverter/charger eliminates need for duplicate components, saves space, reduces weight and cost of vehicle. Advantages in other applications : load-leveling systems, standby ac power systems, and uninterruptible power supplies.

  2. Stepped sinewave inverter

    NASA Astrophysics Data System (ADS)

    Appelbaum, J.; Gabbay, D.

    1984-11-01

    A stepped sinewave dc/ac inverter was analyzed for an inductive load with respect to load current and voltage, harmonics, power factor, and efficiency. This special inverter of high efficiency and low harmonic content is constructed by synthesizing the sinusoidal output by discrete voltage sources, such as storage batteries, solar cell, etc., with electronic switching of the sources at specific time intervals. The switching times are determined for the condition of minimum distortion of the synthesized wave. A 50 W inverter was built and tested to demonstrate this approach.

  3. Reliable inverter systems

    NASA Technical Reports Server (NTRS)

    Nagano, S.

    1979-01-01

    Base driver with common-load-current feedback protects paralleled inverter systems from open or short circuits. Circuit eliminates total system oscillation that can occur in conventional inverters because of open circuit in primary transformer winding. Common feedback signal produced by functioning modules forces operating frequency of failed module to coincide with clock drive so module resumes normal operating frequency in spite of open circuit.

  4. Novel multilevel inverter carrier-based PWM method

    SciTech Connect

    Tolbert, L.M.; Habetler, T.G.

    1999-10-01

    The advent of the transformerless multilevel inverter topology has brought forth various pulsewidth modulation (PWM) schemes as a means to control the switching of the active devices in each of the multiple voltage levels in the inverter. An analysis of how existing multilevel carrier-based PWM affects switch utilization for the different levels of a diode-clamped inverter is conducted. Two novel carrier-based multilevel PWM schemes are presented which help to optimize or balance the switch utilization in multilevel inverters. A 10-kW prototype six-level diode-clamped inverter has been built and controlled with the novel PWM strategies proposed in this paper to act as a voltage-source inverter for a motor drive.

  5. Multi-floor cascading ferroelectric nanostructures: multiple data writing-based multi-level non-volatile memory devices.

    PubMed

    Hyun, Seung; Kwon, Owoong; Lee, Bom-Yi; Seol, Daehee; Park, Beomjin; Lee, Jae Yong; Lee, Ju Hyun; Kim, Yunseok; Kim, Jin Kon

    2016-01-21

    Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process. PMID:26695561

  6. Multi-floor cascading ferroelectric nanostructures: multiple data writing-based multi-level non-volatile memory devices

    NASA Astrophysics Data System (ADS)

    Hyun, Seung; Kwon, Owoong; Lee, Bom-Yi; Seol, Daehee; Park, Beomjin; Lee, Jae Yong; Lee, Ju Hyun; Kim, Yunseok; Kim, Jin Kon

    2016-01-01

    Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process.Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07377d

  7. A Simple 2/3 Modulation Code for Multi-Level Holographic Data Storage

    NASA Astrophysics Data System (ADS)

    Kim, Soo Youn; Lee, Jaejin

    2013-09-01

    We propose a simple 2/3 modulation code for multi-level holographic data storage (HDS). HDS is a promising method for the optical data storage system. However, two-dimensional (2D) inter-symbol interference (ISI) and inter-page interference (IPI) are weaknesses of HDS systems. Moreover, if multi-level symbols are stored, such systems are more vulnerable to errors. A modulation code can be used to alleviate these problems. Therefore, we introduce a simple 2/3 modulation code for multi-level HDS systems, which is simple and mitigates 2D ISI patterns.

  8. Multi-level scanning method for defect inspection

    DOEpatents

    Bokor, Jeffrey; Jeong, Seongtae

    2002-01-01

    A method for performing scanned defect inspection of a collection of contiguous areas using a specified false-alarm-rate and capture-rate within an inspection system that has characteristic seek times between inspection locations. The multi-stage method involves setting an increased false-alarm-rate for a first stage of scanning, wherein subsequent stages of scanning inspect only the detected areas of probable defects at lowered values for the false-alarm-rate. For scanning inspection operations wherein the seek time and area uncertainty is favorable, the method can substantially increase inspection throughput.

  9. Resonant snubber inverter

    DOEpatents

    Lai, J.S.; Young, R.W. Sr.; Chen, D.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; McKeever, J.W.

    1997-06-24

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 14 figs.

  10. Resonant snubber inverter

    DOEpatents

    Lai, Jih-Sheng; Young, Sr., Robert W.; Chen, Daoshen; Scudiere, Matthew B.; Ott, Jr., George W.; White, Clifford P.; McKeever, John W.

    1997-01-01

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  11. Making the most of clustered data in laboratory animal research using multi-level models.

    PubMed

    Pearl, David L

    2014-01-01

    In the following review article, I address the fitting of multi-level models for the analysis of hierarchical data in laboratory animal medicine. Using an example of paternal dietary effects on the weight of offspring in a mouse model, this review outlines the reasons and benefits of using a multi-level modeling approach. To start, the concept of clustered/autocorrelated data is introduced, and the implications of ignoring the effects of clustered data on measures of association/model coefficients and their statistical significance are discussed. The limitations of other methods compared with multi-level modeling for analyzing clustered data are addressed in terms of statistical power, control of potential confounding effects associated with group membership, proper estimation of associations and their statistical significance, and adjusting for multiple levels of clustering. In addition, the benefits of being able to estimate variance partition coefficients and intra-class correlation coefficients from multi-level models is described, and the concepts of more complex correlation structures and various methods for fitting multi-level models are introduced. The current state of learning materials including textbooks, websites, and software for the nonstatistician is outlined to describe the accessibility of multi-level modeling approaches for laboratory animal researchers. PMID:25541550

  12. Exploring the impact of different multi-level measures of physician communities in patient-centric care networks on healthcare outcomes: A multi-level regression approach

    PubMed Central

    Uddin, Shahadat

    2016-01-01

    A patient-centric care network can be defined as a network among a group of healthcare professionals who provide treatments to common patients. Various multi-level attributes of the members of this network have substantial influence to its perceived level of performance. In order to assess the impact different multi-level attributes of patient-centric care networks on healthcare outcomes, this study first captured patient-centric care networks for 85 hospitals using health insurance claim dataset. From these networks, this study then constructed physician collaboration networks based on the concept of patient-sharing network among physicians. A multi-level regression model was then developed to explore the impact of different attributes that are organised at two levels on hospitalisation cost and hospital length of stay. For Level-1 model, the average visit per physician significantly predicted both hospitalisation cost and hospital length of stay. The number of different physicians significantly predicted only the hospitalisation cost, which has significantly been moderated by age, gender and Comorbidity score of patients. All Level-1 findings showed significance variance across physician collaboration networks having different community structure and density. These findings could be utilised as a reflective measure by healthcare decision makers. Moreover, healthcare managers could consider them in developing effective healthcare environments. PMID:26842548

  13. GROUND WATER MONITORING AND SAMPLING: MULTI-LEVEL VERSUS TRADITIONAL METHODS – WHAT’S WHAT?

    EPA Science Inventory

    Recent studies have been conducted to evaluate different sampling techniques for determining VOC concentrations in groundwater. Samples were obtained using multi-level and traditional sampling techniques in three monitoring wells at the Raymark Superfund site in Stratford, CT. Ve...

  14. Energy-Saving Inverter

    NASA Technical Reports Server (NTRS)

    Rippel, W. E.; Edwards, D. B.

    1984-01-01

    Commutation by field-effect transistor allows more efficient operation. High voltage field-effect transistor (FET) controls silicon controlled rectifiers (SCR's). Circuit requires only one capacitor and one inductor in commutation circuit: simpler, more efficient, and more economical than conventional inverters. Adaptable to dc-to-dc converters.

  15. Inverting the Achievement Pyramid

    ERIC Educational Resources Information Center

    White-Hood, Marian; Shindel, Melissa

    2006-01-01

    Attempting to invert the pyramid to improve student achievement and increase all students' chances for success is not a new endeavor. For decades, educators have strategized, formed think tanks, and developed school improvement teams to find better ways to improve the achievement of all students. Currently, the No Child Left Behind Act (NCLB) is…

  16. Program Predicts Nonlinear Inverter Performance

    NASA Technical Reports Server (NTRS)

    Al-Ayoubi, R. R.; Oepomo, T. S.

    1985-01-01

    Program developed for ac power distribution system on Shuttle orbiter predicts total load on inverters and node voltages at each of line replaceable units (LRU's). Mathematical model simulates inverter performance at each change of state in power distribution system.

  17. Multi -risk assessment at a national level in Georgia

    NASA Astrophysics Data System (ADS)

    Tsereteli, Nino; Varazanashvili, Otar; Amiranashvili, Avtandil; Tsereteli, Emili; Elizbarashvili, Elizbar; Saluqvadze, Manana; Dolodze, Jemal

    2013-04-01

    Work presented here was initiated by national GNSF project " Reducing natural disasters multiple risk: a positive factor for Georgia development " and two international projects: NATO SFP 983038 "Seismic hazard and Rusk assessment for Southern Caucasus-eastern Turkey Energy Corridors" and EMME " Earthquake Model for Middle east Region". Methodology for estimation of "general" vulnerability, hazards and multiple risk to natural hazards (namely, earthquakes, landslides, snow avalanches, flash floods, mudflows, drought, hurricanes, frost, hail) where developed for Georgia. The electronic detailed databases of natural disasters were created. These databases contain the parameters of hazardous phenomena that caused natural disasters. The magnitude and intensity scale of the mentioned disasters are reviewed and the new magnitude and intensity scales are suggested for disasters for which the corresponding formalization is not yet performed. The associated economic losses were evaluated and presented in monetary terms for these hazards. Based on the hazard inventory, an approach was developed that allowed for the calculation of an overall vulnerability value for each individual hazard type, using the Gross Domestic Product per unit area (applied to population) as the indicator for elements at risk exposed. The correlation between estimated economic losses, physical exposure and the magnitude for each of the six types of hazards has been investigated in detail by using multiple linear regression analysis. Economic losses for all past events and historical vulnerability were estimated. Finally, the spatial distribution of general vulnerability was assessed, and the expected maximum economic loss was calculated as well as a multi-risk map was set-up.

  18. Multi-leveled objects: color as a case study

    PubMed Central

    Albertazzi, Liliana; Poli, Roberto

    2014-01-01

    The paper presents color as a case study for the analysis of phenomena that pertain to several levels of reality and are typically framed by different sciences and disciplines. Color, in fact, is studied by physics, biology, phenomenology, and esthetics, among others. Our thesis is that color is a different entity for each level of reality, and that for this reason color generates different observables in the epistemologies of the different sciences. By analyzing color as a paradigmatic case of an entity naturally spreading over different levels of reality, the paper raises the question as to whether making explicit the usually implicit ontological assumptions embedded within the different observables exploited by the different sciences may eventually clarify some of the difficulties of developing a comprehensive theory of color. PMID:25071616

  19. An inverter/controller subsystem optimized for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Pickrell, R. L.; Osullivan, G.; Merrill, W. C.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. Optimization of the inverter/controller design is discussed as part of an overall photovoltaic power system designed for maximum energy extraction from the solar array. The special design requirements for the inverter/ controller include: a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy.

  20. The Multi Level Multi Domain (MLMD) method: a semi-implicit adaptive algorithm for Particle In Cell plasma simulations

    NASA Astrophysics Data System (ADS)

    Innocenti, Maria Elena; Beck, Arnaud; Markidis, Stefano; Lapenta, Giovanni

    2013-10-01

    Particle in Cell (PIC) simulations of plasmas are not bound anymore by the stability constraints of explicit algorithms. Semi implicit and fully implicit methods allow to use larger grid spacings and time steps. Adaptive Mesh Refinement (AMR) techniques permit to locally change the simulation resolution. The code proposed in Innocenti et al., 2013 and Beck et al., 2013 is however the first to combine the advantages of both. The use of the Implicit Moment Method allows to taylor the resolution used in each level to the physical scales of interest and to use high Refinement Factors (RF) between the levels. The Multi Level Multi Domain (MLMD) structure, where all levels are simulated as complete domains, conjugates algorithmic and practical advantages. The different levels evolve according to the local dynamics and achieve optimal level interlocking. Also, the capabilities of the Object Oriented programming model are fully exploited. The MLMD algorithm is demonstrated with magnetic reconnection and collisionless shocks simulations with very high RFs between the levels. Notable computational gains are achieved with respect to simulations performed on the entire domain with the higher resolution. Beck A. et al. (2013). submitted. Innocenti M. E. et al. (2013). JCP, 238(0):115-140.

  1. Multi-Level Information Systems. AIR Forum Paper 1978.

    ERIC Educational Resources Information Center

    Jones, Leighton D.; Trautman, DeForest L.

    To support informational needs of day-to-day and long-range decision-making, many universities have developed their own data collection devices and institutional reporting systems. Often these models only represent a single point in time and do not effectively support needs at college and departmental levels. This paper identifies some of the more…

  2. a Decision Level Fusion Method for Object Recognition Using Multi-Angular Imagery

    NASA Astrophysics Data System (ADS)

    Tabib Mahmoudi, F.; Samadzadegan, F.; Reinartz, P.

    2013-09-01

    Spectral similarity and spatial adjacency between various kinds of objects, shadow and occluded areas behind high rise objects as well as complex relationships lead to object recognition difficulties and ambiguities in complex urban areas. Using new multi-angular satellite imagery, higher levels of analysis and developing a context aware system may improve object recognition results in these situations. In this paper, the capability of multi-angular satellite imagery is used in order to solve object recognition difficulties in complex urban areas based on decision level fusion of Object Based Image Analysis (OBIA). The proposed methodology has two main stages. In the first stage, object based image analysis is performed independently on each of the multi-angular images. Then, in the second stage, the initial classified regions of each individual multi-angular image are fused through a decision level fusion based on the definition of scene context. Evaluation of the capabilities of the proposed methodology is performed on multi-angular WorldView-2 satellite imagery over Rio de Janeiro (Brazil).The obtained results represent several advantages of multi-angular imagery with respect to a single shot dataset. Together with the capabilities of the proposed decision level fusion method, most of the object recognition difficulties and ambiguities are decreased and the overall accuracy and the kappa values are improved.

  3. Multi-level functionality of social media in the aftermath of the Great East Japan Earthquake.

    PubMed

    Jung, Joo-Young; Moro, Munehito

    2014-07-01

    This study examines the multi-level functionalities of social media in the aftermath of the Great East Japan Earthquake of 11 March 2011. Based on a conceptual model of multi-level story flows of social media (Jung and Moro, 2012), the study analyses the multiple functionalities that were ascribed to social media by individuals, organisations, and macro-level social systems (government and the mass media) after the earthquake. Based on survey data, a review of Twitter timelines and secondary sources, the authors derive five functionalities of social media: interpersonal communications with others (micro level); channels for local governments; organisations and local media (meso level); channels for mass media (macro level); information sharing and gathering (cross level); and direct channels between micro-/meso- and macro-level agents. The study sheds light on the future potential of social media in disaster situations and suggests how to design an effective communication network to prepare for emergency situations. PMID:24905811

  4. Performance of multi level error correction in binary holographic memory

    NASA Technical Reports Server (NTRS)

    Hanan, Jay C.; Chao, Tien-Hsin; Reyes, George F.

    2004-01-01

    At the Optical Computing Lab in the Jet Propulsion Laboratory (JPL) a binary holographic data storage system was designed and tested with methods of recording and retrieving the binary information. Levels of error correction were introduced to the system including pixel averaging, thresholding, and parity checks. Errors were artificially introduced into the binary holographic data storage system and were monitored as a function of the defect area fraction, which showed a strong influence on data integrity. Average area fractions exceeding one quarter of the bit area caused unrecoverable errors. Efficient use of the available data density was discussed. .

  5. Multi-level learning: improving the prediction of protein, domain and residue interactions by allowing information flow between levels

    PubMed Central

    Yip, Kevin Y; Kim, Philip M; McDermott, Drew; Gerstein, Mark

    2009-01-01

    Background Proteins interact through specific binding interfaces that contain many residues in domains. Protein interactions thus occur on three different levels of a concept hierarchy: whole-proteins, domains, and residues. Each level offers a distinct and complementary set of features for computationally predicting interactions, including functional genomic features of whole proteins, evolutionary features of domain families and physical-chemical features of individual residues. The predictions at each level could benefit from using the features at all three levels. However, it is not trivial as the features are provided at different granularity. Results To link up the predictions at the three levels, we propose a multi-level machine-learning framework that allows for explicit information flow between the levels. We demonstrate, using representative yeast interaction networks, that our algorithm is able to utilize complementary feature sets to make more accurate predictions at the three levels than when the three problems are approached independently. To facilitate application of our multi-level learning framework, we discuss three key aspects of multi-level learning and the corresponding design choices that we have made in the implementation of a concrete learning algorithm. 1) Architecture of information flow: we show the greater flexibility of bidirectional flow over independent levels and unidirectional flow; 2) Coupling mechanism of the different levels: We show how this can be accomplished via augmenting the training sets at each level, and discuss the prevention of error propagation between different levels by means of soft coupling; 3) Sparseness of data: We show that the multi-level framework compounds data sparsity issues, and discuss how this can be dealt with by building local models in information-rich parts of the data. Our proof-of-concept learning algorithm demonstrates the advantage of combining levels, and opens up opportunities for further

  6. Inverter ratio failure detector

    NASA Technical Reports Server (NTRS)

    Wagner, A. P.; Ebersole, T. J.; Andrews, R. E. (Inventor)

    1974-01-01

    A failure detector which detects the failure of a dc to ac inverter is disclosed. The inverter under failureless conditions is characterized by a known linear relationship of its input and output voltages and by a known linear relationship of its input and output currents. The detector includes circuitry which is responsive to the detector's input and output voltages and which provides a failure-indicating signal only when the monitored output voltage is less by a selected factor, than the expected output voltage for the monitored input voltage, based on the known voltages' relationship. Similarly, the detector includes circuitry which is responsive to the input and output currents and provides a failure-indicating signal only when the input current exceeds by a selected factor the expected input current for the monitored output current based on the known currents' relationship.

  7. Inverted organic photovoltaic cells.

    PubMed

    Wang, Kai; Liu, Chang; Meng, Tianyu; Yi, Chao; Gong, Xiong

    2016-05-21

    The advance in lifestyle, modern industrialization and future technological revolution are always at high expense of energy consumption. Unfortunately, there exist serious issues such as limited storage, high cost and toxic contamination in conventional fossil fuel energy sources. Instead, solar energy represents a renewable, economic and green alternative in the future energy market. Among the photovoltaic technologies, organic photovoltaics (OPVs) demonstrate a cheap, flexible, clean and easy-processing way to convert solar energy into electricity. However, OPVs with a conventional device structure are still far away from industrialization mainly because of their short lifetime and the energy-intensive deposition of top metal electrode. To address the stability and cost issue simultaneously, an inverted device structure has been introduced into OPVs, bridging laboratory research with practical application. In this review, recent progress in device structures, working mechanisms, functions and advances of each component layer as well their correlations with the efficiency and stability of inverted OPVs are reviewed and illustrated. PMID:27087582

  8. Multi-choice stochastic bi-level programming problem in cooperative nature via fuzzy programming approach

    NASA Astrophysics Data System (ADS)

    Maiti, Sumit Kumar; Roy, Sankar Kumar

    2016-05-01

    In this paper, a Multi-Choice Stochastic Bi-Level Programming Problem (MCSBLPP) is considered where all the parameters of constraints are followed by normal distribution. The cost coefficients of the objective functions are multi-choice types. At first, all the probabilistic constraints are transformed into deterministic constraints using stochastic programming approach. Further, a general transformation technique with the help of binary variables is used to transform the multi-choice type cost coefficients of the objective functions of Decision Makers(DMs). Then the transformed problem is considered as a deterministic multi-choice bi-level programming problem. Finally, a numerical example is presented to illustrate the usefulness of the paper.

  9. Multi-Level High School Classes: Astronomy Diagnostic Test Results

    NASA Astrophysics Data System (ADS)

    Hubbard, R.; Hufnagel, B.

    2001-12-01

    A content survey, the Astronomy Diagnostic Test (ADT) designed for undergraduate non-science astronomy courses, was administered as a post-course survey to five senior high classes in a Maryland high school. In 2001, the five classes chosen included all three levels of physics and an astronomy class. Each class had an even distribution of male and female students, with a total of 115 girls and 104 boys as subjects. Results of the survey include: (1) The Advanced Placement (AP) physics class scored highest and general physics lowest. (2) The AP class, most of whom will major in engineering or computer sciences, had a mean ADT score similar to post-course undergraduate non-science astronomy classes. (3) For all five classes, the girls had lower mean scores than the boys. (4) In two classes the girls' self-reported mean confidence was 40% lower than the boys' confidence; in the other three classes the confidence levels were the same. Additional detailed research was done on the three cosmology and ten physics questions in the ADT; girls outperformed the boys in only two of these thirteen questions.

  10. Inverted organic photosensitive device

    SciTech Connect

    Forrest, Stephen R.; Tong, Xiaoran; Lee, Jun Yeob; Cho, Yong Joo

    2015-09-08

    There is disclosed a method for preparing the surface of a metal substrate. The present disclosure also relates to an organic photovoltaic device including a metal substrate made by such method. Also disclosed herein is an inverted photosensitive device including a stainless steel foil reflective electrode, an organic donor-acceptor heterojunction over the reflective electrode, and a transparent electrode over the donor-acceptor heterojunction.

  11. Multi-interface Level Sensors and New Development in Monitoring and Control of Oil Separators

    PubMed Central

    Bukhari, Syed Faisal Ahmed; Yang, Wuqiang

    2006-01-01

    In the oil industry, huge saving may be made if suitable multi-interface level measurement systems are employed for effectively monitoring crude oil separators and efficient control of their operation. A number of techniques, e.g. externally mounted displacers, differential pressure transmitters and capacitance rod devices, have been developed to measure the separation process with gas, oil, water and other components. Because of the unavailability of suitable multi-interface level measurement systems, oil separators are currently operated by the trial-and-error approach. In this paper some conventional techniques, which have been used for level measurement in industry, and new development are discussed.

  12. An analytical description of the atomic information entropy in a multi-level system

    NASA Astrophysics Data System (ADS)

    Obada, A.-S. F.; Abdel-Aty, Mahmoud

    2008-05-01

    We construct a complete representation of the atomic information entropy of an arbitrary multi-level system. Our approach is applicable to all scenarios in which the quantum state shared by a single particle and fields is known. As illustrations we apply our findings to a single four-level atom strongly coupled to a cavity field and driven by a coherent laser field. In this framework, we discuss connections with entanglement frustration and entropic forms. We conclude by showing how the atomic information entropy can be extended to examine entanglement in multi-level atomic systems.

  13. Towards Multi-level Optimization: Space-Mapping and Manifold-Mapping

    SciTech Connect

    Echeverria, D; Tong, C

    2006-07-24

    In this report we study space-mapping and manifold-mapping, two multi-level optimization techniques that aim at accelerating expensive optimization procedures with the aid of simple auxiliary models. Manifold-mapping improves in accuracy the solution given by space-mapping. In this report, the two mentioned techniques are basically described and then applied in the solving of two minimization problems. Several coarse models are tried, both from a two and a three level perspective. The results with these simple tests confirm the speed-up expected for the multi-level approach.

  14. Parametric Multi-Level Tiling of Imperfectly Nested Loops

    SciTech Connect

    Hartono, Albert; Baskaran, Muthu M.; Bastoul, Cedric; Cohen, Albert; Krishnamoorthy, Sriram; Norris, Boyana; Ramanujam, J.; Sadayappan, Ponnuswamy

    2009-05-18

    Tiling is a critical loop transformation for generating high-performance code on modern architectures. Efficient generation of multilevel tiled code is essential to exploit several levels of parallelism and/or to maximize data reuse in deep memory hierarchies. Tiled loops with parameterized tile sizes (not compile time constants) facilitate runtime feedback and dynamic optimizations used in iterative compilation and automatic tuning. The existing parametric multilevel tiling approach has focused on transformation for perfectly nested loops, where all assignment statements are contained inside the innermost loop of a loop nest. Previous solutions to tiling for imperfect loop nests are limited to the case where tile sizes are fixed. In this paper, we present an approach to parameterized multilevel tiling for imperfectly nested loops. Our tiling algorithm generates loops that iterate over full rectangular tiles that are amenable for potential compiler optimizations such as register tiling. Experimental results using a number of computational benchmarks demonstrate the effectiveness of our tiling approach.

  15. Fabrication and characterization of multi-level hierarchical surfaces.

    PubMed

    Bhushan, Bharat; Lee, Hyungoo

    2012-01-01

    A nanostructured surface may exhibit low adhesion or high adhesion depending upon fibrillar density, and it presents the possibility of realizing eco-friendly surface structures with desirable adhesion by mimicking the mechanics of fibrillar adhesive surfaces of biological systems. The current research uses a patterning technique to fabricate smart adhesion surfaces: one-, two- and three-level hierarchical synthetic adhesive structure surfaces with various fibrillar densities and diameters. The contact angles and contact angle hysteresis were measured to characterize the wettability. A conventional and a glass ball attached to an atomic force microscope (AFM) tip were used to obtain the adhesive forces via force-distance curves and to study the buckling behavior of a single fiber on the hierarchical structures. PMID:23285631

  16. Multi-level adaptive finite element methods. 1: Variation problems

    NASA Technical Reports Server (NTRS)

    Brandt, A.

    1979-01-01

    A general numerical strategy for solving partial differential equations and other functional problems by cycling between coarser and finer levels of discretization is described. Optimal discretization schemes are provided together with very fast general solvers. It is described in terms of finite element discretizations of general nonlinear minimization problems. The basic processes (relaxation sweeps, fine-grid-to-coarse-grid transfers of residuals, coarse-to-fine interpolations of corrections) are directly and naturally determined by the objective functional and the sequence of approximation spaces. The natural processes, however, are not always optimal. Concrete examples are given and some new techniques are reviewed. Including the local truncation extrapolation and a multilevel procedure for inexpensively solving chains of many boundary value problems, such as those arising in the solution of time-dependent problems.

  17. Multi-level human evolution: ecological patterns in hominin phylogeny.

    PubMed

    Parravicini, Andrea; Pievani, Telmo

    2016-06-20

    Evolution is a process that occurs at many different levels, from genes to ecosystems. Genetic variations and ecological pressures are hence two sides of the same coin; but due both to fragmentary evidence and to the influence of a gene-centered and gradualistic approach to evolutionary phenomena, the field of paleoanthropology has been slow to take the role of macro-evolutionary patterns (i.e. ecological and biogeographical at large scale) seriously. However, several very recent findings in paleoanthropology stress both climate instability and ecological disturbance as key factors affecting the highly branching hominin phylogeny, from the earliest hominins to the appearance of cognitively modern humans. Allopatric speciation due to geographic displacement, turnover-pulses of species, adaptive radiation, mosaic evolution of traits in several coeval species, bursts of behavioral innovation, serial dispersals out of Africa, are just some of the macro-evolutionary patterns emerging from the field. The multilevel approach to evolution proposed by paleontologist Niles Eldredge is adopted here as interpretative tool, and has yielded a larger picture of human evolution that integrates different levels of evolutionary change, from local adaptations in limited ecological niches to dispersal phenotypes able to colonize an unprecedented range of ecosystems. Changes in global climate and Earth's surface most greatly affected human evolution. Precisely because it is cognitively hard for us to appreciate the long-term common destiny we share with the whole biosphere, it is particularly valuable to highlight the accumulating evidence that human evolution has been deeply affected by global ecological changes that transformed our African continent of origin. PMID:26829575

  18. Readable English for Hearing-Impaired Students: Multi-Level Guidelines for Linguistically Controlled Reading Materials.

    ERIC Educational Resources Information Center

    Decker, Nan; And Others

    Developed by the Multi-level Captioning Project, the manual provides guidelines for linguistically controlling reading materials for the deaf. An introduction describes the three proposed reading levels based on difficulty of vocabulary, syntax, and inference. Chapter 1, on vocabulary, considers word list sources, guidelines for controlling…

  19. A Bayesian Multi-Level Factor Analytic Model of Consumer Price Sensitivities across Categories

    ERIC Educational Resources Information Center

    Duvvuri, Sri Devi; Gruca, Thomas S.

    2010-01-01

    Identifying price sensitive consumers is an important problem in marketing. We develop a Bayesian multi-level factor analytic model of the covariation among household-level price sensitivities across product categories that are substitutes. Based on a multivariate probit model of category incidence, this framework also allows the researcher to…

  20. Multi-Level Model of Contextual Factors and Teachers' Assessment Practices: An Integrative Review of Research

    ERIC Educational Resources Information Center

    Fulmer, Gavin W.; Lee, Iris C. H.; Tan, Kelvin H. K.

    2015-01-01

    We present a multi-level model of contextual factors that may influence teachers' assessment practices, and use this model in a selected review of existing literature on teachers' assessment knowledge, views and conceptions with respect to these contextual factors. Adapting Kozma's model, we distinguish three levels of influence on teachers'…

  1. Integral inverter/battery charger for use in electric vehicles

    NASA Technical Reports Server (NTRS)

    Thimmesch, D.

    1983-01-01

    The design and test results of a thyristor based inverter/charger are discussed. A battery charger is included integral to the inverter by using a subset of the inverter power circuit components. The resulting charger provides electrical isolation between the vehicle propulsion battery and ac line and is capable of charging a 25 kWh propulsion battery in 8 hours from a 220 volt ac line. The integral charger employs the inverter commutation components at a resonant ac/dc isolated converter rated at 3.6 kW. Charger efficiency and power factor at an output power of 3.6 kW are 86% and 95% respectively. The inverter, when operated with a matching polyphase ac induction motor and nominal 132 volt propulsion battery, can provide a peak shaft power of 34 kW (45 ph) during motoring operation and 45 kW (60 hp) during regeneration. Thyristors are employed for the inverter power switching devices and are arranged in an input-commutated topology. This configuration requires only two thyristors to commutate the six main inverter thyristors. Inverter efficiency during motoring operation at motor shaft speeds above 450 rad/sec (4300 rpm) is 92-94% for output power levels above 11 KW (15 hp). The combined ac inverter/charger package weighs 47 kg (103 lbs).

  2. Multi-level 3D implementation of thermo-pneumatic pumping on centrifugal microfluidic CD platforms.

    PubMed

    Thio, Tzer Hwai Gilbert; Ibrahim, Fatimah; Al-Faqheri, Wisam; Soin, Norhayati; Abdul Kahar, Maria Kahar Bador; Madou, Marc

    2013-01-01

    Thermo-pneumatic (TP) pumping is a method employing the principle of expanding heated air to transfer fluids back towards the CD center on the centrifugal microfluidic CD platform. While the TP features are easy to fabricate as no moving parts are involved, it consumes extra real estate on the CD, and because heating is involved, it introduces unnecessary heating to the fluids on the CD. To overcome these limitations, we introduce a multi-level 3D approach and implement forced convection heating. In a multi-level 3D CD, the TP features are relocated to a separate top level, while the microfluidic process remains on a lower bottom level. This allows for heat shielding of the fluids in the microfluidic process level, and also improve usage of space on the CD. To aid in future implementations of TP pumping on a multi-level 3D CD, studies on the effect of heat source setting, and the effect of positioning the TP feature (it distance from the CD center) on CD surface heating are also presented. In this work, we successfully demonstrate a multi-level 3D approach to implement TP pumping on the microfluidic CD platform. PMID:24110985

  3. Enhanced multi-level block ILU preconditioning strategies for general sparse linear systems

    NASA Astrophysics Data System (ADS)

    Saad, Yousef; Zhang, Jun

    2001-05-01

    This paper introduces several strategies to deal with pivot blocks in multi-level block incomplete LU factorization (BILUM) preconditioning techniques. These techniques are aimed at increasing the robustness and controlling the amount of fill-ins of BILUM for solving large sparse linear systems when large-size blocks are used to form block-independent set. Techniques proposed in this paper include double-dropping strategies, approximate singular-value decomposition, variable size blocks and use of an arrowhead block submatrix. We point out the advantages and disadvantages of these strategies and discuss their efficient implementations. Numerical experiments are conducted to show the usefulness of the new techniques in dealing with hard-to-solve problems arising from computational fluid dynamics. In addition, we discuss the relation between multi-level ILU preconditioning methods and algebraic multi-level methods.

  4. Multi-level manual and autonomous control superposition for intelligent telerobot

    NASA Technical Reports Server (NTRS)

    Hirai, Shigeoki; Sato, T.

    1989-01-01

    Space telerobots are recognized to require cooperation with human operators in various ways. Multi-level manual and autonomous control superposition in telerobot task execution is described. The object model, the structured master-slave manipulation system, and the motion understanding system are proposed to realize the concept. The object model offers interfaces for task level and object level human intervention. The structured master-slave manipulation system offers interfaces for motion level human intervention. The motion understanding system maintains the consistency of the knowledge through all the levels which supports the robot autonomy while accepting the human intervention. The superposing execution of the teleoperational task at multi-levels realizes intuitive and robust task execution for wide variety of objects and in changeful environment. The performance of several examples of operating chemical apparatuses is shown.

  5. Squeezed light from multi-level closed-cycling atomic systems

    NASA Technical Reports Server (NTRS)

    Xiao, Min; Zhu, Yi-Fu

    1994-01-01

    Amplitude squeezing is calculated for multi-level closed-cycling atomic systems. These systems can last without atomic population inversion in any atomic bases. Maximum squeezing is obtained for the parameters in the region of lasing without inversion. A practical four-level system and an ideal three-level system are presented. The latter system is analyzed in some detail and the mechanism of generating amplitude squeezing is discussed.

  6. A multi-level solution algorithm for steady-state Markov chains

    NASA Technical Reports Server (NTRS)

    Horton, Graham; Leutenegger, Scott T.

    1993-01-01

    A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is presented. The method utilizes a set of recursively coarsened representations of the original system to achieve accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial differential equations. Initial results of numerical experiments are reported, showing significant reductions in computation time, often an order of magnitude or more, relative to the Gauss-Seidel and optimal SOR algorithms for a variety of test problems. The multi-level method is compared and contrasted with the iterative aggregation-disaggregation algorithm of Takahashi.

  7. Multi-focus and multi-level techniques for visualization and analysis of networks with thematic data

    NASA Astrophysics Data System (ADS)

    Cossalter, Michele; Mengshoel, Ole J.; Selker, Ted

    2013-01-01

    Information-rich data sets bring several challenges in the areas of visualization and analysis, even when associated with node-link network visualizations. This paper presents an integration of multi-focus and multi-level techniques that enable interactive, multi-step comparisons in node-link networks. We describe NetEx, a visualization tool that enables users to simultaneously explore different parts of a network and its thematic data, such as time series or conditional probability tables. NetEx, implemented as a Cytoscape plug-in, has been applied to the analysis of electrical power networks, Bayesian networks, and the Enron e-mail repository. In this paper we briefly discuss visualization and analysis of the Enron social network, but focus on data from an electrical power network. Specifically, we demonstrate how NetEx supports the analytical task of electrical power system fault diagnosis. Results from a user study with 25 subjects suggest that NetEx enables more accurate isolation of complex faults compared to an especially designed software tool.

  8. A multilevel voltage-source inverter with separate dc sources for static var generation

    SciTech Connect

    Peng, Fang Zheng |; Lai, Jih-Sheng; McKeever, J.; VanCoevering, J.

    1995-09-01

    A new multilevel voltage-source inverter with a separate dc sources is proposed for high-voltage, high-power applications, such as flexible ac transmission systems (FACTS) including static var generation (SVG), power line conditioning, series compensation, phase shifting, voltage balancing, fuel cell and photovoltaic utility systems interfacing, etc. The new M-level inverter consists of (M-1)/2 single phase full bridges in which each bridge has its own separate dc source. This inverter can generate almost sinusoidal waveform voltage with only one time switching per cycle as the number of levels increases. It can solve the problems of conventional transformer-based multipulse inverters and the problems of the multilevel diode-clamped inverter and the multilevel flying capacitor inverter. To demonstrate the superiority of the new inverter, a SVG system using the new inverter topology is discussed through analysis, simulation and experiment.

  9. Inverted glass harp

    NASA Astrophysics Data System (ADS)

    Quinn, Daniel B.; Rosenberg, Brian J.

    2015-08-01

    We present an analytical treatment of the acoustics of liquid-filled wine glasses, or "glass harps." The solution is generalized such that under certain assumptions it reduces to previous glass harp models, but also leads to a proposed musical instrument, the "inverted glass harp," in which an empty glass is submerged in a liquid-filled basin. The versatility of the solution demonstrates that all glass harps are governed by a family of solutions to Laplace's equation around a vibrating disk. Tonal analyses of recordings for a sample glass are offered as confirmation of the scaling predictions.

  10. Inverted glass harp.

    PubMed

    Quinn, Daniel B; Rosenberg, Brian J

    2015-08-01

    We present an analytical treatment of the acoustics of liquid-filled wine glasses, or "glass harps." The solution is generalized such that under certain assumptions it reduces to previous glass harp models, but also leads to a proposed musical instrument, the "inverted glass harp," in which an empty glass is submerged in a liquid-filled basin. The versatility of the solution demonstrates that all glass harps are governed by a family of solutions to Laplace's equation around a vibrating disk. Tonal analyses of recordings for a sample glass are offered as confirmation of the scaling predictions. PMID:26382336

  11. Coaching competency and satisfaction with the coach: a multi-level structural equation model.

    PubMed

    Myers, Nicholas D; Beauchamp, Mark R; Chase, Melissa A

    2011-02-01

    The purpose of this initial predictive validity study was to determine the ability of measures derived from the Athletes' Perceptions of Coaching Competency Scale II - High School Teams (APCCS II-HST) to predict satisfaction with the head coach. Specification of the statistical model was informed by the mediational model of coach-athlete interactions. The technical quality of the satisfaction measure was evaluated before testing the predictive validity of the coaching competency measures. Data were collected from athletes of seven sports. Athlete observations (N = 748) were clustered within teams (G = 74). Multi-group confirmatory factor analyses (CFA) provided evidence for factorial invariance of a reduced version of the satisfaction measure by athlete gender. Multi-level CFA provided evidence of model-data consistency for a reduced version of the satisfaction measure. Multi-level structural equation modelling provided evidence for the ability of latent coaching competency to positively predict latent satisfaction at both the athlete level (technique competency and motivation competency) and the team level (coaching competency) and for close model-data fit. Implications of this study include: that the APCCS II-HST should be viewed as a replacement for the Coaching Competency Scale when the intended population is appropriate; a preliminary multi-level measurement model for satisfaction with one's coach that should be considered as a potential starting point in subsequent studies; and empirical support for a key relationship proposed in the mediational model of coach-athlete interactions. PMID:21184342

  12. Gas cooled traction drive inverter

    SciTech Connect

    Chinthavali, Madhu Sudhan

    2013-10-08

    The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

  13. Gas cooled traction drive inverter

    DOEpatents

    Chinthavali, Madhu Sudhan

    2016-04-19

    The present invention provides a modular circuit card configuration for distributing heat among a plurality of circuit cards. Each circuit card includes a housing adapted to dissipate heat in response to gas flow over the housing. In one aspect, a gas-cooled inverter includes a plurality of inverter circuit cards, and a plurality of circuit card housings, each of which encloses one of the plurality of inverter cards.

  14. Inverter Modeling For Accurate Energy Predictions Of Tracking HCPV Installations

    NASA Astrophysics Data System (ADS)

    Bowman, J.; Jensen, S.; McDonald, Mark

    2010-10-01

    High efficiency high concentration photovoltaic (HCPV) solar plants of megawatt scale are now operational, and opportunities for expanded adoption are plentiful. However, effective bidding for sites requires reliable prediction of energy production. HCPV module nameplate power is rated for specific test conditions; however, instantaneous HCPV power varies due to site specific irradiance and operating temperature, and is degraded by soiling, protective stowing, shading, and electrical connectivity. These factors interact with the selection of equipment typically supplied by third parties, e.g., wire gauge and inverters. We describe a time sequence model accurately accounting for these effects that predicts annual energy production, with specific reference to the impact of the inverter on energy output and interactions between system-level design decisions and the inverter. We will also show two examples, based on an actual field design, of inverter efficiency calculations and the interaction between string arrangements and inverter selection.

  15. A Multi-Level Analysis of Risk Factors for Campylobacter spp. in Broiler Chickens in Iceland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction We carried out a longitudinal study of the broiler industry in Iceland between May 2001 and September 2004. Using multi-level statistical methods, our objective was to determine which aspects of the birds, their management and/or their housing may be most useful for applying interventi...

  16. Graduate Attribute Attainment in a Multi-Level Undergraduate Geography Course

    ERIC Educational Resources Information Center

    Mager, Sarah; Spronken-Smith, Rachel

    2014-01-01

    We investigated students' perceptions of graduate attributes in a multi-level (second and third year) geography course. A case study with mixed methodology was employed, with data collected through focus groups and a survey. We found that undergraduate geography students can identify the skills, knowledge and attributes that are developed…

  17. Multi-Level Assessment of Scientific Content Knowledge Gains Associated with Socioscientific Issues-Based Instruction

    ERIC Educational Resources Information Center

    Klosterman, Michelle L.; Sadler, Troy D.

    2010-01-01

    This study explored the impact of using a socioscientific issue (SSI) based curriculum on developing science content knowledge. Using a multi-level assessment design, student content knowledge gains were measured before and after implementation of a three-week unit on global warming (a prominent SSI) that explored both the relevant science content…

  18. GROUND WATER MONITORING AND SAMPLING: MULTI-LEVEL VERSUS TRADITIONAL METHODS WHATS WHAT?

    EPA Science Inventory

    After years of research and many publications, the question still remains: What is the best method to collect representative ground water samples from monitoring wells? Numerous systems and devices are currently available for obtaining both multi-level samples as well as traditi...

  19. PROPORTION OF MODERATELY EXERCISING INDIVIDUALS RESPONDING TO LOW-LEVEL, MULTI-HOUR OZONE EXPOSURE

    EPA Science Inventory

    The purpose of this study was to describe the proportion of moderately exercising individuals experiencing significant respiratory responses to low-level, multi-hour ozone exposure as a function of ozone concentration and exposure duration. ixty-eight healthy, nonsmoking adults, ...

  20. Multi-Level Partnerships Support a Comprehensive Faith-Based Health Promotion Program

    ERIC Educational Resources Information Center

    Hardison-Moody, Annie; Dunn, Carolyn; Hall, David; Jones, Lorelei; Newkirk, Jimmy; Thomas, Cathy

    2011-01-01

    This article examines the role of multi-level partnerships in implementing Faithful Families Eating Smart and Moving More, a faith-based health promotion program that works with low-resource faith communities in North Carolina. This program incorporates a nine-lesson individual behavior change program in concert with policy and environmental…

  1. Multi-Level Research on Youth Participation in the Haitian Reconstruction

    ERIC Educational Resources Information Center

    Pluim, Gary W. J.

    2012-01-01

    Research in comparative and international education routinely encounters exceptional research conditions. In this article, the author explores the particular issues he faced in his research on multi-level youth programs of the Haitian reconstruction. Through a vertical analysis of internationally sponsored programs, this study required special…

  2. A Multi-Level Assessment of a Program to Teach Medical Students to Teach

    ERIC Educational Resources Information Center

    Blatt, Benjamin; Greenberg, Larrie

    2007-01-01

    Few longitudinal programs exist to teach senior students (MS4s) to be teachers, nor have there been any reports of comprehensive program evaluation in this area. The primary objectives of this study were to describe our ongoing faculty development effort and to develop a multi-level program evaluation, using Dixon's model. The TALKS (Teaching and…

  3. The Development of Multi-Level Audio-Visual Teaching Aids for Earth Science.

    ERIC Educational Resources Information Center

    Pitt, William D.

    The project consisted of making a multi-level teaching film titled "Rocks and Minerals of the Ouachita Mountains," which runs for 25 minutes and is in color. The film was designed to be interesting to earth science students from junior high to college, and consists of dialogue combined with motion pictures of charts, sequential diagrams, outcrops,…

  4. Advancing Ecological Models to Compare Scale in Multi-Level Educational Change

    ERIC Educational Resources Information Center

    Woo, David James

    2016-01-01

    Education systems as units of analysis have been metaphorically likened to ecologies to model change. However, ecological models to date have been ineffective in modelling educational change that is multi-scale and occurs across multiple levels of an education system. Thus, this paper advances two innovative, ecological frameworks that improve on…

  5. Alternative algebras admitting derivations with invertible values and invertible derivations

    NASA Astrophysics Data System (ADS)

    Kaygorodov, I. B.; Popov, Yu S.

    2014-10-01

    We prove an analogue of the Bergen-Herstein-Lanski theorem for alternative algebras: describe all alternative algebras that admit derivations with invertible values. We also prove an analogue of Moens' theorem for alternative algebras (a finite-dimensional alternative algebra over a field of characteristic zero is nilpotent if and only if it admits an invertible Leibniz derivation).

  6. An adaptive multi-level simulation algorithm for stochastic biological systems

    SciTech Connect

    Lester, C. Giles, M. B.; Baker, R. E.; Yates, C. A.

    2015-01-14

    Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the

  7. An adaptive multi-level simulation algorithm for stochastic biological systems

    NASA Astrophysics Data System (ADS)

    Lester, C.; Yates, C. A.; Giles, M. B.; Baker, R. E.

    2015-01-01

    Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, "Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics," SIAM Multiscale Model. Simul. 10(1), 146-179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the

  8. A multi-phase level set framework for source reconstruction in bioluminescence tomography

    SciTech Connect

    Huang Heyu; Qu Xiaochao; Liang Jimin; He Xiaowei; Chen Xueli; Yang Da'an; Tian Jie

    2010-07-01

    We propose a novel multi-phase level set algorithm for solving the inverse problem of bioluminescence tomography. The distribution of unknown interior source is considered as piecewise constant and represented by using multiple level set functions. The localization of interior bioluminescence source is implemented by tracing the evolution of level set function. An alternate search scheme is incorporated to ensure the global optimal of reconstruction. Both numerical and physical experiments are performed to evaluate the developed level set reconstruction method. Reconstruction results show that the proposed method can stably resolve the interior source of bioluminescence tomography.

  9. 49 CFR Figure 2b to Subpart B of... - Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements-§§ 238.113 and 238.114 2B Figure 2B to... Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements—§§ 238.113...

  10. 49 CFR Figure 2a to Subpart B of... - Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements-§§ 238.113 and 238.114 2A Figure 2A to... Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements—§§ 238.113...

  11. 49 CFR Figure 2b to Subpart B of... - Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements-§§ 238.113 and 238.114 2B Figure 2B to... Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements—§§ 238.113...

  12. 49 CFR Figure 2b to Subpart B of... - Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements-§§ 238.113 and 238.114 2B Figure 2B to... Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements—§§ 238.113...

  13. 49 CFR Figure 2a to Subpart B of... - Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements-§§ 238.113 and 238.114 2A Figure 2A to... Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements—§§ 238.113...

  14. 49 CFR Figure 2b to Subpart B of... - Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements-§§ 238.113 and 238.114 2B Figure 2B to... Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements—§§ 238.113...

  15. 49 CFR Figure 2b to Subpart B of... - Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements-§§ 238.113 and 238.114 2B Figure 2B to... Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements—§§ 238.113...

  16. 49 CFR Figure 2a to Subpart B of... - Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements-§§ 238.113 and 238.114 2A Figure 2A to... Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements—§§ 238.113...

  17. 49 CFR Figure 2a to Subpart B of... - Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements-§§ 238.113 and 238.114 2A Figure 2A to... Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements—§§ 238.113...

  18. 49 CFR Figure 2a to Subpart B of... - Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Example of an Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements-§§ 238.113 and 238.114 2A Figure 2A to... Intermediate Level Seating Area of a Multi-Level Car Complying With Window Location Requirements—§§ 238.113...

  19. Multi-level diffractive optical elements produced by excimer laser ablation of sol-gel.

    PubMed

    Neiss, Estelle; Flury, Manuel; Mager, Loïc; Rehspringer, Jean-Luc; Fort, Alain; Montgomery, Paul; Gérard, Philippe; Fontaine, Joël; Robert, Stéphane

    2008-09-01

    Material ablation by excimer laser micromachining is a promising approach for structuring sol-gel materials as we demonstrate in the present study. Using the well-known direct etching technique, the behaviour of different hybrid organic/inorganic self-made sol-gel materials is examined with a KrF* laser. Ablated depths ranging from 0.1 to 1.5 microm are obtained with a few laser pulses at low fluence (< 1 J/cm(2)). The aim is to rapidly transfer surface relief multi-level diffractive patterns in such a substrate, without intermediate steps. The combination with the 3D profilometry technique of coherence probe microscopy permits to analyse the etching process with the aim of producing multi-level Diffractive Optical Elements (DOE). Examples of four-level DOEs with 10 microm square elementary cells are presented, as well as their laser reconstructions in the infrared. PMID:18773015

  20. A novel method for a multi-level hierarchical composite with brick-and-mortar structure

    NASA Astrophysics Data System (ADS)

    Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.

    2013-07-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships.

  1. A novel method for a multi-level hierarchical composite with brick-and-mortar structure.

    PubMed

    Brandt, Kristina; Wolff, Michael F H; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A

    2013-01-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships. PMID:23900554

  2. A novel method for a multi-level hierarchical composite with brick-and-mortar structure

    PubMed Central

    Brandt, Kristina; Wolff, Michael F. H.; Salikov, Vitalij; Heinrich, Stefan; Schneider, Gerold A.

    2013-01-01

    The fascination for hierarchically structured hard tissues such as enamel or nacre arises from their unique structure-properties-relationship. During the last decades this numerously motivated the synthesis of composites, mimicking the brick-and-mortar structure of nacre. However, there is still a lack in synthetic engineering materials displaying a true hierarchical structure. Here, we present a novel multi-step processing route for anisotropic 2-level hierarchical composites by combining different coating techniques on different length scales. It comprises polymer-encapsulated ceramic particles as building blocks for the first level, followed by spouted bed spray granulation for a second level, and finally directional hot pressing to anisotropically consolidate the composite. The microstructure achieved reveals a brick-and-mortar hierarchical structure with distinct, however not yet optimized mechanical properties on each level. It opens up a completely new processing route for the synthesis of multi-level hierarchically structured composites, giving prospects to multi-functional structure-properties relationships. PMID:23900554

  3. The semi-implicit, adaptive Multi-Level Multi-Domain method for Particle In Cell plasma simulations

    NASA Astrophysics Data System (ADS)

    Innocenti, Maria Elena; Markidis, Stefano; Lapenta, Giovanni

    2015-11-01

    The Multi Level Multi Domain (MLMD) method (Innocenti (2013), Beck (2014)) is a fully kinetic, semi-implicit PIC method which simulates a domain as a collection of sub-domains where increasingly higher resolution is used. The aim is to reduce the computational costs of PIC simulations: simulations which are computationally challenging even with a traditional semi-implicit PIC code, e.g., realistic mass ratio simulations, become feasible with moderate computational resources. We present two sets of realistic mass ratio simulations: magnetic reconnection and Lower Hybrid Drift Instability (LHDI). MLMD reconnection simulations are discussed in Innocenti (2015). In the MLMD LHDI simulations, we show how the MLMD method cheaply extends the range of simulatedwavenumbers with respect to traditional simulations. We simulate the three LHDI stages (fast and slow LHDI branch, kink instability), which are well separated in wavenumber at realistic mass ratio. The coupling observed by Norgren (2012) between the magnetic field and perpendicular electric field LHDI oscillations in the magnetotail is investigated in these different stages. NERSC, Contract N. DE-AC02-05CH11231, PRACE SuperMUC, contract N. 2013091928, FWO, grant N. 12O5215N.

  4. Dynamic performance and control of a static var generator using cascade multilevel inverters

    SciTech Connect

    Peng, Fang Zheng; Lai, Jih-Sheng

    1996-10-01

    A cascade multilevel inverter is proposed for static VAR shifting, compensation/generation applications. The new cascade M-level inverter consists of (M-1)/2 single-phase full bridges in which each bridge has its own separate dc source. This inverter can generate almost sinusoidal waveform voltage with only one time switching per cycle. It can eliminate the need for transformers in multipulse inverters. A prototype static VAR generator (SVG) system using 11- level cascade inverter (21-level line-to-line voltage waveform) has been built. The output voltage waveform is equivalent to that of a 60- pulse inverter. This paper focuses on dynamic performance of the cascade inverter based SVG system. Control schemes are proposed to achieve a fast response which is impossible for a conventional static VAR compensator (SVC). Analytical, simulated and experimental results show the superiority of the proposed SVG system.

  5. Macro-level gender equality and alcohol consumption: A multi-level analysis across U.S. States

    PubMed Central

    Roberts, Sarah C.M.

    2014-01-01

    Higher levels of women’s alcohol consumption have long been attributed to increases in gender equality. However, only limited research examines the relationship between gender equality and alcohol consumption. This study examined associations between five measures of state-level gender equality and five alcohol consumption measures in the United States. Survey data regarding men’s and women’s alcohol consumption from the 2005 Behavioral Risk Factor Surveillance System were linked to state-level indicators of gender equality. Gender equality indicators included state-level women’s socioeconomic status, gender equality in socioeconomic status, reproductive rights, policies relating to violence against women, and women’s political participation. Alcohol consumption measures included past 30-day drinker status, drinking frequency, binge drinking, volume, and risky drinking. Other than drinker status, consumption is measured for drinkers only. Multi-level linear and logistic regression models adjusted for individual demographics as well as state-level income inequality, median income, and % Evangelical Protestant/Mormon. All gender equality indicators were positively associated with both women’s and men’s drinker status in models adjusting only for individual-level covariates; associations were not significant in models adjusting for other state-level characteristics. All other associations between gender equality and alcohol consumption were either negative or non-significant for both women and men in models adjusting for other state-level factors. Findings do not support the hypothesis that higher levels of gender equality are associated with higher levels of alcohol consumption by women or by men. In fact, most significant findings suggest that higher levels of equality are associated with less alcohol consumption overall. PMID:22521679

  6. Options for future effective water management in Lombok: A multi-level nested framework

    NASA Astrophysics Data System (ADS)

    Sjah, Taslim; Baldwin, Claudia

    2014-11-01

    Previous research on water use in Lombok identified reduced water available in springs and limits on seasonal water availability. It foreshadowed increasing competition for water resources in critical areas of Lombok. This study examines preliminary information on local social-institutional arrangements for water allocation in the context of Ostrom's rules for self-governing institutions. We identify robust customary mechanisms for decision-making about water sharing and rules at a local level and suggest areas of further investigation for strengthening multi-level networked and nested frameworks, in collaboration with higher levels of government.

  7. Barriers to Uptake of Conservation Agriculture in southern Africa: Multi-level Analyses from Malawi

    NASA Astrophysics Data System (ADS)

    Dougill, Andrew; Stringer, Lindsay; Whitfield, Stephen; Wood, Ben; Chinseu, Edna

    2015-04-01

    Conservation agriculture is a key set of actions within the growing body of climate-smart agriculture activities being advocated and rolled out across much of the developing world. Conservation agriculture has purported benefits for environmental quality, food security and the sustained delivery of ecosystem services. In this paper, new multi-level analyses are presented, assessing the current barriers to adoption of conservation agriculture practices in Malawi. Despite significant donor initiatives that have targeted conservation agriculture projects, uptake rates remain low. This paper synthesises studies from across 3 levels in Malawi: i.) national level- drawing on policy analysis, interviews and a multi-stakeholder workshop; ii.) district level - via assessments of development plans and District Office and extension service support, and; iii) local level - through data gained during community / household level studies in Dedza District that have gained significant donor support for conservation agriculture as a component of climate smart agriculture initiatives. The national level multi-stakeholder Conservation Agriculture workshop identified three areas requiring collaborative research and outlined routes for the empowerment of the National Conservation Agriculture Task Force to advance uptake of conservation agriculture and deliver associated benefits in terms of agricultural development, climate adaptation and mitigation. District level analyses highlight that whilst District Development Plans are now checked against climate change adaptation and mitigation criteria, capacity and knowledge limitations exist at the District level, preventing project interventions from being successfully up-scaled. Community level assessments highlight the need for increased community participation at the project-design phase and identify a pressing requirement for conservation agriculture planning processes (in particular those driven by investments in climate

  8. Intelligent Control of an Inverted Pendulum

    NASA Astrophysics Data System (ADS)

    Rekdalsbakken, Webjorn

    An inverted pendulum represents an unstable system which is excellent for demonstrating the use of feedback control with different kinds of control strategies. In this work state feedback of the inverted pendulum is examined. First a pole placement algorithm is explored. After that artificial intelligence (AI) methods are investigated to better cope with the nonlinearities of the physical model. The technique used is based on a hybrid system combining a neural network (NN) with a genetic algorithm (GA). The NN controller is trained by the GA against the behaviour of the physical model. The results of the training process show that the chromosome population tends to station at a suboptimal level, and that changes in the environmental parameters have to take place to reach a new optimal level. By systematically changing these parameters the NN controller will gradually adapt to the pendulum behaviour.

  9. Inverted Metamorphic Cell Development: Cooperative Research and Development Final Report, CRADA Number CRD-05-156

    SciTech Connect

    Wanlass, M.

    2012-05-01

    This CRADA targeted technology transfer of the inverted metamorphic multi-junction (IMM) solar cell innovation from NREL to Emcore Photovoltaics. The technology transfer was successfully completed. Additionally, NREL provided materials characterization of solar cell structures produced at Emcore.

  10. Coaxial inverted geometry transistor having buried emitter

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Cress, S. B.; Dunn, W. R. (Inventor)

    1973-01-01

    The invention relates to an inverted geometry transistor wherein the emitter is buried within the substrate. The transistor can be fabricated as a part of a monolithic integrated circuit and is particularly suited for use in applications where it is desired to employ low actuating voltages. The transistor may employ the same doping levels in the collector and emitter, so these connections can be reversed.

  11. Research of Real-time Data Warehouse Storage Strategy Based on Multi-level Caches

    NASA Astrophysics Data System (ADS)

    YiChuan, Shao; Yao, Xingjia

    Real-time data warehouse extend the application of traditional data warehouse. It can not only support tactical queries for enterprise but also provide much variable tactical decision support effectively. For these reasons, it is very meaningful to research on the structure of real-time data warehouses. This paper introduced the background of real-time data warehouse and proposed the strategy of real-time data warehouse which is based on double mirror replication mechanism. The strategy is composed of double steps. First we used double mirror replication mechanism to enable continuous loading data in the real-time data warehouse with minimum impact in query execution time. Second we proposed incorporating multi-level caches into the data warehouse structure which is based on real-time partition and gave the process of design and implementation with details. We differentiated between queries with various data freshness requirements, and used multi-level caches to satisfy these different requirements.

  12. A new method of calculating multi-level non-LTE line formation

    NASA Astrophysics Data System (ADS)

    Wu, G. Q.

    1992-03-01

    This paper introduces a new method of solving the equation of multi-level non-LTE radiative transfer subject to constraints. This method is based on the combination of the advantages of the complete linearization method by Auer and Mihalas (1969) and the simple separated-iteration technique (Mihalas, 1978). First, linearize the equation of radiative transfer and constraints, respectively, then solve the linearized equation of the radiative transfer and linearized constraints, separately. It overcomes the disadvantages of requiring the simultaneous solution of the corresponding equations by the complete linearization method and the poor convergence of the simple separated-iteration technique. Therefore, it not only can deal with complex models, but also has a high speed of convergence in the calculation of multi-level NLTE line formation.

  13. Fabrication of multi-level carbon nanotube arrays with adjustable patterns

    NASA Astrophysics Data System (ADS)

    Gong, Jianliang; Sun, Lichao; Zhong, Yawen; Ma, Chunyin; Li, Lei; Xie, Suyuan; Svrcek, Vladimir

    2011-12-01

    Multi-level carbon nanotube (CNT) arrays with adjustable patterns were prepared by a combination of the breath figure (BF) process and chemical vapor deposition. Polystyrene-b-poly(acrylic acid)/ferrocene was dissolved in carbon disulfide and cast onto a Si substrate covered with a transmission electron microscope grid in saturated relative humidity. A two-level microporous hybrid film with a block copolymer skeleton formed on the substrate after evaporation of the organic solvent and water. One level of ordered surface features originates from the contour of the hard templates; while the other level originates from the condensation of water droplets (BF arrays). Ultraviolet irradiation effectively cross-linked the polymer matrix and endowed the hybrid film with improved thermal stability. In the subsequent pyrolysis, the incorporated ferrocene in the hybrid film was oxidized and turned the polymer skeleton into the ferrous inorganic micropatterns. Either the cross-linked hybrid film or the ferrous inorganic micropatterns could act as a template to grow the multi-level CNT patterns, e.g. isolated and honeycomb-structured CNT bundle arrays perpendicular to the substrate.Multi-level carbon nanotube (CNT) arrays with adjustable patterns were prepared by a combination of the breath figure (BF) process and chemical vapor deposition. Polystyrene-b-poly(acrylic acid)/ferrocene was dissolved in carbon disulfide and cast onto a Si substrate covered with a transmission electron microscope grid in saturated relative humidity. A two-level microporous hybrid film with a block copolymer skeleton formed on the substrate after evaporation of the organic solvent and water. One level of ordered surface features originates from the contour of the hard templates; while the other level originates from the condensation of water droplets (BF arrays). Ultraviolet irradiation effectively cross-linked the polymer matrix and endowed the hybrid film with improved thermal stability. In the

  14. Overweight and obesity in India: policy issues from an exploratory multi-level analysis.

    PubMed

    Siddiqui, Md Zakaria; Donato, Ronald

    2016-06-01

    This article analyses a nationally representative household dataset-the National Family Health Survey (NFHS-3) conducted in 2005 to 2006-to examine factors influencing the prevalence of overweight/obesity in India. The dataset was disaggregated into four sub-population groups-urban and rural females and males-and multi-level logit regression models were used to estimate the impact of particular covariates on the likelihood of overweight/obesity. The multi-level modelling approach aimed to identify individual and macro-level contextual factors influencing this health outcome. In contrast to most studies on low-income developing countries, the findings reveal that education for females beyond a particular level of educational attainment exhibits a negative relationship with the likelihood of overweight/obesity. This relationship was not observed for males. Muslim females and all Sikh sub-populations have a higher likelihood of overweight/obesity suggesting the importance of socio-cultural influences. The results also show that the relationship between wealth and the probability of overweight/obesity is stronger for males than females highlighting the differential impact of increasing socio-economic status on gender. Multi-level analysis reveals that states exerted an independent influence on the likelihood of overweight/obesity beyond individual-level covariates, reflecting the importance of spatially related contextual factors on overweight/obesity. While this study does not disentangle macro-level 'obesogenic' environmental factors from socio-cultural network influences, the results highlight the need to refrain from adopting a 'one size fits all' policy approach in addressing the overweight/obesity epidemic facing India. Instead, policy implementation requires a more nuanced and targeted approach to incorporate the growing recognition of socio-cultural and spatial contextual factors impacting on healthy behaviours. PMID:26567124

  15. The finite time multi-level SU(2) Landau-Zener problems: exact analytical results

    NASA Astrophysics Data System (ADS)

    Mkam Tchouobiap, S. E.; Kenmoe, M. B.; Fai, L. C.

    2015-10-01

    The multi-level SU(2) Landau-Zener problem is analytically solved at finite time within the framework of the Bloch tensor formalism and with the help of the disentanglement Wei-Norman ordering technique. A generalized and exact analytical solution is achieved that accounts not only for all projections of an arbitrary spin S along the Zeeman field direction but also for non-adiabatic and adiabatic evolutions.

  16. High-Level Waste Tanks Multi-Dimensional Contaminant Transport Model Development Enhancements for 2000

    SciTech Connect

    Collard, L.B.

    2001-09-21

    A suite of multi-dimensional computer models was developed in 1999 (Collard and Flach) to analyze the transport of residual contamination from high-level waste tanks through the subsurface to seeplines. Enhancements in 2000 to those models include investigate the effect of numerical dispersion, develop a solubility-limited case for U and Pu, and develop a plan for a database as part of the Rapid Screening Tool and start to implement that plan.

  17. A study on the impact of high penetration distributed generation inverters on grid operation and stability

    NASA Astrophysics Data System (ADS)

    Gu, Fei; Brouwer, Jack; Samuelsen, Scott

    2013-09-01

    Recent advances in inverter technology have enabled ancillary services such as volt/VAR regulation, SCADA communications, and active power filtering. Smart inverters can not only provide real power, but can be controlled to use excess capacity to provide reactive power compensation, power flow control, and active power filtering without supplementary inverter hardware. A transient level inverter model based on the Solectria 7700 inverter is developed and used to assess these control strategies using field data from an existing branch circuit containing two Amonix 68kW CPV-7700 systems installed at the University of California, Irvine.

  18. Multi-level Bayesian safety analysis with unprocessed Automatic Vehicle Identification data for an urban expressway.

    PubMed

    Shi, Qi; Abdel-Aty, Mohamed; Yu, Rongjie

    2016-03-01

    In traffic safety studies, crash frequency modeling of total crashes is the cornerstone before proceeding to more detailed safety evaluation. The relationship between crash occurrence and factors such as traffic flow and roadway geometric characteristics has been extensively explored for a better understanding of crash mechanisms. In this study, a multi-level Bayesian framework has been developed in an effort to identify the crash contributing factors on an urban expressway in the Central Florida area. Two types of traffic data from the Automatic Vehicle Identification system, which are the processed data capped at speed limit and the unprocessed data retaining the original speed were incorporated in the analysis along with road geometric information. The model framework was proposed to account for the hierarchical data structure and the heterogeneity among the traffic and roadway geometric data. Multi-level and random parameters models were constructed and compared with the Negative Binomial model under the Bayesian inference framework. Results showed that the unprocessed traffic data was superior. Both multi-level models and random parameters models outperformed the Negative Binomial model and the models with random parameters achieved the best model fitting. The contributing factors identified imply that on the urban expressway lower speed and higher speed variation could significantly increase the crash likelihood. Other geometric factors were significant including auxiliary lanes and horizontal curvature. PMID:26722989

  19. Integrated all-photonic non-volatile multi-level memory

    NASA Astrophysics Data System (ADS)

    Ríos, Carlos; Stegmaier, Matthias; Hosseini, Peiman; Wang, Di; Scherer, Torsten; Wright, C. David; Bhaskaran, Harish; Pernice, Wolfram H. P.

    2015-11-01

    Implementing on-chip non-volatile photonic memories has been a long-term, yet elusive goal. Photonic data storage would dramatically improve performance in existing computing architectures by reducing the latencies associated with electrical memories and potentially eliminating optoelectronic conversions. Furthermore, multi-level photonic memories with random access would allow for leveraging even greater computational capability. However, photonic memories have thus far been volatile. Here, we demonstrate a robust, non-volatile, all-photonic memory based on phase-change materials. By using optical near-field effects, we realize bit storage of up to eight levels in a single device that readily switches between intermediate states. Our on-chip memory cells feature single-shot readout and switching energies as low as 13.4 pJ at speeds approaching 1 GHz. We show that individual memory elements can be addressed using a wavelength multiplexing scheme. Our multi-level, multi-bit devices provide a pathway towards eliminating the von Neumann bottleneck and portend a new paradigm in all-photonic memory and non-conventional computing.

  20. A level set simulation of dendritic solidification of multi-component alloys

    NASA Astrophysics Data System (ADS)

    Tan, Lijian; Zabaras, Nicholas

    2007-01-01

    A level set method combining features of front tracking methods and fixed domain methods is presented to model microstructure evolution in the solidification of multi-component alloys. Phase boundaries are tracked by solving the multi-phase level set equations. Diffused interfaces are constructed from these tracked phase boundaries using the level set functions. Based on the assumed diffused interfaces, volume-averaging techniques are applied for energy, species and momentum transport. Microstructure evolution in multi-component alloy systems is predicted using realistic material parameters. The methodology avoids the difficulty of parameter identification needed in other diffused interface models, and allows easy application to various practical alloy systems. Techniques including fast marching, narrow band computing and adaptive meshing are utilized to speed up computations. Several numerical examples are considered to validate the method and examine its potential for modeling solidification of practical alloy systems. These examples include two- and three-dimensional solidification of a binary alloy in an undercooled melt, a study of planar/cellular/dendritic transition in the solidification of a Ni-Cu alloy, and eutectic and peritectic solidification of an Fe-C system. Adaptive mesh refinement in the rapidly varying interface region makes the method practical for coupling the microstructure evolution at the meso-scale with buoyancy driven flow in the macro-scale, which is shown in the solidification of a Ni-Al-Ta ternary alloy.

  1. An inverter/controller subsystem optimized for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Pickrell, R. L.; Merrill, W. C.; Osullivan, G.

    1978-01-01

    Conversion of solar array dc power to ac power stimulated the specification, design, and simulation testing of an inverter/controller subsystem tailored to the photovoltaic power source characteristics. This paper discusses the optimization of the inverter/controller design as part of an overall Photovoltaic Power System (PPS) designed for maximum energy extraction from the solar array. The special design requirements for the inverter/controller include: (1) a power system controller (PSC) to control continuously the solar array operating point at the maximum power level based on variable solar insolation and cell temperatures; and (2) an inverter designed for high efficiency at rated load and low losses at light loadings to conserve energy. It must be capable of operating connected to the utility line at a level set by an external controller (PSC).

  2. Multi-level multi-criteria analysis of alternative fuels for waste collection vehicles in the United States.

    PubMed

    Maimoun, Mousa; Madani, Kaveh; Reinhart, Debra

    2016-04-15

    Historically, the U.S. waste collection fleet was dominated by diesel-fueled waste collection vehicles (WCVs); the growing need for sustainable waste collection has urged decision makers to incorporate economically efficient alternative fuels, while mitigating environmental impacts. The pros and cons of alternative fuels complicate the decisions making process, calling for a comprehensive study that assesses the multiple factors involved. Multi-criteria decision analysis (MCDA) methods allow decision makers to select the best alternatives with respect to selection criteria. In this study, two MCDA methods, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and Simple Additive Weighting (SAW), were used to rank fuel alternatives for the U.S. waste collection industry with respect to a multi-level environmental and financial decision matrix. The environmental criteria consisted of life-cycle emissions, tail-pipe emissions, water footprint (WFP), and power density, while the financial criteria comprised of vehicle cost, fuel price, fuel price stability, and fueling station availability. The overall analysis showed that conventional diesel is still the best option, followed by hydraulic-hybrid WCVs, landfill gas (LFG) sourced natural gas, fossil natural gas, and biodiesel. The elimination of the WFP and power density criteria from the environmental criteria ranked biodiesel 100 (BD100) as an environmentally better alternative compared to other fossil fuels (diesel and natural gas). This result showed that considering the WFP and power density as environmental criteria can make a difference in the decision process. The elimination of the fueling station and fuel price stability criteria from the decision matrix ranked fossil natural gas second after LFG-sourced natural gas. This scenario was found to represent the status quo of the waste collection industry. A sensitivity analysis for the status quo scenario showed the overall ranking of diesel and

  3. Developing the evidence-base for Safe Communities: a multi-level, partly randomised, controlled trial.

    PubMed

    Seedat, M; McClure, R; Suffla, S; van Niekerk, A

    2012-01-01

    Safe Communities, representing a global activation of the public health logic, may be strengthened through theoretical, methodological and empirical support. In the spirit of this Special Issue that aims to analyse the achievements and challenges inherent to Safe Communities, we offer our contribution in the form of a methodology of a multi-country child safety, peace and health promotion study. The study, situated within an African-centred initiative called Ukuphepha - an isiZulu word meaning demonstrating African safety - is underpinned by four theoretical claims that frame injury and violence prevention as a multi-disciplinary issue to be addressed through a suite of interventions to family and extended social systems. The interventions, sensitive to the priorities of each participating country, have been informed by the literature on effective interventions and the authors' joint experiences of community development. The study is designed as a population-based, multi-level, multi-intervention partly randomised controlled trial, and there are potentially 24 participant communities representing South Africa, Mozambique, Egypt, Zambia, Uganda, Bangladesh, Malaysia and Australia - over three commencement phases. Whereas process evaluation will focus on community engagement, impact evaluation will consider risk and protective factors, and outcome evaluation will examine the overall effectiveness of the interventions. Notwithstanding the many challenges, the study will provide insights into the methodology and mechanisms of ecologically-oriented interventions that locate injury and violence prevention as an activity arising from safety, peace and health promotion. PMID:22873717

  4. Multi-Level Determinants of Parasitic Fly Infection in Forest Passerines

    PubMed Central

    Manzoli, Darío Ezequiel; Antoniazzi, Leandro Raúl; Saravia, María José; Silvestri, Leonardo; Rorhmann, David; Beldomenico, Pablo Martín

    2013-01-01

    The study of myiasis is important because they may cause problems to the livestock industry, public health, or wildlife conservation. The ecology of parasitic dipterans that cause myiasis is singular, as they actively seek their hosts over relatively long distances. However, studies that address the determinants of myiasis dynamics are very scarce. The genus Philornis include species that may be excellent models to study myiasis ecology, as they exclusively parasitize bird nestlings, which stay in their nests until they are fully fledged, and larvae remain at the point of entry until the parasitic stage is over, thus allowing the collection of sequential individual-level infection data from virtually all the hosts present at a particular area. Here we offer a stratified multi-level analysis of longitudinal data of Philornis torquans parasitism in replicated forest bird communities of central Argentina. Using Generalized Linear Models and Generalized Linear Mixed Models and an information theory approach for model selection, we conducted four groups of analyses, each with a different study unit, the individual, the brood, the community at a given week, and the community at a given year. The response variable was larval abundance per nestling or mean abundance per nestling. At each level, models included the variables of interest of that particular level, and also potential confounders and effect modifiers of higher levels. We found associations of large magnitude at all levels, but only few variables truly governed the dynamics of this parasite. At the individual level, the infection was determined by the species and the age of the host. The main driver of parasite abundance at the microhabitat level was the average height of the forest, and at the community level, the density of hosts and prior rainfall. This multi-level approach contributed to a better understanding of the ecology of myiasis. PMID:23874408

  5. A Multi-Level Approach to Outreach for Geologic Sequestration Projects

    USGS Publications Warehouse

    Greenberg, S.E.; Leetaru, H.E.; Krapac, I.G.; Hnottavange-Telleen, K.; Finley, R.J.

    2009-01-01

    Public perception of carbon capture and sequestration (CCS) projects represents a potential barrier to commercialization. Outreach to stakeholders at the local, regional, and national level is needed to create familiarity with and potential acceptance of CCS projects. This paper highlights the Midwest Geological Sequestration Consortium (MGSC) multi-level outreach approach which interacts with multiple stakeholders. The MGSC approach focuses on external and internal communication. External communication has resulted in building regional public understanding of CCS. Internal communication, through a project Risk Assessment process, has resulted in enhanced team communication and preparation of team members for outreach roles. ?? 2009 Elsevier Ltd. All rights reserved.

  6. Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations

    NASA Technical Reports Server (NTRS)

    Moon, Young J.; Liou, Meng-Sing

    1989-01-01

    Conservative algorithms for boundaray interfaces of overlaid grids are presented. The basic method is zeroth order, and is extended to a higher order method using interpolation and subcell decomposition. The present method, strictly based on a conservative constraint, is tested with overlaid grids for various applications of unsteady and steady supersonic inviscid flows with strong shock waves. The algorithm is also applied to a multi-level grid adaptation in which the next level finer grid is overlaid on the coarse base grid with an arbitrary orientation.

  7. Conservative treatment of boundary interfaces for overlaid grids and multi-level grid adaptations

    NASA Technical Reports Server (NTRS)

    Moon, Young J.; Liou, Meng-Sing

    1989-01-01

    Conservative algorithms for boundary interfaces of overlaid grids are presented. The basic method is zeroth order, and is extended to a higher order method using interpolation and subcell decomposition. The present method, strictly based on a conservative constraint, is tested with overlaid grids for various applications of unsteady and steady supersonic inviscid flows with strong shock waves. The algorithm is also applied to a multi-level grid adaptation in which the next level finer grid is overlaid on the coarse base grid with an arbitrary orientation.

  8. Nanowire NMOS Logic Inverter Characterization.

    PubMed

    Hashim, Yasir

    2016-06-01

    This study is the first to demonstrate characteristics optimization of nanowire N-Channel Metal Oxide Semiconductor (NW-MOS) logic inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. A computer-based model used to produce static characteristics of NW-NMOS logic inverter. In this research two circuit configuration of NW-NMOS inverter was studied, in first NW-NMOS circuit, the noise margin for (low input-high output) condition was very low. For second NMOS circuit gives excellent noise margins, and results indicate that optimization depends on applied voltage to the inverter. Increasing gate to source voltage with (2/1) nanowires ratio results better noise margins. Increasing of applied DC load transistor voltage tends to increasing in decreasing noise margins; decreasing this voltage will improve noise margins significantly. PMID:27427653

  9. Nonlinear trends and multi-year cycles in regional and global sea level records

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; Grinsted, A.; Jevrejeva, S.; Holgate, S.

    2007-12-01

    We analyze the Permanent Service for Mean Sea Level (PSMSL) database of sea level time series using a method based on Monte Carlo Singular Spectrum Analysis (MC-SSA). We remove 2-30 year quasi- periodic oscillations and determine the nonlinear long-term trends for 12 large ocean regions. Our global sea level trend estimate of 2.4 ± 1.0 mm/yr for the period from 1993 to 2000 is comparable with the 2.6 ± 0.7 mm/yr sea level rise calculated from TOPEX/Poseidon altimeter measurements. However, we show that over the last 100 years the rate of 2.5 ± 1.0 mm/yr occurred between 1920 and 1945, is likely to be as large as the 1990s, and resulted in a mean sea level rise of 48 mm. We evaluate errors in sea level using two independent approaches, the robust bi-weight mean and variance, and a novel "virtual station" approach that utilizes geographic locations of stations. Results suggest that a region cannot be adequately represented by a simple mean curve with standard error, assuming all stations are independent, as multi-year cycles within regions are very significant. Additionally, much of the between-region mismatch errors are due to multi-year cycles in the global sea level that limit the ability of simple means to capture sea level accurately. We demonstrate that variability in sea level records over periods 2-30 years has increased during the past 50 years in most ocean basins.

  10. Inverter Ground Fault Overvoltage Testing

    SciTech Connect

    Hoke, Andy; Nelson, Austin; Chakraborty, Sudipta; Chebahtah, Justin; Wang, Trudie; McCarty, Michael

    2015-08-12

    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.

  11. Multi-Step Ahead Predictions for Critical Levels in Physiological Time Series.

    PubMed

    ElMoaqet, Hisham; Tilbury, Dawn M; Ramachandran, Satya Krishna

    2016-07-01

    Standard modeling and evaluation methods have been classically used in analyzing engineering dynamical systems where the fundamental problem is to minimize the (mean) error between the real and predicted systems. Although these methods have been applied to multi-step ahead predictions of physiological signals, it is often more important to predict clinically relevant events than just to match these signals. Adverse clinical events, which occur after a physiological signal breaches a clinically defined critical threshold, are a popular class of such events. This paper presents a framework for multi-step ahead predictions of critical levels of abnormality in physiological signals. First, a performance metric is presented for evaluating multi-step ahead predictions. Then, this metric is used to identify personalized models optimized with respect to predictions of critical levels of abnormality. To address the paucity of adverse events, weighted support vector machines and cost-sensitive learning are used to optimize the proposed framework with respect to statistical metrics that can take into account the relative rarity of such events. PMID:27244754

  12. Eating disorders and multi-level models of emotion: an integrated model.

    PubMed

    Fox, John R E; Power, Michael J

    2009-01-01

    This paper examines the relationship between emotions, depression and eating disorders. Initially, a review is undertaken of the current state of the research and clinical literature with regard to emotional factors in eating disorders. This literature is then integrated within a version of the multi-level model of emotion proposed by Power and Dalgleish. The aim of this paper is to incorporate a basic emotions, multi-modal perspective into developing a new emotions-based model that offers a theoretical understanding of psychological mechanisms in eating disorders. Within the new Schematic Propositional Analogical Associative Representation System model applied to eating disorders, it is argued that the emotions of anger and disgust are of importance in eating disorders and that the eating disorder itself operates as an inhibitor of emotions within the self. It is hoped that the development of a multi-levelled model of eating disorders will allow for the construction of number of specific testable hypotheses that are relevant to future research into the psychological treatment and understanding of eating disorders. PMID:19639647

  13. Design and characterization of water level detector using MW22B Multi-Turn potentiometer

    NASA Astrophysics Data System (ADS)

    Warsito, Pauzi, Gurum A.; Suciyati, Sri W.; Turyani

    2012-06-01

    It has been designed and characterized the water level detector using MW22B Multi-Turn Potentiometer. The electrical angle of potentiometer used has been characterized, that is 3600°±7° and its linearity independent is ±0.25%. The realized system consists of three parts; mechanical system of sensor, signal conditioning circuit and output system. The mechanical system of sensor is destined to convert linearly the value of potentiometer resistance to the water level variation. The signal conditioning consists of analog and digital system especially microcontroller circuit. The value of water level measured is shown on the 2×16 characters LCD. The range of measured water level is 0 - 2.7 m that correspond to the potentiometer resistance range of 100Ω - 100 kΩ. The obtained vertical resolution of instrument is about 0.03 m and the error of system is ˜1.11%.

  14. Does the Hospital Predict Readmission? A Multi-level Survival Analysis Approach.

    PubMed

    Leon, Scott C; Stoner, Alison M; Dickson, Daniel A

    2016-07-01

    Time to psychiatric rehospitalization was predicted for a sample of 1473 Medicaid-insured youth in Illinois in 2005 and 2006. A multi-level model statistical strategy was employed to account for the fact that youth days to rehospitalization were nested within hospital and to test the hypothesis that hospitals would vary significantly in return rates, controlling for individual-level (e.g., symptom, demographic) variables. Hospitals did not vary significantly in days to rehospitalization. At the individual-level, level of externalizing behavior and residential treatment placement predicted a faster return to the hospital. These results support the perspective that hospital outcomes are best operationalized using variables tied more directly to the inpatient episode (e.g., LOS, reductions in acuity). PMID:25925793

  15. 21 CFR 184.1859 - Invert sugar.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Invert sugar. 184.1859 Section 184.1859 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD....1859 Invert sugar. (a) Invert sugar (CAS Reg. No. 8013-17-0) is an aqueous solution of inverted...

  16. Parallel of low-level computer vision algorithms on a multi-DSP system

    NASA Astrophysics Data System (ADS)

    Liu, Huaida; Jia, Pingui; Li, Lijian; Yang, Yiping

    2011-06-01

    Parallel hardware becomes a commonly used approach to satisfy the intensive computation demands of computer vision systems. A multiprocessor architecture based on hypercube interconnecting digital signal processors (DSPs) is described to exploit the temporal and spatial parallelism. This paper presents a parallel implementation of low level vision algorithms designed on multi-DSP system. The convolution operation has been parallelized by using redundant boundary partitioning. Performance of the parallel convolution operation is investigated by varying the image size, mask size and the number of processors. Experimental results show that the speedup is close to the ideal value. However, it can be found that the loading imbalance of processor can significantly affect the computation time and speedup of the multi- DSP system.

  17. Multi-valley effective mass theory for device-level modeling of open quantum dynamics

    NASA Astrophysics Data System (ADS)

    Jacobson, N. Tobias; Baczewski, Andrew D.; Frees, Adam; Gamble, John King; Montano, Ines; Moussa, Jonathan E.; Muller, Richard P.; Nielsen, Erik

    2015-03-01

    Simple models for semiconductor-based quantum information processors can provide useful qualitative descriptions of device behavior. However, as experimental implementations have matured, more specific guidance from theory has become necessary, particularly in the form of quantitatively reliable yet computationally efficient modeling. Besides modeling static device properties, improved characterization of noisy gate operations requires a more sophisticated description of device dynamics. Making use of recent developments in multi-valley effective mass theory, we discuss device-level simulations of the open system quantum dynamics of a qubit interacting with phonons and other noise sources. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  18. Low-power multi-chip module and board-level links for data transfer

    SciTech Connect

    Carson, R.F.; Hardin, T.L.; Warren, M.E.; Lear, K.L.; Lovejoy, M.L.; Seigal, P.K.; Craft, D.C.; Enquist, P.J.

    1997-03-01

    Advanced device technologies such as Vertical Cavity Surface-Emitting Lasers (VCSELs) and diffractive micro lenses can be obtained with novel packaging techniques to allow low-power interconnection of parallel optical signals. These interconnections can be realized directly on circuit boards, in a multi-chip module format, or in packages that emulate electrical connectors. For applications such as stacking of Multi-Chip Module (MCM) layers, the links may be realized in bi-directional form using integrated diffractive microlenses. In the stacked MCM design, consumed electrical power is minimized by use of a relatively high laser output from high efficiency VCSELs, and a receiver design that is optimized for low power, at the expense of dynamic range. Within certain constraints, the design may be extended to other forms such as board-level interconnects.

  19. Fusion of multi-sensory NDT data for reliable detection of surface cracks: Signal-level vs. decision-level

    NASA Astrophysics Data System (ADS)

    Heideklang, René; Shokouhi, Parisa

    2016-02-01

    We present and compare two different approaches for NDT multi-sensor data fusion at signal (low) and decision (high) levels. Signal-level fusion is achieved by applying simple algebraic rules to strategically post-processed images. This is done in the original domain or in the domain of a suitable signal transform. The importance of signal normalization for low-level fusion applications is emphasized in regard to heterogeneous NDT data sets. For fusion at decision level, we develop a procedure based on assembling joint kernel density estimation (KDE). The procedure involves calculating KDEs for individual sensor detections and aggregating them by applying certain combination rules. The underlying idea is that if the detections from more than one sensor fall spatially close to one another, they are likely to result from the presence of a defect. On the other hand, single-senor detections are more likely to be structural noise or false alarm indications. To this end, we design the KDE combination rules such that it prevents single-sensor domination and allows data-driven scaling to account for the influence of individual sensors. We apply both fusion rules to a three-sensor dataset consisting in ET, MFL/GMR and TT data collected on a specimen with built-in surface discontinuities. The performance of the fusion rules in defect detection is quantitatively evaluated and compared against those of the individual sensors. Both classes of data fusion rules result in a fused image of fewer false alarms and thus improved defect detection. Finally, we discuss the advantages and disadvantages of low-level and high-level NDT data fusion with reference to our experimental results.

  20. Modified FGP approach and MATLAB program for solving multi-level linear fractional programming problems

    NASA Astrophysics Data System (ADS)

    Lachhwani, Kailash; Nehra, Suresh

    2015-09-01

    In this paper, we present modified fuzzy goal programming (FGP) approach and generalized MATLAB program for solving multi-level linear fractional programming problems (ML-LFPPs) based on with some major modifications in earlier FGP algorithms. In proposed modified FGP approach, solution preferences by the decision makers at each level are not considered and fuzzy goal for the decision vectors is defined using individual best solutions. The proposed modified algorithm as well as MATLAB program simplifies the earlier algorithm on ML-LFPP by eliminating solution preferences by the decision makers at each level, thereby avoiding difficulties associate with multi-level programming problems and decision deadlock situation. The proposed modified technique is simple, efficient and requires less computational efforts in comparison of earlier FGP techniques. Also, the proposed coding of generalized MATLAB program based on this modified approach for solving ML-LFPPs is the unique programming tool toward dealing with such complex mathematical problems with MATLAB. This software based program is useful and user can directly obtain compromise optimal solution of ML-LFPPs with it. The aim of this paper is to present modified FGP technique and generalized MATLAB program to obtain compromise optimal solution of ML-LFP problems in simple and efficient manner. A comparative analysis is also carried out with numerical example in order to show efficiency of proposed modified approach and to demonstrate functionality of MATLAB program.

  1. Agent-based model with multi-level herding for complex financial systems

    PubMed Central

    Chen, Jun-Jie; Tan, Lei; Zheng, Bo

    2015-01-01

    In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level. PMID:25669427

  2. Agent-based model with multi-level herding for complex financial systems.

    PubMed

    Chen, Jun-Jie; Tan, Lei; Zheng, Bo

    2015-01-01

    In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level. PMID:25669427

  3. Agent-based model with multi-level herding for complex financial systems

    NASA Astrophysics Data System (ADS)

    Chen, Jun-Jie; Tan, Lei; Zheng, Bo

    2015-02-01

    In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level.

  4. In Good Company? A Multi-Study, Multi-Level Investigation of the Effects of Coworker Relationships on Employee Well-Being

    ERIC Educational Resources Information Center

    Simon, Lauren S.; Judge, Timothy A.; Halvorsen-Ganepola, Marie D. K.

    2010-01-01

    Two multi-level studies were conducted to examine the effects of attitudes towards coworkers on daily well-being. Study 1 linked daily levels of coworker satisfaction to job satisfaction and life satisfaction and examined the extent to which job satisfaction mediated the relationship between coworker satisfaction and life satisfaction among 33…

  5. Implications of multi-scale sea level and climate variability for coastal resources

    USGS Publications Warehouse

    Karamperidou, Christina; Engel, Victor; Lall, Upmanu; Stabenau, Erik; Smith, Thomas J., III

    2013-01-01

    While secular changes in regional sea levels and their implications for coastal zone management have been studied extensively, less attention is being paid to natural fluctuations in sea levels, whose interaction with a higher mean level could have significant impacts on low-lying areas, such as wetlands. Here, the long record of sea level at Key West, FL is studied in terms of both the secular trend and the multi-scale sea level variations. This analysis is then used to explore implications for the Everglades National Park (ENP), which is recognized internationally for its ecological significance, and is the site of the largest wetland restoration project in the world. Very shallow topographic gradients (3–6 cm per km) make the region susceptible to small changes in sea level. Observations of surface water levels from a monitoring network within ENP exhibit both the long-term trends and the interannual-to-(multi)decadal variability that are observed in the Key West record. Water levels recorded at four long-term monitoring stations within ENP exhibit increasing trends approximately equal to or larger than the long-term trend at Key West. Time- and frequency-domain analyses highlight the potential influence of climate mechanisms, such as the El Niño/Southern Oscillation and the North Atlantic Oscillation (NAO), on Key West sea levels and marsh water levels, and the potential modulation of their influence by the background state of the North Atlantic Sea Surface Temperatures. In particular, the Key West sea levels are found to be positively correlated with the NAO index, while the two series exhibit high spectral power during the transition to a cold Atlantic Multidecadal Oscillation (AMO). The correlation between the Key West sea levels and the NINO3 Index reverses its sign in coincidence with a reversal of the AMO phase. Water levels in ENP are also influenced by precipitation and freshwater releases from the northern boundary of the Park. The analysis of both

  6. Building obesity in Canada: understanding the individual- and neighbourhood-level determinants using a multi-level approach.

    PubMed

    Pouliou, Theodora; Elliott, Susan J; Paez, Antonio; Newbold, K Bruce

    2014-11-01

    The objective of this paper was to identify heterogeneities associated with the relationships between the body mass index (BMI) and individual as well as socio-environmental correlates at the individual- and area-levels. The data sources used were: (i) the 2003 Canadian Community Health Survey; (ii) the 2001 Canadian Census; and (iii) the Enhanced Points of Interest (EPOI) database from the Desktop Mapping Technologies Inc. Participants were adults (≥ 20 years; n = 12,836; based on a survey weight scheme N(weighted) = 5,418,218) from Toronto and Vancouver census metropolitan areas with no missing BMI records. In addition to conventional 1 km-buffers, we constructed activity-space-buffers to better assess the walkability and potentially increased BMI of individuals. Multi-level analysis was then applied to estimate the relative effects of both individual- and area-level risk-factors for increased BMI. The findings demonstrate a negative association between BMI and energy expenditure, mixed land uses, residential density and average value of dwellings, while a positive association was found with low educational attainment. Relationships were independent of individual characteristics such as age and ethnicity. Although the majority of the variation in these outcomes was found to be due to individual-level differences, this study did show significant differences at the area-level as well. The activity-space-buffers presented a vast improvement compared to the conventional 1 km-buffers. The results presented support the rationale that targeting high-risk individuals will only address a portion of the increasing BMI problem; it is essential to also address the characteristics of places that compel individuals to make unhealthy choices. PMID:25545925

  7. Building a traceable climate model hierarchy with multi-level emulators

    NASA Astrophysics Data System (ADS)

    Tran, Giang T.; Oliver, Kevin I. C.; Sóbester, András; Toal, David J. J.; Holden, Philip B.; Marsh, Robert; Challenor, Peter; Edwards, Neil R.

    2016-04-01

    To study climate change on multi-millennial timescales or to explore a model's parameter space, efficient models with simplified and parameterised processes are required. However, the reduction in explicitly modelled processes can lead to underestimation of some atmospheric responses that are essential to the understanding of the climate system. While more complex general circulations are available and capable of simulating a more realistic climate, they are too computationally intensive for these purposes. In this work, we propose a multi-level Gaussian emulation technique to efficiently estimate the outputs of steady-state simulations of an expensive atmospheric model in response to changes in boundary forcing. The link between a computationally expensive atmospheric model, PLASIM (Planet Simulator), and a cheaper model, EMBM (energy-moisture balance model), is established through the common boundary condition specified by an ocean model, allowing for information to be propagated from one to the other. This technique allows PLASIM emulators to be built at a low cost. The method is first demonstrated by emulating a scalar summary quantity, the global mean surface air temperature. It is then employed to emulate the dimensionally reduced 2-D surface air temperature field. Even though the two atmospheric models chosen are structurally unrelated, Gaussian process emulators of PLASIM atmospheric variables are successfully constructed using EMBM as a fast approximation. With the extra information gained from the cheap model, the multi-level emulator of PLASIM's 2-D surface air temperature field is built using only one-third the amount of expensive data required by the normal single-level technique. The constructed emulator is shown to capture 93.2 % of the variance across the validation ensemble, with the averaged RMSE of 1.33 °C. Using the method proposed, quantities from PLASIM can be constructed and used to study the effects introduced by PLASIM's atmosphere.

  8. Modular multi-level circuits from immobilized DNA-based logic gates.

    PubMed

    Frezza, Brian M; Cockroft, Scott L; Ghadiri, M Reza

    2007-12-01

    One of the fundamental goals of molecular computing is to reproduce the tenets of digital logic, such as component modularity and hierarchical circuit design. An important step toward this goal is the creation of molecular logic gates that can be rationally wired into multi-level circuits. Here we report the design and functional characterization of a complete set of modular DNA-based Boolean logic gates (AND, OR, and AND-NOT) and further demonstrate their wiring into a three-level circuit that exhibits Boolean XOR (exclusive OR) function. The approach is based on solid-supported DNA logic gates that are designed to operate with single-stranded DNA inputs and outputs. Since the solution-phase serves as the communication medium between gates, circuit wiring can be achieved by designating the DNA output of one gate as the input to another. Solid-supported logic gates provide enhanced gate modularity versus solution-phase systems by significantly simplifying the task of choosing appropriate DNA input and output sequences used in the construction of multi-level circuits. The molecular logic gates and circuits reported here were characterized by coupling DNA outputs to a single-input REPORT gate and monitoring the resulting fluorescent output signals. PMID:17994734

  9. An Automatic Optical and SAR Image Registration Method Using Iterative Multi-Level and Refinement Model

    NASA Astrophysics Data System (ADS)

    Xu, C.; Sui, H. G.; Li, D. R.; Sun, K. M.; Liu, J. Y.

    2016-06-01

    Automatic image registration is a vital yet challenging task, particularly for multi-sensor remote sensing images. Given the diversity of the data, it is unlikely that a single registration algorithm or a single image feature will work satisfactorily for all applications. Focusing on this issue, the mainly contribution of this paper is to propose an automatic optical-to-SAR image registration method using -level and refinement model: Firstly, a multi-level strategy of coarse-to-fine registration is presented, the visual saliency features is used to acquire coarse registration, and then specific area and line features are used to refine the registration result, after that, sub-pixel matching is applied using KNN Graph. Secondly, an iterative strategy that involves adaptive parameter adjustment for re-extracting and re-matching features is presented. Considering the fact that almost all feature-based registration methods rely on feature extraction results, the iterative strategy improve the robustness of feature matching. And all parameters can be automatically and adaptively adjusted in the iterative procedure. Thirdly, a uniform level set segmentation model for optical and SAR images is presented to segment conjugate features, and Voronoi diagram is introduced into Spectral Point Matching (VSPM) to further enhance the matching accuracy between two sets of matching points. Experimental results show that the proposed method can effectively and robustly generate sufficient, reliable point pairs and provide accurate registration.

  10. Push pull microfluidics on a multi-level 3D CD.

    PubMed

    Thio, Tzer Hwai Gilbert; Ibrahim, Fatimah; Al-Faqheri, Wisam; Moebius, Jacob; Khalid, Noor Sakinah; Soin, Norhayati; Kahar, Maria Kahar Bador Abdul; Madou, Marc

    2013-08-21

    A technique known as thermo-pneumatic (TP) pumping is used to pump fluids on a microfluidic compact disc (CD) back towards the CD center against the centrifugal force that pushes liquids from the center to the perimeter of the disc. Trapped air expands in a TP air chamber during heating, and this creates positive pressure on liquids located in chambers connected to that chamber. While the TP air chamber and connecting channels are easy to fabricate in a one-level CD manufacturing technique, this approach provides only one way pumping between two chambers, is real-estate hungry and leads to unnecessary heating of liquids in close proximity to the TP chamber. In this paper, we present a novel TP push and pull pumping method which allows for pumping of liquid in any direction between two connected liquid chambers. To ensure that implementation of TP push and pull pumping also addresses the issue of space and heating challenges, a multi-level 3D CD design is developed, and localized forced convection heating, rather than infra-red (IR) is applied. On a multi-level 3D CD, the TP features are placed on a top level separate from the rest of the microfluidic processes that are implemented on a lower separate level. This approach allows for heat shielding of the microfluidic process level, and efficient usage of space on the CD for centrifugal handling of liquids. The use of localized forced convection heating, rather than infra-red (IR) or laser heating in earlier implementations allows not only for TP pumping of liquids while the CD is spinning but also makes heat insulation for TP pumping and other fluidic functions easier. To aid in future implementations of TP push and pull pumping on a multi-level 3D CD, study on CD surface heating is also presented. In this contribution, we also demonstrate an advanced application of pull pumping through the implementation of valve-less switch pumping. PMID:23774994

  11. An Intrusion Detection System Based on Multi-Level Clustering for Hierarchical Wireless Sensor Networks.

    PubMed

    Butun, Ismail; Ra, In-Ho; Sankar, Ravi

    2015-01-01

    In this work, an intrusion detection system (IDS) framework based on multi-level clustering for hierarchical wireless sensor networks is proposed. The framework employs two types of intrusion detection approaches: (1) "downward-IDS (D-IDS)" to detect the abnormal behavior (intrusion) of the subordinate (member) nodes; and (2) "upward-IDS (U-IDS)" to detect the abnormal behavior of the cluster heads. By using analytical calculations, the optimum parameters for the D-IDS (number of maximum hops) and U-IDS (monitoring group size) of the framework are evaluated and presented. PMID:26593915

  12. Application of a multi-level grid method to transonic flow calculations

    NASA Technical Reports Server (NTRS)

    South, J. C., Jr.; Brandt, A.

    1976-01-01

    A multi-level grid method was studied as a possible means of accelerating convergence in relaxation calculations for transonic flows. The method employs a hierarchy of grids, ranging from very coarse to fine. The coarser grids are used to diminish the magnitude of the smooth part of the residuals. The method was applied to the solution of the transonic small disturbance equation for the velocity potential in conservation form. Nonlifting transonic flow past a parabolic arc airfoil is studied with meshes of both constant and variable step size.

  13. A multi-level code for metallurgical effects in metal-forming processes

    SciTech Connect

    Taylor, P.A.; Silling, S.A.; Hughes, D.A.; Bammann, D.J.; Chiesa, M.L.

    1997-08-01

    The authors present the final report on a Laboratory-Directed Research and Development (LDRD) project, A Multi-level Code for Metallurgical Effects in metal-Forming Processes, performed during the fiscal years 1995 and 1996. The project focused on the development of new modeling capabilities for simulating forging and extrusion processes that typically display phenomenology occurring on two different length scales. In support of model fitting and code validation, ring compression and extrusion experiments were performed on 304L stainless steel, a material of interest in DOE nuclear weapons applications.

  14. Level set algorithms comparison for multi-slice CT left ventricle segmentation

    NASA Astrophysics Data System (ADS)

    Medina, Ruben; La Cruz, Alexandra; Ordoñes, Andrés.; Pesántez, Daniel; Morocho, Villie; Vanegas, Pablo

    2015-12-01

    The comparison of several Level Set algorithms is performed with respect to 2D left ventricle segmentation in Multi-Slice CT images. Five algorithms are compared by calculating the Dice coefficient between the resulting segmentation contour and a reference contour traced by a cardiologist. The algorithms are also tested on images contaminated with Gaussian noise for several values of PSNR. Additionally an algorithm for providing the initialization shape is proposed. This algorithm is based on a combination of mathematical morphology tools with watershed and region growing algorithms. Results on the set of test images are promising and suggest the extension to 3{D MSCT database segmentation.

  15. An Intrusion Detection System Based on Multi-Level Clustering for Hierarchical Wireless Sensor Networks

    PubMed Central

    Butun, Ismail; Ra, In-Ho; Sankar, Ravi

    2015-01-01

    In this work, an intrusion detection system (IDS) framework based on multi-level clustering for hierarchical wireless sensor networks is proposed. The framework employs two types of intrusion detection approaches: (1) “downward-IDS (D-IDS)” to detect the abnormal behavior (intrusion) of the subordinate (member) nodes; and (2) “upward-IDS (U-IDS)” to detect the abnormal behavior of the cluster heads. By using analytical calculations, the optimum parameters for the D-IDS (number of maximum hops) and U-IDS (monitoring group size) of the framework are evaluated and presented. PMID:26593915

  16. Magnetically-controllable optical multi-stability in magneto-optic fiber Bragg gratings with potential applications to multi-level all-optical regeneration

    NASA Astrophysics Data System (ADS)

    Wan, Qing-Yao; Wu, Bao-Jian; Zhou, Xing-Yu; Wen, Feng

    2015-08-01

    Starting with the nonlinear coupled-mode equations of guided optical waves in the magneto-optic fiber Bragg grating (MFBG), the amplitude transfer curve of the transmitted light is numerically calculated for the incident right-circularly polarized wave, and the multi-stability is analyzed by introducing the parameter of jitter suppression. It is shown that, (i) the performance of amplitude jitter suppression in the stable states of high level is better than that of low level; (ii) the jitter suppression in the multi-stable regions can be enhanced when the magnetic field is applied to the MFBG in the opposite direction of the incident wave; and (iii) by adjusting the applied magnetic field, the multi-stable levels can be tuned flexibly, which is helpful for developing the intelligent all-optical devices for multilevel regeneration.

  17. A multi-level assessment of a program to teach medical students to teach.

    PubMed

    Blatt, Benjamin; Greenberg, Larrie

    2007-02-01

    Few longitudinal programs exist to teach senior students (MS4s) to be teachers, nor have there been any reports of comprehensive program evaluation in this area. The primary objectives of this study were to describe our ongoing faculty development effort and to develop a multi-level program evaluation, using Dixon's model. The TALKS (Teaching and Learning Communication Skills) program is a senior elective and open to all MS4s. We evaluated our program through assessment of its participants at three levels: level 1, opinion; level 2, competence; and level 3, performance; but not level 4, patient outcomes. The authors used a retrospective, pre-post questionnaire to assess MS4 attitudes about their educational experiences, a traditional instrument to assess their teaching, an interaction analysis technique using Bloom's taxonomy to assess MS4s' feedback skills, and a SP exam to assess MS4 communication skills. The authors hypothesized that MS4s participating in TALKS would view medical education more positively and informatively, would demonstrate important principles in giving feedback, would be assessed as excellent teachers, and would perform better than controls in an SP exam emphasizing communication skills. Results revealed that MS4s' ratings as teachers were very good to excellent, with the highest scores on the items "knowledgeable, supportive of me, and answering questions clearly." (Level 1, Opinion) MS4s' perceptions of their knowledge, attitudes and skills increased significantly from the pre to the post-questionnaire. (Level 2, Competence) MS4 feedback skills to MS2s revealed they did more talking than ideal, often at the lowest levels of Bloom's taxonomy. (Level 3, Performance) MS4s demonstrated better communication skills than controls on an evaluation by professional SPs. (Level 3, Performance). PMID:17041788

  18. Effect of stiffness of multi-level hierarchical attachment system on adhesion enhancement.

    PubMed

    Kim, Tae Wan; Bhushan, Bharat

    2007-10-01

    Geckos are known for their remarkable ability to cling on and detach from ceilings and walls using a unique attachment system. Their foot pads are covered by a large number of small hair (setae) that contain many branches per seta with a lower level of spatulae. This hierarchical structure gives the gecko adaptability to create a large real area of contact with rough surfaces. In this study, using the three-level hierarchical model recently developed to simulate a gecko seta contacting with random rough surface, the effects of spring stiffness and number of springs on the adhesion enhancement of multi-level hierarchical model are investigated. One- and three-level hierarchically structured spring models with different spring stiffnesses and number of springs on each level in contact with various rough surfaces are considered. The efficiency of attachment-the adhesion coefficient, the adhesion force, the number of contacts and the adhesion energy-for the three-level models with different stiffness is investigated in contact with different rough surfaces. PMID:17555877

  19. Evaluating Multi-Level Models to Test Occupancy State Responses of Plethodontid Salamanders

    PubMed Central

    Kroll, Andrew J.; Garcia, Tiffany S.; Jones, Jay E.; Dugger, Katie; Murden, Blake; Johnson, Josh; Peerman, Summer; Brintz, Ben; Rochelle, Michael

    2015-01-01

    Plethodontid salamanders are diverse and widely distributed taxa and play critical roles in ecosystem processes. Due to salamander use of structurally complex habitats, and because only a portion of a population is available for sampling, evaluation of sampling designs and estimators is critical to provide strong inference about Plethodontid ecology and responses to conservation and management activities. We conducted a simulation study to evaluate the effectiveness of multi-scale and hierarchical single-scale occupancy models in the context of a Before-After Control-Impact (BACI) experimental design with multiple levels of sampling. Also, we fit the hierarchical single-scale model to empirical data collected for Oregon slender and Ensatina salamanders across two years on 66 forest stands in the Cascade Range, Oregon, USA. All models were fit within a Bayesian framework. Estimator precision in both models improved with increasing numbers of primary and secondary sampling units, underscoring the potential gains accrued when adding secondary sampling units. Both models showed evidence of estimator bias at low detection probabilities and low sample sizes; this problem was particularly acute for the multi-scale model. Our results suggested that sufficient sample sizes at both the primary and secondary sampling levels could ameliorate this issue. Empirical data indicated Oregon slender salamander occupancy was associated strongly with the amount of coarse woody debris (posterior mean = 0.74; SD = 0.24); Ensatina occupancy was not associated with amount of coarse woody debris (posterior mean = -0.01; SD = 0.29). Our simulation results indicate that either model is suitable for use in an experimental study of Plethodontid salamanders provided that sample sizes are sufficiently large. However, hierarchical single-scale and multi-scale models describe different processes and estimate different parameters. As a result, we recommend careful consideration of study questions

  20. Evaluating multi-level models to test occupancy state responses of Plethodontid salamanders

    USGS Publications Warehouse

    Kroll, Andrew J.; Garcia, Tiffany S.; Jones, Jay E.; Dugger, Catherine; Murden, Blake; Johnson, Josh; Peerman, Summer; Brintz, Ben; Rochelle, Michael

    2015-01-01

    Plethodontid salamanders are diverse and widely distributed taxa and play critical roles in ecosystem processes. Due to salamander use of structurally complex habitats, and because only a portion of a population is available for sampling, evaluation of sampling designs and estimators is critical to provide strong inference about Plethodontid ecology and responses to conservation and management activities. We conducted a simulation study to evaluate the effectiveness of multi-scale and hierarchical single-scale occupancy models in the context of a Before-After Control-Impact (BACI) experimental design with multiple levels of sampling. Also, we fit the hierarchical single-scale model to empirical data collected for Oregon slender and Ensatina salamanders across two years on 66 forest stands in the Cascade Range, Oregon, USA. All models were fit within a Bayesian framework. Estimator precision in both models improved with increasing numbers of primary and secondary sampling units, underscoring the potential gains accrued when adding secondary sampling units. Both models showed evidence of estimator bias at low detection probabilities and low sample sizes; this problem was particularly acute for the multi-scale model. Our results suggested that sufficient sample sizes at both the primary and secondary sampling levels could ameliorate this issue. Empirical data indicated Oregon slender salamander occupancy was associated strongly with the amount of coarse woody debris (posterior mean = 0.74; SD = 0.24); Ensatina occupancy was not associated with amount of coarse woody debris (posterior mean = -0.01; SD = 0.29). Our simulation results indicate that either model is suitable for use in an experimental study of Plethodontid salamanders provided that sample sizes are sufficiently large. However, hierarchical single-scale and multi-scale models describe different processes and estimate different parameters. As a result, we recommend careful consideration of study questions

  1. Multi-level dissolution and hydrolysis of lignocellulosic waste with a semi-flow hydrothermal system.

    PubMed

    Zhao, Yan; Tan, Haobo; Xu, Yingjie; Zou, Lei

    2016-08-01

    The hydrothermal process is efficient in lignocellulosic conversion and is beneficial to potential bioethanol production. In batch- and flow-type processes, concurrent dissolution and hydrolysis of lignocellulose result in product loss and inhibitory intermediates. Therefore, multi-level hydrothermal conversion of corn stalks was implemented with a semi-flow system to provide different residence times to undissolved compounds and facilitate dissolution or hydrolysis at respective optimal conditions. First-stage dissolution dissolved amorphous hemicellulose and lignin at 195-200°C. Xylan, acid soluble lignin, and part of Klason lignin were dissolved without affecting glucan. In second-stage dissolution, the crystallinity of the undissolved materials suddenly decreased at 245-250°C. The cellulose dissolution ratio was higher than 75%. Soluble sugars were obtained after the hydrolysis of dissolved cellulose at 280°C. The results provide significant information on the multi-level hydrothermal process and its potential applications for recovering valuable chemicals from lignocellulosic waste. PMID:27176669

  2. Analysis of a transformer-less, multi-level DC-DC converter for HVDC operation

    SciTech Connect

    Karady, G.G.; Devarajan, S.

    1998-12-31

    HVDC systems require DC step up and DC step down units. The traditional approach is the application of twelve-pulse thyristor bridges with transformers. The developments of fast switching IGBT devices permit the development of transformer-less, multi-level converters. A multi-level circuit was suggested by Limpaecher. This paper presents a detailed simulation of the proposed circuit together with the analysis of its performance. The converter consists of a set of capacitors, air core inductors and solid state switches arranged in a ladder network. In the step-up mode, the closing of solid state switches resonantly charges the capacitors in parallel through an air-cored inductor. Then solid state switches resonantly charges the capacitors in parallel through an air-cored inductor. Then solid state switches connect the capacitors in series and discharge them through an air-core inductor to the load. In the step-down mode the capacitors are charged in series and discharged in parallel. The circuit has three modes of operation in each cycle: charge, inversion, and discharge. The circuit operation is analyzed in each mode using SPICE simulations. The selection of the components is discussed and output voltage regulation is analyzed. The results show that the proposed circuit promises significant reduction of losses, because of the zero current switching. The investment cost is reduced because of the elimination of transformers.

  3. Detection of abnormalities in ultrasound lung image using multi-level RVM classification.

    PubMed

    Veeramani, Senthil Kumar; Muthusamy, Ezhilarasi

    2016-06-01

    The classification of abnormalities in ultrasound images is the monitoring tool of fluid to air passage in the lung. In this study, the adaptive median filtering technique is employed for the preprocessing step. The preprocessed image is then extracted the features by the convoluted local tetra pattern, histogram of oriented gradient, Haralick feature extraction and the complete local binary pattern. The extracted features are selected by applying particle swarm optimization and differential evolution feature selection. In the final stage, classifiers namely relevance vector machine (RVM), and multi-level RVM are employed to perform classification of the lung diseases. The diseases respiratory distress syndrome (RDS), transient tachypnea of the new born, meconium aspiration syndrome, pneumothorax, bronchiolitis, pneumonia, and lung cancer are used for training and testing. The experimental analysis exhibits better accuracy, sensitivity, specificity, pixel count and fitness value than the other existing methods. The classification accuracy of above 90% is accomplished by multi-level RVM classifier. The system has been tested with a number of ultrasound lung images and has achieved satisfactory results in classifying the lung diseases. PMID:26135771

  4. Multi-level Simulation of a Real Time Vibration Monitoring System Component

    NASA Technical Reports Server (NTRS)

    Robertson, Bryan A.; Wilkerson, Delisa

    2005-01-01

    This paper describes the development of a custom built Digital Signal Processing (DSP) printed circuit board designed to implement the Advanced Real Time Vibration Monitoring Subsystem proposed by Marshall Space Flight Center (MSFC) Transportation Directorate in 2000 for the Space Shuttle Main Engine Advanced Health Management System (AHMS). This Real Time Vibration Monitoring System (RTVMS) is being developed for ground use as part of the AHMS Health Management Computer-Integrated Rack Assembly (HMC-IRA). The HMC-IRA RTVMS design contains five DSPs which are highly interconnected through individual communication ports, shared memory, and a unique communication router that allows all the DSPs to receive digitized data fiom two multi-channel analog boards simultaneously. This paper will briefly cover the overall board design but will focus primarily on the state-of-the-art simulation environment within which this board was developed. This 16-layer board with over 1800 components and an additional mezzanine card has been an extremely challenging design. Utilization of a Mentor Graphics simulation environment provided the unique board and system level simulation capability to ascertain any timing or functional concerns before production. By combining VHDL, Synopsys Software and Hardware Models, and the Mentor Design Capture Environment, multiple simulations were developed to verify the RTVMS design. This multi-level simulation allowed the designers to achieve complete operability without error the first time the RTVMS printed circuit board was powered. The HMC-IRA design has completed all engineering and deliverable unit testing. P

  5. Multi-Level Interval Estimation for Locating damage in Structures by Using Artificial Neural Networks

    SciTech Connect

    Pan Danguang; Gao Yanhua; Song Junlei

    2010-05-21

    A new analysis technique, called multi-level interval estimation method, is developed for locating damage in structures. In this method, the artificial neural networks (ANN) analysis method is combined with the statistics theory to estimate the range of damage location. The ANN is multilayer perceptron trained by back-propagation. Natural frequencies and modal shape at a few selected points are used as input to identify the location and severity of damage. Considering the large-scale structures which have lots of elements, multi-level interval estimation method is developed to reduce the estimation range of damage location step-by-step. Every step, estimation range of damage location is obtained from the output of ANN by using the method of interval estimation. The next ANN training cases are selected from the estimation range after linear transform, and the output of new ANN estimation range of damage location will gained a reduced estimation range. Two numerical example analyses on 10-bar truss and 100-bar truss are presented to demonstrate the effectiveness of the proposed method.

  6. Band structure and transmission characteristics of complex phononic crystals by multi-level substructure scheme

    NASA Astrophysics Data System (ADS)

    Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2015-10-01

    A fast scheme based on the multi-level substructure technique is proposed for the band structure and transmission characteristics calculation of phononic crystals uniformly. The main idea is that finite element models of phononic crystals are divided into several domains by a special multi-level decomposition. For the band structure calculation, the upscaling calculation is employed to condense the internal stiffness matrix of the unit cell into the Bloch boundary. Due to the internal stiffness matrix does not change along with reduced wave vectors in an iteration process, the scheme can reduce the computational scale and improve the efficiency greatly, meanwhile it does not introduce approximation into the traditional finite element model. For the transmission characteristics calculation, the unit cell of the phononic crystal is periodic which is taken as a substructure with the same coefficient matrix. Moreover, the downscaling calculation of internal displacements can be selected flexibly. Some closely watched examples of the three-dimensional locally resonant, defect state of Lamb wave and Bragg waveguide are analyzed. Numerical results indicate that the proposed scheme is efficient and accurate, which may widely be applicable and suitable for complex phononic crystal problems, and provides a reliable numerical tool to optimize and design crystal devices.

  7. Multi-level Simulation of a Real Time Vibration Monitoring System Component

    NASA Technical Reports Server (NTRS)

    Roberston, Bryan; Wilkerson, DeLisa

    2004-01-01

    This paper describes the development of a custom built Digital Signal Processing (DSP) printed circuit board designed to implement the Advanced Real Time Vibration Monitoring Subsystem proposed by MSFC Transportation Directorate in 2000 for the Space Shuttle Main Engine Advanced Health Management System (AHMS). This Real Time Vibration Monitoring System (RTVMS) is being developed for ground use as part of the AHMS Health Management Computer-Integrated Rack Assembly (HMC-IRA). The HMC-IRA RTVMS design contains five DSPs which are highly interconnected through individual communication ports, shared memory, and a unique communication router that allows all the DSPs to receive digitized data from two multi-channel analog boards simultaneously. This paper will briefly cover the overall board design but will focus primarily on the state-of-the-art simulation environment within which this board was developed. This 16-layer board with over 1800 components and an additional mezzanine card has been an extremely challenging design. Utilization of a Mentor Graphics simulation environment provided the unique board and system level simulation capability to ascertain any timing or functional concerns before production. By combining VHDL, Synopsys Software and Hardware Models, and the Mentor Design Capture Environment, multiple simulations were developed to verify the RTVMS design. This multi-level simulation allowed the designers to achieve complete operability without error the first time the RTVMS printed circuit board was powered. The HMCIRA design has completed all engineering unit testing and the deliverable unit is currently under development.

  8. Readout system of multi-level run-length-limited read-only disc

    NASA Astrophysics Data System (ADS)

    Wang, Hequn; Xu, Haizheng; Pan, Longfa; Yan, Mingming

    2008-12-01

    The Radio Frequency (RF) signal of the Multi-Level Run-Length-Limited (ML-RLL) read-only disc is different from that of DVD, so the readout system of the ML-RLL read-only disc is built specially. The readout system of the ML-RLL read-only disc can realize servo control, RF signal readout and so on. The readout system consists of Digital Versatile Disc (DVD) traverse, analog front-end and digital processing part. Analog front-end can realize front-end amplification of the output signal of the optical pick-up and power drive of mechanism. Digital processing part mainly consists of digital circuits, which functions are the servo controlling, demodulation and decoding of RF signal, general control and so on. The whole system is implemented on two Field Programmable Gate Array (FPGA) chips and the experimental results show a good performance. We tested the important signals, and experimental results are also given to verify the performance of this development platform, which meets the controlling and detecting requirements to multi-level read-only disc completely. The Bit Error Rate (SER) can achieve below 10-4.

  9. Multi-Level Construction of Polar Codes for Half-Duplex Wireless Coded-Cooperative Networks

    NASA Astrophysics Data System (ADS)

    Ejaz, Saqib; FengFan, Yang; Soliman, Tamer H. M.

    2015-11-01

    In this paper, Plotkin's construction is employed to buildup longer length polar codes with the help of shorter length polar codes. Firstly, we present the multi-level code construction steps for non-cooperative communication schemes. Secondly, we extend the proposed multi-level polar code construction to coded-cooperative scenarios due to the parallel split in the proposed encoding scheme. Since, relay plays a pivotal role in the overall bit error rate (BER) performance of the coded-cooperative schemes, therefore, an efficient criteria of information bit selection at the relay is also presented. Furthermore, we propose a novel joint successive cancellation decoding scheme, which is employed at the destination and provides significant coding gains. Various numerical simulations show that the proposed polar coded-cooperative scheme (PCCS) scheme not only outperforms non-cooperative polar coded scheme but also the existing cooperative schemes for polar codes under identical conditions over an additive white Gaussian noise (AWGN) and quasi-static Rayleigh fading channels.

  10. Multi-Level Anomaly Detection on Time-Varying Graph Data

    SciTech Connect

    Bridges, Robert A; Collins, John P; Ferragut, Erik M; Laska, Jason A; Sullivan, Blair D

    2015-01-01

    This work presents a novel modeling and analysis framework for graph sequences which addresses the challenge of detecting and contextualizing anomalies in labelled, streaming graph data. We introduce a generalization of the BTER model of Seshadhri et al. by adding flexibility to community structure, and use this model to perform multi-scale graph anomaly detection. Specifically, probability models describing coarse subgraphs are built by aggregating probabilities at finer levels, and these closely related hierarchical models simultaneously detect deviations from expectation. This technique provides insight into a graph's structure and internal context that may shed light on a detected event. Additionally, this multi-scale analysis facilitates intuitive visualizations by allowing users to narrow focus from an anomalous graph to particular subgraphs or nodes causing the anomaly. For evaluation, two hierarchical anomaly detectors are tested against a baseline Gaussian method on a series of sampled graphs. We demonstrate that our graph statistics-based approach outperforms both a distribution-based detector and the baseline in a labeled setting with community structure, and it accurately detects anomalies in synthetic and real-world datasets at the node, subgraph, and graph levels. To illustrate the accessibility of information made possible via this technique, the anomaly detector and an associated interactive visualization tool are tested on NCAA football data, where teams and conferences that moved within the league are identified with perfect recall, and precision greater than 0.786.