Science.gov

Sample records for multi organ dysfunction

  1. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure

    PubMed Central

    Singer, Mervyn

    2014-01-01

    An important role for bioenergetic dysfunction is increasingly emerging to potentially explain the paradox of clinical and biochemical organ failure in sepsis yet minimal cell death, maintained tissue oxygenation and recovery in survivors. Associations are well-recognized between the degree of mitochondrial dysfunction and outcomes. While this does not confirm cause-and-effect, it does nevertheless suggest a new route for therapeutic intervention focused on either mitochondrial protection or acceleration of the recovery process through stimulation of mitochondrial biogenesis (new protein turnover). This is particularly pertinent in light of the multiple trial failures related to immunomodulatory therapies. This overview will provide insights into mitochondrial biology, the relevance to sepsis, and therapeutic opportunities that possibly emerge. PMID:24185508

  2. OCCURRENCE OF MULTI-ORGAN DYSFUNCTION IN PEDIATRIC BURN PATIENTS - INCIDENCE AND CLINICAL OUTCOME

    PubMed Central

    Kraft, Robert; Herndon, David N; Finnerty, Celeste C; Shahrokhi, Shahriar; Jeschke, Marc G

    2013-01-01

    Objective To examine the incidence of single or multiple organ failure postburn and its resultant clinical outcomes during acute hospitalization. Summary Background Data Patient outcomes are inherently dependent on intact organ function; however, burn injury affects the structure and function of almost every organ, but especially lung, liver, kidney and heart. Therefore, single-organ failure and/or multiorgan failure (MOF) are thought to contribute significantly to postburn morbidity and mortality but to date no large trial examining the effects of MOF on postburn outcomes exists. Methods Incidence of MOF was monitored in 821 pediatric burn patients during acute hospitalization. Patients were divided into groups based on the incidence of single organ specific failure, MOF, and non-MOF. The DENVER2 score was used to assess organ specific scores for lung, liver, kidney and heart. The patient’s demographics, injury characteristics, and outcome parameters were recorded. Results Respiratory failure has the highest incidence in the early phase of postburn injury, and decreases starting 5 days postburn. Cardiac failure was noted to have the highest incidence throughout hospital stay. Incidence of hepatic failure increases with the length of hospital stay and is associated with a high mortality during the late phase of the acute hospital stay. Renal failure has an unexpectedly low incidence but is associated with a high mortality during the first three weeks postburn injury. Three or more organ failure is associated with very high mortality. Conclusion This is the first large study in burn patients to determine the incidence of organ specific failure and outcome. The results of this study confirmed the expected chronologic incidence of organ-specific failure and yield the long-term mortality of liver and renal failure. (NCT00673309) PMID:23511841

  3. MBL-2 polymorphisms (codon 54 and Y-221X) and low MBL levels are associated with susceptibility to multi organ dysfunction in P. falciparum malaria in Odisha, India

    PubMed Central

    Das, Bidyut K.; Panda, Aditya K.

    2015-01-01

    Background: Mannose binding lectin, a plasma protein protects host from virus, bacteria, and parasites. Deficiency in MBL levels has been associated with susceptibility to various infectious diseases including P. falciparum malaria. Common MBL polymorphisms in promoter and coding regions are associated with decrease in plasma MBL levels or production of deformed MBL, respectively. In the present study, we hypothesized that MBL2 variants and plasma MBL levels could be associated with different clinical phenotypes of severe P. falciparum malaria. Methods: A hospital based study was conducted in eastern Odisha, India which is endemic to P. falciparum malaria. Common MBL-2 polymorphisms (codon 54, H-550L, and Y-221X) were typed in 336 cases of severe malaria (SM) [94 cerebral malaria (CM), 120 multi-organ dysfunction (MOD), 122 non-cerebral severe malaria (NCSM)] and 131 un-complicated malaria patients (UM). Plasma MBL levels were quantified by ELISA. Results: Severe malaria patients displayed lower plasma levels of MBL compared to uncomplicated falciparum malaria. Furthermore, on categorization of severe malaria patients into various subtypes, plasma MBL levels were very low in MOD patients compared to other categories. Higher frequency of AB genotype and allele B was observed in MOD compared to UM (AB genotype: P = 0.006; B allele: P = 0.008). In addition, prevalence of YX genotype of MBL Y-221X polymorphism was also statistically more frequent in MOD case than UM (P = 0.009). Conclusions: The observations of the present study reveal that MBL-2 polymorphisms (codon 54 and Y-221X) and lower plasma MBL levels are associated with increased susceptibility to multi organ dysfunctions in P. falciparum malaria. PMID:26284055

  4. Organ dysfunction: general approach, epidemiology, and organ failure scores.

    PubMed

    Ferreira, Alberto Mendonca Pires; Sakr, Yasser

    2011-10-01

    Multiorgan dysfunction syndrome represents a continuum of cumulative organ dysfunction from very mildly altered function to total and, rarely, irreversible organ failure and is the major cause of death in the intensive care unit (ICU). The terms multiple organ failure syndrome (MOFS), multiple organ system failure (MOSF), and multiple organ failure (MOF) have since been used to describe this syndrome. Infections were initially thought to be the main cause of multiorgan dysfunction; however, other insults, such as severe trauma, burn injuries, and noninfectious inflammatory diseases may precipitate a similar condition. In 2001, several North American and European intensive care societies revisited the definitions for sepsis and related conditions. Additional criteria indicative of physiological derangements were added to the traditional systemic inflammatory response syndrome (SIRS) criteria, including clinical abnormalities (altered mental status, ileus) and biochemical evidence of a sepsis response [procalcitonin (PCT), C-reactive protein (CRP), creatinine, or cytokine levels]. The use of organ failure scores to describe organ dysfunction in ICU patients was encouraged. The pulmonary, cardiovascular, renal, hepatic, hematologic, and central nervous systems are the organs most commonly considered when describing organ dysfunction/failure in the ICU. Scoring systems for organ dysfunction/failure were designed primarily as descriptive tools, aimed at establishing standardized definitions to stratify and compare patients in the ICU in terms of morbidity rather than mortality. Sequential evaluation of organ dysfunction during the ICU stay may track disease progression and may be useful prognostically. We discuss the various scoring systems developed over the past 2 decades and present a rational approach to their role in assessing and following critically ill patients. PMID:21989690

  5. Dietary Capsaicin Protects Cardiometabolic Organs from Dysfunction.

    PubMed

    Sun, Fang; Xiong, Shiqiang; Zhu, Zhiming

    2016-01-01

    Chili peppers have a long history of use for flavoring, coloring, and preserving food, as well as for medical purposes. The increased use of chili peppers in food is very popular worldwide. Capsaicin is the major pungent bioactivator in chili peppers. The beneficial effects of capsaicin on cardiovascular function and metabolic regulation have been validated in experimental and population studies. The receptor for capsaicin is called the transient receptor potential vanilloid subtype 1 (TRPV1). TRPV1 is ubiquitously distributed in the brain, sensory nerves, dorsal root ganglia, bladder, gut, and blood vessels. Activation of TRPV1 leads to increased intracellular calcium signaling and, subsequently, various physiological effects. TRPV1 is well known for its prominent roles in inflammation, oxidation stress, and pain sensation. Recently, TRPV1 was found to play critical roles in cardiovascular function and metabolic homeostasis. Experimental studies demonstrated that activation of TRPV1 by capsaicin could ameliorate obesity, diabetes, and hypertension. Additionally, TRPV1 activation preserved the function of cardiometabolic organs. Furthermore, population studies also confirmed the beneficial effects of capsaicin on human health. The habitual consumption of spicy foods was inversely associated with both total and certain causes of specific mortality after adjustment for other known or potential risk factors. The enjoyment of spicy flavors in food was associated with a lower prevalence of obesity, type 2 diabetes, and cardiovascular diseases. These results suggest that capsaicin and TRPV1 may be potential targets for the management of cardiometabolic vascular diseases and their related target organs dysfunction. PMID:27120617

  6. Dietary Capsaicin Protects Cardiometabolic Organs from Dysfunction

    PubMed Central

    Sun, Fang; Xiong, Shiqiang; Zhu, Zhiming

    2016-01-01

    Chili peppers have a long history of use for flavoring, coloring, and preserving food, as well as for medical purposes. The increased use of chili peppers in food is very popular worldwide. Capsaicin is the major pungent bioactivator in chili peppers. The beneficial effects of capsaicin on cardiovascular function and metabolic regulation have been validated in experimental and population studies. The receptor for capsaicin is called the transient receptor potential vanilloid subtype 1 (TRPV1). TRPV1 is ubiquitously distributed in the brain, sensory nerves, dorsal root ganglia, bladder, gut, and blood vessels. Activation of TRPV1 leads to increased intracellular calcium signaling and, subsequently, various physiological effects. TRPV1 is well known for its prominent roles in inflammation, oxidation stress, and pain sensation. Recently, TRPV1 was found to play critical roles in cardiovascular function and metabolic homeostasis. Experimental studies demonstrated that activation of TRPV1 by capsaicin could ameliorate obesity, diabetes, and hypertension. Additionally, TRPV1 activation preserved the function of cardiometabolic organs. Furthermore, population studies also confirmed the beneficial effects of capsaicin on human health. The habitual consumption of spicy foods was inversely associated with both total and certain causes of specific mortality after adjustment for other known or potential risk factors. The enjoyment of spicy flavors in food was associated with a lower prevalence of obesity, type 2 diabetes, and cardiovascular diseases. These results suggest that capsaicin and TRPV1 may be potential targets for the management of cardiometabolic vascular diseases and their related target organs dysfunction. PMID:27120617

  7. Phenotypic clusters within sepsis-associated multiple organ dysfunction syndrome

    PubMed Central

    Knox, Daniel B.; Lanspa, Michael J.; Kuttler, Kathryn G.; Brewer, Simon C.

    2015-01-01

    Introduction Sepsis is a devastating condition that is generally treated as a single disease. Identification of meaningfully distinct clusters may improve research, treatment and prognostication among septic patients. We therefore sought to identify clusters among patients with severe sepsis or septic shock. Methods We retrospectively studied all patients with severe sepsis or septic shock admitted directly from the emergency department to the intensive care units (ICUs) of three hospitals, 2006–2013. Using age and Sequential Organ Failure Assessment (SOFA) subscores, we defined clusters utilizing self-organizing maps, a method for representing multidimensional data in intuitive two-dimensional grids to facilitate cluster identification. Results We identified 2533 patients with severe sepsis or septic shock. Overall mortality was 17 %, with a mean APACHE II score of 24, mean SOFA score of 8 and a mean ICU stay of 5.4 days. Four distinct clusters were identified; (1) shock with elevated creatinine, (2) minimal multi-organ dysfunction syndrome (MODS), (3) shock with hypoxemia and altered mental status, and (4) hepatic disease. Mortality (95 % confidence intervals) for these clusters was 11 (8–14), 12 (11–14), 28 (25–32), and 21 (16–26) %, respectively (p < 0.0001). Regression modeling demonstrated that the clusters differed in the association between clinical outcomes and predictors, including APACHE II score. Conclusions We identified four distinct clusters of MODS among patients with severe sepsis or septic shock. These clusters may reflect underlying pathophysiological differences and could potentially facilitate tailored treatments or directed research. PMID:25851384

  8. Evaluation of young men with organic erectile dysfunction

    PubMed Central

    Papagiannopoulos, Dimitri; Khare, Narenda; Nehra, Ajay

    2015-01-01

    Erectile dysfunction (ED) in men under the age of 40 was once thought to be entirely psychogenic. Over the last few decades, advances in our understanding of erectile physiology and improvements in diagnostic testing have restructured our understanding of ED and its etiologies. Although psychogenic ED is more prevalent in the younger population, at least 15%–20% of these men have an organic etiology. Organic ED has been shown to be a predictor of increased future morbidity and mortality. As such, a thorough work-up should be employed for any man with complaints of sexual dysfunction. Oftentimes a treatment plan can be formulated after a focused history, physical exam and basic lab-work are conducted. However, in certain complex cases, more testing can be employed. The major organic etiologies can be subdivided into vascular, neurologic, and endocrine. Specific testing should be directed by clinical clues noted during the preliminary evaluation. These tests vary in degree of invasiveness, precision, and at times may not affect treatment. Results should be integrated into the overall clinical picture to assist in diagnosis and help guide therapy. PMID:25370205

  9. The Autodigestion Hypothesis for Shock and Multi-organ Failure

    PubMed Central

    Schmid-Schönbein, Geert W.; Chang, Marisol

    2013-01-01

    An important medical problem with high mortality is shock, sepsis and multi-organ failure. They have currently no treatments other than alleviation of symptoms. Shock is accompanied by strong markers for inflammation and involves a cascade of events that leads to failure in organs even if they are not involved in the initial insult. Recent evidence indicates that pancreatic digestive enzymes carried in the small intestine after mixing with ingested food are a major cause for multi-organ failure. These concentrated and relatively non-specific enzymes are usually compartmentalized inside the intestinal lumen as requirement for normal digestion. But after breakdown of the mucosal barrier they leak into the wall of the intestine and start an autodigestion process that includes destruction of villi in the intestine. Digestive enzymes also generate cytotoxic mediators, which together are transported into the systemic circulation via the portal venous system, the intestinal lymphatics and via the peritoneum. They cause various degrees of cell and organ dysfunction that can reach the point of complete organ failure. Blockade of digestive enzymes in the lumen of the intestine in experimental forms of shock serves to reduce breakdown of the mucosal barrier and autodigestion of the intestine, organ dysfunctions and mortality. PMID:23989761

  10. Mechanical ventilation interacts with endotoxemia to induce extrapulmonary organ dysfunction

    PubMed Central

    O'Mahony, D Shane; Liles, W Conrad; Altemeier, William A; Dhanireddy, Shireesha; Frevert, Charles W; Liggitt, Denny; Martin, Thomas R; Matute-Bello, Gustavo

    2006-01-01

    Introduction Multiple organ dysfunction syndrome (MODS) is a common complication of sepsis in mechanically ventilated patients with acute respiratory distress syndrome, but the links between mechanical ventilation and MODS are unclear. Our goal was to determine whether a minimally injurious mechanical ventilation strategy synergizes with low-dose endotoxemia to induce the activation of pro-inflammatory pathways in the lungs and in the systemic circulation, resulting in distal organ dysfunction and/or injury. Methods We administered intraperitoneal Escherichia coli lipopolysaccharide (LPS; 1 μg/g) to C57BL/6 mice, and 14 hours later subjected the mice to 6 hours of mechanical ventilation with tidal volumes of 10 ml/kg (LPS + MV). Comparison groups received ventilation but no LPS (MV), LPS but no ventilation (LPS), or neither LPS nor ventilation (phosphate-buffered saline; PBS). Results Myeloperoxidase activity and the concentrations of the chemokines macrophage inflammatory protein-2 (MIP-2) and KC were significantly increased in the lungs of mice in the LPS + MV group, in comparison with mice in the PBS group. Interestingly, permeability changes across the alveolar epithelium and histological changes suggestive of lung injury were minimal in mice in the LPS + MV group. However, despite the minimal lung injury, the combination of mechanical ventilation and LPS resulted in chemical and histological evidence of liver and kidney injury, and this was associated with increases in the plasma concentrations of KC, MIP-2, IL-6, and TNF-α. Conclusion Non-injurious mechanical ventilation strategies interact with endotoxemia in mice to enhance pro-inflammatory mechanisms in the lungs and promote extra-pulmonary end-organ injury, even in the absence of demonstrable acute lung injury. PMID:16995930

  11. Protective Effects of Antioxidant Peptide SS-31 Against Multiple Organ Dysfunctions During Endotoxemia.

    PubMed

    Li, Guoming; Wu, Jing; Li, Renqi; Yuan, Dong; Fan, Yunxia; Yang, Jianjun; Ji, Muhuo; Zhu, Sihai

    2016-02-01

    Oxidative stress causes mitochondrial impairment, the failure of energy production, and consequent organ dysfunctions. The aim of the present study was to investigate the potential therapeutic effects of mitochondrial antioxidant SS-31 on sepsis-induced organ dysfunctions and to explore the possible mechanism. Sepsis was induced by cecal ligation and puncture. Immediately and at 5 h after the operation, SS-31 (5 mg/kg) or vehicle was administered intraperitoneally. The levels of organ dysfunctions, malondialdehyde, superoxide dismutase, proinflammatory cytokines, pulmonary wet-to-dry weight ratio, myeloperoxidase activity, histological scores, nuclear factor kappa B p65, inducible nitric oxide synthase, reactive oxygen species, adenosine triphosphate, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells were assessed at the indicated time points. The 7-day survival rate was estimated by the Kaplan-Meier method. In the present study, SS-31 treatment significantly improved sepsis-induced organ dysfunctions as evidenced by decreased histological scores, increased arterial partial oxygen tension, and deceased serum alanine aminotransferase, urea nitrogen, and creatinine levels, which was accompanied by decreased levels of malondialdehyde, tumor necrosis factor-alpha, pulmonary myeloperoxidase activity, nuclear factor kappa B p65, inducible nitric oxide synthase, reactive oxygen species, and TUNEL-positive cells. In conclusion, our data suggested that the protective effects of SS-31 on sepsis-induced organ dysfunctions were associated with the inhibition of proinflammatory cytokines, oxidative stress, and apoptosis. PMID:26231114

  12. [Fluid management and care for multiple organ dysfunction syndrome in patients with extensive burns].

    PubMed

    Shinozawa, Yotaro

    2005-12-01

    Burn shock and multiple organ dysfunction syndrome (MODS) are the main causes of death in patients with extensive burns, and thus fluid management and care for MODS are crucial in the treatment of these patients. Several fluid formulas have been developed, although there is still controversy over the best formula. The important point is to understand how to deal with the different side effects inevitable with each fluid therapy: fluid restriction and/or diuretic administration in the refilling phase in fluid therapy with crystalloid, care for hypernatremia and/or a hyperosmolar state in fluid therapy with hypertonic lactated solution (HLS), etc. Precise fluid management is needed for aged patients, patients with extensive inhalation injury, extensive electric injury, and myocardial dysfunction, or patients in whom the start of fluid treatment was delayed. MODS in extensively burned patients is attributed to overwhelming burn stress and complicated sepsis, including bacterial translocation (BT). A dysfunctioning organ impairs another organ (organ interrelationships), and therefore substitution and/or recovery of a dysfunctioning organ are crucial. Debridement of skin with third-degree burns, suppression of BT, sanitary airway management, avoidance of unnecessary stress, and mediator modulation to stop the mediator cascade inducing MODS are also crucial. PMID:16869126

  13. Background Noise Contributes to Organic Solvent Induced Brain Dysfunction.

    PubMed

    Guthrie, O'neil W; Wong, Brian A; McInturf, Shawn M; Reboulet, James E; Ortiz, Pedro A; Mattie, David R

    2016-01-01

    Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures. PMID:26885406

  14. Background Noise Contributes to Organic Solvent Induced Brain Dysfunction

    PubMed Central

    Guthrie, O'neil W.; Wong, Brian A.; McInturf, Shawn M.; Reboulet, James E.; Ortiz, Pedro A.; Mattie, David R.

    2016-01-01

    Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures. PMID:26885406

  15. Multi-modality Optical Imaging of Rat Kidney Dysfunction: In Vivo Response to Various Ischemia Times.

    PubMed

    Ding, Zhenyang; Jin, Lily; Wang, Hsing-Wen; Tang, Qinggong; Guo, Hengchang; Chen, Yu

    2016-01-01

    We observed in vivo kidney dysfunction with various ischemia times at 30, 75, 90, and 120 min using multi-modality optical imaging: optical coherence tomography (OCT), Doppler OCT (DOCT), and two-photon microscopy (TPM). We imaged the renal tubule lumens and glomerulus at several areas of each kidney before, during, and after ischemia of 5-month-old female Munich-Wistar rats. For animals with 30 and 75 min ischemia times, we observed that all areas were recovered after ischemia, that tubule lumens were re-opened and the blood flow of the glomerulus was re-established. For animals with 90 and 120 min ischemia times, we observed unrecovered areas, and that tubule lumens remained close after ischemia. TPM imaging verified the results of OCT and provided higher resolution images than OCT to visualize renal tubule lumens and glomerulus blood flow at the cellular level. PMID:27526162

  16. Task Dependent Prefrontal Dysfunction in Persons with Asperger's Disorder Investigated with Multi-Channel Near-Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Iwanami, Akira; Okajima, Yuka; Ota, Haruhisa; Tani, Masayuki; Yamada, Takashi; Hashimoro, Ryuichiro; Kanai, Chieko; Watanabe, Hiromi; Yamasue, Hidenori; Kawakubo, Yuki; Kato, Nobumasa

    2011-01-01

    Dysfunction of the prefrontal cortex has been previously reported in individuals with Asperger's disorder. In the present study, we used multi-channel near-infrared spectroscopy (NIRS) to detect changes in the oxygenated hemoglobin concentration ([oxy-Hb]) during two verbal fluency tasks. The subjects were 20 individuals with Asperger's disorder…

  17. Early organ dysfunction affects long-term survival in acute pancreatitis patients

    PubMed Central

    Skouras, Christos; Hayes, Alastair J; Williams, Linda; Garden, O James; Parks, Rowan W; Mole, Damian J

    2014-01-01

    Background The effect of early organ dysfunction on long-term survival in acute pancreatitis (AP) patients is unknown. Objective The aim of this study was to ascertain whether early organ dysfunction impacts on long-term survival after an episode of AP. Methods A retrospective analysis was performed using survival data sourced from a prospectively maintained database of patients with AP admitted to the Royal Infirmary of Edinburgh during a 5-year period commencing January 2000. A multiple organ dysfunction syndrome (MODS) score of ≥ 2 during the first week of admission was used to define early organ dysfunction. After accounting for in-hospital deaths, long-term survival probabilities were estimated using the Kaplan–Meier test. The prognostic significance of patient characteristics was assessed by univariate and multivariate analyses using Cox's proportional hazards methods. Results A total of 694 patients were studied (median follow-up: 8.8 years). Patients with early organ dysfunction (MODS group) were found to have died prematurely [mean survival: 10.0 years, 95% confidence interval (CI) 9.4–10.6 years] in comparison with the non-MODS group (mean survival: 11.6 years, 95% CI 11.2–11.9 years) (log-rank test, P = 0.001) after the exclusion of in-hospital deaths. Multivariate analysis confirmed MODS as an independent predictor of long-term survival [hazard ratio (HR): 1.528, 95% CI 1.72–2.176; P = 0.019] along with age (HR: 1.062; P < 0.001), alcohol-related aetiology (HR: 2.027; P = 0.001) and idiopathic aetiology (HR: 1.548; P = 0.048). Conclusions Early organ dysfunction in AP is an independent predictor of long-term survival even when in-hospital deaths are accounted for. Negative predictors also include age, and idiopathic and alcohol-related aetiologies. PMID:24712663

  18. An Endotoxin Tolerance Signature Predicts Sepsis and Organ Dysfunction at Initial Clinical Presentation

    PubMed Central

    Pena, Olga M.; Hancock, David G.; Lyle, Ngan H.; Linder, Adam; Russell, James A.; Xia, Jianguo; Fjell, Christopher D.; Boyd, John H.; Hancock, Robert E.W.

    2014-01-01

    Background Sepsis involves aberrant immune responses to infection, but the exact nature of this immune dysfunction remains poorly defined. Bacterial endotoxins like lipopolysaccharide (LPS) are potent inducers of inflammation, which has been associated with the pathophysiology of sepsis, but repeated exposure can also induce a suppressive effect known as endotoxin tolerance or cellular reprogramming. It has been proposed that endotoxin tolerance might be associated with the immunosuppressive state that was primarily observed during late-stage sepsis. However, this relationship remains poorly characterised. Here we clarify the underlying mechanisms and timing of immune dysfunction in sepsis. Methods We defined a gene expression signature characteristic of endotoxin tolerance. Gene-set test approaches were used to correlate this signature with early sepsis, both newly and retrospectively analysing microarrays from 593 patients in 11 cohorts. Then we recruited a unique cohort of possible sepsis patients at first clinical presentation in an independent blinded controlled observational study to determine whether this signature was associated with the development of confirmed sepsis and organ dysfunction. Findings All sepsis patients presented an expression profile strongly associated with the endotoxin tolerance signature (p < 0.01; AUC 96.1%). Importantly, this signature further differentiated between suspected sepsis patients who did, or did not, go on to develop confirmed sepsis, and predicted the development of organ dysfunction. Interpretation Our data support an updated model of sepsis pathogenesis in which endotoxin tolerance-mediated immune dysfunction (cellular reprogramming) is present throughout the clinical course of disease and related to disease severity. Thus endotoxin tolerance might offer new insights guiding the development of new therapies and diagnostics for early sepsis. PMID:25685830

  19. [Craniomandibular disorder/dysfunction. Characteristics and disorders of the masticatory organ].

    PubMed

    Kiss, Géza; Pácz, Miklós; Kiss, Péter

    2015-01-25

    The practising physician often meets patients with pain located in different parts of the face and facial skull, mouth opening restriction or other motion disorder of the mandible. It is not always easy to identify and explain the cause. It is not widely known among doctors that most of these problems are due to masticatory dysfunction. There is a special group of patients showing functional disorders and there are some others who present a variety of different symptoms and visit several doctors. The masticatory organ, a functional unit of the human organism has a definite and separate task and function. In the early years of life it is capable of adaptation, while later on it tends to compensation. The authors outline the functional anatomy of the masticatory organ and the characteristics of multicausal pathology, the dynamics of the process of the disease and their interdisciplinary aspects. They discuss the basic elements of craniomandibular dysfunction. Based on the diagnostic algorithm, they summarize treatment options for masticatory function disorders. They emphasize the importance that physicians should offer treatment, especially an irreversible treatment, without a diagnosis. It occurs very often that the causes are identified after the patients become symptom-free due to treatment. The aim of this report is to help the general practitioners, dentists, neurologists, ear-nose-throat specialists, rheumatologists or any other specialists in the everyday practice who have patients with different symptoms such as pain in the skull, acoustic phenomenon of the joint or craniomandibular dysfunction. PMID:25597316

  20. Endothelial dysfunction in patients with primary aldosteronism: a biomarker of target organ damage.

    PubMed

    Liu, G; Yin, G-S; Tang, J-y; Ma, D-J; Ru, J; Huang, X-H

    2014-12-01

    Primary aldosteronism (PA) has been associated with increased target organ damage (TOD), most likely through mineralocorticoid receptor-dependent endothelial dysfunction, in comparison with essential hypertension (EH). The aim of this study was to evaluate the level of biomarkers of endothelial dysfunction in PA and the relationship with left ventricular hypertrophy (LVH) and microalbuminuria (MAU). A total of 50 PA patients and 51 patients with EH individually matched for age, sex, blood pressure and duration of hypertension participated in this study. Biomarkers of endothelial dysfunction, including von Willebrand factor (vWF), intercellular adhesion molecule 1 (ICAM-1) and oxidized low-density lipoprotein (ox-LDL), were measured. Plasma aldosterone concentration (PAC), MAU and echocardiography were also evaluated. In PA patients, vWF, ICAM-1, ox-LDL, LVH and MAU were all significantly higher than in EH patients (all P<0.05). Furthermore, LVH was positively correlated with PAC (P=0.002), vWF (P=0.013) and ox-LDL (P=0.020). MAU was positively correlated with PAC (P<0.001), vWF (P=0.013) and ICAM-1 (P=0.001). Multiple regression analysis indicated that vWF, ICAM-1 and PAC independently predicted MAU (all P<0.05). Likewise, PAC, vWF and ox-LDL were significant predictors of LVH (all P<0.05). Taken together, our results suggest that endothelial dysfunction may contribute to TOD in PA patients. PMID:24553636

  1. Melatonin Improves Outcomes of Heatstroke in Mice by Reducing Brain Inflammation and Oxidative Damage and Multiple Organ Dysfunction

    PubMed Central

    Hsu, Shu-Fen; Lin, Mao-Tsun

    2013-01-01

    We report here that when untreated mice underwent heat stress, they displayed thermoregulatory deficit (e.g., animals display hypothermia during room temperature exposure), brain (or hypothalamic) inflammation, ischemia, oxidative damage, hypothalamic-pituitary-adrenal axis impairment (e.g., decreased plasma levels of both adrenocorticotrophic hormone and corticosterone during heat stress), multiple organ dysfunction or failure, and lethality. Melatonin therapy significantly reduced the thermoregulatory deficit, brain inflammation, ischemia, oxidative damage, hypothalamic-pituitary-adrenal axis impairment, multiple organ dysfunction, and lethality caused by heat stroke. Our data indicate that melatonin may improve outcomes of heat stroke by reducing brain inflammation, oxidative damage, and multiple organ dysfunction. PMID:24369441

  2. The Impact of Infection on Chronic Allograft Dysfunction and Allograft Survival After Solid Organ Transplantation.

    PubMed

    Martin-Gandul, C; Mueller, N J; Pascual, M; Manuel, O

    2015-12-01

    Infectious diseases after solid organ transplantation (SOT) are a significant cause of morbidity and reduced allograft and patient survival; however, the influence of infection on the development of chronic allograft dysfunction has not been completely delineated. Some viral infections appear to affect allograft function by both inducing direct tissue damage and immunologically related injury, including acute rejection. In particular, this has been observed for cytomegalovirus (CMV) infection in all SOT recipients and for BK virus infection in kidney transplant recipients, for community-acquired respiratory viruses in lung transplant recipients, and for hepatitis C virus in liver transplant recipients. The impact of bacterial and fungal infections is less clear, but bacterial urinary tract infections and respiratory tract colonization by Pseudomonas aeruginosa and Aspergillus spp appear to be correlated with higher rates of chronic allograft dysfunction in kidney and lung transplant recipients, respectively. Evidence supports the beneficial effects of the use of antiviral prophylaxis for CMV in improving allograft function and survival in SOT recipients. Nevertheless, there is still a need for prospective interventional trials assessing the potential effects of preventive and therapeutic strategies against bacterial and fungal infection for reducing or delaying the development of chronic allograft dysfunction. PMID:26474168

  3. Heparin-Binding Protein Measurement Improves the Prediction of Severe Infection With Organ Dysfunction in the Emergency Department

    PubMed Central

    Arnold, Ryan; Boyd, John H.; Zindovic, Marko; Zindovic, Igor; Lange, Anna; Paulsson, Magnus; Nyberg, Patrik; Russell, James A.; Pritchard, David; Christensson, Bertil; Åkesson, Per

    2015-01-01

    Objectives: Early identification of patients with infection and at risk of developing severe disease with organ dysfunction remains a difficult challenge. We aimed to evaluate and validate the heparin-binding protein, a neutrophil-derived mediator of vascular leakage, as a prognostic biomarker for risk of progression to severe sepsis with circulatory failure in a multicenter setting. Design: A prospective international multicenter cohort study. Setting: Seven different emergency departments in Sweden, Canada, and the United States. Patients: Adult patients with a suspected infection and at least one of three clinical systemic inflammatory response syndrome criteria (excluding leukocyte count). Intervention: None. Measurements and Main Results: Plasma levels of heparin-binding protein, procalcitonin, C-reactive protein, lactate, and leukocyte count were determined at admission and 12–24 hours after admission in 759 emergency department patients with suspected infection. Patients were defined depending on the presence of infection and organ dysfunction. Plasma samples from 104 emergency department patients with suspected sepsis collected at an independent center were used to validate the results. Of the 674 patients diagnosed with an infection, 487 did not have organ dysfunction at enrollment. Of these 487 patients, 141 (29%) developed organ dysfunction within the 72-hour study period; 78.0% of the latter patients had an elevated plasma heparin-binding protein level (> 30 ng/mL) prior to development of organ dysfunction (median, 10.5 hr). Compared with other biomarkers, heparin-binding protein was the best predictor of progression to organ dysfunction (area under the receiver operating characteristic curve = 0.80). The performance of heparin-binding protein was confirmed in the validation cohort. Conclusion: In patients presenting at the emergency department, heparin-binding protein is an early indicator of infection-related organ dysfunction and a strong predictor

  4. Irritable bowel syndrome is associated not only with organic but also psychogenic erectile dysfunction.

    PubMed

    Hsu, C-Y; Lin, C-L; Kao, C-H

    2015-01-01

    This study investigated the correlation between irritable bowel syndrome (IBS) and organic erectile dysfunction (OED) and psychogenic erectile dysfunction (PED), and analyzed the influence of various comorbidities. Data were obtained from reimbursement claims of the National Health Insurance Program in Taiwan. We selected male patients aged >20 years, who were diagnosed with IBS during the 2000-2011 period as the IBS cohort. The index date for patients with IBS was the date of their first medical visit. We excluded patients with a diagnosis of OED and PED at baseline and those without information on age and sex. The IBS to non-IBS cohorts were estimated using univariable and multivariable Cox proportional hazards regression model. Adjusted hazard ratios were determined after adjusting for age and comorbidities. The Kaplan-Meier method was used to plot the cumulative incidence of OED and PED, and a log-rank test was used to compare the cohorts. A total of 15,533 IBS patients and 62,124 controls without IBS were enrolled in our study. Among the study participants, 48.2% were 49 years of age or younger. Patients with IBS were more likely to develop erectile dysfunction (ED) than those without IBS. Patients with IBS were 2.12 times more likely to develop OED and 2.38 times more likely to develop PED than the controls. There is an increased risk of both PED and OED in patients with IBS. Not only with organic but also PED should be considered when patients with IBS complain of ED. PMID:26548409

  5. Adjuvant potential of selegiline in attenuating organ dysfunction in septic rats with peritonitis.

    PubMed

    Tsao, Cheng-Ming; Jhang, Jhih-Gang; Chen, Shiu-Jen; Ka, Shuk-Man; Wu, Tao-Cheng; Liaw, Wen-Jinn; Huang, Hsieh-Chou; Wu, Chin-Chen

    2014-01-01

    Selegiline, an anti-Parkinson drug, has antioxidant and anti-apoptotic effects. To explore the effect of selegiline on sepsis, we used a clinically relevant animal model of polymicrobial sepsis. Cecal ligation and puncture (CLP) or sham operation was performed in male rats under anesthesia. Three hours after surgery, animals were randomized to receive intravenously selegiline (3 mg/kg) or an equivalent volume of saline. The administration of CLP rats with selegiline (i) increased arterial blood pressure and vascular responsiveness to norepinephrine, (ii) reduced plasma liver and kidney dysfunction, (iii) attenuated metabolic acidosis, (iv) decreased neutrophil infiltration in liver and lung, and (v) improved survival rate (from 44% to 65%), compared to those in the CLP alone rats. The CLP-induced increases of plasma interleukin-6, organ superoxide levels, and liver inducible nitric oxide synthase and caspase-3 expressions were ameliorated by selegiline treatment. In addition, the histological changes in liver and lung were significantly attenuated in the selegiline -treated CLP group compared to those in the CLP group. The improvement of organ dysfunction and survival through reducing inflammation, oxidative stress and apoptosis in peritonitis-induced sepsis by selegiline has potential as an adjuvant agent for critical ill. PMID:25268350

  6. Adjuvant Potential of Selegiline in Attenuating Organ Dysfunction in Septic Rats with Peritonitis

    PubMed Central

    Tsao, Cheng-Ming; Jhang, Jhih-Gang; Chen, Shiu-Jen; Ka, Shuk-Man; Wu, Tao-Cheng; Liaw, Wen-Jinn

    2014-01-01

    Selegiline, an anti-Parkinson drug, has antioxidant and anti-apoptotic effects. To explore the effect of selegiline on sepsis, we used a clinically relevant animal model of polymicrobial sepsis. Cecal ligation and puncture (CLP) or sham operation was performed in male rats under anesthesia. Three hours after surgery, animals were randomized to receive intravenously selegiline (3 mg/kg) or an equivalent volume of saline. The administration of CLP rats with selegiline (i) increased arterial blood pressure and vascular responsiveness to norepinephrine, (ii) reduced plasma liver and kidney dysfunction, (iii) attenuated metabolic acidosis, (iv) decreased neutrophil infiltration in liver and lung, and (v) improved survival rate (from 44% to 65%), compared to those in the CLP alone rats. The CLP-induced increases of plasma interleukin-6, organ superoxide levels, and liver inducible nitric oxide synthase and caspase-3 expressions were ameliorated by selegiline treatment. In addition, the histological changes in liver and lung were significantly attenuated in the selegiline -treated CLP group compared to those in the CLP group. The improvement of organ dysfunction and survival through reducing inflammation, oxidative stress and apoptosis in peritonitis-induced sepsis by selegiline has potential as an adjuvant agent for critical ill. PMID:25268350

  7. Mitochondrial Dysfunction Contributes to Hypertensive Target Organ Damage: Lessons from an Animal Model of Human Disease.

    PubMed

    Rubattu, Speranza; Stanzione, Rosita; Volpe, Massimo

    2016-01-01

    Mechanisms underlying hypertensive target organ damage (TOD) are not completely understood. The pathophysiological role of mitochondrial oxidative stress, resulting from mitochondrial dysfunction, in development of TOD is unclear. The stroke-prone spontaneously hypertensive rat (SHRSP) is a suitable model of human hypertension and of its vascular consequences. Pathogenesis of TOD in SHRSP is multifactorial, being determined by high blood pressure levels, high salt/low potassium diet, and genetic factors. Accumulating evidence points to a key role of mitochondrial dysfunction in increased susceptibility to TOD development of SHRSP. Mitochondrial abnormalities were described in both heart and brain of SHRSP. Pharmacological compounds able to protect mitochondrial function exerted a significant protective effect on TOD development, independently of blood pressure levels. Through our research efforts, we discovered that two genes encoding mitochondrial proteins, one (Ndufc2) involved in OXPHOS complex I assembly and activity and the second one (UCP2) involved in clearance of mitochondrial ROS, are responsible, when dysregulated, for vascular damage in SHRSP. The suitability of SHRSP as a model of human disease represents a promising background for future translation of the experimental findings to human hypertension. Novel therapeutic strategies toward mitochondrial molecular targets may become a valuable tool for prevention and treatment of TOD in human hypertension. PMID:27594970

  8. Mitochondrial Dysfunction Contributes to Hypertensive Target Organ Damage: Lessons from an Animal Model of Human Disease

    PubMed Central

    Stanzione, Rosita; Volpe, Massimo

    2016-01-01

    Mechanisms underlying hypertensive target organ damage (TOD) are not completely understood. The pathophysiological role of mitochondrial oxidative stress, resulting from mitochondrial dysfunction, in development of TOD is unclear. The stroke-prone spontaneously hypertensive rat (SHRSP) is a suitable model of human hypertension and of its vascular consequences. Pathogenesis of TOD in SHRSP is multifactorial, being determined by high blood pressure levels, high salt/low potassium diet, and genetic factors. Accumulating evidence points to a key role of mitochondrial dysfunction in increased susceptibility to TOD development of SHRSP. Mitochondrial abnormalities were described in both heart and brain of SHRSP. Pharmacological compounds able to protect mitochondrial function exerted a significant protective effect on TOD development, independently of blood pressure levels. Through our research efforts, we discovered that two genes encoding mitochondrial proteins, one (Ndufc2) involved in OXPHOS complex I assembly and activity and the second one (UCP2) involved in clearance of mitochondrial ROS, are responsible, when dysregulated, for vascular damage in SHRSP. The suitability of SHRSP as a model of human disease represents a promising background for future translation of the experimental findings to human hypertension. Novel therapeutic strategies toward mitochondrial molecular targets may become a valuable tool for prevention and treatment of TOD in human hypertension. PMID:27594970

  9. After the bomb drops: A new look at radiation-induced multiple organ dysfunction syndrome (MODS)

    PubMed Central

    Williams, Jacqueline P.; McBride, William H.

    2012-01-01

    Purpose There is increasing concern that, since the Cold War era, there has been little progress regarding the availability of medical countermeasures in the event of either a radiological or nuclear incident. Fortunately, since much is known about the acute consequences that are likely to be experienced by an exposed population, the probability of survival from the immediate hematological crises after total body irradiation (TBI) has improved in recent years. Therefore focus has begun to shift towards later down-stream effects, seen in such organs as the gastrointestinal tract (GI), skin, and lung. However, the mechanisms underlying therapy-related normal tissue late effects, resulting from localised irradiation, have remained somewhat elusive and even less is known about the development of the delayed syndrome seen in the context of whole body exposures, when it is likely that systemic perturbations may alter tissue microenvironments and homeostasis. Conclusions The sequence of organ failures observed after near-lethal TBI doses are similar in many ways to that of multiple organ dysfunction syndrome (MODS), leading to multiple organ failure (MOF). In this review, we compare the mechanistic pathways that underlie both MODS and delayed normal tissue effects since these may impact on strategies to identify radiation countermeasures. PMID:21417595

  10. The relationship between gut-derived bacteria and the development of the multiple organ dysfunction syndrome.

    PubMed Central

    Nieuwenhuijzen, G A; Deitch, E A; Goris, R J

    1996-01-01

    Abnormal colonisation, infections of gut origin and bacterial translocation are all signs of gut failure that have been hypothesised as being implicated in the pathogenesis of the multiple organ dysfunction syndrome (MODS). We have summarised published experimental and clinical studies that have tried to correlate the occurrence or prevention of these phenomena with the development of MODS. We conclude that in some patients loss of intestinal barrier function or the onset of infection precedes the development of MODS. In other patients, however, this relationship is not so clear and it seems that these are epiphenoma of critical illness and may reflect a failure of the host's immune and mechanical defence systems. The causal relationship between these phenomena and the development of MODS is complex and needs further clarification. PMID:8982828

  11. The Gut as the Motor of Multiple Organ Dysfunction in Critical Illness.

    PubMed

    Klingensmith, Nathan J; Coopersmith, Craig M

    2016-04-01

    All elements of the gut - the epithelium, the immune system, and the microbiome - are impacted by critical illness and can, in turn, propagate a pathologic host response leading to multiple organ dysfunction syndrome. Preclinical studies have demonstrated that this can occur by release of toxic gut-derived substances into the mesenteric lymph where they can cause distant damage. Further, intestinal integrity is compromised in critical illness with increases in apoptosis and permeability. There is also increasing recognition that microbes alter their behavior and can become virulent based upon host environmental cues. Gut failure is common in critically ill patients; however, therapeutics targeting the gut have proven to be challenging to implement at the bedside. Numerous strategies to manipulate the microbiome have recently been used with varying success in the ICU. PMID:27016162

  12. Sepsis progression to multiple organ dysfunction in carotid chemo/baro-denervated rats treated with lipopolysaccharide.

    PubMed

    Nardocci, Gino; Martin, Aldo; Abarzúa, Sebastián; Rodríguez, Jorge; Simon, Felipe; Reyes, Edison P; Acuña-Castillo, Claudio; Navarro, Cristina; Cortes, Paula P; Fernández, Ricardo

    2015-01-15

    Sepsis progresses to multiple organ dysfunction (MOD) due to the uncontrolled release of inflammatory mediators. Carotid chemo/baro-receptors could play a protective role during sepsis. In anesthetized male rats, we measured cardiorespiratory variables and plasma TNF-α, glucocorticoids, epinephrine, and MOD marker levels 90min after lipopolysaccharide (LPS) administration in control (SHAM surgery) and bilateral carotid chemo/baro-denervated (BCN) rats. BCN prior to LPS blunted the tachypneic response and enhanced tachycardia and hypotension. BCN-LPS rats also showed blunted plasma glucocorticoid responses, boosted epinephrine and TNF-α responses, and earlier MOD onset with a lower survival time compared with SHAM-LPS rats. Consequently, the complete absence of carotid chemo/baro-sensory function modified the neural, endocrine and inflammatory responses to sepsis. Thus, carotid chemo/baro-receptors play a protective role in sepsis. PMID:25595251

  13. [Ulysses network: an approach to integral post-ICU treatment of patients with multiple organ dysfunction syndrome].

    PubMed

    Nolla-Salas, M; Monmany-Roca, J; Vázquez-Mata, G

    2007-01-01

    The concept of continuity of care by intensivists as an element of quality control in the medical care of Intensive Care Unit (ICU) patients surviving multiple organ dysfunction syndrome has led to a rethinking of the ICU model in recent years. We discuss the rationale to design and implement a hospital-based, prospective, randomized, multicenter Intervention/Control study in order to estimate the impact of an interdisciplinary intervention during the post-ICU recovery phase on medium-term medical outcomes in ICU patients with multiple organ dysfunction. PMID:17580014

  14. IL-6 predicts organ dysfunction and mortality in patients with multiple injuries

    PubMed Central

    Frink, Michael; van Griensven, Martijn; Kobbe, Philipp; Brin, Thomas; Zeckey, Christian; Vaske, Bernhard; Krettek, Christian; Hildebrand, Frank

    2009-01-01

    Background Although therapeutic concepts of patients with major trauma have improved during recent years, organ dysfunction still remains a frequent complication during clinical course in intensive care units. It has previously been shown that cytokines are upregulated under stress conditions such as trauma or sepsis. However, it is still debatable if cytokines are adequate parameters to describe the current state of trauma patients. To elucidate the relevance of cytokines, we investigated if cytokines predict development of multiple organ dysfunction syndrome (MODS) or outcome. Methods A total of 143 patients with an injury severity score ≥ 16, between 16 and 65 years, admitted to the Hannover Medical School Level 1 Trauma Center between January 1997 and December 2001 were prospectively included in this study. Marshall Score for MODS was calculated for at least 14 days and plasma levels of TNF-α, IL-1β, IL-6, IL-8 and IL-10 were measured. To determine the association between cytokine levels and development of MODS the Spearman rank correlation coefficient was calculated and logistic regression and analysis were performed. Results and Discussion Patients with MODS had increased plasma levels of IL-6, IL-8 and IL-10. IL-6 predicted development of MODS with an overall accuracy of 84.7% (specificity: 98.3%, sensitivity: 16.7%). The threshold value for development of MODS was 761.7 pg/ml and 2176.0 pg/ml for mortality during the in patient time. Conclusion We conclude that plasma IL-6 levels predict mortality and that they are a useful tool to identify patients who are at risk for development of MODS. PMID:19781105

  15. How Multi-Organ Microdevices Can Help Foster Drug Development

    PubMed Central

    Esch, Mandy B.; Smith, Alec; Prot, Jean-Matthieu; Sancho, Carlotta Oleaga; Hickman, James; Shuler, Michael L.

    2014-01-01

    Multi-organ microdevices can mimic tissue-tissue interactions that occur as a result of metabolite travel from one tissue to other tissues in vitro. These systems are capable of simulating human metabolism, including the conversion of a pro-drug to its effective metabolite as well as its subsequent therapeutic actions and toxic side effects. Since tissue-tissue interactions in the human body can play a significant role in determining the success of new pharmaceuticals, the development and use of multi-organ microdevices presents an opportunity to improve the drug development process. The goals are to predict potential toxic side effects with higher accuracy before a drug enters the expensive phase of clinical trials as well as to estimate efficacy and dose response. Multi-organ microdevices also have the potential to aid in the development of new therapeutic strategies by providing a platform for testing in the context of human metabolism (as opposed to animal models). Further, when operated with human biopsy samples, the devices could be a gateway for the development of individualized medicine. Here we review studies in which multi-organ microdevices have been developed and used in a ways that demonstrate how the devices’ capabilities can present unique opportunities for the study of drug action. We also discuss the challenges that are inherent in the development of multi-organ microdevices. Among these are how to design the devices, and how to create devices that mimic the human metabolism with high authenticity. Since single organ devices are testing platforms for tissues that can later be combined with other tissues within multi-organ devices, we will also mention single organ devices where appropriate in the discussion. PMID:24412641

  16. Mechanisms of MDMA (ecstasy)-induced oxidative stress, mitochondrial dysfunction, and organ damage.

    PubMed

    Song, Byoung-Joon; Moon, Kwan-Hoon; Upreti, Vijay V; Eddington, Natalie D; Lee, Insong J

    2010-08-01

    Despite numerous reports about the acute and sub-chronic toxicities caused by MDMA (3,4-methylenedioxymethamphetamine, ecstasy), the underlying mechanism of organ damage is poorly understood. The aim of this review is to present an update of the mechanistic studies on MDMA-mediated organ damage partly caused by increased oxidative/nitrosative stress. Because of the extensive reviews on MDMA-mediated oxidative stress and tissue damage, we specifically focus on the mechanisms and consequences of oxidative-modifications of mitochondrial proteins, leading to mitochondrial dysfunction. We briefly describe a method to systematically identify oxidatively-modified mitochondrial proteins in control and MDMA-exposed rats by using biotin-N-maleimide (biotin-NM) as a sensitive probe for oxidized proteins. We also describe various applications and advantages of this Cys-targeted proteomics method and alternative approaches to overcome potential limitations of this method in studying oxidized proteins from MDMA-exposed tissues. Finally we discuss the mechanism of synergistic drug-interaction between MDMA and other abused substances including alcohol (ethanol) as well as application of this redox-based proteomics method in translational studies for developing effective preventive and therapeutic agents against MDMA-induced organ damage. PMID:20420575

  17. Exposure to volatile organic compounds and kidney dysfunction in thin film transistor liquid crystal display (TFT-LCD) workers.

    PubMed

    Chang, Ta-Yuan; Huang, Kuei-Hung; Liu, Chiu-Shong; Shie, Ruei-Hao; Chao, Keh-Ping; Hsu, Wen-Hsin; Bao, Bo-Ying

    2010-06-15

    Many volatile organic compounds (VOCs) are emitted during the manufacturing of thin film transistor liquid crystal displays (TFT-LCDs), exposure to some of which has been reported to be associated with kidney dysfunction, but whether such an effect exists in TFT-LCD industry workers is unknown. This cross-sectional study aimed to investigate the association between exposure to VOCs and kidney dysfunction among TFT-LCD workers. The results showed that ethanol (1811.0+/-1740.4 ppb), acetone (669.0+/-561.0 ppb), isopropyl alcohol (187.0+/-205.3 ppb) and propylene glycol monomethyl ether acetate (PGMEA) (102.9+/-102.0 ppb) were the four dominant VOCs present in the workplace. The 63 array workers studied had a risk of kidney dysfunction 3.21-fold and 3.84-fold that of 61 cell workers and 18 module workers, respectively. Workers cumulatively exposed to a total level of isopropyl alcohol, PGMEA and propylene glycol monomethyl ether> or =324 ppb-year had a significantly higher risk of kidney dysfunction (adjusted OR=3.41, 95% CI=1.14-10.17) compared with those exposed to <25 ppb-year after adjustment for potential confounding factors. These findings indicated that array workers might be the group at greatest risk of kidney dysfunction within the TFT-LCD industry, and cumulative exposure to specific VOCs might be associated with kidney dysfunction. PMID:20227824

  18. Multi-organ Mapping of Cancer Risk.

    PubMed

    Zhu, Liqin; Finkelstein, David; Gao, Culian; Shi, Lei; Wang, Yongdong; López-Terrada, Dolores; Wang, Kasper; Utley, Sarah; Pounds, Stanley; Neale, Geoffrey; Ellison, David; Onar-Thomas, Arzu; Gilbertson, Richard James

    2016-08-25

    Cancers are distributed unevenly across the body, but the importance of cell intrinsic factors such as stem cell function in determining organ cancer risk is unknown. Therefore, we used Cre-recombination of conditional lineage tracing, oncogene, and tumor suppressor alleles to define populations of stem and non-stem cells in mouse organs and test their life-long susceptibility to tumorigenesis. We show that tumor incidence is determined by the life-long generative capacity of mutated cells. This relationship held true in the presence of multiple genotypes and regardless of developmental stage, strongly supporting the notion that stem cells dictate organ cancer risk. Using the liver as a model system, we further show that damage-induced activation of stem cell function markedly increases cancer risk. Therefore, we propose that a combination of stem cell mutagenesis and extrinsic factors that enhance the proliferation of these cell populations, creates a "perfect storm" that ultimately determines organ cancer risk. VIDEO ABSTRACT. PMID:27565343

  19. A Nationwide Population-Based Cohort Study of Migraine and Organic-Psychogenic Erectile Dysfunction.

    PubMed

    Wu, Szu-Hsien; Chuang, Eric; Chuang, Tien-Yow; Lin, Cheng-Li; Lin, Ming-Chia; Yen, Der-Jen; Kao, Chia-Hung

    2016-03-01

    As chronic illnesses and chronic pain are related to erectile dysfunction (ED), migraine as a prevalent chronic disorder affecting lots of people all over the world may negatively affect quality of life as well as sexual function. However, a large-scale population-based study of erectile dysfunction and other different comorbidities in patients with migraine is quite limited. This cohort longitudinal study aimed to estimate the association between migraine and ED using a nationwide population-based database in Taiwan.The data used for this cohort study were retrieved from the Longitudinal Health Insurance Database 2000 in Taiwan. We identified 5015 patients with migraine and frequency matched 20,060 controls without migraine from 2000 to 2011. The occurrence of ED was followed up until the end of 2011. We used Cox proportional hazard regression models to analyze the risks of ED.The overall incidence of ED was 1.78-fold greater in the migraine cohort than in the comparison cohort (23.3 vs 10.5 per 10,000 person-years; 95% confidence interval [CI] = 1.31-2.41). Furthermore, patients with migraine were 1.75-fold more likely to develop organic ED (95% CI = 1.27-2.41) than were the comparison cohort. The migraine patients with anxiety had a 3.6-fold higher HR of having been diagnosed with ED than the comparison cohort without anxiety (95% CI, 2.10-6.18).The results support that patients with migraine have a higher incidence of being diagnosed with ED, particularly in the patient with the comorbidity of anxiety. PMID:26962838

  20. NOX2 protects against progressive lung injury and multiple organ dysfunction syndrome

    PubMed Central

    Whitmore, Laura C.; Goss, Kelli L.; Newell, Elizabeth A.; Hilkin, Brieanna M.; Hook, Jessica S.

    2014-01-01

    Systemic inflammatory response syndrome (SIRS) is a common clinical condition in patients in intensive care units that can lead to complications, including multiple organ dysfunction syndrome (MODS). MODS carries a high mortality rate, and it is unclear why some patients resolve SIRS, whereas others develop MODS. Although oxidant stress has been implicated in the development of MODS, several recent studies have demonstrated a requirement for NADPH oxidase 2 (NOX2)-derived oxidants in limiting inflammation. We recently demonstrated that NOX2 protects against lung injury and mortality in a murine model of SIRS. In the present study, we investigated the role of NOX2-derived oxidants in the progression from SIRS to MODS. Using a murine model of sterile systemic inflammation, we observed significantly greater illness and subacute mortality in gp91phox−/y (NOX2-deficient) mice compared with wild-type mice. Cellular analysis revealed continued neutrophil recruitment to the peritoneum and lungs of the NOX2-deficient mice and altered activation states of both neutrophils and macrophages. Histological examination showed multiple organ pathology indicative of MODS in the NOX2-deficient mice, and several inflammatory cytokines were elevated in lungs of the NOX2-deficient mice. Overall, these data suggest that NOX2 function protects against the development of MODS and is required for normal resolution of systemic inflammation. PMID:24793165

  1. THE ROLE OF LACTATE CLEARANCE AS A PREDICTOR OF ORGAN DYSFUNCTION AND MORTALITY IN PATIENTS WITH SEVERE SEPSIS

    PubMed Central

    Bolvardi, Ehsan; Malmir, Jafar; Reihani, Hamidreza; Hashemian, Amir Masoud; Bahramian, Mehran; Khademhosseini, Peyman; Ahmadi, Koorosh

    2016-01-01

    Background: Little is known about biomarkers which are used to classification of patients in order to diagnosis severity of sepsis among clients of emergency units. It seems that Lactate’s clearance can be used in this regard. This study aimed to determine the relationship between Lactate’s clearance, mortality and organ’s dysfunction with severe sepsis. Materials and methods: In this study 90 patients with severe sepsis, were visited and examined exactly. Para clinical tests, serum venous lactate, organ’s dysfunction scores, Acute Physiology and Chronic Health Evaluation II (APACHE-II) and Sequential Organ Failure Assessment (SOFA) were applied upon admission and 6 hours after it. According to clinical and laboratory criteria, dysfunction in main organs were examined and Lactate’s Clearance was accounted. All the patients were cured according to early goal-directed therapy protocol. Results: Among the participants 49 and 41 were male and female respectively. The mean age of the group was 49.37±1.41. The patients were classified to groups, less or more than 10% lactate’s clearance. Mortality rate of the patients was 18.9% (17 people). Mean age of the dead group was 49.71±13.33. The mean of dysfunctional organs which is assessed in terms of clinical, laboratory and SOFA criteria was significantly higher among the dead group than other. The Lactate’s clearance in the dead group was significantly lower than the other group (p<.05). Conclusion: It was concluded that patients with severe sepsis is a marker which is related to tissue hypoxia, also lactate’s clearance increasing is related to drastic reduction in biomarkers, mortality, and incidence of organ’s dysfunction. Overall, patients with lower lactate’s clearance are counted a high risk group for mortality and organs’ dysfunction. PMID:27047270

  2. [The protocol for multi organ donor management].

    PubMed

    Kucewicz, Ewa; Wojarski, Jacek; Zegleń, Sławomir; Saucha, Wojciech; Maciejewski, Tomasz; Pacholewicz, Jerzy; Przybylski, Roman; Knapik, Piotr; Zembala, Marian

    2009-01-01

    Identification and preparation of a potential organ donor requires careful and meticulous intensive care, so that the organs may be harvested in the best possible condition for transplantation. The protocol consists of three key elements: (1) monitoring and haemodynamicstabilisation, (2) hormonal therapy, and (3) adequate mechanical ventilation and nosocomial pneumonia prophylaxis. Standard haemodynamic monitoring should consist of a 12 lead EGG, and direct monitoring of arterial and central venous pressures. Pulmonary artery catheterisation is indicated in donors with a left ventricular ejection fraction (LVEF) below 45%. PCWP should be kept at around 12 mm Hg, Cl at greater than 2.4 L m(-2), and SVR between 800 and 1200 dyn s(-1) cm(-5). When a vasopressor is necessary, vasopressin should be used as the drug of choice. If vasopressin is not available, noradrenaline or adrenaline may be used. Haemoglobin concentration should be maintained between 5.5-6.2 mmol L(-1). In a potential heart donor, troponin concentration should be checked daily. Neutral thermal conditions should be maintained using a warm air blower. A brain dead patient cannot maintain adequate pituitary function, therefore hormone replacement therapy with methylprednisolone, thyroxin and desmopressin is indicated. Glucose concentrations should be kept within the normal range, using insulin if necessary. The lung harvesting protocol should be similarto ARDS treatment guidelines (optimal PEEP, low tidal volumes). Lung recruitment manoeuvres, and aggressive prevention and treatment of nosocomial infection are essential. PMID:20201348

  3. SHOCK VOLUME: A PATIENT-SPECIFIC INDEX THAT PREDICTS TRANSFUSION REQUIREMENTS AND ORGAN DYSFUNCTION IN MULTIPLY INJURED PATIENTS.

    PubMed

    McKinley, Todd O; McCarroll, Tyler; Gaski, Greg E; Frantz, Travis L; Zarzaur, Ben L; Terry, Colin; Steenburg, Scott D

    2016-02-01

    Multiply injured patients (MIPs) in hemorrhagic shock develop oxygen debt which causes organ dysfunction and can lead to death. We developed a noninvasive patient-specific index, Shock Volume (SV), to quantify the magnitude of hypoperfusion. SV integrates the magnitude and duration that incremental shock index values are elevated above known thresholds of hypoperfusion using serial individual vital sign data. SV can be monitored in real time to assess ongoing hypoperfusion. The goal of this study was to determine how SV corresponded to transfusion requirements and organ dysfunction in a retrospective cohort of 74 MIPs. We measured SV in 6-h increments for 48 h after injury in multiply injured adults (18-65; Injury Severity Score ≥18). Patients who had accumulated 40 units of SV within 6 h of injury and 100 units of SV within 12 h of injury were at high risk for requiring massive transfusion or multiple critical administration transfusions. SV measurements were equally sensitive and specific as compared with base deficit values in predicting transfusions. SV measurements at 6 h after injury stratified patients at risk for multiple organ failure determined by Denver scores. In addition, SV values corresponded to the magnitude of organ failure determined by Sequential Organ Failure Assessment scores. SV is a patient-specific index that can be quantified in real time in critically injured patients. It is a surrogate for cumulative hypoperfusion and it predicts high-volume transfusions and organ dysfunction. PMID:26529663

  4. Collaborative multi organ segmentation by integrating deformable and graphical models.

    PubMed

    Uzunbaş, Mustafa Gökhan; Chen, Chao; Zhang, Shaoting; Poh, Kilian M; Li, Kang; Metaxas, Dimitris

    2013-01-01

    Organ segmentation is a challenging problem on which significant progress has been made. Deformable models (DM) and graphical models (GM) are two important categories of optimization based image segmentation methods. Efforts have been made on integrating two types of models into one framework. However, previous methods are not designed for segmenting multiple organs simultaneously and accurately. In this paper, we propose a hybrid multi organ segmentation approach by integrating DM and GM in a coupled optimization framework. Specifically, we show that region-based deformable models can be integrated with Markov Random Fields (MRF), such that multiple models' evolutions are driven by a maximum a posteriori (MAP) inference. It brings global and local deformation constraints into a unified framework for simultaneous segmentation of multiple objects in an image. We validate this proposed method on two challenging problems of multi organ segmentation, and the results are promising. PMID:24579136

  5. Dysfunction of ventrolateral prefrontal cortex underlying social anxiety disorder: A multi-channel NIRS study

    PubMed Central

    Yokoyama, Chika; Kaiya, Hisanobu; Kumano, Hiroaki; Kinou, Masaru; Umekage, Tadashi; Yasuda, Shin; Takei, Kunio; Nishikawa, Masami; Sasaki, Tsukasa; Nishimura, Yukika; Hara, Naomi; Inoue, Ken; Kaneko, Yui; Suzuki, Shin-ichi; Tanii, Hisashi; Okada, Motohiro; Okazaki, Yuji

    2015-01-01

    Social anxiety disorder (SAD) is characterized by strong fear and anxiety during social interactions. Although ventrolateral prefrontal cortex (VLPFC) activity in response to emotional stimuli is related to pathological anxiety, little is known about the relationship between VLPFC activity and social anxiety. This study aimed to investigate whether VLPFC activity was involved in SAD and whether VLPFC activity was related to the level of social anxiety. Twenty-four drug-naïve patients with SAD and 35 healthy controls underwent near-infrared spectroscopy (NIRS) scanning while performing a verbal fluency task (VFT). Results indicated that, compared to the healthy controls, the SAD patients exhibited smaller changes of oxygenated hemoglobin (oxy-Hb) concentrations in the VLPFC during the VFT. Furthermore, the right VLPFC activation was negatively correlated with social avoidance. In contrast to the latter, the healthy controls exhibited a positive correlation between changes of oxy-Hb concentrations in the bilateral VLPFC and social fear. Our findings provide evidence for VLPFC dysfunction in SAD, and indicate that the VLPFC dysfunction may contribute to the difference between normal and abnormal social anxiety. PMID:26106570

  6. Initial Sequential Organ Failure Assessment score versus Simplified Acute Physiology score to analyze multiple organ dysfunction in infectious diseases in Intensive Care Unit

    PubMed Central

    Nair, Remyasri; Bhandary, Nithish M.; D’Souza, Ashton D.

    2016-01-01

    Aims: To investigate initial Sequential Organ Failure Assessment (SOFA) score of patients in Intensive Care Unit (ICU), who were diagnosed with infectious disease, as an indicator of multiple organ dysfunction and to examine if initial SOFA score is a better mortality predictor compared to Simplified Acute Physiology Score (SAPS). Materials and Methods: Hospital-based study done in medical ICU, from June to September 2014 with a sample size of 48. Patients aged 18 years and above, diagnosed with infectious disease were included. Patients with history of chronic illness (renal/hepatic/pulmonary/  cardiovascular), diabetes, hypertension, chronic obstructive pulmonary disease, heart disease, those on immunosuppressive therapy/chemoradiotherapy for malignancy and patients in immunocompromised state were excluded. Blood investigations were obtained. Six organ dysfunctions were assessed using initial SOFA score and graded from 0 to 4. SAPS was calculated as the sum of points assigned to each of the 17 variables (12 physiological, age, type of admission, and three underlying diseases). The outcome measure was survival status at ICU discharge. Results: We categorized infectious diseases into dengue fever, leptospirosis, malaria, respiratory tract infections, and others which included undiagnosed febrile illness, meningitis, urinary tract infection and gastroenteritis. Initial SOFA score was both sensitive and specific; SAPS lacked sensitivity. We found no significant association between age and survival status. Both SAPS and initial SOFA score were found to be statistically significant as mortality predictors. There is significant association of initial SOFA score in analyzing organ dysfunction in infectious diseases (P < 0.001). SAPS showed no statistical significance. There was statistically significant (P = 0.015) percentage of nonsurvivors with moderate and severe dysfunction, based on SOFA score. Nonsurvivors had higher SAPS but was not statistically significant (P

  7. Mitochondrial dysfunction during sepsis.

    PubMed

    Azevedo, Luciano Cesar Pontes

    2010-09-01

    Sepsis and multiple organ failure remain leading causes of death in intensive care patients. Recent advances in our understanding of the pathophysiology of these syndromes include a likely prominent role for mitochondria. Patient studies have shown that the degree of mitochondrial dysfunction is related to the eventual outcome. Associated mechanisms include damage to mitochondria or inhibition of the electron transport chain enzymes by nitric oxide and other reactive oxygen species (the effects of which are amplified by co-existing tissue hypoxia), hormonal influences that decrease mitochondrial activity, and downregulation of mitochondrial protein expression. Notably, despite these findings, there is minimal cell death seen in most affected organs, and these organs generally regain reasonably normal function should the patient survive. It is thus plausible that multiple organ failure following sepsis may actually represent an adaptive state whereby the organs temporarily 'shut down' their normal metabolic functions in order to protect themselves from an overwhelming and prolonged insult. A decrease in energy supply due to mitochondrial inhibition or injury may trigger this hibernation/estivation-like state. Likewise, organ recovery may depend on restoration of normal mitochondrial respiration. Data from animal studies show histological recovery of mitochondria after a septic insult that precedes clinical improvement. Stimulation of mitochondrial biogenesis could offer a new therapeutic approach for patients in multi-organ failure. This review will cover basic aspects of mitochondrial function, mechanisms of mitochondrial dysfunction in sepsis, and approaches to prevent, mitigate or speed recovery from mitochondrial injury. PMID:20509844

  8. Crocodylians evolved scattered multi-sensory micro-organs

    PubMed Central

    2013-01-01

    Background During their evolution towards a complete life cycle on land, stem reptiles developed both an impermeable multi-layered keratinized epidermis and skin appendages (scales) providing mechanical, thermal, and chemical protection. Previous studies have demonstrated that, despite the presence of a particularly armored skin, crocodylians have exquisite mechanosensory abilities thanks to the presence of small integumentary sensory organs (ISOs) distributed on postcranial and/or cranial scales. Results Here, we analyze and compare the structure, innervation, embryonic morphogenesis and sensory functions of postcranial, cranial, and lingual sensory organs of the Nile crocodile (Crocodylus niloticus) and the spectacled caiman (Caiman crocodilus). Our molecular analyses indicate that sensory neurons of crocodylian ISOs express a large repertoire of transduction channels involved in mechano-, thermo-, and chemosensory functions, and our electrophysiological analyses confirm that each ISO exhibits a combined sensitivity to mechanical, thermal and pH stimuli (but not hyper-osmotic salinity), making them remarkable multi-sensorial micro-organs with no equivalent in the sensory systems of other vertebrate lineages. We also show that ISOs all exhibit similar morphologies and modes of development, despite forming at different stages of scale morphogenesis across the body. Conclusions The ancestral vertebrate diffused sensory system of the skin was transformed in the crocodylian lineages into an array of discrete multi-sensory micro-organs innervated by multiple pools of sensory neurons. This discretization of skin sensory expression sites is unique among vertebrates and allowed crocodylians to develop a highly-armored, but very sensitive, skin. PMID:23819918

  9. Erectile dysfunction.

    PubMed

    Yafi, Faysal A; Jenkins, Lawrence; Albersen, Maarten; Corona, Giovanni; Isidori, Andrea M; Goldfarb, Shari; Maggi, Mario; Nelson, Christian J; Parish, Sharon; Salonia, Andrea; Tan, Ronny; Mulhall, John P; Hellstrom, Wayne J G

    2016-01-01

    Erectile dysfunction is a multidimensional but common male sexual dysfunction that involves an alteration in any of the components of the erectile response, including organic, relational and psychological. Roles for nonendocrine (neurogenic, vasculogenic and iatrogenic) and endocrine pathways have been proposed. Owing to its strong association with metabolic syndrome and cardiovascular disease, cardiac assessment may be warranted in men with symptoms of erectile dysfunction. Minimally invasive interventions to relieve the symptoms of erectile dysfunction include lifestyle modifications, oral drugs, injected vasodilator agents and vacuum erection devices. Surgical therapies are reserved for the subset of patients who have contraindications to these nonsurgical interventions, those who experience adverse effects from (or are refractory to) medical therapy and those who also have penile fibrosis or penile vascular insufficiency. Erectile dysfunction can have deleterious effects on a man's quality of life; most patients have symptoms of depression and anxiety related to sexual performance. These symptoms, in turn, affect his partner's sexual experience and the couple's quality of life. This Primer highlights numerous aspects of erectile dysfunction, summarizes new treatment targets and ongoing preclinical studies that evaluate new pharmacotherapies, and covers the topic of regenerative medicine, which represents the future of sexual medicine. PMID:27188339

  10. Cognitive Dysfunction is Associated with Poor Socio-Economic Status in Patients with Cirrhosis: an International Multi-Center Study

    PubMed Central

    Bajaj, Jasmohan S; Riggio, Oliviero; Allampati, Sanath; Prakash, Ravi; Gioia, Stefania; Onori, Eugenia; Piazza, Nicole; Noble, Nicole A; White, Melanie B; Mullen, Kevin D

    2013-01-01

    Background & Aims In patients with cirrhosis, cognitive dysfunction most often results from covert hepatic encephalopathy (HE). These patients are not routinely tested for cognitive dysfunction, despite single-center evidence that it could be associated with poor socio-economic status (SES). We investigated the association between SES and cognition in a multi-center study of cirrhosis. Methods In a cross-sectional study, 236 cirrhotic patients from 3 centers (84 subjects from Virginia, 102 from Ohio, and 50 from Rome, Italy; age 57.7±8.6 y; 14% with prior overt HE) were given recommended cognitive tests and a validated SES questionnaire, which included questions about employment, personal and family income, and overall financial security. Comparisons were made among centers and between subjects who were employed or not. Regression analysis was performed using employment and personal income as outcomes. Results Only 37% of subjects had been employed in the last year. Subjects had substantial financial insecurity—their yearly personal income ranged from $16,000 to $24,999 and their family income ranged from $25,000 to $49,999. They were only able to maintain a residence for 3–6 months if their income stopped, and their current liquid assets were $500–$4999 (<$500 if debt was subtracted). Cognition and SES were worst in Ohio and best in Virginia. Cognition correlated with personal and family income, within and between centers. On regression analysis, cognitive performance (digit symbol, lures, and line tracing) was associated with personal yearly income, after controlling for demographics, country, employment, and overt HE. Unemployed subjects had a higher rate of overt HE, worse cognition, and lower personal income than employed subjects. On regression analysis, performance on digit symbol, line tracing, inhibitory control test lures, and serial dotting tests remained associated with income, similar to employment. Conclusions In an international, multi

  11. Continuous plasma filtration adsorption in treatment of severe infection-induced multiple organ dysfunction syndrome.

    PubMed

    Yin, S L; Lan, C; Pei, H; Zu, Z Q

    2016-01-01

    Multiple organ dysfunction syndrome (MODS), a high-risk disease, has a fatality rate of 70%. To improve treatment of this disease, in recent years many scholars have explored the pathological and physiological changes of MODS. To observe the curative effect of continuous plasma filtration adsorption (CPFA) in the treatment of MODS, we selected 96 patients who were diagnosed with severe infection-induced MODS and were treated in the First Affiliated Hospital of Zhengzhou University between February 2012 and October 2014 and divided them into an observation group and a control group. Besides conventional treatment, the observation group was also given CFPA in combination with high volume hemofiltration (HVHF), while the control group only received HVHF. Changes of blood routine index, balance of electrolyte and acid-base as well as vital signs were observed before and after treatment. Also, blood, kidney and blood gas were examined. For all patients, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and C-reactive protein (CRP) were recorded at the start of treatment (0 h), and 5 h and 10 h after treatment. It was found that both therapies could lower blood urea nitrogen (BUN) and creatinine levels and maintain balance of electrolyte and acid-base, but had no obvious influence on leukocyte, blood platelet and hematocrit. In the observation group, PaO2/FiO2 and mean arterial pressure (MAP) were significantly improved after surgery (P less than 0.05), while Acute Physiology and Chronic Health Evaluation (APACHE) II score had an obvious decrease (P less than 0.05). In contrast, the control group was observed with insignificantly changed PaO2/FiO2, MAP and APACHE II score (P>0.05). TNF-α, IL-6 and CRP levels of the two groups had no statistically significant difference at the start of treatment (P>0.05), but TNF-α, IL-6 and CRP levels of the observation group became remarkably lower than those of the control group 5 h and 10 h after treatment (P less than 0

  12. Cerebral Dysfunctions Related to Perinatal Organic Damage: Clinical-Neuropathologic Correlations.

    ERIC Educational Resources Information Center

    Towbin, Abraham

    1978-01-01

    Recent neuropathology studies identify hypoxia as the main cause of perinatal cerebral damage. Cerebral lesions present at birth, with transition to chronic scar lesions, are correlated to mental retardation, cerebral palsy, epilepsy, and minimal brain dysfunction. Gestation age and severity of hypoxic exposure essentially determine the cerebral…

  13. Parathyroid hormone and arterial dysfunction in the Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Bosworth, Cortney; Sachs, Michael C.; Duprez, Daniel; Hoofnagle, Andrew N.; Ix, Joachim H.; Jacobs, David R.; Peralta, Carmen A.; Siscovick, David S.; Kestenbaum, Bryan; de Boer, Ian H.

    2013-01-01

    Objective High circulating concentrations of parathyroid hormone (PTH) have been associated with increased risks of hypertension, left ventricular hypertrophy, congestive heart failure, and cardiovascular mortality. Impaired arterial function is a potential mechanism for these associations. We tested whether serum PTH concentration is associated with measures of arterial function. Design Cross-sectional study. Participants 6,545 persons without clinical cardiovascular disease participating in the community-based Multi-Ethnic Study of Atherosclerosis. Measurements Brachial artery flow-mediated dilation as well as aortic pulse pressure and arterial pulse parameters derived from Windkessel modeling of the radial pressure waveform. Results Higher serum PTH concentration was associated with lower brachial artery flow-mediated dilation (mean difference −0.09% per 10 pg/mL PTH), higher aortic pulse pressure (0.53 mmHg per 10 pg/mL), and reduced Windkessel capacitive index C1 (large artery elasticity, −0.12 ml/mmHg X 10 per 10 pg/mL), adjusting for potential confounding variables (all p-values ≤ 0.001). These relationships were independent of serum calcium concentration, serum 25-hydroxyvitamin D concentration, and estimated glomerular filtration rate and were consistent across relevant participant subgroups. Associations of PTH with aortic pulse pressure and capacitive index C1 were attenuated after adjustment for blood pressure. Serum PTH concentration was not associated with the oscillatory index C2 (small artery elasticity). Conclusions Higher serum PTH concentration was associated with impaired endothelial function, increased aortic pulse pressure, and decreased capacitive index C1 in a large, diverse, community-based population. These relationships may help explain previously observed associations of elevated PTH with cardiovascular disease. PMID:23402353

  14. NAMPT-Mediated NAD(+) Biosynthesis in Adipocytes Regulates Adipose Tissue Function and Multi-organ Insulin Sensitivity in Mice.

    PubMed

    Stromsdorfer, Kelly L; Yamaguchi, Shintaro; Yoon, Myeong Jin; Moseley, Anna C; Franczyk, Michael P; Kelly, Shannon C; Qi, Nathan; Imai, Shin-Ichiro; Yoshino, Jun

    2016-08-16

    Obesity is associated with adipose tissue dysfunction and multi-organ insulin resistance. However, the mechanisms of such obesity-associated systemic metabolic complications are not clear. Here, we characterized mice with adipocyte-specific deletion of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting NAD(+) biosynthetic enzyme known to decrease in adipose tissue of obese and aged rodents and people. We found that adipocyte-specific Nampt knockout mice had severe insulin resistance in adipose tissue, liver, and skeletal muscle and adipose tissue dysfunction, manifested by increased plasma free fatty acid concentrations and decreased plasma concentrations of a major insulin-sensitizing adipokine, adiponectin. Loss of Nampt increased phosphorylation of CDK5 and PPARγ (serine-273) and decreased gene expression of obesity-linked phosphorylated PPARγ targets in adipose tissue. These deleterious alterations were normalized by administering rosiglitazone or a key NAD(+) intermediate, nicotinamide mononucleotide (NMN). Collectively, our results provide important mechanistic and therapeutic insights into obesity-associated systemic metabolic derangements, particularly multi-organ insulin resistance. PMID:27498863

  15. Neuronal Nitric Oxide Synthase is Involved in Vascular Hyporeactivity and Multiple Organ Dysfunction Associated with Hemorrhagic Shock.

    PubMed

    Sordi, Regina; Chiazza, Fausto; Collino, Massimo; Assreuy, Jamil; Thiemermann, Christoph

    2016-05-01

    Severe hemorrhage can lead to global ischemia and hemorrhagic shock (HS), resulting in multiple organ failure (MOF) and death. Restoration of blood flow and re-oxygenation is associated with an exacerbation of tissue injury and inflammatory response. The neuronal nitric oxide synthase (nNOS) has been implicated in vascular collapse and systemic inflammation of septic shock; however, the role of nNOS in HS is poorly understood. The aim of this study was to evaluate the role of nNOS in the MOF associated with HS.Rats were subjected to HS under anesthesia. Mean arterial pressure was reduced to 30 mmHg for 90 min, followed by resuscitation with shed blood. Rats were randomly treated with two chemically distinct nNOS inhibitors [ARL 17477 (1 mg/kg) and 7-nitroindazol (5 mg/kg)] or vehicle upon resuscitation. Four hours later, parameters of organ injury and dysfunction were assessed.HS was associated with MOF development. Inhibition of nNOS activity at resuscitation protected rats against the MOF and vascular dysfunction. In addition, treatment of HS rats with nNOS inhibitors attenuated neutrophil infiltration into target organs and decreased the activation of NF-κB, iNOS expression, NO production, and nitrosylation of proteins. Furthermore, nNOS inhibition also reduced the levels of pro-inflammatory cytokines TNF-α and IL-6 in HS rats.In conclusion, two distinct inhibitors of nNOS activity reduced the MOF, vascular dysfunction, and the systemic inflammation associated with HS. Thus, nNOS inhibitors may be useful as an adjunct therapy before fluids and blood administration in HS patients to avoid the MOF associated with reperfusion injury during resuscitation. PMID:26863124

  16. Revisiting multi-organ transplantation in the setting of scarcity.

    PubMed

    Reese, P P; Veatch, R M; Abt, P L; Amaral, S

    2014-01-01

    In the setting of organ scarcity, the ethics of multi-organ transplantation (MOT) deserve new examination. MOT offers substantial benefits to certain recipients, including avoiding serial surgeries. However, MOT candidates in the United States commonly receive priority for their nonprimary organ over many individuals who need that organ, which may undermine equity. The absence of standard criteria for MOT eligibility also enables large and unfair regional variation in MOT, such as simultaneous liver-kidney transplantation. Unfortunately, MOT may also undermine utility (optimal patient and graft survival) in circumstances where providing multiple organs to one person fails to achieve the greater collective benefit attained by providing transplants to multiple people. Policy reforms should include the adoption of minimal clinical criteria for MOT candidacy with the attendant goal of decreasing regional variation in MOT. In the future, these minimal criteria can be revised to accommodate new research about which patients derive the most benefit from MOT. Incentives to perform MOT should also be reduced, such as by including MOT outcomes in center-specific reports. These reforms run the risk that the transplant community could be perceived as abandoning MOT candidates, but offer an opportunity to align transplant practice and ethical principles. PMID:24354869

  17. Multi-Organ toxicity demonstration in a functional human in vitro system composed of four organs

    PubMed Central

    Oleaga, Carlota; Bernabini, Catia; Smith, Alec S.T.; Srinivasan, Balaji; Jackson, Max; McLamb, William; Platt, Vivien; Bridges, Richard; Cai, Yunqing; Santhanam, Navaneetha; Berry, Bonnie; Najjar, Sarah; Akanda, Nesar; Guo, Xiufang; Martin, Candace; Ekman, Gail; Esch, Mandy B.; Langer, Jessica; Ouedraogo, Gladys; Cotovio, Jose; Breton, Lionel; Shuler, Michael L.; Hickman, James J.

    2016-01-01

    We report on a functional human model to evaluate multi-organ toxicity in a 4-organ system under continuous flow conditions in a serum-free defined medium utilizing a pumpless platform for 14 days. Computer simulations of the platform established flow rates and resultant shear stress within accepted ranges. Viability of the system was demonstrated for 14 days as well as functional activity of cardiac, muscle, neuronal and liver modules. The pharmacological relevance of the integrated modules were evaluated for their response at 7 days to 5 drugs with known side effects after a 48 hour drug treatment regime. The results of all drug treatments were in general agreement with published toxicity results from human and animal data. The presented phenotypic culture model exhibits a multi-organ toxicity response, representing the next generation of in vitro systems, and constitutes a step towards an in vitro “human-on-a-chip” assay for systemic toxicity screening. PMID:26837601

  18. Multi-Organ toxicity demonstration in a functional human in vitro system composed of four organs.

    PubMed

    Oleaga, Carlota; Bernabini, Catia; Smith, Alec S T; Srinivasan, Balaji; Jackson, Max; McLamb, William; Platt, Vivien; Bridges, Richard; Cai, Yunqing; Santhanam, Navaneetha; Berry, Bonnie; Najjar, Sarah; Akanda, Nesar; Guo, Xiufang; Martin, Candace; Ekman, Gail; Esch, Mandy B; Langer, Jessica; Ouedraogo, Gladys; Cotovio, Jose; Breton, Lionel; Shuler, Michael L; Hickman, James J

    2016-01-01

    We report on a functional human model to evaluate multi-organ toxicity in a 4-organ system under continuous flow conditions in a serum-free defined medium utilizing a pumpless platform for 14 days. Computer simulations of the platform established flow rates and resultant shear stress within accepted ranges. Viability of the system was demonstrated for 14 days as well as functional activity of cardiac, muscle, neuronal and liver modules. The pharmacological relevance of the integrated modules were evaluated for their response at 7 days to 5 drugs with known side effects after a 48 hour drug treatment regime. The results of all drug treatments were in general agreement with published toxicity results from human and animal data. The presented phenotypic culture model exhibits a multi-organ toxicity response, representing the next generation of in vitro systems, and constitutes a step towards an in vitro "human-on-a-chip" assay for systemic toxicity screening. PMID:26837601

  19. Urinary Dysfunction

    MedlinePlus

    ... PCF Spotlight Glossary African American Men Living with Prostate Cancer Urinary Dysfunction Side Effects Urinary Dysfunction Bowel Dysfunction ... dysfunction is normal following initial therapy for localized prostate cancer. But it’s important to realize that not all ...

  20. Immune cell dysfunctions in breast cancer patients detected through whole blood multi-parametric flow cytometry assay

    PubMed Central

    Verronèse, E.; Delgado, A.; Valladeau-Guilemond, J.; Garin, G.; Guillemaut, S.; Tredan, O.; Ray-Coquard, I.; Bachelot, T.; N'Kodia, A.; Bardin-Dit-Courageot, C.; Rigal, C.; Pérol, D.; Caux, C.; Ménétrier-Caux, C.

    2016-01-01

    ABSTRACT Monitoring functional competence of immune cell populations in clinical routine represents a major challenge. We developed a whole-blood assay to monitor functional competence of peripheral innate immune cells including NK cells, dendritic and monocyte cell subsets through their ability to produce specific cytokines after short-term stimulation, detected through intra-cytoplasmic staining and multi-parametric flow-cytometry. A PMA/ionomycin T cell activation assay complemented this analysis. Comparing cohorts of healthy women and breast cancer (BC) patients at different stages, we identified significant functional alteration of circulating immune cells during BC progression prior to initiation of treatment. Of upmost importance, as early as the localized primary tumor (PT) stage, we observed functional alterations in several innate immune populations and T cells i.e. (i) reduced TNFα production by BDCA-1+ DC and non-classical monocytes in response to Type-I IFN, (ii) a strong drop in IFNγ production by NK cells in response to either Type-I IFN or TLR7/8 ligand, and (iii) a coordinated impairment of cytokine (IL-2, IFNγ, IL-21) production by T cell subpopulations. Overall, these alterations are further accentuated according to the stage of the disease in first-line metastatic patients. Finally, whereas we did not detect functional modification of DC subsets in response to TLR7/8 ligand, we highlighted increased IL-12p40 production by monocytes specifically at first relapse (FR). Our results reinforce the importance of monitoring both innate and adaptive immunity to better evaluate dysfunctions in cancer patients and suggest that our whole-blood assay will be useful to monitor response to treatment, particularly for immunotherapeutic strategies. PMID:27141361

  1. PD-L1 blockade improves immune dysfunction of spleen dendritic cells and T-cells in zymosan-induced multiple organs dysfunction syndromes.

    PubMed

    Liu, Qian; Lv, Yi; Zhao, Min; Jin, Yiduo; Lu, Jiangyang

    2015-01-01

    This research is to investigate the role of tolerant spleen dendritic cells (DC) in multiple organs dysfunction syndromes (MODS) at late stage. Tolerant DC and MODS were induced by intraperotineal injection of zymosan. The immunity of DC was determined by examining interleukin (IL)-10, IL-12, IL-2, major histocompatibility complex (MHC), CD86, programmed death (PD-1), programmed death ligand 1 (PD-L1), paired immunoglobulin-like receptor B (PIR-B) or T-cell proliferation in serum, spleen homogenate, DC culture or DC/T-cell co-culture. The PD-L1/PD-1 pathway was blocked using PD-L1 antibody. The IL-12p70 in serum, spleen homogenate and DC culture supernatant were decreased at 5 d and 12 d after zymosan injection while the IL-12p40 and IL-10 were increased. The expression of MHC, cluster of differentiation 86 (CD86), PD-1 and PD-L1 in spleen DCs were increased at early stage after zymosan injection. At 5 d and 12 d, the expression of MHC and CD86 was reduced while the expression of PD-1, PD-L1 and PIR-B was increased, accompanied with decreased proliferation of T-cell and decrease of IL-2 in spleen and serum. Application of PD-L1 antibody improved the above changes. At late stage of MODS mice induced by zymosan, the expression of co-stimulators and inhibitors in spleen DCs was imbalanced to form tolerant DCs which reduced the activation of T-cells. PD-L1 antibody improved the immune tolerance of DCs through intervening PD-1/PD-L1 pathway, and attenuated the inhibition of T-cell activities by tolerant DCs and the immune inhibition. PMID:25973021

  2. PD-L1 blockade improves immune dysfunction of spleen dendritic cells and T-cells in zymosan-induced multiple organs dysfunction syndromes

    PubMed Central

    Liu, Qian; Lv, Yi; Zhao, Min; Jin, Yiduo; Lu, Jiangyang

    2015-01-01

    This research is to investigate the role of tolerant spleen dendritic cells (DC) in multiple organs dysfunction syndromes (MODS) at late stage. Tolerant DC and MODS were induced by intraperotineal injection of zymosan. The immunity of DC was determined by examining interleukin (IL)-10, IL-12, IL-2, major histocompatibility complex (MHC), CD86, programmed death (PD-1), programmed death ligand 1 (PD-L1), paired immunoglobulin-like receptor B (PIR-B) or T-cell proliferation in serum, spleen homogenate, DC culture or DC/T-cell co-culture. The PD-L1/PD-1 pathway was blocked using PD-L1 antibody. The IL-12p70 in serum, spleen homogenate and DC culture supernatant were decreased at 5 d and 12 d after zymosan injection while the IL-12p40 and IL-10 were increased. The expression of MHC, cluster of differentiation 86 (CD86), PD-1 and PD-L1 in spleen DCs were increased at early stage after zymosan injection. At 5 d and 12 d, the expression of MHC and CD86 was reduced while the expression of PD-1, PD-L1 and PIR-B was increased, accompanied with decreased proliferation of T-cell and decrease of IL-2 in spleen and serum. Application of PD-L1 antibody improved the above changes. At late stage of MODS mice induced by zymosan, the expression of co-stimulators and inhibitors in spleen DCs was imbalanced to form tolerant DCs which reduced the activation of T-cells. PD-L1 antibody improved the immune tolerance of DCs through intervening PD-1/PD-L1 pathway, and attenuated the inhibition of T-cell activities by tolerant DCs and the immune inhibition. PMID:25973021

  3. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress

    PubMed Central

    2015-01-01

    Abstract Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3′,-5′-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed. Antioxid. Redox Signal. 23, 899–942. PMID:26261901

  4. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water

    PubMed Central

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury. PMID:26316710

  5. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water.

    PubMed

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury. PMID:26316710

  6. Multiple organ dysfunction syndrome, an unusual complication of heroin intoxication: a case report and review of literature

    PubMed Central

    Feng, Gang; Luo, Qiancheng; Guo, Enwei; Yao, Yulan; Yang, Feng; Zhang, Bingyu; Li, Longxuan

    2015-01-01

    Multiple organ dysfunction syndrome (MODS) has rarely been described in patients with heroin intoxication. Here, we report a rare case of MODS involving six organs, due to heroin intoxication. The patient was a 32-year-old Chinese man with severe heroin intoxication complicated by acute pulmonary edema and respiratory insufficiency, shock, myocardial damage and cardiac insufficiency, rhabdomyolysis and acute renal insufficiency, acute liver injury and hepatic insufficiency, toxic leukoencephalopathy, and hypoglycemia. He managed to survive and was discharged after 10 weeks of intensive care. The possible pathogenesis and therapeutic measures of MODS induced by heroin intoxication and some suggestions for preventing and treating severe complications of heroin intoxication, based on clinical evidence and the pertinent literature, are discussed in this report. PMID:26617935

  7. Assessing the financial characteristics of multi-institutional organizations.

    PubMed Central

    Coyne, J S

    1985-01-01

    The prospective pricing of health services is precipitating greater attention to financial characteristics and greater development of multi-institutional organizations (MIOs). This study compares the financial characteristics of 1,590 MIO hospitals with 2,819 freestanding hospitals by ownership type: church-operated, other not-for-profit, and investor-owned. Using 1981 data from the American Hospital Association, the hospitals' capital structure and profitability are measured using three financial ratios: total assets-to-equity, return on equity, and operating margin. The results indicate both greater leverage and greater profitability among MIO hospitals, particularly in the investor-owned sector. The implications of these findings are discussed relative to financial performance by hospital ownership type in the future. PMID:4038697

  8. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis

    PubMed Central

    Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; de Castro-Faria-Neto, Hugo Caire

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA). PMID:27078880

  9. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis.

    PubMed

    Gonçalves-de-Albuquerque, Cassiano Felippe; Medeiros-de-Moraes, Isabel Matos; Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; Castro-Faria-Neto, Hugo Caire de

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA). PMID:27078880

  10. Imbalance between macrophage migration inhibitory factor and cortisol induces multiple organ dysfunction in patients with blunt trauma.

    PubMed

    Hayakawa, Mineji; Katabami, Kenichi; Wada, Takeshi; Minami, Yousuke; Sugano, Masahiro; Shimojima, Hidekazu; Kubota, Nobuhiko; Uegaki, Shinji; Sawamura, Atsushi; Gando, Satoshi

    2011-06-01

    Migration inhibitory factor (MIF) is associated with multiple organ dysfunction syndrome (MODS) in patients with systemic inflammatory response syndrome (SIRS). Our purposes were to determine the serum MIF, cortisol, and tumor narcosis factor-α (TNF-α) and to investigate the influences of the balance between the levels of MIF and cortisol in patients with blunt trauma. The cortisol levels were identical between the patients with and without MODS. However, the MIF and TNF-α levels in the patients with MODS were statistically higher than those of the patients without MODS. The cortisol/MIF ratios in the patients with MODS were statistically higher than those of the patients without MODS. The results show that MIF and TNF-α play an important role together in posttraumatic inflammatory response. An excessive serum MIF elevation overrides the anti-inflammatory effects of cortisol and leads to persistent SIRS followed by MODS in blunt trauma patients. PMID:20499270

  11. Bowel Dysfunction

    MedlinePlus

    ... PCF Spotlight Glossary African American Men Living with Prostate Cancer Bowel Dysfunction Side Effects Urinary Dysfunction Bowel Dysfunction ... rectal worse. Back to Side Effects Print | Understanding Prostate Cancer Research Faces of Prostate Cancer About PCF Take ...

  12. Association of low non-invasive near-infrared spectroscopic measurements during initial trauma resuscitation with future development of multiple organ dysfunction

    PubMed Central

    Nicks, Bret A.; Campos, Kevin M.; Bozeman, William P.

    2015-01-01

    BACKGROUND: Near-infrared spectroscopy (NIRS) non-invasively monitors muscle tissue oxygen saturation (StO2). It may provide a continuous noninvasive measurement to identify occult hypoperfusion, guide resuscitation, and predict the development of multiple organ dysfunction (MOD) after severe trauma. We evaluated the correlation between initial StO2 and the development of MOD in multi-trauma patients. METHODS: Patients presenting to our urban, academic, Level I Trauma Center/Emergency Department and meeting standardized trauma-team activation criteria were enrolled in this prospective trial. NIRS monitoring was initiated immediately on arrival with collection of StO2 at the thenar eminence and continued up to 24 hours for those admitted to the Trauma Intensive Care Unit (TICU). Standardized resuscitation laboratory measures and clinical evaluation tools were collected. The primary outcome was the association between initial StO2 and the development of MOD within the first 24 hours based on a MOD score of 6 or greater. Descriptive statistical analyses were performed; numeric means, multivariate regression and rank sum comparisons were utilized. Clinicians were blinded from the StO2 values. RESULTS: Over a 14 month period, 78 patients were enrolled. Mean age was 40.9 years (SD 18.2), 84.4% were male, 76.9% had a blunt trauma mechanism and mean injury severity score (ISS) was 18.5 (SD 12.9). Of the 78 patients, 26 (33.3%) developed MOD within the first 24 hours. The MOD patients had mean initial StO2 values of 53.3 (SD 10.3), significantly lower than those of non-MOD patients 61.1 (SD 10.0); P=0.002. The mean ISS among MOD patients was 29.9 (SD 11.5), significantly higher than that of non-MODS patients, 12.1 (SD 9.1) (P<0.0001). The mean shock index (SI) among MOD patients was 0.92 (SD 0.28), also significantly higher than that of non-MODS patients, 0.73 (SD 0.19) (P=0.0007). Lactate values were not significantly different between groups. CONCLUSION: Non

  13. ANGIOGENESIS INHIBITOR ENDOSTATIN PROTECTS MICE WITH SEPSIS FROM MULTIPLE ORGAN DYSFUNCTION SYNDROME.

    PubMed

    Peng, Yue; Gao, Min; Jiang, Yu; Wang, Kangkai; Zhang, Huali; Xiao, Zihui; Ou, Hao; Yang, Bingchang; Yang, Mingshi; Xiao, Xianzhong

    2015-10-01

    Endostatin is an endogenous inhibitor of vascular endothelium. It can inhibit endothelial cell migration, proliferation, and vascular angiogenesis and is mainly used for anticancer therapy. We have previously found that endostatin is an important node protein in the pathogenesis of sepsis. However, its impacts on sepsis have not yet been reported. We established a septic mouse model using cecal ligation and puncture (CLP) and gave the mice either endostatin or placebo (saline). The effects of endostatin on serum enzyme, Evans blue leakage, lung wet-to-dry weight ratio, and cytokine (tumor necrosis factor α, interleukin 1β [IL-1β], and IL-6) production were assessed. Survival rates were observed for up to 3 days. In addition, we examined the effects of endostatin on serum vascular endothelial growth factor A (VEGF-A), VEGF-C, and pathological changes and scores of lung tissues as well as the phosphorylation of JNK, p38, and ERKl/2 proteins in lung tissues of mice with sepsis. We found that endostatin can increase the survival of septic mice in a time- and dose-dependent manner probably by reducing multiorgan dysfunctions shown by serum indicators, morphologic changes, Evans blue leakage, wet-to-dry weight ratio, and inflammation of lung tissues. In addition, endostatin could reduce serum tumor necrosis factor α, IL-1β, IL-6, and VEGF-C levels in septic mice as well as inhibit phosphorylation of p38 and ERK1/2 in lung tissues of septic mice. This is the first study demonstrating the protective effect of endostatin on sepsis and its possible underlying mechanisms from the aspects of inhibiting inflammatory responses, blocking VEGF receptor, attenuating VEGF-C expression, and reducing vascular permeability. Overall, the study revealed the potential protect role for endostatin in the treatment of sepsis. PMID:26125086

  14. Cerebrovascular Dysfunction in Preeclamptic Pregnancies

    PubMed Central

    Hammer, Erica S.; Cipolla, Marilyn J.

    2016-01-01

    Preeclampsia is a hypertensive, multi-system disorder of pregnancy that affects several organ systems, including the maternal brain. Cerebrovascular dysfunction during preeclampsia can lead to cerebral edema, seizures, stroke and potentially maternal mortality. This review will discuss the effects of preeclampsia on the cerebrovasculature that may adversely affect the maternal brain, including cerebral blood flow (CBF) autoregulation and blood-brain barrier disruption, and the resultant clinical outcomes including posterior reversible encephalopathy syndrome (PRES) and maternal stroke. Potential long-term cognitive outcomes of preeclampsia and the role of the cerebrovasculature are also reviewed. PMID:26126779

  15. Discriminative dictionary learning for abdominal multi-organ segmentation.

    PubMed

    Tong, Tong; Wolz, Robin; Wang, Zehan; Gao, Qinquan; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku; Hajnal, Joseph V; Rueckert, Daniel

    2015-07-01

    An automated segmentation method is presented for multi-organ segmentation in abdominal CT images. Dictionary learning and sparse coding techniques are used in the proposed method to generate target specific priors for segmentation. The method simultaneously learns dictionaries which have reconstructive power and classifiers which have discriminative ability from a set of selected atlases. Based on the learnt dictionaries and classifiers, probabilistic atlases are then generated to provide priors for the segmentation of unseen target images. The final segmentation is obtained by applying a post-processing step based on a graph-cuts method. In addition, this paper proposes a voxel-wise local atlas selection strategy to deal with high inter-subject variation in abdominal CT images. The segmentation performance of the proposed method with different atlas selection strategies are also compared. Our proposed method has been evaluated on a database of 150 abdominal CT images and achieves a promising segmentation performance with Dice overlap values of 94.9%, 93.6%, 71.1%, and 92.5% for liver, kidneys, pancreas, and spleen, respectively. PMID:25988490

  16. Impairment of the Vascular KATP Channel Imposes Fatal Susceptibility to Experimental Diabetes Due to Multi-Organ Injuries.

    PubMed

    Li, Shan-Shan; Cui, Ningren; Yang, Yang; Trower, Timothy C; Wei, Yu-Min; Wu, Yang; Zhang, Shuang; Jin, Xin; Jiang, Chun

    2015-12-01

    The vascular isoform of ATP-sensitive K(+) (KATP ) channels regulates blood flow to all organs. The KATP channel is strongly inhibited by reactive oxygen and carbonyl species produced in diabetic tissue inflammation. To address how such channel inhibition impacts vascular regulation as well as tissue viability, we performed studies in experimental diabetic mice. Strikingly, we found that knockout of the Kcnj8 encoding Kir6.1 subunit (Kcnj8-KO) caused mice to be fatally susceptible to diabetes. Organ perfusion studies suggested that the lack of this vascular K(+) channel handicapped activity-dependent vasodilation, leading to hypoperfusion, tissue hypoxia, and multi-organ failure. Morphologically, Kcnj8-KO mice showed greater inflammatory cell infiltration, higher levels of expression of inflammation indicator proteins, more severe cell apoptosis, and worse tissue disruptions. These were observed in the kidney, liver, and heart under diabetic condition in parallel comparison to tissues from WT mice. Patch clamping and molecular studies showed that the KATP channel was S-glutathionylated in experimental diabetes contributing to the inhibition of channel activity as well as the reduced arterial responses to vasodilators. These results suggest that the vascular KATP channel is organ protective in diabetic condition, and since the channel is suppressed by diabetic oxidative stress, therapeutical interventions to the maintenance of functional KATP channels may help to lower or prevent diabetic organ dysfunction. PMID:25825210

  17. Computationally Prediction of Candidate Agents for Preventing Organ Dysfunction After Brain Death.

    PubMed

    Liu, Qianwen; Ye, Qifa

    2016-01-01

    BACKGROUND Our aim was to explore the mechanism of post-transplant organ function decrease induced by brain death (BD) and discover a potential candidate drug for improving the survival and organ function after BD. MATERIAL AND METHODS The microarray data developed from the liver tissues after BD were further analyzed by bioinformatics methods. The differentially expressed genes (DEGs) were computationally predicted and the DEGs that involved biological functions were explored by gene ontology (GO) analysis. The candidate agents that could induce the reverse gene signature were predicted based on the Connectivity Map (CMap) database. RESULTS There were total 1374 DEGs, including 589 up-regulated genes and 785 down-regulated genes. Function analysis showed that DEGs were mainly enriched in biological process-related GO terms, such as regulation of transcription, DNA-dependent, inflammatory response, and regulation of phosphorus metabolic process. The down-regulated genes were significantly enriched in transcription factor activity and transcription regulator activity-related molecular function. The down-regulated GO terms exhibited close interaction with each other. CONCLUSIONS The organ function decrease may be attributed by transcription alteration, inflammation response, and metabolic alteration in liver after BD. Spaglumic acid and halcinonide may be potential drugs for preventing organ damage during the BD process. PMID:27170053

  18. [Pharmacotherapy of erectile dysfunction].

    PubMed

    Kovalev, V A; Koroleva, S V; Kamalov, A A

    2000-01-01

    Among the drugs used to treat erectile dysfunction most common are prostaglandins El, viagra, iochimbin, vasodilators and desaggregants, vitamins, biogenic stimulators, etc. The comparative analysis of their efficacy was made in 360 patients with erectile dysfunction, primarily at subcompensated stage, aged 17-83 years. Organic and psychogenic erectile dysfunctions were diagnosed in 69 and 31% of the patients, respectively. Intracavernous injections of prostaglandin El (Caverject) were effective in 74%, transurethral alprostadil (MUSE) when adjusting the dose--in 38.7% of the patients. Iochimbin in patients with organic and psychogenic forms of erectile dysfunctions was effective in 25 and 40% of patients, respectively. In 26.3 and 19% of such patients the response was obtained after use of the combination including xantinol, nicotinate, trental, biogenic stimulators and adaptogens. Viagra was effective in 60 and 77.3% of patients with psychogenic and organic erectile dysfunctions, respectively. PMID:16856460

  19. Systemic inflammatory responses and multiple organ dysfunction syndrome following skin burn wound and Pseudomonas aeruginosa infection in mice.

    PubMed

    Li, Na; Hu, Xiaolong; Liu, Yang; Wang, Yaojun; Wang, Yunchuan; Liu, Jiaqi; Cai, Weixia; Bai, Xiaozhi; Zhu, Xiongxiang; Han, Juntao; Hu, Dahai

    2013-08-01

    Burn wound-related sepsis is associated with the development of systemic inflammatory response syndrome and multiple organ dysfunction syndrome (MODS). This study is aimed at investigating the development and progression of SIS and MODS in a mouse model of skin burn sepsis. C57BL/6J mice were randomly divided into the sham, burn, Pseudomonas, and burn/Pseudomonas groups. The back skin of the sham, burn, and burn/Pseudomonas groups was burned about 10% of total area with using 37°C or 98°C water for 8 s, respectively, followed by inoculating with Pseudomonas aeruginosa. The Pseudomonas group was infected with P. aeruginosa without burn injury. Their body weights, mortality, organ histology, and function as well as systemic inflammation were measured longitudinally. The burn/Pseudomonas mice lost more body weights than did mice from the other groups and had a significantly higher mortality rate (P < 0.05). The burn/Pseudomonas mice exhibited significantly higher levels of bacterial loads in different organs and serum endotoxin, interleukin 1β, interleukin 6, tumor necrosis factor α, and C-reactive protein than those in mice from the other groups (P < 0.05). The burn/Pseudomonas mice also displayed more severe liver, lung, and kidney tissue damage and impaired organ functions, particularly at 72 h after inoculation than did the burn and Pseudomonas groups of mice. Our data indicate that burn and P. aeruginosa infection induced severe sepsis and rapidly progressed into systemic inflammatory response syndrome and MODS in mice. PMID:23707977

  20. Heme Oxygenase-1 Induction and Organic Nitrate Therapy: Beneficial Effects on Endothelial Dysfunction, Nitrate Tolerance, and Vascular Oxidative Stress

    PubMed Central

    Daiber, Andreas; Oelze, Matthias; Wenzel, Philip; Bollmann, Franziska; Pautz, Andrea; Kleinert, Hartmut

    2012-01-01

    Organic nitrates are a group of very effective anti-ischemic drugs. They are used for the treatment of patients with stable angina, acute myocardial infarction, and chronic congestive heart failure. A major therapeutic limitation inherent to organic nitrates is the development of tolerance, which occurs during chronic treatment with these agents, and this phenomenon is largely based on induction of oxidative stress with subsequent endothelial dysfunction. We therefore speculated that induction of heme oxygenase-1 (HO-1) could be an efficient strategy to overcome nitrate tolerance and the associated side effects. Indeed, we found that hemin cotreatment prevented the development of nitrate tolerance and vascular oxidative stress in response to chronic nitroglycerin therapy. Vice versa, pentaerithrityl tetranitrate (PETN), a nitrate that was previously reported to be devoid of adverse side effects, displayed tolerance and oxidative stress when the HO-1 pathway was blocked pharmacologically or genetically by using HO-1+/– mice. Recently, we identified activation of Nrf2 and HuR as a principle mechanism of HO-1 induction by PETN. With the present paper, we present and discuss our recent and previous findings on the role of HO-1 for the prevention of nitroglycerin-induced nitrate tolerance and for the beneficial effects of PETN therapy. PMID:22506100

  1. Lymphocyte gene expression in subjects fed a low-choline diet differs between those who develop organ dysfunction and those who do not2

    PubMed Central

    Niculescu, Mihai D; da Costa, Kerry-Ann; Fischer, Leslie M; Zeisel, Steven H

    2008-01-01

    Background Some humans fed a low-choline diet develop hepatosteatosis, liver and muscle damage, and lymphocyte apoptosis. The risk of developing such organ dysfunction is increased by the presence of single-nucleotide polymorphisms (SNPs) in genes involved in folate and choline metabolism. Objective We investigated whether these changes that occur in the expression of many genes when humans are fed a low-choline diet differ between subjects who develop organ dysfunction and those who do not. We also investigated whether expression changes were dependent on the presence of the SNPs of interest. Design Thirty-three subjects aged 20−67 y were fed for 10 d a baseline diet containing the recommended adequate intake of choline. They then were fed a low-choline diet for up to 42 d or until they developed organ dysfunction. Blood was collected at the end of each phase, and peripheral lymphocytes were isolated and used for genotyping and for gene expression profiling with the use of microarray hybridization. Results Feeding a low-choline diet changed the expression of 259 genes, and the profiles of subjects who developed and those who did not develop signs of organ dysfunction differed. Group clustering and gene ontology analyses found that the diet-induced changes in gene expression profiles were significantly influenced by the SNPs of interest and that the gene expression phenotype of the variant gene carriers differed significantly even with the baseline diet. Conclusion These findings support our hypothesis that a person's susceptibility to organ dysfunction when fed a low-choline diet is modulated by specific SNPs in genes involved in folate and choline metabolism. PMID:17616785

  2. 17-DMAG, an HSP90 Inhibitor, Ameliorates Multiple Organ Dysfunction Syndrome via Induction of HSP70 in Endotoxemic Rats

    PubMed Central

    Wang, Yi-Li; Shen, Hsin-Hsueh; Cheng, Pao-Yun; Chu, Yen-Ju; Hwang, Hwong-Ru; Lam, Kwok-Keung; Lee, Yen-Mei

    2016-01-01

    Sepsis is a systemic inflammatory disorder, accompanied with elevated oxidative stress, leading to multiple organ dysfunction syndrome (MODS), and disseminated intravascular coagulation. 17-Dimethylaminoethylamino- 17-demethoxygeldanamycin (17-DMAG), a heat shock protein (HSP) 90 inhibitor, has been reported to possess anti-inflammatory effects. In this study, the beneficial effects of 17-DMAG on lipopolysaccharide (LPS) induced MODS and DIC was evaluated in anesthetized rats. 17-DMAG (5 mg/kg, i.p.) was significantly increased survival rate, and prevented hypotension in LPS (30 mg/kg i.v. infused for 4 h) induced endotoxemia. The elevated levels of alanine aminotransferase (ALT), creatine phosphokinase (CPK), lactate dehydrogenase, creatinine, nitric oxide (NO) metabolites, IL-6, and TNF-α in LPS-exposed rat plasma were significantly reduced by 17-DMAG. Moreover, 17-DMAG suppressed LPS-induced superoxide anion production and caspase 3 activation in heart tissues. LPS induced the prolongation of prothrombin time, and a pronounced decrease in platelet count, which were improved by 17-DMAG. 17-DMAG markedly induced HSP70 and heme oxygenase (HO)-1, and suppressed inducible nitric oxide synthase (iNOS) and phosphorylated NF-κB p65 protein expression in organs 6 h after LPS initiation. Pretreatment with high dose of quercetin (300 mg/kg, i.p.), as an HSP70 inhibitor, reversed the beneficial effects of 17-DMAG on survival rate, plasma levels of ALT, CPK, creatinine, IL-6, and NO metabolites, iNOS induction, and caspase-3 activation in LPS-treated rats. In conclusion, 17-DMAG possesses the anti-inflammatory and antioxidant effects that were proved through LPS-induced acute inflammation, which is associated with induction of HSP70 and HO-1, leading to prevent MODS in sepsis. PMID:27224288

  3. 17-DMAG, an HSP90 Inhibitor, Ameliorates Multiple Organ Dysfunction Syndrome via Induction of HSP70 in Endotoxemic Rats.

    PubMed

    Wang, Yi-Li; Shen, Hsin-Hsueh; Cheng, Pao-Yun; Chu, Yen-Ju; Hwang, Hwong-Ru; Lam, Kwok-Keung; Lee, Yen-Mei

    2016-01-01

    Sepsis is a systemic inflammatory disorder, accompanied with elevated oxidative stress, leading to multiple organ dysfunction syndrome (MODS), and disseminated intravascular coagulation. 17-Dimethylaminoethylamino- 17-demethoxygeldanamycin (17-DMAG), a heat shock protein (HSP) 90 inhibitor, has been reported to possess anti-inflammatory effects. In this study, the beneficial effects of 17-DMAG on lipopolysaccharide (LPS) induced MODS and DIC was evaluated in anesthetized rats. 17-DMAG (5 mg/kg, i.p.) was significantly increased survival rate, and prevented hypotension in LPS (30 mg/kg i.v. infused for 4 h) induced endotoxemia. The elevated levels of alanine aminotransferase (ALT), creatine phosphokinase (CPK), lactate dehydrogenase, creatinine, nitric oxide (NO) metabolites, IL-6, and TNF-α in LPS-exposed rat plasma were significantly reduced by 17-DMAG. Moreover, 17-DMAG suppressed LPS-induced superoxide anion production and caspase 3 activation in heart tissues. LPS induced the prolongation of prothrombin time, and a pronounced decrease in platelet count, which were improved by 17-DMAG. 17-DMAG markedly induced HSP70 and heme oxygenase (HO)-1, and suppressed inducible nitric oxide synthase (iNOS) and phosphorylated NF-κB p65 protein expression in organs 6 h after LPS initiation. Pretreatment with high dose of quercetin (300 mg/kg, i.p.), as an HSP70 inhibitor, reversed the beneficial effects of 17-DMAG on survival rate, plasma levels of ALT, CPK, creatinine, IL-6, and NO metabolites, iNOS induction, and caspase-3 activation in LPS-treated rats. In conclusion, 17-DMAG possesses the anti-inflammatory and antioxidant effects that were proved through LPS-induced acute inflammation, which is associated with induction of HSP70 and HO-1, leading to prevent MODS in sepsis. PMID:27224288

  4. The Multi-organ Chip - A Microfluidic Platform for Long-term Multi-tissue Coculture

    PubMed Central

    Lorenz, Alexandra K.; Horland, Reyk; Schimek, Katharina M. S.; Busek, Mathias; Sonntag, Frank; Lauster, Roland; Marx, Uwe

    2015-01-01

    The ever growing amount of new substances released onto the market and the limited predictability of current in vitro test systems has led to a high need for new solutions for substance testing. Many drugs that have been removed from the market due to drug-induced liver injury released their toxic potential only after several doses of chronic testing in humans. However, a controlled microenvironment is pivotal for long-term multiple dosing experiments, as even minor alterations in extracellular conditions may greatly influence the cell physiology. We focused within our research program on the generation of a microengineered bioreactor, which can be dynamically perfused by an on-chip pump and combines at least two culture spaces for multi-organ applications. This circulatory system mimics the in vivo conditions of primary cell cultures better and assures a steadier, more quantifiable extracellular relay of signals to the cells. For demonstration purposes, human liver equivalents, generated by aggregating differentiated HepaRG cells with human hepatic stellate cells in hanging drop plates, were cocultured with human skin punch biopsies for up to 28 days inside the microbioreactor. The use of cell culture inserts enables the skin to be cultured at an air-liquid interface, allowing topical substance exposure. The microbioreactor system is capable of supporting these cocultures at near physiologic fluid flow and volume-to-liquid ratios, ensuring stable and organotypic culture conditions. The possibility of long-term cultures enables the repeated exposure to substances. Furthermore, a vascularization of the microfluidic channel circuit using human dermal microvascular endothelial cells yields a physiologically more relevant vascular model. PMID:25992921

  5. A Nonerythropoietic Peptide that Mimics the 3D Structure of Erythropoietin Reduces Organ Injury/Dysfunction and Inflammation in Experimental Hemorrhagic Shock

    PubMed Central

    Patel, Nimesh SA; Nandra, Kiran K; Brines, Michael; Collino, Massimo; Wong, WS Fred; Kapoor, Amar; Benetti, Elisa; Goh, Fera Y; Fantozzi, Roberto; Cerami, Anthony; Thiemermann, Christoph

    2011-01-01

    Recent studies have shown that erythropoietin, critical for the differentiation and survival of erythrocytes, has cytoprotective effects in a wide variety of tissues, including the kidney and lung. However, erythropoietin has been shown to have a serious side effect—an increase in thrombovascular effects. We investigated whether pyroglutamate helix B-surface peptide (pHBSP), a nonerythropoietic tissue-protective peptide mimicking the 3D structure of erythropoietin, protects against the organ injury/ dysfunction and inflammation in rats subjected to severe hemorrhagic shock (HS). Mean arterial blood pressure was reduced to 35 ± 5 mmHg for 90 min followed by resuscitation with 20 mL/kg Ringer Lactate for 10 min and 50% of the shed blood for 50 min. Rats were euthanized 4 h after the onset of resuscitation. pHBSP was administered 30 min or 60 min into resuscitation. HS resulted in significant organ injury/dysfunction (renal, hepatic, pancreas, neuromuscular, lung) and inflammation (lung). In rats subjected to HS, pHBSP significantly attenuated (i) organ injury/dysfunction (renal, hepatic, pancreas, neuromuscular, lung) and inflammation (lung), (ii) increased the phosphorylation of Akt, glycogen synthase kinase-3β and endothelial nitric oxide synthase, (iii) attenuated the activation of nuclear factor (NF)-κB and (iv) attenuated the increase in p38 and extracellular signal-regulated kinase (ERK)1/2 phosphorylation. pHBSP protects against multiple organ injury/dysfunction and inflammation caused by severe hemorrhagic shock by a mechanism that may involve activation of Akt and endothelial nitric oxide synthase, and inhibition of glycogen synthase kinase-3β and NF-κB. PMID:21607291

  6. Altered Levels of Zinc and N-methyl-D-aspartic Acid Receptor Underlying Multiple Organ Dysfunctions After Severe Trauma

    PubMed Central

    Wang, Guanghuan; Yu, Xiaojun; Wang, Dian; Xu, Xiaohu; Chen, Guang; Jiang, Xuewu

    2015-01-01

    Background Severe trauma can cause secondary multiple organ dysfunction syndrome (MODS) and death. Oxidative stress and/or excitatory neurotoxicity are considered as the final common pathway in nerve cell injuries. Zinc is the cofactor of the redox enzyme, and the effect of the excitatory neurotoxicity is related to N-methyl-D-aspartic acid receptor (NMDAR). Material/Methods We investigated the levels of zinc and brainstem NMDAR in a rabbit model of severe trauma. Zinc and serum biochemical profiles were determined. Immunohistochemistry was used to detect brainstem N-methyl-D-aspartic acid receptor 1 (NR1), N-methyl-D-aspartic acid receptor 2A (NR2A), and N-methyl-D-aspartic acid receptor 2B (NR2B) expression. Results Brain and brainstem Zn levels increased at 12 h, but serum Zn decreased dramatically after the trauma. NR1 in the brainstem dorsal regions increased at 6 h after injury and then decreased. NR2A in the dorsal regions decreased to a plateau at 12 h after trauma. The levels of NR2B were lowest in the death group in the brainstem. Serum zinc was positively correlated with NR2A and 2B and negatively correlated with zinc in the brain. Correlations were also found between the brainstem NR2A and that of the dorsal brainstem, as well as between brainstem NR2A and changes in NR2B. There was a negative correlation between zinc and NR2A. Conclusions Severe trauma led to an acute reduction of zinc enhancing oxidative stress and the changes of NMDAR causing the neurotoxicity of the nerve cells. This may be a mechanism for the occurrence of MODS or death after trauma. PMID:26335029

  7. Association of mitochondrial allele 4216C with increased risk for sepsis-related organ dysfunction and shock after burn injury.

    PubMed

    Huebinger, Ryan M; Gomez, Ruben; McGee, Daphne; Chang, Ling-Yu; Bender, Jessica E; O'Keeffe, Terence; Burris, Agnes M; Friese, Susan M; Purdue, Gary F; Hunt, John L; Arnoldo, Brett D; Horton, Jureta W; Barber, Robert C

    2010-01-01

    Impaired mitochondrial activity has been linked to increased risk for clinical complications after injury. Furthermore, variant mitochondrial alleles have been identified and are thought to result in decreased mitochondrial activity. These include a nonsynonymous mitochondrial polymorphism (T4216C) in the nicotinamide adenine dinucleotide dehydrogenase 1 gene (ND1), encoding a key member of complex I within the electron transport chain, which is found almost exclusively among Caucasians. We hypothesized that burn patients carrying ND1 4216C are less able to generate the cellular energy necessary for an effective immune response and are at increased risk for infectious complications. The association between 4216C and outcome after burn injury was evaluated in a cohort of 175 Caucasian patients admitted to the Parkland Hospital with burns covering greater than or equal to 15% of their total body surface area or greater than or equal to 5% full-thickness burns under an institutional review board-approved protocol. To remove confounding unrelated to burn injury, individuals were excluded if they presented with significant non-burn-related trauma (Injury Severity Score > or =16), traumatic or anoxic brain injury, spinal cord injury, were HIV/AIDS positive, had active malignancy, or survived less than 48 h postadmission. Within this cohort of patients, carriage of the 4216C allele was significantly associated by unadjusted analysis with increased risk for sepsis-related organ dysfunction or septic shock (P = 0.011). After adjustment for full-thickness burn size, inhalation injury, age, and sex, carriage of the 4216C allele was associated with complicated sepsis (adjusted odds ratio = 3.7; 95% confidence interval, 1.5-9.1; P = 0.005), relative to carriers of the T allele. PMID:19487983

  8. Anti-Platelet Therapy is Associated With Decreased Transfusion-Associated Risk of Lung Dysfunction, Multiple Organ Failure, and Mortality in Trauma Patients

    PubMed Central

    Harr, Jeffrey N.; Moore, Ernest E.; Johnson, Jeffrey; Chin, Theresa L.; Wohlauer, Max V.; Maier, Ronald; Cuschieri, Joseph; Sperry, Jason; Banerjee, Anirban; Silliman, Christopher C.; Sauaia, Angela

    2012-01-01

    Objective To determine whether pre-hospital anti-platelet therapy (APT) was associated with reduced incidence of acute lung dysfunction, multiple organ failure (MOF), and mortality in blunt trauma patients. Design Secondary analysis of a cohort enrolled in the NIGMS Trauma Glue Grant database. Setting Multicenter study including 9 US level-1 trauma centers. Patients A total of 839 severely injured blunt trauma patients at risk for MOF (age >45 years, base deficit > 6 mEq/L or systolic blood pressure < 90 mmHg, who received a blood transfusion). Severe/isolated head injuries were excluded. Measurements and Main Results Primary outcomes were lung dysfunction (defined as grades 2–3 by the Denver MOF score), MOF (Denver MOF score>3), and mortality. Patients were documented as on APT if taking acetylsalicylic acid, clopidogrel, and/or ticlopidine. Fifteen percent were taking APT prior to injury. Median injury severity score (ISS) was 30 (interquartile range, IQR: 22–51), mean age 61 ± 0.4 years and median red blood cells (RBC) volume transfused was 1700 ml (IQR: 800–3150ml). Overall, 63% developed lung dysfunction, 19% had MOF, and 21% died. After adjustment for age, gender, comorbidities, blood products, crystalloid/12hrs, presence of any head injury, ISS, and 12hrs base deficit >8 mEq/L, 12 hrs RBC transfusion was associated with a significantly smaller risk of lung dysfunction and MOF among the group receiving APT compared to those not receiving it (lung dysfunction p=0.0116, MOF p=0.0291). In addition, APT had a smaller risk (albeit not significant, p=0.06) of death for patients receiving RBC compared to those not on APT after adjustment for confounders, Conclusions Pre-injury APT therapy is associated with a decreased risk of lung dysfunction, MOF, and possibly mortality in high-risk blunt trauma patients who received blood transfusions. These findings suggest platelets have a role in organ dysfunction development and have potential therapeutic implications

  9. Singlet Fission and Multi-Exciton Generation in Organic Systems

    NASA Astrophysics Data System (ADS)

    Musgrave, Charles

    2012-02-01

    Multi-exciton generation (MEG) has been observed in a variety of materials and might be exploited in solar-cells to dramatically increase efficiency. In tetracene and pentacene MEG has been attributed to singlet fission (SF), however a fundamental mechanism for SF has not been previously described. Here, we use sophisticated ab initio calculations to show that MEG in pentacene proceeds by transition of the lowest optically allowed excited state S1 to a dark state (D) of multi-exciton character, which subsequently undergoes SF to generate two triplets (2xT0). D satisfies the energy requirement for SF (ED>2ET0) and lies just below S1 in pentacene, but above S1 in tetracene, consistent with the observed thermally activated SF process in tetracene, but no thermal activation in pentacene. While S1 exhibits single exciton character, D shows multi-exciton character comprising two separated electron-hole pairs. Dimer simulations predict S1 excimer formation and that fission of D into triplets proceeds through the excimer. The predicted energetics, wavefunctions and excimer interaction support the proposed mechanism, which accounts for the observed rapid, unactivated SF in pentacene. Results for SF in polyacenes, grapheme nanoribbons, rubrene and carbon nanotubes will be presented.

  10. Using multi-disciplinary strategic master facilities planning for organizations experiencing programmatic re-direction

    SciTech Connect

    Heubach, J.G.; Weimer, W.C.; Bruce, W.A.

    1993-12-01

    Facility master planning is critical to the future productivity of a laboratory and the quality of worklife for the laboratory staff. For organizations undergoing programmatic re-direction, a master facility planning approach linked to the organization`s strategic planning process is even more important. Major changes in an organization such as programmatic re-direction can significantly impact a broad range of variables which exceed the expertise of traditional planning teams, e.g., capacity variability, work team organization, organizational culture, and work process simplification. By expanding the diversity of the participants of the planning team, there is a greater likelihood that a research organization`s scientific, organizational, economic, and employees` needs can be meshed in the strategic plan and facility plan. Recent recommendations from facility planners suggest drawing from diverse fields in building multi-disciplinary planning teams: Architecture, engineering, natural science, social psychology, and strategic planning (Gibson,1993). For organizations undergoing significant operational or culture change, the master facility planning team should also include members with expertise in organizational effectiveness, industrial engineering, human resources, and environmental psychology. A recent planning and design project provides an example which illustrates the use of an expanded multi-disciplinary team engaged in planning laboratory renovations for a research organization undergoing programmatic re-direction. The purpose of the proposed poster session is to present a multi-disciplinary master facility planning process linked to an organization`s strategic planning process or organizational strategies.

  11. 29 CFR 779.118 - Employees providing central services for multi-unit organizations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Apply: Basic Principles and Individual Coverage Employees Engaged in Commerce Or in the Production of Goods for Commerce § 779.118 Employees providing central services for multi-unit organizations. Employees providing central services for a multiunit organization may be engaged both “in commerce” and...

  12. 29 CFR 779.118 - Employees providing central services for multi-unit organizations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Apply: Basic Principles and Individual Coverage Employees Engaged in Commerce Or in the Production of Goods for Commerce § 779.118 Employees providing central services for multi-unit organizations. Employees providing central services for a multiunit organization may be engaged both “in commerce” and...

  13. 29 CFR 779.118 - Employees providing central services for multi-unit organizations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Apply: Basic Principles and Individual Coverage Employees Engaged in Commerce Or in the Production of Goods for Commerce § 779.118 Employees providing central services for multi-unit organizations. Employees providing central services for a multiunit organization may be engaged both “in commerce” and...

  14. Cellular dysfunction in sepsis.

    PubMed

    Singer, Mervyn

    2008-12-01

    Cellular dysfunction is a commonplace sequelum of sepsis and other systemic inflammatory conditions. Impaired energy production (related to mitochondrial inhibition, damage, and reduced protein turnover) appears to be a core mechanism underlying the development of organ dysfunction. The reduction in energy availability appears to trigger a metabolic shutdown that impairs normal functioning of the cell. This may well represent an adaptive mechanism analogous to hibernation that prevents a massive degree of cell death and thus enables eventual recovery in survivors. PMID:18954700

  15. Selective inducible nitric oxide synthase inhibition attenuates organ dysfunction and elevated endothelin levels in LPS-induced DIC model rats.

    PubMed

    Asakura, H; Asamura, R; Ontachi, Y; Hayashi, T; Yamazaki, M; Morishita, E; Miyamoto, K-I; Nakao, S

    2005-05-01

    We examined the role of nitric oxide (NO) produced by an inducible isoform of NO synthase (iNOS) using N[6]-(iminoethyl)-lysine (L-NIL), a selective iNOS inhibitor, in the rat model of lipopolysaccharide (LPS)-induced disseminated intravascular coagulation (DIC) and investigated changes in organ function, plasma levels of NOX (metabolites of NO) and endothelin. We induced experimental DIC by the sustained infusion of 30 mg kg(-1) LPS for 4 h via the tail vein. We then investigated the effect of L-NIL (6 mg kg(-1), from - 0.5 to 4 h) on LPS-induced DIC. Blood was withdrawn at 4 and 8 h, and all four groups (LPS with or without L-NIL at 4 and 8 h) consisted of eight rats. Three of the animals in the 8-h LPS group died, and we examined blood samples from five rats in this group. None of the other rats died. The LPS-induced elevation of creatinine, alanine aminotransferase, glomerular fibrin deposition and plasminogen activator inhibitor was significantly suppressed by L-NIL coadministration, although L-NIL did not affect the platelet count, fibrinogen concentration or the level of thrombin-antithrombin complex. Moreover, plasma levels of the D-dimer that reflect the lysis of cross-linked fibrin were significantly increased by L-NIL coadministration in the LPS-induced DIC model. Plasma levels of NOX and endothelin were obviously increased by LPS infusion. However, both levels were significantly suppressed in the LPS + L-NIL group, when compared with the LPS group. Although mean arterial pressure (MAP) was significantly decreased between 2 and 8 h compared with the control in the LPS group, this depression was significantly attenuated in the LPS + L-NIL group. Our results suggest that NO induced by iNOS contributes to hypotension (depressed MAP), the progression of hepatic and renal dysfunction, microthrombus deposition and elevated endothelin levels in the rat model of LPS-induced DIC. PMID:15869603

  16. Role of microRNAs in Alcohol-Induced Multi-Organ Injury

    PubMed Central

    Natarajan, Sathish Kumar; Pachunka, Joseph M.; Mott, Justin L.

    2015-01-01

    Alcohol consumption and its abuse is a major health problem resulting in significant healthcare cost in the United States. Chronic alcoholism results in damage to most of the vital organs in the human body. Among the alcohol-induced injuries, alcoholic liver disease is one of the most prevalent in the United States. Remarkably, ethanol alters expression of a wide variety of microRNAs that can regulate alcohol-induced complications or dysfunctions. In this review, we will discuss the role of microRNAs in alcoholic pancreatitis, alcohol-induced liver damage, intestinal epithelial barrier dysfunction, and brain damage including altered hippocampus structure and function, and neuronal loss, alcoholic cardiomyopathy, and muscle damage. Further, we have reviewed the role of altered microRNAs in the circulation, teratogenic effects of alcohol, and during maternal or paternal alcohol consumption. PMID:26610589

  17. A Multi-Layered Computational Model of Coupled Elastin Degradation, Vasoactive Dysfunction, and Collagenous Stiffening in Aortic Aging

    PubMed Central

    Valentín, A.; Humphrey, J.D.; Holzapfel, G.A.

    2011-01-01

    Arterial responses to diverse pathologies and insults likely occur via similar mechanisms. For example, many studies suggest that the natural process of aging and isolated systolic hypertension share many characteristics in arteries, including loss of functional elastin, decreased smooth muscle tone, and altered rates of deposition and/or cross-linking of fibrillar collagen. Our aim is to show computationally how these coupled effects can impact evolving aortic geometry and mechanical behavior. Employing a thick-walled, multi-layered constrained mixture model, we suggest that a coupled loss of elastin and vasoactive function are fundamental mechanisms by which aortic aging occurs. Moreover, it is suggested that collagenous stiffening, although itself generally an undesirable process, can play a key role in attenuating excessive dilatation, perhaps including the enlargement of abdominal aortic aneurysms. PMID:21380570

  18. Orientation selectivity in a multi-gated organic electrochemical transistor

    NASA Astrophysics Data System (ADS)

    Gkoupidenis, Paschalis; Koutsouras, Dimitrios A.; Lonjaret, Thomas; Fairfield, Jessamyn A.; Malliaras, George G.

    2016-06-01

    Neuromorphic devices offer promising computational paradigms that transcend the limitations of conventional technologies. A prominent example, inspired by the workings of the brain, is spatiotemporal information processing. Here we demonstrate orientation selectivity, a spatiotemporal processing function of the visual cortex, using a poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) organic electrochemical transistor with multiple gates. Spatially distributed inputs on a gate electrode array are found to correlate with the output of the transistor, leading to the ability to discriminate between different stimuli orientations. The demonstration of spatiotemporal processing in an organic electronic device paves the way for neuromorphic devices with new form factors and a facile interface with biology.

  19. Orientation selectivity in a multi-gated organic electrochemical transistor

    PubMed Central

    Gkoupidenis, Paschalis; Koutsouras, Dimitrios A.; Lonjaret, Thomas; Fairfield, Jessamyn A.; Malliaras, George G.

    2016-01-01

    Neuromorphic devices offer promising computational paradigms that transcend the limitations of conventional technologies. A prominent example, inspired by the workings of the brain, is spatiotemporal information processing. Here we demonstrate orientation selectivity, a spatiotemporal processing function of the visual cortex, using a poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) organic electrochemical transistor with multiple gates. Spatially distributed inputs on a gate electrode array are found to correlate with the output of the transistor, leading to the ability to discriminate between different stimuli orientations. The demonstration of spatiotemporal processing in an organic electronic device paves the way for neuromorphic devices with new form factors and a facile interface with biology. PMID:27245574

  20. Diastolic Dysfunction

    PubMed Central

    Jeong, Euy-Myoung; Dudley, Samuel C.

    2016-01-01

    Despite the growing number of patients affected, the understanding of diastolic dysfunction and heart failure with preserved ejection fraction (HFpEF) is still poor. Clinical trials, largely based on successful treatments for systolic heart failure, have been disappointing, suggesting that HFpEF has a different pathology to that of systolic dysfunction. In this review, general concepts, epidemiology, diagnosis, and treatment of diastolic dysfunction are summarized, with an emphasis on new experiments suggesting that oxidative stress plays a crucial role in the pathogenesis of at least some forms of the disease. This observation has lead to potential new diagnostics and therapeutics for diastolic dysfunction and heart failure caused by diastolic dysfunction. PMID:25746522

  1. Rare presentation of multi-organ abdominal echinococcosis: report of a case and review of literature

    PubMed Central

    Zheng, Xiaoyan; Zou, Yang; Yin, Chenghong

    2015-01-01

    Hydatid disease, which is also known as cystic echinococcosis, is a zoonotic infection caused by the cestode tapeworm Echinococcus granulosus and rarely by Echinococcus multilocularis. In this report we describe an unusual case of a 19-year-old woman who was admitted to our hospital for abdominal pain, nausea, and vomiting. Computed tomography revealed multi-organ abdominal echinococcosis. The patient recovered after undergoing surgery to excise the cyst. The diagnosis, clinical features, treatment, and prevention in this case of multi-organ abdominal echinococcosis are discussed, in light of the relevant literature. PMID:26617932

  2. Spontaneous Neural Dynamics and Multi-scale Network Organization

    PubMed Central

    Foster, Brett L.; He, Biyu J.; Honey, Christopher J.; Jerbi, Karim; Maier, Alexander; Saalmann, Yuri B.

    2016-01-01

    Spontaneous neural activity has historically been viewed as task-irrelevant noise that should be controlled for via experimental design, and removed through data analysis. However, electrophysiology and functional MRI studies of spontaneous activity patterns, which have greatly increased in number over the past decade, have revealed a close correspondence between these intrinsic patterns and the structural network architecture of functional brain circuits. In particular, by analyzing the large-scale covariation of spontaneous hemodynamics, researchers are able to reliably identify functional networks in the human brain. Subsequent work has sought to identify the corresponding neural signatures via electrophysiological measurements, as this would elucidate the neural origin of spontaneous hemodynamics and would reveal the temporal dynamics of these processes across slower and faster timescales. Here we survey common approaches to quantifying spontaneous neural activity, reviewing their empirical success, and their correspondence with the findings of neuroimaging. We emphasize invasive electrophysiological measurements, which are amenable to amplitude- and phase-based analyses, and which can report variations in connectivity with high spatiotemporal precision. After summarizing key findings from the human brain, we survey work in animal models that display similar multi-scale properties. We highlight that, across many spatiotemporal scales, the covariance structure of spontaneous neural activity reflects structural properties of neural networks and dynamically tracks their functional repertoire. PMID:26903823

  3. Hierarchical multi-step organization during viral capsid assembly.

    PubMed

    Lampel, Ayala; Varenik, Maxim; Regev, Oren; Gazit, Ehud

    2015-12-01

    Formation of the HIV-1 core by the association of capsid proteins is a critical, not fully understood, step in the viral life cycle. Understanding the early stages of the mechanism may improve treatment opportunities. Here, spectroscopic analysis (opacity) is used to follow the kinetics of capsid protein assembly, which shows three stages: a lag phase, followed by a linear increase stage and terminated by a plateau. Adding pre-incubated capsid proteins at the start of the lag phase shortens it and increases the rate of assembly at the linear stage, demonstrating autoacceleration and cooperative assembly. Cryogenic transmission electron microscopy is used to probe structural evolution at these three stages. At the beginning of the lag phase, short tubular assemblies are found alongside micron long tubes. Their elongation continues all throughout the lag phase, at the end of which tubes start to assemble into bundles. Based on these results, we suggest a multi-step self-assembly process including fast nucleation and elongation followed by tubes packing into arrays. PMID:26497114

  4. Identification of echocardiographic indices for the early detection of left-ventricular systolic dysfunction in beta-thalassaemia via Self-Organizing Maps: a data-exploration study.

    PubMed

    Deftereos, Spyros; Georgonikou, Dimitra; Persidis, Andreas; Andronis, Christos; Aessopos, Athanassios

    2005-03-01

    Congestive heart failure (CHF) remains the primary cause of death in patients suffering from beta-thalassaemia major. Its early detection allows the prompt initiation of aggressive chelation therapy, when the condition can still be reversed. We aimed at identifying echocardiographic indices for the early detection of left ventricular (LV) systolic dysfunction, the physiological abnormality underlying CHF, in these patients. We used Self-Organizing Maps (SOMs)--an artificial neural network--for identifying novel correlations within our Electronic Healthcare Record (EHCR) database on beta-thalassaemia. We sought echocardiographic parameters that are correlated to future deterioration of the LV ejection fraction and therefore constitute early signs of LV systolic dysfunction. At the same time, we evaluated SOMs as tools for exploring clinical datasets and make recommendations on the setup of the SOM algorithm that is appropriate for such tasks. We found that high values of the LV end-systolic diameter index and of the E/A ratio are early indications of LV systolic dysfunction. From a technical point of view, zero-mean unit-variance normalization of the input data, a large initial neighbourhood radius and a rectangular SOM grid produced optimal maps for the purpose of detecting clinical correlations. We have successfully used SOMs for exploring a clinical dataset and for creating novel medical hypotheses. A clinical study has been launched to confirm these hypotheses, and initial results are encouraging. PMID:16036629

  5. Congenital multi-organ malformations in a Holstein calf.

    PubMed

    Hobbenaghi, Rahim; Dalir-Naghadeh, Bahram; Nazarizadeh, Ali

    2015-01-01

    A 5-day-old female Holstein calf was necropsied because of lethargy, recumbency and anorexia. At necropsy, multiple gross defects were evident in several organs, including unclosed sutures of skull bones, asymmetrical orbits, doming of the skull bones, hydrocephalus, hydranencephaly, cleft palate, brachygnathia, ventricular septal defect, mitral valve dysplasia and rudimentary lungs. On microscopic examination, pulmonary hypoplasia was characterized by reduced number of alveoli, replacement of peri-bronchiolar smooth muscles with connective tissue and small masses of undeveloped cartilage around the small airways. The present report is the first description of the congenital pulmonary hypoplasia accompanied by numerous malformations in Holstein breed. PMID:26893818

  6. Congenital multi-organ malformations in a Holstein calf

    PubMed Central

    Hobbenaghi, Rahim; Dalir-Naghadeh, Bahram; Nazarizadeh, Ali

    2015-01-01

    A 5-day-old female Holstein calf was necropsied because of lethargy, recumbency and anorexia. At necropsy, multiple gross defects were evident in several organs, including unclosed sutures of skull bones, asymmetrical orbits, doming of the skull bones, hydrocephalus, hydranencephaly, cleft palate, brachygnathia, ventricular septal defect, mitral valve dysplasia and rudimentary lungs. On microscopic examination, pulmonary hypoplasia was characterized by reduced number of alveoli, replacement of peri-bronchiolar smooth muscles with connective tissue and small masses of undeveloped cartilage around the small airways. The present report is the first description of the congenital pulmonary hypoplasia accompanied by numerous malformations in Holstein breed. PMID:26893818

  7. Lateral Organization of Lipids in Multi-component Liposomes

    NASA Astrophysics Data System (ADS)

    Ramachandran, Sanoop; Laradji, Mohamed; Sunil Kumar, P. B.

    2009-04-01

    Inspite of the fluid nature and low elastic modulus, membranes play a crucial role in maintaining the structural integrity of the cell. Recent experiments have challenged the passive nature of the membrane as proposed by the classical fluid mosaic model. Experiments indicate that biomembranes of eukaryotic cells may be laterally organized into small nanoscopic domains, called rafts, which are rich in sphingomyelin and cholesterol. It is largely believed that this in-plane organization is essential for a variety of physiological functions such as signaling, recruitment of specific proteins and endocytosis. However, elucidation of the fundamental issues including the mechanisms leading to the formation of lipid rafts, their stability, and their size remain difficult. This has reiterated the importance of understanding the equilibrium phase behavior and the kinetics of fluid multicomponent lipid membranes before attempts are made to find the effects of more complex mechanisms that may be involved in the formation and stability of lipid rafts. Current increase in interest in the domain formation in multicomponent membranes also stems from the experiments demonstrating fluid-fluid coexistence in mixtures of lipids and cholesterol and the success of several computational models in predicting their behavior. Here we review time dependent Ginzburg Landau model, dynamical triangulation Monte Carlo, and dissipative particle dynamics which are some of the methods that are commonly employed.

  8. Leadership in Multi-Community and Multi-County Development Organizations.

    ERIC Educational Resources Information Center

    Reeder, W. W.; And Others

    This study concerns the types of influence exerted by staff individuals and units and nonstaff individuals and units in the activities of regional economic and social development organizations. Four different social units, each involving different theoretical considerations, are involved in the analysis. These four social units are: social action…

  9. Comparison of multi-enzyme and thermophilic bacteria on the hydrolysis of mariculture organic waste (MOW).

    PubMed

    Guo, Liang; Sun, Mei; Zong, Yan; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2016-01-01

    Mariculture organic waste (MOW) is rich in organic matter, which is a potential energy resource for anaerobic digestion. In order to enhance the anaerobic fermentation, the MOW was hydrolyzed by multi-enzyme and thermophilic bacteria. It was advantageous for soluble chemical oxygen demand (SCOD) release at MOW concentrations of 6 and 10 g/L with multi-enzyme and thermophilic bacteria pretreatments. For multi-enzyme, the hydrolysis was not obvious at substrate concentrations of 1 and 3 g/L, and the protein and carbohydrate increased with hydrolysis time at substrate concentrations of 6 and 10 g/L. For thermophilic bacteria, the carbohydrate was first released at 2-4 h and then consumed, and the protein increased with hydrolysis time. The optimal enzyme hydrolysis for MOW was determined by measuring the changes of SCOD, protein, carbohydrate, ammonia and total phosphorus, and comparing with acid and alkaline pretreatments. PMID:27120653

  10. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    NASA Astrophysics Data System (ADS)

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  11. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling.

    PubMed

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations. PMID:26758496

  12. Reasonable Reasoning: Multi-Variate Problem-Solving in Organic Chemistry

    ERIC Educational Resources Information Center

    Kraft, Adam; Strickland, Amanda M.; Bhattacharyya, Gautam

    2010-01-01

    In order to understand how students approach multi-variate problems, we report a study on the cues organic chemistry graduate students perceive from mechanism tasks, and the reasoning processes induced by those cues. We used the think-aloud protocol in interviews with sixteen graduate students as they worked on two types of tasks: one, in which…

  13. Lysozyme, a mediator of sepsis that deposits in the systemic vasculature and kidney as a possible mechanism of acute organ dysfunction.

    PubMed

    Gotes, Jose; Kasian, Krika; Jacobs, Hans; Cheng, Zhao-Qin; Mink, Steven N

    2014-03-01

    In septic shock (SS), dysfunction of many organ systems develops during the course of the illness, although the mechanisms are not clear. In earlier studies, we reported that lysozyme-c (Lzm-S), a protein that is released from leukocytes and macrophages, was a mediator of the myocardial depression and vasodilation that develop in a canine model of Pseudomonas aeruginosa SS. Whereas both of these effects of Lzm-S are dependent on its ability to intrinsically generate hydrogen peroxide, we subsequently showed that Lzm-S can also deposit within the vascular smooth muscle layer of the systemic arteries in this model. In the present study, we extend our previous findings. We used a canine carotid artery organ bath preparation to study the time course and dose dependence of Lzm-S deposition within the vascular smooth muscle layer. We used a human aortic vascular smooth muscle cell preparation to determine whether Lzm-S can persistently inhibit contraction in this preparation. We also used a canine P. aeruginosa model to determine whether Lzm-S deposition might occur in other organs such as the kidney, liver, and small intestine. The results showed that, in the carotid artery organ bath preparation, Lzm-S deposition occurred within minutes of instillation and there was a dose-response effect. In the human aortic vascular smooth muscle cell preparation, Lzm-S inhibited contraction during a 4-day period. In the in vivo model, Lzm-S accumulated in the kidney and the superior mesenteric artery. In a canine renal epithelial preparation, we further showed that Lzm-S can be taken up by the renal tubules to activate inflammatory pathways. We conclude that Lzm-S can deposit in the systemic vasculature and kidneys in SS, where this deposition could lead to acute organ dysfunction. PMID:24296430

  14. Dynamic spatial organization of multi-protein complexes controlling microbial polar organization, chromosome replication, and cytokinesis

    SciTech Connect

    McAdams, Harley; Shapiro, Lucille; Horowitz, Mark; Andersen, Gary; Downing, Kenneth; Earnest, Thomas; Ellisman, Mark; Gitai, Zemer; Larabell, Carolyn; Viollier, Patrick

    2012-06-18

    This project was a program to develop high-throughput methods to identify and characterize spatially localized multiprotein complexes in bacterial cells. We applied a multidisciplinary systems engineering approach to the detailed characterization of localized multi-protein structures in vivo a problem that has previously been approached on a fragmented, piecemeal basis.

  15. Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors.

    PubMed

    Okada, Toshiyuki; Linguraru, Marius George; Hori, Masatoshi; Summers, Ronald M; Tomiyama, Noriyuki; Sato, Yoshinobu

    2013-01-01

    The paper addresses the automated segmentation of multiple organs in upper abdominal CT data. We propose a framework of multi-organ segmentation which is adaptable to any imaging conditions without using intensity information in manually traced training data. The features of the framework are as follows: (1) the organ correlation graph (OCG) is introduced, which encodes the spatial correlations among organs inherent in human anatomy; (2) the patient-specific organ shape and location priors obtained using OCG enable the estimation of intensity priors from only target data and optionally a number of untraced CT data of the same imaging condition as the target data. The proposed methods were evaluated through segmentation of eight abdominal organs (liver, spleen, left and right kidney, pancreas, gallbladder, aorta, and inferior vena cava) from 86 CT data obtained by four imaging conditions at two hospitals. The performance was comparable to the state-of-the-art method using intensity priors constructed from manually traced data. PMID:24505771

  16. Multi-organ Abnormalities and mTORC1 Activation in Zebrafish Model of Multiple Acyl-CoA Dehydrogenase Deficiency

    PubMed Central

    Kim, Seok-Hyung; Scott, Sarah A.; Bennett, Michael J.; Carson, Robert P.; Fessel, Joshua; Brown, H. Alex; Ess, Kevin C.

    2013-01-01

    Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) is a severe mitochondrial disorder featuring multi-organ dysfunction. Mutations in either the ETFA, ETFB, and ETFDH genes can cause MADD but very little is known about disease specific mechanisms due to a paucity of animal models. We report a novel zebrafish mutant dark xavier (dxavu463) that has an inactivating mutation in the etfa gene. dxavu463 recapitulates numerous pathological and biochemical features seen in patients with MADD including brain, liver, and kidney disease. Similar to children with MADD, homozygote mutant dxavu463 zebrafish have a spectrum of phenotypes ranging from moderate to severe. Interestingly, excessive maternal feeding significantly exacerbated the phenotype. Homozygous mutant dxavu463 zebrafish have swollen and hyperplastic neural progenitor cells, hepatocytes and kidney tubule cells as well as elevations in triacylglycerol, cerebroside sulfate and cholesterol levels. Their mitochondria were also greatly enlarged, lacked normal cristae, and were dysfunctional. We also found increased signaling of the mechanistic target of rapamycin complex 1 (mTORC1) with enlarged cell size and proliferation. Treatment with rapamycin partially reversed these abnormalities. Our results indicate that etfa gene function is remarkably conserved in zebrafish as compared to humans with highly similar pathological, biochemical abnormalities to those reported in children with MADD. Altered mTORC1 signaling and maternal nutritional status may play critical roles in MADD disease progression and suggest novel treatment approaches that may ameliorate disease severity. PMID:23785301

  17. Gustatory dysfunction

    PubMed Central

    Maheswaran, T.; Abikshyeet, P.; Sitra, G.; Gokulanathan, S.; Vaithiyanadane, V.; Jeelani, S.

    2014-01-01

    Tastes in humans provide a vital tool for screening soluble chemicals for food evaluation, selection, and avoidance of potentially toxic substances. Taste or gustatory dysfunctions are implicated in loss of appetite, unintended weight loss, malnutrition, and reduced quality of life. Dental practitioners are often the first clinicians to be presented with complaints about taste dysfunction. This brief review provides a summary of the common causes of taste disorders, problems associated with assessing taste function in a clinical setting and management options available to the dental practitioner. PMID:25210380

  18. Surgical Procedures for Vestibular Dysfunction

    MedlinePlus

    ... Rated Nonprofit! Volunteer. Donate. Review. Surgical Procedures for Vestibular Dysfunction When is surgery necessary? When medical treatment ... organ (cochlea) is also sacrificed with this procedure. Vestibular nerve section A vestibular nerve section is a ...

  19. The Dysfunctions of Bureaucratic Structure.

    ERIC Educational Resources Information Center

    Duttweiler, Patricia Cloud

    1988-01-01

    Numerous dysfunctions result from bureaucratic school organization, including an overemphasis on specialized tasks, routine operating rules, and formal procedures for managing teaching and learning. Such schools are characterized by numerous regulations; formal communications; centralized decision making; and sharp distinctions among…

  20. Effect of anthocyanins contained in a blackberry extract on the circulatory failure and multiple organ dysfunction caused by endotoxin in the rat.

    PubMed

    Sautebin, Lidia; Rossi, Antonietta; Serraino, Ivana; Dugo, Paola; Di Paola, Rosanna; Mondello, Luigi; Genovese, Tiziana; Britti, Domenico; Peli, Angelo; Dugo, Giovanni; Caputi, Achille P; Cuzzocrea, Salvatore

    2004-08-01

    Anthocyanins are a group of naturally occurring phenolic compounds related to the colouring of plants, flowers and fruits. These pigments are important as quality indicators, chemotaxonomic markers and for their antioxidant activities. Here we have investigated the therapeutic efficacy of anthocyanins contained in a blackberry extract on (i) circulatory failure, (ii), multiple organ dysfunction and (iii) activity of the inducible isoforms of nitric oxide (NO) synthase (iNOS) and cyclooxygenase (COX-2) in anaesthetised rats with endotoxic shock. In a model of endotoxic shock induced by lipopolysaccharide (LPS, E. coli, 10 mg/kg, i.v.) in the rat, pretreatment with anthocyanins present in the blackberry extract (5 mg/kg, i. v. 30 min before LPS) prevented the hypotension induced by LPS. Endotoxaemia also caused rises in the serum levels of (i) glutamyl oxaloacetic transaminase (GOT), glutamyl pyruvic transaminase (GPT), alkaline phosphates and bilirubin (hepatic dysfunction) (ii) creatinine (renal dysfunction), (iii) amylase and lipase (pancreatic injury), (iii) NOx and 6-keto-PGF1 alpha. Anthocyanins attenuated the hepatic and pancreatic injury, the renal dysfunction and decreased NOx and 6-keto-PGF1 alpha levels. Endotoxaemia for 6 h resulted in a substantial increase in iNOS and COX activity in rat lung, which was attenuated in rats pretreated with anthocyanins. Moreover, anthocyanins (0.02 - 0.32 mg/mL) inhibited in vitro iNOS and COX activity from lung of LPS-treated rats. Polymorphonuclear (PMN) infiltration (myeloperoxidase activity), lipid peroxidation (malondialdehyde levels), as well as tissue injury (histological examination) induced by LPS in rat lung and ileum was reduced by anthocyanins (5 mg/kg, i. v. 30 min before LPS). Furthermore, endotoxaemia induced the formation of nitrotyrosine and poly(ADP-ribose) synthetase (PARS) activation as determined by immunohistochemical analysis of lung and ileum tissues. The degree of staining was lowered by

  1. Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory

    NASA Astrophysics Data System (ADS)

    Kang, Minji; Khim, Dongyoon; Park, Won-Tae; Kim, Jihong; Kim, Juhwan; Noh, Yong-Young; Baeg, Kang-Jun; Kim, Dong-Yu

    2015-07-01

    Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is limited by unreliable bit operation and high write loads. We here report that new architecture could improve the overall performance of organic memory, and especially meet high storage for multi-level operation. Our concept depends on synergistic effect of electrical characterization in combination with a polymer electret (poly(2-vinyl naphthalene) (PVN)) and metal nanoparticles (Copper). It is distinguished from mostly organic nano-floating-gate memories by using the electret dielectric instead of general tunneling dielectric for additional charge storage. The uniform stacking of organic layers including various dielectrics and poly(3-hexylthiophene) (P3HT) as an organic semiconductor, followed by thin-film coating using orthogonal solvents, greatly improve device precision despite easy and fast manufacture. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as high-k blocking dielectric also allows reduction of programming voltage. The reported synergistic organic memory devices represent low power consumption, high cycle endurance, high thermal stability and suitable retention time, compared to electret and organic nano-floating-gate memory devices.

  2. Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory

    PubMed Central

    Kang, Minji; Khim, Dongyoon; Park, Won-Tae; Kim, Jihong; Kim, Juhwan; Noh, Yong-Young; Baeg, Kang-Jun; Kim, Dong-Yu

    2015-01-01

    Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is limited by unreliable bit operation and high write loads. We here report that new architecture could improve the overall performance of organic memory, and especially meet high storage for multi-level operation. Our concept depends on synergistic effect of electrical characterization in combination with a polymer electret (poly(2-vinyl naphthalene) (PVN)) and metal nanoparticles (Copper). It is distinguished from mostly organic nano-floating-gate memories by using the electret dielectric instead of general tunneling dielectric for additional charge storage. The uniform stacking of organic layers including various dielectrics and poly(3-hexylthiophene) (P3HT) as an organic semiconductor, followed by thin-film coating using orthogonal solvents, greatly improve device precision despite easy and fast manufacture. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as high-k blocking dielectric also allows reduction of programming voltage. The reported synergistic organic memory devices represent low power consumption, high cycle endurance, high thermal stability and suitable retention time, compared to electret and organic nano-floating-gate memory devices. PMID:26201747

  3. Organic photo sensors for multi-angle light scattering characterization of particle systems.

    PubMed

    Sentis, Matthias; Onofri, Fabrice R A; Dhez, Olivier; Laurent, Jean-Yves; Chauchard, Fabien

    2015-10-19

    Organic Photo Sensor (OPS) technology allows printing on conformable plastic-like substrates complex-shaped, arbitrarily-sized and pre-aligned photosensitive elements. This article reports, to the best of our knowledge, the first investigation to implement this emerging technology for Multi-Angle Light Scattering (MALS) characterization of nano- and microparticle suspensions. Monte Carlo and Lorenz-Mie theory calculations as well as preliminary experimental results on latex suspensions clearly demonstrate the potential of the proposed approach. PMID:26480413

  4. Thrombocytopenia-associated multi-organ failure caused by diabetic ketoacidosis.

    PubMed

    Alsaied, Tarek; Goldstein, Stuart L; Kaddourah, Ahmad; Poynter, Sue E

    2016-03-01

    Thrombocytopenia-associated multi-organ failure (TAMOF) is an increasingly reported entity in the pediatric intensive care unit. The clinical presentation is similar to thrombotic thrombocytopenic purpura, but with no evidence of hemolysis and no schistocytes on peripheral smear. We report a case of TAMOF induced by diabetic ketoacidosis and treated with therapeutic plasma exchange (TPE). Early diagnosis and initiation of TPE significantly decrease the morbidity associated with TAMOF. PMID:26712331

  5. Ejaculatory dysfunction.

    PubMed

    Phillips, Elizabeth; Carpenter, Christina; Oates, Robert D

    2014-02-01

    Ejaculatory dysfunction may occur after many different disorders ranging from traumatic spinal cord injury to diabetes mellitus. With an understanding of the many facets and nuances of the ejaculatory apparatus, both anatomic and neurologic, the well-versed clinician can proceed along a safe, efficient, and appropriate treatment algorithm to help affected men and their partners achieve parenthood. PMID:24286771

  6. Erectile Dysfunction

    MedlinePlus

    ... or vascular problems, will have a more difficult time returning to pre-treatment function. Management of Erectile Dysfunction When a man is sexually aroused, the erectile nerves running alongside the penis stimulate the ... blood to rush in. At the same time, tiny valves at the base of the penis ...

  7. Memory dysfunction.

    PubMed

    Amici, Serena

    2012-01-01

    Memory is the cognitive ability that allows to acquire, store and recall information; its dysfunction is called amnesia and can be a presentation of unilateral ischemic stroke in the territory of the posterior cerebral and anterior choroidal artery as well as subarachnoid hemorrhage. PMID:22377863

  8. Sensory Dysfunction

    MedlinePlus

    ... to Web version Sensory Dysfunction Overview Why are smell and taste important? Your senses of smell and taste let you fully enjoy the scents ... bitter and sour. Flavor involves both taste and smell. For example, because a person is able to ...

  9. Drosophila melanogaster--the model organism of choice for the complex biology of multi-cellular organisms

    NASA Technical Reports Server (NTRS)

    Beckingham, Kathleen M.; Armstrong, J. Douglas; Texada, Michael J.; Munjaal, Ravi; Baker, Dean A.

    2005-01-01

    Drosophila melanogaster has been intensely studied for almost 100 years. The sophisticated array of genetic and molecular tools that have evolved for analysis of gene function in this organism are unique. Further, Drosophila is a complex multi-cellular organism in which many aspects of development and behavior parallel those in human beings. These combined advantages have permitted research in Drosophila to make seminal contributions to the understanding of fundamental biological processes and ensure that Drosophila will continue to provide unique insights in the genomic era. An overview of the genetic methodologies available in Drosophila is given here, together with examples of outstanding recent contributions of Drosophila to our understanding of cell and organismal biology. The growing contribution of Drosophila to our knowledge of gravity-related responses is addressed.

  10. Behavior analysis of an organic polymer optical multi-stable lasing system

    NASA Astrophysics Data System (ADS)

    Feng, Junqin; Wu, Fugen; Wu, Tingwan

    2008-03-01

    This paper presents some new study results on stability analysis of an organic polymer optical multi-stable lasing device based on the Poincare nonlinear theory. The dynamics of light field in the medium are described with the extended forced oscillation model of optical multi-stable and lasing system. These nonlinear equations are firstly expanded as a Taylor series and the nonlinear terms are ignored, then linear equations are obtains. Under the small perturbation these linear equations have the same properties as the nonlinear equations. Therefore, the linear system can be instead of the nonlinear system for stability analysis. Moreover, through the theoretical analysis and numerical analogue, the region of stability or instability (attractors or repellors) is discussed by eigenvalue of the linear equations coefficients matrix. Meanwhile the type of stability or instability is given. Finally, theoretical and numerical analyzing shows that the regions of stability are some different from the previous research results. These results should be significant in some degree for an organic polymer optical multi-stable lasing device research. In the low branch of instability, the incident light field of the transient response keeps attenuation oscillation, and the spectrum of frequency is not dispersible spectrum. Numerical simulation shows that the system appears special output characteristics and dynamic behaviors with the step signal and analysis this dynamic behavior on phase position map. Judge these behaviors with Lyapunov exponent.

  11. Sleep deprivation-induced multi-organ injury: role of oxidative stress and inflammation

    PubMed Central

    Periasamy, Srinivasan; Hsu, Dur-Zong; Fu, Yu-Hsuan; Liu, Ming-Yie

    2015-01-01

    Sleep deprivation affects all aspects of health. Adverse health effects by sleep deviation are still underestimated and undervalued in clinical practice and, to a much greater extent in monitoring human health. We hypothesized that sleep deprivation-induced mild organ injuries; oxidative stress and inflammation might play a crucial role in inducing multi-organ injury. Male C57BL/6J mice (n = 6-7) were sleep-deprived for 0-72 h using a modified multiple platform boxes method. Blood and tissue were collected. Liver, heart, kidney, lung, and pancreatic injuries were evaluated using biochemical and histological analyses. Glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), total billirubin (TBIL), creatine phosphokinase (CPK), creatine phosphokinase-myocardial band (CKMB), lactic dehydrogenase (LDH), creatinine (CRE), and blood urea nitrogen (BUN) were assayed in blood. Malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were measured. Histology revealed mild-to-moderate liver and lung injury in sleep-deprived mice. Sleep-deprived mice had significantly higher GOT, GPT, TBIL, CPK, CKMB, LDH, BUN, and α-amylase (AMYL) levels, which indicated liver, heart, kidney, and pancreatic injuries. Serum IL-1β at 24 h and IL-6 at 72 h were significantly higher in sleep-deprived than in control mice. Hepatic TNF-α and IL-1β were significantly higher, but IL-6 significantly lower in mice that had been sleep-deprived for 72 h. Sleep deprivation-mediated inflammation may be associated with mild to moderate multi-organ damage in mice. The implication of this study indicates sleep deprivation in humans may induce multi-organ injury that negatively affects cardiovascular and gastrointestinal health. PMID:26648820

  12. Sleep deprivation-induced multi-organ injury: role of oxidative stress and inflammation.

    PubMed

    Periasamy, Srinivasan; Hsu, Dur-Zong; Fu, Yu-Hsuan; Liu, Ming-Yie

    2015-01-01

    Sleep deprivation affects all aspects of health. Adverse health effects by sleep deviation are still underestimated and undervalued in clinical practice and, to a much greater extent in monitoring human health. We hypothesized that sleep deprivation-induced mild organ injuries; oxidative stress and inflammation might play a crucial role in inducing multi-organ injury. Male C57BL/6J mice (n = 6-7) were sleep-deprived for 0-72 h using a modified multiple platform boxes method. Blood and tissue were collected. Liver, heart, kidney, lung, and pancreatic injuries were evaluated using biochemical and histological analyses. Glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), total billirubin (TBIL), creatine phosphokinase (CPK), creatine phosphokinase-myocardial band (CKMB), lactic dehydrogenase (LDH), creatinine (CRE), and blood urea nitrogen (BUN) were assayed in blood. Malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were measured. Histology revealed mild-to-moderate liver and lung injury in sleep-deprived mice. Sleep-deprived mice had significantly higher GOT, GPT, TBIL, CPK, CKMB, LDH, BUN, and α-amylase (AMYL) levels, which indicated liver, heart, kidney, and pancreatic injuries. Serum IL-1β at 24 h and IL-6 at 72 h were significantly higher in sleep-deprived than in control mice. Hepatic TNF-α and IL-1β were significantly higher, but IL-6 significantly lower in mice that had been sleep-deprived for 72 h. Sleep deprivation-mediated inflammation may be associated with mild to moderate multi-organ damage in mice. The implication of this study indicates sleep deprivation in humans may induce multi-organ injury that negatively affects cardiovascular and gastrointestinal health. PMID:26648820

  13. Multi-atlas based segmentation of multiple organs in breast MRI

    NASA Astrophysics Data System (ADS)

    Liang, Xi; Sedai, Suman; Wang, Hongzhi; Liang, Sisi; Hashmi, Naveed; Mcneillie, Patrick; Hashoul, Sharbell

    2015-03-01

    Automatic segmentation of the breast, chest wall and heart is an important pre-processing step for automatic lesion detection of breast MR and dynamic contrast-enhanced MR studies. In this paper, we present a fully automatic segmentation procedure of multiple organs in breast MRI images using multi-atlas based methods. Our method starts by reducing the image inhomogeneity using anisotropic fusion method. We then build multiple atlases with labels of breast, chest wall and heart. These atlases are registered to a target image to obtain warped organ labels that are aligned to the target image. Given the warped organ labels, segmentation is performed via label fusion. In this paper, we evaluate various label fusion methods and compare their performance on segmenting multiple anatomical structures in breast MRI.

  14. Highly efficient organic multi-junction solar cells with a thiophene based donor material

    SciTech Connect

    Meerheim, Rico Körner, Christian; Leo, Karl

    2014-08-11

    The efficiency of organic solar cells can be increased by serial stacked subcells even upon using the same absorber material. For the multi-junction devices presented here, we use the small molecule donor material DCV5T-Me. The subcell currents were matched by optical transfer matrix simulation, allowing an efficiency increase from 8.3% for a single junction up to 9.7% for a triple junction cell. The external quantum efficiency of the subcells, measured under appropriate light bias illumination, is spectrally shifted due to the microcavity of the complete stack, resulting in a broadband response and an increased cell current. The increase of the power conversion efficiency upon device stacking is even stronger for large area cells due to higher influence of the resistance of the indium tin oxide anode, emphasizing the advantage of multi-junction devices for large-area applications.

  15. Multi-spectral imaging with infrared sensitive organic light emitting diode.

    PubMed

    Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R; So, Franky

    2014-01-01

    Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions. PMID:25091589

  16. Multi-spectral imaging with infrared sensitive organic light emitting diode

    NASA Astrophysics Data System (ADS)

    Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R.; So, Franky

    2014-08-01

    Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions.

  17. Multi-parameter optical image interpretations based on self-organizing mapping

    NASA Astrophysics Data System (ADS)

    Klose, Christian D.; Klose, A. K.; Netz, U.; Scheel, A.; Beuthan, J.; Hielscher, Andreas H.

    2008-02-01

    We found that using more than one parameter derived from optical tomographic images can lead to better image classification results compared to cases when only one parameter is used.. In particular we present a multi-parameter classification approach, called self-organizing mapping (SOM), for detecting synovitis in arthritic finger joints based on sagittal laser optical tomography (SLOT). This imaging modality can be used to determine various physical parameters such as minimal absorption and scattering coefficients in an image of the proximal interphalengeal joint. Results were compared to different gold standards: magnet resonance imaging, ultra-sonography and clinical evaluation. When compared to classifications based on single-parameters, e.g., absorption minimum only, the study reveals that multi-parameter classifications lead to higher classification sensitivities and specificities and statistical significances with p-values <5 per cent. Finally, the data suggest that image analyses are more reliable and avoid ambiguous interpretations when using more than one parameter.

  18. Multi-excitation near infrared (NIR) spectral fluorescence imaging using organic fluorophores

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Choyke, Peter L.

    2008-02-01

    The ability to obtain multi-color fluorescent imaging in vivo simultaneously using multi-targeted imaging probes could be of potential benefit from both a research and a clinical perspective. However, the simultaneous acquisition of more than 2 separate organic fluorophores usually requires more than one excitation source, since a single excitation source may not optimally excite all the fluorophores. In this study, we employed a multi-excitation approach in order to acquire optimized images with multiple near infrared (NIR) organic fluorophores at the same time. Using 3 sets of excitation filters (595+/-20nm, 640+/-25nm, 688+/-17nm) to acquire 3 distinct spectra and spectral unmixing software (CRi, Woburn, MA), it was possible to resolve the emission spectra of each of the NIR fluorophores using commercial software (Nuance, CRi, Woburn, MA) To demonstrate the utility of this approach 2 mouse models were investigated; In one model, mice bearing four implanted malignancies were injected with a cocktail of 3 fluorescently labeled monoclonal antibodies, each with its own distinct NIR fluorophore. In the second model five different lymph node drainage basins were imaged with 5-color dendrimer-based lymphatic imaging agents tagged with 5 different NIR fluorophores. We successfully detected each of the targeted tumors in the first model and all of the lymph nodes by their distinct color in the second model; neither of which would have been possible using the single excitation method. In conclusion, multi-excitation NIR spectral fluorescence imaging is feasible in a reasonable time frame and opens the possibility for in vivo immunohistochemical imaging (IHCi).

  19. Endocrine dysfunction in sepsis: a beneficial or deleterious host response?

    PubMed

    Gheorghiţă, Valeriu; Barbu, Alina Elena; Gheorghiu, Monica Livia; Căruntu, Florin Alexandru

    2015-03-01

    Sepsis is a systemic, deleterious inflammatory host response triggered by an infective agent leading to severe sepsis, septic shock and multi-organ failure. The host response to infection involves a complex, organized and coherent interaction between immune, autonomic, neuroendocrine and behavioral systems. Recent data have confirmed that disturbances of the autonomic nervous and neuroendocrine systems could contribute to sepsis-induced organ dysfunction. Through this review, we aimed to summarize the current knowledge about the endocrine dysfunction as response to sepsis, specifically addressed to vasopressin, copeptin, cortisol, insulin and leptin. We searched the following readily accessible, clinically relevant databases: PubMed, UpToDate, BioMed Central. The immune system could be regarded as a "diffuse sensory organ" that signals the presence of pathogens to the brain through different pathways, such as the vagus nerve, endothelial activation/dysfunction, cytokines and neurotoxic mediators and the circumventricular organs, especially the neurohypophysis. The hormonal profile changes substantially as a consequence of inflammatory mediators and microorganism products leading to inappropriately low levels of vasopressin, sick euthyroid syndrome, reduced adrenal responsiveness to ACTH, insulin resistance, hyperglycemia as well as hyperleptinemia. In conclusion, clinical diagnosis of this "pan-endocrine illness" is frequently challenging due to the many limiting factors. The most important benefits of endocrine markers in the management of sepsis may be reflected by their potential to be used as biomarkers in different scoring systems to estimate the severity of the disease and the risk of death. PMID:25763364

  20. Ischemia in pelvic organs as an independent pathogenic factor in the development of benign prostatic hyperplasia and urinary bladder dysfunction.

    PubMed

    Kirpatovskii, V I; Mudraya, I S; Mkrtchyan, K G; Revenko, S V; Efremov, G D; Nadtochii, O N; Kabanova, I V

    2015-04-01

    Blood supply to the pelvic organs of outbred male rats was diminished by graduated constriction of the distal part of the inferior vena cava. Deficiency of intramural blood supply in prostate and urinary bladder was revealed by bioimpedance harmonic analysis according to the magnitude of first cardiac peak in the bioimpedance spectrogram. In 1-1.5 months, the histological examination revealed the glandular-stromal form of progressive benign prostatic hyperplasia in all ischemic rats. The development of hyperplasia was not accompanied by the changes in testosterone, dihydrotestosterone, or estradiol in blood and prostatic tissue. Assessment of vesical functional status by recording the intravesical pressure during infusion cystometry revealed an increase in the amplitude of spontaneous fluctuations of detrusor tone and intravesical pressure during bladder filling, which can be considered as indicator of detrusor hyperactivity. The data conclude that chronic ischemia of pelvic organs is an individual pathogenic factor in the development of benign prostatic hyperplasia and associated urinary disorders. PMID:25896589

  1. Inhibition of glycogen synthase kinase-3β attenuates organ injury and dysfunction associated with liver ischemia-reperfusion and thermal injury in the rat.

    PubMed

    Rocha, Joao; Figueira, Maria-Eduardo; Barateiro, Andreia; Fernandes, Adelaide; Brites, Dora; Pinto, Rui; Freitas, Marisa; Fernandes, Eduarda; Mota-Filipe, Helder; Sepodes, Bruno

    2015-04-01

    Glycogen synthase kinase 3 (GSK-3) is a serine-threonine kinase discovered decades ago to have an important role in glycogen metabolism. Today, we know that this kinase is involved in the regulation of many cell functions, including insulin signaling, specification of cell fate during embryonic development, and the control of cell division and apoptosis. Insulin and TDZD-8 (4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione) are inhibitors of GSK-3β that have been shown to possess organ-protective effects in inflammatory-mediated organ injury models. We aimed to evaluate the cytoprotective effect of GSK-3β inhibition on rat models of liver ischemia-reperfusion and thermal injury. In the liver ischemia-reperfusion model, TDZD-8 and insulin were administered at 5 mg/kg (i.v.) and 1.4 IU/kg (i.v.), respectively, 30 min before induction of ischemia and led to the significant reduction of the serum concentration of aspartate aminotransferase, alanine aminotransferase, γ-glutamyltransferase, and lactate dehydrogenase. Beneficial effects were found to be independent from blood glucose levels. In the thermal injury model, TDZD-8 was administered at 5 mg/kg (i.v.) 5 min before induction of injury and significantly reduced multiple organ dysfunction markers (liver, neuromuscular, and lung). In the lung, TDZD-8 reduced the histological signs of tissue injury, inflammatory markers (cytokines), and neutrophil chemotaxis/infiltration; reduced GSK-3β, nuclear factor-κB, and Akt activation; reduced caspase-3 and metalloproteinase-9 activation. Our study provides a new insight on the beneficial effects of GSK-3β inhibition on systemic inflammation and further elucidates the mechanism and pathway crosstalks by which TDZD-8 reduces the multiple organ injury elicited by thermal injury. PMID:25394244

  2. Multi-electrolyte-step anodic aluminum oxide method for the fabrication of self-organized nanochannel arrays

    PubMed Central

    2012-01-01

    Nanochannel arrays were fabricated by the self-organized multi-electrolyte-step anodic aluminum oxide [AAO] method in this study. The anodization conditions used in the multi-electrolyte-step AAO method included a phosphoric acid solution as the electrolyte and an applied high voltage. There was a change in the phosphoric acid by the oxalic acid solution as the electrolyte and the applied low voltage. This method was used to produce self-organized nanochannel arrays with good regularity and circularity, meaning less power loss and processing time than with the multi-step AAO method. PMID:22333268

  3. The myeloid-binding peptide adenoviral vector enables multi-organ vascular endothelial gene targeting.

    PubMed

    Lu, Zhi Hong; Kaliberov, Sergey; Zhang, Jingzhu; Muz, Barbara; Azab, Abdel K; Sohn, Rebecca E; Kaliberova, Lyudmila; Du, Yingqiu; Curiel, David T; Arbeit, Jeffrey M

    2014-08-01

    Vascular endothelial cells (ECs) are ideal gene therapy targets as they provide widespread tissue access and are the first contact surfaces following intravenous vector administration. Human recombinant adenovirus serotype 5 (Ad5) is the most frequently used gene transfer system because of its appreciable transgene payload capacity and lack of somatic mutation risk. However, standard Ad5 vectors predominantly transduce liver but not the vasculature following intravenous administration. We recently developed an Ad5 vector with a myeloid cell-binding peptide (MBP) incorporated into the knob-deleted, T4 fibritin chimeric fiber (Ad.MBP). This vector was shown to transduce pulmonary ECs presumably via a vector handoff mechanism. Here we tested the body-wide tropism of the Ad.MBP vector, its myeloid cell necessity, and vector-EC expression dose response. Using comprehensive multi-organ co-immunofluorescence analysis, we discovered that Ad.MBP produced widespread EC transduction in the lung, heart, kidney, skeletal muscle, pancreas, small bowel, and brain. Surprisingly, Ad.MBP retained hepatocyte tropism albeit at a reduced frequency compared with the standard Ad5. While binding specifically to myeloid cells ex vivo, multi-organ Ad.MBP expression was not dependent on circulating monocytes or macrophages. Ad.MBP dose de-escalation maintained full lung-targeting capacity but drastically reduced transgene expression in other organs. Swapping the EC-specific ROBO4 for the CMV promoter/enhancer abrogated hepatocyte expression but also reduced gene expression in other organs. Collectively, our multilevel targeting strategy could enable therapeutic biological production in previously inaccessible organs that pertain to the most debilitating or lethal human diseases. PMID:24955893

  4. Self-organized field structures in electron-depleted multi-ion dusty plasma

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Gondal, S. M.; Shuaib, A.; Qurat-Ul-Ain

    2015-06-01

    It is shown that there exists a strong interaction between the magnetic and kinetic aspects of a multi-ion plasma. The interaction appears as a system of simultaneous equations which show the alignment of vortices to flows and satisfy the Beltrami condition. Solving these equations lead to a non-force-free magnetic field which can be cast as a superposition of three multiscale force-free magnetic field configurations. It is the consequence of different Beltrami parameters of positive and negative ion fluids. It is also shown that self-organized paramagnetic and diamagnetic field structures could be created by varying the vorticities and flows of ion fluids.

  5. Dysfunctional voiding.

    PubMed

    Chiozza, M L

    2002-01-01

    Wetting may be considered the Cinderella of paediatric medicine. Before discussing dysfunctional voiding, the milestones of the normal development of continence in the child and the definitions used to describe this topic are presented. Bladder storage requires (1): accommodation of increasing volumes of urine at low intravesical pressure and with appropriate sensation; (2): a bladder outlet that is closed and not modified during increase in intra-abdominal pressure; (3): absence of involuntary bladder contractions. Development of continence in the child involves three independent factors maturing concomitantly: (1) development of normal bladder capacity; (2) maturation of urethral sphincter function; (3) development of neural control over bladder-sphincter function. All these processes are discussed. Abnormalities of any of these maturational sequences, which run parallel and overlapping, may result in clinically evident abnormalities of bladder sphincter control. Although dysfunctional voiding (DV) in children is very common its prevalence has not been well studied and, to date, and its origin is not well known. In a correct evaluation of functional voiding we must take into account different elements: the bladder capacity (that increases during the first 8 years of life roughly 30 ml per year), the micturition frequency, post-void residual volumes, bladder dynamics, urinary flow rates. Thus the correct assessment of children with lower urinary tract dysfunction should include a detailed history. Signs of DV range from urge syndrome to complex incontinence patterns during the day and the night. In addition to incontinence problems, children may have frequency, urgency, straining to void, weak or interrupted urinary stream, urinary tract infections (UTIs) and chronic constipation with or without encopresis. DV are also referred in enuretic children who wet the bed more than one time per night and have a functional bladder capacity lower than attended for age

  6. Clinical Evaluation of High-Volume Hemofiltration with Hemoperfusion Followed by Intermittent Hemodialysis in the Treatment of Acute Wasp Stings Complicated by Multiple Organ Dysfunction Syndrome.

    PubMed

    Si, Xiaoyun; Li, Jingjing; Bi, Xiaohong; Wu, Lan; Wu, Xiaoyan

    2015-01-01

    Multiple organ dysfunction syndrome (MODS) is a rare complication of wasp stings. Currently, there is no standardized treatment for MODS secondary to multiple wasp stings, although blood purification techniques are often used. This study aimed to analyze our experiences of using intermittent hemodialysis (IHD) with or without high-volume hemofiltration (HVHF) for treating acute wasp stings complicated by MODS. In this retrospective study, 36 patients with wasp stings complicated by MODS received either IHD combined with hemoperfusion, or HVHF (ultrafiltration flow rate, 70 mL/kg/h) combined with hemoperfusion for 5 days followed by IHD. Clinical symptoms, blood biochemical parameters, duration of mechanical ventilation, use of vasoactive agents, duration of hospital stay and survival rate were recorded, and Acute Physiology and Chronic Health Evaluation II (APACHE II) and multiple organ dysfunction (MOD) scores estimated. Patients treated with HVHF followed by IHD appeared to exhibit a faster recovery than those receiving IHD alone, as evidenced by superior improvements in MOD (4.29±1.08 vs. 2.27±1.07) and APACHE II (7.09±2.62 vs. 4.20±1.69) scores (P < 0.05). Patients treated with HVHF had significantly lower myoglobin, creatine kinase-MB, lactate dehydrogenase, bilirubin and creatinine levels than patients treated with IHD alone. In addition, the durations of hospital stay (13.15±2.77 vs. 27.92±3.18 days), vasopressor use (1.76±0.24 vs. 3.43 ± 1.01 days), mechanical ventilation (3.02±1.63 vs. 5.94 ± 2.11 days) and oliguria (6.57±2.45 vs. 15.29 ± 3.51 days) were reduced, and renal function more often recovered (85.1% vs. 53.1%), in the HVHF group compared with the IHD group (P < 0.05). These results raise the possibility that HVHF plus IHD may be superior to IHD alone for the treatment of acute wasp stings complicated by MODS; additional prospective studies are merited to explore this further. PMID:26207371

  7. Fructus Gardenia Extract ameliorates oxonate-induced hyperuricemia with renal dysfunction in mice by regulating organic ion transporters and mOIT3.

    PubMed

    Hu, Qing-Hua; Zhu, Ji-Xiao; Ji, Jing; Wei, Lin-Lin; Miao, Ming-Xing; Ji, Hui

    2013-01-01

    The potent anti-hyperuricemia activities of Fructus Gardenia Extract (FGE) have been well reported. The aim of this study was to evaluate the uricosuric and nephro-protective effects of FGE and explore its possible mechanisms of action in oxonate-induced hyperuricemic mice. FGE was orally administered to hyperuricemic and normal mice for 1 week. Serum and urinary levels of uric acid, creatinine and blood urea nitrogen (BUN), and fractional excretion of uric acid (FEUA) were measured. The mRNA and protein levels of mouse urate transporter 1 (mURAT1), glucose transporter 9 (mGLUT9), ATP-binding cassette, subfamily G, 2 (mABCG2), organic anion transporter 1 (mOAT1), mOAT3, oncoprotein induced transcript 3 (mOIT3), organic cation/carnitine transporters in the kidney were analyzed. Simultaneously, Tamm-Horsfall glycoprotein (THP) levels in urine and kidney were detected. FGE significantly reduced serum urate levels and increased urinary urate levels and FEUA in hyperuricemic mice. It could also effectively reverse oxonate-induced alterations in renal mURAT1, mGLUT9, mOAT1 and mOIT3 expressions, as well as THP levels, resulting in the enhancement of renal uric acid excretion. Moreover, FGE decreased serum creatinine and BUN levels, and up-regulated expression of organic cation/carnitine transporters, improving renal dysfunction in this model. Furthermore, FGE decreased renal mABCG2 expressions in hyperuricemic mice, contributing to its beneficial actions. However, further investigation is needed in clinical trials of FGE and its bioactive components. PMID:23899832

  8. Increasing cytotoxic activity and production of reactive oxygen and nitrogen intermediates by peritoneal macrophages during the development of multiple organ dysfunction syndrome in mice.

    PubMed

    Jansen, M J; Hendriks, T; Huyben, C M; Tax, W J; van der Meer, J W; Goris, R J

    1996-10-01

    A major problem in the intensive care unit nowadays is the development of multiple organ dysfunction syndrome (MODS), a cumulative sequence of progressive deterioration of organ functions. While the pathogenic pathways of MODS remain to be elucidated, it is assumed that cells of the host defence system, especially the macrophages, are altered in their function. During the development of MODS it is assumed that macrophages are overactivated and that an exaggerated inflammatory response may contribute to its pathogenesis. In order to gain insight into the alterations of the functional status of the macrophage during the development of MODS, a series of macrophage functions was measured in the subsequent phases of zymosan induced generalized inflammation in mice. Male C57BL/6 mice received a single dose of zymosan intraperitoneally and groups of animals were killed after 2, 5, 8, and 12 days. Peritoneal macrophages were collected for in vitro assessment of the ADCC, the production of superoxide (O2-) and nitric oxide (NO), and complement mediated phagocytosis and intracellular killing of Staphylococcus aureus. A single intraperitoneal injection with zymosan resulted in a three-phase illness. During the third phase the animals developed MODS-like symptoms. Peritoneal cells from control animals produced very low to non-detectable amounts of O2- and NO, and the cytotoxic activity was also low. During the development of MODS, from day 7 onwards, the ability to produce O2- and NO2- became strongly elevated, as did the cytotoxic activity. These findings are in parallel with the development of MODS whereas the phagocytic and killing capacity remained essentially unaltered. The changes found could be detrimental for the organism, thus possibly contributing to the onset and development of MODS. PMID:8845029

  9. Hybrid organic-inorganic porous semiconductor transducer for multi-parameters sensing.

    PubMed

    Caliò, Alessandro; Cassinese, Antonio; Casalino, Maurizio; Rea, Ilaria; Barra, Mario; Chiarella, Fabio; De Stefano, Luca

    2015-07-01

    Porous silicon (PSi) non-symmetric multi-layers are modified by organic molecular beam deposition of an organic semiconductor, namely the N,N'-1H,1H-perfluorobutyldicyanoperylene-carboxydi-imide (PDIF-CN2). Joule evaporation of PDIF-CN2 into the PSi sponge-like matrix not only improves but also adds transducing skills, making this solid-state device a dual signal sensor for chemical monitoring. PDIF-CN2 modified PSi optical microcavities show an increase of about five orders of magnitude in electric current with respect to the same bare device. This feature can be used to sense volatile substances. PDIF-CN2 also improves chemical resistance of PSi against alkaline and acid corrosion. PMID:26063814

  10. A Method of Segmentation and Organization of Multi-section Video Data

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoli; Li, Chunquan; Chen, An; Qingwu; lai

    The purpose of this invention is to provide a method for the segmentation organization of multi-section videos based on GPS in the GIS (Geographical Information System). The topological relationship is gained by integrating the geographical information with the video information, extracting the information of nodes in the road network and every section. By segmenting and organizing the videos according to the topological relationship to obtain rapid retrieval and positioning between the geographical coordinates and the video frames so as to provide roaming based on the actual scene for users. This invention is mainly suitable for the application of GIS based on videos in the traffic management. With this method, GPS positioning information and real-time collection & video playback of the road video images can be realized, including searching & positioning and synchrocontrol with E-maps of videos.

  11. Association of Dioxin and Other Persistent Organic Pollutants (POPs) with Diabetes: Epidemiological Evidence and New Mechanisms of Beta Cell Dysfunction

    PubMed Central

    De Tata, Vincenzo

    2014-01-01

    The worldwide explosion of the rates of diabetes and other metabolic diseases in the last few decades cannot be fully explained only by changes in the prevalence of classical lifestyle-related risk factors, such as physical inactivity and poor diet. For this reason, it has been recently proposed that other “nontraditional” risk factors could contribute to the diabetes epidemics. In particular, an increasing number of reports indicate that chronic exposure to and accumulation of a low concentration of environmental pollutants (especially the so-called persistent organic pollutants (POPs)) within the body might be associated with diabetogenesis. In this review, the epidemiological evidence suggesting a relationship between dioxin and other POPs exposure and diabetes incidence will be summarized, and some recent developments on the possible underlying mechanisms, with particular reference to dioxin, will be presented and discussed. PMID:24802877

  12. Endocrine dysfunction in sepsis: a beneficial or deleterious host response?

    PubMed Central

    Gheorghiţă, Valeriu; Barbu, Alina Elena; Gheorghiu, Monica Livia; Căruntu, Florin Alexandru

    2015-01-01

    Sepsis is a systemic, deleterious inflammatory host response triggered by an infective agent leading to severe sepsis, septic shock and multi-organ failure. The host response to infection involves a complex, organized and coherent interaction between immune, autonomic, neuroendocrine and behavioral systems. Recent data have confirmed that disturbances of the autonomic nervous and neuroendocrine systems could contribute to sepsis-induced organ dysfunction. Through this review, we aimed to summarize the current knowledge about the endocrine dysfunction as response to sepsis, specifically addressed to vasopressin, copeptin, cortisol, insulin and leptin. We searched the following readily accessible, clinically relevant databases: PubMed, UpToDate, BioMed Central. The immune system could be regarded as a “diffuse sensory organ” that signals the presence of pathogens to the brain through different pathways, such as the vagus nerve, endothelial activation/dysfunction, cytokines and neurotoxic mediators and the circumventricular organs, especially the neurohypophysis. The hormonal profile changes substantially as a consequence of inflammatory mediators and microorganism products leading to inappropriately low levels of vasopressin, sick euthyroid syndrome, reduced adrenal responsiveness to ACTH, insulin resistance, hyperglycemia as well as hyperleptinemia. In conclusion, clinical diagnosis of this “pan-endocrine illness” is frequently challenging due to the many limiting factors. The most important benefits of endocrine markers in the management of sepsis may be reflected by their potential to be used as biomarkers in different scoring systems to estimate the severity of the disease and the risk of death. PMID:25763364

  13. The Impact of the Demand for Integration in the Large Multi-Business Unit Firm on the IT Organization Structure

    ERIC Educational Resources Information Center

    Larson, Eric Christopher

    2012-01-01

    Large, multi-business unit firms are decentralizing their overall corporate structures. At the same time, the structures of their IT organizations are becoming more centralized. This is contrary to current wisdom that the IT organization structure will mimic the structure of the corporation, all else being equal. Because the general business…

  14. Dysfunction of Organic Anion Transporting Polypeptide 1a1 Alters Intestinal Bacteria and Bile Acid Metabolism in Mice

    PubMed Central

    Zhang, Youcai; Limaye, Pallavi B.; Lehman-McKeeman, Lois D.; Klaassen, Curtis D.

    2012-01-01

    Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in liver and is able to transport bile acids (BAs) in vitro. Male Oatp1a1-null mice have increased concentrations of taurodeoxycholic acid (TDCA), a secondary BA generated by intestinal bacteria, in both serum and livers. Therefore, in the present study, BA concentrations and intestinal bacteria in wild-type (WT) and Oatp1a1-null mice were quantified to investigate whether the increase of secondary BAs in Oatp1a1-null mice is due to alterations in intestinal bacteria. The data demonstrate that Oatp1a1-null mice : (1) have similar bile flow and BA concentrations in bile as WT mice; (2) have a markedly different BA composition in the intestinal contents, with a decrease in conjugated BAs and an increase in unconjugated BAs; (3) have BAs in the feces that are more deconjugated, desulfated, 7-dehydroxylated, 3-epimerized, and oxidized, but less 7-epimerized; (4) have 10-fold more bacteria in the small intestine, and 2-fold more bacteria in the large intestine which is majorly due to a 200% increase in Bacteroides and a 30% reduction in Firmicutes; and (5) have a different urinary excretion of bacteria-related metabolites than WT mice. In conclusion, the present study for the first time established that lack of a liver transporter (Oatp1a1) markedly alters the intestinal environment in mice, namely the bacteria composition. PMID:22496825

  15. Dysfunction of organic anion transporting polypeptide 1a1 alters intestinal bacteria and bile acid metabolism in mice.

    PubMed

    Zhang, Youcai; Limaye, Pallavi B; Lehman-McKeeman, Lois D; Klaassen, Curtis D

    2012-01-01

    Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in liver and is able to transport bile acids (BAs) in vitro. Male Oatp1a1-null mice have increased concentrations of taurodeoxycholic acid (TDCA), a secondary BA generated by intestinal bacteria, in both serum and livers. Therefore, in the present study, BA concentrations and intestinal bacteria in wild-type (WT) and Oatp1a1-null mice were quantified to investigate whether the increase of secondary BAs in Oatp1a1-null mice is due to alterations in intestinal bacteria. The data demonstrate that Oatp1a1-null mice : (1) have similar bile flow and BA concentrations in bile as WT mice; (2) have a markedly different BA composition in the intestinal contents, with a decrease in conjugated BAs and an increase in unconjugated BAs; (3) have BAs in the feces that are more deconjugated, desulfated, 7-dehydroxylated, 3-epimerized, and oxidized, but less 7-epimerized; (4) have 10-fold more bacteria in the small intestine, and 2-fold more bacteria in the large intestine which is majorly due to a 200% increase in Bacteroides and a 30% reduction in Firmicutes; and (5) have a different urinary excretion of bacteria-related metabolites than WT mice. In conclusion, the present study for the first time established that lack of a liver transporter (Oatp1a1) markedly alters the intestinal environment in mice, namely the bacteria composition. PMID:22496825

  16. Inter-group aggression: the multi-individual organism and the survival instinct.

    PubMed

    Hughes-Jones, N

    2000-01-01

    Inter-group aggression, carried out at the level of the in-groups and out-groups of ethnocentric theory, continued unabated throughout the twentieth century. Its frequency, together with its ferocity, indicates a potent biological cause. We have evolved as social animals, and it is postulated that evolution has proceeded to such an extent that 'multi-individual social organisms', that is, 'social groups that fight each other are self-sustaining, self-replicating whole containing interdependent parts'. This results from the total integration of individuals into the social structure and culture of the in-group; individuals are inseparable from their society and evidence for this proposal is given. Cohesion is given through the collective consciousness and collective memory. The analogy is to multicellular organisms that evolved from the association of single cell organisms. All biological organisms are subject to the survival instinct, which is thus the potent biological cause of inter-group aggression. Groups compete for territory and see other groups as a threat. Prevention of inter-group aggression should come from the insight that threatening behaviour endangers the integrity of the society of out-groups, initiating conflict. PMID:10893943

  17. Multi-Atlas Segmentation for Abdominal Organs with Gaussian Mixture Models

    PubMed Central

    Burke, Ryan P.; Xu, Zhoubing; Lee, Christopher P.; Baucom, Rebeccah B.; Poulose, Benjamin K.; Abramson, Richard G.; Landman, Bennett A.

    2015-01-01

    Abdominal organ segmentation with clinically acquired computed tomography (CT) is drawing increasing interest in the medical imaging community. Gaussian mixture models (GMM) have been extensively used through medical segmentation, most notably in the brain for cerebrospinal fluid/gray matter/white matter differentiation. Because abdominal CT exhibit strong localized intensity characteristics, GMM have recently been incorporated in multi-stage abdominal segmentation algorithms. In the context of variable abdominal anatomy and rich algorithms, it is difficult to assess the marginal contribution of GMM. Herein, we characterize the efficacy of an a posteriori framework that integrates GMM of organ-wise intensity likelihood with spatial priors from multiple target-specific registered labels. In our study, we first manually labeled 100 CT images. Then, we assigned 40 images to use as training data for constructing target-specific spatial priors and intensity likelihoods. The remaining 60 images were evaluated as test targets for segmenting 12 abdominal organs. The overlap between the true and the automatic segmentations was measured by Dice similarity coefficient (DSC). A median improvement of 145% was achieved by integrating the GMM intensity likelihood against the specific spatial prior. The proposed framework opens the opportunities for abdominal organ segmentation by efficiently using both the spatial and appearance information from the atlases, and creates a benchmark for large-scale automatic abdominal segmentation. PMID:25914508

  18. Multi-atlas segmentation for abdominal organs with Gaussian mixture models

    NASA Astrophysics Data System (ADS)

    Burke, Ryan P.; Xu, Zhoubing; Lee, Christopher P.; Baucom, Rebeccah B.; Poulose, Benjamin K.; Abramson, Richard G.; Landman, Bennett A.

    2015-03-01

    Abdominal organ segmentation with clinically acquired computed tomography (CT) is drawing increasing interest in the medical imaging community. Gaussian mixture models (GMM) have been extensively used through medical segmentation, most notably in the brain for cerebrospinal fluid / gray matter / white matter differentiation. Because abdominal CT exhibit strong localized intensity characteristics, GMM have recently been incorporated in multi-stage abdominal segmentation algorithms. In the context of variable abdominal anatomy and rich algorithms, it is difficult to assess the marginal contribution of GMM. Herein, we characterize the efficacy of an a posteriori framework that integrates GMM of organ-wise intensity likelihood with spatial priors from multiple target-specific registered labels. In our study, we first manually labeled 100 CT images. Then, we assigned 40 images to use as training data for constructing target-specific spatial priors and intensity likelihoods. The remaining 60 images were evaluated as test targets for segmenting 12 abdominal organs. The overlap between the true and the automatic segmentations was measured by Dice similarity coefficient (DSC). A median improvement of 145% was achieved by integrating the GMM intensity likelihood against the specific spatial prior. The proposed framework opens the opportunities for abdominal organ segmentation by efficiently using both the spatial and appearance information from the atlases, and creates a benchmark for large-scale automatic abdominal segmentation.

  19. Interventional effects of da-cheng-qi decoction on enteric nerve system in a rat model of multiple organ dysfunction syndrome

    PubMed Central

    Xie, Ming-Zheng; Luo, Peng; Ma, Bin; Li, Lu; Wang, De-Hua; Qi, Qing-Hui

    2015-01-01

    In this study, we investigate the morphologic changes of enteric nerve system (ENS) and the expression of neurotransmitters, acetylcholine (ACh), substance P (SP), vasoactive intestinal peptide (VIP) and nitric oxide synthase (NOS), in small bowel of rats undergoing multiple organ dysfunction syndrome (MODS). Undergoing MODS, fluorescence integral optical density (IOD) value of enteric nerve fibers were significantly decreased (P<0.05), and the network structure of ENS was destroyed. The expression of ACh, SP, VIP and NOS was inhibited, IOD value of the four neurotransmitters was significantly decreased (P<0.05). After intervention of DCQD, the fluorescence IOD value of enteric nerves were significantly increased (P<0.05), and the network structure of ENS was repaired. The expression of ACh, SP, VIP and NOS was recovered, fluorescence IOD value of the four neurotransmitters was significantly increased (P<0.05). In conclusion, the gastrointestinal motility disorders undergoing MODS may be closely related to the morphology destroy of ENS and down regulation of neurotransmitters (ACh, SP, VIP and NOS) expression. DCQD could promote gastrointestinal motility through protecting the morphology of ENS and up regulation of neurotransmitters (ACh, SP, VIP and NOS) expression. PMID:26884944

  20. Segmentation of abdominal organs from CT using a multi-level, hierarchical neural network strategy.

    PubMed

    Selver, M Alper

    2014-03-01

    Precise measurements on abdominal organs are vital prior to the important clinical procedures. Such measurements require accurate segmentation of these organs, which is a very challenging task due to countless anatomical variations and technical difficulties. Although, several features with various classifiers have been designed to overcome these challenges, abdominal organ segmentation via classification is still an emerging field in order to reach desired precision. Recent studies on multiple feature-classifier combinations show that hierarchical systems outperform composite feature-single classifier models. In this study, how hierarchical formations can translate to improved accuracy, when large size feature spaces are involved, is explored for the problem of abdominal organ segmentation. As a result, a semi-automatic, slice-by-slice segmentation method is developed using a novel multi-level and hierarchical neural network (MHNN). MHNN is designed to collect complementary information about organs at each level of the hierarchy via different feature-classifier combinations. Moreover, each level of MHNN receives residual data from the previous level. The residual data is constructed to preserve zero false positive error until the last level of the hierarchy, where only most challenging samples remain. The algorithm mimics analysis behaviour of a radiologist by using the slice-by-slice iteration, which is supported with adjacent slice similarity features. This enables adaptive determination of system parameters and turns into the advantage of online training, which is done in parallel to the segmentation process. Proposed design can perform robust and accurate segmentation of abdominal organs as validated by using diverse data sets with various challenges. PMID:24480371

  1. Diagnostic evaluation of erectile dysfunction.

    PubMed

    Miller, T A

    2000-01-01

    Erectile dysfunction, the persistent inability to attain or maintain penile erection sufficient for sexual intercourse, affects millions of men to various degrees. The majority of cases have an organic etiology, most commonly vascular disease that decreases blood flow into the penis. Regardless of the primary cause, erectile dysfunction can have a negative impact on self-esteem, quality of life and interpersonal relationships. The initial step in evaluation is a detailed medical and social history, including a review of medication use. Discussion with the patient's sexual partner may clarify exacerbating issues. The physical examination focuses on the cardiovascular, neurologic and urogenital systems. Laboratory tests are useful to screen for common etiologic factors and, when indicated, to identify hypogonadal syndromes. Appropriate evaluation of erectile dysfunction leads to accurate advice, management and referral of patients with erectile dysfunction. PMID:10643952

  2. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays

    PubMed Central

    Galati, Domenico F.; Abuin, David S.; Tauber, Gabriel A.; Pham, Andrew T.; Pearson, Chad G.

    2016-01-01

    ABSTRACT Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs. PMID:26700722

  3. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays.

    PubMed

    Galati, Domenico F; Abuin, David S; Tauber, Gabriel A; Pham, Andrew T; Pearson, Chad G

    2015-01-01

    Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs. PMID:26700722

  4. Vapor pressure predictions of multi-functional oxygen-containing organic compounds with COSMO-RS

    NASA Astrophysics Data System (ADS)

    Schröder, Bernd; Fulem, Michal; Martins, Mónia A. R.

    2016-05-01

    Given the recent interest in multi-functional oxygen-containing organic compounds and the need of accurate and consistent data, a complete review and systematic analysis of available experimental vapor pressure data, as published in the original work of (Asher et al., 2002), was performed with the ThermoData Engine (TDE). A revised set of critical evaluated vapor pressure data, including their uncertainties based on the principles of dynamic data evaluation, is here recommended for a total of 58 compounds. COSMO-RS was further used for vapor pressure estimations for these compounds. The quality of the results is discussed in terms of the chemical functionalities of the molecules. To illustrate the partition behaviour of the title compounds under ambient conditions, a simple comparison of volatility binning between estimates and measurements was performed. Since the encountered vapor pressures are rather high, with respect to pressure range of semi-volatile organic compounds (SVOC), a large fraction is expected to stay in the atmosphere rather than to form secondary organic aerosol.

  5. Automatic generation of controllers for embodied legged organisms: a Pareto evolutionary multi-objective approach.

    PubMed

    Teo, Jason; Abbass, Hussein A

    2004-01-01

    In this paper, we investigate the use of a self-adaptive Pareto evolutionary multi-objective optimization (EMO) approach for evolving the controllers of virtual embodied organisms. The objective of this paper is to demonstrate the trade-off between quality of solutions and computational cost. We show empirically that evolving controllers using the proposed algorithm incurs significantly less computational cost when compared to a self-adaptive weighted sum EMO algorithm, a self-adaptive single-objective evolutionary algorithm (EA) and a hand-tuned Pareto EMO algorithm. The main contribution of the self-adaptive Pareto EMO approach is its ability to produce sufficiently good controllers with different locomotion capabilities in a single run, thereby reducing the evolutionary computational cost and allowing the designer to explore the space of good solutions simultaneously. Our results also show that self-adaptation was found to be highly beneficial in reducing redundancy when compared against the other algorithms. Moreover, it was also shown that genetic diversity was being maintained naturally by virtue of the system's inherent multi-objectivity. PMID:15355605

  6. Multi-scale theoretical investigation of hydrogen storage in covalent organic frameworks

    NASA Astrophysics Data System (ADS)

    Tylianakis, Emmanuel; Klontzas, Emmanouel; Froudakis, George E.

    2011-03-01

    The quest for efficient hydrogen storage materials has been the limiting step towards the commercialization of hydrogen as an energy carrier and has attracted a lot of attention from the scientific community. Sophisticated multi-scale theoretical techniques have been considered as a valuable tool for the prediction of materials storage properties. Such techniques have also been used for the investigation of hydrogen storage in a novel category of porous materials known as Covalent Organic Frameworks (COFs). These framework materials are consisted of light elements and are characterized by exceptional physicochemical properties such as large surface areas and pore volumes. Combinations of ab initio, Molecular Dynamics (MD) and Grand Canonical Monte-Carlo (GCMC) calculations have been performed to investigate the hydrogen adsorption in these ultra-light materials. The purpose of the present review is to summarize the theoretical hydrogen storage studies that have been published after the discovery of COFs. Experimental and theoretical studies have proven that COFs have comparable or better hydrogen storage abilities than other competitive materials such as MOF. The key factors that can lead to the improvement of the hydrogen storage properties of COFs are highlighted, accompanied with some recently presented theoretical multi-scale studies concerning these factors.

  7. Multi-jet propulsion organized by clonal development in a colonial siphonophore

    NASA Astrophysics Data System (ADS)

    Costello, John; Colin, Sean; Gemmell, Brad; Dabiri, John; Sutherland, Kelly

    2015-11-01

    Physonect siphonophores are colonial cnidarians that are pervasive predators in many neritic and oceanic ecosystems. Physonects employ multiple, clonal medusan individuals, termed nectophores, to propel an aggregate colony. Here we show that developmental differences between clonal nectophores of the physonect Nanomia bijuga produce a division of labor in thrust and torque production that controls direction and magnitude of whole colony swimming. Although smaller and less powerful, the position of young nectophores near the apex of the nectosome allows them to dominate torque production for turning whereas older, larger and more powerful individuals near the base of the nectosome contribute predominantly to forward thrust production. The patterns we describe offer insight into the biomechanical success of an ecologically important and widespread colonial animal group, but more broadly, provide basic physical understanding of a natural solution to multi-engine organization that may contribute to the expanding field of underwater distributed propulsion vehicle design.

  8. Multi-layer imaging of human organs by measurement of laser backscattered radiation.

    PubMed

    Chacko, S; Singh, M

    1999-05-01

    Laser backscattered radiations from tissue phantoms and human forearms are measured by a reflectance imager. Laser radiations are guided by an optical fibre, and the backscattered radiations are collected by three optical fibres in the measurement probe assembly, placed at distances of 2 mm, 4 mm and 6 mm from the input fibre. By placing the measurement probe on the phantom or tissue surface and matching the outline on the computer monitor, the reflectance data from the organ or the phantom are collected. These data, after digitisation, interpolation and filtering, are colour coded and displayed on the computer monitor. Using this imaging procedure, the abnormalities embedded at different depths in the phantoms are located. The structural changes due to colour, composition and blood flow in the multi-layer of human forearms of various subjects are qualitatively shown in reflectance images obtained by this procedure. PMID:10505375

  9. Demonstration of SLUMIS: a clinical database and management information system for a multi organ transplant program.

    PubMed Central

    Kurtz, M.; Bennett, T.; Garvin, P.; Manuel, F.; Williams, M.; Langreder, S.

    1991-01-01

    Because of the rapid evolution of the heart, heart/lung, liver, kidney and kidney/pancreas transplant programs at our institution, and because of a lack of an existing comprehensive database, we were required to develop a computerized management information system capable of supporting both clinical and research requirements of a multifaceted transplant program. SLUMIS (ST. LOUIS UNIVERSITY MULTI-ORGAN INFORMATION SYSTEM) was developed for the following reasons: 1) to comply with the reporting requirements of various transplant registries, 2) for reporting to an increasing number of government agencies and insurance carriers, 3) to obtain updates of our operative experience at regular intervals, 4) to integrate the Histocompatibility and Immunogenetics Laboratory (HLA) for online test result reporting, and 5) to facilitate clinical investigation. PMID:1807741

  10. Multi-jet propulsion organized by clonal development in a colonial siphonophore

    PubMed Central

    Costello, John H.; Colin, Sean P.; Gemmell, Brad J.; Dabiri, John O.; Sutherland, Kelly R.

    2015-01-01

    Physonect siphonophores are colonial cnidarians that are pervasive predators in many neritic and oceanic ecosystems. Physonects employ multiple, clonal medusan individuals, termed nectophores, to propel an aggregate colony. Here we show that developmental differences between clonal nectophores of the physonect Nanomia bijuga produce a division of labour in thrust and torque production that controls direction and magnitude of whole-colony swimming. Although smaller and less powerful, the position of young nectophores near the apex of the nectosome allows them to dominate torque production for turning, whereas older, larger and more powerful individuals near the base of the nectosome contribute predominantly to forward thrust production. The patterns we describe offer insight into the biomechanical success of an ecologically important and widespread colonial animal group, but, more broadly, provide basic physical understanding of a natural solution to multi-engine organization that may contribute to the expanding field of underwater-distributed propulsion vehicle design. PMID:26327286

  11. Multi-jet propulsion organized by clonal development in a colonial siphonophore.

    PubMed

    Costello, John H; Colin, Sean P; Gemmell, Brad J; Dabiri, John O; Sutherland, Kelly R

    2015-01-01

    Physonect siphonophores are colonial cnidarians that are pervasive predators in many neritic and oceanic ecosystems. Physonects employ multiple, clonal medusan individuals, termed nectophores, to propel an aggregate colony. Here we show that developmental differences between clonal nectophores of the physonect Nanomia bijuga produce a division of labour in thrust and torque production that controls direction and magnitude of whole-colony swimming. Although smaller and less powerful, the position of young nectophores near the apex of the nectosome allows them to dominate torque production for turning, whereas older, larger and more powerful individuals near the base of the nectosome contribute predominantly to forward thrust production. The patterns we describe offer insight into the biomechanical success of an ecologically important and widespread colonial animal group, but, more broadly, provide basic physical understanding of a natural solution to multi-engine organization that may contribute to the expanding field of underwater-distributed propulsion vehicle design. PMID:26327286

  12. μOrgano: A Lego®-Like Plug & Play System for Modular Multi-Organ-Chips

    PubMed Central

    Loskill, Peter; Marcus, Sivan G.; Mathur, Anurag; Reese, Willie Mae; Healy, Kevin E.

    2015-01-01

    Human organ-on-a-chip systems for drug screening have evolved as feasible alternatives to animal models, which are unreliable, expensive, and at times erroneous. While chips featuring single organs can be of great use for both pharmaceutical testing and basic organ-level studies, the huge potential of the organ-on-a-chip technology is revealed by connecting multiple organs on one chip to create a single integrated system for sophisticated fundamental biological studies and devising therapies for disease. Furthermore, since most organ-on-a-chip systems require special protocols with organ-specific media for the differentiation and maturation of the tissues, multi-organ systems will need to be temporally customizable and flexible in terms of the time point of connection of the individual organ units. We present a customizable Lego®-like plug & play system, μOrgano, which enables initial individual culture of single organ-on-a-chip systems and subsequent connection to create integrated multi-organ microphysiological systems. As a proof of concept, the μOrgano system was used to connect multiple heart chips in series with excellent cell viability and spontaneously physiological beat rates. PMID:26440672

  13. μOrgano: A Lego®-Like Plug & Play System for Modular Multi-Organ-Chips.

    PubMed

    Loskill, Peter; Marcus, Sivan G; Mathur, Anurag; Reese, Willie Mae; Healy, Kevin E

    2015-01-01

    Human organ-on-a-chip systems for drug screening have evolved as feasible alternatives to animal models, which are unreliable, expensive, and at times erroneous. While chips featuring single organs can be of great use for both pharmaceutical testing and basic organ-level studies, the huge potential of the organ-on-a-chip technology is revealed by connecting multiple organs on one chip to create a single integrated system for sophisticated fundamental biological studies and devising therapies for disease. Furthermore, since most organ-on-a-chip systems require special protocols with organ-specific media for the differentiation and maturation of the tissues, multi-organ systems will need to be temporally customizable and flexible in terms of the time point of connection of the individual organ units. We present a customizable Lego®-like plug & play system, μOrgano, which enables initial individual culture of single organ-on-a-chip systems and subsequent connection to create integrated multi-organ microphysiological systems. As a proof of concept, the μOrgano system was used to connect multiple heart chips in series with excellent cell viability and spontaneously physiological beat rates. PMID:26440672

  14. The Importance of Intraoperative Selenium Blood Levels on Organ Dysfunction in Patients Undergoing Off-Pump Cardiac Surgery: A Randomised Controlled Trial

    PubMed Central

    Stevanovic, Ana; Coburn, Mark; Menon, Ares; Rossaint, Rolf; Heyland, Daren; Schälte, Gereon; Werker, Thilo; Wonisch, Willibald; Kiehntopf, Michael; Goetzenich, Andreas; Rex, Steffen; Stoppe, Christian

    2014-01-01

    Introduction Cardiac surgery is accompanied by an increase of oxidative stress, a significantly reduced antioxidant (AOX) capacity, postoperative inflammation, all of which may promote the development of organ dysfunction and an increase in mortality. Selenium is an essential co-factor of various antioxidant enzymes. We hypothesized a less pronounced decrease of circulating selenium levels in patients undergoing off-pump coronary artery bypass (OPCAB) surgery due to less intraoperative oxidative stress. Methods In this prospective randomised, interventional trial, 40 patients scheduled for elective coronary artery bypass grafting were randomly assigned to undergo either on-pump or OPCAB-surgery, if both techniques were feasible for the single patient. Clinical data, myocardial damage assessed by myocard specific creatine kinase isoenzyme (CK-MB), circulating whole blood levels of selenium, oxidative stress assessed by asymmetric dimethylarginine (ADMA) levels, antioxidant capacity determined by glutathionperoxidase (GPx) levels and perioperative inflammation represented by interleukin-6 (IL-6) levels were measured at predefined perioperative time points. Results At end of surgery, both groups showed a comparable decrease of circulating selenium concentrations. Likewise, levels of oxidative stress and IL-6 were comparable in both groups. Selenium levels correlated with antioxidant capacity (GPx: r = 0.720; p<0.001) and showed a negative correlation to myocardial damage (CK-MB: r = −0.571, p<0.001). Low postoperative selenium levels had a high predictive value for the occurrence of any postoperative complication. Conclusions OPCAB surgery is not associated with less oxidative stress and a better preservation of the circulating selenium pool than on-pump surgery. Low postoperative selenium levels are predictive for the development of complications. Trial registration ClinicalTrials.gov NCT01409057 PMID:25118980

  15. Improving quality of textile wastewater with organic materials as multi soil layering

    NASA Astrophysics Data System (ADS)

    Supriyadi; Widijanto, H.; Pranoto; Dewi, AK

    2016-02-01

    On agricultural land, fresh water is needed especially for irrigation. Alternative ways to fulfill needs of fresh water is by utilizing wastewater from industry. Wastewater that produced in the industry in Surakarta is over flowing especially textile wastewater. Wastewater that produced from industry has many pollutants that affected decreasing fresh water quality for irrigation. Multi Soil Layering (MSL) is one of method that utilize the soil ability as main media by increasing its function of soil structure to purify wastewater, so it does not contaminate the environment and reusable. This research was purposed to know affectivity of organic materials (such as rice straw, baggase, sawdust, coconut fibre, and corncob) and dosage (5%, 10% and 25%) in MSL, also get alternative purification ways with easy and cheaper price as natural adsorbent. This study using field and laboratory experiment. The result shows that MSL can be an alternative method of purification of wastewater. The appropriate composition of organic materials that can be used as adsorbent is MSL with wood sawdust 10% dosage because it can increase pH, decrease the number of Cr, ammonia, and phosphate but less effective to decrease BOD and COD.

  16. A Multi-Objective Optimization Technique to Model the Pareto Front of Organic Dielectric Polymers

    NASA Astrophysics Data System (ADS)

    Gubernatis, J. E.; Mannodi-Kanakkithodi, A.; Ramprasad, R.; Pilania, G.; Lookman, T.

    Multi-objective optimization is an area of decision making that is concerned with mathematical optimization problems involving more than one objective simultaneously. Here we describe two new Monte Carlo methods for this type of optimization in the context of their application to the problem of designing polymers with more desirable dielectric and optical properties. We present results of applying these Monte Carlo methods to a two-objective problem (maximizing the total static band dielectric constant and energy gap) and a three objective problem (maximizing the ionic and electronic contributions to the static band dielectric constant and energy gap) of a 6-block organic polymer. Our objective functions were constructed from high throughput DFT calculations of 4-block polymers, following the method of Sharma et al., Nature Communications 5, 4845 (2014) and Mannodi-Kanakkithodi et al., Scientific Reports, submitted. Our high throughput and Monte Carlo methods of analysis extend to general N-block organic polymers. This work was supported in part by the LDRD DR program of the Los Alamos National Laboratory and in part by a Multidisciplinary University Research Initiative (MURI) Grant from the Office of Naval Research.

  17. Pattern of cytokine (IL-6 and IL-10) level as inflammation and anti-inflammation mediator of multiple organ dysfunction syndrome (MODS) in polytrauma

    PubMed Central

    Sapan, Heber Bombang; Paturusi, Idrus; Jusuf, Irawan; Patellongi, Ilhamjaya; Massi, Muh Nasrum; Pusponegoro, Aryono Djuned; Arief, Syafrie Kamsul; Labeda, Ibrahim; Islam, Andi Asadul; Rendy, Leo; Hatta, Mochammad

    2016-01-01

    Massive injury remains the most common cause of death for productive age group globally. The current immune, inflammatory paradigm, based on an incomplete understanding of the functional integration of the complex host response, remains a major impediment to the development of effective innovative diagnostic and therapeutic effort. This study attempt to investigate the pattern of inflammatory and anti-inflammatory cytokines such as interleukin-6 and 10 (IL-6 and IL-10) and their interaction in severe injury condition with its major complication as multiple organ dysfunction syndrome (MODS) and failure (MOF) after polytrauma. This is multicenter study held at 4 academic Level-1 Trauma center included 54 polytrauma participants. Inclusion criteria were age between 16-60 years old, had new acute episode of polytrauma which defined as injury in ≥2 body region with Injury Severity Score (ISS) ≥16, and the presence of Systemic Inflammation Response Syndrome (SIRS). Serum level of IL-6 and IL-10 were taken on day 2, 3, and 5 after trauma. During hospitalization, samples were observed for the occurrence of MODS or MOF using Sequential Organ Failure Assessment (SOFA) and mortality rate were also noted. Participant were mostly male with mean of age of 35, 9 years old, endured polytrauma caused by traffic accident. Elevation of cytokines (IL-6, IL-10, and IL-6/IL-10 ratio) had directly proportional with MODS and mortality. Threshold level of compensation for severe trauma is IL-6 of 50 pg/mL and trauma load of ISS ≥30. Inflammation reaction greater than this threshold level would result in downhill level of IL-6, IL-10, or IL-6/IL-10 ratio which associated with poor outcome (MODS and death). The elevation of these cytokines level were represent as compensation/adaptive immune system and its fall represent decompensating/failure of immune system after severe trauma. The pattern of IL-6 and IL-10 after polytrauma represent immune system effort to restore homeostasis

  18. Pattern of cytokine (IL-6 and IL-10) level as inflammation and anti-inflammation mediator of multiple organ dysfunction syndrome (MODS) in polytrauma.

    PubMed

    Sapan, Heber Bombang; Paturusi, Idrus; Jusuf, Irawan; Patellongi, Ilhamjaya; Massi, Muh Nasrum; Pusponegoro, Aryono Djuned; Arief, Syafrie Kamsul; Labeda, Ibrahim; Islam, Andi Asadul; Rendy, Leo; Hatta, Mochammad

    2016-01-01

    Massive injury remains the most common cause of death for productive age group globally. The current immune, inflammatory paradigm, based on an incomplete understanding of the functional integration of the complex host response, remains a major impediment to the development of effective innovative diagnostic and therapeutic effort. This study attempt to investigate the pattern of inflammatory and anti-inflammatory cytokines such as interleukin-6 and 10 (IL-6 and IL-10) and their interaction in severe injury condition with its major complication as multiple organ dysfunction syndrome (MODS) and failure (MOF) after polytrauma. This is multicenter study held at 4 academic Level-1 Trauma center included 54 polytrauma participants. Inclusion criteria were age between 16-60 years old, had new acute episode of polytrauma which defined as injury in ≥2 body region with Injury Severity Score (ISS) ≥16, and the presence of Systemic Inflammation Response Syndrome (SIRS). Serum level of IL-6 and IL-10 were taken on day 2, 3, and 5 after trauma. During hospitalization, samples were observed for the occurrence of MODS or MOF using Sequential Organ Failure Assessment (SOFA) and mortality rate were also noted. Participant were mostly male with mean of age of 35, 9 years old, endured polytrauma caused by traffic accident. Elevation of cytokines (IL-6, IL-10, and IL-6/IL-10 ratio) had directly proportional with MODS and mortality. Threshold level of compensation for severe trauma is IL-6 of 50 pg/mL and trauma load of ISS ≥30. Inflammation reaction greater than this threshold level would result in downhill level of IL-6, IL-10, or IL-6/IL-10 ratio which associated with poor outcome (MODS and death). The elevation of these cytokines level were represent as compensation/adaptive immune system and its fall represent decompensating/failure of immune system after severe trauma. The pattern of IL-6 and IL-10 after polytrauma represent immune system effort to restore homeostasis

  19. Bladder, bowel, and sexual dysfunction in Parkinson's disease.

    PubMed

    Sakakibara, Ryuji; Kishi, Masahiko; Ogawa, Emina; Tateno, Fuyuki; Uchiyama, Tomoyuki; Yamamoto, Tatsuya; Yamanishi, Tomonori

    2011-01-01

    Bladder dysfunction (urinary urgency/frequency), bowel dysfunction (constipation), and sexual dysfunction (erectile dysfunction) (also called "pelvic organ" dysfunctions) are common nonmotor disorders in Parkinson's disease (PD). In contrast to motor disorders, pelvic organ autonomic dysfunctions are often nonresponsive to levodopa treatment. The brain pathology causing the bladder dysfunction (appearance of overactivity) involves an altered dopamine-basal ganglia circuit, which normally suppresses the micturition reflex. By contrast, peripheral myenteric pathology causing slowed colonic transit (loss of rectal contractions) and central pathology causing weak strain and paradoxical anal sphincter contraction on defecation (PSD, also called as anismus) are responsible for the bowel dysfunction. In addition, hypothalamic dysfunction is mostly responsible for the sexual dysfunction (decrease in libido and erection) in PD, via altered dopamine-oxytocin pathways, which normally promote libido and erection. The pathophysiology of the pelvic organ dysfunction in PD differs from that in multiple system atrophy; therefore, it might aid in differential diagnosis. Anticholinergic agents are used to treat bladder dysfunction in PD, although these drugs should be used with caution particularly in elderly patients who have cognitive decline. Dietary fibers, laxatives, and "prokinetic" drugs such as serotonergic agonists are used to treat bowel dysfunction in PD. Phosphodiesterase inhibitors are used to treat sexual dysfunction in PD. These treatments might be beneficial in maximizing the patients' quality of life. PMID:21918729

  20. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor

    NASA Astrophysics Data System (ADS)

    Sun, Jiayu; Ge, Jiechao; Liu, Weimin; Lan, Minhua; Zhang, Hongyan; Wang, Pengfei; Wang, Yanming; Niu, Zhongwei

    2013-12-01

    This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu3(PO4)2.3H2O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H2O2, which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H2O2, and greatly enhances the sensitivity of glucose detection. Thus, the obtained multi-enzyme co-embedded organic-inorganic hybrid nanoflowers can be unquestionably used as highly sensitive colorimetric sensors for the detection of glucose. Notably, this work presents a very facile route for the synthesis of multi-enzyme co-embedded nanomaterials for the simultaneous catalysis of multi-step cascade enzymatic reactions. Furthermore, it has great potential for application in biotechnology, and biomedical and environmental chemistry.This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu3(PO4)2.3H2O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H2O2, which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H2O2

  1. 7 CFR 205.305 - Multi-ingredient packaged products with less than 70 percent organically produced ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Multi-ingredient packaged products with less than 70 percent organically produced ingredients. 205.305 Section 205.305 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE...

  2. New simple early diagnostic methods using Omura's "Bi-Digital O-Ring Dysfunction Localization Method" and acupuncture organ representation points, and their applications to the "drug & food compatibility test" for individual organs and to auricular diagnosis of internal organs--part I.

    PubMed

    Omura, Y

    1981-01-01

    By critically evaluating exceptions which may lead to false diagnoses, as well as by improving the currently-used applied kinesiology diagnostic method (="Dysfunction Localization Method"), the author was able to develop the "Thumb-Index Finger Bi-Digital O-Ring Diagnostic Method," using the Applied Kinesiology Dysfunction Localization Principle. By combining the author's "Bi-Digital O-Ring Dysfunction Localization Method" with clinically useful organ representation points in acupuncture medicine (where the presence of tenderness at the organ representation point is used for diagnosis as well as for the location of treatment), it has become possible to make early diagnoses of most of the internal organs, with an average diagnostic accuracy of over 85%, without knowing the patient's history or using any instruments. The method can detect dysfunctioning or diseased organs even before tenderness appears at the organ representation point, with an applied force of less than 1 gm/mm2 on the skin surface, while the detection of tenderness at the organ representation point often requires a minimum applied force of 80-100 gm/mm2. The method was applied to the "Drug and Food Compatibility Test" to determine the probable effects of a given food or drug on individual internal organs without going through time-consuming, expensive laboratory tests. It was also applied to auricular organ representation points and their evaluation, and has succeeded in increasing their diagnostic sensitivity. The method was also used for the evaluation of magnetic fields. Usually the North pole increased muscle strength and the South pole weakened it at most parts of the body. This simple, improved, economical diagnostic method may have invaluable implications in clinical diagnosis, treatment and drug research. Key Words: early diagnostic methods, "Thumb-Index Finger Bi-Digital O-Ring Diagnostic Method," applied kinesiology, cardio-vascular diseases, drugs, tenderness, pain, pain medicine, anti

  3. Bladder, Bowel, and Sexual Dysfunction in Parkinson's Disease

    PubMed Central

    Sakakibara, Ryuji; Kishi, Masahiko; Ogawa, Emina; Tateno, Fuyuki; Uchiyama, Tomoyuki; Yamamoto, Tatsuya; Yamanishi, Tomonori

    2011-01-01

    Bladder dysfunction (urinary urgency/frequency), bowel dysfunction (constipation), and sexual dysfunction (erectile dysfunction) (also called “pelvic organ” dysfunctions) are common nonmotor disorders in Parkinson's disease (PD). In contrast to motor disorders, pelvic organ autonomic dysfunctions are often nonresponsive to levodopa treatment. The brain pathology causing the bladder dysfunction (appearance of overactivity) involves an altered dopamine-basal ganglia circuit, which normally suppresses the micturition reflex. By contrast, peripheral myenteric pathology causing slowed colonic transit (loss of rectal contractions) and central pathology causing weak strain and paradoxical anal sphincter contraction on defecation (PSD, also called as anismus) are responsible for the bowel dysfunction. In addition, hypothalamic dysfunction is mostly responsible for the sexual dysfunction (decrease in libido and erection) in PD, via altered dopamine-oxytocin pathways, which normally promote libido and erection. The pathophysiology of the pelvic organ dysfunction in PD differs from that in multiple system atrophy; therefore, it might aid in differential diagnosis. Anticholinergic agents are used to treat bladder dysfunction in PD, although these drugs should be used with caution particularly in elderly patients who have cognitive decline. Dietary fibers, laxatives, and “prokinetic” drugs such as serotonergic agonists are used to treat bowel dysfunction in PD. Phosphodiesterase inhibitors are used to treat sexual dysfunction in PD. These treatments might be beneficial in maximizing the patients' quality of life. PMID:21918729

  4. Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2015-08-01

    Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT (University of California, Davis/California Institute of Technology) air quality model. In the SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory smog chamber data for each precursor/compound class. SOM was installed in the UCD/CIT model, which simulated air quality over 2-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of organic aerosol.

  5. Spontaneous rupture of a splenic hydatid cyst with anaphylaxis in a patient with multi-organ hydatid disease.

    PubMed

    Constantin, V; Popa, F; Socea, B; Carâp, A; Bălălău, C; Motofei, I; Banu, P; Costea, D

    2014-01-01

    Hidatid cysts of the spleen are a rare occurrence, the spleen being the third most common organ for the development of Echinococcus Granulosus. Splenic hydatid cysts are commonly part of multi-organ hydatid disease. Diagnosis is often established when investigating a splenomegaly or by chance during an unrelated consult. It can also be diagnosed after rupture, be it following trauma (the most common occurrence)or spontaneous. Splenic hydatid cyst rupture requires immediate action and is a life-threatening condition. It results, most often, in splenectomy. We present the case of a patient with multi-organ hydatid disease that presented with a ruptured splenic cyst and developed anaphylaxis. The case was resolved by splenectomy and recovered well. PMID:24956347

  6. Multi-biomarker Characterization of Sedimentary Organic Carbon along the Mullica River, NJ

    NASA Astrophysics Data System (ADS)

    Medeiros, P. M.; Sikes, E. L.

    2007-05-01

    Located in southeastern New Jersey, the Mullica River is approximately 90 km long, extending from the Indian Mills headwaters, through the Pinelands National Reserve to the Great Bay Estuary. The land cover vegetation of the Mullica River watershed (~ 1700 km2) encompasses pine-oak forests (50%) predominantly in the Pinelands followed by wetlands (36%) especially towards the estuary, representing one of the most pristine areas in the state. Sources and potential transformations of sedimentary organic carbon along the Mullica River were assessed using a natural multi-biomarker approach. Sediment samples were collected from the Pinelands to the bay and analyzed as silylated total extracts by gas chromatography-mass spectrometry. The primary biomarker classes found in the samples included n-alkanoic acids, n-alkanols, phytosterols, triterpenoids and saccharides. In general, sediment extracts composition reflected changes in the characteristic main cover vegetation along the river. The major biomarker contributions in the Pinelands sediments were phytosterols (sitosterol, stigmasterol, campesterol), their reduced products (i.e., stigmastanol, campestanol) and triterpenoids (β-amyrin, oleanoic acid) derived from higher plants detritus, followed by n-alkanoic acids and n- alkanols from epicuticular plant wax. Diterpenoids, mainly dehydroabietic acid (a biomarker for conifers), as well as the monosaccharide glucose and the fatty acids 16:0, 16:1, 18:0, 18:1, 18:2 (ubiquitous in biota) were important organic tracers observed in these sediments. The higher plants biomarkers tended to decrease downstream to trace levels in the bay extracts. An exception was the triterpenoid taraxerol (previously identified as a mangrove biomarker) derived mainly from the salt marsh vegetation draining the Great Bay. The higher abundances of the low molecular weight fatty acids (< C19) observed in the estuarine sediments are likely derived from marine phytoplanktonic inputs.

  7. Volatile organic compounds in a multi-storey shopping mall in guangzhou, South China

    NASA Astrophysics Data System (ADS)

    Tang, Jianhui; Chan, C. Y.; Wang, Xinming; Chan, L. Y.; Sheng, Guoying; Fu, Jiamo

    Volatile organic compounds (VOCs) specified in the USEPA TO-14 list were analysed in microenvironments of a multi-storey shopping mall in Guangzhou city, South China. The microenvironments studied include both indoor (department store, supermarket, fast-food court, electronic games room, children's playground, gallery and book store) and outdoor ones (rooftop and ground level entrance). The characteristics and concentration of VOCs varied widely in differing microenvironments. The average concentrations of the total VOCs in the indoor microenvironments ranged from 178.5 to 457.7 μg m -3 with a maximum of 596.8 μg m -3. The fast-food court and a leather products department store had the highest concentrations of benzene, toluene, ethylbenzene, xylenes and chlorinated hydrocarbons. A high level of 1,4-dichlorobenzene was found in all indoor microenvironments with an average of 12.3 μg m -3 and a maximum of 44.3 μg m -3. The ratios of average indoor to outdoor concentrations (I/O ratio) in all indoor microenvironments fell between 1 and 3, except an average of 24.6 and a maximum of 77.8 in the fashion department store for 1,4-dichlorobenzene. Indoor emission sources of monocyclic aromatic hydrocarbons in the shopping mall might include cooking stoves, leather products and building materials. Chlorinated hydrocarbons, however, were possibly connected with their use as cleaning agents or deodorizers.

  8. [Multi-month dynamics of the functional condition of organism of normal male northeners of Russia].

    PubMed

    Solonin, Iu G; Markov, A L; Boĭko, E R

    2012-01-01

    In conjunction with the Mars-500 project, 17 male residents (25-46 y.o.) of the North of Russia (62 degrees 40'N) were examined monthly using hard- and software EKOSAN-2007. In the period of June, 2010 through to November, 2011 they visited a standard laboratory to go through comprehensive anthropophysiometric, psychophysiological and physiological investigations at rest and combined with exercise, standing and cold tests aimed at tracking the seasonal responses of the body functional parameters. The larger part of group-average psychomotor, breathing and circulation measurements as well as heart rate variability did not exhibit statistically significant differences between months or seasons. Reliable seasonal variations were documented in the life index, body and cutaneous temperature, myocardium index and regulatory systems activity. A correlation between environmental and some body functional parameters was established. In the course of the multi-month monitoring there were periods when essentially healthy people were diagnosed as prenosologic and even premorbid. Some findings in the functioning of male northerner's organism are clearly attributable to living in the high-altitude area. PMID:23457967

  9. A novel multi-phase bioreactor for fermentations to produce organic acids from dairy wastes

    SciTech Connect

    Yang, S.T.; Zhu, H.; Li, Y.; Silva, E.M.

    1993-12-31

    A novel, fibrous bed bioreactor is developed for multi-phase fermentation processes. The microbial cells are immobilized in a spiral-wound, fibrous matrix packed in the bioreactor. This innovative, structured packing design allows good contact between two different moving phases (e.g., gas-liquid or liquid-solid) and has many advantages over conventional immobilized cell bioreactors. Because the reactor bed is not completely filled with the solid matrix, the bioreactor can be operated for a long period without developing problems such as clogging and high pressure drop usually associated with conventional packed bed and membrane bioreactors. This novel bioreactor was studied for its use in several organic acid fermentations. Production of propionate, acetate, and lactate from whey permeate was studied. In all cases studied, use of the fibrous bioreactor resulted in superior reactor performance-indicated by a more than tenfold increase in productivity, reduction or elimination of the requirement for nutrient supplementation to whey permeate, and resistance to contamination-as compared to conventional batch fermentation processes. Also, the reactor maintained high productivity throughout long-term continuous operation. No contamination, degeneration, or clogging problems were experienced during a 10-month period of continuous operation. This new bioreactor is thus suitable for industrial uses to improve fermentation processes which currently use conventional bioreactors.

  10. Lab-testing, predicting, and modeling multi-stage activated carbon adsorption of organic micro-pollutants from treated wastewater.

    PubMed

    Zietzschmann, F; Altmann, J; Hannemann, C; Jekel, M

    2015-10-15

    Multi-stage reuse of powdered activated carbon (PAC) is often applied in practice for a more efficient exploitation of the PAC capacity to remove organic micro-pollutants (OMP). However, the adsorption mechanisms in multi-stage PAC reuse are rarely investigated, as large-scale experiments do not allow for systematic tests. In this study, a laboratory method for the separation of PAC/water suspensions and the subsequent reuse of the PAC and the water was developed. The method was tested on wastewater treatment plant (WWTP) effluent in a setup with up to 7 PAC reuse stages. The tests show that the overall OMP removal from WWTP effluent can be increased when reusing PAC. The reason is that a repeated adsorption in multi-stage PAC reuse results in similar equilibrium concentrations as a single-stage adsorption. Thus, a single relationship between solid and liquid phase OMP concentrations appears valid throughout all stages. This also means that the adsorption efficiency of multi-stage PAC reuse setups can be estimated from the data of a single-stage setup. Furthermore, the overall OMP removals in multi-stage setups coincide with the overall UV254 removals, and for each respective OMP one relationship to UV254 removal is valid throughout all stages. The results were modeled by a simple modification of the equivalent background compound model (EBCM) which was also used to simulate the additional OMP removals in multi-stage setups with up to 50 reuse stages. PMID:26117373

  11. Erectile Dysfunction in Chronic Prostatitis/Chronic Pelvic Pain Syndrome: Outcomes from a Multi-Center Study and Risk Factor Analysis in a Single Center

    PubMed Central

    Chen, Xin; Wang, Zhu; Chen, Shengfu; Yang, Qiyun; Wan, Zi; Han, Dayu; Xiao, Haipeng; Sun, Xiangzhou; Deng, Chunhua

    2016-01-01

    The aim of this study was to investigate the prevalence of erectile dysfunction (ED) in patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and explore the influence of UPOINT domains, National Institutes of Health-CP symptom index (NIH-CPSI) and other factors on ED prevalence. This was a prospective study of consecutive patients with CP/CPPS seen at 11 tertiary hospitals during January–July 2014. ED was diagnosed as a score of<21 on the International Index of Erectile Function (IIEF-5). Patients from one center were evaluated by the UPOINT system and NIH-CPSI. Each patient was assessed using clinical examination, asocio-demographic questionnaire, the Patient Health Questionnaire (PHQ), the Pain Catastrophizing Scale (PCS), NIH-CPSI and IIEF-5.1406 patients from 11 centers (mean age, 32.18 years; range 18–60 years) were enrolled. ED was found in 638/1406 patients (45.4%), and was categorized as mild in 291(45.6%), moderate in 297(46.6%) and severe in50(7.7%). 192 patients from one center(mean age,31.3 years; range 18–57 years) were further studied.IIEF-5 score correlated negatively with NIH-CPSI(r = 0.251), PHQ (r = 0.355) and PCS (r = 0.322)scores (P<0.001).PHQ score correlated positively with NIH-CPSI (r = 0.586) and PCS(r = 0.662) scores (P<0.001).NIH-CPSI, PHQ, PCS and IIEF-5 scores did not differ significantly between class IIIA and IIIB CP/CPPS. Multivariate logistic regression showed that UPOINT psychological (P) domain and NIH-CPSI symptom severity were independent risk factors for ED in CP/CPPS. It is concluded that psychological factors and symptom severity are independent risk factors for ED in CP/CPPS. PMID:27120096

  12. Sexual dysfunction in uremia.

    PubMed

    Palmer, B F

    1999-06-01

    In summary, sexual dysfunction is a common finding in both men and women with chronic renal failure. Common disturbances include erectile dysfunction in men, menstrual abnormalities in women, and decreased libido and fertility in both sexes. These abnormalities are primarily organic in nature and are related to uremia as well as the other comorbid conditions that frequently accompany the chronic renal failure patient. Fatigue and psychosocial factors related to the presence of a chronic disease are also contributory factors. Disturbances in the hypothalamic-pituitary-gonadal axis can be detected before the need for dialysis but continue to worsen once dialytic therapy is initiated. Impaired gonadal function is prominent in uremic men, whereas the disturbances in the hypothalamicpituitary axis are more subtle. By contrast, central disturbances are more prominent in uremic women. Therapy is initially directed toward optimizing the delivery of dialysis, correcting anemia with recombinant erythropoietin, and controlling the degree of secondary hyperparathyroidism with vitamin D. For many practicing nephrologists, sildenafil has become the first-line therapy in the treatment of impotence. In the hypogonadal man whose only complaint is decreased libido, testosterone may be of benefit. Regular gynecologic follow-up is required in uremic women to guard against potential complications of unopposed estrogen effect. Uremic women should be advised against pregnancy while on dialysis. Successful transplantation is the most effective means of restoring normal sexual function in both men and women with chronic renal failure. PMID:10361878

  13. Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2015-02-01

    Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT air quality model. In SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory "smog chamber" data for each precursor/compound class. The UCD/CIT model was used to simulate air quality over two-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the traditional two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of OA.

  14. Staff and Non-Staff Leadership in Multi-Community and Multi-County Development Organizations in New York State.

    ERIC Educational Resources Information Center

    Mendoza, Luis Antonio

    This study analyzed and described regional development organizations, with special emphasis on leadership structure and patterns; and sought to develop an organizational model to maximize leadership effectiveness. Selected leaders from 14 New York State counties responded to questionnaires covering general organizational characteristics, subunits…

  15. Visualization of Multi-dimensional MISR Datasets Using Self-Organizing Map

    NASA Astrophysics Data System (ADS)

    Li, P.; Jacob, J.; Braverman, A.; Block, G.

    2003-12-01

    Many techniques exist for visualization of high dimensional datasets including Parallel Coordinates, Projection Pursuit, and Self-Organizing Map (SOM), but none of these are particularly well suited to satellite data. Remote sensing datasets are typically highly multivariate, but also have spatial structure. In analyzing such data, it is critical to maintain the spatial context within which multivariate relationships exist. Only then can we begin to investigate how those relationships change spatially, and connect observed phenomena to physical processes that may explain them. We present an analysis and visualization system called SOM_VIS that applies an enhanced SOM algorithm proposed by Todd & Kirby [1] to multi-dimensional image datasets in a way that maintains spatial context. We first use SOM to project high-dimensional data into a non-uniform 3D lattice structure. The lattice structure is then mapped to a color space to serve as a colormap for the image. The Voronoi cell refinement algorithm is then used to map the SOM lattice structure to various levels of color resolution. The final result is a false color image with similar colors representing similar characteristics across all its data dimensions. We demonstrate this system using data from JPL's Multi-angle Imaging Spectro-Radiometer (MISR), which looks at Earth and its atmosphere in 36 channels: all combinations of four spectral bands and nine view angles. The SOM_VIS tool consists of a data control panel for users to select a subset from MISR's Level 1B Radiance data products, and a training control panel for users to choose various parameters for SOM training. These include the size of the SOM lattice, the method used to modify the control vectors towards the input training vector, convergence rate, and number of Voronoi regions. Also, the SOM_VIS system contains a multi-window display system allowing users to view false color SOM images and the corresponding color maps for trained SOM lattices. In

  16. Sexual Dysfunction and Infertility

    MedlinePlus

    ... American Society for Reproductive Medicine Sexual dysfunction and infertility What is sexual dysfunction and how common is ... and 40% of women. For couples dealing with infertility, it is even more common. Often, people ignore ...

  17. Use of a multi-isotope and multi-tracer approach including organic matter isotopes for quantifying nutrient contributions from agricultural vs wastewater sources

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Silva, S. R.; Young, M. B.

    2013-12-01

    While nutrient isotopes are a well-established tool for quantifying nutrients inputs from agricultural vs wastewater treatment plant (WWTP) sources, we have found that combining nutrient isotopes with the C, N, and S isotopic compositions of dissolved and particulate organic matter, as part of a comprehensive multi-isotope and multi-tracer approach, is a much more diagnostic approach. The main reasons why organic matter C-N-S isotopes are a useful adjunct to studies of nutrient sources and biogeochemical processes are that the dissolved and particulate organic matter associated with (1) different kinds of animals (e.g., humans vs cows) often have distinctive isotopic compositions reflecting the different diets of the animals, and (2) the different processes associated with the different land uses (e.g., in the WWTP or associated with different crop types) often result in significant differences in the isotopic compositions of the organics. The analysis of the δ34S of particulate organic matter (POM) and dissolved organic matter (DOM) has been found to be especially useful for distinguishing and quantifying water, nutrient, and organic contributions from different land uses in aquatic systems where much of the organic matter is aquatic in origin. In such environments, the bacteria and algae incorporate S from sulfate and sulfide that is isotopically labeled by the different processes associated with different land uses. We have found that there is ~35 permil range in δ34S of POM along the river-estuary continuum in the San Joaquin/Sacramento River basin, with low values associated with sulfate reduction in the upstream wetlands and high values associated with tidal inputs of marine water into the estuary. Furthermore, rice agriculture results in relatively low δ34S values whereas WWTP effluent in the Sacramento River produces distinctly higher values than upstream of the WWTP, presumably because SO2 is used to treat chlorinated effluent. The fish living

  18. Symmetry breaking in the opinion dynamics of a multi-group project organization

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen-Tao; Zhou, Jing; Li, Ping; Chen, Xing-Guang

    2012-10-01

    A bounded confidence model of opinion dynamics in multi-group projects is presented in which each group's opinion evolution is driven by two types of forces: (i) the group's cohesive force which tends to restore the opinion back towards the initial status because of its company culture; and (ii) nonlinear coupling forces with other groups which attempt to bring opinions closer due to collaboration willingness. Bifurcation analysis for the case of a two-group project shows a cusp catastrophe phenomenon and three distinctive evolutionary regimes, i.e., a deadlock regime, a convergence regime, and a bifurcation regime in opinion dynamics. The critical value of initial discord between the two groups is derived to discriminate which regime the opinion evolution belongs to. In the case of a three-group project with a symmetric social network, both bifurcation analysis and simulation results demonstrate that if each pair has a high initial discord, instead of symmetrically converging to consensus with the increase of coupling scale as expected by Gabbay's result (Physica A 378 (2007) p. 125 Fig. 5), project organization (PO) may be split into two distinct clusters because of the symmetry breaking phenomenon caused by pitchfork bifurcations, which urges that apart from divergence in participants' interests, nonlinear interaction can also make conflict inevitable in the PO. The effects of two asymmetric level parameters are tested in order to explore the ways of inducing dominant opinion in the whole PO. It is found that the strong influence imposed by a leader group with firm faith on the flexible and open minded follower groups can promote the formation of a positive dominant opinion in the PO.

  19. Trim37-deficient mice recapitulate several features of the multi-organ disorder Mulibrey nanism.

    PubMed

    Kettunen, Kaisa M; Karikoski, Riitta; Hämäläinen, Riikka H; Toivonen, Teija T; Antonenkov, Vasily D; Kulesskaya, Natalia; Voikar, Vootele; Hölttä-Vuori, Maarit; Ikonen, Elina; Sainio, Kirsi; Jalanko, Anu; Karlberg, Susann; Karlberg, Niklas; Lipsanen-Nyman, Marita; Toppari, Jorma; Jauhiainen, Matti; Hiltunen, J Kalervo; Jalanko, Hannu; Lehesjoki, Anna-Elina

    2016-01-01

    Mulibrey nanism (MUL) is a rare autosomal recessive multi-organ disorder characterized by severe prenatal-onset growth failure, infertility, cardiopathy, risk for tumors, fatty liver, and type 2 diabetes. MUL is caused by loss-of-function mutations in TRIM37, which encodes an E3 ubiquitin ligase belonging to the tripartite motif (TRIM) protein family and having both peroxisomal and nuclear localization. We describe a congenic Trim37 knock-out mouse (Trim37(-/-)) model for MUL. Trim37(-/-) mice were viable and had normal weight development until approximately 12 months of age, after which they started to manifest increasing problems in wellbeing and weight loss. Assessment of skeletal parameters with computer tomography revealed significantly smaller skull size, but no difference in the lengths of long bones in Trim37(-/-) mice as compared with wild-type. Both male and female Trim37(-/-) mice were infertile, the gonads showing germ cell aplasia, hilus and Leydig cell hyperplasia and accumulation of lipids in and around Leydig cells. Male Trim37(-/-) mice had elevated levels of follicle-stimulating and luteinizing hormones, but maintained normal levels of testosterone. Six-month-old Trim37(-/-) mice had elevated fasting blood glucose and low fasting serum insulin levels. At 1.5 years Trim37(-/-) mice showed non-compaction cardiomyopathy, hepatomegaly, fatty liver and various tumors. The amount and morphology of liver peroxisomes seemed normal in Trim37(-/-) mice. The most consistently seen phenotypes in Trim37(-/-) mice were infertility and the associated hormonal findings, whereas there was more variability in the other phenotypes observed. Trim37(-/-) mice recapitulate several features of the human MUL disease and thus provide a good model to study disease pathogenesis related to TRIM37 deficiency, including infertility, non-alcoholic fatty liver disease, cardiomyopathy and tumorigenesis. PMID:27044324

  20. Cognitive Dysfunction and its Determinants in Patients with Neurocysticercosis

    PubMed Central

    Varghese, Vinod; Chandra, Sadanandavalli Retnaswami; Christopher, Rita; Rajeswaran, Jamuna; Prasad, Chandrajit; Subasree, R.; Issac, Thomas Gregor

    2016-01-01

    Introduction: Neurocysticercosis (NCC) is the most common parasitic infection of man. In addition to a headache, seizures, and focal deficits, this is associated with significant cognitive dysfunction. Many studies revealed that the number and location of lesions are not always responsible for cognitive dysfunction. Cholinesterase and pseudocholinesterase are found in the walls of the cysticercus which could contribute to cholinergic depletion and thus cognitive dysfunction. Patients and Methods: A total of 43 patients who presented with NCC were evaluated for cognitive deficits, as well as cholinesterase levels in cerebrospinal fluid (CSF) with control CSF from patients undergoing spinal anesthesia. Blood levels of interleukin-10 and tumor necrosis factor alpha were also estimated and correlated with cognitive deficits. Results: There is a mild increase in the acetylcholinesterase in CSF of patients compared to controls, but it did not correlate with cognitive deficits. There is an increase in interleukins to a significant level which correlates with vesicular stage of the organism and cognitive impairment. The number of lesions also correlated with cognitive impairment even though the location did not. The domains of cognitive deficits seen are sustained attention, category fluency, verbal working memory, planning, set shifting, verbal learning, visual memory, and construction. Discussion and Conclusion: NCC is associated with multi-domain cognitive impairment correlates with vescicular stage, proinflammatory cytokines and number of lesions but not location, vesicular stage, and proinflammatory cytokines. PMID:27114627

  1. Assessing pollution in marine protected areas: the role of a multi-biomarker and multi-organ approach.

    PubMed

    Gusso-Choueri, Paloma Kachel; Choueri, Rodrigo Brasil; de Araújo, Giuliana Seraphim; Cruz, Ana Carolina Feitosa; Stremel, Tatiana; Campos, Sandro; Abessa, Denis Moledo de Sousa; Ribeiro, Ciro Alberto Oliveira

    2015-11-01

    Marine protected areas (MPAs) are vulnerable to many pressures, including pollution. However, environmental quality monitoring in these areas traditionally relies on only water chemistry and microbiological parameters. The goal of the current study was to investigate the role of a set of biomarkers in different target organs (liver, kidney, and gills) of fish in order to assess the environmental quality of an MPA (MTs, GPx, GST, GSH, DNA damage, LPO, AChE, and condition index). Chemical analyses were also performed on liver and muscle tissues to evaluate metal body burdens, and PAHs were identified in bile. A demersal fish (Cathorops spixii) that is widely consumed by the local population was used as bioindicator species, and the results were integrated using multivariate analysis. The use of the biomarker approach allowed for the identification of both seasonal and spatial variations in pollution sources around the Environmental Protected Area of Cananéia-Iguape-Peruíbe (APA-CIP). Higher metal body burdens associated with biological responses were found in the sites under the influence of urban areas during the dry season, and they were found in the sites under the influence of the Ribeira de Iguape River (RIR) during the rainy season. The liver was found to be more responsive in terms of its antioxidant responses, whereas gills were found to be more responsive to biomarkers of effect. These results show that this set of biomarker analyses in different organs of fish is a useful tool for assessing chemical pollution in an MPA. PMID:26174980

  2. National Cancer Institute-National Heart, Lung and Blood Institute/pediatric Blood and Marrow Transplant Consortium First International Consensus Conference on late effects after pediatric hematopoietic cell transplantation: long-term organ damage and dysfunction.

    PubMed

    Nieder, Michael L; McDonald, George B; Kida, Aiko; Hingorani, Sangeeta; Armenian, Saro H; Cooke, Kenneth R; Pulsipher, Michael A; Baker, K Scott

    2011-11-01

    Long-term complications after hematopoietic cell transplantation (HCT) have been studied in detail. Although virtually every organ system can be adversely affected after HCT, the underlying pathophysiology of these late effects remain incompletely understood. This article describes our current understanding of the pathophysiology of late effects involving the gastrointestinal, renal, cardiac, and pulmonary systems, and discusses post-HCT metabolic syndrome studies. Underlying diseases, pretransplantation exposures, transplantation conditioning regimens, graft-versus-host disease, and other treatments contribute to these problems. Because organ systems are interdependent, long-term complications with similar pathophysiologic mechanisms often involve multiple organ systems. Current data suggest that post-HCT organ complications result from cellular damage that leads to a cascade of complex events. The interplay between inflammatory processes and dysregulated cellular repair likely contributes to end-organ fibrosis and dysfunction. Although many long-term problems cannot be prevented, appropriate monitoring can enable detection and organ-preserving medical management at earlier stages. Current management strategies are aimed at minimizing symptoms and optimizing function. There remain significant gaps in our knowledge of the pathophysiology of therapy-related organ toxicities disease after HCT. These gaps can be addressed by closely examining disease biology and identifying those patients at greatest risk for adverse outcomes. In addition, strategies are needed for targeted disease prevention and health promotion efforts for individuals deemed at high risk because of their genetic makeup or specific exposure profile. PMID:21963877

  3. Inter-Dependent Mechanisms Behind Cognitive Dysfunction, Vascular Biology and Alzheimer's Dementia in Down Syndrome: Multi-Faceted Roles of APP

    PubMed Central

    Nizetic, Dean; Chen, Christopher L.; Hong, Wanjin; Koo, Edward H.

    2015-01-01

    People with Down syndrome (DS) virtually all develop intellectual disability (ID) of varying degree of severity, and also have a high risk of early Alzheimer's disease (AD). ID prior to the onset of dementia, and its relationship to the onset of dementia in DS is a complex phenomenon influenced by many factors, and scarcely understood. Unraveling the causative factors and modulators of these processes remains a challenge, with potential to be informative for both ID and AD, for the development of early biomarkers and/or therapeutic approaches. We review the potential relative and inter-connected roles of the chromosome 21 gene for amyloid precursor protein (APP), in both pathological conditions. Rare non-DS people with duplication of APP (dupAPP) get familial early onset AD (FEOAD) with virtually 100% penetrance and prominent cerebrovascular pathology, but don't suffer from ID before dementia onset. All of these features appear to be radically different in DS. On the other hand, rare individuals with partial trisomy 21 (T21) (with APP, but not DS-critical region in trisomy) have been described having ID. Likewise, partial T21 DS (without APP trisomy) show a range of ID, but no AD pathology. We review the multi-faceted roles of APP that might affect cognitive functioning. Given the fact that both Aβ secretion and synaptic maturation/plasticity are dependent on neuronal activity, we explore how this conflicting inter-dependency might affect cognitive pathogenesis in a dynamic way in DS, throughout the lifespan of an individual. PMID:26648852

  4. Early multi-system organ failure associated with acute pancreatitis: a plea for a conservative therapeutic strategy.

    PubMed

    Dugernier, T; Reynaert, M; Laterre, P F

    2003-01-01

    The mortality of severe acute pancreatitis still ranges between 10 and 20%. Nowadays, infected pancreatic necrosis is the leading cause of death. Despite advances in intensive care therapy, however, early and worsening multi-system organ failure remains a source of substantial morbidity and still accounts for 20 to 50% of the deaths. In recent years, the systemic inflammatory response syndrome and the relevant cascades of inflammatory mediators have been implicated as the key factor in the emergence of remote tissue damage. Early multi-system organ failure that supervenes in the first week is typically associated with a sterile necrotizing process. There are no pathophysiological, clinical or economical data to support the practice of debridement of sterile necrosis to prevent or to control early multi-system organ failure. This issue has never been addressed in a controlled study. Besides intensive care support, non-surgical therapeutic modalities including urgent endoscopic sphincterotomy for impacted stones, antibiotic prophylaxis for the prevention of pancreatic infection and early jejunal nutrition have been specifically developed hopefully to attenuate multiple organ failure, to obviate the need of surgical drainage and to improve survival. Fine needle aspiration of necrotic areas must be incorporated in any conservative therapeutic strategy in order to identify and not to jeopardize those with infected necrosis that remains an absolute indication for drainage. A specific treatment of acute pancreatitis is still lacking, so far. However, there is ample experimental and pathophysiological evidence in favour of immunomodulatory therapy in severe acute pancreatitis. The administration of one or several antagonists of inflammatory mediators possibly combined with a protease inhibitor may at last provide the opportunity to interfere with the two major determinants of prognosis: the severity of multiple organ failure and the extent of necrotic areas that creates

  5. Exchange of Surfactant by Natural Organic Matter on the Surfaces of Multi-Walled Carbon Nanotubes

    EPA Science Inventory

    The increasing production and applications of multi-walled carbon nanotubes (MWCNTs) have elicited concerns regarding their release and potential adverse effects in the environment. To form stable aqueous MWCNTs suspensions, surfactants are often employed to facilitate dispersion...

  6. Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assisted extraction and ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Peng, Xianzhi; Jin, Jiabin; Wang, Chunwei; Ou, Weihui; Tang, Caiming

    2015-03-01

    A sensitive and reliable method was developed for multi-target determination of 13 most widely used organic ultraviolet (UV) absorbents (including UV filters and UV stabilizers) in aquatic organism tissues. The organic UV absorbents were extracted using ultrasonic-assisted extraction, purified via gel permeation chromatography coupled with silica gel column chromatography, and determined by ultra-high performance liquid chromatography-tandem mass spectrometry. Recoveries of the UV absorbents from organism tissues mostly ranged from 70% to 120% from fish filet with satisfactory reproducibility. Method quantification limits were 0.003-1.0ngg(-1) dry weight (dw) except for 2-ethylhexyl 4-methoxycinnamate. This method has been applied to analysis of the UV absorbents in wild and farmed aquatic organisms collected from the Pearl River Estuary, South China. 2-Hydroxy-4-methoxybenzophenone and UV-P were frequently detected in both wild and farmed marine organisms at low ngg(-1)dw. 3-(4-Methylbenzylidene)camphor and most of the benzotriazole UV stabilizers were also frequently detected in maricultured fish. Octocrylene and 2-ethylhexyl 4-methoxycinnamate were not detected in any sample. This work lays basis for in-depth study about bioaccumulation and biomagnification of the UV absorbents in marine environment. PMID:25637008

  7. Trim37-deficient mice recapitulate several features of the multi-organ disorder Mulibrey nanism

    PubMed Central

    Kettunen, Kaisa M.; Karikoski, Riitta; Hämäläinen, Riikka H.; Toivonen, Teija T.; Antonenkov, Vasily D.; Kulesskaya, Natalia; Voikar, Vootele; Hölttä-Vuori, Maarit; Ikonen, Elina; Sainio, Kirsi; Jalanko, Anu; Karlberg, Susann; Karlberg, Niklas; Lipsanen-Nyman, Marita; Toppari, Jorma; Jauhiainen, Matti; Hiltunen, J. Kalervo; Jalanko, Hannu; Lehesjoki, Anna-Elina

    2016-01-01

    ABSTRACT Mulibrey nanism (MUL) is a rare autosomal recessive multi-organ disorder characterized by severe prenatal-onset growth failure, infertility, cardiopathy, risk for tumors, fatty liver, and type 2 diabetes. MUL is caused by loss-of-function mutations in TRIM37, which encodes an E3 ubiquitin ligase belonging to the tripartite motif (TRIM) protein family and having both peroxisomal and nuclear localization. We describe a congenic Trim37 knock-out mouse (Trim37−/−) model for MUL. Trim37−/− mice were viable and had normal weight development until approximately 12 months of age, after which they started to manifest increasing problems in wellbeing and weight loss. Assessment of skeletal parameters with computer tomography revealed significantly smaller skull size, but no difference in the lengths of long bones in Trim37−/− mice as compared with wild-type. Both male and female Trim37−/− mice were infertile, the gonads showing germ cell aplasia, hilus and Leydig cell hyperplasia and accumulation of lipids in and around Leydig cells. Male Trim37−/− mice had elevated levels of follicle-stimulating and luteinizing hormones, but maintained normal levels of testosterone. Six-month-old Trim37−/− mice had elevated fasting blood glucose and low fasting serum insulin levels. At 1.5 years Trim37−/− mice showed non-compaction cardiomyopathy, hepatomegaly, fatty liver and various tumors. The amount and morphology of liver peroxisomes seemed normal in Trim37−/− mice. The most consistently seen phenotypes in Trim37−/− mice were infertility and the associated hormonal findings, whereas there was more variability in the other phenotypes observed. Trim37−/− mice recapitulate several features of the human MUL disease and thus provide a good model to study disease pathogenesis related to TRIM37 deficiency, including infertility, non-alcoholic fatty liver disease, cardiomyopathy and tumorigenesis. PMID:27044324

  8. Multi-residue analysis of organic pollutants in hair and urine for matrices comparison.

    PubMed

    Hardy, Emilie M; Duca, Radu C; Salquebre, Guillaume; Appenzeller, Brice M R

    2015-04-01

    Urine being currently the most classically used matrix for the assessment of human exposure to pesticides, a growing interest is yet observed in hair analysis for the detection of organic pollutants. The aim of the present work was to develop and to validate multi-residue analytical methods, as similar as possible, in order to determine pesticides and their metabolites in these two biological matrices despite their different nature. The list of parent compounds and their metabolites investigated here consisted of 56 compounds, including organochlorines, organophosphates, pyrethroids, carbamates, other pesticides and polychlorinated biphenyls (PCBs). Two different approaches were necessary for the analysis of non-polar compounds (mainly parents) on one hand and polar analytes (mainly metabolites) on the other hand. In the final procedure, extraction from hair was carried out with acetonitrile/water after sample decontamination and pulverization. Extract was split into two fractions, which were analyzed directly with solid phase microextraction (SPME) injection for non-polar compounds and after derivatization with liquid injection for polar compounds. In urine, non-polar compounds were analyzed directly using SPME. Polar compounds were analyzed after acidic hydrolysis, liquid-liquid extraction with acetonitrile-cyclohexane-ethyl acetate, derivatization and liquid injection. Analysis was performed with gas chromatography tandem mass spectrometry operating in negative chemical ionization (GC-MS/MS-NCI) for all the compounds (non-polar and polar) in the two matrices. In hair, limits of quantification (LOQ) ranged from 0.02 pg/mg for trifluralin to 5.5 pg/mg for diethylphosphate. In urine, LOQ ranged from 0.4 pg/mL for α-endosulfan to 4 ng/mL for dimethyldithiophosphate. The analysis of samples supplemented with standards and samples collected from an animal previously submitted to chronic exposure to pesticides confirmed that all the compounds were analyzable in both

  9. Estimating Pesticide Exposure from Dietary Intake and Organic Food Choices: The Multi-Ethnic Study of Atherosclerosis (MESA)

    PubMed Central

    Beresford, Shirley A.A.; Fenske, Richard A.; Fitzpatrick, Annette L.; Lu, Chensheng; Nettleton, Jennifer A.; Kaufman, Joel D.

    2015-01-01

    Background Organophosphate pesticide (OP) exposure to the U.S. population is dominated by dietary intake. The magnitude of exposure from diet depends partly on personal decisions such as which foods to eat and whether to choose organic food. Most studies of OP exposure rely on urinary biomarkers, which are limited by short half-lives and often lack specificity to parent compounds. A reliable means of estimating long-term dietary exposure to individual OPs is needed to assess the potential relationship with adverse health effects. Objectives We assessed long-term dietary exposure to 14 OPs among 4,466 participants in the Multi-Ethnic Study of Atherosclerosis, and examined the influence of organic produce consumption on this exposure. Methods Individual-level exposure was estimated by combining information on typical intake of specific food items with average OP residue levels on those items. In an analysis restricted to a subset of participants who reported rarely or never eating organic produce (“conventional consumers”), we assessed urinary dialkylphosphate (DAP) levels across tertiles of estimated exposure (n = 480). In a second analysis, we compared DAP levels across subgroups with differing self-reported organic produce consumption habits (n = 240). Results Among conventional consumers, increasing tertile of estimated dietary OP exposure was associated with higher DAP concentrations (p < 0.05). DAP concentrations were also significantly lower in groups reporting more frequent consumption of organic produce (p < 0.02). Conclusions Long-term dietary exposure to OPs was estimated from dietary intake data, and estimates were consistent with DAP measurements. More frequent consumption of organic produce was associated with lower DAPs. Citation Curl CL, Beresford SA, Fenske RA, Fitzpatrick AL, Lu C, Nettleton JA, Kaufman JD. 2015. Estimating pesticide exposure from dietary intake and organic food choices: the Multi-Ethnic Study of Atherosclerosis (MESA). Environ

  10. Multi-scale Detection of Organic and Inorganic Signatures Provides Insights into Gas Shale Properties and Evolution

    SciTech Connect

    Bernard, S.; Horsfield, B; Schultz, H; Schreiber, A; Wirth, R; Thi AnhVu, T; Perssen, F; Konitzer, S; Volk, H; et. al.

    2010-01-01

    Organic geochemical analyses, including solvent extraction or pyrolysis, followed by gas chromatography and mass spectrometry, are generally conducted on bulk gas shale samples to evaluate their source and reservoir properties. While organic petrology has been directed at unravelling the matrix composition and textures of these economically important unconventional resources, their spatial variability in chemistry and structure is still poorly documented at the sub-micrometre scale. Here, a combination of techniques including transmission electron microscopy and a synchrotron-based microscopy tool, scanning transmission X-ray microscopy, have been used to characterize at a multiple length scale an overmature organic-rich calcareous mudstone from northern Germany. We document multi-scale chemical and mineralogical heterogeneities within the sample, from the millimetre down to the nanometre-scale. From the detection of different types of bitumen and authigenic minerals associated with the organic matter, we show that the multi-scale approach used in this study may provide new insights into gaseous hydrocarbon generation/retention processes occurring within gas shales and may shed new light on their thermal history.

  11. Multiphase processing of organic hydroxynitrates in secondary organic aerosol from the radical-initiated oxidation of multi-olefinic monoterpenes

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Lee, L. S.; Shepson, P. B.; De Perre, C.

    2015-12-01

    One of the greatest challenges facing atmospheric and climate science is understanding the impacts human activities have on the natural environment and atmospheric chemistry. The production of condensable organic compounds due to interactions between atmospheric oxidants, nitrogenous pollutants, and biogenic volatile organic compounds (BVOCs) emitted from the terrestrial biosphere can contribute significantly to the formation and growth of secondary organic aerosol (SOA). Aerosol particles influence atmospheric radiative transfer, cloud formation, and thus atmospheric temperatures. Due to their solubility in water and adsorptive nature, hydroxylated organic nitrates (HORONO2) may contribute significantly to the formation and chemical aging of SOA, and serve as an important sink for NOx (NO+NO2). We recently observed that a monoterpene β-hydroxy-organic nitrate (C10H17NO4), produced from the OH oxidation of α-pinene in the presence of NOx, undergoes rapid processing in the aerosol phase via an acid-catalyzed and pH-dependent hydrolysis mechanism, potentially impacting SOA growth and molecular composition. Further processing in the aerosol phase via polymerization and formation of organosulfates is expected, yet studies related to product identification and their formation mechanisms are limited. In this presentation, I will discuss recent laboratory-based reaction chamber studies of gas-phase organic nitrate production, SOA formation, and acidity-dependent aerosol-phase processing of organic nitrates produced from the NO3 oxidation of γ-terpinene. This BVOC is a diolefin, which as modeling studies suggest, may be an important nighttime organic nitrate precursor. Gas-phase organic nitrate compounds resulting from NO3 oxidation were qualitatively identified applying I- chemical ionization mass spectrometry (CIMS) and quantified via calibration using synthetic standards generated in our laboratory. Aerosol-phase analysis was carried out employing Fourier transform

  12. Accurate Segmentation of CT Male Pelvic Organs via Regression-Based Deformable Models and Multi-Task Random Forests.

    PubMed

    Gao, Yaozong; Shao, Yeqin; Lian, Jun; Wang, Andrew Z; Chen, Ronald C; Shen, Dinggang

    2016-06-01

    Segmenting male pelvic organs from CT images is a prerequisite for prostate cancer radiotherapy. The efficacy of radiation treatment highly depends on segmentation accuracy. However, accurate segmentation of male pelvic organs is challenging due to low tissue contrast of CT images, as well as large variations of shape and appearance of the pelvic organs. Among existing segmentation methods, deformable models are the most popular, as shape prior can be easily incorporated to regularize the segmentation. Nonetheless, the sensitivity to initialization often limits their performance, especially for segmenting organs with large shape variations. In this paper, we propose a novel approach to guide deformable models, thus making them robust against arbitrary initializations. Specifically, we learn a displacement regressor, which predicts 3D displacement from any image voxel to the target organ boundary based on the local patch appearance. This regressor provides a non-local external force for each vertex of deformable model, thus overcoming the initialization problem suffered by the traditional deformable models. To learn a reliable displacement regressor, two strategies are particularly proposed. 1) A multi-task random forest is proposed to learn the displacement regressor jointly with the organ classifier; 2) an auto-context model is used to iteratively enforce structural information during voxel-wise prediction. Extensive experiments on 313 planning CT scans of 313 patients show that our method achieves better results than alternative classification or regression based methods, and also several other existing methods in CT pelvic organ segmentation. PMID:26800531

  13. Fungal colonization of air filters and insulation in a multi-story office building: production of volatile organics

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Crow, S. A.; Simmons, R. B.; Price, D. L.; Mishra, S. K.; Pierson, D. L.

    1997-01-01

    Secondary air filters in the air-handling units on four floors of a multi-story office building with a history of fungal colonization of insulation within the air distribution system were examined for the presence of growing fungi and production of volatile organic compounds. Fungal mycelium and conidia of Cladosporium and Penicillium spp. were observed on insulation from all floors and both sides of the air filters from one floor. Lower concentrations of volatile organics were released from air filter medium colonized with fungi as compared with noncolonized filter medium. However, the volatiles from the colonized filter medium included fungal metabolites such as acetone and a carbonyl sulfide-like compound that were not released from noncolonized filter medium. The growth of fungi in air distribution systems may affect the content of volatile organics in indoor air.

  14. Associations of organic produce consumption with socioeconomic status and the local food environment: Multi-Ethnic Study of Atherosclerosis (MESA).

    PubMed

    Curl, Cynthia L; Beresford, Shirley A A; Hajat, Anjum; Kaufman, Joel D; Moore, Kari; Nettleton, Jennifer A; Diez-Roux, Ana V

    2013-01-01

    Neighborhood characteristics, such as healthy food availability, have been associated with consumption of healthy food. Little is known about the influence of the local food environment on other dietary choices, such as the decision to consume organic food. We analyzed the associations between organic produce consumption and demographic, socioeconomic and neighborhood characteristics in 4,064 participants aged 53-94 in the Multi-Ethnic Study of Atherosclerosis using log-binomial regression models. Participants were classified as consuming organic produce if they reported eating organic fruits and vegetables either "sometimes" or "often or always". Women were 21% more likely to consume organic produce than men (confidence interval [CI]: 1.12-1.30), and the likelihood of organic produce consumption was 13% less with each additional 10 years of age (CI: 0.84-0.91). Participants with higher education were significantly more likely to consume organic produce (prevalence ratios [PR] were 1.05 with a high school education, 1.39 with a bachelor's degree and 1.68 with a graduate degree, with less than high school as the reference group [1.00]). Per capita household income was marginally associated with produce consumption (p = 0.06), with the highest income category more likely to consume organic produce. After adjustment for these individual factors, organic produce consumption was significantly associated with self-reported assessment of neighborhood produce availability (PR: 1.07, CI: 1.02-1.11), with an aggregated measure of community perception of the local food environment (PR: 1.08, CI: 1.00-1.17), and, to a lesser degree, with supermarket density (PR: 1.02: CI: 0.99-1.05). This research suggests that both individual-level characteristics and qualities of the local food environment are associated with having a diet that includes organic food. PMID:23936098

  15. Modul.LES: a multi-compartment, multi-organism aquatic life support system as experimental platform for research in ∆g

    NASA Astrophysics Data System (ADS)

    Hilbig, Reinhard; Anken, Ralf; Grimm, Dennis

    In view of space exploration and long-term satellite missions, a new generation of multi-modular, multi-organism bioregenerative life support system with different experimental units (Modul.LES) is planned, and subunits are under construction. Modul.LES will be managed via telemetry and remote control and therefore is a fully automated experimental platform for different kinds of investigations. After several forerunner projects like AquaCells (2005), C.E.B.A.S. (1998, 2003) or Aquahab (OHB-System AG the Oreochromis Mossambicus Eu-glena Gracilis Aquatic Habitat (OmegaHab) was successfully flown in 2007 in course of the FOTON-M3 Mission. It was a 3 chamber controlled life support system (CLSS), compris-ing a bioreactor with the green algae Euglena gracilis, a fish chamber with larval cichlid fish Oreochromis mossambicus and a filter chamber with biodegrading bacteria. The sensory super-vision of housekeeping management was registered and controlled by telemetry. Additionally, all scientific data and videos of the organisms aboard were stored and sequentially transmitted to relay stations. Based on the effective performance of OmegaHab, this system was chosen for a reflight on Bion-M1 in 2012. As Bion-M1 is a long term mission (appr. 4 weeks), this CLSS (OmegaHab-XP) has to be redesigned and refurbished with enhanced performance. The number of chambers has been increased from 3 to 4: an algae bioreactor, a fish tank for adult and larval fish (hatchery inserted), a nutrition chamber with higher plants and crustaceans and a filter chamber. The OmegaHab-XP is a full automated system with an extended satellite downlink for video monitoring and housekeeping data acquisition, but no uplink for remote control. OmegaHab-XP provides numerous physical and chemical parameters which will be monitored regarding the state of the biological processes and thus enables the automated con-trol aboard. Besides the two basic parameters oxygen content and temperature, products of the

  16. A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing.

    PubMed

    Materne, Eva-Maria; Ramme, Anja Patricia; Terrasso, Ana Paula; Serra, Margarida; Alves, Paula Marques; Brito, Catarina; Sakharov, Dmitry A; Tonevitsky, Alexander G; Lauster, Roland; Marx, Uwe

    2015-07-10

    Current in vitro and animal tests for drug development are failing to emulate the systemic organ complexity of the human body and, therefore, often do not accurately predict drug toxicity, leading to high attrition rates in clinical studies (Paul et al., 2010). The phylogenetic distance between humans and laboratory animals is enormous, this affects the transferability of animal data on the efficacy of neuroprotective drugs. Therefore, many neuroprotective treatments that have shown promise in animals have not been successful when transferred to humans (Dragunow, 2008; Gibbons and Dragunow, 2010). We present a multi-organ chip capable of maintaining 3D tissues derived from various cell sources in a combined media circuit which bridges the gap in systemic and human tests. A steady state co-culture of human artificial liver microtissues and human neurospheres exposed to fluid flow over two weeks in the multi-organ chip has successfully proven its long-term performance. Daily lactate dehydrogenase activity measurements of the medium and immunofluorescence end-point staining proved the viability of the tissues and the maintenance of differentiated cellular phenotypes. Moreover, the lactate production and glucose consumption values of the tissues cultured indicated that a stable steady-state was achieved after 6 days of co-cultivation. The neurospheres remained differentiated neurons over the two-week cultivation in the multi-organ chip, proven by qPCR and immunofluorescence of the neuronal markers βIII-tubulin and microtubule-associated protein-2. Additionally, a two-week toxicity assay with a repeated substance exposure to the neurotoxic 2,5-hexanedione in two different concentrations induced high apoptosis within the neurospheres and liver microtissues, as shown by a strong increase of lactate dehydrogenase activity in the medium. The principal finding of the exposure of the co-culture to 2,5-hexanedione was that not only toxicity profiles of two different doses

  17. Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Maggi, F.; Kleber, M.; Torn, M. S.; Tang, J. Y.; Dwivedi, D.; Guerry, N.

    2014-07-01

    Accurate representation of soil organic matter (SOM) dynamics in Earth system models is critical for future climate prediction, yet large uncertainties exist regarding how, and to what extent, the suite of proposed relevant mechanisms should be included. To investigate how various mechanisms interact to influence SOM storage and dynamics, we developed an SOM reaction network integrated in a one-dimensional, multi-phase, and multi-component reactive transport solver. The model includes representations of bacterial and fungal activity, multiple archetypal polymeric and monomeric carbon substrate groups, aqueous chemistry, aqueous advection and diffusion, gaseous diffusion, and adsorption (and protection) and desorption from the soil mineral phase. The model predictions reasonably matched observed depth-resolved SOM and dissolved organic matter (DOM) stocks and fluxes, lignin content, and fungi to aerobic bacteria ratios. We performed a suite of sensitivity analyses under equilibrium and dynamic conditions to examine the role of dynamic sorption, microbial assimilation rates, and carbon inputs. To our knowledge, observations do not exist to fully test such a complicated model structure or to test the hypotheses used to explain observations of substantial storage of very old SOM below the rooting depth. Nevertheless, we demonstrated that a reasonable combination of sorption parameters, microbial biomass and necromass dynamics, and advective transport can match observations without resorting to an arbitrary depth-dependent decline in SOM turnover rates, as is often done. We conclude that, contrary to assertions derived from existing turnover time based model formulations, observed carbon content and Δ14C vertical profiles are consistent with a representation of SOM consisting of carbon compounds with relatively fast reaction rates, vertical aqueous transport, and dynamic protection on mineral surfaces.

  18. Dispersibility of vapor phase oxygen and nitrogen functionalized multi-walled carbon nanotubes in various organic solvents

    PubMed Central

    Khazaee, Maryam; Xia, Wei; Lackner, Gerhard; Mendes, Rafael G.; Rümmeli, Mark; Muhler, Martin; Lupascu, Doru C.

    2016-01-01

    The synthesis and characterization of gas phase oxygen- and nitrogen-functionalized multi-walled carbon nanotubes (OMWCNTs and NMWCNTs) and the dispersibility of these tubes in organic solvents were investigated. Recently, carbon nanotubes have shown supreme capacity to effectively enhance the efficiency of organic solar cells (OSCs). A critical challenge is to individualize tubes from their bundles in order to provide homogenous nano-domains in the active layer of OSCs. OMWCNTs and NMWCNTs were synthesized via HNO3 vapor and NH3 treatments, respectively. Surface functional groups and the structure of the tubes were analyzed by temperature-programmed desorption, Fourier transform infrared spectroscopy, transmission electron microscopy, and Raman spectroscopy which confirmed the formation of functional groups on the tube surface and the enhancement of surface defects. Elemental analysis demonstrated that the oxygen and nitrogen content increased with increasing treatment time of the multi-walled carbon nanotube (MWCNT) in HNO3 vapor. According to ultra-violet visible spectroscopy, modification of the MWCNT increased the extinction coefficients of the tubes owing to enhanced compatibility of the functionalized tubes with organic matrices. PMID:27188622

  19. Dispersibility of vapor phase oxygen and nitrogen functionalized multi-walled carbon nanotubes in various organic solvents

    NASA Astrophysics Data System (ADS)

    Khazaee, Maryam; Xia, Wei; Lackner, Gerhard; Mendes, Rafael G.; Rümmeli, Mark; Muhler, Martin; Lupascu, Doru C.

    2016-05-01

    The synthesis and characterization of gas phase oxygen- and nitrogen-functionalized multi-walled carbon nanotubes (OMWCNTs and NMWCNTs) and the dispersibility of these tubes in organic solvents were investigated. Recently, carbon nanotubes have shown supreme capacity to effectively enhance the efficiency of organic solar cells (OSCs). A critical challenge is to individualize tubes from their bundles in order to provide homogenous nano-domains in the active layer of OSCs. OMWCNTs and NMWCNTs were synthesized via HNO3 vapor and NH3 treatments, respectively. Surface functional groups and the structure of the tubes were analyzed by temperature-programmed desorption, Fourier transform infrared spectroscopy, transmission electron microscopy, and Raman spectroscopy which confirmed the formation of functional groups on the tube surface and the enhancement of surface defects. Elemental analysis demonstrated that the oxygen and nitrogen content increased with increasing treatment time of the multi-walled carbon nanotube (MWCNT) in HNO3 vapor. According to ultra-violet visible spectroscopy, modification of the MWCNT increased the extinction coefficients of the tubes owing to enhanced compatibility of the functionalized tubes with organic matrices.

  20. Dispersibility of vapor phase oxygen and nitrogen functionalized multi-walled carbon nanotubes in various organic solvents.

    PubMed

    Khazaee, Maryam; Xia, Wei; Lackner, Gerhard; Mendes, Rafael G; Rümmeli, Mark; Muhler, Martin; Lupascu, Doru C

    2016-01-01

    The synthesis and characterization of gas phase oxygen- and nitrogen-functionalized multi-walled carbon nanotubes (OMWCNTs and NMWCNTs) and the dispersibility of these tubes in organic solvents were investigated. Recently, carbon nanotubes have shown supreme capacity to effectively enhance the efficiency of organic solar cells (OSCs). A critical challenge is to individualize tubes from their bundles in order to provide homogenous nano-domains in the active layer of OSCs. OMWCNTs and NMWCNTs were synthesized via HNO3 vapor and NH3 treatments, respectively. Surface functional groups and the structure of the tubes were analyzed by temperature-programmed desorption, Fourier transform infrared spectroscopy, transmission electron microscopy, and Raman spectroscopy which confirmed the formation of functional groups on the tube surface and the enhancement of surface defects. Elemental analysis demonstrated that the oxygen and nitrogen content increased with increasing treatment time of the multi-walled carbon nanotube (MWCNT) in HNO3 vapor. According to ultra-violet visible spectroscopy, modification of the MWCNT increased the extinction coefficients of the tubes owing to enhanced compatibility of the functionalized tubes with organic matrices. PMID:27188622

  1. Locating seed points for automatic multi-organ segmentation using non-rigid registration and organ annotations

    NASA Astrophysics Data System (ADS)

    Joyseeree, Ranveer R.; Müller, Henning

    2015-03-01

    Organ segmentation is helpful for decision-support in diagnostic medicine. Region-growing segmentation algorithms are popular but usually require that clinicians place seed points in structures manually. A method to automatically calculate the seed points for segmenting organs in three-dimensional (3D), non-annotated Computed Tomography (CT) and Magnetic Resonance (MR) volumes from the VISCERAL dataset is presented in this paper. It precludes the need for manual placement of seeds, thereby saving time. It also has the advantage of being a simple yet effective means of finding reliable seed points for segmentation. Affine registration followed by B-spline registration are used to align expert annotations of each organ of interest in order to build a probability map for their respective location in a chosen reference frame. The centroid of each is determined. The same registration framework as above is used to warp the calculated centroids onto the volumes to be segmented. Existing segmentation algorithms may then be applied with the mapped centroids as seed points and the warped probability maps as an aid to the stopping criteria for segmentation. The above method was tested on contrast{enhanced, thorax-abdomen CT images to see if calculated centroids lay within target organs, which would equate to successful segmentation if an effective segmentation algorithm were used. Promising results were obtained and are presented in this paper. The causes for observed failures were identified and countermeasures were proposed in order to achieve even better results in the next stage of development that will involve a wider variety of MR and CT images.

  2. Hierarchical inorganic-organic multi-shell nanospheres for intervention and treatment of lead-contaminated blood

    NASA Astrophysics Data System (ADS)

    Khairy, Mohamed; El-Safty, Sherif A.; Shenashen, Mohamed. A.; Elshehy, Emad A.

    2013-08-01

    The highly toxic properties, bioavailability, and adverse effects of Pb2+ species on the environment and living organisms necessitate periodic monitoring and removal whenever possible of Pb2+ concentrations in the environment. In this study, we designed a novel optical multi-shell nanosphere sensor that enables selective recognition, unrestrained accessibility, continuous monitoring, and efficient removal (on the order of minutes) of Pb2+ ions from water and human blood, i.e., red blood cells (RBCs). The consequent decoration of the mesoporous core/double-shell silica nanospheres through a chemically responsive azo-chromophore with a long hydrophobic tail enabled us to create a unique hierarchical multi-shell sensor. We examined the efficiency of the multi-shell sensor in removing lead ions from the blood to ascertain the potential use of the sensor in medical applications. The lead-induced hemolysis of RBCs in the sensing/capture assay was inhibited by the ability of the hierarchical sensor to remove lead ions from blood. The results suggest the higher flux and diffusion of Pb2+ ions into the mesopores of the core/multi-shell sensor than into the RBC membranes. These findings indicate that the sensor could be used in the prevention of health risks associated with elevated blood lead levels such as anemia.The highly toxic properties, bioavailability, and adverse effects of Pb2+ species on the environment and living organisms necessitate periodic monitoring and removal whenever possible of Pb2+ concentrations in the environment. In this study, we designed a novel optical multi-shell nanosphere sensor that enables selective recognition, unrestrained accessibility, continuous monitoring, and efficient removal (on the order of minutes) of Pb2+ ions from water and human blood, i.e., red blood cells (RBCs). The consequent decoration of the mesoporous core/double-shell silica nanospheres through a chemically responsive azo-chromophore with a long hydrophobic tail enabled

  3. Effect of Da-Cheng-Qi Decoction on the Repair of the Injured Enteric Nerve-Interstitial Cells of Cajal-Smooth Muscle Cells Network in Multiple Organ Dysfunction Syndrome

    PubMed Central

    Liu, Mu-Cang; Xie, Ming-Zheng; Ma, Bin; Qi, Qing-Hui

    2014-01-01

    Wistar rats were randomly divided into control group, multiple organ dysfunction syndrome (MODS) group, and Da-Cheng-Qi decoction (DCQD) group. The network of enteric nerves-interstitial cells of Cajal- (ICC-) smooth muscle cells (SMC) in small intestine was observed using confocal laser scanning microscopy and transmission electron microscopy. The results showed that the numbers of cholinergic/nitriergic nerves, and the deep muscular plexus of ICC (ICC-DMP) and connexin43 (Cx43) in small intestine with MODS were significantly decreased. The network integrity of enteric nerves-ICC-SMC was disrupted. The ultrastructures of ICC-DMP, enteric nerves, and SMC were severely damaged. After treatment with DCQD, the damages were repaired and the network integrity of enteric nerves ICC-SMC was significantly recovered. In conclusion, the pathogenesis of gastrointestinal motility dysfunction in MODS in part may be due to the damages to enteric nerves-ICC-SMC network and gap junctions. The therapeutic mechanism of DCQD in part may be that it could repair the damages and maintain the integrity of enteric nerves ICC-SMC network. PMID:25477993

  4. Psychogenic erectile dysfunction. Classification and management.

    PubMed

    Rosen, R C

    2001-05-01

    Psychogenic factors are involved alone or in combination with organic causes in a substantial number of cases of erectile dysfunction. Epidemiologic studies have implicated the role of depressed mood, loss of self-esteem, and other psychosocial stresses in the cause of erectile dysfunction. A new definition and classification of psychogenic erectile dysfunction has been proposed based on recent clinical and research findings. According to this new classification, psychogenic erectile dysfunction is categorized as generalized or situational type, with subcategories of each type proposed. Traditional treatment approaches for psychogenic erectile dysfunction have included anxiety reduction and desensitization procedures, cognitive-behavioral interventions, guided sexual stimulation techniques, and couples' or relationship counseling. Recently, these approaches increasingly have been combined with pharmacologic therapy such as sildenafil. Special situations have been identified in which combining psychosocial interventions with medical therapy is recommended. These situations include problems of sexual initiation, low sexual desire, other sexual dysfunctions, and significant couples' or relationship problems. More research is needed on the role of psychosocial interventions in the treatment of erectile dysfunction. PMID:11402580

  5. [Neurogenic erectile dysfunction].

    PubMed

    Ramos, Antonio Sánchez; Durán, Juan Antonio Godino; Oliviero, Antonio

    2010-10-01

    Neurogenic erectile dysfunction is a consequence of alterations in neural pathways, autonomic, somatic, the combination of both or brain components that induce erection. This review aims to explain the physiopathological mechanisms of the most frequent neurological alterations causing erectile dysfunction and sexual disorders. PMID:20978292

  6. Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting

    PubMed Central

    Wen, Long; Chen, Qin; Sun, Fuhe; Song, Shichao; Jin, Lin; Yu, Yan

    2014-01-01

    Solar cells incorporated with multi-coloring capability not only offer an aesthetic solution to bridge the gap between solar modules and building decorations but also open up the possibility for self-powered colorful display. In this paper, we proposed a multi-colored semi-transparent organic solar cells (TOSCs) design containing metallic nanostructures with the both high color purity and efficiency based on theoretical considerations. By employing guided mode resonance effect, the multi-colored TOSC behave like an efficient color filter that selectively transmits light with the desired wavelengths and generates electricity with light of other wavelengths. Broad range of coloring and luminosity adjusting for the transmission light can be achieved by simply tuning the period and the duty cycle of the metallic nanostructures. Furthermore, accompanying with the efficient color filtering characteristics, the optical absorption of TOSCs was improved due to the marked suppression of transmission loss at the off-resonance wavelengths and the increased light trapping in TOSCs. The mechanisms of the light guiding in photoactive layer and broadband backward scattering from the metallic nanostructures were identified to make an essential contribution to the improved light-harvesting. By enabling efficient color control and high efficiency simultaneously, this approach holds great promise for future versatile photovoltaic energy utilization. PMID:25391756

  7. Theoretical design of multi-colored semi-transparent organic solar cells with both efficient color filtering and light harvesting.

    PubMed

    Wen, Long; Chen, Qin; Sun, Fuhe; Song, Shichao; Jin, Lin; Yu, Yan

    2014-01-01

    Solar cells incorporated with multi-coloring capability not only offer an aesthetic solution to bridge the gap between solar modules and building decorations but also open up the possibility for self-powered colorful display. In this paper, we proposed a multi-colored semi-transparent organic solar cells (TOSCs) design containing metallic nanostructures with the both high color purity and efficiency based on theoretical considerations. By employing guided mode resonance effect, the multi-colored TOSC behave like an efficient color filter that selectively transmits light with the desired wavelengths and generates electricity with light of other wavelengths. Broad range of coloring and luminosity adjusting for the transmission light can be achieved by simply tuning the period and the duty cycle of the metallic nanostructures. Furthermore, accompanying with the efficient color filtering characteristics, the optical absorption of TOSCs was improved due to the marked suppression of transmission loss at the off-resonance wavelengths and the increased light trapping in TOSCs. The mechanisms of the light guiding in photoactive layer and broadband backward scattering from the metallic nanostructures were identified to make an essential contribution to the improved light-harvesting. By enabling efficient color control and high efficiency simultaneously, this approach holds great promise for future versatile photovoltaic energy utilization. PMID:25391756

  8. A Model of Adding Relations in Multi-levels to a Formal Organization Structure with Two Subordinates

    NASA Astrophysics Data System (ADS)

    Sawada, Kiyoshi; Amano, Kazuyuki

    2009-10-01

    This paper proposes a model of adding relations in multi-levels to a formal organization structure with two subordinates such that the communication of information between every member in the organization becomes the most efficient. When edges between every pair of nodes with the same depth in L (L = 1, 2, …, H) levels are added to a complete binary tree of height H, an optimal set of depths {N1, N2, …, NL} (H⩾N1>N2> …>NL⩾1) is obtained by maximizing the total shortening path length which is the sum of shortening lengths of shortest paths between every pair of all nodes in the complete binary tree. It is shown that {N1, N2, …, NL}* = {H, H-1, …, H-L+1}.

  9. Photoluminescence polarization anisotropy for studying long-range structural ordering within semiconductor multi-atomic alloys and organic crystals

    SciTech Connect

    Prutskij, T.; Percino, J.; Orlova, T.; Vavilova, L.

    2013-12-04

    Long-range structural ordering within multi-component semiconductor alloys and organic crystals leads to significant optical anisotropy and, in particular, to anisotropy of the photoluminescence (PL) emission. The PL emission of ternary and quaternary semiconductor alloys is polarized if there is some amount of the atomic ordering within the crystal structure. We analyze the polarization of the PL emission from the quaternary GaInAsP semiconductor alloy grown by Liquid Phase Epitaxy (LPE) and conclude that it could be caused by low degree atomic ordering within the crystal structure together with the thermal biaxial strain due to difference between the thermal expansion coefficients of the layer and the substrate. We also study the state of polarization of the PL from organic crystals in order to identify different features of the crystal PL spectrum.

  10. Multi-Length-Scale Morphologies Driven by Mixed Additives in Porphyrin-Based Organic Photovoltaics.

    PubMed

    Gao, Ke; Miao, Jingsheng; Xiao, Liangang; Deng, Wanyuan; Kan, Yuanyuan; Liang, Tianxiang; Wang, Cheng; Huang, Fei; Peng, Junbiao; Cao, Yong; Liu, Feng; Russell, Thomas P; Wu, Hongbin; Peng, Xiaobin

    2016-06-01

    A new category of deep-absorbing small molecules is developed. Optimized devices driven by mixed additives show a remarkable short-circuit current of ≈20 mA cm(-2) and a highest power conversion efficiency of 9.06%. A multi-length-scale morphology is formed, which is fully characterized by resonant soft X-ray scattering, high-angle annular dark film image transmission electron microscopy, etc. PMID:27062394

  11. Multi-organ localization with cascaded global-to-local regression and shape prior.

    PubMed

    Gauriau, Romane; Cuingnet, Rémi; Lesage, David; Bloch, Isabelle

    2015-07-01

    We propose a method for fast, accurate and robust localization of several organs in medical images. We generalize the global-to-local cascade of regression random forest to multiple organs. A first regressor encodes the global relationships between organs, learning simultaneously all organs parameters. Then subsequent regressors refine the localization of each organ locally and independently for improved accuracy. By combining the regression vote distribution and the organ shape prior (through probabilistic atlas representation) we compute confidence maps that are organ-dedicated probability maps. They are used within the cascade itself, to better select the test voxels for the second set of regressors, and to provide richer information than the classical bounding boxes result thanks to the shape prior. We propose an extensive study of the different learning and testing parameters, showing both their robustness to reasonable perturbations and their influence on the final algorithm accuracy. Finally we demonstrate the robustness and accuracy of our approach by evaluating the localization of six abdominal organs (liver, two kidneys, spleen, gallbladder and stomach) on a large and diverse database of 130 CT volumes. Moreover, the comparison of our results with two existing methods shows significant improvements brought by our approach and our deep understanding and optimization of the parameters. PMID:25974326

  12. 29 CFR 779.118 - Employees providing central services for multi-unit organizations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... organizations. 779.118 Section 779.118 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION... Apply: Basic Principles and Individual Coverage Employees Engaged in Commerce Or in the Production of.... Employees providing central services for a multiunit organization may be engaged both “in commerce” and...

  13. Primary Graft Dysfunction

    PubMed Central

    Christie, Jason D

    2014-01-01

    Primary graft dysfunction (PGD) is a syndrome encompassing a spectrum of mild to severe lung injury that occurs within the first 72 hours after lung transplantation. PGD is characterized by pulmonary edema with diffuse alveolar damage that manifests clinically as progressive hypoxemia with radiographic pulmonary infiltrates. In recent years, new knowledge has been generated on risks and mechanisms of PGD. Following ischemia and reperfusion, inflammatory and immunological injury-repair responses appear to be key controlling mechanisms. In addition, PGD has significant impact on short- and long-term outcomes; therefore, the choice of donor organ is impacted by this potential adverse consequence. Improved methods of reducing PGD risk and efforts to safely expand the pool are being developed. Ex-vivo lung perfusion is a strategy which may improve risk assessment and become a promising platform to implement treatment interventions to prevent PGD. This review will detail recent updates in the epidemiology, pathophysiology, molecular and genetic biomarkers and state-of-the-art technical developments affecting PGD. (158 words) PMID:23821506

  14. Endothelial Dysfunction in Type 2 Diabetes Mellitus.

    PubMed

    Dhananjayan, R; Koundinya, K S Srivani; Malati, T; Kutala, Vijay Kumar

    2016-10-01

    Endothelial dysfunction is an imbalance in the production of vasodilator factors and when this balance is disrupted, it predisposes the vasculature towards pro-thrombotic and pro-atherogenic effects. This results in vasoconstriction, leukocyte adherence, platelet activation, mitogenesis, pro-oxidation, impaired coagulation and nitric oxide production, vascular inflammation, atherosclerosis and thrombosis. Endothelial dysfunction is focussed as it is a potential contributor to the pathogenesis of vascular disease in diabetes mellitus. Under physiological conditions, there is a balanced release of endothelial-derived relaxing and contracting factors, but this delicate balance is altered in diabetes mellitus and atherosclerosis, thereby contributing to further progression of vascular and end-organ damage. This review focuses on endothelial dysfunction in atherosclerosis, insulin resistance, metabolic syndrome, oxidative stress associated with diabetes mellitus, markers and genetics that are implicated in endothelial dysfunction. PMID:27605734

  15. The organization and management of 3D multi-source space models data in GeoGlobe

    NASA Astrophysics Data System (ADS)

    Chen, Xinqin; Zhang, Yongzhi; Yuan, Tao; Pan, Jun

    2008-12-01

    The traditional two-dimensional and three-dimensional GIS can no longer satisfy people's requirement to understand the real world. So, the new three-dimensional digital terrestrial GIS based on digital earth has been developed, which can give users more intuitive information. Further more, in a more realistic manner, the new three-dimensional digital terrestrial GIS can treatment Multi-source space information of models, It can indicate the variety, the quantity and the quality of spatial objects, the spatial location of these objects and the spatial and temporal distribution of the phenomena. This paper is based on GeoGlobe digital terrestrial platform. It requires some fast scheduling data method. Because the data organization and management methods in the traditional 3D GIS are no longer suitable according to the requirement of data scheduling in the digital earth theory, it is necessary to put forward a more reasonable and conformable data structure to implement clipping data scheduling. Advances one method, which takes geometric object model systems to deal with multi-source space model data and takes reasonable data organization, supports quick data scheduling for digital earth and constructs one 3D model database which is fit for digital earth's use.

  16. Graphene Oxide/Silver Nanohybrid as Multi-functional Material for Highly Efficient Bacterial Disinfection and Detection of Organic Dye

    NASA Astrophysics Data System (ADS)

    Tam, Le Thi; Dinh, Ngo Xuan; Van Cuong, Nguyen; Van Quy, Nguyen; Huy, Tran Quang; Ngo, Duc-The; Mølhave, Kristian; Le, Anh-Tuan

    2016-06-01

    In this work, a multi-functional hybrid system consisting of graphene oxide and silver nanoparticles (GO-Ag NPs) was successfully synthesized by using a two-step chemical process. We firstly demonstrated noticeable bactericidal ability of the GO-Ag hybrid system. We provide more chemo-physical evidence explaining the antibacterial behavior of GO-Ag nanohybrid against Gram-negative Escherichia Coli and Gram-positive Staphylococcus aureus in light of ultrastructural damage analyses and Ag1+ ions release rate onto the cells/medium. A further understanding of the mode of antimicrobial action is very important for designing and developing advanced antimicrobial systems. Secondly, we have also demonstrated that the GO-Ag nanohybrid material could be used as a potential surface enhanced Raman scattering (SERS) substrate to detect and quantify organic dyes, e.g., methylene blue (MB), in aqueous media. Our findings revealed that the GO-Ag hybrid system showed better SERS performance of MB detection than that of pure Ag-NPs. MB could be detected at a concentration as low as 1 ppm. The GO-Ag-based SERS platform can be effectively used to detect trace concentrations of various types of organic dyes in aqueous media. With the aforementioned properties, the GO-Ag hybrid system is found to be very promising as a multi-functional material for advanced biomedicine and environmental monitoring applications.

  17. Genetics Home Reference: surfactant dysfunction

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions surfactant dysfunction surfactant dysfunction Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Surfactant dysfunction is a lung disorder that causes breathing ...

  18. [Digestive system disease as manifestation of the pleiotropic action of genes in mitochondrial dysfunction].

    PubMed

    Hrechanina, O Ia; Hrechanina, Iu B; Husar, V A; Molodan, L V

    2014-11-01

    Defined involvement lesions of the digestive system of clinical manifestations of mitochondrial dysfunction associated with both point mutations and polymorphism of mitochondrial DNA. The nature of the clinical signs of mtDNA polymorphisms carriers--multi organical, a progressive, clinical polymorphism, genetic heterogeneity with predominant involvement of energotropic bodies (cerebrum, cordis, hepatic). Set individual nosological forms of mitochondrial dysfunctions--syndromes Leia, Leber, Cairns, Sarah, MERRF, MELAS, NARP, MNGIE confirmed by clinical and genetic, morphological, biochemical, enzymatic, molecular genetics methods. It was found that 84-88% of these syndromes involving the violation of the digestive system with varying degrees of injury. This damage will be the first in the complex chain signs recovery which determines the direction of early rehabilitation. PMID:25528830

  19. Screening the Emission Sources of Volatile Organic Compounds (VOCs) in China Based on Multi-effect Evaluation

    NASA Astrophysics Data System (ADS)

    Niu, H., Jr.

    2015-12-01

    Volatile organic compounds (VOCs) in the atmosphere have adverse impacts via three main pathways: photochemical ozone formation, secondary organic aerosol production, and direct toxicity to humans. Few studies have integrated these effects to prioritize control measures for VOCs sources. In this study, we developed a multi-effect evaluation methodology based on updated emission inventories and source profiles, which was combined with ozone formation potential (OFP), secondary organic aerosol potential (SOAP), and VOC toxicity data to identify important emission sources and key species. We derived species-specific emission inventories for 152 sources. The OFPs, SOAPs, and toxicity of each source were determined, and the contribution and share of each source to each of these adverse effects was calculated. Weightings were given to the three adverse effects by expert scoring, and the integrated impact was determined. Using 2012 as the base year, solvent usage and industrial process were found to be the most important anthropogenic sources, accounting for 24.2 and 23.1% of the integrated environmental effect, respectively. This was followed by biomass burning, transportation, and fossil fuel combustion, all of which had a similar contribution ranging from 16.7 to 18.6%. The top five industrial sources, including plastic products, rubber products, chemical fiber products, the chemical industry, and oil refining, accounted for nearly 70.0% of industrial emissions. In China, emissions reductions are required for styrene, toluene, ethylene, benzene, and m/p-xylene. The 10 most abundant chemical species contributed 76.5% of the integrated impact. Beijing, Chongqing, Shanghai, Jiangsu, and Guangdong were the five leading provinces when considering the integrated effects. Besides, the chemical mass balance model (CMB) was used to verify the VOCs inventories of 47 cities in China, so as to optimize our evaluation results. We suggest that multi-effect evaluation is necessary to

  20. Structural characterization of multi-coated YBCO films processed by metal-organic deposition method

    NASA Astrophysics Data System (ADS)

    Jang, S. H.; Lim, J. H.; Lee, S. Y.; Kim, K. T.; Lee, C. M.; Park, E. C.; Hwang, S. M.; Park, S.; Joo, J.

    2008-09-01

    YBCO films were fabricated using the TFA-MOD process. The effects of film thickness on phase formation, degree of texture, microstructures, and critical properties were evaluated by X-ray diffraction, pole-figure, and transmission electron microscopy. The films were prepared with various thicknesses by producing multi-coated films by repeating the dip-coating and calcining processes. The microstructure and resultant critical current ( Ic) and critical current density ( Jc) varied remarkably with film thickness: the Ic increased from 39 to 169 A/cm-width, while Jc ranged from 0.85 to 0.92 MA/cm 2 with increasing number of coatings from one to three or four. Both values decreased when further coatings were applied as a result of microstructural degradation. It is believed that this decrease in Ic for the multi-coated film is partly due to the presence of a second phase, pores, and poor texture formability. The optimum thickness for maximizing both the Ic and Jc values is believed to be in the range of 1.1-1.7 μm.

  1. Multi-pulse LIBDE of fused silica at different thicknesses of the organic absorber layer

    NASA Astrophysics Data System (ADS)

    Pan, Yunxiang; Ehrhardt, Martin; Lorenz, Pierre; Han, Bing; Hopp, Bela; Vass, Csaba; Ni, Xiaowu; Zimmer, Klaus

    2015-12-01

    Laser-induced etching techniques feature several unique characteristics that enable ultraprecise machining of transparent materials. However, LIBDE (laser-induced back side dry etching) and LIBWE (laser-induced back side wet etching) are preferentially studied due to experimental feasibilities either using a very thin or a bulk absorber at the rear side of the transparent material. This study aims to fill the gap by examining the thickness dependence of the absorbing material. Multi-pulse-LIBDE (MP-LIBDE) of fused silica using different thick photoresist absorber layers (dL = 0.2-11.7 μm) was performed with a KrF excimer laser (λ = 248 nm, tp ≈ 20 ns). The influence of several experimental parameters, such as laser fluence, pulse number, film thickness, on the ablation morphology and the etching rate were investigated. Especially at moderate fluences (F = 0.7-1.5 J/cm2) MP-LIBDE and LIBWE show several similar process characteristics such as the etching rate dependence on the laser fluence and the pulse number with a typical etching rate of approx. 12 nm at 1 J/cm2. However, the specific etching rate values depend on the absorber layer thickness, for instance. The morphology of the etched surface is smooth with a roughness of below 5 nm rms. Further, the modification of the surface has been observed and will be discussed in relation to the multi-pulse laser etching mechanism.

  2. Steady-state photoconductivity and multi-particle interactions in high-mobility organic semiconductors

    PubMed Central

    Irkhin, P.; Najafov, H.; Podzorov, V.

    2015-01-01

    Fundamental understanding of photocarrier generation, transport and recombination under a steady-state photoexcitation has been an important goal of organic electronics and photonics, since these processes govern such electronic properties of organic semiconductors as, for instance, photoconductivity. Here, we discovered that photoconductivity of a highly ordered organic semiconductor rubrene exhibits several distinct regimes, in which photocurrent as a function of cw (continuous wave) excitation intensity is described by a power law with exponents sequentially taking values 1, 1/3 and ¼. We show that in pristine crystals this photocurrent is generated at the very surface of the crystals, while the bulk photocurrent is drastically smaller and follows a different sequence of exponents, 1 and ½. We describe a simple experimental procedure, based on an application of “gauge effect” in high vacuum, that allows to disentangle the surface and bulk contributions to photoconductivity. A model based on singlet exciton fission, triplet fusion and triplet-charge quenching that can describe these non-trivial effects in photoconductivity of highly ordered organic semiconductors is proposed. Observation of these effects in photoconductivity and modeling of the underlying microscopic mechanisms described in this work represent a significant step forward in our understanding of electronic properties of organic semiconductors. PMID:26478121

  3. Steady-state photoconductivity and multi-particle interactions in high-mobility organic semiconductors

    NASA Astrophysics Data System (ADS)

    Irkhin, P.; Najafov, H.; Podzorov, V.

    2015-10-01

    Fundamental understanding of photocarrier generation, transport and recombination under a steady-state photoexcitation has been an important goal of organic electronics and photonics, since these processes govern such electronic properties of organic semiconductors as, for instance, photoconductivity. Here, we discovered that photoconductivity of a highly ordered organic semiconductor rubrene exhibits several distinct regimes, in which photocurrent as a function of cw (continuous wave) excitation intensity is described by a power law with exponents sequentially taking values 1, 1/3 and ¼. We show that in pristine crystals this photocurrent is generated at the very surface of the crystals, while the bulk photocurrent is drastically smaller and follows a different sequence of exponents, 1 and ½. We describe a simple experimental procedure, based on an application of “gauge effect” in high vacuum, that allows to disentangle the surface and bulk contributions to photoconductivity. A model based on singlet exciton fission, triplet fusion and triplet-charge quenching that can describe these non-trivial effects in photoconductivity of highly ordered organic semiconductors is proposed. Observation of these effects in photoconductivity and modeling of the underlying microscopic mechanisms described in this work represent a significant step forward in our understanding of electronic properties of organic semiconductors.

  4. Multi-Organ Contribution to the Metabolic Plasma Profile Using Hierarchical Modelling

    PubMed Central

    Torell, Frida; Bennett, Kate; Cereghini, Silvia; Rännar, Stefan; Lundstedt-Enkel, Katrin; Moritz, Thomas; Haumaitre, Cecile; Trygg, Johan; Lundstedt, Torbjörn

    2015-01-01

    Hierarchical modelling was applied in order to identify the organs that contribute to the levels of metabolites in plasma. Plasma and organ samples from gut, kidney, liver, muscle and pancreas were obtained from mice. The samples were analysed using gas chromatography time-of-flight mass spectrometry (GC TOF-MS) at the Swedish Metabolomics centre, Umeå University, Sweden. The multivariate analysis was performed by means of principal component analysis (PCA) and orthogonal projections to latent structures (OPLS). The main goal of this study was to investigate how each organ contributes to the metabolic plasma profile. This was performed using hierarchical modelling. Each organ was found to have a unique metabolic profile. The hierarchical modelling showed that the gut, kidney and liver demonstrated the greatest contribution to the metabolic pattern of plasma. For example, we found that metabolites were absorbed in the gut and transported to the plasma. The kidneys excrete branched chain amino acids (BCAAs) and fatty acids are transported in the plasma to the muscles and liver. Lactic acid was also found to be transported from the pancreas to plasma. The results indicated that hierarchical modelling can be utilized to identify the organ contribution of unknown metabolites to the metabolic profile of plasma. PMID:26086868

  5. Steady-state photoconductivity and multi-particle interactions in high-mobility organic semiconductors.

    PubMed

    Irkhin, P; Najafov, H; Podzorov, V

    2015-01-01

    Fundamental understanding of photocarrier generation, transport and recombination under a steady-state photoexcitation has been an important goal of organic electronics and photonics, since these processes govern such electronic properties of organic semiconductors as, for instance, photoconductivity. Here, we discovered that photoconductivity of a highly ordered organic semiconductor rubrene exhibits several distinct regimes, in which photocurrent as a function of cw (continuous wave) excitation intensity is described by a power law with exponents sequentially taking values 1, 1/3 and ¼. We show that in pristine crystals this photocurrent is generated at the very surface of the crystals, while the bulk photocurrent is drastically smaller and follows a different sequence of exponents, 1 and ½. We describe a simple experimental procedure, based on an application of "gauge effect" in high vacuum, that allows to disentangle the surface and bulk contributions to photoconductivity. A model based on singlet exciton fission, triplet fusion and triplet-charge quenching that can describe these non-trivial effects in photoconductivity of highly ordered organic semiconductors is proposed. Observation of these effects in photoconductivity and modeling of the underlying microscopic mechanisms described in this work represent a significant step forward in our understanding of electronic properties of organic semiconductors. PMID:26478121

  6. Nonpharmacologic Treatment of Erectile Dysfunction

    PubMed Central

    Montague, Drogo K

    2002-01-01

    Nonpharmacologic treatment for erectile dysfunction (ED) includes sex therapy, the use of vacuum erection devices, penile prosthesis implantation, and penile vascular surgery. Sex therapy is indicated for psychogenic ED and is at times a useful adjunct for other treatments in men with mixed psychogenic and organic ED. Vacuum erection devices produce usable erections in over 90% of patients; however, patient and partner acceptability is an issue. Three-piece inflatable penile prostheses create flaccidity and an erection that comes close to that which occurs naturally. Penile vascular surgery has shown greatest efficacy in young men with vasculogenic ED resulting from pelvic or perineal trauma. PMID:16986016

  7. Radial nerve dysfunction (image)

    MedlinePlus

    The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...

  8. Chronic pelvic floor dysfunction.

    PubMed

    Hartmann, Dee; Sarton, Julie

    2014-10-01

    The successful treatment of women with vestibulodynia and its associated chronic pelvic floor dysfunctions requires interventions that address a broad field of possible pain contributors. Pelvic floor muscle hypertonicity was implicated in the mid-1990s as a trigger of major chronic vulvar pain. Painful bladder syndrome, irritable bowel syndrome, fibromyalgia, and temporomandibular jaw disorder are known common comorbidities that can cause a host of associated muscular, visceral, bony, and fascial dysfunctions. It appears that normalizing all of those disorders plays a pivotal role in reducing complaints of chronic vulvar pain and sexual dysfunction. Though the studies have yet to prove a specific protocol, physical therapists trained in pelvic dysfunction are reporting success with restoring tissue normalcy and reducing vulvar and sexual pain. A review of pelvic anatomy and common findings are presented along with suggested physical therapy management. PMID:25108498

  9. Eustachian Tube Dysfunction

    MedlinePlus

    ... flying (because of altitude changes). Riding in elevators, driving through mountains or diving may also make your symptoms worse. Causes & Risk Factors What causes eustachian tube dysfunction? The most common ...

  10. Tibial nerve dysfunction

    MedlinePlus

    ... a loss of movement or sensation in the foot from damage to the tibial nerve. ... Tibial nerve dysfunction is an unusual form of peripheral ... the calf and foot muscles. A problem in function with a single ...