Sample records for multi-attribute decision model

  1. Research on efficiency evaluation model of integrated energy system based on hybrid multi-attribute decision-making.

    PubMed

    Li, Yan

    2017-05-25

    The efficiency evaluation model of integrated energy system, involving many influencing factors, and the attribute values are heterogeneous and non-deterministic, usually cannot give specific numerical or accurate probability distribution characteristics, making the final evaluation result deviation. According to the characteristics of the integrated energy system, a hybrid multi-attribute decision-making model is constructed. The evaluation model considers the decision maker's risk preference. In the evaluation of the efficiency of the integrated energy system, the evaluation value of some evaluation indexes is linguistic value, or the evaluation value of the evaluation experts is not consistent. These reasons lead to ambiguity in the decision information, usually in the form of uncertain linguistic values and numerical interval values. In this paper, the risk preference of decision maker is considered when constructing the evaluation model. Interval-valued multiple-attribute decision-making method and fuzzy linguistic multiple-attribute decision-making model are proposed. Finally, the mathematical model of efficiency evaluation of integrated energy system is constructed.

  2. Linguistic Multi-Attribute Group Decision Making with Risk Preferences and Its Use in Low-Carbon Tourism Destination Selection.

    PubMed

    Lin, Hui; Wang, Zhou-Jing

    2017-09-17

    Low-carbon tourism plays an important role in carbon emission reduction and environmental protection. Low-carbon tourism destination selection often involves multiple conflicting and incommensurate attributes or criteria and can be modelled as a multi-attribute decision-making problem. This paper develops a framework to solve multi-attribute group decision-making problems, where attribute evaluation values are provided as linguistic terms and the attribute weight information is incomplete. In order to obtain a group risk preference captured by a linguistic term set with triangular fuzzy semantic information, a nonlinear programming model is established on the basis of individual risk preferences. We first convert individual linguistic-term-based decision matrices to their respective triangular fuzzy decision matrices, which are then aggregated into a group triangular fuzzy decision matrix. Based on this group decision matrix and the incomplete attribute weight information, a linear program is developed to find an optimal attribute weight vector. A detailed procedure is devised for tackling linguistic multi-attribute group decision making problems. A low-carbon tourism destination selection case study is offered to illustrate how to use the developed group decision-making model in practice.

  3. Linguistic Multi-Attribute Group Decision Making with Risk Preferences and Its Use in Low-Carbon Tourism Destination Selection

    PubMed Central

    Lin, Hui; Wang, Zhou-Jing

    2017-01-01

    Low-carbon tourism plays an important role in carbon emission reduction and environmental protection. Low-carbon tourism destination selection often involves multiple conflicting and incommensurate attributes or criteria and can be modelled as a multi-attribute decision-making problem. This paper develops a framework to solve multi-attribute group decision-making problems, where attribute evaluation values are provided as linguistic terms and the attribute weight information is incomplete. In order to obtain a group risk preference captured by a linguistic term set with triangular fuzzy semantic information, a nonlinear programming model is established on the basis of individual risk preferences. We first convert individual linguistic-term-based decision matrices to their respective triangular fuzzy decision matrices, which are then aggregated into a group triangular fuzzy decision matrix. Based on this group decision matrix and the incomplete attribute weight information, a linear program is developed to find an optimal attribute weight vector. A detailed procedure is devised for tackling linguistic multi-attribute group decision making problems. A low-carbon tourism destination selection case study is offered to illustrate how to use the developed group decision-making model in practice. PMID:28926985

  4. [A multi-measure analysis of the similarity, attraction, and compromise effects in multi-attribute decision making].

    PubMed

    Tsuzuki, Takashi; Matsui, Hiroshi; Kikuchi, Manabu

    2012-12-01

    In multi-attribute decision making, the similarity, attraction, and compromise effects warrant specific investigation as they cause violations of principles in rational choice. In order to investigate these three effects simultaneously, we assigned 145 undergraduates to three context effect conditions. We requested them to solve the same 20 hypothetical purchase problems, each of which had three alternatives described along two attributes. We measured their choices, confidence ratings, and response times. We found that manipulating the third alternative had significant context effects for choice proportions and confidence ratings in all three conditions. Furthermore, the attraction effect was the most prominent with regard to choice proportions. In the compromise effect condition, although the choice proportion of the third alternative was high, the confidence rating was low and the response time was long. These results indicate that the relationship between choice proportions and confidence ratings requires further theoretical investigation. They also suggest that a combination of experimental and modeling studies is imperative to reveal the mechanisms underlying the context effects in multi-attribute, multi-alternative decision making.

  5. A cloud model based multi-attribute decision making approach for selection and evaluation of groundwater management schemes

    NASA Astrophysics Data System (ADS)

    Lu, Hongwei; Ren, Lixia; Chen, Yizhong; Tian, Peipei; Liu, Jia

    2017-12-01

    Due to the uncertainty (i.e., fuzziness, stochasticity and imprecision) existed simultaneously during the process for groundwater remediation, the accuracy of ranking results obtained by the traditional methods has been limited. This paper proposes a cloud model based multi-attribute decision making framework (CM-MADM) with Monte Carlo for the contaminated-groundwater remediation strategies selection. The cloud model is used to handle imprecise numerical quantities, which can describe the fuzziness and stochasticity of the information fully and precisely. In the proposed approach, the contaminated concentrations are aggregated via the backward cloud generator and the weights of attributes are calculated by employing the weight cloud module. A case study on the remedial alternative selection for a contaminated site suffering from a 1,1,1-trichloroethylene leakage problem in Shanghai, China is conducted to illustrate the efficiency and applicability of the developed approach. Totally, an attribute system which consists of ten attributes were used for evaluating each alternative through the developed method under uncertainty, including daily total pumping rate, total cost and cloud model based health risk. Results indicated that A14 was evaluated to be the most preferred alternative for the 5-year, A5 for the 10-year, A4 for the 15-year and A6 for the 20-year remediation.

  6. Model for multi-stand management based on structural attributes of individual stands

    Treesearch

    G.W. Miller; J. Sullivan

    1997-01-01

    A growing interest in managing forest ecosystems calls for decision models that take into account attribute goals for large forest areas while continuing to recognize the individual stand as a basic unit of forest management. A dynamic, nonlinear forest management model is described that schedules silvicultural treatments for individual stands that are linked by multi-...

  7. Decision-making in irrigation networks: Selecting appropriate canal structures using multi-attribute decision analysis.

    PubMed

    Hosseinzade, Zeinab; Pagsuyoin, Sheree A; Ponnambalam, Kumaraswamy; Monem, Mohammad J

    2017-12-01

    The stiff competition for water between agriculture and non-agricultural production sectors makes it necessary to have effective management of irrigation networks in farms. However, the process of selecting flow control structures in irrigation networks is highly complex and involves different levels of decision makers. In this paper, we apply multi-attribute decision making (MADM) methodology to develop a decision analysis (DA) framework for evaluating, ranking and selecting check and intake structures for irrigation canals. The DA framework consists of identifying relevant attributes for canal structures, developing a robust scoring system for alternatives, identifying a procedure for data quality control, and identifying a MADM model for the decision analysis. An application is illustrated through an analysis for automation purposes of the Qazvin irrigation network, one of the oldest and most complex irrigation networks in Iran. A survey questionnaire designed based on the decision framework was distributed to experts, managers, and operators of the Qazvin network and to experts from the Ministry of Power in Iran. Five check structures and four intake structures were evaluated. A decision matrix was generated from the average scores collected from the survey, and was subsequently solved using TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) method. To identify the most critical structure attributes for the selection process, optimal attribute weights were calculated using Entropy method. For check structures, results show that the duckbill weir is the preferred structure while the pivot weir is the least preferred. Use of the duckbill weir can potentially address the problem with existing Amil gates where manual intervention is required to regulate water levels during periods of flow extremes. For intake structures, the Neyrpic® gate and constant head orifice are the most and least preferred alternatives, respectively. Some advantages

  8. Hierarchical competitions subserving multi-attribute choice

    PubMed Central

    Hunt, Laurence T; Dolan, Raymond J; Behrens, Timothy EJ

    2015-01-01

    Valuation is a key tenet of decision neuroscience, where it is generally assumed that different attributes of competing options are assimilated into unitary values. Such values are central to current neural models of choice. By contrast, psychological studies emphasize complex interactions between choice and valuation. Principles of neuronal selection also suggest competitive inhibition may occur in early valuation stages, before option selection. Here, we show behavior in multi-attribute choice is best explained by a model involving competition at multiple levels of representation. This hierarchical model also explains neural signals in human brain regions previously linked to valuation, including striatum, parietal and prefrontal cortex, where activity represents competition within-attribute, competition between attributes, and option selection. This multi-layered inhibition framework challenges the assumption that option values are computed before choice. Instead our results indicate a canonical competition mechanism throughout all stages of a processing hierarchy, not simply at a final choice stage. PMID:25306549

  9. Some induced intuitionistic fuzzy aggregation operators applied to multi-attribute group decision making

    NASA Astrophysics Data System (ADS)

    Su, Zhi-xin; Xia, Guo-ping; Chen, Ming-yuan

    2011-11-01

    In this paper, we define various induced intuitionistic fuzzy aggregation operators, including induced intuitionistic fuzzy ordered weighted averaging (OWA) operator, induced intuitionistic fuzzy hybrid averaging (I-IFHA) operator, induced interval-valued intuitionistic fuzzy OWA operator, and induced interval-valued intuitionistic fuzzy hybrid averaging (I-IIFHA) operator. We also establish various properties of these operators. And then, an approach based on I-IFHA operator and intuitionistic fuzzy weighted averaging (WA) operator is developed to solve multi-attribute group decision-making (MAGDM) problems. In such problems, attribute weights and the decision makers' (DMs') weights are real numbers and attribute values provided by the DMs are intuitionistic fuzzy numbers (IFNs), and an approach based on I-IIFHA operator and interval-valued intuitionistic fuzzy WA operator is developed to solve MAGDM problems where the attribute values provided by the DMs are interval-valued IFNs. Furthermore, induced intuitionistic fuzzy hybrid geometric operator and induced interval-valued intuitionistic fuzzy hybrid geometric operator are proposed. Finally, a numerical example is presented to illustrate the developed approaches.

  10. Multiple attribute decision making model and application to food safety risk evaluation.

    PubMed

    Ma, Lihua; Chen, Hong; Yan, Huizhe; Yang, Lifeng; Wu, Lifeng

    2017-01-01

    Decision making for supermarket food purchase decisions are characterized by network relationships. This paper analyzed factors that influence supermarket food selection and proposes a supplier evaluation index system based on the whole process of food production. The author established the intuitive interval value fuzzy set evaluation model based on characteristics of the network relationship among decision makers, and validated for a multiple attribute decision making case study. Thus, the proposed model provides a reliable, accurate method for multiple attribute decision making.

  11. The Multi-Attribute Group Decision-Making Method Based on Interval Grey Trapezoid Fuzzy Linguistic Variables.

    PubMed

    Yin, Kedong; Wang, Pengyu; Li, Xuemei

    2017-12-13

    With respect to multi-attribute group decision-making (MAGDM) problems, where attribute values take the form of interval grey trapezoid fuzzy linguistic variables (IGTFLVs) and the weights (including expert and attribute weight) are unknown, improved grey relational MAGDM methods are proposed. First, the concept of IGTFLV, the operational rules, the distance between IGTFLVs, and the projection formula between the two IGTFLV vectors are defined. Second, the expert weights are determined by using the maximum proximity method based on the projection values between the IGTFLV vectors. The attribute weights are determined by the maximum deviation method and the priorities of alternatives are determined by improved grey relational analysis. Finally, an example is given to prove the effectiveness of the proposed method and the flexibility of IGTFLV.

  12. Multi-Attribute Consensus Building Tool

    ERIC Educational Resources Information Center

    Shyyan, Vitaliy; Christensen, Laurene; Thurlow, Martha; Lazarus, Sheryl

    2013-01-01

    The Multi-Attribute Consensus Building (MACB) method is a quantitative approach for determining a group's opinion about the importance of each item (strategy, decision, recommendation, policy, priority, etc.) on a list (Vanderwood, & Erickson, 1994). This process enables a small or large group of participants to generate and discuss a set…

  13. Multiple-attribute group decision making with different formats of preference information on attributes.

    PubMed

    Xu, Zeshui

    2007-12-01

    Interval utility values, interval fuzzy preference relations, and interval multiplicative preference relations are three common uncertain-preference formats used by decision-makers to provide their preference information in the process of decision making under fuzziness. This paper is devoted in investigating multiple-attribute group-decision-making problems where the attribute values are not precisely known but the value ranges can be obtained, and the decision-makers provide their preference information over attributes by three different uncertain-preference formats i.e., 1) interval utility values; 2) interval fuzzy preference relations; and 3) interval multiplicative preference relations. We first utilize some functions to normalize the uncertain decision matrix and then transform it into an expected decision matrix. We establish a goal-programming model to integrate the expected decision matrix and all three different uncertain-preference formats from which the attribute weights and the overall attribute values of alternatives can be obtained. Then, we use the derived overall attribute values to get the ranking of the given alternatives and to select the best one(s). The model not only can reflect both the subjective considerations of all decision-makers and the objective information but also can avoid losing and distorting the given objective and subjective decision information in the process of information integration. Furthermore, we establish some models to solve the multiple-attribute group-decision-making problems with three different preference formats: 1) utility values; 2) fuzzy preference relations; and 3) multiplicative preference relations. Finally, we illustrate the applicability and effectiveness of the developed models with two practical examples.

  14. A case for multi-model and multi-approach based event attribution: The 2015 European drought

    NASA Astrophysics Data System (ADS)

    Hauser, Mathias; Gudmundsson, Lukas; Orth, René; Jézéquel, Aglaé; Haustein, Karsten; Seneviratne, Sonia Isabelle

    2017-04-01

    Science on the role of anthropogenic influence on extreme weather events such as heat waves or droughts has evolved rapidly over the past years. The approach of "event attribution" compares the occurrence probability of an event in the present, factual world with the probability of the same event in a hypothetical, counterfactual world without human-induced climate change. Every such analysis necessarily faces multiple methodological choices including, but not limited to: the event definition, climate model configuration, and the design of the counterfactual world. Here, we explore the role of such choices for an attribution analysis of the 2015 European summer drought (Hauser et al., in preparation). While some GCMs suggest that anthropogenic forcing made the 2015 drought more likely, others suggest no impact, or even a decrease in the event probability. These results additionally differ for single GCMs, depending on the reference used for the counterfactual world. Observational results do not suggest a historical tendency towards more drying, but the record may be too short to provide robust assessments because of the large interannual variability of drought occurrence. These results highlight the need for a multi-model and multi-approach framework in event attribution research. This is especially important for events with low signal to noise ratio and high model dependency such as regional droughts. Hauser, M., L. Gudmundsson, R. Orth, A. Jézéquel, K. Haustein, S.I. Seneviratne, in preparation. A case for multi-model and multi-approach based event attribution: The 2015 European drought.

  15. Application fuzzy multi-attribute decision analysis method to prioritize project success criteria

    NASA Astrophysics Data System (ADS)

    Phong, Nguyen Thanh; Quyen, Nguyen Le Hoang Thuy To

    2017-11-01

    Project success is a foundation for project owner to manage and control not only for the current project but also for future potential projects in construction companies. However, identifying the key success criteria for evaluating a particular project in real practice is a challenging task. Normally, it depends on a lot of factors, such as the expectation of the project owner and stakeholders, triple constraints of the project (cost, time, quality), and company's mission, vision, and objectives. Traditional decision-making methods for measuring the project success are usually based on subjective opinions of panel experts, resulting in irrational and inappropriate decisions. Therefore, this paper introduces a multi-attribute decision analysis method (MADAM) for weighting project success criteria by using fuzzy Analytical Hierarchy Process approach. It is found that this method is useful when dealing with imprecise and uncertain human judgments in evaluating project success criteria. Moreover, this research also suggests that although cost, time, and quality are three project success criteria projects, the satisfaction of project owner and acceptance of project stakeholders with the completed project criteria is the most important criteria for project success evaluation in Vietnam.

  16. Research of Simple Multi-Attribute Rating Technique for Decision Support

    NASA Astrophysics Data System (ADS)

    Siregar, Dodi; Arisandi, Diki; Usman, Ari; Irwan, Dedy; Rahim, Robbi

    2017-12-01

    One of the roles of decision support system is that it can assist the decision maker in obtaining the appropriate alternative with the desired criteria, one of the methods that could apply for the decision maker is SMART method with multicriteria decision making. This multi-criteria decision-making theory has meaning where every alternative has criteria and has value and weight, and the author uses this approach to facilitate decision making with a compelling case. The problems discussed in this paper are classified into problems of a variety Multiobjective (multiple goals to be accomplished) and multicriteria (many of the decisive criteria in reaching such decisions).

  17. Informing vaccine decision-making: A strategic multi-attribute ranking tool for vaccines-SMART Vaccines 2.0.

    PubMed

    Knobler, Stacey; Bok, Karin; Gellin, Bruce

    2017-01-20

    SMART Vaccines 2.0 software is being developed to support decision-making among multiple stakeholders in the process of prioritizing investments to optimize the outcomes of vaccine development and deployment. Vaccines and associated vaccination programs are one of the most successful and effective public health interventions to prevent communicable diseases and vaccine researchers are continually working towards expanding targets for communicable and non-communicable diseases through preventive and therapeutic modes. A growing body of evidence on emerging vaccine technologies, trends in disease burden, costs associated with vaccine development and deployment, and benefits derived from disease prevention through vaccination and a range of other factors can inform decision-making and investment in new and improved vaccines and targeted utilization of already existing vaccines. Recognizing that an array of inputs influences these decisions, the strategic multi-attribute ranking method for vaccines (SMART Vaccines 2.0) is in development as a web-based tool-modified from a U.S. Institute of Medicine Committee effort (IOM, 2015)-to highlight data needs and create transparency to facilitate dialogue and information-sharing among decision-makers and to optimize the investment of resources leading to improved health outcomes. Current development efforts of the SMART Vaccines 2.0 framework seek to generate a weighted recommendation on vaccine development or vaccination priorities based on population, disease, economic, and vaccine-specific data in combination with individual preference and weights of user-selected attributes incorporating valuations of health, economics, demographics, public concern, scientific and business, programmatic, and political considerations. Further development of the design and utility of the tool is being carried out by the National Vaccine Program Office of the Department of Health and Human Services and the Fogarty International Center of the

  18. Application of the fuzzy topsis multi-attribute decision making method to determine scholarship recipients

    NASA Astrophysics Data System (ADS)

    Irvanizam, I.

    2018-03-01

    Some scholarships have been routinely offered by Ministry of Research, Technology and Higher Education of the Republic of Indonesia for students at Syiah Kuala University. In reality, the scholarship selection process is becoming subjective and highly complex problem. Multi-Attribute Decision Making (MADM) techniques can be a solution in order to solve scholarship selection problem. In this study, we demonstrated the application of a fuzzy TOPSIS as an MADM technique by using a numerical example in order to calculate a triangular fuzzy number for the fuzzy data onto a normalized weight. We then use this normalized value to construct the normalized fuzzy decision matrix. We finally use the fuzzy TOPSIS to rank alternatives in descending order based on the relative closeness to the ideal solution. The result in terms of final ranking shows slightly different from the previous work.

  19. Detecting Hotspot Information Using Multi-Attribute Based Topic Model

    PubMed Central

    Wang, Jing; Li, Li; Tan, Feng; Zhu, Ying; Feng, Weisi

    2015-01-01

    Microblogging as a kind of social network has become more and more important in our daily lives. Enormous amounts of information are produced and shared on a daily basis. Detecting hot topics in the mountains of information can help people get to the essential information more quickly. However, due to short and sparse features, a large number of meaningless tweets and other characteristics of microblogs, traditional topic detection methods are often ineffective in detecting hot topics. In this paper, we propose a new topic model named multi-attribute latent dirichlet allocation (MA-LDA), in which the time and hashtag attributes of microblogs are incorporated into LDA model. By introducing time attribute, MA-LDA model can decide whether a word should appear in hot topics or not. Meanwhile, compared with the traditional LDA model, applying hashtag attribute in MA-LDA model gives the core words an artificially high ranking in results meaning the expressiveness of outcomes can be improved. Empirical evaluations on real data sets demonstrate that our method is able to detect hot topics more accurately and efficiently compared with several baselines. Our method provides strong evidence of the importance of the temporal factor in extracting hot topics. PMID:26496635

  20. A consensus reaching model for 2-tuple linguistic multiple attribute group decision making with incomplete weight information

    NASA Astrophysics Data System (ADS)

    Zhang, Wancheng; Xu, Yejun; Wang, Huimin

    2016-01-01

    The aim of this paper is to put forward a consensus reaching method for multi-attribute group decision-making (MAGDM) problems with linguistic information, in which the weight information of experts and attributes is unknown. First, some basic concepts and operational laws of 2-tuple linguistic label are introduced. Then, a grey relational analysis method and a maximising deviation method are proposed to calculate the incomplete weight information of experts and attributes respectively. To eliminate the conflict in the group, a weight-updating model is employed to derive the weights of experts based on their contribution to the consensus reaching process. After conflict elimination, the final group preference can be obtained which will give the ranking of the alternatives. The model can effectively avoid information distortion which is occurred regularly in the linguistic information processing. Finally, an illustrative example is given to illustrate the application of the proposed method and comparative analysis with the existing methods are offered to show the advantages of the proposed method.

  1. Deciding how to decide: ventromedial frontal lobe damage affects information acquisition in multi-attribute decision making.

    PubMed

    Fellows, Lesley K

    2006-04-01

    Ventromedial frontal lobe (VMF) damage is associated with impaired decision making. Recent efforts to understand the functions of this brain region have focused on its role in tracking reward, punishment and risk. However, decision making is complex, and frontal lobe damage might be expected to affect it at other levels. This study used process-tracing techniques to explore the effect of VMF damage on multi-attribute decision making under certainty. Thirteen subjects with focal VMF damage were compared with 11 subjects with frontal damage that spared the VMF and 21 demographically matched healthy control subjects. Participants chose rental apartments in a standard information board task drawn from the literature on normal decision making. VMF subjects performed the decision making task in a way that differed markedly from all other groups, favouring an 'alternative-based' information acquisition strategy (i.e. they organized their information search around individual apartments). In contrast, both healthy control subjects and subjects with damage predominantly involving dorsal and/or lateral prefrontal cortex pursued primarily 'attribute-based' search strategies (in which information was acquired about categories such as rent and noise level across several apartments). This difference in the pattern of information acquisition argues for systematic differences in the underlying decision heuristics and strategies employed by subjects with VMF damage, which in turn may affect the quality of their choices. These findings suggest that the processes supported by ventral and medial prefrontal cortex need to be conceptualized more broadly, to account for changes in decision making under conditions of certainty, as well as uncertainty, following damage to these areas.

  2. Assessing the multi-scale predictive ability of ecosystem functional attributes for species distribution modelling.

    PubMed

    Arenas-Castro, Salvador; Gonçalves, João; Alves, Paulo; Alcaraz-Segura, Domingo; Honrado, João P

    2018-01-01

    Global environmental changes are rapidly affecting species' distributions and habitat suitability worldwide, requiring a continuous update of biodiversity status to support effective decisions on conservation policy and management. In this regard, satellite-derived Ecosystem Functional Attributes (EFAs) offer a more integrative and quicker evaluation of ecosystem responses to environmental drivers and changes than climate and structural or compositional landscape attributes. Thus, EFAs may hold advantages as predictors in Species Distribution Models (SDMs) and for implementing multi-scale species monitoring programs. Here we describe a modelling framework to assess the predictive ability of EFAs as Essential Biodiversity Variables (EBVs) against traditional datasets (climate, land-cover) at several scales. We test the framework with a multi-scale assessment of habitat suitability for two plant species of conservation concern, both protected under the EU Habitats Directive, differing in terms of life history, range and distribution pattern (Iris boissieri and Taxus baccata). We fitted four sets of SDMs for the two test species, calibrated with: interpolated climate variables; landscape variables; EFAs; and a combination of climate and landscape variables. EFA-based models performed very well at the several scales (AUCmedian from 0.881±0.072 to 0.983±0.125), and similarly to traditional climate-based models, individually or in combination with land-cover predictors (AUCmedian from 0.882±0.059 to 0.995±0.083). Moreover, EFA-based models identified additional suitable areas and provided valuable information on functional features of habitat suitability for both test species (narrowly vs. widely distributed), for both coarse and fine scales. Our results suggest a relatively small scale-dependence of the predictive ability of satellite-derived EFAs, supporting their use as meaningful EBVs in SDMs from regional and broader scales to more local and finer scales. Since

  3. Perceptual grouping does not affect multi-attribute decision making if no processing costs are involved.

    PubMed

    Ettlin, Florence; Bröder, Arndt

    2015-05-01

    Adaptive strategy selection implies that a decision strategy is chosen based on its fit to the task and situation. However, other aspects, such as the way information is presented, can determine information search behavior; especially when the application of certain strategies over others is facilitated. But are such display effects on multi-attribute decisions also at work when the manipulation does not entail differential costs for different decision strategies? Three Mouselab experiments with hidden information and one eye tracking experiment with an open information board revealed that decision behavior is unaffected by purely perceptual manipulations of the display based on Gestalt principles; that is, based on manipulations that induce no noteworthy processing costs for different information search patterns. We discuss our results in the context of previous findings on display effects; specifically, how the combination of these findings and our results reveal the crucial role of differential processing costs for different strategies for the emergence of display effects. This finding describes a boundary condition of the commonly acknowledged influence of information displays and is in line with the ideas of adaptive strategy selection and cost-benefit tradeoffs. Copyright © 2015. Published by Elsevier B.V.

  4. A Decision-Making Method with Grey Multi-Source Heterogeneous Data and Its Application in Green Supplier Selection

    PubMed Central

    Dang, Yaoguo; Mao, Wenxin

    2018-01-01

    In view of the multi-attribute decision-making problem that the attribute values are grey multi-source heterogeneous data, a decision-making method based on kernel and greyness degree is proposed. The definitions of kernel and greyness degree of an extended grey number in a grey multi-source heterogeneous data sequence are given. On this basis, we construct the kernel vector and greyness degree vector of the sequence to whiten the multi-source heterogeneous information, then a grey relational bi-directional projection ranking method is presented. Considering the multi-attribute multi-level decision structure and the causalities between attributes in decision-making problem, the HG-DEMATEL method is proposed to determine the hierarchical attribute weights. A green supplier selection example is provided to demonstrate the rationality and validity of the proposed method. PMID:29510521

  5. A Decision-Making Method with Grey Multi-Source Heterogeneous Data and Its Application in Green Supplier Selection.

    PubMed

    Sun, Huifang; Dang, Yaoguo; Mao, Wenxin

    2018-03-03

    In view of the multi-attribute decision-making problem that the attribute values are grey multi-source heterogeneous data, a decision-making method based on kernel and greyness degree is proposed. The definitions of kernel and greyness degree of an extended grey number in a grey multi-source heterogeneous data sequence are given. On this basis, we construct the kernel vector and greyness degree vector of the sequence to whiten the multi-source heterogeneous information, then a grey relational bi-directional projection ranking method is presented. Considering the multi-attribute multi-level decision structure and the causalities between attributes in decision-making problem, the HG-DEMATEL method is proposed to determine the hierarchical attribute weights. A green supplier selection example is provided to demonstrate the rationality and validity of the proposed method.

  6. Production Task Queue Optimization Based on Multi-Attribute Evaluation for Complex Product Assembly Workshop.

    PubMed

    Li, Lian-Hui; Mo, Rong

    2015-01-01

    The production task queue has a great significance for manufacturing resource allocation and scheduling decision. Man-made qualitative queue optimization method has a poor effect and makes the application difficult. A production task queue optimization method is proposed based on multi-attribute evaluation. According to the task attributes, the hierarchical multi-attribute model is established and the indicator quantization methods are given. To calculate the objective indicator weight, criteria importance through intercriteria correlation (CRITIC) is selected from three usual methods. To calculate the subjective indicator weight, BP neural network is used to determine the judge importance degree, and then the trapezoid fuzzy scale-rough AHP considering the judge importance degree is put forward. The balanced weight, which integrates the objective weight and the subjective weight, is calculated base on multi-weight contribution balance model. The technique for order preference by similarity to an ideal solution (TOPSIS) improved by replacing Euclidean distance with relative entropy distance is used to sequence the tasks and optimize the queue by the weighted indicator value. A case study is given to illustrate its correctness and feasibility.

  7. Production Task Queue Optimization Based on Multi-Attribute Evaluation for Complex Product Assembly Workshop

    PubMed Central

    Li, Lian-hui; Mo, Rong

    2015-01-01

    The production task queue has a great significance for manufacturing resource allocation and scheduling decision. Man-made qualitative queue optimization method has a poor effect and makes the application difficult. A production task queue optimization method is proposed based on multi-attribute evaluation. According to the task attributes, the hierarchical multi-attribute model is established and the indicator quantization methods are given. To calculate the objective indicator weight, criteria importance through intercriteria correlation (CRITIC) is selected from three usual methods. To calculate the subjective indicator weight, BP neural network is used to determine the judge importance degree, and then the trapezoid fuzzy scale-rough AHP considering the judge importance degree is put forward. The balanced weight, which integrates the objective weight and the subjective weight, is calculated base on multi-weight contribution balance model. The technique for order preference by similarity to an ideal solution (TOPSIS) improved by replacing Euclidean distance with relative entropy distance is used to sequence the tasks and optimize the queue by the weighted indicator value. A case study is given to illustrate its correctness and feasibility. PMID:26414758

  8. Qualitatively Coherent Representation Makes Decision-Making Easier with Binary-Colored Multi-Attribute Tables: An Eye-Tracking Study

    PubMed Central

    Morii, Masahiro; Ideno, Takashi; Takemura, Kazuhisa; Okada, Mitsuhiro

    2017-01-01

    We aimed to identify the ways in which coloring cells affected decision-making in the context of binary-colored multi-attribute tables, using eye movement data. In our black-white attribute tables, the value of attributes was limited to two (with a certain threshold for each attribute) and each cell of the table was colored either black or white on the white background. We compared the two natural ways of systematic color assignment: “quantitatively coherent” ways and “qualitatively coherent” ways (namely, the ways in which the black-white distinction represented the quantitative amount distinction, and the ways in which the black-white distinction represented the quality distinction). The former consists of the following two types: (Type 1) “larger is black,” where the larger value-level was represented by black, and “smaller is white,” and (Type 2) “smaller is black.” The latter consisted of the following two types: (Type 3) “better is black,” and (Type 4) “worse is black.” We obtained the following two findings. [Result 1] The qualitatively coherent black-white tables (Types 3 and 4) made decision-making easier than the quantitatively coherent ones (Types 1 and 2). [Result 2] Among the two qualitatively coherent types, the “black is better” tables (Type 3) made decision making easier; in fact, the participants focused on the more important (black) cells in the case of “black is better” tables (Type 3) while they did not focus enough on the more important (white) ones in the case of the “white is better” tables (Type 4). We also examined some measures of eye movement patterns and showed that these measures supported our hypotheses. The data showed differences in the eye movement patterns between the first and second halves of each trial, which indicated the phased or combined decision strategies taken by the participants. PMID:28861020

  9. Decision Support for Personalized Cloud Service Selection through Multi-Attribute Trustworthiness Evaluation

    PubMed Central

    Ding, Shuai; Xia, Chen-Yi; Zhou, Kai-Le; Yang, Shan-Lin; Shang, Jennifer S.

    2014-01-01

    Facing a customer market with rising demands for cloud service dependability and security, trustworthiness evaluation techniques are becoming essential to cloud service selection. But these methods are out of the reach to most customers as they require considerable expertise. Additionally, since the cloud service evaluation is often a costly and time-consuming process, it is not practical to measure trustworthy attributes of all candidates for each customer. Many existing models cannot easily deal with cloud services which have very few historical records. In this paper, we propose a novel service selection approach in which the missing value prediction and the multi-attribute trustworthiness evaluation are commonly taken into account. By simply collecting limited historical records, the current approach is able to support the personalized trustworthy service selection. The experimental results also show that our approach performs much better than other competing ones with respect to the customer preference and expectation in trustworthiness assessment. PMID:24972237

  10. Decision support for personalized cloud service selection through multi-attribute trustworthiness evaluation.

    PubMed

    Ding, Shuai; Xia, Cheng-Yi; Xia, Chen-Yi; Zhou, Kai-Le; Yang, Shan-Lin; Shang, Jennifer S

    2014-01-01

    Facing a customer market with rising demands for cloud service dependability and security, trustworthiness evaluation techniques are becoming essential to cloud service selection. But these methods are out of the reach to most customers as they require considerable expertise. Additionally, since the cloud service evaluation is often a costly and time-consuming process, it is not practical to measure trustworthy attributes of all candidates for each customer. Many existing models cannot easily deal with cloud services which have very few historical records. In this paper, we propose a novel service selection approach in which the missing value prediction and the multi-attribute trustworthiness evaluation are commonly taken into account. By simply collecting limited historical records, the current approach is able to support the personalized trustworthy service selection. The experimental results also show that our approach performs much better than other competing ones with respect to the customer preference and expectation in trustworthiness assessment.

  11. Multi-Attribute Sequential Search

    ERIC Educational Resources Information Center

    Bearden, J. Neil; Connolly, Terry

    2007-01-01

    This article describes empirical and theoretical results from two multi-attribute sequential search tasks. In both tasks, the DM sequentially encounters options described by two attributes and must pay to learn the values of the attributes. In the "continuous" version of the task the DM learns the precise numerical value of an attribute when she…

  12. Multi-objective decision-making model based on CBM for an aircraft fleet

    NASA Astrophysics Data System (ADS)

    Luo, Bin; Lin, Lin

    2018-04-01

    Modern production management patterns, in which multi-unit (e.g., a fleet of aircrafts) are managed in a holistic manner, have brought new challenges for multi-unit maintenance decision making. To schedule a good maintenance plan, not only does the individual machine maintenance have to be considered, but also the maintenance of the other individuals have to be taken into account. Since most condition-based maintenance researches for aircraft focused on solely reducing maintenance cost or maximizing the availability of single aircraft, as well as considering that seldom researches concentrated on both the two objectives: minimizing cost and maximizing the availability of a fleet (total number of available aircraft in fleet), a multi-objective decision-making model based on condition-based maintenance concentrated both on the above two objectives is established. Furthermore, in consideration of the decision maker may prefer providing the final optimal result in the form of discrete intervals instead of a set of points (non-dominated solutions) in real decision-making problem, a novel multi-objective optimization method based on support vector regression is proposed to solve the above multi-objective decision-making model. Finally, a case study regarding a fleet is conducted, with the results proving that the approach efficiently generates outcomes that meet the schedule requirements.

  13. Building a maintenance policy through a multi-criterion decision-making model

    NASA Astrophysics Data System (ADS)

    Faghihinia, Elahe; Mollaverdi, Naser

    2012-08-01

    A major competitive advantage of production and service systems is establishing a proper maintenance policy. Therefore, maintenance managers should make maintenance decisions that best fit their systems. Multi-criterion decision-making methods can take into account a number of aspects associated with the competitiveness factors of a system. This paper presents a multi-criterion decision-aided maintenance model with three criteria that have more influence on decision making: reliability, maintenance cost, and maintenance downtime. The Bayesian approach has been applied to confront maintenance failure data shortage. Therefore, the model seeks to make the best compromise between these three criteria and establish replacement intervals using Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE II), integrating the Bayesian approach with regard to the preference of the decision maker to the problem. Finally, using a numerical application, the model has been illustrated, and for a visual realization and an illustrative sensitivity analysis, PROMETHEE GAIA (the visual interactive module) has been used. Use of PROMETHEE II and PROMETHEE GAIA has been made with Decision Lab software. A sensitivity analysis has been made to verify the robustness of certain parameters of the model.

  14. Robust Sensitivity Analysis for Multi-Attribute Deterministic Hierarchical Value Models

    DTIC Science & Technology

    2002-03-01

    such as weighted sum method, weighted 5 product method, and the Analytic Hierarchy Process ( AHP ). This research focuses on only weighted sum...different groups. They can be termed as deterministic, stochastic, or fuzzy multi-objective decision methods if they are classified according to the...weighted product model (WPM), and analytic hierarchy process ( AHP ). His method attempts to identify the most important criteria weight and the most

  15. Temporal Drivers of Liking Based on Functional Data Analysis and Non-Additive Models for Multi-Attribute Time-Intensity Data of Fruit Chews.

    PubMed

    Kuesten, Carla; Bi, Jian

    2018-06-03

    Conventional drivers of liking analysis was extended with a time dimension into temporal drivers of liking (TDOL) based on functional data analysis methodology and non-additive models for multiple-attribute time-intensity (MATI) data. The non-additive models, which consider both direct effects and interaction effects of attributes to consumer overall liking, include Choquet integral and fuzzy measure in the multi-criteria decision-making, and linear regression based on variance decomposition. Dynamics of TDOL, i.e., the derivatives of the relative importance functional curves were also explored. Well-established R packages 'fda', 'kappalab' and 'relaimpo' were used in the paper for developing TDOL. Applied use of these methods shows that the relative importance of MATI curves offers insights for understanding the temporal aspects of consumer liking for fruit chews.

  16. Testing multi-alternative decision models with non-stationary evidence.

    PubMed

    Tsetsos, Konstantinos; Usher, Marius; McClelland, James L

    2011-01-01

    Recent research has investigated the process of integrating perceptual evidence toward a decision, converging on a number of sequential sampling choice models, such as variants of race and diffusion models and the non-linear leaky competing accumulator (LCA) model. Here we study extensions of these models to multi-alternative choice, considering how well they can account for data from a psychophysical experiment in which the evidence supporting each of the alternatives changes dynamically during the trial, in a way that creates temporal correlations. We find that participants exhibit a tendency to choose an alternative whose evidence profile is temporally anti-correlated with (or dissimilar from) that of other alternatives. This advantage of the anti-correlated alternative is well accounted for in the LCA, and provides constraints that challenge several other models of multi-alternative choice.

  17. Trusted Advisors, Decision Models and Other Keys to Communicating Science to Decision Makers

    NASA Astrophysics Data System (ADS)

    Webb, E.

    2006-12-01

    Water resource management decisions often involve multiple parties engaged in contentious negotiations that try to navigate through complex combinations of legal, social, hydrologic, financial, and engineering considerations. The standard approach for resolving these issues is some form of multi-party negotiation, a formal court decision, or a combination of the two. In all these cases, the role of the decision maker(s) is to choose and implement the best option that fits the needs and wants of the community. However, each path to a decision carries the risk of technical and/or financial infeasibility as well as the possibility of unintended consequences. To help reduce this risk, decision makers often rely on some type of predictive analysis from which they can evaluate the projected consequences of their decisions. Typically, decision makers are supported in the analysis process by trusted advisors who engage in the analysis as well as the day to day tasks associated with multi-party negotiations. In the case of water resource management, the analysis is frequently a numerical model or set of models that can simulate various management decisions across multiple systems and output results that illustrate the impact on areas of concern. Thus, in order to communicate scientific knowledge to the decision makers, the quality of the communication between the analysts, the trusted advisor, and the decision maker must be clear and direct. To illustrate this concept, a multi-attribute decision analysis matrix will be used to outline the value of computer model-based collaborative negotiation approaches to guide water resources decision making and communication with decision makers. In addition, the critical role of the trusted advisor and other secondary participants in the decision process will be discussed using examples from recent water negotiations.

  18. Testing Multi-Alternative Decision Models with Non-Stationary Evidence

    PubMed Central

    Tsetsos, Konstantinos; Usher, Marius; McClelland, James L.

    2011-01-01

    Recent research has investigated the process of integrating perceptual evidence toward a decision, converging on a number of sequential sampling choice models, such as variants of race and diffusion models and the non-linear leaky competing accumulator (LCA) model. Here we study extensions of these models to multi-alternative choice, considering how well they can account for data from a psychophysical experiment in which the evidence supporting each of the alternatives changes dynamically during the trial, in a way that creates temporal correlations. We find that participants exhibit a tendency to choose an alternative whose evidence profile is temporally anti-correlated with (or dissimilar from) that of other alternatives. This advantage of the anti-correlated alternative is well accounted for in the LCA, and provides constraints that challenge several other models of multi-alternative choice. PMID:21603227

  19. Using Consumer Behavior and Decision Models to Aid Students in Choosing a Major.

    ERIC Educational Resources Information Center

    Kaynama, Shohreh A.; Smith, Louise W.

    1996-01-01

    A study found that using consumer behavior and decision models to guide students to a major can be useful and enjoyable for students. Students consider many of the basic parameters through multi-attribute and decision-analysis models, so time with professors, who were found to be the most influential group, can be used for more individual and…

  20. Schizophrenia: multi-attribute utility theory approach to selection of atypical antipsychotics.

    PubMed

    Bettinger, Tawny L; Shuler, Garyn; Jones, Donnamaria R; Wilson, James P

    2007-02-01

    Current guidelines/algorithms recommend atypical antipsychotics as first-line agents for the treatment of schizophrenia. Because there are extensive healthcare costs associated with the treatment of schizophrenia, many institutions and health systems are faced with making restrictive formulary decisions regarding the use of atypical antipsychotics. Often, medication acquisition costs are the driving force behind formulary decisions, while other treatment factors are not considered. To apply a multi-attribute utility theory (MAUT) analysis to aid in the selection of a preferred agent among the atypical antipsychotics for the treatment of schizophrenia. Five atypical antipsychotics (risperidone, olanzapine, quetiapine, ziprasidone, aripiprazole) were selected as the alternative agents to be included in the MAUT analysis. The attributes identified for inclusion in the analysis were efficacy, adverse effects, cost, and adherence, with relative weights of 35%, 35%, 20%, and 10%, respectively. For each agent, attribute scores were calculated, weighted, and then summed to generate a total utility score. The agent with the highest total utility score was considered the preferred agent. Aripiprazole, with a total utility score of 75.8, was the alternative agent with the highest total utility score in this model. This was followed by ziprasidone, risperidone, and quetiapine, with total utility scores of 71.8, 69.0, and 65.9, respectively. Olanzapine received the lowest total utility score. A sensitivity analysis was performed and failed to displace aripiprazole as the agent with the highest total utility score. This model suggests that aripiprazole should be considered a preferred agent for the treatment of schizophrenia unless found to be otherwise inappropriate.

  1. Processing Technology Selection for Municipal Sewage Treatment Based on a Multi-Objective Decision Model under Uncertainty.

    PubMed

    Chen, Xudong; Xu, Zhongwen; Yao, Liming; Ma, Ning

    2018-03-05

    This study considers the two factors of environmental protection and economic benefits to address municipal sewage treatment. Based on considerations regarding the sewage treatment plant construction site, processing technology, capital investment, operation costs, water pollutant emissions, water quality and other indicators, we establish a general multi-objective decision model for optimizing municipal sewage treatment plant construction. Using the construction of a sewage treatment plant in a suburb of Chengdu as an example, this paper tests the general model of multi-objective decision-making for the sewage treatment plant construction by implementing a genetic algorithm. The results show the applicability and effectiveness of the multi-objective decision model for the sewage treatment plant. This paper provides decision and technical support for the optimization of municipal sewage treatment.

  2. Take-the-best and the influence of decision-inconsistent attributes on decision confidence and choices in memory-based decisions.

    PubMed

    Dummel, Sebastian; Rummel, Jan

    2016-11-01

    Take-the-best (TTB) is a decision strategy according to which attributes about choice options are sequentially processed in descending order of validity, and attribute processing is stopped once an attribute discriminates between options. Consequently, TTB-decisions rely on only one, the best discriminating, attribute, and lower-valid attributes need not be processed because they are TTB-irrelevant. Recent research suggests, however, that when attribute information is visually present during decision-making, TTB-irrelevant attributes are processed and integrated into decisions nonetheless. To examine whether TTB-irrelevant attributes are retrieved and integrated when decisions are made memory-based, we tested whether the consistency of a TTB-irrelevant attribute affects TTB-users' decision behaviour in a memory-based decision task. Participants first learned attribute configurations of several options. Afterwards, they made several decisions between two of the options, and we manipulated conflict between the second-best attribute and the TTB-decision. We assessed participants' decision confidence and the proportion of TTB-inconsistent choices. According to TTB, TTB-irrelevant attributes should not affect confidence and choices, because these attributes should not be retrieved. Results showed, however, that TTB-users were less confident and made more TTB-inconsistent choices when TTB-irrelevant information was in conflict with the TTB-decision than when it was not, suggesting that TTB-users retrieved and integrated TTB-irrelevant information.

  3. Selecting essential information for biosurveillance--a multi-criteria decision analysis.

    PubMed

    Generous, Nicholas; Margevicius, Kristen J; Taylor-McCabe, Kirsten J; Brown, Mac; Daniel, W Brent; Castro, Lauren; Hengartner, Andrea; Deshpande, Alina

    2014-01-01

    The National Strategy for Biosurveillance defines biosurveillance as "the process of gathering, integrating, interpreting, and communicating essential information related to all-hazards threats or disease activity affecting human, animal, or plant health to achieve early detection and warning, contribute to overall situational awareness of the health aspects of an incident, and to enable better decision-making at all levels." However, the strategy does not specify how "essential information" is to be identified and integrated into the current biosurveillance enterprise, or what the metrics qualify information as being "essential". The question of data stream identification and selection requires a structured methodology that can systematically evaluate the tradeoffs between the many criteria that need to be taken in account. Multi-Attribute Utility Theory, a type of multi-criteria decision analysis, can provide a well-defined, structured approach that can offer solutions to this problem. While the use of Multi-Attribute Utility Theoryas a practical method to apply formal scientific decision theoretical approaches to complex, multi-criteria problems has been demonstrated in a variety of fields, this method has never been applied to decision support in biosurveillance.We have developed a formalized decision support analytic framework that can facilitate identification of "essential information" for use in biosurveillance systems or processes and we offer this framework to the global BSV community as a tool for optimizing the BSV enterprise. To demonstrate utility, we applied the framework to the problem of evaluating data streams for use in an integrated global infectious disease surveillance system.

  4. Selecting Essential Information for Biosurveillance—A Multi-Criteria Decision Analysis

    PubMed Central

    Generous, Nicholas; Margevicius, Kristen J.; Taylor-McCabe, Kirsten J.; Brown, Mac; Daniel, W. Brent; Castro, Lauren; Hengartner, Andrea; Deshpande, Alina

    2014-01-01

    The National Strategy for Biosurveillancedefines biosurveillance as “the process of gathering, integrating, interpreting, and communicating essential information related to all-hazards threats or disease activity affecting human, animal, or plant health to achieve early detection and warning, contribute to overall situational awareness of the health aspects of an incident, and to enable better decision-making at all levels.” However, the strategy does not specify how “essential information” is to be identified and integrated into the current biosurveillance enterprise, or what the metrics qualify information as being “essential”. Thequestion of data stream identification and selection requires a structured methodology that can systematically evaluate the tradeoffs between the many criteria that need to be taken in account. Multi-Attribute Utility Theory, a type of multi-criteria decision analysis, can provide a well-defined, structured approach that can offer solutions to this problem. While the use of Multi-Attribute Utility Theoryas a practical method to apply formal scientific decision theoretical approaches to complex, multi-criteria problems has been demonstrated in a variety of fields, this method has never been applied to decision support in biosurveillance.We have developed a formalized decision support analytic framework that can facilitate identification of “essential information” for use in biosurveillance systems or processes and we offer this framework to the global BSV community as a tool for optimizing the BSV enterprise. To demonstrate utility, we applied the framework to the problem of evaluating data streams for use in an integrated global infectious disease surveillance system. PMID:24489748

  5. Multi-Attribute Tradespace Exploration in Space System Design

    NASA Astrophysics Data System (ADS)

    Ross, A. M.; Hastings, D. E.

    2002-01-01

    The complexity inherent in space systems necessarily requires intense expenditures of resources both human and monetary. The high level of ambiguity present in the early design phases of these systems causes long, highly iterative, and costly design cycles. This paper looks at incorporating decision theory methods into the early design processes to streamline communication of wants and needs among stakeholders and between levels of design. Communication channeled through formal utility interviews and analysis enables engineers to better understand the key drivers for the system and allows a more thorough exploration of the design tradespace. Multi-Attribute Tradespace Exploration (MATE), an evolving process incorporating decision theory into model and simulation- based design, has been applied to several space system case studies at MIT. Preliminary results indicate that this process can improve the quality of communication to more quickly resolve project ambiguity, and enable the engineer to discover better value designs for multiple stakeholders. MATE is also being integrated into a concurrent design environment to facilitate the transfer knowledge of important drivers into higher fidelity design phases. Formal utility theory provides a mechanism to bridge the language barrier between experts of different backgrounds and differing needs (e.g. scientists, engineers, managers, etc). MATE with concurrent design couples decision makers more closely to the design, and most importantly, maintains their presence between formal reviews.

  6. A queueing model of pilot decision making in a multi-task flight management situation

    NASA Technical Reports Server (NTRS)

    Walden, R. S.; Rouse, W. B.

    1977-01-01

    Allocation of decision making responsibility between pilot and computer is considered and a flight management task, designed for the study of pilot-computer interaction, is discussed. A queueing theory model of pilot decision making in this multi-task, control and monitoring situation is presented. An experimental investigation of pilot decision making and the resulting model parameters are discussed.

  7. Multi-disciplinary decision making in general practice.

    PubMed

    Kirby, Ann; Murphy, Aileen; Bradley, Colin

    2018-04-09

    Purpose Internationally, healthcare systems are moving towards delivering care in an integrated manner which advocates a multi-disciplinary approach to decision making. Such an approach is formally encouraged in the management of Atrial Fibrillation patients through the European Society of Cardiology guidelines. Since the emergence of new oral anticoagulants switching between oral anticoagulants (OACs) has become prevalent. This case study considers the role of multi-disciplinary decision making, given the complex nature of the agents. The purpose of this paper is to explore Irish General Practitioners' (GPs) experience of switching between all OACs for Arial Fibrillation (AF) patients; prevalence of multi-disciplinary decision making in OAC switching decisions and seeks to determine the GP characteristics that appear to influence the likelihood of multi-disciplinary decision making. Design/methodology/approach A probit model is used to determine the factors influencing multi-disciplinary decision making and a multinomial logit is used to examine the factors influencing who is involved in the multi-disciplinary decisions. Findings Results reveal that while some multi-disciplinary decision-making is occurring (64 per cent), it is not standard practice despite international guidelines on integrated care. Moreover, there is a lack of patient participation in the decision-making process. Female GPs and GPs who have initiated prescriptions for OACs are more likely to engage in multi-disciplinary decision-making surrounding switching OACs amongst AF patients. GPs with training practices were less likely to engage with cardiac consultants and those in urban areas were more likely to engage with other (non-cardiac) consultants. Originality/value For optimal decision making under uncertainty multi-disciplinary decision-making is needed to make a more informed judgement and to improve treatment decisions and reduce the opportunity cost of making the wrong decision.

  8. Using multi-attribute decision-making approaches in the selection of a hospital management system.

    PubMed

    Arasteh, Mohammad Ali; Shamshirband, Shahaboddin; Yee, Por Lip

    2018-01-01

    The most appropriate organizational software is always a real challenge for managers, especially, the IT directors. The illustration of the term "enterprise software selection", is to purchase, create, or order a software that; first, is best adapted to require of the organization; and second, has suitable price and technical support. Specifying selection criteria and ranking them, is the primary prerequisite for this action. This article provides a method to evaluate, rank, and compare the available enterprise software for choosing the apt one. The prior mentioned method is constituted of three-stage processes. First, the method identifies the organizational requires and assesses them. Second, it selects the best method throughout three possibilities; indoor-production, buying software, and ordering special software for the native use. Third, the method evaluates, compares and ranks the alternative software. The third process uses different methods of multi attribute decision making (MADM), and compares the consequent results. Based on different characteristics of the problem; several methods had been tested, namely, Analytic Hierarchy Process (AHP), Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Elimination and Choice Expressing Reality (ELECTURE), and easy weight method. After all, we propose the most practical method for same problems.

  9. Multi-criteria clinical decision support: A primer on the use of multiple criteria decision making methods to promote evidence-based, patient-centered healthcare.

    PubMed

    Dolan, James G

    2010-01-01

    Current models of healthcare quality recommend that patient management decisions be evidence-based and patient-centered. Evidence-based decisions require a thorough understanding of current information regarding the natural history of disease and the anticipated outcomes of different management options. Patient-centered decisions incorporate patient preferences, values, and unique personal circumstances into the decision making process and actively involve both patients along with health care providers as much as possible. Fundamentally, therefore, evidence-based, patient-centered decisions are multi-dimensional and typically involve multiple decision makers.Advances in the decision sciences have led to the development of a number of multiple criteria decision making methods. These multi-criteria methods are designed to help people make better choices when faced with complex decisions involving several dimensions. They are especially helpful when there is a need to combine "hard data" with subjective preferences, to make trade-offs between desired outcomes, and to involve multiple decision makers. Evidence-based, patient-centered clinical decision making has all of these characteristics. This close match suggests that clinical decision support systems based on multi-criteria decision making techniques have the potential to enable patients and providers to carry out the tasks required to implement evidence-based, patient-centered care effectively and efficiently in clinical settings.The goal of this paper is to give readers a general introduction to the range of multi-criteria methods available and show how they could be used to support clinical decision-making. Methods discussed include the balance sheet, the even swap method, ordinal ranking methods, direct weighting methods, multi-attribute decision analysis, and the analytic hierarchy process (AHP).

  10. Multi-criteria clinical decision support: A primer on the use of multiple criteria decision making methods to promote evidence-based, patient-centered healthcare

    PubMed Central

    Dolan, James G.

    2010-01-01

    Current models of healthcare quality recommend that patient management decisions be evidence-based and patient-centered. Evidence-based decisions require a thorough understanding of current information regarding the natural history of disease and the anticipated outcomes of different management options. Patient-centered decisions incorporate patient preferences, values, and unique personal circumstances into the decision making process and actively involve both patients along with health care providers as much as possible. Fundamentally, therefore, evidence-based, patient-centered decisions are multi-dimensional and typically involve multiple decision makers. Advances in the decision sciences have led to the development of a number of multiple criteria decision making methods. These multi-criteria methods are designed to help people make better choices when faced with complex decisions involving several dimensions. They are especially helpful when there is a need to combine “hard data” with subjective preferences, to make trade-offs between desired outcomes, and to involve multiple decision makers. Evidence-based, patient-centered clinical decision making has all of these characteristics. This close match suggests that clinical decision support systems based on multi-criteria decision making techniques have the potential to enable patients and providers to carry out the tasks required to implement evidence-based, patient-centered care effectively and efficiently in clinical settings. The goal of this paper is to give readers a general introduction to the range of multi-criteria methods available and show how they could be used to support clinical decision-making. Methods discussed include the balance sheet, the even swap method, ordinal ranking methods, direct weighting methods, multi-attribute decision analysis, and the analytic hierarchy process (AHP) PMID:21394218

  11. A Multi-layer Dynamic Model for Coordination Based Group Decision Making in Water Resource Allocation and Scheduling

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Zhang, Xingnan; Li, Chenming; Wang, Jianying

    Management of group decision-making is an important issue in water source management development. In order to overcome the defects in lacking of effective communication and cooperation in the existing decision-making models, this paper proposes a multi-layer dynamic model for coordination in water resource allocation and scheduling based group decision making. By introducing the scheme-recognized cooperative satisfaction index and scheme-adjusted rationality index, the proposed model can solve the problem of poor convergence of multi-round decision-making process in water resource allocation and scheduling. Furthermore, the problem about coordination of limited resources-based group decision-making process can be solved based on the effectiveness of distance-based group of conflict resolution. The simulation results show that the proposed model has better convergence than the existing models.

  12. Supporting multi-stakeholder environmental decisions.

    PubMed

    Hajkowicz, Stefan A

    2008-09-01

    This paper examines how multiple criteria analysis (MCA) can be used to support multi-stakeholder environmental management decisions. It presents a study through which 48 stakeholders from environmental, primary production and community interest groups used MCA to prioritise 30 environmental management problems in the Mackay-Whitsunday region of Queensland, Australia. The MCA model, with procedures for aggregating multi-stakeholder output, was used to inform a final decision on the priority of the region's environmental management problems. The result was used in the region's environmental management plan as required under Australia's Natural Heritage Trust programme. The study shows how relatively simple MCA methods can help stakeholders make group decisions, even when they hold strongly conflicting preferences.

  13. A Multi Criteria Group Decision-Making Model for Teacher Evaluation in Higher Education Based on Cloud Model and Decision Tree

    ERIC Educational Resources Information Center

    Chang, Ting-Cheng; Wang, Hui

    2016-01-01

    This paper proposes a cloud multi-criteria group decision-making model for teacher evaluation in higher education which is involving subjectivity, imprecision and fuzziness. First, selecting the appropriate evaluation index depending on the evaluation objectives, indicating a clear structural relationship between the evaluation index and…

  14. Multi-criteria decision model for retrofitting existing buildings

    NASA Astrophysics Data System (ADS)

    Bostenaru Dan, M. D.

    2004-08-01

    Decision is an element in the risk management process. In this paper the way how science can help in decision making and implementation for retrofitting buildings in earthquake prone urban areas is investigated. In such interventions actors from various spheres are involved. Their interests range among minimising the intervention for maximal preservation or increasing it for seismic safety. Research was conducted to see how to facilitate collaboration between these actors. A particular attention was given to the role of time in actors' preferences. For this reason, on decision level, both the processural and the personal dimension of risk management, the later seen as a task, were considered. A systematic approach was employed to determine the functional structure of a participative decision model. Three layers on which actors implied in this multi-criteria decision problem interact were identified: town, building and element. So-called 'retrofit elements' are characteristic bearers in the architectural survey, engineering simulations, costs estimation and define the realms perceived by the inhabitants. This way they represent an interaction basis for the interest groups considered in a deeper study. Such orientation means for actors' interaction were designed on other levels of intervention as well. Finally, an 'experiment' for the implementation of the decision model is presented: a strategic plan for an urban intervention towards reduction of earthquake hazard impact through retrofitting. A systematic approach proves thus to be a very good communication basis among the participants in the seismic risk management process. Nevertheless, it can only be applied in later phases (decision, implementation, control) only, since it serves verifying and improving solution and not developing the concept. The 'retrofit elements' are a typical example of the detailing degree reached in the retrofit design plans in these phases.

  15. Propulsion Airframe Aeroacoustics Technology Evaluation and Selection Using a Multi-Attribute Decision Making Process and Non-Deterministic Design

    NASA Technical Reports Server (NTRS)

    Burg, Cecile M.; Hill, Geoffrey A.; Brown, Sherilyn A.; Geiselhart, Karl A.

    2004-01-01

    The Systems Analysis Branch at NASA Langley Research Center has investigated revolutionary Propulsion Airframe Aeroacoustics (PAA) technologies and configurations for a Blended-Wing-Body (BWB) type aircraft as part of its research for NASA s Quiet Aircraft Technology (QAT) Project. Within the context of the long-term NASA goal of reducing the perceived aircraft noise level by a factor of 4 relative to 1997 state of the art, major configuration changes in the propulsion airframe integration system were explored with noise as a primary design consideration. An initial down-select and assessment of candidate PAA technologies for the BWB was performed using a Multi-Attribute Decision Making (MADM) process consisting of organized brainstorming and decision-making tools. The assessments focused on what effect the PAA technologies had on both the overall noise level of the BWB and what effect they had on other major design considerations such as weight, performance and cost. A probabilistic systems analysis of the PAA configurations that presented the best noise reductions with the least negative impact on the system was then performed. Detailed results from the MADM study and the probabilistic systems analysis will be published in the near future.

  16. An Integer Programming Model for Multi-Echelon Supply Chain Decision Problem Considering Inventories

    NASA Astrophysics Data System (ADS)

    Harahap, Amin; Mawengkang, Herman; Siswadi; Effendi, Syahril

    2018-01-01

    In this paper we address a problem that is of significance to the industry, namely the optimal decision of a multi-echelon supply chain and the associated inventory systems. By using the guaranteed service approach to model the multi-echelon inventory system, we develop a mixed integer; programming model to simultaneously optimize the transportation, inventory and network structure of a multi-echelon supply chain. To solve the model we develop a direct search approach using a strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points.

  17. Experimental analysis of multi-attribute decision-making based on Atanassov intuitionistic fuzzy sets: a discussion of anchor dependency and accuracy functions

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Yu

    2012-06-01

    This article presents a useful method for relating anchor dependency and accuracy functions to multiple attribute decision-making (MADM) problems in the context of Atanassov intuitionistic fuzzy sets (A-IFSs). Considering anchored judgement with displaced ideals and solution precision with minimal hesitation, several auxiliary optimisation models have proposed to obtain the optimal weights of the attributes and to acquire the corresponding TOPSIS (the technique for order preference by similarity to the ideal solution) index for alternative rankings. Aside from the TOPSIS index, as a decision-maker's personal characteristics and own perception of self may also influence the direction in the axiom of choice, the evaluation of alternatives is conducted based on distances of each alternative from the positive and negative ideal alternatives, respectively. This article originates from Li's [Li, D.-F. (2005), 'Multiattribute Decision Making Models and Methods Using Intuitionistic Fuzzy Sets', Journal of Computer and System Sciences, 70, 73-85] work, which is a seminal study of intuitionistic fuzzy decision analysis using deduced auxiliary programming models, and deems it a benchmark method for comparative studies on anchor dependency and accuracy functions. The feasibility and effectiveness of the proposed methods are illustrated by a numerical example. Finally, a comparative analysis is illustrated with computational experiments on averaging accuracy functions, TOPSIS indices, separation measures from positive and negative ideal alternatives, consistency rates of ranking orders, contradiction rates of the top alternative and average Spearman correlation coefficients.

  18. An interval-valued 2-tuple linguistic group decision-making model based on the Choquet integral operator

    NASA Astrophysics Data System (ADS)

    Liu, Bingsheng; Fu, Meiqing; Zhang, Shuibo; Xue, Bin; Zhou, Qi; Zhang, Shiruo

    2018-01-01

    The Choquet integral (IL) operator is an effective approach for handling interdependence among decision attributes in complex decision-making problems. However, the fuzzy measures of attributes and attribute sets required by IL are difficult to achieve directly, which limits the application of IL. This paper proposes a new method for determining fuzzy measures of attributes by extending Marichal's concept of entropy for fuzzy measure. To well represent the assessment information, interval-valued 2-tuple linguistic context is utilised to represent information. Then, we propose a Choquet integral operator in an interval-valued 2-tuple linguistic environment, which can effectively handle the correlation between attributes. In addition, we apply these methods to solve multi-attribute group decision-making problems. The feasibility and validity of the proposed operator is demonstrated by comparisons with other models in illustrative example part.

  19. Considering Decision Variable Diversity in Multi-Objective Optimization: Application in Hydrologic Model Calibration

    NASA Astrophysics Data System (ADS)

    Sahraei, S.; Asadzadeh, M.

    2017-12-01

    Any modern multi-objective global optimization algorithm should be able to archive a well-distributed set of solutions. While the solution diversity in the objective space has been explored extensively in the literature, little attention has been given to the solution diversity in the decision space. Selection metrics such as the hypervolume contribution and crowding distance calculated in the objective space would guide the search toward solutions that are well-distributed across the objective space. In this study, the diversity of solutions in the decision-space is used as the main selection criteria beside the dominance check in multi-objective optimization. To this end, currently archived solutions are clustered in the decision space and the ones in less crowded clusters are given more chance to be selected for generating new solution. The proposed approach is first tested on benchmark mathematical test problems. Second, it is applied to a hydrologic model calibration problem with more than three objective functions. Results show that the chance of finding more sparse set of high-quality solutions increases, and therefore the analyst would receive a well-diverse set of options with maximum amount of information. Pareto Archived-Dynamically Dimensioned Search, which is an efficient and parsimonious multi-objective optimization algorithm for model calibration, is utilized in this study.

  20. Attributions of responsibility and affective reactions to decision outcomes.

    PubMed

    Zeelenberg, M; van der Pligt, J; de Vries, N K

    2000-06-01

    Immediate affective reactions to outcomes are more intense following decisions to act than following decisions not to act. This finding holds for both positive and negative outcomes. We relate this "actor-effect" to attribution theory and argue that decision makers are seen as more responsible for outcomes when these are the result of a decision to act as compared to a decision not to act. Experiment 1 (N = 80) tests the main assumption underlying our reasoning and shows that affective reactions to decision outcomes are indeed more intense when the decision maker is seen as more responsible. Experiment 2 (N = 40) tests whether the actor effect can be predicted on the basis of differential attributions following action and inaction. Participants read vignettes in which active and passive actors obtained a positive or negative outcome. Action resulted in more intense affect than inaction, and positive outcomes resulted in more intense affect than negative outcomes. Experiment 2 further shows that responsibility attributions and affective reactions to outcomes are highly correlated; that is, more extreme affective reactions are associated with more internal attributions. We discuss the implications for research on post-decisional reactions.

  1. Multi-model attribution of upper-ocean temperature changes using an isothermal approach.

    PubMed

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-06-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.

  2. Multi-model attribution of upper-ocean temperature changes using an isothermal approach

    NASA Astrophysics Data System (ADS)

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D.; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-06-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.

  3. Combining the Generic Entity-Attribute-Value Model and Terminological Models into a Common Ontology to Enable Data Integration and Decision Support.

    PubMed

    Bouaud, Jacques; Guézennec, Gilles; Séroussi, Brigitte

    2018-01-01

    The integration of clinical information models and termino-ontological models into a unique ontological framework is highly desirable for it facilitates data integration and management using the same formal mechanisms for both data concepts and information model components. This is particularly true for knowledge-based decision support tools that aim to take advantage of all facets of semantic web technologies in merging ontological reasoning, concept classification, and rule-based inferences. We present an ontology template that combines generic data model components with (parts of) existing termino-ontological resources. The approach is developed for the guideline-based decision support module on breast cancer management within the DESIREE European project. The approach is based on the entity attribute value model and could be extended to other domains.

  4. Exploring complex dynamics in multi agent-based intelligent systems: Theoretical and experimental approaches using the Multi Agent-based Behavioral Economic Landscape (MABEL) model

    NASA Astrophysics Data System (ADS)

    Alexandridis, Konstantinos T.

    This dissertation adopts a holistic and detailed approach to modeling spatially explicit agent-based artificial intelligent systems, using the Multi Agent-based Behavioral Economic Landscape (MABEL) model. The research questions that addresses stem from the need to understand and analyze the real-world patterns and dynamics of land use change from a coupled human-environmental systems perspective. Describes the systemic, mathematical, statistical, socio-economic and spatial dynamics of the MABEL modeling framework, and provides a wide array of cross-disciplinary modeling applications within the research, decision-making and policy domains. Establishes the symbolic properties of the MABEL model as a Markov decision process, analyzes the decision-theoretic utility and optimization attributes of agents towards comprising statistically and spatially optimal policies and actions, and explores the probabilogic character of the agents' decision-making and inference mechanisms via the use of Bayesian belief and decision networks. Develops and describes a Monte Carlo methodology for experimental replications of agent's decisions regarding complex spatial parcel acquisition and learning. Recognizes the gap on spatially-explicit accuracy assessment techniques for complex spatial models, and proposes an ensemble of statistical tools designed to address this problem. Advanced information assessment techniques such as the Receiver-Operator Characteristic curve, the impurity entropy and Gini functions, and the Bayesian classification functions are proposed. The theoretical foundation for modular Bayesian inference in spatially-explicit multi-agent artificial intelligent systems, and the ensembles of cognitive and scenario assessment modular tools build for the MABEL model are provided. Emphasizes the modularity and robustness as valuable qualitative modeling attributes, and examines the role of robust intelligent modeling as a tool for improving policy-decisions related to land

  5. An attentional drift diffusion model over binary-attribute choice.

    PubMed

    Fisher, Geoffrey

    2017-11-01

    In order to make good decisions, individuals need to identify and properly integrate information about various attributes associated with a choice. Since choices are often complex and made rapidly, they are typically affected by contextual variables that are thought to influence how much attention is paid to different attributes. I propose a modification of the attentional drift-diffusion model, the binary-attribute attentional drift diffusion model (baDDM), which describes the choice process over simple binary-attribute choices and how it is affected by fluctuations in visual attention. Using an eye-tracking experiment, I find the baDDM makes accurate quantitative predictions about several key variables including choices, reaction times, and how these variables are correlated with attention to two attributes in an accept-reject decision. Furthermore, I estimate an attribute-based fixation bias that suggests attention to an attribute increases its subjective weight by 5%, while the unattended attribute's weight is decreased by 10%. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A Generalized Measurement Model to Quantify Health: The Multi-Attribute Preference Response Model

    PubMed Central

    Krabbe, Paul F. M.

    2013-01-01

    After 40 years of deriving metric values for health status or health-related quality of life, the effective quantification of subjective health outcomes is still a challenge. Here, two of the best measurement tools, the discrete choice and the Rasch model, are combined to create a new model for deriving health values. First, existing techniques to value health states are briefly discussed followed by a reflection on the recent revival of interest in patients’ experience with regard to their possible role in health measurement. Subsequently, three basic principles for valid health measurement are reviewed, namely unidimensionality, interval level, and invariance. In the main section, the basic operation of measurement is then discussed in the framework of probabilistic discrete choice analysis (random utility model) and the psychometric Rasch model. It is then shown how combining the main features of these two models yields an integrated measurement model, called the multi-attribute preference response (MAPR) model, which is introduced here. This new model transforms subjective individual rank data into a metric scale using responses from patients who have experienced certain health states. Its measurement mechanism largely prevents biases such as adaptation and coping. Several extensions of the MAPR model are presented. The MAPR model can be applied to a wide range of research problems. If extended with the self-selection of relevant health domains for the individual patient, this model will be more valid than existing valuation techniques. PMID:24278141

  7. Multi-criteria decision models for forestry and natural resources management: an annotated bibliography

    Treesearch

    Joseph E. de Steiguer; Leslie Liberti; Albert Schuler; Bruce Hansen

    2003-01-01

    Foresters and natural resource managers must balance conflicting objectives when developing land-management plans. Conflicts may encompass economic, environmental, social, cultural, technical, and aesthetic objectives. Selecting the best combination of management uses from numerous objectives is difficult and challenging. Multi-Criteria Decision Models (MCDM) provide a...

  8. Parameter Estimation of Computationally Expensive Watershed Models Through Efficient Multi-objective Optimization and Interactive Decision Analytics

    NASA Astrophysics Data System (ADS)

    Akhtar, Taimoor; Shoemaker, Christine

    2016-04-01

    Watershed model calibration is inherently a multi-criteria problem. Conflicting trade-offs exist between different quantifiable calibration criterions indicating the non-existence of a single optimal parameterization. Hence, many experts prefer a manual approach to calibration where the inherent multi-objective nature of the calibration problem is addressed through an interactive, subjective, time-intensive and complex decision making process. Multi-objective optimization can be used to efficiently identify multiple plausible calibration alternatives and assist calibration experts during the parameter estimation process. However, there are key challenges to the use of multi objective optimization in the parameter estimation process which include: 1) multi-objective optimization usually requires many model simulations, which is difficult for complex simulation models that are computationally expensive; and 2) selection of one from numerous calibration alternatives provided by multi-objective optimization is non-trivial. This study proposes a "Hybrid Automatic Manual Strategy" (HAMS) for watershed model calibration to specifically address the above-mentioned challenges. HAMS employs a 3-stage framework for parameter estimation. Stage 1 incorporates the use of an efficient surrogate multi-objective algorithm, GOMORS, for identification of numerous calibration alternatives within a limited simulation evaluation budget. The novelty of HAMS is embedded in Stages 2 and 3 where an interactive visual and metric based analytics framework is available as a decision support tool to choose a single calibration from the numerous alternatives identified in Stage 1. Stage 2 of HAMS provides a goodness-of-fit measure / metric based interactive framework for identification of a small subset (typically less than 10) of meaningful and diverse set of calibration alternatives from the numerous alternatives obtained in Stage 1. Stage 3 incorporates the use of an interactive visual

  9. Publically accessible decision support system of the spatially referenced regressions on watershed attributes (SPARROW) model and model enhancements in South Carolina

    Treesearch

    Celeste Journey; Anne B. Hoos; David E. Ladd; John W. brakebill; Richard A. Smith

    2016-01-01

    The U.S. Geological Survey (USGS) National Water Quality Assessment program has developed a web-based decision support system (DSS) to provide free public access to the steady-stateSPAtially Referenced Regressions On Watershed attributes (SPARROW) model simulation results on nutrient conditions in streams and rivers and to offer scenario testing capabilities for...

  10. Qualitative analysis of patient-centered decision attributes associated with initiating hepatitis C treatment.

    PubMed

    Zuchowski, Jessica L; Hamilton, Alison B; Pyne, Jeffrey M; Clark, Jack A; Naik, Aanand D; Smith, Donna L; Kanwal, Fasiha

    2015-10-01

    In this era of a constantly changing landscape of antiviral treatment options for chronic viral hepatitis C (CHC), shared clinical decision-making addresses the need to engage patients in complex treatment decisions. However, little is known about the decision attributes that CHC patients consider when making treatment decisions. We identify key patient-centered decision attributes, and explore relationships among these attributes, to help inform the development of a future CHC shared decision-making aid. Semi-structured qualitative interviews with CHC patients at four Veterans Health Administration (VHA) hospitals, in three comparison groups: contemplating CHC treatment at the time of data collection (Group 1), recently declined CHC treatment (Group 2), or recently started CHC treatment (Group 3). Participant descriptions of decision attributes were analyzed for the entire sample as well as by patient group and by gender. Twenty-nine Veteran patients participated (21 males, eight females): 12 were contemplating treatment, nine had recently declined treatment, and eight had recently started treatment. Patients on average described eight (range 5-13) decision attributes. The attributes most frequently reported overall were: physical side effects (83%); treatment efficacy (79%), new treatment drugs in development (55%); psychological side effects (55%); and condition of the liver (52%), with some variation based on group and gender. Personal life circumstance attributes (such as availability of family support and the burden of financial responsibilities) influencing treatment decisions were also noted by all participants. Multiple decision attributes were interrelated in highly complex ways. Participants considered numerous attributes in their CHC treatment decisions. A better understanding of these attributes that influence patient decision-making is crucial in order to inform patient-centered clinical approaches to care (such as shared decision-making augmented

  11. A decision aid for intensity-modulated radiation-therapy plan selection in prostate cancer based on a prognostic Bayesian network and a Markov model.

    PubMed

    Smith, Wade P; Doctor, Jason; Meyer, Jürgen; Kalet, Ira J; Phillips, Mark H

    2009-06-01

    The prognosis of cancer patients treated with intensity-modulated radiation-therapy (IMRT) is inherently uncertain, depends on many decision variables, and requires that a physician balance competing objectives: maximum tumor control with minimal treatment complications. In order to better deal with the complex and multiple objective nature of the problem we have combined a prognostic probabilistic model with multi-attribute decision theory which incorporates patient preferences for outcomes. The response to IMRT for prostate cancer was modeled. A Bayesian network was used for prognosis for each treatment plan. Prognoses included predicting local tumor control, regional spread, distant metastases, and normal tissue complications resulting from treatment. A Markov model was constructed and used to calculate a quality-adjusted life-expectancy which aids in the multi-attribute decision process. Our method makes explicit the tradeoffs patients face between quality and quantity of life. This approach has advantages over current approaches because with our approach risks of health outcomes and patient preferences determine treatment decisions.

  12. Efficiently Multi-User Searchable Encryption Scheme with Attribute Revocation and Grant for Cloud Storage

    PubMed Central

    Wang, Shangping; Zhang, Xiaoxue; Zhang, Yaling

    2016-01-01

    Cipher-policy attribute-based encryption (CP-ABE) focus on the problem of access control, and keyword-based searchable encryption scheme focus on the problem of finding the files that the user interested in the cloud storage quickly. To design a searchable and attribute-based encryption scheme is a new challenge. In this paper, we propose an efficiently multi-user searchable attribute-based encryption scheme with attribute revocation and grant for cloud storage. In the new scheme the attribute revocation and grant processes of users are delegated to proxy server. Our scheme supports multi attribute are revoked and granted simultaneously. Moreover, the keyword searchable function is achieved in our proposed scheme. The security of our proposed scheme is reduced to the bilinear Diffie-Hellman (BDH) assumption. Furthermore, the scheme is proven to be secure under the security model of indistinguishability against selective ciphertext-policy and chosen plaintext attack (IND-sCP-CPA). And our scheme is also of semantic security under indistinguishability against chosen keyword attack (IND-CKA) in the random oracle model. PMID:27898703

  13. Efficiently Multi-User Searchable Encryption Scheme with Attribute Revocation and Grant for Cloud Storage.

    PubMed

    Wang, Shangping; Zhang, Xiaoxue; Zhang, Yaling

    2016-01-01

    Cipher-policy attribute-based encryption (CP-ABE) focus on the problem of access control, and keyword-based searchable encryption scheme focus on the problem of finding the files that the user interested in the cloud storage quickly. To design a searchable and attribute-based encryption scheme is a new challenge. In this paper, we propose an efficiently multi-user searchable attribute-based encryption scheme with attribute revocation and grant for cloud storage. In the new scheme the attribute revocation and grant processes of users are delegated to proxy server. Our scheme supports multi attribute are revoked and granted simultaneously. Moreover, the keyword searchable function is achieved in our proposed scheme. The security of our proposed scheme is reduced to the bilinear Diffie-Hellman (BDH) assumption. Furthermore, the scheme is proven to be secure under the security model of indistinguishability against selective ciphertext-policy and chosen plaintext attack (IND-sCP-CPA). And our scheme is also of semantic security under indistinguishability against chosen keyword attack (IND-CKA) in the random oracle model.

  14. The role of contraceptive attributes in women's contraceptive decision making.

    PubMed

    Madden, Tessa; Secura, Gina M; Nease, Robert F; Politi, Mary C; Peipert, Jeffrey F

    2015-07-01

    Contraceptive methods have differing attributes. Women's preferences for these attributes may influence contraceptive decision making. Our objective was to identify women's contraceptive preferences among women initiating a new contraceptive method. We conducted a cross-sectional, self-administered survey of women's contraceptive preferences at the time of enrollment into the Contraceptive CHOICE Project. Participants were asked to rank the importance of 15 contraceptive attributes on a 3-point scale (1 = not at all important, 2 = somewhat important, and 3 = very important) and then to rank the 3 attributes that were the most important when choosing a contraceptive method. The survey also contained questions about prior contraceptive experience and barriers to contraceptive use. Information about demographic and reproductive characteristics was collected through the CHOICE Project baseline survey. There were 2590 women who completed the survey. Our sample was racially and socioeconomically diverse. Method attributes with the highest importance score (mean score [SD]) were effectiveness (2.97 [0.18]), safety (2.96 [0.22]), affordability (2.61 [0.61]), whether the method is long lasting (2.58 [0.61]), and whether the method is "forgettable" (2.54 [0.66]). The attributes most likely to be ranked by respondents among the top 3 attributes included effectiveness (84.2%), safety (67.8%), and side effects of the method (44.6%). Multiple contraceptive attributes influence decision making and no single attribute drives most women's decisions. Tailoring communication and helping women make complex tradeoffs between attributes can better support their contraceptive decisions and may assist them in making value-consistent choices. This process could improve continuation and satisfaction. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Multi-Task Learning with Low Rank Attribute Embedding for Multi-Camera Person Re-Identification.

    PubMed

    Su, Chi; Yang, Fan; Zhang, Shiliang; Tian, Qi; Davis, Larry Steven; Gao, Wen

    2018-05-01

    We propose Multi-Task Learning with Low Rank Attribute Embedding (MTL-LORAE) to address the problem of person re-identification on multi-cameras. Re-identifications on different cameras are considered as related tasks, which allows the shared information among different tasks to be explored to improve the re-identification accuracy. The MTL-LORAE framework integrates low-level features with mid-level attributes as the descriptions for persons. To improve the accuracy of such description, we introduce the low-rank attribute embedding, which maps original binary attributes into a continuous space utilizing the correlative relationship between each pair of attributes. In this way, inaccurate attributes are rectified and missing attributes are recovered. The resulting objective function is constructed with an attribute embedding error and a quadratic loss concerning class labels. It is solved by an alternating optimization strategy. The proposed MTL-LORAE is tested on four datasets and is validated to outperform the existing methods with significant margins.

  16. Young adults' decision making surrounding heavy drinking: a multi-staged model of planned behaviour.

    PubMed

    Northcote, Jeremy

    2011-06-01

    This paper examines the real life contexts in which decisions surrounding heavy drinking are made by young adults (that is, on occasions when five or more alcoholic drinks are consumed within a few hours). It presents a conceptual model that views such decision making as a multi-faceted and multi-staged process. The mixed method study draws on purposive data gathered through direct observation of eight social networks consisting of 81 young adults aged between 18 and 25 years in Perth, Western Australia, including in-depth interviews with 31 participants. Qualitative and some basic quantitative data were gathered using participant observation and in-depth interviews undertaken over an eighteen month period. Participants explained their decision to engage in heavy drinking as based on a variety of factors. These elements relate to socio-cultural norms and expectancies that are best explained by the theory of planned behaviour. A framework is proposed that characterises heavy drinking as taking place in a multi-staged manner, with young adults having: 1. A generalised orientation to the value of heavy drinking shaped by wider influences and norms; 2. A short-term orientation shaped by situational factors that determines drinking intentions for specific events; and 3. An evaluative orientation shaped by moderating factors. The value of qualitative studies of decision making in real life contexts is advanced to complement the mostly quantitative research that dominates research on alcohol decision making. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Attributes Affecting Computer-Aided Decision Making--A Literature Survey.

    ERIC Educational Resources Information Center

    Moldafsky, Neil I; Kwon, Ik-Whan

    1994-01-01

    Reviews current literature about personal, demographic, situational, and cognitive attributes that affect computer-aided decision making. The effectiveness of computer-aided decision making is explored in relation to decision quality, effectiveness, and confidence. Studies of the effects of age, anxiety, cognitive type, attitude, gender, and prior…

  18. Harnessing ecosystem models and multi-criteria decision analysis for the support of forest management.

    PubMed

    Wolfslehner, Bernhard; Seidl, Rupert

    2010-12-01

    The decision-making environment in forest management (FM) has changed drastically during the last decades. Forest management planning is facing increasing complexity due to a widening portfolio of forest goods and services, a societal demand for a rational, transparent decision process and rising uncertainties concerning future environmental conditions (e.g., climate change). Methodological responses to these challenges include an intensified use of ecosystem models to provide an enriched, quantitative information base for FM planning. Furthermore, multi-criteria methods are increasingly used to amalgamate information, preferences, expert judgments and value expressions, in support of the participatory and communicative dimensions of modern forestry. Although the potential of combining these two approaches has been demonstrated in a number of studies, methodological aspects in interfacing forest ecosystem models (FEM) and multi-criteria decision analysis (MCDA) are scarcely addressed explicitly. In this contribution we review the state of the art in FEM and MCDA in the context of FM planning and highlight some of the crucial issues when combining ecosystem and preference modeling. We discuss issues and requirements in selecting approaches suitable for supporting FM planning problems from the growing body of FEM and MCDA concepts. We furthermore identify two major challenges in a harmonized application of FEM-MCDA: (i) the design and implementation of an indicator-based analysis framework capturing ecological and social aspects and their interactions relevant for the decision process, and (ii) holistic information management that supports consistent use of different information sources, provides meta-information as well as information on uncertainties throughout the planning process.

  19. Harnessing Ecosystem Models and Multi-Criteria Decision Analysis for the Support of Forest Management

    NASA Astrophysics Data System (ADS)

    Wolfslehner, Bernhard; Seidl, Rupert

    2010-12-01

    The decision-making environment in forest management (FM) has changed drastically during the last decades. Forest management planning is facing increasing complexity due to a widening portfolio of forest goods and services, a societal demand for a rational, transparent decision process and rising uncertainties concerning future environmental conditions (e.g., climate change). Methodological responses to these challenges include an intensified use of ecosystem models to provide an enriched, quantitative information base for FM planning. Furthermore, multi-criteria methods are increasingly used to amalgamate information, preferences, expert judgments and value expressions, in support of the participatory and communicative dimensions of modern forestry. Although the potential of combining these two approaches has been demonstrated in a number of studies, methodological aspects in interfacing forest ecosystem models (FEM) and multi-criteria decision analysis (MCDA) are scarcely addressed explicitly. In this contribution we review the state of the art in FEM and MCDA in the context of FM planning and highlight some of the crucial issues when combining ecosystem and preference modeling. We discuss issues and requirements in selecting approaches suitable for supporting FM planning problems from the growing body of FEM and MCDA concepts. We furthermore identify two major challenges in a harmonized application of FEM-MCDA: (i) the design and implementation of an indicator-based analysis framework capturing ecological and social aspects and their interactions relevant for the decision process, and (ii) holistic information management that supports consistent use of different information sources, provides meta-information as well as information on uncertainties throughout the planning process.

  20. Adaptation and Evaluation of a Multi-Criteria Decision Analysis Model for Lyme Disease Prevention

    PubMed Central

    Aenishaenslin, Cécile; Gern, Lise; Michel, Pascal; Ravel, André; Hongoh, Valérie; Waaub, Jean-Philippe; Milord, François; Bélanger, Denise

    2015-01-01

    Designing preventive programs relevant to vector-borne diseases such as Lyme disease (LD) can be complex given the need to include multiple issues and perspectives into prioritizing public health actions. A multi-criteria decision aid (MCDA) model was previously used to rank interventions for LD prevention in Quebec, Canada, where the disease is emerging. The aim of the current study was to adapt and evaluate the decision model constructed in Quebec under a different epidemiological context, in Switzerland, where LD has been endemic for the last thirty years. The model adaptation was undertaken with a group of Swiss stakeholders using a participatory approach. The PROMETHEE method was used for multi-criteria analysis. Key elements and results of the MCDA model are described and contrasted with the Quebec model. All criteria and most interventions of the MCDA model developed for LD prevention in Quebec were directly transferable to the Swiss context. Four new decision criteria were added, and the list of proposed interventions was modified. Based on the overall group ranking, interventions targeting human populations were prioritized in the Swiss model, with the top ranked action being the implementation of a large communication campaign. The addition of criteria did not significantly alter the intervention rankings, but increased the capacity of the model to discriminate between highest and lowest ranked interventions. The current study suggests that beyond the specificity of the MCDA models developed for Quebec and Switzerland, their general structure captures the fundamental and common issues that characterize the complexity of vector-borne disease prevention. These results should encourage public health organizations to adapt, use and share MCDA models as an effective and functional approach to enable the integration of multiple perspectives and considerations in the prevention and control of complex public health issues such as Lyme disease or other vector

  1. Adaptation and Evaluation of a Multi-Criteria Decision Analysis Model for Lyme Disease Prevention.

    PubMed

    Aenishaenslin, Cécile; Gern, Lise; Michel, Pascal; Ravel, André; Hongoh, Valérie; Waaub, Jean-Philippe; Milord, François; Bélanger, Denise

    2015-01-01

    Designing preventive programs relevant to vector-borne diseases such as Lyme disease (LD) can be complex given the need to include multiple issues and perspectives into prioritizing public health actions. A multi-criteria decision aid (MCDA) model was previously used to rank interventions for LD prevention in Quebec, Canada, where the disease is emerging. The aim of the current study was to adapt and evaluate the decision model constructed in Quebec under a different epidemiological context, in Switzerland, where LD has been endemic for the last thirty years. The model adaptation was undertaken with a group of Swiss stakeholders using a participatory approach. The PROMETHEE method was used for multi-criteria analysis. Key elements and results of the MCDA model are described and contrasted with the Quebec model. All criteria and most interventions of the MCDA model developed for LD prevention in Quebec were directly transferable to the Swiss context. Four new decision criteria were added, and the list of proposed interventions was modified. Based on the overall group ranking, interventions targeting human populations were prioritized in the Swiss model, with the top ranked action being the implementation of a large communication campaign. The addition of criteria did not significantly alter the intervention rankings, but increased the capacity of the model to discriminate between highest and lowest ranked interventions. The current study suggests that beyond the specificity of the MCDA models developed for Quebec and Switzerland, their general structure captures the fundamental and common issues that characterize the complexity of vector-borne disease prevention. These results should encourage public health organizations to adapt, use and share MCDA models as an effective and functional approach to enable the integration of multiple perspectives and considerations in the prevention and control of complex public health issues such as Lyme disease or other vector

  2. Multi-view Decision Making (MVDM) Workshop

    DTIC Science & Technology

    2009-02-01

    reflect the realities of system-of-systems development, acquisition, fielding and support: multi-view decision making (MVDM). MVDM addresses the...including mission risk, interoperable acquisition, and operational security and survivability. Hence, a multi-view approach to decision making is

  3. Comparative analysis of decision maker preferences for equity/efficiency attributes in reimbursement decisions in three European countries.

    PubMed

    Baji, Petra; García-Goñi, Manuel; Gulácsi, László; Mentzakis, Emmanouil; Paolucci, Francesco

    2016-09-01

    In addition to cost-effectiveness, national guidelines often include other factors in reimbursement decisions. However, weights attached to these are rarely quantified, thus decisions can depend strongly on decision-maker preferences. To explore the preferences of policymakers and healthcare professionals involved in the decision-making process for different efficiency and equity attributes of interventions and to analyse cross-country differences. Discrete choice experiments (DCEs) were carried out in Austria, Hungary, and Norway with policymakers and other professionals working in the health industry (N = 153 respondents). Interventions were described in terms of different efficiency and equity attributes (severity of disease, target age of the population and willingness to subsidise others, potential number of beneficiaries, individual health benefit, and cost-effectiveness). Parameter estimates from the DCE were used to calculate the probability of choosing a healthcare intervention with different characteristics, and to rank different equity and efficiency attributes according to their importance. In all three countries, cost-effectiveness, individual health benefit and severity of the disease were significant and equally important determinants of decisions. All countries show preferences for interventions targeting young and middle aged populations compared to those targeting populations over 60. However, decision-makers in Austria and Hungary show preferences more oriented to efficiency than equity, while those in Norway show equal preferences for equity and efficiency attributes. We find that factors other than cost-effectiveness seem to play an equally important role in decision-making. We also find evidence of cross-country differences in the weight of efficiency and equity attributes.

  4. Data Model for Multi Hazard Risk Assessment Spatial Support Decision System

    NASA Astrophysics Data System (ADS)

    Andrejchenko, Vera; Bakker, Wim; van Westen, Cees

    2014-05-01

    The goal of the CHANGES Spatial Decision Support System is to support end-users in making decisions related to risk reduction measures for areas at risk from multiple hydro-meteorological hazards. The crucial parts in the design of the system are the user requirements, the data model, the data storage and management, and the relationships between the objects in the system. The implementation of the data model is carried out entirely with an open source database management system with a spatial extension. The web application is implemented using open source geospatial technologies with PostGIS as the database, Python for scripting, and Geoserver and javascript libraries for visualization and the client-side user-interface. The model can handle information from different study areas (currently, study areas from France, Romania, Italia and Poland are considered). Furthermore, the data model handles information about administrative units, projects accessible by different types of users, user-defined hazard types (floods, snow avalanches, debris flows, etc.), hazard intensity maps of different return periods, spatial probability maps, elements at risk maps (buildings, land parcels, linear features etc.), economic and population vulnerability information dependent on the hazard type and the type of the element at risk, in the form of vulnerability curves. The system has an inbuilt database of vulnerability curves, but users can also add their own ones. Included in the model is the management of a combination of different scenarios (e.g. related to climate change, land use change or population change) and alternatives (possible risk-reduction measures), as well as data-structures for saving the calculated economic or population loss or exposure per element at risk, aggregation of the loss and exposure using the administrative unit maps, and finally, producing the risk maps. The risk data can be used for cost-benefit analysis (CBA) and multi-criteria evaluation (SMCE). The

  5. Comparison of two multi-criteria decision techniques for eliciting treatment preferences in people with neurological disorders.

    PubMed

    Ijzerman, Maarten J; van Til, Janine A; Snoek, Govert J

    2008-12-01

    To present and compare two multi-criteria decision techniques (analytic hierarchy process [AHP] and conjoint analysis [CA]) for eliciting preferences in patients with cervical spinal cord injury (SCI) who are eligible for surgical augmentation of hand function, either with or without implantation of a neuroprosthesis. The methods were compared in respect to attribute weights, overall preference, and practical experiences. Two previously designed and administered multi-criteria decision surveys in patients with SCI were compared and further analysed. Attributes and their weights in the AHP experiment were determined by an expert panel, followed by determination of the weights in the patient group. Attributes for the CA were selected and validated using an expert panel, piloted in six patients with SCI and subsequently administered to the same group of patients as participated in the AHP experiment. Both experiments showed the importance of non-outcome-related factors such as inpatient stay and number of surgical procedures. In particular, patients were less concerned with clinical outcomes in actual decision making. Overall preference in both the AHP and CA was in favor of tendon reconstruction (0.6 vs 0.4 for neuroprosthetic implantation). Both methods were easy to apply, but AHP was less easily explained and understood. Both the AHP and CA methods produced similar outcomes, which may have been caused by the obvious preferences of patients. CA may be preferred because of the holistic approach of considering all treatment attributes simultaneously and, hence, its power in simulating real market decisions. On the other hand, the AHP method is preferred as a hands-on, easy-to-implement task with immediate feedback to the respondent. This flexibility allows AHP to be used in shared decision making. However, the way the technique is composed results in many inconsistencies. Patients preferred CA but complained about the number of choice tasks.

  6. Using multi-species occupancy models in structured decision making on managed lands

    USGS Publications Warehouse

    Sauer, John R.; Blank, Peter J.; Zipkin, Elise F.; Fallon, Jane E.; Fallon, Frederick W.

    2013-01-01

    Land managers must balance the needs of a variety of species when manipulating habitats. Structured decision making provides a systematic means of defining choices and choosing among alternative management options; implementation of a structured decision requires quantitative approaches to predicting consequences of management on the relevant species. Multi-species occupancy models provide a convenient framework for making structured decisions when the management objective is focused on a collection of species. These models use replicate survey data that are often collected on managed lands. Occupancy can be modeled for each species as a function of habitat and other environmental features, and Bayesian methods allow for estimation and prediction of collective responses of groups of species to alternative scenarios of habitat management. We provide an example of this approach using data from breeding bird surveys conducted in 2008 at the Patuxent Research Refuge in Laurel, Maryland, evaluating the effects of eliminating meadow and wetland habitats on scrub-successional and woodland-breeding bird species using summed total occupancy of species as an objective function. Removal of meadows and wetlands decreased value of an objective function based on scrub-successional species by 23.3% (95% CI: 20.3–26.5), but caused only a 2% (0.5, 3.5) increase in value of an objective function based on woodland species, documenting differential effects of elimination of meadows and wetlands on these groups of breeding birds. This approach provides a useful quantitative tool for managers interested in structured decision making.

  7. Multi-attribute Regret-Based Dynamic Pricing

    NASA Astrophysics Data System (ADS)

    Jumadinova, Janyl; Dasgupta, Prithviraj

    In this paper, we consider the problem of dynamic pricing by a set of competing sellers in an information economy where buyers differentiate products along multiple attributes, and buyer preferences can change temporally. Previous research in this area has either focused on dynamic pricing along a limited number of (e.g. binary) attributes, or, assumes that each seller has access to private information such as preference distribution of buyers, and profit/price information of other sellers. However, in real information markets, private information about buyers and sellers cannot be assumed to be available a priori. Moreover, due to the competition between sellers, each seller faces a tradeoff between accuracy and rapidity of the pricing mechanism. In this paper, we describe a multi-attribute dynamic pricing algorithm based on minimax regret that can be used by a seller's agent called a pricebot, to maximize the seller's utility. Our simulation results show that the minimax regret based dynamic pricing algorithm performs significantly better than other algorithms for rapidly and dynamically tracking consumer attributes without using any private information from either buyers or sellers.

  8. Comparing multi-criteria decision analysis and integrated assessment to support long-term water supply planning

    PubMed Central

    Maurer, Max; Lienert, Judit

    2017-01-01

    We compare the use of multi-criteria decision analysis (MCDA)–or more precisely, models used in multi-attribute value theory (MAVT)–to integrated assessment (IA) models for supporting long-term water supply planning in a small town case study in Switzerland. They are used to evaluate thirteen system scale water supply alternatives in four future scenarios regarding forty-four objectives, covering technical, social, environmental, and economic aspects. The alternatives encompass both conventional and unconventional solutions and differ regarding technical, spatial and organizational characteristics. This paper focuses on the impact assessment and final evaluation step of the structured MCDA decision support process. We analyze the performance of the alternatives for ten stakeholders. We demonstrate the implications of model assumptions by comparing two IA and three MAVT evaluation model layouts of different complexity. For this comparison, we focus on the validity (ranking stability), desirability (value), and distinguishability (value range) of the alternatives given the five model layouts. These layouts exclude or include stakeholder preferences and uncertainties. Even though all five led us to identify the same best alternatives, they did not produce identical rankings. We found that the MAVT-type models provide higher distinguishability and a more robust basis for discussion than the IA-type models. The needed complexity of the model, however, should be determined based on the intended use of the model within the decision support process. The best-performing alternatives had consistently strong performance for all stakeholders and future scenarios, whereas the current water supply system was outperformed in all evaluation layouts. The best-performing alternatives comprise proactive pipe rehabilitation, adapted firefighting provisions, and decentralized water storage and/or treatment. We present recommendations for possible ways of improving water supply

  9. Survival or Mortality: Does Risk Attribute Framing Influence Decision-Making Behavior in a Discrete Choice Experiment?

    PubMed

    Veldwijk, Jorien; Essers, Brigitte A B; Lambooij, Mattijs S; Dirksen, Carmen D; Smit, Henriette A; de Wit, G Ardine

    2016-01-01

    To test how attribute framing in a discrete choice experiment (DCE) affects respondents' decision-making behavior and their preferences. Two versions of a DCE questionnaire containing nine choice tasks were distributed among a representative sample of the Dutch population aged 55 to 65 years. The DCE consisted of four attributes related to the decision regarding participation in genetic screening for colorectal cancer (CRC). The risk attribute included was framed positively as the probability of surviving CRC and negatively as the probability of dying from CRC. Panel mixed-logit models were used to estimate the relative importance of the attributes. The data of the positively and negatively framed DCE were compared on the basis of direct attribute ranking, dominant decision-making behavior, preferences, and importance scores. The majority (56%) of the respondents ranked survival as the most important attribute in the positively framed DCE, whereas only a minority (8%) of the respondents ranked mortality as the most important attribute in the negatively framed DCE. Respondents made dominant choices based on survival significantly more often than based on mortality. The framing of the risk attribute significantly influenced all attribute-level estimates and resulted in different preference structures among respondents in the positively and negatively framed data set. Risk framing affects how respondents value the presented risk. Positive risk framing led to increased dominant decision-making behavior, whereas negative risk framing led to risk-seeking behavior. Attribute framing should have a prominent part in the expert and focus group interviews, and different types of framing should be used in the pilot version of DCEs as well as in actual DCEs to estimate the magnitude of the effect of choosing different types of framing. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  10. Technology selection for ballast water treatment by multi-stakeholders: A multi-attribute decision analysis approach based on the combined weights and extension theory.

    PubMed

    Ren, Jingzheng

    2018-01-01

    This objective of this study is to develop a generic multi-attribute decision analysis framework for ranking the technologies for ballast water treatment and determine their grades. An evaluation criteria system consisting of eight criteria in four categories was used to evaluate the technologies for ballast water treatment. The Best-Worst method, which is a subjective weighting method and Criteria importance through inter-criteria correlation method, which is an objective weighting method, were combined to determine the weights of the evaluation criteria. The extension theory was employed to prioritize the technologies for ballast water treatment and determine their grades. An illustrative case including four technologies for ballast water treatment, i.e. Alfa Laval (T 1 ), Hyde (T 2 ), Unitor (T 3 ), and NaOH (T 4 ), were studied by the proposed method, and the Hyde (T 2 ) was recognized as the best technology. Sensitivity analysis was also carried to investigate the effects of the combined coefficients and the weights of the evaluation criteria on the final priority order of the four technologies for ballast water treatment. The sum weighted method and the TOPSIS was also employed to rank the four technologies, and the results determined by these two methods are consistent to that determined by the proposed method in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Methods and Model Dependency of Extreme Event Attribution: The 2015 European Drought

    NASA Astrophysics Data System (ADS)

    Hauser, Mathias; Gudmundsson, Lukas; Orth, René; Jézéquel, Aglaé; Haustein, Karsten; Vautard, Robert; van Oldenborgh, Geert J.; Wilcox, Laura; Seneviratne, Sonia I.

    2017-10-01

    Science on the role of anthropogenic influence on extreme weather events, such as heatwaves or droughts, has evolved rapidly in the past years. The approach of "event attribution" compares the occurrence-probability of an event in the present, factual climate with its probability in a hypothetical, counterfactual climate without human-induced climate change. Several methods can be used for event attribution, based on climate model simulations and observations, and usually researchers only assess a subset of methods and data sources. Here, we explore the role of methodological choices for the attribution of the 2015 meteorological summer drought in Europe. We present contradicting conclusions on the relevance of human influence as a function of the chosen data source and event attribution methodology. Assessments using the maximum number of models and counterfactual climates with pre-industrial greenhouse gas concentrations point to an enhanced drought risk in Europe. However, other evaluations show contradictory evidence. These results highlight the need for a multi-model and multi-method framework in event attribution research, especially for events with a low signal-to-noise ratio and high model dependency such as regional droughts.

  12. Smart Grid as Multi-layer Interacting System for Complex Decision Makings

    NASA Astrophysics Data System (ADS)

    Bompard, Ettore; Han, Bei; Masera, Marcelo; Pons, Enrico

    This chapter presents an approach to the analysis of Smart Grids based on a multi-layer representation of their technical, cyber, social and decision-making aspects, as well as the related environmental constraints. In the Smart Grid paradigm, self-interested active customers (prosumers), system operators and market players interact among themselves making use of an extensive cyber infrastructure. In addition, policy decision makers define regulations, incentives and constraints to drive the behavior of the competing operators and prosumers, with the objective of ensuring the global desired performance (e.g. system stability, fair prices). For these reasons, the policy decision making is more complicated than in traditional power systems, and needs proper modeling and simulation tools for assessing "in vitro" and ex-ante the possible impacts of the decisions assumed. In this chapter, we consider the smart grids as multi-layered interacting complex systems. The intricacy of the framework, characterized by several interacting layers, cannot be captured by closed-form mathematical models. Therefore, a new approach using Multi Agent Simulation is described. With case studies we provide some indications about how to develop agent-based simulation tools presenting some preliminary examples.

  13. Evaluate the use of tanning agent in leather industry using material flow analysis, life cycle assessment and fuzzy multi-attribute decision making (FMADM)

    NASA Astrophysics Data System (ADS)

    Alfarisi, Salman; Sutono, Sugoro Bhakti; Sutopo, Wahyudi

    2017-11-01

    Tanning industry is one of the companies that produce many pollutants and cause the negative impact on the environment. In the production process of tanning leather, the use of input material need to be evaluated. The problem of waste, not only have a negative impact on the environment, but also human health. In this study, the impact of mimosa as vegetable tanning agent evaluated. This study will provide alternative solutions for improvements to the use of vegetable tanning agent. The alternative solution is change mimosa with indusol, gambier, and dulcotan. This study evaluate the vegetable tanning of some aspects using material flow analysis and life cycle assessment approach. Life cycle assessment (LCA) is used to evaluate the environmental impact of vegetable tanning agent. Alternative solution selection using fuzzy multi-attribute decision making (FMADM) approach. Results obtained by considering the environment, human toxicity, climate change, and marine aquatic ecotoxicity, is to use dulcotan.

  14. Graduate Attribute Attainment in a Multi-Level Undergraduate Geography Course

    ERIC Educational Resources Information Center

    Mager, Sarah; Spronken-Smith, Rachel

    2014-01-01

    We investigated students' perceptions of graduate attributes in a multi-level (second and third year) geography course. A case study with mixed methodology was employed, with data collected through focus groups and a survey. We found that undergraduate geography students can identify the skills, knowledge and attributes that are developed through…

  15. Visual analytics techniques for large multi-attribute time series data

    NASA Astrophysics Data System (ADS)

    Hao, Ming C.; Dayal, Umeshwar; Keim, Daniel A.

    2008-01-01

    Time series data commonly occur when variables are monitored over time. Many real-world applications involve the comparison of long time series across multiple variables (multi-attributes). Often business people want to compare this year's monthly sales with last year's sales to make decisions. Data warehouse administrators (DBAs) want to know their daily data loading job performance. DBAs need to detect the outliers early enough to act upon them. In this paper, two new visual analytic techniques are introduced: The color cell-based Visual Time Series Line Charts and Maps highlight significant changes over time in a long time series data and the new Visual Content Query facilitates finding the contents and histories of interesting patterns and anomalies, which leads to root cause identification. We have applied both methods to two real-world applications to mine enterprise data warehouse and customer credit card fraud data to illustrate the wide applicability and usefulness of these techniques.

  16. A decision support model for improving a multi-family housing complex based on CO2 emission from electricity consumption.

    PubMed

    Hong, Taehoon; Koo, Choongwan; Kim, Hyunjoong

    2012-12-15

    The number of deteriorated multi-family housing complexes in South Korea continues to rise, and consequently their electricity consumption is also increasing. This needs to be addressed as part of the nation's efforts to reduce energy consumption. The objective of this research was to develop a decision support model for determining the need to improve multi-family housing complexes. In this research, 1664 cases located in Seoul were selected for model development. The research team collected the characteristics and electricity energy consumption data of these projects in 2009-2010. The following were carried out in this research: (i) using the Decision Tree, multi-family housing complexes were clustered based on their electricity energy consumption; (ii) using Case-Based Reasoning, similar cases were retrieved from the same cluster; and (iii) using a combination of Multiple Regression Analysis, Artificial Neural Network, and Genetic Algorithm, the prediction performance of the developed model was improved. The results of this research can be used as follows: (i) as basic research data for continuously managing several energy consumption data of multi-family housing complexes; (ii) as advanced research data for predicting energy consumption based on the project characteristics; (iii) as practical research data for selecting the most optimal multi-family housing complex with the most potential in terms of energy savings; and (iv) as consistent and objective criteria for incentives and penalties. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Multi-Agent simulation of generation capacity expansion decisions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Botterud, A.; Mahalik, M.; Conzelmann, G.

    2008-01-01

    In this paper, we use a multi-agent simulation model, EMCAS, to analyze generation expansion in the Iberian electricity market. The expansion model simulates generation investment decisions of decentralized generating companies (GenCos) interacting in a complex, multidimensional environment. A probabilistic dispatch algorithm calculates prices and profits for new candidate units in different future states of the system. Uncertainties in future load, hydropower conditions, and competitorspsila actions are represented in a scenario tree, and decision analysis is used to identify the optimal expansion decision for each individual GenCo. We run the model using detailed data for the Iberian market. In a scenariomore » analysis, we look at the impact of market design variables, such as the energy price cap and carbon emission prices. We also analyze how market concentration and GenCospsila risk preferences influence the timing and choice of new generating capacity.« less

  18. Decision Making In Assignment Problem With Multiple Attributes Under Intuitionistic Fuzzy Environment

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sathi; Basu, Kajla

    2010-10-01

    In this paper we develop a methodology to solve the multiple attribute assignment problems where the attributes are considered to be Intuitionistic Fuzzy Sets (IFS). We apply the concept of similarity measures of IFS to solve the Intuitionistic Fuzzy Multi-Attribute Assignment Problem (IFMAAP). The weights of the attributes are determined from expert opinion. An illustrative example is solved to verify the developed approach and to demonstrate its practicality.

  19. How to use multi-criteria decision analysis methods for reimbursement decision-making in healthcare: a step-by-step guide.

    PubMed

    Diaby, Vakaramoko; Goeree, Ron

    2014-02-01

    In recent years, the quest for more comprehensiveness, structure and transparency in reimbursement decision-making in healthcare has prompted the research into alternative decision-making frameworks. In this environment, multi-criteria decision analysis (MCDA) is arising as a valuable tool to support healthcare decision-making. In this paper, we present the main MCDA decision support methods (elementary methods, value-based measurement models, goal programming models and outranking models) using a case study approach. For each family of methods, an example of how an MCDA model would operate in a real decision-making context is presented from a critical perspective, highlighting the parameters setting, the selection of the appropriate evaluation model as well as the role of sensitivity and robustness analyses. This study aims to provide a step-by-step guide on how to use MCDA methods for reimbursement decision-making in healthcare.

  20. Comprehensive decision tree models in bioinformatics.

    PubMed

    Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter

    2012-01-01

    Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class attributes and a high number of possibly

  1. Comprehensive Decision Tree Models in Bioinformatics

    PubMed Central

    Stiglic, Gregor; Kocbek, Simon; Pernek, Igor; Kokol, Peter

    2012-01-01

    Purpose Classification is an important and widely used machine learning technique in bioinformatics. Researchers and other end-users of machine learning software often prefer to work with comprehensible models where knowledge extraction and explanation of reasoning behind the classification model are possible. Methods This paper presents an extension to an existing machine learning environment and a study on visual tuning of decision tree classifiers. The motivation for this research comes from the need to build effective and easily interpretable decision tree models by so called one-button data mining approach where no parameter tuning is needed. To avoid bias in classification, no classification performance measure is used during the tuning of the model that is constrained exclusively by the dimensions of the produced decision tree. Results The proposed visual tuning of decision trees was evaluated on 40 datasets containing classical machine learning problems and 31 datasets from the field of bioinformatics. Although we did not expected significant differences in classification performance, the results demonstrate a significant increase of accuracy in less complex visually tuned decision trees. In contrast to classical machine learning benchmarking datasets, we observe higher accuracy gains in bioinformatics datasets. Additionally, a user study was carried out to confirm the assumption that the tree tuning times are significantly lower for the proposed method in comparison to manual tuning of the decision tree. Conclusions The empirical results demonstrate that by building simple models constrained by predefined visual boundaries, one not only achieves good comprehensibility, but also very good classification performance that does not differ from usually more complex models built using default settings of the classical decision tree algorithm. In addition, our study demonstrates the suitability of visually tuned decision trees for datasets with binary class

  2. Linguistic multi-criteria decision-making with representing semantics by programming

    NASA Astrophysics Data System (ADS)

    Yang, Wu-E.; Ma, Chao-Qun; Han, Zhi-Qiu

    2017-01-01

    A linguistic multi-criteria decision-making method is introduced. In this method, a maximising discrimination programming assigns the semanteme values to linguistic variables to represent their semantics. Incomplete preferences from using linguistic information are expressed by the constraints of the model. Such assignment can amplify the difference between alternatives. Thus, the discrimination of the decision model is increased, which facilitates the decision-maker to rank or order the alternatives for making a decision. We also discuss the parameter setting and its influence, and use an application example to illustrate the proposed method. Further, the results with three types of semantic structure highlight the ability of the method in handling different semantic structures.

  3. A Monte-Carlo game theoretic approach for Multi-Criteria Decision Making under uncertainty

    NASA Astrophysics Data System (ADS)

    Madani, Kaveh; Lund, Jay R.

    2011-05-01

    Game theory provides a useful framework for studying Multi-Criteria Decision Making problems. This paper suggests modeling Multi-Criteria Decision Making problems as strategic games and solving them using non-cooperative game theory concepts. The suggested method can be used to prescribe non-dominated solutions and also can be used as a method to predict the outcome of a decision making problem. Non-cooperative stability definitions for solving the games allow consideration of non-cooperative behaviors, often neglected by other methods which assume perfect cooperation among decision makers. To deal with the uncertainty in input variables a Monte-Carlo Game Theory (MCGT) approach is suggested which maps the stochastic problem into many deterministic strategic games. The games are solved using non-cooperative stability definitions and the results include possible effects of uncertainty in input variables on outcomes. The method can handle multi-criteria multi-decision-maker problems with uncertainty. The suggested method does not require criteria weighting, developing a compound decision objective, and accurate quantitative (cardinal) information as it simplifies the decision analysis by solving problems based on qualitative (ordinal) information, reducing the computational burden substantially. The MCGT method is applied to analyze California's Sacramento-San Joaquin Delta problem. The suggested method provides insights, identifies non-dominated alternatives, and predicts likely decision outcomes.

  4. Multi Criteria Evaluation Module for RiskChanges Spatial Decision Support System

    NASA Astrophysics Data System (ADS)

    Olyazadeh, Roya; Jaboyedoff, Michel; van Westen, Cees; Bakker, Wim

    2015-04-01

    Multi-Criteria Evaluation (MCE) module is one of the five modules of RiskChanges spatial decision support system. RiskChanges web-based platform aims to analyze changes in hydro-meteorological risk and provides tools for selecting the best risk reduction alternative. It is developed under CHANGES framework (changes-itn.eu) and INCREO project (increo-fp7.eu). MCE tool helps decision makers and spatial planners to evaluate, sort and rank the decision alternatives. The users can choose among different indicators that are defined within the system using Risk and Cost Benefit analysis results besides they can add their own indicators. Subsequently the system standardizes and prioritizes them. Finally, the best decision alternative is selected by using the weighted sum model (WSM). The Application of this work is to facilitate the effect of MCE for analyzing changing risk over the time under different scenarios and future years by adopting a group decision making into practice and comparing the results by numeric and graphical view within the system. We believe that this study helps decision-makers to achieve the best solution by expressing their preferences for strategies under future scenarios. Keywords: Multi-Criteria Evaluation, Spatial Decision Support System, Weighted Sum Model, Natural Hazard Risk Management

  5. Multi-criteria decision analysis in environmental sciences: ten years of applications and trends.

    PubMed

    Huang, Ivy B; Keisler, Jeffrey; Linkov, Igor

    2011-09-01

    Decision-making in environmental projects requires consideration of trade-offs between socio-political, environmental, and economic impacts and is often complicated by various stakeholder views. Multi-criteria decision analysis (MCDA) emerged as a formal methodology to face available technical information and stakeholder values to support decisions in many fields and can be especially valuable in environmental decision making. This study reviews environmental applications of MCDA. Over 300 papers published between 2000 and 2009 reporting MCDA applications in the environmental field were identified through a series of queries in the Web of Science database. The papers were classified by their environmental application area, decision or intervention type. In addition, the papers were also classified by the MCDA methods used in the analysis (analytic hierarchy process, multi-attribute utility theory, and outranking). The results suggest that there is a significant growth in environmental applications of MCDA over the last decade across all environmental application areas. Multiple MCDA tools have been successfully used for environmental applications. Even though the use of the specific methods and tools varies in different application areas and geographic regions, our review of a few papers where several methods were used in parallel with the same problem indicates that recommended course of action does not vary significantly with the method applied. Published by Elsevier B.V.

  6. Multi-alternative decision-making with non-stationary inputs.

    PubMed

    Nunes, Luana F; Gurney, Kevin

    2016-08-01

    One of the most widely implemented models for multi-alternative decision-making is the multihypothesis sequential probability ratio test (MSPRT). It is asymptotically optimal, straightforward to implement, and has found application in modelling biological decision-making. However, the MSPRT is limited in application to discrete ('trial-based'), non-time-varying scenarios. By contrast, real world situations will be continuous and entail stimulus non-stationarity. In these circumstances, decision-making mechanisms (like the MSPRT) which work by accumulating evidence, must be able to discard outdated evidence which becomes progressively irrelevant. To address this issue, we introduce a new decision mechanism by augmenting the MSPRT with a rectangular integration window and a transparent decision boundary. This allows selection and de-selection of options as their evidence changes dynamically. Performance was enhanced by adapting the window size to problem difficulty. Further, we present an alternative windowing method which exponentially decays evidence and does not significantly degrade performance, while greatly reducing the memory resources necessary. The methods presented have proven successful at allowing for the MSPRT algorithm to function in a non-stationary environment.

  7. Single-process versus multiple-strategy models of decision making: evidence from an information intrusion paradigm.

    PubMed

    Söllner, Anke; Bröder, Arndt; Glöckner, Andreas; Betsch, Tilmann

    2014-02-01

    When decision makers are confronted with different problems and situations, do they use a uniform mechanism as assumed by single-process models (SPMs) or do they choose adaptively from a set of available decision strategies as multiple-strategy models (MSMs) imply? Both frameworks of decision making have gathered a lot of support, but only rarely have they been contrasted with each other. Employing an information intrusion paradigm for multi-attribute decisions from givens, SPM and MSM predictions on information search, decision outcomes, attention, and confidence judgments were derived and tested against each other in two experiments. The results consistently support the SPM view: Participants seemingly using a "take-the-best" (TTB) strategy do not ignore TTB-irrelevant information as MSMs would predict, but adapt the amount of information searched, choose alternative choice options, and show varying confidence judgments contingent on the quality of the "irrelevant" information. The uniformity of these findings underlines the adequacy of the novel information intrusion paradigm and comprehensively promotes the notion of a uniform decision making mechanism as assumed by single-process models. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Multi-criteria multi-stakeholder decision analysis using a fuzzy-stochastic approach for hydrosystem management

    NASA Astrophysics Data System (ADS)

    Subagadis, Y. H.; Schütze, N.; Grundmann, J.

    2014-09-01

    The conventional methods used to solve multi-criteria multi-stakeholder problems are less strongly formulated, as they normally incorporate only homogeneous information at a time and suggest aggregating objectives of different decision-makers avoiding water-society interactions. In this contribution, Multi-Criteria Group Decision Analysis (MCGDA) using a fuzzy-stochastic approach has been proposed to rank a set of alternatives in water management decisions incorporating heterogeneous information under uncertainty. The decision making framework takes hydrologically, environmentally, and socio-economically motivated conflicting objectives into consideration. The criteria related to the performance of the physical system are optimized using multi-criteria simulation-based optimization, and fuzzy linguistic quantifiers have been used to evaluate subjective criteria and to assess stakeholders' degree of optimism. The proposed methodology is applied to find effective and robust intervention strategies for the management of a coastal hydrosystem affected by saltwater intrusion due to excessive groundwater extraction for irrigated agriculture and municipal use. Preliminary results show that the MCGDA based on a fuzzy-stochastic approach gives useful support for robust decision-making and is sensitive to the decision makers' degree of optimism.

  9. A Probabilistic, Dynamic, and Attribute-wise Model of Intertemporal Choice

    PubMed Central

    Dai, Junyi; Busemeyer, Jerome R.

    2014-01-01

    Most theoretical and empirical research on intertemporal choice assumes a deterministic and static perspective, leading to the widely adopted delay discounting models. As a form of preferential choice, however, intertemporal choice may be generated by a stochastic process that requires some deliberation time to reach a decision. We conducted three experiments to investigate how choice and decision time varied as a function of manipulations designed to examine the delay duration effect, the common difference effect, and the magnitude effect in intertemporal choice. The results, especially those associated with the delay duration effect, challenged the traditional deterministic and static view and called for alternative approaches. Consequently, various static or dynamic stochastic choice models were explored and fit to the choice data, including alternative-wise models derived from the traditional exponential or hyperbolic discount function and attribute-wise models built upon comparisons of direct or relative differences in money and delay. Furthermore, for the first time, dynamic diffusion models, such as those based on decision field theory, were also fit to the choice and response time data simultaneously. The results revealed that the attribute-wise diffusion model with direct differences, power transformations of objective value and time, and varied diffusion parameter performed the best and could account for all three intertemporal effects. In addition, the empirical relationship between choice proportions and response times was consistent with the prediction of diffusion models and thus favored a stochastic choice process for intertemporal choice that requires some deliberation time to make a decision. PMID:24635188

  10. Neural Underpinnings of Decision Strategy Selection: A Review and a Theoretical Model

    PubMed Central

    Wichary, Szymon; Smolen, Tomasz

    2016-01-01

    In multi-attribute choice, decision makers use decision strategies to arrive at the final choice. What are the neural mechanisms underlying decision strategy selection? The first goal of this paper is to provide a literature review on the neural underpinnings and cognitive models of decision strategy selection and thus set the stage for a neurocognitive model of this process. The second goal is to outline such a unifying, mechanistic model that can explain the impact of noncognitive factors (e.g., affect, stress) on strategy selection. To this end, we review the evidence for the factors influencing strategy selection, the neural basis of strategy use and the cognitive models of this process. We also present the Bottom-Up Model of Strategy Selection (BUMSS). The model assumes that the use of the rational Weighted Additive strategy and the boundedly rational heuristic Take The Best can be explained by one unifying, neurophysiologically plausible mechanism, based on the interaction of the frontoparietal network, orbitofrontal cortex, anterior cingulate cortex and the brainstem nucleus locus coeruleus. According to BUMSS, there are three processes that form the bottom-up mechanism of decision strategy selection and lead to the final choice: (1) cue weight computation, (2) gain modulation, and (3) weighted additive evaluation of alternatives. We discuss how these processes might be implemented in the brain, and how this knowledge allows us to formulate novel predictions linking strategy use and neural signals. PMID:27877103

  11. Neural Underpinnings of Decision Strategy Selection: A Review and a Theoretical Model.

    PubMed

    Wichary, Szymon; Smolen, Tomasz

    2016-01-01

    In multi-attribute choice, decision makers use decision strategies to arrive at the final choice. What are the neural mechanisms underlying decision strategy selection? The first goal of this paper is to provide a literature review on the neural underpinnings and cognitive models of decision strategy selection and thus set the stage for a neurocognitive model of this process. The second goal is to outline such a unifying, mechanistic model that can explain the impact of noncognitive factors (e.g., affect, stress) on strategy selection. To this end, we review the evidence for the factors influencing strategy selection, the neural basis of strategy use and the cognitive models of this process. We also present the Bottom-Up Model of Strategy Selection (BUMSS). The model assumes that the use of the rational Weighted Additive strategy and the boundedly rational heuristic Take The Best can be explained by one unifying, neurophysiologically plausible mechanism, based on the interaction of the frontoparietal network, orbitofrontal cortex, anterior cingulate cortex and the brainstem nucleus locus coeruleus. According to BUMSS, there are three processes that form the bottom-up mechanism of decision strategy selection and lead to the final choice: (1) cue weight computation, (2) gain modulation, and (3) weighted additive evaluation of alternatives. We discuss how these processes might be implemented in the brain, and how this knowledge allows us to formulate novel predictions linking strategy use and neural signals.

  12. A Generalized Decision Framework Using Multi-objective Optimization for Water Resources Planning

    NASA Astrophysics Data System (ADS)

    Basdekas, L.; Stewart, N.; Triana, E.

    2013-12-01

    Colorado Springs Utilities (CSU) is currently engaged in an Integrated Water Resource Plan (IWRP) to address the complex planning scenarios, across multiple time scales, currently faced by CSU. The modeling framework developed for the IWRP uses a flexible data-centered Decision Support System (DSS) with a MODSIM-based modeling system to represent the operation of the current CSU raw water system coupled with a state-of-the-art multi-objective optimization algorithm. Three basic components are required for the framework, which can be implemented for planning horizons ranging from seasonal to interdecadal. First, a water resources system model is required that is capable of reasonable system simulation to resolve performance metrics at the appropriate temporal and spatial scales of interest. The system model should be an existing simulation model, or one developed during the planning process with stakeholders, so that 'buy-in' has already been achieved. Second, a hydrologic scenario tool(s) capable of generating a range of plausible inflows for the planning period of interest is required. This may include paleo informed or climate change informed sequences. Third, a multi-objective optimization model that can be wrapped around the system simulation model is required. The new generation of multi-objective optimization models do not require parameterization which greatly reduces problem complexity. Bridging the gap between research and practice will be evident as we use a case study from CSU's planning process to demonstrate this framework with specific competing water management objectives. Careful formulation of objective functions, choice of decision variables, and system constraints will be discussed. Rather than treating results as theoretically Pareto optimal in a planning process, we use the powerful multi-objective optimization models as tools to more efficiently and effectively move out of the inferior decision space. The use of this framework will help CSU

  13. Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach.

    PubMed

    Han, Hu; K Jain, Anil; Shan, Shiguang; Chen, Xilin

    2017-08-10

    Face attribute estimation has many potential applications in video surveillance, face retrieval, and social media. While a number of methods have been proposed for face attribute estimation, most of them did not explicitly consider the attribute correlation and heterogeneity (e.g., ordinal vs. nominal and holistic vs. local) during feature representation learning. In this paper, we present a Deep Multi-Task Learning (DMTL) approach to jointly estimate multiple heterogeneous attributes from a single face image. In DMTL, we tackle attribute correlation and heterogeneity with convolutional neural networks (CNNs) consisting of shared feature learning for all the attributes, and category-specific feature learning for heterogeneous attributes. We also introduce an unconstrained face database (LFW+), an extension of public-domain LFW, with heterogeneous demographic attributes (age, gender, and race) obtained via crowdsourcing. Experimental results on benchmarks with multiple face attributes (MORPH II, LFW+, CelebA, LFWA, and FotW) show that the proposed approach has superior performance compared to state of the art. Finally, evaluations on a public-domain face database (LAP) with a single attribute show that the proposed approach has excellent generalization ability.

  14. Modelling innovation performance of European regions using multi-output neural networks

    PubMed Central

    Henriques, Roberto

    2017-01-01

    Regional innovation performance is an important indicator for decision-making regarding the implementation of policies intended to support innovation. However, patterns in regional innovation structures are becoming increasingly diverse, complex and nonlinear. To address these issues, this study aims to develop a model based on a multi-output neural network. Both intra- and inter-regional determinants of innovation performance are empirically investigated using data from the 4th and 5th Community Innovation Surveys of NUTS 2 (Nomenclature of Territorial Units for Statistics) regions. The results suggest that specific innovation strategies must be developed based on the current state of input attributes in the region. Thus, it is possible to develop appropriate strategies and targeted interventions to improve regional innovation performance. We demonstrate that support of entrepreneurship is an effective instrument of innovation policy. We also provide empirical support that both business and government R&D activity have a sigmoidal effect, implying that the most effective R&D support should be directed to regions with below-average and average R&D activity. We further show that the multi-output neural network outperforms traditional statistical and machine learning regression models. In general, therefore, it seems that the proposed model can effectively reflect both the multiple-output nature of innovation performance and the interdependency of the output attributes. PMID:28968449

  15. Modelling innovation performance of European regions using multi-output neural networks.

    PubMed

    Hajek, Petr; Henriques, Roberto

    2017-01-01

    Regional innovation performance is an important indicator for decision-making regarding the implementation of policies intended to support innovation. However, patterns in regional innovation structures are becoming increasingly diverse, complex and nonlinear. To address these issues, this study aims to develop a model based on a multi-output neural network. Both intra- and inter-regional determinants of innovation performance are empirically investigated using data from the 4th and 5th Community Innovation Surveys of NUTS 2 (Nomenclature of Territorial Units for Statistics) regions. The results suggest that specific innovation strategies must be developed based on the current state of input attributes in the region. Thus, it is possible to develop appropriate strategies and targeted interventions to improve regional innovation performance. We demonstrate that support of entrepreneurship is an effective instrument of innovation policy. We also provide empirical support that both business and government R&D activity have a sigmoidal effect, implying that the most effective R&D support should be directed to regions with below-average and average R&D activity. We further show that the multi-output neural network outperforms traditional statistical and machine learning regression models. In general, therefore, it seems that the proposed model can effectively reflect both the multiple-output nature of innovation performance and the interdependency of the output attributes.

  16. Influences of packaging attributes on consumer purchase decisions for fresh produce.

    PubMed

    Koutsimanis, Georgios; Getter, Kristin; Behe, Bridget; Harte, Janice; Almenar, Eva

    2012-10-01

    Packaging attributes are considered to have an influence on consumer purchase decisions for food and, as a consequence, also on its consumption. To improve the current minimal understanding of these influences for fresh produce, a survey instrument in the form of an online questionnaire has been developed and launched in the US. The first part of the questionnaire covers consumers' preferences for packaging convenience features, characteristics, materials, disposal method, and others for fresh produces in general, and the second focuses on attributes like price, container size, produce shelf life for a specific fresh produce, sweet cherries, to allow us to supply specific values for these factors to the participants. Cluster and conjoint analyses of responses from 292 participants reveal that specific packaging and produce attributes affect consumer purchase decisions of fresh produce in general and of sweet cherries in particular (P ≤ 0.05) and that some are population segment dependent (P ≤ 0.05). For produce packaging in general, 'extend the "best by" date' was ranked as the top convenience feature, the type of packaging material was considered to affect the food product quality (92.7%) and containers made from bio-based materials were highly appealing (3.52 out of 5.00). The most important attributes that affect the purchasing decisions of consumers regarding a specific fresh produce like sweet cherries are price (25%), shelf life (19%) and container size (17.2%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Decision analysis for a data collection system of patient-controlled analgesia with a multi-attribute utility model.

    PubMed

    Lee, I-Jung; Huang, Shih-Yu; Tsou, Mei-Yung; Chan, Kwok-Hon; Chang, Kuang-Yi

    2010-10-01

    Data collection systems are very important for the practice of patient-controlled analgesia (PCA). This study aimed to evaluate 3 PCA data collection systems and selected the most favorable system with the aid of multiattribute utility (MAU) theory. We developed a questionnaire with 10 items to evaluate the PCA data collection system and 1 item for overall satisfaction based on MAU theory. Three systems were compared in the questionnaire, including a paper record, optic card reader and personal digital assistant (PDA). A pilot study demonstrated a good internal and test-retest reliability of the questionnaire. A weighted utility score combining the relative importance of individual items assigned by each participant and their responses to each question was calculated for each system. Sensitivity analyses with distinct weighting protocols were conducted to evaluate the stability of the final results. Thirty potential users of a PCA data collection system were recruited in the study. The item "easy to use" had the highest median rank and received the heaviest mean weight among all items. MAU analysis showed that the PDA system had a higher utility score than that in the other 2 systems. Sensitivity analyses revealed that both inverse and reciprocal weighting processes favored the PDA system. High correlations between overall satisfaction and MAU scores from miscellaneous weighting protocols suggested a good predictive validity of our MAU-based questionnaire. The PDA system was selected as the most favorable PCA data collection system by the MAU analysis. The item "easy to use" was the most important attribute of the PCA data collection system. MAU theory can evaluate alternatives by taking into account individual preferences of stakeholders and aid in better decision-making. Copyright © 2010 Elsevier. Published by Elsevier B.V. All rights reserved.

  18. Applying air pollution modelling within a multi-criteria decision analysis framework to evaluate UK air quality policies

    NASA Astrophysics Data System (ADS)

    Chalabi, Zaid; Milojevic, Ai; Doherty, Ruth M.; Stevenson, David S.; MacKenzie, Ian A.; Milner, James; Vieno, Massimo; Williams, Martin; Wilkinson, Paul

    2017-10-01

    A decision support system for evaluating UK air quality policies is presented. It combines the output from a chemistry transport model, a health impact model and other impact models within a multi-criteria decision analysis (MCDA) framework. As a proof-of-concept, the MCDA framework is used to evaluate and compare idealized emission reduction policies in four sectors (combustion in energy and transformation industries, non-industrial combustion plants, road transport and agriculture) and across six outcomes or criteria (mortality, health inequality, greenhouse gas emissions, biodiversity, crop yield and air quality legal compliance). To illustrate a realistic use of the MCDA framework, the relative importance of the criteria were elicited from a number of stakeholders acting as proxy policy makers. In the prototype decision problem, we show that reducing emissions from industrial combustion (followed very closely by road transport and agriculture) is more advantageous than equivalent reductions from the other sectors when all the criteria are taken into account. Extensions of the MCDA framework to support policy makers in practice are discussed.

  19. Drug-related webpages classification based on multi-modal local decision fusion

    NASA Astrophysics Data System (ADS)

    Hu, Ruiguang; Su, Xiaojing; Liu, Yanxin

    2018-03-01

    In this paper, multi-modal local decision fusion is used for drug-related webpages classification. First, meaningful text are extracted through HTML parsing, and effective images are chosen by the FOCARSS algorithm. Second, six SVM classifiers are trained for six kinds of drug-taking instruments, which are represented by PHOG. One SVM classifier is trained for the cannabis, which is represented by the mid-feature of BOW model. For each instance in a webpage, seven SVMs give seven labels for its image, and other seven labels are given by searching the names of drug-taking instruments and cannabis in its related text. Concatenating seven labels of image and seven labels of text, the representation of those instances in webpages are generated. Last, Multi-Instance Learning is used to classify those drugrelated webpages. Experimental results demonstrate that the classification accuracy of multi-instance learning with multi-modal local decision fusion is much higher than those of single-modal classification.

  20. A decision support for an integrated multi-scale analysis of irrigation: DSIRR.

    PubMed

    Bazzani, Guido M

    2005-12-01

    The paper presents a decision support designed to conduct an economic-environmental assessment of the agricultural activity focusing on irrigation called 'Decision Support for IRRigated Agriculture' (DSIRR). The program describes the effect at catchment scale of choices taken at micro scale by independent actors, the farmers, by simulating their decision process. The decision support (DS) has been thought of as a support tool for participatory water policies as requested by the Water Framework Directive and it aims at analyzing alternatives in production and technology, according to different market, policy and climate conditions. The tool uses data and models, provides a graphical user interface and can incorporate the decision makers' own insights. Heterogeneity in preferences is admitted since it is assumed that irrigators try to optimize personal multi-attribute utility functions, subject to a set of constraints. Consideration of agronomic and engineering aspects allows an accurate description of irrigation. Mathematical programming techniques are applied to find solutions. The program has been applied in the river Po basin (northern Italy) to analyze the impact of a pricing policy in a context of irrigation technology innovation. Water demand functions and elasticity to water price have been estimated. Results demonstrate how different areas and systems react to the same policy in quite a different way. While in the annual cropping system pricing seems effective to save the resource at the cost of impeding Water Agencies cost recovery, the same policy has an opposite effect in the perennial fruit system which shows an inelastic response to water price. The multidimensional assessment conducted clarified the trades-off among conflicting economic-social-environmental objectives, thus generating valuable information to design a more tailored mix of measures.

  1. The Relationship of Decision-Making Styles and Attributional Styles in Addicted and Non-addicted Men.

    PubMed

    Shaghaghy, Farhad; Saffarinia, Majid; Iranpoor, Mohadeseh; Soltanynejad, Ali

    2011-01-01

    One of social problems which has affected our society and resulted in problems for different groups of people is drug abuse. This issue indicates a serious psychological, physical and social problem in community. Social skills have positive and successful influences in prevention of substance abuse. This includes the ability to explain events correctly and then appropriate decision making. This study compares decision making styles and attributional styles between addicted and non addicted men to recognize their role in addiction. In this study, 200 addicted and non addicted men were randomly selected. Decision-making style and attributional style questionnaires were used. Data analysis was performed by independent Student's t and Pearson correlation tests. The study population included 81 addicted and 90 non-addicted men. Addicted and non addicted men were significantly different in rational decision-making style (P < 0.05). Negative relationship was found between rational decision making and optimistic attribution style (r = -0.305, P < 0.01) and direct relationship was found between rational decision making and learned helplessness (r = 0.309, P < 0.01). Our study showed that addicts are less rational in decision making and addicts that developed learned helplessness were less rational and did not have optimistic attribution style. These issues show that addiction institutions and therapists have to pay attention to cognitive factors for addiction prevention.

  2. A Stochastic Multi-Attribute Assessment of Energy Options for Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Read, L.; Madani, K.; Mokhtari, S.; Hanks, C. L.; Sheets, B.

    2012-12-01

    Many competing projects have been proposed to address Interior Alaska's high cost of energy—both for electricity production and for heating. Public and private stakeholders are considering the costs associated with these competing projects which vary in fuel source, subsidy requirements, proximity, and other factors. As a result, the current projects under consideration involve a complex cost structure of potential subsidies and reliance on present and future market prices, introducing a significant amount of uncertainty associated with each selection. Multi-criteria multi-decision making (MCMDM) problems of this nature can benefit from game theory and systems engineering methods, which account for behavior and preferences of stakeholders in the analysis to produce feasible and relevant solutions. This work uses a stochastic MCMDM framework to evaluate the trade-offs of each proposed project based on a complete cost analysis, environmental impact, and long-term sustainability. Uncertainty in the model is quantified via a Monte Carlo analysis, which helps characterize the sensitivity and risk associated with each project. Based on performance measures and criteria outlined by the stakeholders, a decision matrix will inform policy on selecting a project that is both efficient and preferred by the constituents.

  3. Maclaurin symmetric mean operators of linguistic intuitionistic fuzzy numbers and their application to multiple-attribute decision-making

    NASA Astrophysics Data System (ADS)

    Liu, Peide; Qin, Xiyou

    2017-11-01

    Linguistic intuitionistic fuzzy number (LIFN) is a special intuitionistic fuzzy number which can more easily describe the vagueness existing in the real decision-making. Maclaurin symmetric mean (MSM) operator has the characteristic of considering the interrelationships among any number of input parameters. In this paper, we extended the MSM operator to the LIFNs and some extended MSM operators for LIFNs were proposed, some new decision-making methods were developed. Firstly, we introduced the definition, score function, properties and operational rules of the LIFNs. Then, we proposed some linguistic intuitionistic fuzzy MSM operators, such as linguistic intuitionistic fuzzy Maclaurin symmetric mean operator, weighted linguistic intuitionistic fuzzy Maclaurin symmetric mean (WLIFMSM) operator, linguistic intuitionistic fuzzy dual Maclaurin symmetric mean operator, weighted linguistic intuitionistic fuzzy dual Maclaurin symmetric mean (WLIFDMSM) operator. In the meantime, we studied some important properties of these operators, and developed some methods based on WLIFMSM operator and WLIFDMSM operator for multi-attribute decision-making. Finally, we use an example to demonstrate the effectiveness of the proposed methods.

  4. The use of multi-criteria decision making models in evaluating anesthesia method options in circumcision surgery.

    PubMed

    Hancerliogullari, Gulsah; Hancerliogullari, Kadir Oymen; Koksalmis, Emrah

    2017-01-23

    Determining the most suitable anesthesia method for circumcision surgery plays a fundamental role in pediatric surgery. This study is aimed to present pediatric surgeons' perspective on the relative importance of the criteria for selecting anesthesia method for circumcision surgery by utilizing the multi-criteria decision making methods. Fuzzy set theory offers a useful tool for transforming linguistic terms into numerical assessments. Since the evaluation of anesthesia methods requires linguistic terms, we utilize the fuzzy Analytic Hierarchy Process (AHP) and fuzzy Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Both mathematical decision-making methods are originated from individual judgements for qualitative factors utilizing the pair-wise comparison matrix. Our model uses four main criteria, eight sub-criteria as well as three alternatives. To assess the relative priorities, an online questionnaire was completed by three experts, pediatric surgeons, who had experience with circumcision surgery. Discussion of the results with the experts indicates that time-related factors are the most important criteria, followed by psychology, convenience and duration. Moreover, general anesthesia with penile block for circumcision surgery is the preferred choice of anesthesia compared to general anesthesia without penile block, which has a greater priority compared to local anesthesia under the discussed main-criteria and sub-criteria. The results presented in this study highlight the need to integrate surgeons' criteria into the decision making process for selecting anesthesia methods. This is the first study in which multi-criteria decision making tools, specifically fuzzy AHP and fuzzy TOPSIS, are used to evaluate anesthesia methods for a pediatric surgical procedure.

  5. Estimation of Survival Probabilities for Use in Cost-effectiveness Analyses: A Comparison of a Multi-state Modeling Survival Analysis Approach with Partitioned Survival and Markov Decision-Analytic Modeling

    PubMed Central

    Williams, Claire; Lewsey, James D.; Mackay, Daniel F.; Briggs, Andrew H.

    2016-01-01

    Modeling of clinical-effectiveness in a cost-effectiveness analysis typically involves some form of partitioned survival or Markov decision-analytic modeling. The health states progression-free, progression and death and the transitions between them are frequently of interest. With partitioned survival, progression is not modeled directly as a state; instead, time in that state is derived from the difference in area between the overall survival and the progression-free survival curves. With Markov decision-analytic modeling, a priori assumptions are often made with regard to the transitions rather than using the individual patient data directly to model them. This article compares a multi-state modeling survival regression approach to these two common methods. As a case study, we use a trial comparing rituximab in combination with fludarabine and cyclophosphamide v. fludarabine and cyclophosphamide alone for the first-line treatment of chronic lymphocytic leukemia. We calculated mean Life Years and QALYs that involved extrapolation of survival outcomes in the trial. We adapted an existing multi-state modeling approach to incorporate parametric distributions for transition hazards, to allow extrapolation. The comparison showed that, due to the different assumptions used in the different approaches, a discrepancy in results was evident. The partitioned survival and Markov decision-analytic modeling deemed the treatment cost-effective with ICERs of just over £16,000 and £13,000, respectively. However, the results with the multi-state modeling were less conclusive, with an ICER of just over £29,000. This work has illustrated that it is imperative to check whether assumptions are realistic, as different model choices can influence clinical and cost-effectiveness results. PMID:27698003

  6. Estimation of Survival Probabilities for Use in Cost-effectiveness Analyses: A Comparison of a Multi-state Modeling Survival Analysis Approach with Partitioned Survival and Markov Decision-Analytic Modeling.

    PubMed

    Williams, Claire; Lewsey, James D; Mackay, Daniel F; Briggs, Andrew H

    2017-05-01

    Modeling of clinical-effectiveness in a cost-effectiveness analysis typically involves some form of partitioned survival or Markov decision-analytic modeling. The health states progression-free, progression and death and the transitions between them are frequently of interest. With partitioned survival, progression is not modeled directly as a state; instead, time in that state is derived from the difference in area between the overall survival and the progression-free survival curves. With Markov decision-analytic modeling, a priori assumptions are often made with regard to the transitions rather than using the individual patient data directly to model them. This article compares a multi-state modeling survival regression approach to these two common methods. As a case study, we use a trial comparing rituximab in combination with fludarabine and cyclophosphamide v. fludarabine and cyclophosphamide alone for the first-line treatment of chronic lymphocytic leukemia. We calculated mean Life Years and QALYs that involved extrapolation of survival outcomes in the trial. We adapted an existing multi-state modeling approach to incorporate parametric distributions for transition hazards, to allow extrapolation. The comparison showed that, due to the different assumptions used in the different approaches, a discrepancy in results was evident. The partitioned survival and Markov decision-analytic modeling deemed the treatment cost-effective with ICERs of just over £16,000 and £13,000, respectively. However, the results with the multi-state modeling were less conclusive, with an ICER of just over £29,000. This work has illustrated that it is imperative to check whether assumptions are realistic, as different model choices can influence clinical and cost-effectiveness results.

  7. Information networks in the stock market based on the distance of the multi-attribute dimensions between listed companies

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Li, Huajiao; Liu, Xueyong; Jiang, Meihui

    2018-04-01

    In the stock market, there are widespread information connections between economic agents. Listed companies can obtain mutual information about investment decisions from common shareholders, and the extent of sharing information often determines the relationships between listed companies. Because different shareholder compositions and investment shares lead to different formations of the company's governance mechanisms, we map the investment relationships between shareholders to the multi-attribute dimensional spaces of the listed companies (each shareholder investment in a company is a company dimension). Then, we construct the listed company's information network based on co-shareholder relationships. The weights for the edges in the information network are measured with the Euclidean distance between the listed companies in the multi-attribute dimension space. We define two indices to analyze the information network's features. We conduct an empirical study that analyzes Chinese listed companies' information networks. The results from the analysis show that with the diversification and decentralization of shareholder investments, almost all Chinese listed companies exchanged information through common shareholder relationships, and there is a gradual reduction in information sharing capacity between listed companies that have common shareholders. This network analysis has benefits for risk management and portfolio investments.

  8. A colored petri nets based workload evaluation model and its validation through Multi-Attribute Task Battery-II.

    PubMed

    Wang, Peng; Fang, Weining; Guo, Beiyuan

    2017-04-01

    This paper proposed a colored petri nets based workload evaluation model. A formal interpretation of workload was firstly introduced based on the process that reflection of petri nets components to task. A petri net based description of Multiple Resources theory was given by comprehending it from a new angle. A new application of VACP rating scales named V/A-C-P unit, and the definition of colored transitions were proposed to build a model of task process. The calculation of workload mainly has the following four steps: determine token's initial position and values; calculate the weight of directed arcs on the basis of the rules proposed; calculate workload from different transitions, and correct the influence of repetitive behaviors. Verify experiments were carried out based on Multi-Attribute Task Battery-II software. Our results show that there is a strong correlation between the model values and NASA -Task Load Index scores (r=0.9513). In addition, this method can also distinguish behavior characteristics between different people. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Multi-criteria decision making to support waste management: A critical review of current practices and methods.

    PubMed

    Goulart Coelho, Lineker M; Lange, Liséte C; Coelho, Hosmanny Mg

    2017-01-01

    Solid waste management is a complex domain involving the interaction of several dimensions; thus, its analysis and control impose continuous challenges for decision makers. In this context, multi-criteria decision-making models have become important and convenient supporting tools for solid waste management because they can handle problems involving multiple dimensions and conflicting criteria. However, the selection of the multi-criteria decision-making method is a hard task since there are several multi-criteria decision-making approaches, each one with a large number of variants whose applicability depends on information availability and the aim of the study. Therefore, to support researchers and decision makers, the objectives of this article are to present a literature review of multi-criteria decision-making applications used in solid waste management, offer a critical assessment of the current practices, and provide suggestions for future works. A brief review of fundamental concepts on this topic is first provided, followed by the analysis of 260 articles related to the application of multi-criteria decision making in solid waste management. These studies were investigated in terms of the methodology, including specific steps such as normalisation, weighting, and sensitivity analysis. In addition, information related to waste type, the study objective, and aspects considered was recorded. From the articles analysed it is noted that studies using multi-criteria decision making in solid waste management are predominantly addressed to problems related to municipal solid waste involving facility location or management strategy.

  10. Decision Making for Pap Testing among Pacific Islander Women

    ERIC Educational Resources Information Center

    Weiss, Jie W.; Mouttapa, Michele; Sablan-Santos, Lola; DeGuzman Lacsamana, Jasmine; Quitugua, Lourdes; Park Tanjasiri, Sora

    2016-01-01

    This study employed a Multi-Attribute Utility (MAU) model to examine the Pap test decision-making process among Pacific Islanders (PI) residing in Southern California. A total of 585 PI women were recruited through social networks from Samoan and Tongan churches, and Chamorro family clans. A questionnaire assessed Pap test knowledge, beliefs and…

  11. m2-ABKS: Attribute-Based Multi-Keyword Search over Encrypted Personal Health Records in Multi-Owner Setting.

    PubMed

    Miao, Yinbin; Ma, Jianfeng; Liu, Ximeng; Wei, Fushan; Liu, Zhiquan; Wang, Xu An

    2016-11-01

    Online personal health record (PHR) is more inclined to shift data storage and search operations to cloud server so as to enjoy the elastic resources and lessen computational burden in cloud storage. As multiple patients' data is always stored in the cloud server simultaneously, it is a challenge to guarantee the confidentiality of PHR data and allow data users to search encrypted data in an efficient and privacy-preserving way. To this end, we design a secure cryptographic primitive called as attribute-based multi-keyword search over encrypted personal health records in multi-owner setting to support both fine-grained access control and multi-keyword search via Ciphertext-Policy Attribute-Based Encryption. Formal security analysis proves our scheme is selectively secure against chosen-keyword attack. As a further contribution, we conduct empirical experiments over real-world dataset to show its feasibility and practicality in a broad range of actual scenarios without incurring additional computational burden.

  12. A formulation of multidimensional growth models for the assessment and forecast of technology attributes

    NASA Astrophysics Data System (ADS)

    Danner, Travis W.

    Developing technology systems requires all manner of investment---engineering talent, prototypes, test facilities, and more. Even for simple design problems the investment can be substantial; for complex technology systems, the development costs can be staggering. The profitability of a corporation in a technology-driven industry is crucially dependent on maximizing the effectiveness of research and development investment. Decision-makers charged with allocation of this investment are forced to choose between the further evolution of existing technologies and the pursuit of revolutionary technologies. At risk on the one hand is excessive investment in an evolutionary technology which has only limited availability for further improvement. On the other hand, the pursuit of a revolutionary technology may mean abandoning momentum and the potential for substantial evolutionary improvement resulting from the years of accumulated knowledge. The informed answer to this question, evolutionary or revolutionary, requires knowledge of the expected rate of improvement and the potential a technology offers for further improvement. This research is dedicated to formulating the assessment and forecasting tools necessary to acquire this knowledge. The same physical laws and principles that enable the development and improvement of specific technologies also limit the ultimate capability of those technologies. Researchers have long used this concept as the foundation for modeling technological advancement through extrapolation by analogy to biological growth models. These models are employed to depict technology development as it asymptotically approaches limits established by the fundamental principles on which the technological approach is based. This has proven an effective and accurate approach to modeling and forecasting simple single-attribute technologies. With increased system complexity and the introduction of multiple system objectives, however, the usefulness of this

  13. EXPERIMENTING WITH MULTI-ATTRIBUTE UTILITY SURVEY METHODS IN A MULTI-DIMENSIONAL VALUATION PROBLEM. (R824699)

    EPA Science Inventory

    Abstract

    The use of willingness-to-pay (WTP) survey techniques based on multi-attribute utility (MAU) approaches has been recommended by some authors as a way to deal simultaneously with two difficulties that increasingly plague environmental valuation. The first of th...

  14. A Literature Review and Compilation of Nuclear Waste Management System Attributes for Use in Multi-Objective System Evaluations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinina, Elena Arkadievna; Samsa, Michael

    The purpose of this work was to compile a comprehensive initial set of potential nuclear waste management system attributes. This initial set of attributes is intended to serve as a starting point for additional consideration by system analysts and planners to facilitate the development of a waste management system multi-objective evaluation framework based on the principles and methodology of multi-attribute utility analysis. The compilation is primarily based on a review of reports issued by the Canadian Nuclear Waste Management Organization (NWMO) and the Blue Ribbon Commission on America's Nuclear Future (BRC), but also an extensive review of the available literaturemore » for similar and past efforts as well. Numerous system attributes found in different sources were combined into a single objectives-oriented hierarchical structure. This study provides a discussion of the data sources and the descriptions of the hierarchical structure. A particular focus of this study was on collecting and compiling inputs from past studies that involved the participation of various external stakeholders. However, while the important role of stakeholder input in a country's waste management decision process is recognized in the referenced sources, there are only a limited number of in-depth studies of the stakeholders' differing perspectives. Compiling a comprehensive hierarchical listing of attributes is a complex task since stakeholders have multiple and often conflicting interests. The BRC worked for two years (January 2010 to January 2012) to "ensure it has heard from as many points of view as possible." The Canadian NWMO study took four years and ample resources, involving national and regional stakeholders' dialogs, internet-based dialogs, information and discussion sessions, open houses, workshops, round tables, public attitude research, website, and topic reports. The current compilation effort benefited from the distillation of these many varied inputs conducted by

  15. Attribute Framing and Goal Framing Effects in Health Decisions.

    PubMed

    Krishnamurthy, Parthasarathy; Carter, Patrick; Blair, Edward

    2001-07-01

    Levin, Schneider, and Gaeth (LSG, 1998) have distinguished among three types of framing-risky choice, attribute, and goal framing-to reconcile conflicting findings in the literature. In the research reported here, we focus on attribute and goal framing. LSG propose that positive frames should be more effective than negative frames in the context of attribute framing, and negative frames should be more effective than positive frames in the context of goal framing. We test this framework by manipulating frame valence (positive vs negative) and frame type (attribute vs goal) in a unified context with common procedures. We also argue that the nature of effects in a goal-framing context may depend on the extent to which the research topic has "intrinsic self-relevance" to the population. In the context of medical decision making, we operationalize low intrinsic self-relevance by using student subjects and high intrinsic self-relevance by using patients. As expected, we find complete support for the LSG framework under low intrinsic self-relevance and modified support for the LSG framework under high intrinsic self-relevance. Overall, our research appears to confirm and extend the LSG framework. Copyright 2001 Academic Press.

  16. Secure Data Access Control for Fog Computing Based on Multi-Authority Attribute-Based Signcryption with Computation Outsourcing and Attribute Revocation.

    PubMed

    Xu, Qian; Tan, Chengxiang; Fan, Zhijie; Zhu, Wenye; Xiao, Ya; Cheng, Fujia

    2018-05-17

    Nowadays, fog computing provides computation, storage, and application services to end users in the Internet of Things. One of the major concerns in fog computing systems is how fine-grained access control can be imposed. As a logical combination of attribute-based encryption and attribute-based signature, Attribute-based Signcryption (ABSC) can provide confidentiality and anonymous authentication for sensitive data and is more efficient than traditional "encrypt-then-sign" or "sign-then-encrypt" strategy. Thus, ABSC is suitable for fine-grained access control in a semi-trusted cloud environment and is gaining more and more attention recently. However, in many existing ABSC systems, the computation cost required for the end users in signcryption and designcryption is linear with the complexity of signing and encryption access policy. Moreover, only a single authority that is responsible for attribute management and key generation exists in the previous proposed ABSC schemes, whereas in reality, mostly, different authorities monitor different attributes of the user. In this paper, we propose OMDAC-ABSC, a novel data access control scheme based on Ciphertext-Policy ABSC, to provide data confidentiality, fine-grained control, and anonymous authentication in a multi-authority fog computing system. The signcryption and designcryption overhead for the user is significantly reduced by outsourcing the undesirable computation operations to fog nodes. The proposed scheme is proven to be secure in the standard model and can provide attribute revocation and public verifiability. The security analysis, asymptotic complexity comparison, and implementation results indicate that our construction can balance the security goals with practical efficiency in computation.

  17. Secure Data Access Control for Fog Computing Based on Multi-Authority Attribute-Based Signcryption with Computation Outsourcing and Attribute Revocation

    PubMed Central

    Xu, Qian; Tan, Chengxiang; Fan, Zhijie; Zhu, Wenye; Xiao, Ya; Cheng, Fujia

    2018-01-01

    Nowadays, fog computing provides computation, storage, and application services to end users in the Internet of Things. One of the major concerns in fog computing systems is how fine-grained access control can be imposed. As a logical combination of attribute-based encryption and attribute-based signature, Attribute-based Signcryption (ABSC) can provide confidentiality and anonymous authentication for sensitive data and is more efficient than traditional “encrypt-then-sign” or “sign-then-encrypt” strategy. Thus, ABSC is suitable for fine-grained access control in a semi-trusted cloud environment and is gaining more and more attention recently. However, in many existing ABSC systems, the computation cost required for the end users in signcryption and designcryption is linear with the complexity of signing and encryption access policy. Moreover, only a single authority that is responsible for attribute management and key generation exists in the previous proposed ABSC schemes, whereas in reality, mostly, different authorities monitor different attributes of the user. In this paper, we propose OMDAC-ABSC, a novel data access control scheme based on Ciphertext-Policy ABSC, to provide data confidentiality, fine-grained control, and anonymous authentication in a multi-authority fog computing system. The signcryption and designcryption overhead for the user is significantly reduced by outsourcing the undesirable computation operations to fog nodes. The proposed scheme is proven to be secure in the standard model and can provide attribute revocation and public verifiability. The security analysis, asymptotic complexity comparison, and implementation results indicate that our construction can balance the security goals with practical efficiency in computation. PMID:29772840

  18. Ants learn to rely on more informative attributes during decision-making.

    PubMed

    Sasaki, Takao; Pratt, Stephen C

    2013-01-01

    Evolutionary theory predicts that animals act to maximize their fitness when choosing among a set of options, such as what to eat or where to live. Making the best choice is challenging when options vary in multiple attributes, and animals have evolved a variety of heuristics to simplify the task. Many of these involve ranking or weighting attributes according to their importance. Because the importance of attributes can vary across time and place, animals might benefit by adjusting weights accordingly. Here, we show that colonies of the ant Temnothorax rugatulus use their experience during nest site selection to increase weights on more informative nest attributes. These ants choose their rock crevice nests on the basis of multiple features. After exposure to an environment where only one attribute differentiated options, colonies increased their reliance on this attribute relative to a second attribute. Although many species show experience-based changes in selectivity based on a single feature, this is the first evidence in animals for adaptive changes in the weighting of multiple attributes. These results show that animal collectives, like individuals, change decision-making strategies according to experience. We discuss how these colony-level changes might emerge from individual behaviour.

  19. Interpersonal reactivity and the attribution of emotional reactions.

    PubMed

    Haas, Brian W; Anderson, Ian W; Filkowski, Megan M

    2015-06-01

    The ability to identify the cause of another person's emotional reaction is an important component associated with improved success of social relationships and survival. Although many studies have investigated the mechanisms involved in emotion recognition, very little is currently known regarding the processes involved during emotion attribution decisions. Research on complementary "emotion understanding" mechanisms, including empathy and theory of mind, has demonstrated that emotion understanding decisions are often made through relatively emotion- or cognitive-based processing streams. The current study was designed to investigate the behavioral and brain mechanisms involved in emotion attribution decisions. We predicted that dual processes, emotional and cognitive, are engaged during emotion attribution decisions. Sixteen healthy adults completed the Interpersonal Reactivity Index to characterize individual differences in tendency to make emotion- versus cognitive-based interpersonal decisions. Participants then underwent functional MRI while making emotion attribution decisions. We found neuroimaging evidence that emotion attribution decisions engage a similar brain network as other forms of emotion understanding. Further, we found evidence in support of a dual processes model involved during emotion attribution decisions. Higher scores of personal distress were associated with quicker emotion attribution decisions and increased anterior insula activity. Conversely, higher scores in perspective taking were associated with delayed emotion attribution decisions and increased prefrontal cortex and premotor activity. These findings indicate that the making of emotion attribution decisions relies on dissociable emotional and cognitive processing streams within the brain. (c) 2015 APA, all rights reserved).

  20. Improving IT Portfolio Management Decision Confidence Using Multi-Criteria Decision Making and Hypervariate Display Techniques

    ERIC Educational Resources Information Center

    Landmesser, John Andrew

    2014-01-01

    Information technology (IT) investment decision makers are required to process large volumes of complex data. An existing body of knowledge relevant to IT portfolio management (PfM), decision analysis, visual comprehension of large volumes of information, and IT investment decision making suggest Multi-Criteria Decision Making (MCDM) and…

  1. Attribute Development Using Continuous Stakeholder Engagement to Prioritize Treatment Decisions: A Framework for Patient-Centered Research.

    PubMed

    dosReis, Susan; Castillo, Wendy Camelo; Ross, Melissa; Fitz-Randolph, Marcy; Vaughn-Lee, Angela; Butler, Beverly

    To develop a methodological approach for selecting, validating, and prioritizing attributes for health care decision making. Participants (n = 48) were recruited from community support groups if they had a child aged 26 years or younger diagnosed with a coexisting mental health condition and cognitive impairment. Six in-depth interviews eliciting care management experiences were transcribed and coded into themes following the principles of grounded theory and the constant comparative method. Six focus groups involving 42 participants assessed the relevance, priority, and meaning and inter-relationship among the themes. The positive predictive value and sensitivity assessed agreement on thematic meaning. A final list was selected from the top priorities with good agreement as candidate attributes. Attribute levels reflecting the range of experiences in care management decisions emerged from the verbatim passages within each coded theme. Participants were the child's mother (73%), white (77%), married (69%), and on average 48 years old. The children were on average 14 years old; 44% had an intellectual disability, 25% had autism, and more than half had anxiety or attention-deficit/hyperactivity disorder. All 14 attributes identified from the in-depth interviews were deemed relevant. The positive predictive value exceeded 90%, and the sensitivity ranged from 64% to 89%. The final set of attributes formed the framework for care management decisions consisting of six attributes (medication, behavior, services, social, treatment effects, and school) each with three levels. A systematic approach grounded in qualitative methods produced a framework of relevant, important, and actionable attributes representing competing alternatives in clinical decisions. Copyright © 2016. Published by Elsevier Inc.

  2. Three essays on multi-level optimization models and applications

    NASA Astrophysics Data System (ADS)

    Rahdar, Mohammad

    The general form of a multi-level mathematical programming problem is a set of nested optimization problems, in which each level controls a series of decision variables independently. However, the value of decision variables may also impact the objective function of other levels. A two-level model is called a bilevel model and can be considered as a Stackelberg game with a leader and a follower. The leader anticipates the response of the follower and optimizes its objective function, and then the follower reacts to the leader's action. The multi-level decision-making model has many real-world applications such as government decisions, energy policies, market economy, network design, etc. However, there is a lack of capable algorithms to solve medium and large scale these types of problems. The dissertation is devoted to both theoretical research and applications of multi-level mathematical programming models, which consists of three parts, each in a paper format. The first part studies the renewable energy portfolio under two major renewable energy policies. The potential competition for biomass for the growth of the renewable energy portfolio in the United States and other interactions between two policies over the next twenty years are investigated. This problem mainly has two levels of decision makers: the government/policy makers and biofuel producers/electricity generators/farmers. We focus on the lower-level problem to predict the amount of capacity expansions, fuel production, and power generation. In the second part, we address uncertainty over demand and lead time in a multi-stage mathematical programming problem. We propose a two-stage tri-level optimization model in the concept of rolling horizon approach to reducing the dimensionality of the multi-stage problem. In the third part of the dissertation, we introduce a new branch and bound algorithm to solve bilevel linear programming problems. The total time is reduced by solving a smaller relaxation

  3. Emergent collective decision-making: Control, model and behavior

    NASA Astrophysics Data System (ADS)

    Shen, Tian

    In this dissertation we study emergent collective decision-making in social groups with time-varying interactions and heterogeneously informed individuals. First we analyze a nonlinear dynamical systems model motivated by animal collective motion with heterogeneously informed subpopulations, to examine the role of uninformed individuals. We find through formal analysis that adding uninformed individuals in a group increases the likelihood of a collective decision. Secondly, we propose a model for human shared decision-making with continuous-time feedback and where individuals have little information about the true preferences of other group members. We study model equilibria using bifurcation analysis to understand how the model predicts decisions based on the critical threshold parameters that represent an individual's tradeoff between social and environmental influences. Thirdly, we analyze continuous-time data of pairs of human subjects performing an experimental shared tracking task using our second proposed model in order to understand transient behavior and the decision-making process. We fit the model to data and show that it reproduces a wide range of human behaviors surprisingly well, suggesting that the model may have captured the mechanisms of observed behaviors. Finally, we study human behavior from a game-theoretic perspective by modeling the aforementioned tracking task as a repeated game with incomplete information. We show that the majority of the players are able to converge to playing Nash equilibrium strategies. We then suggest with simulations that the mean field evolution of strategies in the population resemble replicator dynamics, indicating that the individual strategies may be myopic. Decisions form the basis of control and problems involving deciding collectively between alternatives are ubiquitous in nature and in engineering. Understanding how multi-agent systems make decisions among alternatives also provides insight for designing

  4. Attaining insight into interactions between hydrologic model parameters and geophysical attributes for national-scale model parameter estimation

    NASA Astrophysics Data System (ADS)

    Mizukami, N.; Clark, M. P.; Newman, A. J.; Wood, A.; Gutmann, E. D.

    2017-12-01

    Estimating spatially distributed model parameters is a grand challenge for large domain hydrologic modeling, especially in the context of hydrologic model applications such as streamflow forecasting. Multi-scale Parameter Regionalization (MPR) is a promising technique that accounts for the effects of fine-scale geophysical attributes (e.g., soil texture, land cover, topography, climate) on model parameters and nonlinear scaling effects on model parameters. MPR computes model parameters with transfer functions (TFs) that relate geophysical attributes to model parameters at the native input data resolution and then scales them using scaling functions to the spatial resolution of the model implementation. One of the biggest challenges in the use of MPR is identification of TFs for each model parameter: both functional forms and geophysical predictors. TFs used to estimate the parameters of hydrologic models typically rely on previous studies or were derived in an ad-hoc, heuristic manner, potentially not utilizing maximum information content contained in the geophysical attributes for optimal parameter identification. Thus, it is necessary to first uncover relationships among geophysical attributes, model parameters, and hydrologic processes (i.e., hydrologic signatures) to obtain insight into which and to what extent geophysical attributes are related to model parameters. We perform multivariate statistical analysis on a large-sample catchment data set including various geophysical attributes as well as constrained VIC model parameters at 671 unimpaired basins over the CONUS. We first calibrate VIC model at each catchment to obtain constrained parameter sets. Additionally, parameter sets sampled during the calibration process are used for sensitivity analysis using various hydrologic signatures as objectives to understand the relationships among geophysical attributes, parameters, and hydrologic processes.

  5. Addressing subjective decision-making inherent in GLUE-based multi-criteria rainfall-runoff model calibration

    NASA Astrophysics Data System (ADS)

    Shafii, Mahyar; Tolson, Bryan; Shawn Matott, L.

    2015-04-01

    GLUE is one of the most commonly used informal methodologies for uncertainty estimation in hydrological modelling. Despite the ease-of-use of GLUE, it involves a number of subjective decisions such as the strategy for identifying the behavioural solutions. This study evaluates the impact of behavioural solution identification strategies in GLUE on the quality of model output uncertainty. Moreover, two new strategies are developed to objectively identify behavioural solutions. The first strategy considers Pareto-based ranking of parameter sets, while the second one is based on ranking the parameter sets based on an aggregated criterion. The proposed strategies, as well as the traditional strategies in the literature, are evaluated with respect to reliability (coverage of observations by the envelope of model outcomes) and sharpness (width of the envelope of model outcomes) in different numerical experiments. These experiments include multi-criteria calibration and uncertainty estimation of three rainfall-runoff models with different number of parameters. To demonstrate the importance of behavioural solution identification strategy more appropriately, GLUE is also compared with two other informal multi-criteria calibration and uncertainty estimation methods (Pareto optimization and DDS-AU). The results show that the model output uncertainty varies with the behavioural solution identification strategy, and furthermore, a robust GLUE implementation would require considering multiple behavioural solution identification strategies and choosing the one that generates the desired balance between sharpness and reliability. The proposed objective strategies prove to be the best options in most of the case studies investigated in this research. Implementing such an approach for a high-dimensional calibration problem enables GLUE to generate robust results in comparison with Pareto optimization and DDS-AU.

  6. Bidding Behavior in a Multi-attribute First-price Auction

    DTIC Science & Technology

    2010-01-01

    of applying key features of the multi-unit auction to proxy buyer /seller marginal valuations of the attributes of a job. Two experiments were...compensation package show promise in ascertaining buyer /seller marginal valuations of a job. This research effort was supported by a grant from the...auctions observed in the goods market, as measured by maximizing consumer and producer surplus, are likely to have promising applications to labor markets

  7. Evaluation of infectious diseases and clinical microbiology specialists' preferences for hand hygiene: analysis using the multi-attribute utility theory and the analytic hierarchy process methods.

    PubMed

    Suner, Aslı; Oruc, Ozlem Ege; Buke, Cagri; Ozkaya, Hacer Deniz; Kitapcioglu, Gul

    2017-08-31

    Hand hygiene is one of the most effective attempts to control nosocomial infections, and it is an important measure to avoid the transmission of pathogens. However, the compliance of healthcare workers (HCWs) with hand washing is still poor worldwide. Herein, we aimed to determine the best hand hygiene preference of the infectious diseases and clinical microbiology (IDCM) specialists to prevent transmission of microorganisms from one patient to another. Expert opinions regarding the criteria that influence the best hand hygiene preference were collected through a questionnaire via face-to-face interviews. Afterwards, these opinions were examined with two widely used multi-criteria decision analysis (MCDA) methods, the Multi-Attribute Utility Theory (MAUT) and the Analytic Hierarchy Process (AHP). A total of 15 IDCM specialist opinions were collected from diverse private and public hospitals located in İzmir, Turkey. The mean age of the participants was 49.73 ± 8.46, and the mean experience year of the participants in their fields was 17.67 ± 11.98. The findings that we obtained through two distinct decision making methods, the MAUT and the AHP, suggest that alcohol-based antiseptic solution (ABAS) has the highest utility (0.86) and priority (0.69) among the experts' choices. In conclusion, the MAUT and the AHP, decision models developed here indicate that rubbing the hands with ABAS is the most favorable choice for IDCM specialists to prevent nosocomial infection.

  8. Suboptimal choice in rats: incentive salience attribution promotes maladaptive decision-making

    PubMed Central

    Chow, Jonathan J; Smith, Aaron P; Wilson, A George; Zentall, Thomas R; Beckmann, Joshua S

    2016-01-01

    Stimuli that are more predictive of subsequent reward also function as better conditioned reinforcers. Moreover, stimuli attributed with incentive salience function as more robust conditioned reinforcers. Some theories have suggested that conditioned reinforcement plays an important role in promoting suboptimal choice behavior, like gambling. The present experiments examined how different stimuli, those attributed with incentive salience versus those without, can function in tandem with stimulus-reward predictive utility to promote maladaptive decision-making in rats. One group of rats had lights associated with goal-tracking as the reward-predictive stimuli and another had levers associated with sign-tracking as the reward-predictive stimuli. All rats were first trained on a choice procedure in which the expected value across both alternatives was equivalent but differed in their stimulus-reward predictive utility. Next, the expected value across both alternatives was systematically changed so that the alternative with greater stimulus-reward predictive utility was suboptimal in regard to primary reinforcement. The results demonstrate that in order to obtain suboptimal choice behavior, incentive salience alongside strong stimulus-reward predictive utility may be necessary; thus, maladaptive decision-making can be driven more by the value attributed to stimuli imbued with incentive salience that reliably predict a reward rather than the reward itself. PMID:27993692

  9. Demonstration of a modelling-based multi-criteria decision analysis procedure for prioritisation of occupational risks from manufactured nanomaterials.

    PubMed

    Hristozov, Danail; Zabeo, Alex; Alstrup Jensen, Keld; Gottardo, Stefania; Isigonis, Panagiotis; Maccalman, Laura; Critto, Andrea; Marcomini, Antonio

    2016-11-01

    Several tools to facilitate the risk assessment and management of manufactured nanomaterials (MN) have been developed. Most of them require input data on physicochemical properties, toxicity and scenario-specific exposure information. However, such data are yet not readily available, and tools that can handle data gaps in a structured way to ensure transparent risk analysis for industrial and regulatory decision making are needed. This paper proposes such a quantitative risk prioritisation tool, based on a multi-criteria decision analysis algorithm, which combines advanced exposure and dose-response modelling to calculate margins of exposure (MoE) for a number of MN in order to rank their occupational risks. We demonstrated the tool in a number of workplace exposure scenarios (ES) involving the production and handling of nanoscale titanium dioxide, zinc oxide (ZnO), silver and multi-walled carbon nanotubes. The results of this application demonstrated that bag/bin filling, manual un/loading and dumping of large amounts of dry powders led to high emissions, which resulted in high risk associated with these ES. The ZnO MN revealed considerable hazard potential in vivo, which significantly influenced the risk prioritisation results. In order to study how variations in the input data affect our results, we performed probabilistic Monte Carlo sensitivity/uncertainty analysis, which demonstrated that the performance of the proposed model is stable against changes in the exposure and hazard input variables.

  10. Risk Decision Making Model for Reservoir Floodwater resources Utilization

    NASA Astrophysics Data System (ADS)

    Huang, X.

    2017-12-01

    Floodwater resources utilization(FRU) can alleviate the shortage of water resources, but there are risks. In order to safely and efficiently utilize the floodwater resources, it is necessary to study the risk of reservoir FRU. In this paper, the risk rate of exceeding the design flood water level and the risk rate of exceeding safety discharge are estimated. Based on the principle of the minimum risk and the maximum benefit of FRU, a multi-objective risk decision making model for FRU is constructed. Probability theory and mathematical statistics method is selected to calculate the risk rate; C-D production function method and emergy analysis method is selected to calculate the risk benefit; the risk loss is related to flood inundation area and unit area loss; the multi-objective decision making problem of the model is solved by the constraint method. Taking the Shilianghe reservoir in Jiangsu Province as an example, the optimal equilibrium solution of FRU of the Shilianghe reservoir is found by using the risk decision making model, and the validity and applicability of the model are verified.

  11. Is it the time to rethink clinical decision-making strategies? From a single clinical outcome evaluation to a Clinical Multi-criteria Decision Assessment (CMDA).

    PubMed

    Migliore, Alberto; Integlia, Davide; Bizzi, Emanuele; Piaggio, Tomaso

    2015-10-01

    There are plenty of different clinical, organizational and economic parameters to consider in order having a complete assessment of the total impact of a pharmaceutical treatment. In the attempt to follow, a holistic approach aimed to provide an evaluation embracing all clinical parameters in order to choose the best treatments, it is necessary to compare and weight multiple criteria. Therefore, a change is required: we need to move from a decision-making context based on the assessment of one single criteria towards a transparent and systematic framework enabling decision makers to assess all relevant parameters simultaneously in order to choose the best treatment to use. In order to apply the MCDA methodology to clinical decision making the best pharmaceutical treatment (or medical devices) to use to treat a specific pathology, we suggest a specific application of the Multiple Criteria Decision Analysis for the purpose, like a Clinical Multi-criteria Decision Assessment CMDA. In CMDA, results from both meta-analysis and observational studies are used by a clinical consensus after attributing weights to specific domains and related parameters. The decision will result from a related comparison of all consequences (i.e., efficacy, safety, adherence, administration route) existing behind the choice to use a specific pharmacological treatment. The match will yield a score (in absolute value) that link each parameter with a specific intervention, and then a final score for each treatment. The higher is the final score; the most appropriate is the intervention to treat disease considering all criteria (domain an parameters). The results will allow the physician to evaluate the best clinical treatment for his patients considering at the same time all relevant criteria such as clinical effectiveness for all parameters and administration route. The use of CMDA model will yield a clear and complete indication of the best pharmaceutical treatment to use for patients

  12. Suboptimal choice in rats: Incentive salience attribution promotes maladaptive decision-making.

    PubMed

    Chow, Jonathan J; Smith, Aaron P; Wilson, A George; Zentall, Thomas R; Beckmann, Joshua S

    2017-03-01

    Stimuli that are more predictive of subsequent reward also function as better conditioned reinforcers. Moreover, stimuli attributed with incentive salience function as more robust conditioned reinforcers. Some theories have suggested that conditioned reinforcement plays an important role in promoting suboptimal choice behavior, like gambling. The present experiments examined how different stimuli, those attributed with incentive salience versus those without, can function in tandem with stimulus-reward predictive utility to promote maladaptive decision-making in rats. One group of rats had lights associated with goal-tracking as the reward-predictive stimuli and another had levers associated with sign-tracking as the reward-predictive stimuli. All rats were first trained on a choice procedure in which the expected value across both alternatives was equivalent but differed in their stimulus-reward predictive utility. Next, the expected value across both alternatives was systematically changed so that the alternative with greater stimulus-reward predictive utility was suboptimal in regard to primary reinforcement. The results demonstrate that in order to obtain suboptimal choice behavior, incentive salience alongside strong stimulus-reward predictive utility may be necessary; thus, maladaptive decision-making can be driven more by the value attributed to stimuli imbued with incentive salience that reliably predict a reward rather than the reward itself. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Multi-test decision tree and its application to microarray data classification.

    PubMed

    Czajkowski, Marcin; Grześ, Marek; Kretowski, Marek

    2014-05-01

    The desirable property of tools used to investigate biological data is easy to understand models and predictive decisions. Decision trees are particularly promising in this regard due to their comprehensible nature that resembles the hierarchical process of human decision making. However, existing algorithms for learning decision trees have tendency to underfit gene expression data. The main aim of this work is to improve the performance and stability of decision trees with only a small increase in their complexity. We propose a multi-test decision tree (MTDT); our main contribution is the application of several univariate tests in each non-terminal node of the decision tree. We also search for alternative, lower-ranked features in order to obtain more stable and reliable predictions. Experimental validation was performed on several real-life gene expression datasets. Comparison results with eight classifiers show that MTDT has a statistically significantly higher accuracy than popular decision tree classifiers, and it was highly competitive with ensemble learning algorithms. The proposed solution managed to outperform its baseline algorithm on 14 datasets by an average 6%. A study performed on one of the datasets showed that the discovered genes used in the MTDT classification model are supported by biological evidence in the literature. This paper introduces a new type of decision tree which is more suitable for solving biological problems. MTDTs are relatively easy to analyze and much more powerful in modeling high dimensional microarray data than their popular counterparts. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Multi-criteria decision making--an approach to setting priorities in health care.

    PubMed

    Nobre, F F; Trotta, L T; Gomes, L F

    1999-12-15

    The objective of this paper is to present a multi-criteria decision making (MCDM) approach to support public health decision making that takes into consideration the fuzziness of the decision goals and the behavioural aspect of the decision maker. The approach is used to analyse the process of health technology procurement in a University Hospital in Rio de Janeiro, Brazil. The method, known as TODIM, relies on evaluating alternatives with a set of decision criteria assessed using an ordinal scale. Fuzziness in generating criteria scores and weights or conflicts caused by dealing with different viewpoints of a group of decision makers (DMs) are solved using fuzzy set aggregation rules. The results suggested that MCDM models, incorporating fuzzy set approaches, should form a set of tools for public health decision making analysis, particularly when there are polarized opinions and conflicting objectives from the DM group. Copyright 1999 John Wiley & Sons, Ltd.

  15. Multi-criteria decision analysis using hydrological indicators for decision support - a conceptual framework.

    NASA Astrophysics Data System (ADS)

    Butchart-Kuhlmann, Daniel; Kralisch, Sven; Meinhardt, Markus; Fleischer, Melanie

    2017-04-01

    Assessing the quantity and quality of water available in water stressed environments under various potential climate and land-use changes is necessary for good water and environmental resources management and governance. Within the region covered by the Southern African Science Service Centre for Climate Change and Adaptive Land Management (SASSCAL) project, such areas are common. One goal of the SASSCAL project is to develop and provide an integrated decision support system (DSS) with which decision makers (DMs) within a given catchment can obtain objective information regarding potential changes in water flow quantity and timing. The SASSCAL DSS builds upon existing data storage and distribution capability, through the SASSCAL Information System (IS), as well as the J2000 hydrological model. Using output from validated J2000 models, the SASSCAL DSS incorporates the calculation of a range of hydrological indicators based upon Indicators of Hydrological Alteration/Environmental Flow Components (IHA/EFC) calculated for a historic time series (pre-impact) and a set of model simulations based upon a selection of possible climate and land-use change scenarios (post-impact). These indicators, obtained using the IHA software package, are then used as input for a multi-criteria decision analysis (MCDA) undertaken using the open source diviz software package. The results of these analyses will provide DMs with an indication as to how various hydrological indicators within a catchment may be altered under different future scenarios, as well providing a ranking of how each scenario is preferred according to different DM preferences. Scenarios are represented through a combination of model input data and parameter settings in J2000, and preferences are represented through criteria weighting in the MCDA. Here, the methodology is presented and applied to the J2000 Luanginga model results using a set of hypothetical decision maker preference values as input for an MCDA based on

  16. A framework for the cross-sectoral integration of multi-model impact projections: land use decisions under climate impacts uncertainties

    NASA Astrophysics Data System (ADS)

    Frieler, K.; Levermann, A.; Elliott, J.; Heinke, J.; Arneth, A.; Bierkens, M. F. P.; Ciais, P.; Clark, D. B.; Deryng, D.; Döll, P.; Falloon, P.; Fekete, B.; Folberth, C.; Friend, A. D.; Gellhorn, C.; Gosling, S. N.; Haddeland, I.; Khabarov, N.; Lomas, M.; Masaki, Y.; Nishina, K.; Neumann, K.; Oki, T.; Pavlick, R.; Ruane, A. C.; Schmid, E.; Schmitz, C.; Stacke, T.; Stehfest, E.; Tang, Q.; Wisser, D.; Huber, V.; Piontek, F.; Warszawski, L.; Schewe, J.; Lotze-Campen, H.; Schellnhuber, H. J.

    2015-07-01

    Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation

  17. Protein attributes contribute to halo-stability, bioinformatics approach

    PubMed Central

    2011-01-01

    Halophile proteins can tolerate high salt concentrations. Understanding halophilicity features is the first step toward engineering halostable crops. To this end, we examined protein features contributing to the halo-toleration of halophilic organisms. We compared more than 850 features for halophilic and non-halophilic proteins with various screening, clustering, decision tree, and generalized rule induction models to search for patterns that code for halo-toleration. Up to 251 protein attributes selected by various attribute weighting algorithms as important features contribute to halo-stability; from them 14 attributes selected by 90% of models and the count of hydrogen gained the highest value (1.0) in 70% of attribute weighting models, showing the importance of this attribute in feature selection modeling. The other attributes mostly were the frequencies of di-peptides. No changes were found in the numbers of groups when K-Means and TwoStep clustering modeling were performed on datasets with or without feature selection filtering. Although the depths of induced trees were not high, the accuracies of trees were higher than 94% and the frequency of hydrophobic residues pointed as the most important feature to build trees. The performance evaluation of decision tree models had the same values and the best correctness percentage recorded with the Exhaustive CHAID and CHAID models. We did not find any significant difference in the percent of correctness, performance evaluation, and mean correctness of various decision tree models with or without feature selection. For the first time, we analyzed the performance of different screening, clustering, and decision tree algorithms for discriminating halophilic and non-halophilic proteins and the results showed that amino acid composition can be used to discriminate between halo-tolerant and halo-sensitive proteins. PMID:21592393

  18. A Structured Decision Approach for Integrating and Analyzing Community Perspectives in Re-Use Planning of Vacant Properties in Cleveland, Ohio

    EPA Science Inventory

    An integrated GIS-based, multi-attribute decision model deployed in a web-based platform is presented enabling an iterative, spatially explicit and collaborative analysis of relevant and available information for repurposing vacant land. The process incorporated traditional and ...

  19. A Framework for the Cross-Sectoral Integration of Multi-Model Impact Projections: Land Use Decisions Under Climate Impacts Uncertainties

    NASA Technical Reports Server (NTRS)

    Frieler, K.; Elliott, Joshua; Levermann, A.; Heinke, J.; Arneth, A.; Bierkens, M. F. P.; Ciais, P.; Clark, D. B.; Deryng, D.; Doll, P.; hide

    2015-01-01

    Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impactmodel setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation

  20. Contextual Attributes of Indirect Bullying Situations that Influence Teachers' Decisions to Intervene

    ERIC Educational Resources Information Center

    Blain-Arcaro, Christine; Smith, J. David; Cunningham, Charles E.; Vaillancourt, Tracy; Rimas, Heather

    2012-01-01

    Indirect bullying occurs frequently yet receives little attention by teachers. Using conjoint analysis, we examined the influence of situational attributes on teachers' decisions to intervene in indirect bullying. Results revealed that teachers (N = 235) were most influenced by victimized children's distress. Additional analyses identified two…

  1. Adaptive Allocation of Decision Making Responsibility Between Human and Computer in Multi-Task Situations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chu, Y. Y.

    1978-01-01

    A unified formulation of computer-aided, multi-task, decision making is presented. Strategy for the allocation of decision making responsibility between human and computer is developed. The plans of a flight management systems are studied. A model based on the queueing theory was implemented.

  2. Attribute-based Decision Graphs: A framework for multiclass data classification.

    PubMed

    Bertini, João Roberto; Nicoletti, Maria do Carmo; Zhao, Liang

    2017-01-01

    Graph-based algorithms have been successfully applied in machine learning and data mining tasks. A simple but, widely used, approach to build graphs from vector-based data is to consider each data instance as a vertex and connecting pairs of it using a similarity measure. Although this abstraction presents some advantages, such as arbitrary shape representation of the original data, it is still tied to some drawbacks, for example, it is dependent on the choice of a pre-defined distance metric and is biased by the local information among data instances. Aiming at exploring alternative ways to build graphs from data, this paper proposes an algorithm for constructing a new type of graph, called Attribute-based Decision Graph-AbDG. Given a vector-based data set, an AbDG is built by partitioning each data attribute range into disjoint intervals and representing each interval as a vertex. The edges are then established between vertices from different attributes according to a pre-defined pattern. Classification is performed through a matching process among the attribute values of the new instance and AbDG. Moreover, AbDG provides an inner mechanism to handle missing attribute values, which contributes for expanding its applicability. Results of classification tasks have shown that AbDG is a competitive approach when compared to well-known multiclass algorithms. The main contribution of the proposed framework is the combination of the advantages of attribute-based and graph-based techniques to perform robust pattern matching data classification, while permitting the analysis the input data considering only a subset of its attributes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Four Common Simplifications of Multi-Criteria Decision Analysis do not hold for River Rehabilitation

    PubMed Central

    2016-01-01

    River rehabilitation aims at alleviating negative effects of human impacts such as loss of biodiversity and reduction of ecosystem services. Such interventions entail difficult trade-offs between different ecological and often socio-economic objectives. Multi-Criteria Decision Analysis (MCDA) is a very suitable approach that helps assessing the current ecological state and prioritizing river rehabilitation measures in a standardized way, based on stakeholder or expert preferences. Applications of MCDA in river rehabilitation projects are often simplified, i.e. using a limited number of objectives and indicators, assuming linear value functions, aggregating individual indicator assessments additively, and/or assuming risk neutrality of experts. Here, we demonstrate an implementation of MCDA expert preference assessments to river rehabilitation and provide ample material for other applications. To test whether the above simplifications reflect common expert opinion, we carried out very detailed interviews with five river ecologists and a hydraulic engineer. We defined essential objectives and measurable quality indicators (attributes), elicited the experts´ preferences for objectives on a standardized scale (value functions) and their risk attitude, and identified suitable aggregation methods. The experts recommended an extensive objectives hierarchy including between 54 and 93 essential objectives and between 37 to 61 essential attributes. For 81% of these, they defined non-linear value functions and in 76% recommended multiplicative aggregation. The experts were risk averse or risk prone (but never risk neutral), depending on the current ecological state of the river, and the experts´ personal importance of objectives. We conclude that the four commonly applied simplifications clearly do not reflect the opinion of river rehabilitation experts. The optimal level of model complexity, however, remains highly case-study specific depending on data and resource

  4. Multi-criteria Decision Analysis to Model Ixodes ricinus Habitat Suitability.

    PubMed

    Rousseau, Raphaël; McGrath, Guy; McMahon, Barry J; Vanwambeke, Sophie O

    2017-09-01

    Tick-borne diseases present a major threat to both human and livestock health throughout Europe. The risk of infection is directly related to the presence of its vector. Thereby it is important to know their distribution, which is strongly associated with environmental factors: the presence and availability of a suitable habitat, of a suitable climate and of hosts. The present study models the habitat suitability for Ixodes ricinus in Ireland, where data on tick distribution are scarce. Tick habitat suitability was estimated at a coarse scale (10 km) with a multi-criteria decision analysis (MCDA) method according to four different scenarios (depending on the variables used and on the weights granted to each of them). The western part of Ireland and the Wicklow mountains in the East were estimated to be the most suitable areas for I. ricinus in the island. There was a good level of agreement between results from the MCDA and recorded tick presence. The different scenarios did not affect the spatial outputs substantially. The current study suggests that tick habitat suitability can be mapped accurately at a coarse scale in a data-scarce context using knowledge-based methods. It can serve as a guideline for future countrywide sampling that would help to determine local risk of tick presence and refining knowledge on tick habitat suitability in Ireland.

  5. Enriching the national map database for multi-scale use: Introducing the visibilityfilter attribution

    USGS Publications Warehouse

    Stauffer, Andrew J.; Webinger, Seth; Roche, Brittany

    2016-01-01

    The US Geological Survey’s (USGS) National Geospatial Technical Operations Center is prototyping and evaluating the ability to filter data through a range of scales using 1:24,000-scale The National Map (TNM) datasets as the source. A “VisibilityFilter” attribute is under evaluation that can be added to all TNM vector data themes and will permit filtering of data to eight target scales between 1:24,000 and 1:5,000,000, thus defining each feature’s smallest applicable scale-of-use. For a prototype implementation, map specifications for 1:100,000- and 1:250,000-scale USGS Topographic Map Series are being utilized to define feature content appropriate at fixed mapping scales to guide generalization decisions that are documented in a ScaleMaster diagram. This paper defines the VisibilityFilter attribute, the generalization decisions made for each TNM data theme, and how these decisions are embedded into the data to support efficient data filtering.

  6. Integrated seismic stochastic inversion and multi-attributes to delineate reservoir distribution: Case study MZ fields, Central Sumatra Basin

    NASA Astrophysics Data System (ADS)

    Haris, A.; Novriyani, M.; Suparno, S.; Hidayat, R.; Riyanto, A.

    2017-07-01

    This study presents the integration of seismic stochastic inversion and multi-attributes for delineating the reservoir distribution in term of lithology and porosity in the formation within depth interval between the Top Sihapas and Top Pematang. The method that has been used is a stochastic inversion, which is integrated with multi-attribute seismic by applying neural network Probabilistic Neural Network (PNN). Stochastic methods are used to predict the probability mapping sandstone as the result of impedance varied with 50 realizations that will produce a good probability. Analysis of Stochastic Seismic Tnversion provides more interpretive because it directly gives the value of the property. Our experiment shows that AT of stochastic inversion provides more diverse uncertainty so that the probability value will be close to the actual values. The produced AT is then used for an input of a multi-attribute analysis, which is used to predict the gamma ray, density and porosity logs. To obtain the number of attributes that are used, stepwise regression algorithm is applied. The results are attributes which are used in the process of PNN. This PNN method is chosen because it has the best correlation of others neural network method. Finally, we interpret the product of the multi-attribute analysis are in the form of pseudo-gamma ray volume, density volume and volume of pseudo-porosity to delineate the reservoir distribution. Our interpretation shows that the structural trap is identified in the southeastern part of study area, which is along the anticline.

  7. Decision technology.

    PubMed

    Edwards, W; Fasolo, B

    2001-01-01

    This review is about decision technology-the rules and tools that help us make wiser decisions. First, we review the three rules that are at the heart of most traditional decision technology-multi-attribute utility, Bayes' theorem, and subjective expected utility maximization. Since the inception of decision research, these rules have prescribed how we should infer values and probabilities and how we should combine them to make better decisions. We suggest how to make best use of all three rules in a comprehensive 19-step model. The remainder of the review explores recently developed tools of decision technology. It examines the characteristics and problems of decision-facilitating sites on the World Wide Web. Such sites now provide anyone who can use a personal computer with access to very sophisticated decision-aiding tools structured mainly to facilitate consumer decision making. It seems likely that the Web will be the mode by means of which decision tools will be distributed to lay users. But methods for doing such apparently simple things as winnowing 3000 options down to a more reasonable number, like 10, contain traps for unwary decision technologists. The review briefly examines Bayes nets and influence diagrams-judgment and decision-making tools that are available as computer programs. It very briefly summarizes the state of the art of eliciting probabilities from experts. It concludes that decision tools will be as important in the 21st century as spreadsheets were in the 20th.

  8. The eyes have it: Using eye tracking to inform information processing strategies in multi-attributes choices.

    PubMed

    Ryan, Mandy; Krucien, Nicolas; Hermens, Frouke

    2018-04-01

    Although choice experiments (CEs) are widely applied in economics to study choice behaviour, understanding of how individuals process attribute information remains limited. We show how eye-tracking methods can provide insight into how decisions are made. Participants completed a CE, while their eye movements were recorded. Results show that although the information presented guided participants' decisions, there were also several processing biases at work. Evidence was found of (a) top-to-bottom, (b) left-to-right, and (c) first-to-last order biases. Experimental factors-whether attributes are defined as "best" or "worst," choice task complexity, and attribute ordering-also influence information processing. How individuals visually process attribute information was shown to be related to their choices. Implications for the design and analysis of CEs and future research are discussed. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Perceptual decision making: drift-diffusion model is equivalent to a Bayesian model

    PubMed Central

    Bitzer, Sebastian; Park, Hame; Blankenburg, Felix; Kiebel, Stefan J.

    2014-01-01

    Behavioral data obtained with perceptual decision making experiments are typically analyzed with the drift-diffusion model. This parsimonious model accumulates noisy pieces of evidence toward a decision bound to explain the accuracy and reaction times of subjects. Recently, Bayesian models have been proposed to explain how the brain extracts information from noisy input as typically presented in perceptual decision making tasks. It has long been known that the drift-diffusion model is tightly linked with such functional Bayesian models but the precise relationship of the two mechanisms was never made explicit. Using a Bayesian model, we derived the equations which relate parameter values between these models. In practice we show that this equivalence is useful when fitting multi-subject data. We further show that the Bayesian model suggests different decision variables which all predict equal responses and discuss how these may be discriminated based on neural correlates of accumulated evidence. In addition, we discuss extensions to the Bayesian model which would be difficult to derive for the drift-diffusion model. We suggest that these and other extensions may be highly useful for deriving new experiments which test novel hypotheses. PMID:24616689

  10. The multi temporal/multi-model approach to predictive uncertainty assessment in real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Barbetta, Silvia; Coccia, Gabriele; Moramarco, Tommaso; Brocca, Luca; Todini, Ezio

    2017-08-01

    This work extends the multi-temporal approach of the Model Conditional Processor (MCP-MT) to the multi-model case and to the four Truncated Normal Distributions (TNDs) approach, demonstrating the improvement on the single-temporal one. The study is framed in the context of probabilistic Bayesian decision-making that is appropriate to take rational decisions on uncertain future outcomes. As opposed to the direct use of deterministic forecasts, the probabilistic forecast identifies a predictive probability density function that represents a fundamental knowledge on future occurrences. The added value of MCP-MT is the identification of the probability that a critical situation will happen within the forecast lead-time and when, more likely, it will occur. MCP-MT is thoroughly tested for both single-model and multi-model configurations at a gauged site on the Tiber River, central Italy. The stages forecasted by two operative deterministic models, STAFOM-RCM and MISDc, are considered for the study. The dataset used for the analysis consists of hourly data from 34 flood events selected on a time series of six years. MCP-MT improves over the original models' forecasts: the peak overestimation and the rising limb delayed forecast, characterizing MISDc and STAFOM-RCM respectively, are significantly mitigated, with a reduced mean error on peak stage from 45 to 5 cm and an increased coefficient of persistence from 0.53 up to 0.75. The results show that MCP-MT outperforms the single-temporal approach and is potentially useful for supporting decision-making because the exceedance probability of hydrometric thresholds within a forecast horizon and the most probable flooding time can be estimated.

  11. Prospect Theory and Interval-Valued Hesitant Set for Safety Evacuation Model

    NASA Astrophysics Data System (ADS)

    Kou, Meng; Lu, Na

    2018-01-01

    The study applies the research results of prospect theory and multi attribute decision making theory, combined with the complexity, uncertainty and multifactor influence of the underground mine fire system and takes the decision makers’ psychological behavior of emotion and intuition into full account to establish the intuitionistic fuzzy multiple attribute decision making method that is based on the prospect theory. The model established by this method can explain the decision maker’s safety evacuation decision behavior in the complex system of underground mine fire due to the uncertainty of the environment, imperfection of the information and human psychological behavior and other factors.

  12. Multi-Criteria Decision Making for a Spatial Decision Support System on the Analysis of Changing Risk

    NASA Astrophysics Data System (ADS)

    Olyazadeh, Roya; van Westen, Cees; Bakker, Wim H.; Aye, Zar Chi; Jaboyedoff, Michel; Derron, Marc-Henri

    2014-05-01

    Natural hazard risk management requires decision making in several stages. Decision making on alternatives for risk reduction planning starts with an intelligence phase for recognition of the decision problems and identifying the objectives. Development of the alternatives and assigning the variable by decision makers to each alternative are employed to the design phase. Final phase evaluates the optimal choice by comparing the alternatives, defining indicators, assigning a weight to each and ranking them. This process is referred to as Multi-Criteria Decision Making analysis (MCDM), Multi-Criteria Evaluation (MCE) or Multi-Criteria Analysis (MCA). In the framework of the ongoing 7th Framework Program "CHANGES" (2011-2014, Grant Agreement No. 263953) of the European Commission, a Spatial Decision Support System is under development, that has the aim to analyse changes in hydro-meteorological risk and provide support to selecting the best risk reduction alternative. This paper describes the module for Multi-Criteria Decision Making analysis (MCDM) that incorporates monetary and non-monetary criteria in the analysis of the optimal alternative. The MCDM module consists of several components. The first step is to define criteria (or Indicators) which are subdivided into disadvantages (criteria that indicate the difficulty for implementing the risk reduction strategy, also referred to as Costs) and advantages (criteria that indicate the favorability, also referred to as benefits). In the next step the stakeholders can use the developed web-based tool for prioritizing criteria and decision matrix. Public participation plays a role in decision making and this is also planned through the use of a mobile web-version where the general local public can indicate their agreement on the proposed alternatives. The application is being tested through a case study related to risk reduction of a mountainous valley in the Alps affected by flooding. Four alternatives are evaluated in

  13. The neural basis of responsibility attribution in decision-making.

    PubMed

    Li, Peng; Shen, Yue; Sui, Xue; Chen, Changming; Feng, Tingyong; Li, Hong; Holroyd, Clay

    2013-01-01

    Social responsibility links personal behavior with societal expectations and plays a key role in affecting an agent's emotional state following a decision. However, the neural basis of responsibility attribution remains unclear. In two previous event-related brain potential (ERP) studies we found that personal responsibility modulated outcome evaluation in gambling tasks. Here we conducted a functional magnetic resonance imaging (fMRI) study to identify particular brain regions that mediate responsibility attribution. In a context involving team cooperation, participants completed a task with their teammates and on each trial received feedback about team success and individual success sequentially. We found that brain activity differed between conditions involving team success vs. team failure. Further, different brain regions were associated with reinforcement of behavior by social praise vs. monetary reward. Specifically, right temporoparietal junction (RTPJ) was associated with social pride whereas dorsal striatum and dorsal anterior cingulate cortex (ACC) were related to reinforcement of behaviors leading to personal gain. The present study provides evidence that the RTPJ is an important region for determining whether self-generated behaviors are deserving of praise in a social context.

  14. Measuring sustainable development using a multi-criteria model: a case study.

    PubMed

    Boggia, Antonio; Cortina, Carla

    2010-11-01

    This paper shows how Multi-criteria Decision Analysis (MCDA) can help in a complex process such as the assessment of the level of sustainability of a certain area. The paper presents the results of a study in which a model for measuring sustainability was implemented to better aid public policy decisions regarding sustainability. In order to assess sustainability in specific areas, a methodological approach based on multi-criteria analysis has been developed. The aim is to rank areas in order to understand the specific technical and/or financial support that they need to develop sustainable growth. The case study presented is an assessment of the level of sustainability in different areas of an Italian Region using the MCDA approach. Our results show that MCDA is a proper approach for sustainability assessment. The results are easy to understand and the evaluation path is clear and transparent. This is what decision makers need for having support to their decisions. The multi-criteria model for evaluation has been developed respecting the sustainable development economic theory, so that final results can have a clear meaning in terms of sustainability. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Analysing pseudoephedrine/methamphetamine policy options in Australia using multi-criteria decision modelling.

    PubMed

    Manning, Matthew; Wong, Gabriel T W; Ransley, Janet; Smith, Christine

    2016-06-01

    In this paper we capture and synthesize the unique knowledge of experts so that choices regarding policy measures to address methamphetamine consumption and dependency in Australia can be strengthened. We examine perceptions of the: (1) influence of underlying factors that impact on the methamphetamine problem; (2) importance of various models of intervention that have the potential to affect the success of policies; and (3) efficacy of alternative pseudoephedrine policy options. We adopt a multi-criteria decision model to unpack factors that affect decisions made by experts and examine potential variations on weight/preference among groups. Seventy experts from five groups (i.e. academia (18.6%), government and policy (27.1%), health (18.6%), pharmaceutical (17.1%) and police (18.6%)) in Australia participated in the survey. Social characteristics are considered the most important underlying factor, prevention the most effective strategy and Project STOP the most preferred policy option with respect to reducing methamphetamine consumption and dependency in Australia. One-way repeated ANOVAs indicate a statistically significant difference with regards to the influence of underlying factors (F(2.3, 144.5)=11.256, p<.001), effectiveness of interventions (F(2.4, 153.1)=28.738, p<.001) and policy options (F(2.8, 175.5)=70.854, p<.001). A majority of respondents believed that genetic, biological, emotional, cognitive and social factors are the most influential explanatory variables in terms of methamphetamine consumption and dependency. Most experts support the use of preventative mechanisms to inhibit drug initiation and delayed drug uptake. Compared to other policies, Project STOP (which aims to disrupt the initial diversion of pseudoephedrine) appears to be a more preferable preventative mechanism to control the production and subsequent sale and use of methamphetamine. This regulatory civil law lever engages third parties in controlling drug-related crime. The

  16. Model Checking with Edge-Valued Decision Diagrams

    NASA Technical Reports Server (NTRS)

    Roux, Pierre; Siminiceanu, Radu I.

    2010-01-01

    We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library. We provide efficient algorithms for manipulating EVMDDs and review the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi- Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools. Compared to the CUDD package, our tool is several orders of magnitude faster

  17. Exploring the impact of different multi-level measures of physician communities in patient-centric care networks on healthcare outcomes: A multi-level regression approach.

    PubMed

    Uddin, Shahadat

    2016-02-04

    A patient-centric care network can be defined as a network among a group of healthcare professionals who provide treatments to common patients. Various multi-level attributes of the members of this network have substantial influence to its perceived level of performance. In order to assess the impact different multi-level attributes of patient-centric care networks on healthcare outcomes, this study first captured patient-centric care networks for 85 hospitals using health insurance claim dataset. From these networks, this study then constructed physician collaboration networks based on the concept of patient-sharing network among physicians. A multi-level regression model was then developed to explore the impact of different attributes that are organised at two levels on hospitalisation cost and hospital length of stay. For Level-1 model, the average visit per physician significantly predicted both hospitalisation cost and hospital length of stay. The number of different physicians significantly predicted only the hospitalisation cost, which has significantly been moderated by age, gender and Comorbidity score of patients. All Level-1 findings showed significance variance across physician collaboration networks having different community structure and density. These findings could be utilised as a reflective measure by healthcare decision makers. Moreover, healthcare managers could consider them in developing effective healthcare environments.

  18. Application of Multi-Criteria Decision Making (MCDM) Technique for Gradation of Jute Fibres

    NASA Astrophysics Data System (ADS)

    Choudhuri, P. K.

    2014-12-01

    Multi-Criteria Decision Making is a branch of Operation Research (OR) having a comparatively short history of about 40 years. It is being popularly used in the field of engineering, banking, fixing policy matters etc. It can also be applied for taking decisions in daily life like selecting a car to purchase, selecting bride or groom and many others. Various MCDM methods namely Weighted Sum Model (WSM), Weighted Product Model (WPM), Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solutions (TOPSIS) and Elimination and Choice Translating Reality (ELECTRE) are there to solve many decision making problems, each having its own limitations. However it is very difficult to decide which MCDM method is the best. MCDM methods are prospective quantitative approaches for solving decision problems involving finite number of alternatives and criteria. Very few research works in textiles have been carried out with the help of this technique particularly where decision taking among several alternatives becomes the major problem based on some criteria which are conflicting in nature. Gradation of jute fibres on the basis of the criteria like strength, root content, defects, colour, density, fineness etc. is an important task to perform. The MCDM technique provides enough scope to be applied for the gradation of jute fibres or ranking among several varieties keeping in view a particular object and on the basis of some selection criteria and their relative weightage. The present paper is an attempt to explore the scope of applying the multiplicative AHP method of multi-criteria decision making technique to determine the quality values of selected jute fibres on the basis of some above stated important criteria and ranking them accordingly. A good agreement in ranking is observed between the existing Bureau of Indian Standards (BIS) grading and proposed method.

  19. A comparison of representations for discrete multi-criteria decision problems☆

    PubMed Central

    Gettinger, Johannes; Kiesling, Elmar; Stummer, Christian; Vetschera, Rudolf

    2013-01-01

    Discrete multi-criteria decision problems with numerous Pareto-efficient solution candidates place a significant cognitive burden on the decision maker. An interactive, aspiration-based search process that iteratively progresses toward the most preferred solution can alleviate this task. In this paper, we study three ways of representing such problems in a DSS, and compare them in a laboratory experiment using subjective and objective measures of the decision process as well as solution quality and problem understanding. In addition to an immediate user evaluation, we performed a re-evaluation several weeks later. Furthermore, we consider several levels of problem complexity and user characteristics. Results indicate that different problem representations have a considerable influence on search behavior, although long-term consistency appears to remain unaffected. We also found interesting discrepancies between subjective evaluations and objective measures. Conclusions from our experiments can help designers of DSS for large multi-criteria decision problems to fit problem representations to the goals of their system and the specific task at hand. PMID:24882912

  20. Sex, Attribution, and Severity Influence Intervention Decisions of Informal Helpers in Domestic Violence

    ERIC Educational Resources Information Center

    Chabot, Heather Frasier; Tracy, Tracy L.; Manning, Christine A.; Poisson, Chelsea A.

    2009-01-01

    Most domestic violence (DV) researchers examine professional intervention (e.g., police and nurses), but informal helpers (e.g., friends and bystanders) are critical. The authors measure undergraduates' intervention likelihood, type of involvement (i.e., contact with abuser), and the influence of attribution decisions in DV situations where the…

  1. A probabilistic multi-criteria decision making technique for conceptual and preliminary aerospace systems design

    NASA Astrophysics Data System (ADS)

    Bandte, Oliver

    It has always been the intention of systems engineering to invent or produce the best product possible. Many design techniques have been introduced over the course of decades that try to fulfill this intention. Unfortunately, no technique has succeeded in combining multi-criteria decision making with probabilistic design. The design technique developed in this thesis, the Joint Probabilistic Decision Making (JPDM) technique, successfully overcomes this deficiency by generating a multivariate probability distribution that serves in conjunction with a criterion value range of interest as a universally applicable objective function for multi-criteria optimization and product selection. This new objective function constitutes a meaningful Xnetric, called Probability of Success (POS), that allows the customer or designer to make a decision based on the chance of satisfying the customer's goals. In order to incorporate a joint probabilistic formulation into the systems design process, two algorithms are created that allow for an easy implementation into a numerical design framework: the (multivariate) Empirical Distribution Function and the Joint Probability Model. The Empirical Distribution Function estimates the probability that an event occurred by counting how many times it occurred in a given sample. The Joint Probability Model on the other hand is an analytical parametric model for the multivariate joint probability. It is comprised of the product of the univariate criterion distributions, generated by the traditional probabilistic design process, multiplied with a correlation function that is based on available correlation information between pairs of random variables. JPDM is an excellent tool for multi-objective optimization and product selection, because of its ability to transform disparate objectives into a single figure of merit, the likelihood of successfully meeting all goals or POS. The advantage of JPDM over other multi-criteria decision making

  2. Aggregation operators of neutrosophic linguistic numbers for multiple attribute group decision making.

    PubMed

    Ye, Jun

    2016-01-01

    Based on the concept of neutrosophic linguistic numbers (NLNs) in symbolic neutrosophic theory presented by Smarandache in 2015, the paper firstly proposes basic operational laws of NLNs and the expected value of a NLN to rank NLNs. Then, we propose the NLN weighted arithmetic average (NLNWAA) and NLN weighted geometric average (NLNWGA) operators and discuss their properties. Further, we establish a multiple attribute group decision-making (MAGDM) method by using the NLNWAA and NLNWGA operators under NLN environment. Finally, an illustrative example on a decision-making problem of manufacturing alternatives in the flexible manufacturing system is given to show the application of the proposed MAGDM method.

  3. Multi objective decision making in hybrid energy system design

    NASA Astrophysics Data System (ADS)

    Merino, Gabriel Guillermo

    The design of grid-connected photovoltaic wind generator system supplying a farmstead in Nebraska has been undertaken in this dissertation. The design process took into account competing criteria that motivate the use of different sources of energy for electric generation. The criteria considered were 'Financial', 'Environmental', and 'User/System compatibility'. A distance based multi-objective decision making methodology was developed to rank design alternatives. The method is based upon a precedence order imposed upon the design objectives and a distance metric describing the performance of each alternative. This methodology advances previous work by combining ambiguous information about the alternatives with a decision-maker imposed precedence order in the objectives. Design alternatives, defined by the photovoltaic array and wind generator installed capacities, were analyzed using the multi-objective decision making approach. The performance of the design alternatives was determined by simulating the system using hourly data for an electric load for a farmstead and hourly averages of solar irradiation, temperature and wind speed from eight wind-solar energy monitoring sites in Nebraska. The spatial variability of the solar energy resource within the region was assessed by determining semivariogram models to krige hourly and daily solar radiation data. No significant difference was found in the predicted performance of the system when using kriged solar radiation data, with the models generated vs. using actual data. The spatial variability of the combined wind and solar energy resources was included in the design analysis by using fuzzy numbers and arithmetic. The best alternative was dependent upon the precedence order assumed for the main criteria. Alternatives with no PV array or wind generator dominated when the 'Financial' criteria preceded the others. In contrast, alternatives with a nil component of PV array but a high wind generator component

  4. Selection of adequate site location during early stages of construction project management: A multi-criteria decision analysis approach

    NASA Astrophysics Data System (ADS)

    Marović, Ivan; Hanak, Tomaš

    2017-10-01

    In the management of construction projects special attention should be given to the planning as the most important phase of decision-making process. Quality decision-making based on adequate and comprehensive collaboration of all involved stakeholders is crucial in project’s early stages. Fundamental reasons for existence of this problem arise from: specific conditions of construction industry (final products are inseparable from the location i.e. location has a strong influence of building design and its structural characteristics as well as technology which will be used during construction), investors’ desires and attitudes, and influence of socioeconomic and environment aspects. Considering all mentioned reasons one can conclude that selection of adequate construction site location for future investment is complex, low structured and multi-criteria problem. To take into account all the dimensions, the proposed model for selection of adequate site location is devised. The model is based on AHP (for designing the decision-making hierarchy) and PROMETHEE (for pairwise comparison of investment locations) methods. As a result of mixing basis feature of both methods, operational synergies can be achieved in multi-criteria decision analysis. Such gives the decision-maker a sense of assurance, knowing that if the procedure proposed by the presented model has been followed, it will lead to a rational decision, carefully and systematically thought out.

  5. Event attribution using data assimilation in an intermediate complexity atmospheric model

    NASA Astrophysics Data System (ADS)

    Metref, Sammy; Hannart, Alexis; Ruiz, Juan; Carrassi, Alberto; Bocquet, Marc; Ghil, Michael

    2016-04-01

    attribution of weather and climate-related events, Climatic Change, (in press). Held I. M. and M. J. Suarez, (1994): A Proposal for the Intercomparison of the Dynamical Cores of Atmospheric General Circulation Models. Bull. Amer. Meteor. Soc., 75, 1825-1830. Bourke W. (1972): A multi-level spectral model. I. Formulation and hemispheric integrations. Mon. Wea. Rev., 102, 687-701.

  6. Meta-modelling, visualization and emulation of multi-dimensional data for virtual production intelligence

    NASA Astrophysics Data System (ADS)

    Schulz, Wolfgang; Hermanns, Torsten; Al Khawli, Toufik

    2017-07-01

    Decision making for competitive production in high-wage countries is a daily challenge where rational and irrational methods are used. The design of decision making processes is an intriguing, discipline spanning science. However, there are gaps in understanding the impact of the known mathematical and procedural methods on the usage of rational choice theory. Following Benjamin Franklin's rule for decision making formulated in London 1772, he called "Prudential Algebra" with the meaning of prudential reasons, one of the major ingredients of Meta-Modelling can be identified finally leading to one algebraic value labelling the results (criteria settings) of alternative decisions (parameter settings). This work describes the advances in Meta-Modelling techniques applied to multi-dimensional and multi-criterial optimization by identifying the persistence level of the corresponding Morse-Smale Complex. Implementations for laser cutting and laser drilling are presented, including the generation of fast and frugal Meta-Models with controlled error based on mathematical model reduction Reduced Models are derived to avoid any unnecessary complexity. Both, model reduction and analysis of multi-dimensional parameter space are used to enable interactive communication between Discovery Finders and Invention Makers. Emulators and visualizations of a metamodel are introduced as components of Virtual Production Intelligence making applicable the methods of Scientific Design Thinking and getting the developer as well as the operator more skilled.

  7. Reserch on Urban Spatial Expansion Model Based on Multi-Object Gray Decision-Making and Ca: a Case Study of Pidu District, Chengdu City

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Li, Y.

    2018-04-01

    This paper from the perspective of the Neighbor cellular space, Proposed a new urban space expansion model based on a new multi-objective gray decision and CA. The model solved the traditional cellular automata conversion rules is difficult to meet the needs of the inner space-time analysis of urban changes and to overcome the problem of uncertainty in the combination of urban drivers and urban cellular automata. At the same time, the study takes Pidu District as a research area and carries out urban spatial simulation prediction and analysis, and draws the following conclusions: (1) The design idea of the urban spatial expansion model proposed in this paper is that the urban driving factor and the neighborhood function are tightly coupled by the multi-objective grey decision method based on geographical conditions. The simulation results show that the simulation error of urban spatial expansion is less than 5.27 %. The Kappa coefficient is 0.84. It shows that the model can better capture the inner transformation mechanism of the city. (2) We made a simulation prediction for Pidu District of Chengdu by discussing Pidu District of Chengdu as a system instance.In this way, we analyzed the urban growth tendency of this area.presenting a contiguous increasing mode, which is called "urban intensive development". This expansion mode accorded with sustainable development theory and the ecological urbanization design theory.

  8. Towards the ecotourism: a decision support model for the assessment of sustainability of mountain huts in the Alps.

    PubMed

    Stubelj Ars, Mojca; Bohanec, Marko

    2010-12-01

    This paper studies mountain hut infrastructure in the Alps as an important element of ecotourism in the Alpine region. To improve the decision-making process regarding the implementation of future infrastructure and improvement of existing infrastructure in the vulnerable natural environment of mountain ecosystems, a new decision support model has been developed. The methodology is based on qualitative multi-attribute modelling supported by the DEXi software. The integrated rule-based model is hierarchical and consists of two submodels that cover the infrastructure of the mountain huts and that of the huts' surroundings. The final goal for the designed tool is to help minimize the ecological footprint of tourists in environmentally sensitive and undeveloped mountain areas and contribute to mountain ecotourism. The model has been tested in the case study of four mountain huts in Triglav National Park in Slovenia. Study findings provide a new empirical approach to evaluating existing mountain infrastructure and predicting improvements for the future. The assessment results are of particular interest for decision makers in protected areas, such as Alpine national parks managers and administrators. In a way, this model proposes an approach to the management assessment of mountain huts with the main aim of increasing the quality of life of mountain environment visitors as well as the satisfaction of tourists who may eventually become ecotourists. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. A Response-Time Approach to Comparing Generalized Rational and Take-the-Best Models of Decision Making

    ERIC Educational Resources Information Center

    Bergert, F. Bryan; Nosofsky, Robert M.

    2007-01-01

    The authors develop and test generalized versions of take-the-best (TTB) and rational (RAT) models of multiattribute paired-comparison inference. The generalized models make allowances for subjective attribute weighting, probabilistic orders of attribute inspection, and noisy decision making. A key new test involves a response-time (RT)…

  10. Modeling Structure-Function Relationships in Synthetic DNA Sequences using Attribute Grammars

    PubMed Central

    Cai, Yizhi; Lux, Matthew W.; Adam, Laura; Peccoud, Jean

    2009-01-01

    Recognizing that certain biological functions can be associated with specific DNA sequences has led various fields of biology to adopt the notion of the genetic part. This concept provides a finer level of granularity than the traditional notion of the gene. However, a method of formally relating how a set of parts relates to a function has not yet emerged. Synthetic biology both demands such a formalism and provides an ideal setting for testing hypotheses about relationships between DNA sequences and phenotypes beyond the gene-centric methods used in genetics. Attribute grammars are used in computer science to translate the text of a program source code into the computational operations it represents. By associating attributes with parts, modifying the value of these attributes using rules that describe the structure of DNA sequences, and using a multi-pass compilation process, it is possible to translate DNA sequences into molecular interaction network models. These capabilities are illustrated by simple example grammars expressing how gene expression rates are dependent upon single or multiple parts. The translation process is validated by systematically generating, translating, and simulating the phenotype of all the sequences in the design space generated by a small library of genetic parts. Attribute grammars represent a flexible framework connecting parts with models of biological function. They will be instrumental for building mathematical models of libraries of genetic constructs synthesized to characterize the function of genetic parts. This formalism is also expected to provide a solid foundation for the development of computer assisted design applications for synthetic biology. PMID:19816554

  11. Issues in Developing a Normative Descriptive Model for Dyadic Decision Making

    NASA Technical Reports Server (NTRS)

    Serfaty, D.; Kleinman, D. L.

    1984-01-01

    Most research in modelling human information processing and decision making has been devoted to the case of the single human operator. In the present effort, concepts from the fields of organizational behavior, engineering psychology, team theory and mathematical modelling are merged in an attempt to consider first the case of two cooperating decisionmakers (the Dyad) in a multi-task environment. Rooted in the well-known Dynamic Decision Model (DDM), the normative descriptive approach brings basic cognitive and psychophysical characteristics inherent to human behavior into a team theoretic analytic framework. An experimental paradigm, involving teams in dynamic decision making tasks, is designed to produce the data with which to build the theoretical model.

  12. The Neural Basis of Responsibility Attribution in Decision-Making

    PubMed Central

    Li, Peng; Shen, Yue; Sui, Xue; Chen, Changming; Feng, Tingyong; Li, Hong; Holroyd, Clay

    2013-01-01

    Social responsibility links personal behavior with societal expectations and plays a key role in affecting an agent’s emotional state following a decision. However, the neural basis of responsibility attribution remains unclear. In two previous event-related brain potential (ERP) studies we found that personal responsibility modulated outcome evaluation in gambling tasks. Here we conducted a functional magnetic resonance imaging (fMRI) study to identify particular brain regions that mediate responsibility attribution. In a context involving team cooperation, participants completed a task with their teammates and on each trial received feedback about team success and individual success sequentially. We found that brain activity differed between conditions involving team success vs. team failure. Further, different brain regions were associated with reinforcement of behavior by social praise vs. monetary reward. Specifically, right temporoparietal junction (RTPJ) was associated with social pride whereas dorsal striatum and dorsal anterior cingulate cortex (ACC) were related to reinforcement of behaviors leading to personal gain. The present study provides evidence that the RTPJ is an important region for determining whether self-generated behaviors are deserving of praise in a social context. PMID:24224053

  13. Multi-Criteria Decision Making For Determining A Simple Model of Supplier Selection

    NASA Astrophysics Data System (ADS)

    Harwati

    2017-06-01

    Supplier selection is a decision with many criteria. Supplier selection model usually involves more than five main criteria and more than 10 sub-criteria. In fact many model includes more than 20 criteria. Too many criteria involved in supplier selection models sometimes make it difficult to apply in many companies. This research focuses on designing supplier selection that easy and simple to be applied in the company. Analytical Hierarchy Process (AHP) is used to weighting criteria. The analysis results there are four criteria that are easy and simple can be used to select suppliers: Price (weight 0.4) shipment (weight 0.3), quality (weight 0.2) and services (weight 0.1). A real case simulation shows that simple model provides the same decision with a more complex model.

  14. Leadership of risk decision making in a complex, technology organization: The deliberative decision making model

    NASA Astrophysics Data System (ADS)

    Flaming, Susan C.

    2007-12-01

    The continuing saga of satellite technology development is as much a story of successful risk management as of innovative engineering. How do program leaders on complex, technology projects manage high stakes risks that threaten business success and satellite performance? This grounded theory study of risk decision making portrays decision leadership practices at one communication satellite company. Integrated product team (IPT) leaders of multi-million dollar programs were interviewed and observed to develop an extensive description of the leadership skills required to navigate organizational influences and drive challenging risk decisions to closure. Based on the study's findings the researcher proposes a new decision making model, Deliberative Decision Making, to describe the program leaders' cognitive and organizational leadership practices. This Deliberative Model extends the insights of prominent decision making models including the rational (or classical) and the naturalistic and qualifies claims made by bounded rationality theory. The Deliberative Model describes how leaders proactively engage resources to play a variety of decision leadership roles. The Model incorporates six distinct types of leadership decision activities, undertaken in varying sequence based on the challenges posed by specific risks. Novel features of the Deliberative Decision Model include: an inventory of leadership methods for managing task challenges, potential stakeholder bias and debates; four types of leadership meta-decisions that guide decision processes, and aligned organizational culture. Both supporting and constraining organizational influences were observed as leaders managed major risks, requiring active leadership on the most difficult decisions. Although the company's engineering culture emphasized the importance of data-based decisions, the uncertainties intrinsic to satellite risks required expert engineering judgment to be exercised throughout. An investigation into

  15. Choices, choices: the application of multi-criteria decision analysis to a food safety decision-making problem.

    PubMed

    Fazil, A; Rajic, A; Sanchez, J; McEwen, S

    2008-11-01

    In the food safety arena, the decision-making process can be especially difficult. Decision makers are often faced with social and fiscal pressures when attempting to identify an appropriate balance among several choices. Concurrently, policy and decision makers in microbial food safety are under increasing pressure to demonstrate that their policies and decisions are made using transparent and accountable processes. In this article, we present a multi-criteria decision analysis approach that can be used to address the problem of trying to select a food safety intervention while balancing various criteria. Criteria that are important when selecting an intervention were determined, as a result of an expert consultation, to include effectiveness, cost, weight of evidence, and practicality associated with the interventions. The multi-criteria decision analysis approach we present is able to consider these criteria and arrive at a ranking of interventions. It can also provide a clear justification for the ranking as well as demonstrate to stakeholders, through a scenario analysis approach, how to potentially converge toward common ground. While this article focuses on the problem of selecting food safety interventions, the range of applications in the food safety arena is truly diverse and can be a significant tool in assisting decisions that need to be coherent, transparent, and justifiable. Most importantly, it is a significant contributor when there is a need to strike a fine balance between various potentially competing alternatives and/or stakeholder groups.

  16. A review of clinical decision making: models and current research.

    PubMed

    Banning, Maggi

    2008-01-01

    The aim of this paper was to review the current literature clinical decision-making models and the educational application of models to clinical practice. This was achieved by exploring the function and related research of the three available models of clinical decision making: information-processing model, the intuitive-humanist model and the clinical decision-making model. Clinical decision making is a unique process that involves the interplay between knowledge of pre-existing pathological conditions, explicit patient information, nursing care and experiential learning. Historically, two models of clinical decision making are recognized from the literature; the information-processing model and the intuitive-humanist model. The usefulness and application of both models has been examined in relation the provision of nursing care and care related outcomes. More recently a third model of clinical decision making has been proposed. This new multidimensional model contains elements of the information-processing model but also examines patient specific elements that are necessary for cue and pattern recognition. Literature review. Evaluation of the literature generated from MEDLINE, CINAHL, OVID, PUBMED and EBESCO systems and the Internet from 1980 to November 2005. The characteristics of the three models of decision making were identified and the related research discussed. Three approaches to clinical decision making were identified, each having its own attributes and uses. The most recent addition to the clinical decision making is a theoretical, multidimensional model which was developed through an evaluation of current literature and the assessment of a limited number of research studies that focused on the clinical decision-making skills of inexperienced nurses in pseudoclinical settings. The components of this model and the relative merits to clinical practice are discussed. It is proposed that clinical decision making improves as the nurse gains experience of

  17. A Framework for Multi-Stakeholder Decision-Making and ...

    EPA Pesticide Factsheets

    This contribution describes the implementation of the conditional-value-at-risk (CVaR) metric to create a general multi-stakeholder decision-making framework. It is observed that stakeholder dissatisfactions (distance to their individual ideal solutions) can be interpreted as random variables. We thus shape the dissatisfaction distribution and find an optimal compromise solution by solving a CVaR minimization problem parameterized in the probability level. This enables us to generalize multi-stakeholder settings previously proposed in the literature that minimizes average and worst-case dissatisfactions. We use the concept of the CVaR norm to give a geometric interpretation to this problem and use the properties of this norm to prove that the CVaR minimization problem yields Pareto optimal solutions for any choice of the probability level. We discuss a broad range of potential applications of the framework. We demonstrate the framework in a bio-waste processing facility location case study, where we seek compromise solutions (facility locations) that balance stakeholder priorities on transportation, safety, water quality, and capital costs. This conference presentation abstract explains a new decision-making framework that computes compromise solution alternatives (reach consensus) by mitigating dissatisfactions among stakeholders as needed for SHC Decision Science and Support Tools project.

  18. Hesitant triangular fuzzy information aggregation operators based on Bonferroni means and their application to multiple attribute decision making.

    PubMed

    Wang, Chunyong; Li, Qingguo; Zhou, Xiaoqiang; Yang, Tian

    2014-01-01

    We investigate the multiple attribute decision-making (MADM) problems with hesitant triangular fuzzy information. Firstly, definition and some operational laws of hesitant triangular fuzzy elements are introduced. Then, we develop some hesitant triangular fuzzy aggregation operators based on Bonferroni means and discuss their basic properties. Some existing operators can be viewed as their special cases. Next, we apply the proposed operators to deal with multiple attribute decision-making problems under hesitant triangular fuzzy environment. Finally, an illustrative example is given to show the developed method and demonstrate its practicality and effectiveness.

  19. Hesitant Triangular Fuzzy Information Aggregation Operators Based on Bonferroni Means and Their Application to Multiple Attribute Decision Making

    PubMed Central

    Zhou, Xiaoqiang; Yang, Tian

    2014-01-01

    We investigate the multiple attribute decision-making (MADM) problems with hesitant triangular fuzzy information. Firstly, definition and some operational laws of hesitant triangular fuzzy elements are introduced. Then, we develop some hesitant triangular fuzzy aggregation operators based on Bonferroni means and discuss their basic properties. Some existing operators can be viewed as their special cases. Next, we apply the proposed operators to deal with multiple attribute decision-making problems under hesitant triangular fuzzy environment. Finally, an illustrative example is given to show the developed method and demonstrate its practicality and effectiveness. PMID:25140338

  20. Using multi-objective robust decision making to support seasonal water management in the Chao Phraya River basin, Thailand

    NASA Astrophysics Data System (ADS)

    Riegels, Niels; Jessen, Oluf; Madsen, Henrik

    2016-04-01

    precipitation in the following wet season. The multi-objective robust decision making approach is implemented as follows. First, three baseline simulation models are developed, including a crop water demand model, a river basin simulation model, and model of the impact of incentives on cropping patterns. The crop water demand model estimates irrigation water demands; the river basin simulation model estimates reservoir drawdown required to meet demands given forecasts of precipitation, evaporation, and runoff; the model of incentive impacts estimates the cost of incentives as function of marginal changes in rice yields. Optimization is used to find a set of non-dominated alternatives as a function of rice area and incentive decisions. An ensemble of uncertain model inputs is generated to represent uncertain hydrological and crop area forecasts. An ensemble of indicator values is then generated for each of the decision objectives: farmer benefits, end-of-wet-season reservoir storage, and the cost of incentives. A single alternative is selected from the Pareto set using a robustness criterion. Threshold values are defined for each of the objectives to identify ensemble members for which objective values are unacceptable, and the PRIM data mining algorithm is then used to identify input values associated with unacceptable model outcomes.

  1. Placement decisions and disparities among aboriginal groups: an application of the decision making ecology through multi-level analysis.

    PubMed

    Fluke, John D; Chabot, Martin; Fallon, Barbara; MacLaurin, Bruce; Blackstock, Cindy

    2010-01-01

    This paper examined the relative influence of clinical and organizational characteristics on the decision to place a child in out-of-home care at the conclusion of a child maltreatment investigation. It tested the hypothesis that extraneous factors, specifically, organizational characteristics, impact the decision to place a child in out-of-home care. A secondary aim was to identify possible decision making influences related to disparities in placement decisions tied to Aboriginal children. Research suggests that the Aboriginal status of the child and structural risk factors affecting the family, such as poverty and poor housing, substantially account for this overrepresentation. The decision to place a child in out-of-home care was examined using data from the Canadian Incidence Study of Reported Child Abuse and Neglect. This child welfare dataset collected information about the results of nearly 5,000 child maltreatment investigations as well as a description of the characteristics of the workers and organization responsible for conducting those investigations. Multi-level statistical models were developed using MPlus software, which can accommodate dichotomous outcome variables, which are more reflective of decision making in child welfare. MPlus allows the specific case of the logistic link function for binary outcome variables under maximum likelihood estimation. Final models revealed the importance of the number of Aboriginal reports to an organization as a key second level predictor of the placement decision. It is the only second level factor that remains in the final model. This finding was very stable when tested over several different levels of proportionate caseload representation ranging from greater than 50% to 20% of the caseload. Disparities among Aboriginal children in child welfare decision making were identified at the agency level. The study provides additional evidence supporting the possibility that one source of overrepresentation of

  2. New agrophysics divisions: application of GIS and fuzzy multi attributive comparison of alternatives (review)

    USDA-ARS?s Scientific Manuscript database

    This review paper is devoted to review the new scientific divisions that emerged in agrophysics in the last 10-15 years. Among them are the following: 1) application of Geographic Information Systems, 2) development and application of fuzzy multi attributive comparison of alternatives. In recent yea...

  3. General Matthew B. Ridgway: Attributes of Battle Command and Decision-Making

    DTIC Science & Technology

    1998-02-13

    information dominance require the attributes of future battle commanders be different than those of the past? This paper focuses on the intellectual and personality traits of General Matthew B. Ridgway as they apply to operational command and decision-making. These traits are considered essential for analysis and serve as a framework in which to examine their applicability to future command. The essential qualities of an operational commander are divided into two categories: intellect and personality. Each category is further divided into elemental traits. The application

  4. Temporary site selection and decision-making methods: a case study of Tehran, Iran.

    PubMed

    Omidvar, Babak; Baradaran-Shoraka, Mohammad; Nojavan, Mehdi

    2013-07-01

    Decisions on selecting an appropriate site for temporary shelter used to be taken in a limited amount of time after a disaster. The need for a systematic method in this area inspired the MADM (multi-attribute decision making) for complex disaster management decisions. This research proposes a model for appropriate and systematic site selection for temporary shelters, before an earthquake, using a geographical information system and MADM based on an earthquake damage assessment. After the effective criteria for site selection of temporary shelters are determined, the geographical layers of these criteria are prepared for Municipal District No.1 of Greater Tehran, the capital of Iran. Given these attributes and the required shelter area (415-610 hectares), 14 zones are proposed initially. Various MADM methods are used for the final selection. The mean of the aggregated ranking results are determined, and 10 of the 14 initial zones are ranked. © 2013 The Author(s). Journal compilation © Overseas Development Institute, 2013.

  5. Evaluation of stormwater harvesting sites using multi criteria decision methodology

    NASA Astrophysics Data System (ADS)

    Inamdar, P. M.; Sharma, A. K.; Cook, Stephen; Perera, B. J. C.

    2018-07-01

    Selection of suitable urban stormwater harvesting sites and associated project planning are often complex due to spatial, temporal, economic, environmental and social factors, and related various other variables. This paper is aimed at developing a comprehensive methodology framework for evaluating of stormwater harvesting sites in urban areas using Multi Criteria Decision Analysis (MCDA). At the first phase, framework selects potential stormwater harvesting (SWH) sites using spatial characteristics in a GIS environment. In second phase, MCDA methodology is used for evaluating and ranking of SWH sites in multi-objective and multi-stakeholder environment. The paper briefly describes first phase of framework and focuses chiefly on the second phase of framework. The application of the methodology is also demonstrated over a case study comprising of the local government area, City of Melbourne (CoM), Australia for the benefit of wider water professionals engaged in this area. Nine performance measures (PMs) were identified to characterise the objectives and system performance related to the eight alternative SWH sites for the demonstration of the application of developed methodology. To reflect the stakeholder interests in the current study, four stakeholder participant groups were identified, namely, water authorities (WA), academics (AC), consultants (CS), and councils (CL). The decision analysis methodology broadly consisted of deriving PROMETHEE II rankings of eight alternative SWH sites in the CoM case study, under two distinct group decision making scenarios. The major innovation of this work is the development and application of comprehensive methodology framework that assists in the selection of potential sites for SWH, and facilitates the ranking in multi-objective and multi-stakeholder environment. It is expected that the proposed methodology will assist the water professionals and managers with better knowledge that will reduce the subjectivity in the

  6. Concurrent Learning of Control in Multi agent Sequential Decision Tasks

    DTIC Science & Technology

    2018-04-17

    Concurrent Learning of Control in Multi-agent Sequential Decision Tasks The overall objective of this project was to develop multi-agent reinforcement...learning (MARL) approaches for intelligent agents to autonomously learn distributed control policies in decentral- ized partially observable...shall be subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid OMB control number

  7. Spatially explicit multi-criteria decision analysis for managing vector-borne diseases

    PubMed Central

    2011-01-01

    The complex epidemiology of vector-borne diseases creates significant challenges in the design and delivery of prevention and control strategies, especially in light of rapid social and environmental changes. Spatial models for predicting disease risk based on environmental factors such as climate and landscape have been developed for a number of important vector-borne diseases. The resulting risk maps have proven value for highlighting areas for targeting public health programs. However, these methods generally only offer technical information on the spatial distribution of disease risk itself, which may be incomplete for making decisions in a complex situation. In prioritizing surveillance and intervention strategies, decision-makers often also need to consider spatially explicit information on other important dimensions, such as the regional specificity of public acceptance, population vulnerability, resource availability, intervention effectiveness, and land use. There is a need for a unified strategy for supporting public health decision making that integrates available data for assessing spatially explicit disease risk, with other criteria, to implement effective prevention and control strategies. Multi-criteria decision analysis (MCDA) is a decision support tool that allows for the consideration of diverse quantitative and qualitative criteria using both data-driven and qualitative indicators for evaluating alternative strategies with transparency and stakeholder participation. Here we propose a MCDA-based approach to the development of geospatial models and spatially explicit decision support tools for the management of vector-borne diseases. We describe the conceptual framework that MCDA offers as well as technical considerations, approaches to implementation and expected outcomes. We conclude that MCDA is a powerful tool that offers tremendous potential for use in public health decision-making in general and vector-borne disease management in particular

  8. A Model for Generating Multi-hazard Scenarios

    NASA Astrophysics Data System (ADS)

    Lo Jacomo, A.; Han, D.; Champneys, A.

    2017-12-01

    Communities in mountain areas are often subject to risk from multiple hazards, such as earthquakes, landslides, and floods. Each hazard has its own different rate of onset, duration, and return period. Multiple hazards tend to complicate the combined risk due to their interactions. Prioritising interventions for minimising risk in this context is challenging. We developed a probabilistic multi-hazard model to help inform decision making in multi-hazard areas. The model is applied to a case study region in the Sichuan province in China, using information from satellite imagery and in-situ data. The model is not intended as a predictive model, but rather as a tool which takes stakeholder input and can be used to explore plausible hazard scenarios over time. By using a Monte Carlo framework and varrying uncertain parameters for each of the hazards, the model can be used to explore the effect of different mitigation interventions aimed at reducing the disaster risk within an uncertain hazard context.

  9. A stochastic multicriteria model for evidence-based decision making in drug benefit-risk analysis.

    PubMed

    Tervonen, Tommi; van Valkenhoef, Gert; Buskens, Erik; Hillege, Hans L; Postmus, Douwe

    2011-05-30

    Drug benefit-risk (BR) analysis is based on firm clinical evidence regarding various safety and efficacy outcomes. In this paper, we propose a new and more formal approach for constructing a supporting multi-criteria model that fully takes into account the evidence on efficacy and adverse drug reactions. Our approach is based on the stochastic multi-criteria acceptability analysis methodology, which allows us to compute the typical value judgments that support a decision, to quantify decision uncertainty, and to compute a comprehensive BR profile. We construct a multi-criteria model for the therapeutic group of second-generation antidepressants. We assess fluoxetine and venlafaxine together with placebo according to incidence of treatment response and three common adverse drug reactions by using data from a published study. Our model shows that there are clear trade-offs among the treatment alternatives. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Spatial multi-criteria decision analysis for modelling suitable habitats of Ornithodoros soft ticks in the Western Palearctic region.

    PubMed

    Vial, L; Ducheyne, E; Filatov, S; Gerilovych, A; McVey, D S; Sindryakova, I; Morgunov, S; Pérez de León, A A; Kolbasov, D; De Clercq, E M

    2018-01-15

    Ticks are economically and medically important ectoparasites due to the injuries inflicted through their bite, and their ability to transmit pathogens to humans, livestock, and wildlife. Whereas hard ticks have been intensively studied, little is known about soft ticks, even though they can also transmit pathogens, including African Swine Fever Virus (ASFV) affecting domestic and wild suids or Borrelia bacteria causing tick-borne relapsing fever (TBRF) in humans. We thus developed a regional model to identify suitable spatial areas for a community of nine Ornithodoros tick species (O. erraticus, O. sonrai, O. alactagalis, O. nereensis, O. tholozani, O. papillipes, O. tartakovskyi, O. asperus, O. verrucosus), which may be of medical and veterinary importance in the Western Palearctic region. Multi-Criteria Decision Analysis was used due to the relative scarcity of high-quality occurrence data. After an in-depth literature review on the ecological requirements of the selected tick community, five climate-related factors appeared critical for feeding activity and tick development: (i) a spring temperature exceeding 10°C to induce the end of winter soft tick quiescent period, (ii) a three-months summer temperature above 20°C to allow tick physiological activities, (iii) annual precipitation ranging from 60mm to 750mm and, in very arid areas, (iv) dry seasons interrupted by small rain showers to maintain minimum moisture inside their habitat along the year or (v) residual water provided by perennial rivers near habitats. We deliberately chose not to include biological factors such as host availability or vegetation patterns. A sensitivity analysis was done by performing multiple runs of the model altering the environmental variables, their suitability function, and their attributed weights. To validate the models, we used 355 occurrence data points, complemented by random points within sampled ecoregions. All models indicated suitable areas in the Mediterranean Basin

  11. Rigorously testing multialternative decision field theory against random utility models.

    PubMed

    Berkowitsch, Nicolas A J; Scheibehenne, Benjamin; Rieskamp, Jörg

    2014-06-01

    Cognitive models of decision making aim to explain the process underlying observed choices. Here, we test a sequential sampling model of decision making, multialternative decision field theory (MDFT; Roe, Busemeyer, & Townsend, 2001), on empirical grounds and compare it against 2 established random utility models of choice: the probit and the logit model. Using a within-subject experimental design, participants in 2 studies repeatedly choose among sets of options (consumer products) described on several attributes. The results of Study 1 showed that all models predicted participants' choices equally well. In Study 2, in which the choice sets were explicitly designed to distinguish the models, MDFT had an advantage in predicting the observed choices. Study 2 further revealed the occurrence of multiple context effects within single participants, indicating an interdependent evaluation of choice options and correlations between different context effects. In sum, the results indicate that sequential sampling models can provide relevant insights into the cognitive process underlying preferential choices and thus can lead to better choice predictions. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  12. Application of Grey Relational Analysis to Decision-Making during Product Development

    ERIC Educational Resources Information Center

    Hsiao, Shih-Wen; Lin, Hsin-Hung; Ko, Ya-Chuan

    2017-01-01

    A multi-attribute decision-making (MADM) approach was proposed in this study as a prediction method that differs from the conventional production and design methods for a product. When a client has different dimensional requirements, this approach can quickly provide a company with design decisions for each product. The production factors of a…

  13. Multiple Attribute Group Decision-Making Methods Based on Trapezoidal Fuzzy Two-Dimensional Linguistic Partitioned Bonferroni Mean Aggregation Operators.

    PubMed

    Yin, Kedong; Yang, Benshuo; Li, Xuemei

    2018-01-24

    In this paper, we investigate multiple attribute group decision making (MAGDM) problems where decision makers represent their evaluation of alternatives by trapezoidal fuzzy two-dimensional uncertain linguistic variable. To begin with, we introduce the definition, properties, expectation, operational laws of trapezoidal fuzzy two-dimensional linguistic information. Then, to improve the accuracy of decision making in some case where there are a sort of interrelationship among the attributes, we analyze partition Bonferroni mean (PBM) operator in trapezoidal fuzzy two-dimensional variable environment and develop two operators: trapezoidal fuzzy two-dimensional linguistic partitioned Bonferroni mean (TF2DLPBM) aggregation operator and trapezoidal fuzzy two-dimensional linguistic weighted partitioned Bonferroni mean (TF2DLWPBM) aggregation operator. Furthermore, we develop a novel method to solve MAGDM problems based on TF2DLWPBM aggregation operator. Finally, a practical example is presented to illustrate the effectiveness of this method and analyses the impact of different parameters on the results of decision-making.

  14. Multiple Attribute Group Decision-Making Methods Based on Trapezoidal Fuzzy Two-Dimensional Linguistic Partitioned Bonferroni Mean Aggregation Operators

    PubMed Central

    Yin, Kedong; Yang, Benshuo

    2018-01-01

    In this paper, we investigate multiple attribute group decision making (MAGDM) problems where decision makers represent their evaluation of alternatives by trapezoidal fuzzy two-dimensional uncertain linguistic variable. To begin with, we introduce the definition, properties, expectation, operational laws of trapezoidal fuzzy two-dimensional linguistic information. Then, to improve the accuracy of decision making in some case where there are a sort of interrelationship among the attributes, we analyze partition Bonferroni mean (PBM) operator in trapezoidal fuzzy two-dimensional variable environment and develop two operators: trapezoidal fuzzy two-dimensional linguistic partitioned Bonferroni mean (TF2DLPBM) aggregation operator and trapezoidal fuzzy two-dimensional linguistic weighted partitioned Bonferroni mean (TF2DLWPBM) aggregation operator. Furthermore, we develop a novel method to solve MAGDM problems based on TF2DLWPBM aggregation operator. Finally, a practical example is presented to illustrate the effectiveness of this method and analyses the impact of different parameters on the results of decision-making. PMID:29364849

  15. Identifying Important Attributes for Prognostic Prediction in Traumatic Brain Injury Patients. A Hybrid Method of Decision Tree and Neural Network.

    PubMed

    Pourahmad, Saeedeh; Hafizi-Rastani, Iman; Khalili, Hosseinali; Paydar, Shahram

    2016-10-17

    Generally, traumatic brain injury (TBI) patients do not have a stable condition, particularly after the first week of TBI. Hence, indicating the attributes in prognosis through a prediction model is of utmost importance since it helps caregivers with treatment-decision options, or prepares the relatives for the most-likely outcome. This study attempted to determine and order the attributes in prognostic prediction in TBI patients, based on early clinical findings. A hybrid method was employed, which combines a decision tree (DT) and an artificial neural network (ANN) in order to improve the modeling process. The DT approach was applied as the initial analysis of the network architecture to increase accuracy in prediction. Afterwards, the ANN structure was mapped from the initial DT based on a part of the data. Subsequently, the designed network was trained and validated by the remaining data. 5-fold cross-validation method was applied to train the network. The area under the receiver operating characteristic (ROC) curve, sensitivity, specificity, and accuracy rate were utilized as performance measures. The important attributes were then determined from the trained network using two methods: change of mean squared error (MSE), and sensitivity analysis (SA). The hybrid method offered better results compared to the DT method. The accuracy rate of 86.3 % vs. 82.2 %, sensitivity value of 55.1 % vs. 47.6 %, specificity value of 93.6 % vs. 91.1 %, and the area under the ROC curve of 0.705 vs. 0.695 were achieved for the hybrid method and DT, respectively. However, the attributes' order by DT method was more consistent with the clinical literature. The combination of different modeling methods can enhance their performance. However, it may create some complexities in computations and interpretations. The outcome of the present study could deliver some useful hints in prognostic prediction on the basis of early clinical findings for TBI patients.

  16. Multi-criteria group decision making for evaluating the performance of e-waste recycling programs under uncertainty.

    PubMed

    Wibowo, Santoso; Deng, Hepu

    2015-06-01

    This paper presents a multi-criteria group decision making approach for effectively evaluating the performance of e-waste recycling programs under uncertainty in an organization. Intuitionistic fuzzy numbers are used for adequately representing the subjective and imprecise assessments of the decision makers in evaluating the relative importance of evaluation criteria and the performance of individual e-waste recycling programs with respect to individual criteria in a given situation. An interactive fuzzy multi-criteria decision making algorithm is developed for facilitating consensus building in a group decision making environment to ensure that all the interest of individual decision makers have been appropriately considered in evaluating alternative e-waste recycling programs with respect to their corporate sustainability performance. The developed algorithm is then incorporated into a multi-criteria decision support system for making the overall performance evaluation process effectively and simple to use. Such a multi-criteria decision making system adequately provides organizations with a proactive mechanism for incorporating the concept of corporate sustainability into their regular planning decisions and business practices. An example is presented for demonstrating the applicability of the proposed approach in evaluating the performance of e-waste recycling programs in organizations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A new web-based framework development for fuzzy multi-criteria group decision-making.

    PubMed

    Hanine, Mohamed; Boutkhoum, Omar; Tikniouine, Abdessadek; Agouti, Tarik

    2016-01-01

    Fuzzy multi-criteria group decision making (FMCGDM) process is usually used when a group of decision-makers faces imprecise data or linguistic variables to solve the problems. However, this process contains many methods that require many time-consuming calculations depending on the number of criteria, alternatives and decision-makers in order to reach the optimal solution. In this study, a web-based FMCGDM framework that offers decision-makers a fast and reliable response service is proposed. The proposed framework includes commonly used tools for multi-criteria decision-making problems such as fuzzy Delphi, fuzzy AHP and fuzzy TOPSIS methods. The integration of these methods enables taking advantages of the strengths and complements each method's weakness. Finally, a case study of location selection for landfill waste in Morocco is performed to demonstrate how this framework can facilitate decision-making process. The results demonstrate that the proposed framework can successfully accomplish the goal of this study.

  18. Using multi-criteria decision making for selection of the optimal strategy for municipal solid waste management.

    PubMed

    Jovanovic, Sasa; Savic, Slobodan; Jovicic, Nebojsa; Boskovic, Goran; Djordjevic, Zorica

    2016-09-01

    Multi-criteria decision making (MCDM) is a relatively new tool for decision makers who deal with numerous and often contradictory factors during their decision making process. This paper presents a procedure to choose the optimal municipal solid waste (MSW) management system for the area of the city of Kragujevac (Republic of Serbia) based on the MCDM method. Two methods of multiple attribute decision making, i.e. SAW (simple additive weighting method) and TOPSIS (technique for order preference by similarity to ideal solution), respectively, were used to compare the proposed waste management strategies (WMS). Each of the created strategies was simulated using the software package IWM2. Total values for eight chosen parameters were calculated for all the strategies. Contribution of each of the six waste treatment options was valorized. The SAW analysis was used to obtain the sum characteristics for all the waste management treatment strategies and they were ranked accordingly. The TOPSIS method was used to calculate the relative closeness factors to the ideal solution for all the alternatives. Then, the proposed strategies were ranked in form of tables and diagrams obtained based on both MCDM methods. As shown in this paper, the results were in good agreement, which additionally confirmed and facilitated the choice of the optimal MSW management strategy. © The Author(s) 2016.

  19. Multi-objective decision-making under uncertainty: Fuzzy logic methods

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.

    1995-01-01

    Fuzzy logic allows for quantitative representation of vague or fuzzy objectives, and therefore is well-suited for multi-objective decision-making. This paper presents methods employing fuzzy logic concepts to assist in the decision-making process. In addition, this paper describes software developed at NASA Lewis Research Center for assisting in the decision-making process. Two diverse examples are used to illustrate the use of fuzzy logic in choosing an alternative among many options and objectives. One example is the selection of a lunar lander ascent propulsion system, and the other example is the selection of an aeration system for improving the water quality of the Cuyahoga River in Cleveland, Ohio. The fuzzy logic techniques provided here are powerful tools which complement existing approaches, and therefore should be considered in future decision-making activities.

  20. Investigation of Multi-Criteria Decision Consistency: A Triplex Approach to Optimal Oilfield Portfolio Investment Decisions

    NASA Astrophysics Data System (ADS)

    Qaradaghi, Mohammed

    Complexity of the capital intensive oil and gas portfolio investments is continuously growing. It is manifested in the constant increase in the type, number and degree of risks and uncertainties, which consequently lead to more challenging decision making problems. A typical complex decision making problem in petroleum exploration and production (E&P) is the selection and prioritization of oilfields/projects in a portfolio investment. Prioritizing oilfields maybe required for different purposes, including the achievement of a targeted production and allocation of limited available development resources. These resources cannot be distributed evenly nor can they be allocated based on the oilfield size or production capacity alone since various other factors need to be considered simultaneously. These factors may include subsurface complexity, size of reservoir, plateau production and needed infrastructure in addition to other issues of strategic concern, such as socio-economic, environmental and fiscal policies, particularly when the decision making involves governments or national oil companies. Therefore, it would be imperative to employ decision aiding tools that not only address these factors, but also incorporate the decision makers' preferences clearly and accurately. However, the tools commonly used in project portfolio selection and optimization, including intuitive approaches, vary in their focus and strength in addressing the different criteria involved in such decision problems. They are also disadvantaged by a number of drawbacks, which may include lacking the capacity to address multiple and interrelated criteria, uncertainty and risk, project relationship with regard to value contribution and optimum resource utilization, non-monetary attributes, decision maker's knowledge and expertise, in addition to varying levels of ease of use and other practical and theoretical drawbacks. These drawbacks have motivated researchers to investigate other tools and

  1. A multi-criteria decision aid methodology to design electric vehicles public charging networks

    NASA Astrophysics Data System (ADS)

    Raposo, João; Rodrigues, Ana; Silva, Carlos; Dentinho, Tomaz

    2015-05-01

    This article presents a new multi-criteria decision aid methodology, dynamic-PROMETHEE, here used to design electric vehicle charging networks. In applying this methodology to a Portuguese city, results suggest that it is effective in designing electric vehicle charging networks, generating time and policy based scenarios, considering offer and demand and the city's urban structure. Dynamic-PROMETHE adds to the already known PROMETHEE's characteristics other useful features, such as decision memory over time, versatility and adaptability. The case study, used here to present the dynamic-PROMETHEE, served as inspiration and base to create this new methodology. It can be used to model different problems and scenarios that may present similar requirement characteristics.

  2. Facies Modeling Using 3D Pre-Stack Simultaneous Seismic Inversion and Multi-Attribute Probability Neural Network Transform in the Wattenberg Field, Colorado

    NASA Astrophysics Data System (ADS)

    Harryandi, Sheila

    The Niobrara/Codell unconventional tight reservoir play at Wattenberg Field, Colorado has potentially two billion barrels of oil equivalent requiring hundreds of wells to access this resource. The Reservoir Characterization Project (RCP), in conjunction with Anadarko Petroleum Corporation (APC), began reservoir characterization research to determine how to increase reservoir recovery while maximizing operational efficiency. Past research results indicate that targeting the highest rock quality within the reservoir section for hydraulic fracturing is optimal for improving horizontal well stimulation through multi-stage hydraulic fracturing. The reservoir is highly heterogeneous, consisting of alternating chalks and marls. Modeling the facies within the reservoir is very important to be able to capture the heterogeneity at the well-bore scale; this heterogeneity is then upscaled from the borehole scale to the seismic scale to distribute the heterogeneity in the inter-well space. I performed facies clustering analysis to create several facies defining the reservoir interval in the RCP Wattenberg Field study area. Each facies can be expressed in terms of a range of rock property values from wells obtained by cluster analysis. I used the facies classification from the wells to guide the pre-stack seismic inversion and multi-attribute transform. The seismic data extended the facies information and rock quality information from the wells. By obtaining this information from the 3D facies model, I generated a facies volume capturing the reservoir heterogeneity throughout a ten square mile study-area within the field area. Recommendations are made based on the facies modeling, which include the location for future hydraulic fracturing/re-fracturing treatments to improve recovery from the reservoir, and potential deeper intervals for future exploration drilling targets.

  3. A response-time approach to comparing generalized rational and take-the-best models of decision making.

    PubMed

    Bergert, F Bryan; Nosofsky, Robert M

    2007-01-01

    The authors develop and test generalized versions of take-the-best (TTB) and rational (RAT) models of multiattribute paired-comparison inference. The generalized models make allowances for subjective attribute weighting, probabilistic orders of attribute inspection, and noisy decision making. A key new test involves a response-time (RT) approach. TTB predicts that RT is determined solely by the expected time required to locate the 1st discriminating attribute, whereas RAT predicts that RT is determined by the difference in summed evidence between the 2 alternatives. Critical test pairs are used that partially decouple these 2 factors. Under conditions in which ideal observer TTB and RAT strategies yield equivalent decisions, both the RT results and the estimated attribute weights suggest that the vast majority of subjects adopted the generalized TTB strategy. The RT approach is also validated in an experimental condition in which use of a RAT strategy is essentially forced upon subjects. (c) 2007 APA, all rights reserved.

  4. PATIENT-CENTERED DECISION MAKING: LESSONS FROM MULTI-CRITERIA DECISION ANALYSIS FOR QUANTIFYING PATIENT PREFERENCES.

    PubMed

    Marsh, Kevin; Caro, J Jaime; Zaiser, Erica; Heywood, James; Hamed, Alaa

    2018-01-01

    Patient preferences should be a central consideration in healthcare decision making. However, stories of patients challenging regulatory and reimbursement decisions has led to questions on whether patient voices are being considered sufficiently during those decision making processes. This has led some to argue that it is necessary to quantify patient preferences before they can be adequately considered. This study considers the lessons from the use of multi-criteria decision analysis (MCDA) for efforts to quantify patient preferences. It defines MCDA and summarizes the benefits it can provide to decision makers, identifies examples of MCDAs that have involved patients, and summarizes good practice guidelines as they relate to quantifying patient preferences. The guidance developed to support the use of MCDA in healthcare provide some useful considerations for the quantification of patient preferences, namely that researchers should give appropriate consideration to: the heterogeneity of patient preferences, and its relevance to decision makers; the cognitive challenges posed by different elicitation methods; and validity of the results they produce. Furthermore, it is important to consider how the relevance of these considerations varies with the decision being supported. The MCDA literature holds important lessons for how patient preferences should be quantified to support healthcare decision making.

  5. The effect of uncertainties in distance-based ranking methods for multi-criteria decision making

    NASA Astrophysics Data System (ADS)

    Jaini, Nor I.; Utyuzhnikov, Sergei V.

    2017-08-01

    Data in the multi-criteria decision making are often imprecise and changeable. Therefore, it is important to carry out sensitivity analysis test for the multi-criteria decision making problem. The paper aims to present a sensitivity analysis for some ranking techniques based on the distance measures in multi-criteria decision making. Two types of uncertainties are considered for the sensitivity analysis test. The first uncertainty is related to the input data, while the second uncertainty is towards the Decision Maker preferences (weights). The ranking techniques considered in this study are TOPSIS, the relative distance and trade-off ranking methods. TOPSIS and the relative distance method measure a distance from an alternative to the ideal and antiideal solutions. In turn, the trade-off ranking calculates a distance of an alternative to the extreme solutions and other alternatives. Several test cases are considered to study the performance of each ranking technique in both types of uncertainties.

  6. D-Side: A Facility and Workforce Planning Group Multi-criteria Decision Support System for Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Tavana, Madjid

    2005-01-01

    "To understand and protect our home planet, to explore the universe and search for life, and to inspire the next generation of explorers" is NASA's mission. The Systems Management Office at Johnson Space Center (JSC) is searching for methods to effectively manage the Center's resources to meet NASA's mission. D-Side is a group multi-criteria decision support system (GMDSS) developed to support facility decisions at JSC. D-Side uses a series of sequential and structured processes to plot facilities in a three-dimensional (3-D) graph on the basis of each facility alignment with NASA's mission and goals, the extent to which other facilities are dependent on the facility, and the dollar value of capital investments that have been postponed at the facility relative to the facility replacement value. A similarity factor rank orders facilities based on their Euclidean distance from Ideal and Nadir points. These similarity factors are then used to allocate capital improvement resources across facilities. We also present a parallel model that can be used to support decisions concerning allocation of human resources investments across workforce units. Finally, we present results from a pilot study where 12 experienced facility managers from NASA used D-Side and the organization's current approach to rank order and allocate funds for capital improvement across 20 facilities. Users evaluated D-Side favorably in terms of ease of use, the quality of the decision-making process, decision quality, and overall value-added. Their evaluations of D-Side were significantly more favorable than their evaluations of the current approach. Keywords: NASA, Multi-Criteria Decision Making, Decision Support System, AHP, Euclidean Distance, 3-D Modeling, Facility Planning, Workforce Planning.

  7. Multi-objective game-theory models for conflict analysis in reservoir watershed management.

    PubMed

    Lee, Chih-Sheng

    2012-05-01

    This study focuses on the development of a multi-objective game-theory model (MOGM) for balancing economic and environmental concerns in reservoir watershed management and for assistance in decision. Game theory is used as an alternative tool for analyzing strategic interaction between economic development (land use and development) and environmental protection (water-quality protection and eutrophication control). Geographic information system is used to concisely illustrate and calculate the areas of various land use types. The MOGM methodology is illustrated in a case study of multi-objective watershed management in the Tseng-Wen reservoir, Taiwan. The innovation and advantages of MOGM can be seen in the results, which balance economic and environmental concerns in watershed management and which can be interpreted easily by decision makers. For comparison, the decision-making process using conventional multi-objective method to produce many alternatives was found to be more difficult. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. A multi-criteria decision making approach to identify a vaccine formulation.

    PubMed

    Dewé, Walthère; Durand, Christelle; Marion, Sandie; Oostvogels, Lidia; Devaster, Jeanne-Marie; Fourneau, Marc

    2016-01-01

    This article illustrates the use of a multi-criteria decision making approach, based on desirability functions, to identify an appropriate adjuvant composition for an influenza vaccine to be used in elderly. The proposed adjuvant system contained two main elements: monophosphoryl lipid and α-tocopherol with squalene in an oil/water emulsion. The objective was to elicit a stronger immune response while maintaining an acceptable reactogenicity and safety profile. The study design, the statistical models, the choice of the desirability functions, the computation of the overall desirability index, and the assessment of the robustness of the ranking are all detailed in this manuscript.

  9. A Multi-Objective Decision Making Approach for Solving the Image Segmentation Fusion Problem.

    PubMed

    Khelifi, Lazhar; Mignotte, Max

    2017-08-01

    Image segmentation fusion is defined as the set of methods which aim at merging several image segmentations, in a manner that takes full advantage of the complementarity of each one. Previous relevant researches in this field have been impeded by the difficulty in identifying an appropriate single segmentation fusion criterion, providing the best possible, i.e., the more informative, result of fusion. In this paper, we propose a new model of image segmentation fusion based on multi-objective optimization which can mitigate this problem, to obtain a final improved result of segmentation. Our fusion framework incorporates the dominance concept in order to efficiently combine and optimize two complementary segmentation criteria, namely, the global consistency error and the F-measure (precision-recall) criterion. To this end, we present a hierarchical and efficient way to optimize the multi-objective consensus energy function related to this fusion model, which exploits a simple and deterministic iterative relaxation strategy combining the different image segments. This step is followed by a decision making task based on the so-called "technique for order performance by similarity to ideal solution". Results obtained on two publicly available databases with manual ground truth segmentations clearly show that our multi-objective energy-based model gives better results than the classical mono-objective one.

  10. Multi-scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical Intervention.

    PubMed

    Zhang, Yanhang; Barocas, Victor H; Berceli, Scott A; Clancy, Colleen E; Eckmann, David M; Garbey, Marc; Kassab, Ghassan S; Lochner, Donna R; McCulloch, Andrew D; Tran-Son-Tay, Roger; Trayanova, Natalia A

    2016-09-01

    Cardiovascular diseases (CVDs) are the leading cause of death in the western world. With the current development of clinical diagnostics to more accurately measure the extent and specifics of CVDs, a laudable goal is a better understanding of the structure-function relation in the cardiovascular system. Much of this fundamental understanding comes from the development and study of models that integrate biology, medicine, imaging, and biomechanics. Information from these models provides guidance for developing diagnostics, and implementation of these diagnostics to the clinical setting, in turn, provides data for refining the models. In this review, we introduce multi-scale and multi-physical models for understanding disease development, progression, and designing clinical interventions. We begin with multi-scale models of cardiac electrophysiology and mechanics for diagnosis, clinical decision support, personalized and precision medicine in cardiology with examples in arrhythmia and heart failure. We then introduce computational models of vasculature mechanics and associated mechanical forces for understanding vascular disease progression, designing clinical interventions, and elucidating mechanisms that underlie diverse vascular conditions. We conclude with a discussion of barriers that must be overcome to provide enhanced insights, predictions, and decisions in pre-clinical and clinical applications.

  11. Multi-scale Modeling of the Cardiovascular System: Disease Development, Progression, and Clinical Intervention

    PubMed Central

    Zhang, Yanhang; Barocas, Victor H.; Berceli, Scott A.; Clancy, Colleen E.; Eckmann, David M.; Garbey, Marc; Kassab, Ghassan S.; Lochner, Donna R.; McCulloch, Andrew D.; Tran-Son-Tay, Roger; Trayanova, Natalia A.

    2016-01-01

    Cardiovascular diseases (CVDs) are the leading cause of death in the western world. With the current development of clinical diagnostics to more accurately measure the extent and specifics of CVDs, a laudable goal is a better understanding of the structure-function relation in the cardiovascular system. Much of this fundamental understanding comes from the development and study of models that integrate biology, medicine, imaging, and biomechanics. Information from these models provides guidance for developing diagnostics, and implementation of these diagnostics to the clinical setting, in turn, provides data for refining the models. In this review, we introduce multi-scale and multi-physical models for understanding disease development, progression, and designing clinical interventions. We begin with multi-scale models of cardiac electrophysiology and mechanics for diagnosis, clinical decision support, personalized and precision medicine in cardiology with examples in arrhythmia and heart failure. We then introduce computational models of vasculature mechanics and associated mechanical forces for understanding vascular disease progression, designing clinical interventions, and elucidating mechanisms that underlie diverse vascular conditions. We conclude with a discussion of barriers that must be overcome to provide enhanced insights, predictions, and decisions in pre-clinical and clinical applications. PMID:27138523

  12. Network-centric decision architecture for financial or 1/f data models

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Handley, James W.; Massey, Stoney; Case, Carl T.; Songy, Claude G.

    2002-12-01

    This paper presents a decision architecture algorithm for training neural equation based networks to make autonomous multi-goal oriented, multi-class decisions. These architectures make decisions based on their individual goals and draw from the same network centric feature set. Traditionally, these architectures are comprised of neural networks that offer marginal performance due to lack of convergence of the training set. We present an approach for autonomously extracting sample points as I/O exemplars for generation of multi-branch, multi-node decision architectures populated by adaptively derived neural equations. To test the robustness of this architecture, open source data sets in the form of financial time series were used, requiring a three-class decision space analogous to the lethal, non-lethal, and clutter discrimination problem. This algorithm and the results of its application are presented here.

  13. A multi-valued neutrosophic qualitative flexible approach based on likelihood for multi-criteria decision-making problems

    NASA Astrophysics Data System (ADS)

    Peng, Juan-juan; Wang, Jian-qiang; Yang, Wu-E.

    2017-01-01

    In this paper, multi-criteria decision-making (MCDM) problems based on the qualitative flexible multiple criteria method (QUALIFLEX), in which the criteria values are expressed by multi-valued neutrosophic information, are investigated. First, multi-valued neutrosophic sets (MVNSs), which allow the truth-membership function, indeterminacy-membership function and falsity-membership function to have a set of crisp values between zero and one, are introduced. Then the likelihood of multi-valued neutrosophic number (MVNN) preference relations is defined and the corresponding properties are also discussed. Finally, an extended QUALIFLEX approach based on likelihood is explored to solve MCDM problems where the assessments of alternatives are in the form of MVNNs; furthermore an example is provided to illustrate the application of the proposed method, together with a comparison analysis.

  14. Path analysis and multi-criteria decision making: an approach for multivariate model selection and analysis in health.

    PubMed

    Vasconcelos, A G; Almeida, R M; Nobre, F F

    2001-08-01

    This paper introduces an approach that includes non-quantitative factors for the selection and assessment of multivariate complex models in health. A goodness-of-fit based methodology combined with fuzzy multi-criteria decision-making approach is proposed for model selection. Models were obtained using the Path Analysis (PA) methodology in order to explain the interrelationship between health determinants and the post-neonatal component of infant mortality in 59 municipalities of Brazil in the year 1991. Socioeconomic and demographic factors were used as exogenous variables, and environmental, health service and agglomeration as endogenous variables. Five PA models were developed and accepted by statistical criteria of goodness-of fit. These models were then submitted to a group of experts, seeking to characterize their preferences, according to predefined criteria that tried to evaluate model relevance and plausibility. Fuzzy set techniques were used to rank the alternative models according to the number of times a model was superior to ("dominated") the others. The best-ranked model explained above 90% of the endogenous variables variation, and showed the favorable influences of income and education levels on post-neonatal mortality. It also showed the unfavorable effect on mortality of fast population growth, through precarious dwelling conditions and decreased access to sanitation. It was possible to aggregate expert opinions in model evaluation. The proposed procedure for model selection allowed the inclusion of subjective information in a clear and systematic manner.

  15. Multi-objective optimisation and decision-making of space station logistics strategies

    NASA Astrophysics Data System (ADS)

    Zhu, Yue-he; Luo, Ya-zhong

    2016-10-01

    Space station logistics strategy optimisation is a complex engineering problem with multiple objectives. Finding a decision-maker-preferred compromise solution becomes more significant when solving such a problem. However, the designer-preferred solution is not easy to determine using the traditional method. Thus, a hybrid approach that combines the multi-objective evolutionary algorithm, physical programming, and differential evolution (DE) algorithm is proposed to deal with the optimisation and decision-making of space station logistics strategies. A multi-objective evolutionary algorithm is used to acquire a Pareto frontier and help determine the range parameters of the physical programming. Physical programming is employed to convert the four-objective problem into a single-objective problem, and a DE algorithm is applied to solve the resulting physical programming-based optimisation problem. Five kinds of objective preference are simulated and compared. The simulation results indicate that the proposed approach can produce good compromise solutions corresponding to different decision-makers' preferences.

  16. Optimized production planning model for a multi-plant cultivation system under uncertainty

    NASA Astrophysics Data System (ADS)

    Ke, Shunkui; Guo, Doudou; Niu, Qingliang; Huang, Danfeng

    2015-02-01

    An inexact multi-constraint programming model under uncertainty was developed by incorporating a production plan algorithm into the crop production optimization framework under the multi-plant collaborative cultivation system. In the production plan, orders from the customers are assigned to a suitable plant under the constraints of plant capabilities and uncertainty parameters to maximize profit and achieve customer satisfaction. The developed model and solution method were applied to a case study of a multi-plant collaborative cultivation system to verify its applicability. As determined in the case analysis involving different orders from customers, the period of plant production planning and the interval between orders can significantly affect system benefits. Through the analysis of uncertain parameters, reliable and practical decisions can be generated using the suggested model of a multi-plant collaborative cultivation system.

  17. A multi-objective programming model for assessment the GHG emissions in MSW management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavrotas, George, E-mail: mavrotas@chemeng.ntua.gr; Skoulaxinou, Sotiria; Gakis, Nikos

    2013-09-15

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty yearsmore » they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH{sub 4} generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the

  18. Applying multi-criteria decision-making to improve the waste reduction policy in Taiwan.

    PubMed

    Su, Jun-Pin; Hung, Ming-Lung; Chao, Chia-Wei; Ma, Hwong-wen

    2010-01-01

    Over the past two decades, the waste reduction problem has been a major issue in environmental protection. Both recycling and waste reduction policies have become increasingly important. As the complexity of decision-making has increased, it has become evident that more factors must be considered in the development and implementation of policies aimed at resource recycling and waste reduction. There are many studies focused on waste management excluding waste reduction. This study paid more attention to waste reduction. Social, economic, and management aspects of waste treatment policies were considered in this study. Further, a life-cycle assessment model was applied as an evaluation system for the environmental aspect. Results of both quantitative and qualitative analyses on the social, economic, and management aspects were integrated via the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method into the comprehensive decision-making support system of multi-criteria decision-making (MCDM). A case study evaluating the waste reduction policy in Taoyuan County is presented to demonstrate the feasibility of this model. In the case study, reinforcement of MSW sorting was shown to be the best practice. The model in this study can be applied to other cities faced with the waste reduction problems.

  19. Decision-making Strategies and Performance among Seniors1

    PubMed Central

    Besedeš, Tibor; Deck, Cary; Sarangi, Sudipta; Shor, Mikhael

    2011-01-01

    Using paper and pencil experiments administered in senior centers, we examine decision-making performance in multi-attribute decision problems. We differentiate the effects of declining cognitive performance and changing cognitive process on decision-making performance of seniors as they age. We find a significant decline in performance with age due to reduced reliance on common heuristics and increased decision-making randomness among our oldest subjects. However, we find that increasing the number of options in a decision problem increases the number of heuristics brought to the task. This challenges the choice overload view that people give up when confronted with too much choice. PMID:22408282

  20. Assessing the Reliability and Validity of Multi-Attribute Utility Procedures: An Application of the Theory of Generalizability

    DTIC Science & Technology

    1975-07-01

    I WIWIHIHlipi pqpv<Hi^«^Rii.i ii mmw AD-A016 282 ASSESSING THE REALIBILITY AND VALIDITY OF MULTI-ATTRIBUTE UTILITY PROCEDURES: AN...more complicated and use data from actual experiments. Example 1: Analysis of raters making Importance judgments about attributes. In MAU studies...generaluablllty of JUDGE as contrasted to ÜASC. To do this, we win reanaIyze the data for each syste™ separately. This 1. valid since the initial

  1. Decision aids for multiple-decision disease management as affected by weather input errors.

    PubMed

    Pfender, W F; Gent, D H; Mahaffee, W F; Coop, L B; Fox, A D

    2011-06-01

    Many disease management decision support systems (DSSs) rely, exclusively or in part, on weather inputs to calculate an indicator for disease hazard. Error in the weather inputs, typically due to forecasting, interpolation, or estimation from off-site sources, may affect model calculations and management decision recommendations. The extent to which errors in weather inputs affect the quality of the final management outcome depends on a number of aspects of the disease management context, including whether management consists of a single dichotomous decision, or of a multi-decision process extending over the cropping season(s). Decision aids for multi-decision disease management typically are based on simple or complex algorithms of weather data which may be accumulated over several days or weeks. It is difficult to quantify accuracy of multi-decision DSSs due to temporally overlapping disease events, existence of more than one solution to optimizing the outcome, opportunities to take later recourse to modify earlier decisions, and the ongoing, complex decision process in which the DSS is only one component. One approach to assessing importance of weather input errors is to conduct an error analysis in which the DSS outcome from high-quality weather data is compared with that from weather data with various levels of bias and/or variance from the original data. We illustrate this analytical approach for two types of DSS, an infection risk index for hop powdery mildew and a simulation model for grass stem rust. Further exploration of analysis methods is needed to address problems associated with assessing uncertainty in multi-decision DSSs.

  2. Model-Checking with Edge-Valued Decision Diagrams

    NASA Technical Reports Server (NTRS)

    Roux, Pierre; Siminiceanu, Radu I.

    2010-01-01

    We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library along with state-of-the-art algorithms for building the transition relation and the state space of discrete state systems. We provide efficient algorithms for manipulating EVMDDs and give upper bounds of the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time complexity of the generic recursive algorithm for applying a binary operator on EVMDDs is no worse than that of Multi-Terminal Decision Diagrams. We have implemented a new symbolic model checker with the intention to represent in one formalism the best techniques available at the moment across a spectrum of existing tools: EVMDDs for encoding arithmetic expressions, identity-reduced MDDs for representing the transition relation, and the saturation algorithm for reachability analysis. We compare our new symbolic model checking EVMDD library with the widely used CUDD package and show that, in many cases, our tool is several orders of magnitude faster than CUDD.

  3. A fuzzy model for achieving lean attributes for competitive advantages development using AHP-QFD-PROMETHEE

    NASA Astrophysics Data System (ADS)

    Roghanian, E.; Alipour, Mohammad

    2014-06-01

    Lean production has become an integral part of the manufacturing landscape as its link with superior performance and its ability to provide competitive advantage is well accepted among academics and practitioners. Lean production helps producers in overcoming the challenges organizations face through using powerful tools and enablers. However, most companies are faced with restricted resources such as financial and human resources, time, etc., in using these enablers, and are not capable of implementing all these techniques. Therefore, identifying and selecting the most appropriate and efficient tool can be a significant challenge for many companies. Hence, this literature seeks to combine competitive advantages, lean attributes, and lean enablers to determine the most appropriate enablers for improvement of lean attributes. Quality function deployment in fuzzy environment and house of quality matrix are implemented. Throughout the methodology, fuzzy logic is the basis for translating linguistic judgments required for the relationships and correlation matrix to numerical values. Moreover, for final ranking of lean enablers, a multi-criteria decision-making method (PROMETHEE) is adopted. Finally, a case study in automotive industry is presented to illustrate the implementation of the proposed methodology.

  4. Modeling activity recognition of multi resident using label combination of multi label classification in smart home

    NASA Astrophysics Data System (ADS)

    Mohamed, Raihani; Perumal, Thinagaran; Sulaiman, Md Nasir; Mustapha, Norwati; Zainudin, M. N. Shah

    2017-10-01

    Pertaining to the human centric concern and non-obtrusive way, the ambient sensor type technology has been selected, accepted and embedded in the environment in resilient style. Human activities, everyday are gradually becoming complex and thus complicate the inferences of activities when it involving the multi resident in the same smart environment. Current works solutions focus on separate model between the resident, activities and interactions. Some study use data association and extra auxiliary of graphical nodes to model human tracking information in an environment and some produce separate framework to incorporate the auxiliary for interaction feature model. Thus, recognizing the activities and which resident perform the activity at the same time in the smart home are vital for the smart home development and future applications. This paper will cater the above issue by considering the simplification and efficient method using the multi label classification framework. This effort eliminates time consuming and simplifies a lot of pre-processing tasks comparing with previous approach. Applications to the multi resident multi label learning in smart home problems shows the LC (Label Combination) using Decision Tree (DT) as base classifier can tackle the above problems.

  5. Decision support models for solid waste management: Review and game-theoretic approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karmperis, Athanasios C., E-mail: athkarmp@mail.ntua.gr; Army Corps of Engineers, Hellenic Army General Staff, Ministry of Defence; Aravossis, Konstantinos

    Highlights: ► The mainly used decision support frameworks for solid waste management are reviewed. ► The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ► The game-theoretic approach in a solid waste management context is presented. ► The waste management bargaining game is introduced as a specific decision support framework. ► Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decisionmore » support frameworks, which are the life-cycle assessment, the cost–benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed.« less

  6. Multi-Gaussian fitting for pulse waveform using Weighted Least Squares and multi-criteria decision making method.

    PubMed

    Wang, Lu; Xu, Lisheng; Feng, Shuting; Meng, Max Q-H; Wang, Kuanquan

    2013-11-01

    Analysis of pulse waveform is a low cost, non-invasive method for obtaining vital information related to the conditions of the cardiovascular system. In recent years, different Pulse Decomposition Analysis (PDA) methods have been applied to disclose the pathological mechanisms of the pulse waveform. All these methods decompose single-period pulse waveform into a constant number (such as 3, 4 or 5) of individual waves. Furthermore, those methods do not pay much attention to the estimation error of the key points in the pulse waveform. The estimation of human vascular conditions depends on the key points' positions of pulse wave. In this paper, we propose a Multi-Gaussian (MG) model to fit real pulse waveforms using an adaptive number (4 or 5 in our study) of Gaussian waves. The unknown parameters in the MG model are estimated by the Weighted Least Squares (WLS) method and the optimized weight values corresponding to different sampling points are selected by using the Multi-Criteria Decision Making (MCDM) method. Performance of the MG model and the WLS method has been evaluated by fitting 150 real pulse waveforms of five different types. The resulting Normalized Root Mean Square Error (NRMSE) was less than 2.0% and the estimation accuracy for the key points was satisfactory, demonstrating that our proposed method is effective in compressing, synthesizing and analyzing pulse waveforms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Multiple Criteria Decision Analysis (MCDA) for evaluating new medicines in Health Technology Assessment and beyond: The Advance Value Framework.

    PubMed

    Angelis, Aris; Kanavos, Panos

    2017-09-01

    Escalating drug prices have catalysed the generation of numerous "value frameworks" with the aim of informing payers, clinicians and patients on the assessment and appraisal process of new medicines for the purpose of coverage and treatment selection decisions. Although this is an important step towards a more inclusive Value Based Assessment (VBA) approach, aspects of these frameworks are based on weak methodologies and could potentially result in misleading recommendations or decisions. In this paper, a Multiple Criteria Decision Analysis (MCDA) methodological process, based on Multi Attribute Value Theory (MAVT), is adopted for building a multi-criteria evaluation model. A five-stage model-building process is followed, using a top-down "value-focused thinking" approach, involving literature reviews and expert consultations. A generic value tree is structured capturing decision-makers' concerns for assessing the value of new medicines in the context of Health Technology Assessment (HTA) and in alignment with decision theory. The resulting value tree (Advance Value Tree) consists of three levels of criteria (top level criteria clusters, mid-level criteria, bottom level sub-criteria or attributes) relating to five key domains that can be explicitly measured and assessed: (a) burden of disease, (b) therapeutic impact, (c) safety profile (d) innovation level and (e) socioeconomic impact. A number of MAVT modelling techniques are introduced for operationalising (i.e. estimating) the model, for scoring the alternative treatment options, assigning relative weights of importance to the criteria, and combining scores and weights. Overall, the combination of these MCDA modelling techniques for the elicitation and construction of value preferences across the generic value tree provides a new value framework (Advance Value Framework) enabling the comprehensive measurement of value in a structured and transparent way. Given its flexibility to meet diverse requirements and

  8. Modeling recreation participants' willingness to substitute using multi-attribute indicators

    Treesearch

    Yung-Ping (Emilio) Tseng; Robert B. Ditton

    2008-01-01

    A logistic regression was used to predict anglers' resource-substitution decisions based on three dimensions of recreation specialization (behavior, skill and knowledge, and commitment), two dimensions of place attachment (place identity and place dependence), and three demographic indicators. Results indicated that place dependence was the most effective...

  9. ANFIS multi criteria decision making for overseas construction projects: a methodology

    NASA Astrophysics Data System (ADS)

    Utama, W. P.; Chan, A. P. C.; Zulherman; Zahoor, H.; Gao, R.; Jumas, D. Y.

    2018-02-01

    A critical part when a company targeting a foreign market is how to make a better decision in connection with potential project selection. Since different attributes of information are often incomplete, imprecise and ill-defined in overseas projects selection, the process of decision making by relying on the experiences and intuition is a risky attitude. This paper aims to demonstrate a decision support method in deciding overseas construction projects (OCPs). An Adaptive Neuro-Fuzzy Inference System (ANFIS), the amalgamation of Neural Network and Fuzzy Theory, was used as decision support tool to decide to go or not go on OCPs. Root mean square error (RMSE) and coefficient of correlation (R) were employed to identify the ANFIS system indicating an optimum and efficient result. The optimum result was obtained from ANFIS network with two input membership functions, Gaussian membership function (gaussmf) and hybrid optimization method. The result shows that ANFIS may help the decision-making process for go/not go decision in OCPs.

  10. Research on the influence of parking charging strategy based on multi-level extension theory of group decision making

    NASA Astrophysics Data System (ADS)

    Cheng, Fen; Hu, Wanxin

    2017-05-01

    Based on analysis of the impact of the experience of parking policy at home and abroad, design the impact analysis process of parking strategy. First, using group decision theory to create a parking strategy index system and calculate its weight. Index system includes government, parking operators and travelers. Then, use a multi-level extension theory to analyze the CBD parking strategy. Assess the parking strategy by calculating the correlation of each indicator. Finally, assess the strategy of parking charges through a case. Provide a scientific and reasonable basis for assessing parking strategy. The results showed that the model can effectively analyze multi-target, multi-property parking policy evaluation.

  11. Multi-Agent Market Modeling of Foreign Exchange Rates

    NASA Astrophysics Data System (ADS)

    Zimmermann, Georg; Neuneier, Ralph; Grothmann, Ralph

    A market mechanism is basically driven by a superposition of decisions of many agents optimizing their profit. The oeconomic price dynamic is a consequence of the cumulated excess demand/supply created on this micro level. The behavior analysis of a small number of agents is well understood through the game theory. In case of a large number of agents one may use the limiting case that an individual agent does not have an influence on the market, which allows the aggregation of agents by statistic methods. In contrast to this restriction, we can omit the assumption of an atomic market structure, if we model the market through a multi-agent approach. The contribution of the mathematical theory of neural networks to the market price formation is mostly seen on the econometric side: neural networks allow the fitting of high dimensional nonlinear dynamic models. Furthermore, in our opinion, there is a close relationship between economics and the modeling ability of neural networks because a neuron can be interpreted as a simple model of decision making. With this in mind, a neural network models the interaction of many decisions and, hence, can be interpreted as the price formation mechanism of a market.

  12. Attention and attribute overlap in preferential choice.

    PubMed

    Bhatia, Sudeep

    2017-07-01

    Attributes that are common, or overlapping, across alternatives in two-alternative forced preferential choice tasks are often non-diagnostic. In many settings, attending to and evaluating these attributes does not help the decision maker determine which of the available alternatives is the most desirable. For this reason, many existing behavioural theories propose that decision makers ignore common attributes while deliberating. Across six experiments, we find that decision makers do direct their attention selectively and ignore attributes that are not present in or associated with either of the available alternatives. However, they are as likely to attend to common attributes as they are to attend to attributes that are unique to a single alternative. These results suggest the need for novel theories of attention in preferential choice.

  13. Decision heuristic or preference? Attribute non-attendance in discrete choice problems.

    PubMed

    Heidenreich, Sebastian; Watson, Verity; Ryan, Mandy; Phimister, Euan

    2018-01-01

    This paper investigates if respondents' choice to not consider all characteristics of a multiattribute health service may represent preferences. Over the last decade, an increasing number of studies account for attribute non-attendance (ANA) when using discrete choice experiments to elicit individuals' preferences. Most studies assume such behaviour is a heuristic and therefore uninformative. This assumption may result in misleading welfare estimates if ANA reflects preferences. This is the first paper to assess if ANA is a heuristic or genuine preference without relying on respondents' self-stated motivation and the first study to explore this question within a health context. Based on findings from cognitive psychology, we expect that familiar respondents are less likely to use a decision heuristic to simplify choices than unfamiliar respondents. We employ a latent class model of discrete choice experiment data concerned with National Health Service managers' preferences for support services that assist with performance concerns. We present quantitative and qualitative evidence that in our study ANA mostly represents preferences. We also show that wrong assumptions about ANA result in inadequate welfare measures that can result in suboptimal policy advice. Future research should proceed with caution when assuming that ANA is a heuristic. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Multi-criteria decision analysis tools for prioritising emerging or re-emerging infectious diseases associated with climate change in Canada.

    PubMed

    Cox, Ruth; Sanchez, Javier; Revie, Crawford W

    2013-01-01

    Global climate change is known to result in the emergence or re-emergence of some infectious diseases. Reliable methods to identify the infectious diseases of humans and animals and that are most likely to be influenced by climate are therefore required. Since different priorities will affect the decision to address a particular pathogen threat, decision makers need a standardised method of prioritisation. Ranking methods and Multi-Criteria Decision approaches provide such a standardised method and were employed here to design two different pathogen prioritisation tools. The opinion of 64 experts was elicited to assess the importance of 40 criteria that could be used to prioritise emerging infectious diseases of humans and animals in Canada. A weight was calculated for each criterion according to the expert opinion. Attributes were defined for each criterion as a transparent and repeatable method of measurement. Two different Multi-Criteria Decision Analysis tools were tested, both of which used an additive aggregation approach. These were an Excel spreadsheet tool and a tool developed in software 'M-MACBETH'. The tools were trialed on nine 'test' pathogens. Two different methods of criteria weighting were compared, one using fixed weighting values, the other using probability distributions to account for uncertainty and variation in expert opinion. The ranking of the nine pathogens varied according to the weighting method that was used. In both tools, using both weighting methods, the diseases that tended to rank the highest were West Nile virus, Giardiasis and Chagas, while Coccidioidomycosis tended to rank the lowest. Both tools are a simple and user friendly approach to prioritising pathogens according to climate change by including explicit scoring of 40 criteria and incorporating weighting methods based on expert opinion. They provide a dynamic interactive method that can help to identify pathogens for which a full risk assessment should be pursued.

  15. Multi-Criteria Decision Analysis Tools for Prioritising Emerging or Re-Emerging Infectious Diseases Associated with Climate Change in Canada

    PubMed Central

    Cox, Ruth; Sanchez, Javier; Revie, Crawford W.

    2013-01-01

    Global climate change is known to result in the emergence or re-emergence of some infectious diseases. Reliable methods to identify the infectious diseases of humans and animals and that are most likely to be influenced by climate are therefore required. Since different priorities will affect the decision to address a particular pathogen threat, decision makers need a standardised method of prioritisation. Ranking methods and Multi-Criteria Decision approaches provide such a standardised method and were employed here to design two different pathogen prioritisation tools. The opinion of 64 experts was elicited to assess the importance of 40 criteria that could be used to prioritise emerging infectious diseases of humans and animals in Canada. A weight was calculated for each criterion according to the expert opinion. Attributes were defined for each criterion as a transparent and repeatable method of measurement. Two different Multi-Criteria Decision Analysis tools were tested, both of which used an additive aggregation approach. These were an Excel spreadsheet tool and a tool developed in software ‘M-MACBETH’. The tools were trialed on nine ‘test’ pathogens. Two different methods of criteria weighting were compared, one using fixed weighting values, the other using probability distributions to account for uncertainty and variation in expert opinion. The ranking of the nine pathogens varied according to the weighting method that was used. In both tools, using both weighting methods, the diseases that tended to rank the highest were West Nile virus, Giardiasis and Chagas, while Coccidioidomycosis tended to rank the lowest. Both tools are a simple and user friendly approach to prioritising pathogens according to climate change by including explicit scoring of 40 criteria and incorporating weighting methods based on expert opinion. They provide a dynamic interactive method that can help to identify pathogens for which a full risk assessment should be pursued

  16. Make or buy decision model with multi-stage manufacturing process and supplier imperfect quality

    NASA Astrophysics Data System (ADS)

    Pratama, Mega Aria; Rosyidi, Cucuk Nur

    2017-11-01

    This research develops an make or buy decision model considering supplier imperfect quality. This model can be used to help companies make the right decision in case of make or buy component with the best quality and the least cost in multistage manufacturing process. The imperfect quality is one of the cost component that must be minimizing in this model. Component with imperfect quality, not necessarily defective. It still can be rework and used for assembly. This research also provide a numerical example and sensitivity analysis to show how the model work. We use simulation and help by crystal ball to solve the numerical problem. The sensitivity analysis result show that percentage of imperfect generally not affect to the model significantly, and the model is not sensitive to changes in these parameters. This is because the imperfect cost are smaller than overall total cost components.

  17. Evaluation of water security in Jordan using a multi-agent, hydroeconomic model: Initial model results from the Jordan Water Project

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Klassert, C. J. A.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Rajsekhar, D.; Tilmant, A.; Avisse, N.; Harou, J. J.; Medellin-Azuara, J.; Gawel, E.; Klauer, B.; Mustafa, D.; Talozi, S.; Sigel, K.; Zhang, H.

    2016-12-01

    Our work focuses on development of a multi-agent, hydroeconomic model for water policy evaluation in Jordan. Jordan ranks among the most water-scarce countries in the world, a situation exacerbated due to a recent influx of refugees escaping the ongoing civil war in neighboring Syria. The modular, multi-agent model is used to evaluate interventions for enhancing Jordan's water security, integrating biophysical modules that simulate natural and engineered phenomena with human modules that represent behavior at multiple levels of decision making. The hydrologic modules are developed using spatially-distributed groundwater and surface water models, which are translated into compact simulators for efficient integration into the multi-agent model. For the multi-agent model, we explicitly account for human agency at multiple levels of decision making, with agents representing riparian, management, supplier, and water user groups. Human agents are implemented as autonomous entities in the model that make decisions in relation to one another and in response to hydrologic and socioeconomic conditions. The integrated model is programmed in Python using Pynsim, a generalizable, open-source object-oriented software framework for modeling network-based water resource systems. The modeling time periods include historical (2006-2014) and future (present-2050) time spans. For the historical runs, the model performance is validated against historical data for several observations that reflect the interacting dynamics of both the hydrologic and human components of the system. A historical counterfactual scenario is also constructed to isolate and identify the impacts of the recent Syrian civil war and refugee crisis on Jordan's water system. For the future period, model runs are conducted to evaluate potential supply, demand, and institutional interventions over a wide range of plausible climate and socioeconomic scenarios. In addition, model sensitivity analysis is conducted

  18. Capacity planning for electronic waste management facilities under uncertainty: multi-objective multi-time-step model development.

    PubMed

    Poonam Khanijo Ahluwalia; Nema, Arvind K

    2011-07-01

    Selection of optimum locations for locating new facilities and decision regarding capacities at the proposed facilities is a major concern for municipal authorities/managers. The decision as to whether a single facility is preferred over multiple facilities of smaller capacities would vary with varying priorities to cost and associated risks such as environmental or health risk or risk perceived by the society. Currently management of waste streams such as that of computer waste is being done using rudimentary practices and is flourishing as an unorganized sector, mainly as backyard workshops in many cities of developing nations such as India. Uncertainty in the quantification of computer waste generation is another major concern due to the informal setup of present computer waste management scenario. Hence, there is a need to simultaneously address uncertainty in waste generation quantities while analyzing the tradeoffs between cost and associated risks. The present study aimed to address the above-mentioned issues in a multi-time-step, multi-objective decision-support model, which can address multiple objectives of cost, environmental risk, socially perceived risk and health risk, while selecting the optimum configuration of existing and proposed facilities (location and capacities).

  19. An Agent-Based Model of Farmer Decision Making in Jordan

    NASA Astrophysics Data System (ADS)

    Selby, Philip; Medellin-Azuara, Josue; Harou, Julien; Klassert, Christian; Yoon, Jim

    2016-04-01

    We describe an agent based hydro-economic model of groundwater irrigated agriculture in the Jordan Highlands. The model employs a Multi-Agent-Simulation (MAS) framework and is designed to evaluate direct and indirect outcomes of climate change scenarios and policy interventions on farmer decision making, including annual land use, groundwater use for irrigation, and water sales to a water tanker market. Land use and water use decisions are simulated for groups of farms grouped by location and their behavioural and economic similarities. Decreasing groundwater levels, and the associated increase in pumping costs, are important drivers for change within Jordan'S agricultural sector. We describe how this is considered by coupling of agricultural and groundwater models. The agricultural production model employs Positive Mathematical Programming (PMP), a method for calibrating agricultural production functions to observed planted areas. PMP has successfully been used with disaggregate models for policy analysis. We adapt the PMP approach to allow explicit evaluation of the impact of pumping costs, groundwater purchase fees and a water tanker market. The work demonstrates the applicability of agent-based agricultural decision making assessment in the Jordan Highlands and its integration with agricultural model calibration methods. The proposed approach is designed and implemented with software such that it could be used to evaluate a variety of physical and human influences on decision making in agricultural water management.

  20. A decision model for cost effective design of biomass based green energy supply chains.

    PubMed

    Yılmaz Balaman, Şebnem; Selim, Hasan

    2015-09-01

    The core driver of this study is to deal with the design of anaerobic digestion based biomass to energy supply chains in a cost effective manner. In this concern, a decision model is developed. The model is based on fuzzy multi objective decision making in order to simultaneously optimize multiple economic objectives and tackle the inherent uncertainties in the parameters and decision makers' aspiration levels for the goals. The viability of the decision model is explored with computational experiments on a real-world biomass to energy supply chain and further analyses are performed to observe the effects of different conditions. To this aim, scenario analyses are conducted to investigate the effects of energy crop utilization and operational costs on supply chain structure and performance measures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Multi-Agent Strategic Modeling in a Specific Environment

    NASA Astrophysics Data System (ADS)

    Gams, Matjaz; Bezek, Andraz

    Multi-agent modeling in ambient intelligence (AmI) is concerned with the following task [19]: How can external observations of multi-agent systems in the ambient be used to analyze, model, and direct agent behavior? The main purpose is to obtain knowledge about acts in the environment thus enabling proper actions of the AmI systems [1]. Analysis of such systems must thus capture complex world state representation and asynchronous agent activities. Instead of studying basic numerical data, researchers often use more complex data structures, such as rules and decision trees. Some methods are extremely useful when characterizing state space, but lack the ability to clearly represent temporal state changes occurred by agent actions. To comprehend simultaneous agent actions and complex changes of state space, most often a combination of graphical and symbolical representation performs better in terms of human understanding and performance.

  2. Science and Systems in Support of Multi-hazard Early Warnings and Decisions

    NASA Astrophysics Data System (ADS)

    Pulwarty, R. S.

    2015-12-01

    The demand for improved climate knowledge and information is well documented. As noted in the IPCC (SREX, AR5), the UNISDR Global Assessment Reports and other assessments, this demand has increased pressure for information to support planning under changing rates and emergence of multiple hazards including climate extremes (drought, heat waves, floods). "Decision support" is now a popular term in the climate applications research community. While existing decision support activities can be identified in many disparate settings (e.g. federal, academic, private), the challenge of changing environments (coupled physical and social) is actually one of crafting implementation strategies for improving decision quality (not just meeting "user needs"). This includes overcoming weaknesses in co-production models, moving beyond DSSs as simply "software", coordinating innovation mapping and diffusion, and providing fora and gaming tools to identify common interests and differences in the way risks are perceived and managed among the affected groups. We outline the development and evolution of multi-hazard early warning systems in the United States and elsewhere, focusing on climate-related hazards. In particular, the presentation will focus on the climate science and information needed for (1) improved monitoring and modeling, (2) generating risk profiles, (3) developing information systems and scenarios for critical thresholds, (4) the net benefits of using new information (5) characterizing and bridging the "last mile" in the context of longer-term risk management.

  3. Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations

    NASA Astrophysics Data System (ADS)

    Ward, Logan; Liu, Ruoqian; Krishna, Amar; Hegde, Vinay I.; Agrawal, Ankit; Choudhary, Alok; Wolverton, Chris

    2017-07-01

    While high-throughput density functional theory (DFT) has become a prevalent tool for materials discovery, it is limited by the relatively large computational cost. In this paper, we explore using DFT data from high-throughput calculations to create faster, surrogate models with machine learning (ML) that can be used to guide new searches. Our method works by using decision tree models to map DFT-calculated formation enthalpies to a set of attributes consisting of two distinct types: (i) composition-dependent attributes of elemental properties (as have been used in previous ML models of DFT formation energies), combined with (ii) attributes derived from the Voronoi tessellation of the compound's crystal structure. The ML models created using this method have half the cross-validation error and similar training and evaluation speeds to models created with the Coulomb matrix and partial radial distribution function methods. For a dataset of 435 000 formation energies taken from the Open Quantum Materials Database (OQMD), our model achieves a mean absolute error of 80 meV/atom in cross validation, which is lower than the approximate error between DFT-computed and experimentally measured formation enthalpies and below 15% of the mean absolute deviation of the training set. We also demonstrate that our method can accurately estimate the formation energy of materials outside of the training set and be used to identify materials with especially large formation enthalpies. We propose that our models can be used to accelerate the discovery of new materials by identifying the most promising materials to study with DFT at little additional computational cost.

  4. Parental Health Attributions of Childhood Health and Illness: Development of the Pediatric Cultural Health Attributions Questionnaire (Pedi-CHAQ).

    PubMed

    Vaughn, Lisa M; McLinden, Daniel J; Shellmer, Diana; Baker, Raymond C

    2011-01-01

    The causes attributed to childhood health and illness across cultures (cultural health attributions) are key factors that are now more frequently identified as affecting the health outcomes of children. Research suggests that the causes attributed to an event such as illness are thought to affect subsequent motivation, emotional response, decision making, and behavior. To date, there is no measure of health attributions appropriate for use with parents of pediatric patients. Using the Many-Facets approach to Rasch analysis, this study assesses the psychometrics of a newly developed instrument, the Pediatric Health Attributions Questionnaire (Pedi-CHAQ), a measure designed to assess the cultural health attributions of parents in diverse communities. Results suggest acceptable Rasch model statistics of fit and reliability for the Pedi-CHAQ. A shortened version of the questionnaire was developed as a result of this study and next steps are discussed.

  5. The use of multi-criteria decision analysis to tackle waste management problems: a literature review.

    PubMed

    Achillas, Charisios; Moussiopoulos, Nicolas; Karagiannidis, Avraam; Banias, Georgias; Perkoulidis, George

    2013-02-01

    Problems in waste management have become more and more complex during recent decades. The increasing volumes of waste produced and social environmental consciousness present prominent drivers for environmental managers towards the achievement of a sustainable waste management scheme. However, in practice, there are many factors and influences - often mutually conflicting - criteria for finding solutions in real-life applications. This paper presents a review of the literature on multi-criteria decision aiding in waste management problems for all reported waste streams. Despite limitations, which are clearly stated, most of the work published in this field is reviewed. The present review aims to provide environmental managers and decision-makers with a thorough list of practical applications of the multi-criteria decision analysis techniques that are used to solve real-life waste management problems, as well as the criteria that are mostly employed in such applications according to the nature of the problem under study. Moreover, the paper explores the advantages and disadvantages of using multi-criteria decision analysis techniques in waste management problems in comparison to other available alternatives.

  6. Multi-criteria decision analysis as an innovative approach to managing zoonoses: results from a study on Lyme disease in Canada

    PubMed Central

    2013-01-01

    Background Zoonoses are a growing international threat interacting at the human-animal-environment interface and call for transdisciplinary and multi-sectoral approaches in order to achieve effective disease management. The recent emergence of Lyme disease in Quebec, Canada is a good example of a complex health issue for which the public health sector must find protective interventions. Traditional preventive and control interventions can have important environmental, social and economic impacts and as a result, decision-making requires a systems approach capable of integrating these multiple aspects of interventions. This paper presents the results from a study of a multi-criteria decision analysis (MCDA) approach for the management of Lyme disease in Quebec, Canada. MCDA methods allow a comparison of interventions or alternatives based on multiple criteria. Methods MCDA models were developed to assess various prevention and control decision criteria pertinent to a comprehensive management of Lyme disease: a first model was developed for surveillance interventions and a second was developed for control interventions. Multi-criteria analyses were conducted under two epidemiological scenarios: a disease emergence scenario and an epidemic scenario. Results In general, we observed a good level of agreement between stakeholders. For the surveillance model, the three preferred interventions were: active surveillance of vectors by flagging or dragging, active surveillance of vectors by trapping of small rodents and passive surveillance of vectors of human origin. For the control interventions model, basic preventive communications, human vaccination and small scale landscaping were the three preferred interventions. Scenarios were found to only have a small effect on the group ranking of interventions in the control model. Conclusions MCDA was used to structure key decision criteria and capture the complexity of Lyme disease management. This facilitated the

  7. Multi-criteria decision analysis as an innovative approach to managing zoonoses: results from a study on Lyme disease in Canada.

    PubMed

    Aenishaenslin, Cécile; Hongoh, Valérie; Cissé, Hassane Djibrilla; Hoen, Anne Gatewood; Samoura, Karim; Michel, Pascal; Waaub, Jean-Philippe; Bélanger, Denise

    2013-09-30

    Zoonoses are a growing international threat interacting at the human-animal-environment interface and call for transdisciplinary and multi-sectoral approaches in order to achieve effective disease management. The recent emergence of Lyme disease in Quebec, Canada is a good example of a complex health issue for which the public health sector must find protective interventions. Traditional preventive and control interventions can have important environmental, social and economic impacts and as a result, decision-making requires a systems approach capable of integrating these multiple aspects of interventions. This paper presents the results from a study of a multi-criteria decision analysis (MCDA) approach for the management of Lyme disease in Quebec, Canada. MCDA methods allow a comparison of interventions or alternatives based on multiple criteria. MCDA models were developed to assess various prevention and control decision criteria pertinent to a comprehensive management of Lyme disease: a first model was developed for surveillance interventions and a second was developed for control interventions. Multi-criteria analyses were conducted under two epidemiological scenarios: a disease emergence scenario and an epidemic scenario. In general, we observed a good level of agreement between stakeholders. For the surveillance model, the three preferred interventions were: active surveillance of vectors by flagging or dragging, active surveillance of vectors by trapping of small rodents and passive surveillance of vectors of human origin. For the control interventions model, basic preventive communications, human vaccination and small scale landscaping were the three preferred interventions. Scenarios were found to only have a small effect on the group ranking of interventions in the control model. MCDA was used to structure key decision criteria and capture the complexity of Lyme disease management. This facilitated the identification of gaps in the scientific literature

  8. Combined Economic and Hydrologic Modeling to Support Collaborative Decision Making Processes

    NASA Astrophysics Data System (ADS)

    Sheer, D. P.

    2008-12-01

    For more than a decade, the core concept of the author's efforts in support of collaborative decision making has been a combination of hydrologic simulation and multi-objective optimization. The modeling has generally been used to support collaborative decision making processes. The OASIS model developed by HydroLogics Inc. solves a multi-objective optimization at each time step using a mixed integer linear program (MILP). The MILP can be configured to include any user defined objective, including but not limited too economic objectives. For example, an estimated marginal value for water for crops and M&I use were included in the objective function to drive trades in a model of the lower Rio Grande. The formulation of the MILP, constraints and objectives, in any time step is conditional: it changes based on the value of state variables and dynamic external forcing functions, such as rainfall, hydrology, market prices, arrival of migratory fish, water temperature, etc. It therefore acts as a dynamic short term multi-objective economic optimization for each time step. MILP is capable of solving a general problem that includes a very realistic representation of the physical system characteristics in addition to the normal multi-objective optimization objectives and constraints included in economic models. In all of these models, the short term objective function is a surrogate for achieving long term multi-objective results. The long term performance for any alternative (especially including operating strategies) is evaluated by simulation. An operating rule is the combination of conditions, parameters, constraints and objectives used to determine the formulation of the short term optimization in each time step. Heuristic wrappers for the simulation program have been developed improve the parameters of an operating rule, and are initiating research on a wrapper that will allow us to employ a genetic algorithm to improve the form of the rule (conditions, constraints

  9. An Updated Version of the U.S. Air Force Multi-Attribute Task Battery (AF-MATB)

    DTIC Science & Technology

    2014-08-01

    assessing human performance in a controlled multitask environment. The most recent release of AF-MATB contains numerous improvements and additions...Strategic Behavior, MATB, Multitasking , Task Battery, Simulator, Multi-Attribute Task Battery, Automation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...performance and multitasking strategy. As a result, a specific Information Throughput (IT) Mode was designed to customize the task to fit the Human

  10. Intuitionistic uncertain linguistic partitioned Bonferroni means and their application to multiple attribute decision-making

    NASA Astrophysics Data System (ADS)

    Liu, Zhengmin; Liu, Peide

    2017-04-01

    The Bonferroni mean (BM) was originally introduced by Bonferroni and generalised by many other researchers due to its capacity to capture the interrelationship between input arguments. Nevertheless, in many situations, interrelationships do not always exist between all of the attributes. Attributes can be partitioned into several different categories and members of intra-partition are interrelated while no interrelationship exists between attributes of different partitions. In this paper, as complements to the existing generalisations of BM, we investigate the partitioned Bonferroni mean (PBM) under intuitionistic uncertain linguistic environments and develop two linguistic aggregation operators: intuitionistic uncertain linguistic partitioned Bonferroni mean (IULPBM) and its weighted form (WIULPBM). Then, motivated by the ideal of geometric mean and PBM, we further present the partitioned geometric Bonferroni mean (PGBM) and develop two linguistic geometric aggregation operators: intuitionistic uncertain linguistic partitioned geometric Bonferroni mean (IULPGBM) and its weighted form (WIULPGBM). Some properties and special cases of these proposed operators are also investigated and discussed in detail. Based on these operators, an approach for multiple attribute decision-making problems with intuitionistic uncertain linguistic information is developed. Finally, a practical example is presented to illustrate the developed approach and comparison analyses are conducted with other representative methods to verify the effectiveness and feasibility of the developed approach.

  11. Interactive and Participatory Decision Support: Linking Cyberinfrastructure, Multi-Touch Interfaces, and Substantive Dialogue for Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Malin, R.; Pierce, S. A.; Bass, B. J.

    2012-12-01

    Socio-technical approaches to complex, ill-structured decision problems are needed to identify adaptive responses for earth resource management. This research presents a hybrid approach to create decision tools and engender dialogue among stakeholders for geothermal development in Idaho, United States and El Tatio, Chile. Based on the scarcity of data, limited information availability, and tensions across stakeholder interests we designed and constructed a decision support model that allows stakeholders to rapidly collect, input, and visualize geoscientific data to assess geothermal system impacts and possible development strategies. We have integrated this decision support model into multi-touch interfaces that can be easily used by scientists and stakeholders alike. This toolkit is part of a larger cyberinfrastructure project designed to collect and present geoscientific information to support decision making processes. Consultation with stakeholders at the El Tatio geothermal complex of northern Chile—indigenous communities, local and national government agencies, developers, and geoscientists - informed the implementation of a sustained dialogue process. The El Tatio field case juxtaposes basic parameters such as pH, spring temperature, geochemical content, and FLIR imagery with stakeholder perceptions of risks due to mineral extraction and energy exploration efforts. The results of interviews and a participatory workshop are driving the creation of three initiatives within an indigenous community group; 1) microentrepreneurial efforts for science-based tourism, 2) design of a citizen-led environmental monitoring network in the Altiplano, and 3) business planning for an indigenous renewable energy cooperative. This toolkit is also being applied in the Snake River Plain of Idaho has as part of the DOE sponsored National Student Geothermal Competition. The Idaho case extends results from the Chilean case to implement a more streamlined system to analyze

  12. Feature Integration in the Mapping of Multi-Attribute Visual Stimuli to Responses

    PubMed Central

    Ishizaki, Takuya; Morita, Hiromi; Morita, Masahiko

    2015-01-01

    In the human visual system, different attributes of an object, such as shape and color, are separately processed in different modules and then integrated to elicit a specific response. In this process, different attributes are thought to be temporarily “bound” together by focusing attention on the object; however, how such binding contributes to stimulus-response mapping remains unclear. Here we report that learning and performance of stimulus-response tasks was more difficult when three attributes of the stimulus determined the correct response than when two attributes did. We also found that spatially separated presentations of attributes considerably complicated the task, although they did not markedly affect target detection. These results are consistent with a paired-attribute model in which bound feature pairs, rather than object representations, are associated with responses by learning. This suggests that attention does not bind three or more attributes into a unitary object representation, and long-term learning is required for their integration. PMID:25762010

  13. Building a picture: Prioritisation of exotic diseases for the pig industry in Australia using multi-criteria decision analysis.

    PubMed

    Brookes, V J; Hernández-Jover, M; Cowled, B; Holyoake, P K; Ward, M P

    2014-01-01

    Diseases that are exotic to the pig industry in Australia were prioritised using a multi-criteria decision analysis framework that incorporated weights of importance for a range of criteria important to industry stakeholders. Measurements were collected for each disease for nine criteria that described potential disease impacts. A total score was calculated for each disease using a weighted sum value function that aggregated the nine disease criterion measurements and weights of importance for the criteria that were previously elicited from two groups of industry stakeholders. One stakeholder group placed most value on the impacts of disease on livestock, and one group placed more value on the zoonotic impacts of diseases. Prioritisation lists ordered by disease score were produced for both of these groups. Vesicular diseases were found to have the highest priority for the group valuing disease impacts on livestock, followed by acute forms of African and classical swine fever, then highly pathogenic porcine reproductive and respiratory syndrome. The group who valued zoonotic disease impacts prioritised rabies, followed by Japanese encephalitis, Eastern equine encephalitis and Nipah virus, interspersed with vesicular diseases. The multi-criteria framework used in this study systematically prioritised diseases using a multi-attribute theory based technique that provided transparency and repeatability in the process. Flexibility of the framework was demonstrated by aggregating the criterion weights from more than one stakeholder group with the disease measurements for the criteria. This technique allowed industry stakeholders to be active in resource allocation for their industry without the need to be disease experts. We believe it is the first prioritisation of livestock diseases using values provided by industry stakeholders. The prioritisation lists will be used by industry stakeholders to identify diseases for further risk analysis and disease spread modelling to

  14. Application of Bayesian Techniques to Model the Burden of Human Salmonellosis Attributable to U.S. Food Commodities at the Point of Processing: Adaptation of a Danish Model

    PubMed Central

    Guo, Chuanfa; Hoekstra, Robert M.; Schroeder, Carl M.; Pires, Sara Monteiro; Ong, Kanyin Liane; Hartnett, Emma; Naugle, Alecia; Harman, Jane; Bennett, Patricia; Cieslak, Paul; Scallan, Elaine; Rose, Bonnie; Holt, Kristin G.; Kissler, Bonnie; Mbandi, Evelyne; Roodsari, Reza; Angulo, Frederick J.

    2011-01-01

    Abstract Mathematical models that estimate the proportion of foodborne illnesses attributable to food commodities at specific points in the food chain may be useful to risk managers and policy makers to formulate public health goals, prioritize interventions, and document the effectiveness of mitigations aimed at reducing illness. Using human surveillance data on laboratory-confirmed Salmonella infections from the Centers for Disease Control and Prevention and Salmonella testing data from U.S. Department of Agriculture Food Safety and Inspection Service's regulatory programs, we developed a point-of-processing foodborne illness attribution model by adapting the Hald Salmonella Bayesian source attribution model. Key model outputs include estimates of the relative proportions of domestically acquired sporadic human Salmonella infections resulting from contamination of raw meat, poultry, and egg products processed in the United States from 1998 through 2003. The current model estimates the relative contribution of chicken (48%), ground beef (28%), turkey (17%), egg products (6%), intact beef (1%), and pork (<1%) across 109 Salmonella serotypes found in food commodities at point of processing. While interpretation of the attribution estimates is constrained by data inputs, the adapted model shows promise and may serve as a basis for a common approach to attribution of human salmonellosis and food safety decision-making in more than one country. PMID:21235394

  15. Multi-attribute criteria applied to electric generation energy system analysis LDRD.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuswa, Glenn W.; Tsao, Jeffrey Yeenien; Drennen, Thomas E.

    2005-10-01

    This report began with a Laboratory-Directed Research and Development (LDRD) project to improve Sandia National Laboratories multidisciplinary capabilities in energy systems analysis. The aim is to understand how various electricity generating options can best serve needs in the United States. The initial product is documented in a series of white papers that span a broad range of topics, including the successes and failures of past modeling studies, sustainability, oil dependence, energy security, and nuclear power. Summaries of these projects are included here. These projects have provided a background and discussion framework for the Energy Systems Analysis LDRD team to carrymore » out an inter-comparison of many of the commonly available electric power sources in present use, comparisons of those options, and efforts needed to realize progress towards those options. A computer aid has been developed to compare various options based on cost and other attributes such as technological, social, and policy constraints. The Energy Systems Analysis team has developed a multi-criteria framework that will allow comparison of energy options with a set of metrics that can be used across all technologies. This report discusses several evaluation techniques and introduces the set of criteria developed for this LDRD.« less

  16. A Framework for Multi-Stakeholder Decision-Making and Conflict Resolution (abstract)

    EPA Science Inventory

    This contribution describes the implementation of the conditional-value-at-risk (CVaR) metric to create a general multi-stakeholder decision-making framework. It is observed that stakeholder dissatisfactions (distance to their individual ideal solutions) can be interpreted as ran...

  17. Multi-objective decision-making under uncertainty: Fuzzy logic methods

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.

    1994-01-01

    Selecting the best option among alternatives is often a difficult process. This process becomes even more difficult when the evaluation criteria are vague or qualitative, and when the objectives vary in importance and scope. Fuzzy logic allows for quantitative representation of vague or fuzzy objectives, and therefore is well-suited for multi-objective decision-making. This paper presents methods employing fuzzy logic concepts to assist in the decision-making process. In addition, this paper describes software developed at NASA Lewis Research Center for assisting in the decision-making process. Two diverse examples are used to illustrate the use of fuzzy logic in choosing an alternative among many options and objectives. One example is the selection of a lunar lander ascent propulsion system, and the other example is the selection of an aeration system for improving the water quality of the Cuyahoga River in Cleveland, Ohio. The fuzzy logic techniques provided here are powerful tools which complement existing approaches, and therefore should be considered in future decision-making activities.

  18. Validation of a multi-criteria evaluation model for animal welfare.

    PubMed

    Martín, P; Czycholl, I; Buxadé, C; Krieter, J

    2017-04-01

    The aim of this paper was to validate an alternative multi-criteria evaluation system to assess animal welfare on farms based on the Welfare Quality® (WQ) project, using an example of welfare assessment of growing pigs. This alternative methodology aimed to be more transparent for stakeholders and more flexible than the methodology proposed by WQ. The WQ assessment protocol for growing pigs was implemented to collect data in different farms in Schleswig-Holstein, Germany. In total, 44 observations were carried out. The aggregation system proposed in the WQ protocol follows a three-step aggregation process. Measures are aggregated into criteria, criteria into principles and principles into an overall assessment. This study focussed on the first two steps of the aggregation. Multi-attribute utility theory (MAUT) was used to produce a value of welfare for each criterion and principle. The utility functions and the aggregation function were constructed in two separated steps. The MACBETH (Measuring Attractiveness by a Categorical-Based Evaluation Technique) method was used for utility function determination and the Choquet integral (CI) was used as an aggregation operator. The WQ decision-makers' preferences were fitted in order to construct the utility functions and to determine the CI parameters. The validation of the MAUT model was divided into two steps, first, the results of the model were compared with the results of the WQ project at criteria and principle level, and second, a sensitivity analysis of our model was carried out to demonstrate the relative importance of welfare measures in the different steps of the multi-criteria aggregation process. Using the MAUT, similar results were obtained to those obtained when applying the WQ protocol aggregation methods, both at criteria and principle level. Thus, this model could be implemented to produce an overall assessment of animal welfare in the context of the WQ protocol for growing pigs. Furthermore, this

  19. Comprehensible knowledge model creation for cancer treatment decision making.

    PubMed

    Afzal, Muhammad; Hussain, Maqbool; Ali Khan, Wajahat; Ali, Taqdir; Lee, Sungyoung; Huh, Eui-Nam; Farooq Ahmad, Hafiz; Jamshed, Arif; Iqbal, Hassan; Irfan, Muhammad; Abbas Hydari, Manzar

    2017-03-01

    A wealth of clinical data exists in clinical documents in the form of electronic health records (EHRs). This data can be used for developing knowledge-based recommendation systems that can assist clinicians in clinical decision making and education. One of the big hurdles in developing such systems is the lack of automated mechanisms for knowledge acquisition to enable and educate clinicians in informed decision making. An automated knowledge acquisition methodology with a comprehensible knowledge model for cancer treatment (CKM-CT) is proposed. With the CKM-CT, clinical data are acquired automatically from documents. Quality of data is ensured by correcting errors and transforming various formats into a standard data format. Data preprocessing involves dimensionality reduction and missing value imputation. Predictive algorithm selection is performed on the basis of the ranking score of the weighted sum model. The knowledge builder prepares knowledge for knowledge-based services: clinical decisions and education support. Data is acquired from 13,788 head and neck cancer (HNC) documents for 3447 patients, including 1526 patients of the oral cavity site. In the data quality task, 160 staging values are corrected. In the preprocessing task, 20 attributes and 106 records are eliminated from the dataset. The Classification and Regression Trees (CRT) algorithm is selected and provides 69.0% classification accuracy in predicting HNC treatment plans, consisting of 11 decision paths that yield 11 decision rules. Our proposed methodology, CKM-CT, is helpful to find hidden knowledge in clinical documents. In CKM-CT, the prediction models are developed to assist and educate clinicians for informed decision making. The proposed methodology is generalizable to apply to data of other domains such as breast cancer with a similar objective to assist clinicians in decision making and education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Weighing Clinical Evidence Using Patient Preferences: An Application of Probabilistic Multi-Criteria Decision Analysis.

    PubMed

    Broekhuizen, Henk; IJzerman, Maarten J; Hauber, A Brett; Groothuis-Oudshoorn, Catharina G M

    2017-03-01

    The need for patient engagement has been recognized by regulatory agencies, but there is no consensus about how to operationalize this. One approach is the formal elicitation and use of patient preferences for weighing clinical outcomes. The aim of this study was to demonstrate how patient preferences can be used to weigh clinical outcomes when both preferences and clinical outcomes are uncertain by applying a probabilistic value-based multi-criteria decision analysis (MCDA) method. Probability distributions were used to model random variation and parameter uncertainty in preferences, and parameter uncertainty in clinical outcomes. The posterior value distributions and rank probabilities for each treatment were obtained using Monte-Carlo simulations. The probability of achieving the first rank is the probability that a treatment represents the highest value to patients. We illustrated our methodology for a simplified case on six HIV treatments. Preferences were modeled with normal distributions and clinical outcomes were modeled with beta distributions. The treatment value distributions showed the rank order of treatments according to patients and illustrate the remaining decision uncertainty. This study demonstrated how patient preference data can be used to weigh clinical evidence using MCDA. The model takes into account uncertainty in preferences and clinical outcomes. The model can support decision makers during the aggregation step of the MCDA process and provides a first step toward preference-based personalized medicine, yet requires further testing regarding its appropriate use in real-world settings.

  1. Linguistic hesitant fuzzy multi-criteria decision-making method based on evidential reasoning

    NASA Astrophysics Data System (ADS)

    Zhou, Huan; Wang, Jian-qiang; Zhang, Hong-yu; Chen, Xiao-hong

    2016-01-01

    Linguistic hesitant fuzzy sets (LHFSs), which can be used to represent decision-makers' qualitative preferences as well as reflect their hesitancy and inconsistency, have attracted a great deal of attention due to their flexibility and efficiency. This paper focuses on a multi-criteria decision-making approach that combines LHFSs with the evidential reasoning (ER) method. After reviewing existing studies of LHFSs, a new order relationship and Hamming distance between LHFSs are introduced and some linguistic scale functions are applied. Then, the ER algorithm is used to aggregate the distributed assessment of each alternative. Subsequently, the set of aggregated alternatives on criteria are further aggregated to get the overall value of each alternative. Furthermore, a nonlinear programming model is developed and genetic algorithms are used to obtain the optimal weights of the criteria. Finally, two illustrative examples are provided to show the feasibility and usability of the method, and comparison analysis with the existing method is made.

  2. Preference Reversals in Decision Making Under Risk are Accompanied by Changes in Attention to Different Attributes.

    PubMed

    Kim, Betty E; Seligman, Darryl; Kable, Joseph W

    2012-01-01

    Recent work has shown that visual fixations reflect and influence trial-to-trial variability in people's preferences between goods. Here we extend this principle to attribute weights during decision making under risk. We measured eye movements while people chose between two risky gambles or bid on a single gamble. Consistent with previous work, we found that people exhibited systematic preference reversals between choices and bids. For two gambles matched in expected value, people systematically chose the higher probability option but provided a higher bid for the option that offered the greater amount to win. This effect was accompanied by a shift in fixations of the two attributes, with people fixating on probabilities more during choices and on amounts more during bids. Our results suggest that the construction of value during decision making under risk depends on task context partly because the task differentially directs attention at probabilities vs. amounts. Since recent work demonstrates that neural correlates of value vary with visual fixations, our results also suggest testable hypotheses regarding how task context modulates the neural computation of value to generate preference reversals.

  3. Decision by Sampling

    ERIC Educational Resources Information Center

    Stewart, Neil; Chater, Nick; Brown, Gordon D. A.

    2006-01-01

    We present a theory of decision by sampling (DbS) in which, in contrast with traditional models, there are no underlying psychoeconomic scales. Instead, we assume that an attribute's subjective value is constructed from a series of binary, ordinal comparisons to a sample of attribute values drawn from memory and is its rank within the sample. We…

  4. Strategic rehabilitation planning of piped water networks using multi-criteria decision analysis.

    PubMed

    Scholten, Lisa; Scheidegger, Andreas; Reichert, Peter; Maurer, Max; Mauer, Max; Lienert, Judit

    2014-02-01

    To overcome the difficulties of strategic asset management of water distribution networks, a pipe failure and a rehabilitation model are combined to predict the long-term performance of rehabilitation strategies. Bayesian parameter estimation is performed to calibrate the failure and replacement model based on a prior distribution inferred from three large water utilities in Switzerland. Multi-criteria decision analysis (MCDA) and scenario planning build the framework for evaluating 18 strategic rehabilitation alternatives under future uncertainty. Outcomes for three fundamental objectives (low costs, high reliability, and high intergenerational equity) are assessed. Exploitation of stochastic dominance concepts helps to identify twelve non-dominated alternatives and local sensitivity analysis of stakeholder preferences is used to rank them under four scenarios. Strategies with annual replacement of 1.5-2% of the network perform reasonably well under all scenarios. In contrast, the commonly used reactive replacement is not recommendable unless cost is the only relevant objective. Exemplified for a small Swiss water utility, this approach can readily be adapted to support strategic asset management for any utility size and based on objectives and preferences that matter to the respective decision makers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Towards a conceptual multi-agent-based framework to simulate the spatial group decision-making process

    NASA Astrophysics Data System (ADS)

    Ghavami, Seyed Morsal; Taleai, Mohammad

    2017-04-01

    Most spatial problems are multi-actor, multi-issue and multi-phase in nature. In addition to their intrinsic complexity, spatial problems usually involve groups of actors from different organizational and cognitive backgrounds, all of whom participate in a social structure to resolve or reduce the complexity of a given problem. Hence, it is important to study and evaluate what different aspects influence the spatial problem resolution process. Recently, multi-agent systems consisting of groups of separate agent entities all interacting with each other have been put forward as appropriate tools to use to study and resolve such problems. In this study, then in order to generate a better level of understanding regarding the spatial problem group decision-making process, a conceptual multi-agent-based framework is used that represents and specifies all the necessary concepts and entities needed to aid group decision making, based on a simulation of the group decision-making process as well as the relationships that exist among the different concepts involved. The study uses five main influencing entities as concepts in the simulation process: spatial influence, individual-level influence, group-level influence, negotiation influence and group performance measures. Further, it explains the relationship among different concepts in a descriptive rather than explanatory manner. To illustrate the proposed framework, the approval process for an urban land use master plan in Zanjan—a provincial capital in Iran—is simulated using MAS, the results highlighting the effectiveness of applying an MAS-based framework when wishing to study the group decision-making process used to resolve spatial problems.

  6. TESTING MULTI-CRITERIA DECISION ANALYSIS FOR MORE TRANSPARENT RESOURCE-ALLOCATION DECISION MAKING IN COLOMBIA.

    PubMed

    Castro Jaramillo, Hector Eduardo; Goetghebeur, Mireille; Moreno-Mattar, Ornella

    2016-01-01

    In 2012, Colombia experienced an important institutional transformation after the establishment of the Health Technology Assessment Institute (IETS), the disbandment of the Regulatory Commission for Health and the reassignment of reimbursement decision-making powers to the Ministry of Health and Social Protection (MoHSP). These dynamic changes provided the opportunity to test Multi-Criteria Decision Analysis (MCDA) for systematic and more transparent resource-allocation decision-making. During 2012 and 2013, the MCDA framework Evidence and Value: Impact on Decision Making (EVIDEM) was tested in Colombia. This consisted of a preparatory stage in which the investigators conducted literature searches and produced HTA reports for four interventions of interest, followed by a panel session with decision makers. This method was contrasted with a current approach used in Colombia for updating the publicly financed benefits package (POS), where narrative health technology assessment (HTA) reports are presented alongside comprehensive budget impact analyses (BIAs). Disease severity, size of population, and efficacy ranked at the top among fifteen preselected relevant criteria. MCDA estimates of technologies of interest ranged between 71 to 90 percent of maximum value. The ranking of technologies was sensitive to the methods used. Participants considered that a two-step approach including an MCDA template, complemented by a detailed BIA would be the best approach to assist decision-making in this context. Participants agreed that systematic priority setting should take place in Colombia. This work may serve as the basis to the MoHSP on its interest of setting up a systematic and more transparent process for resource-allocation decision-making.

  7. Identification and Prioritization of Important Attributes of Disease-Modifying Drugs in Decision Making among Patients with Multiple Sclerosis: A Nominal Group Technique and Best-Worst Scaling.

    PubMed

    Kremer, Ingrid E H; Evers, Silvia M A A; Jongen, Peter J; van der Weijden, Trudy; van de Kolk, Ilona; Hiligsmann, Mickaël

    2016-01-01

    Understanding the preferences of patients with multiple sclerosis (MS) for disease-modifying drugs and involving these patients in clinical decision making can improve the concordance between medical decisions and patient values and may, subsequently, improve adherence to disease-modifying drugs. This study aims first to identify which characteristics-or attributes-of disease-modifying drugs influence patients´ decisions about these treatments and second to quantify the attributes' relative importance among patients. First, three focus groups of relapsing-remitting MS patients were formed to compile a preliminary list of attributes using a nominal group technique. Based on this qualitative research, a survey with several choice tasks (best-worst scaling) was developed to prioritize attributes, asking a larger patient group to choose the most and least important attributes. The attributes' mean relative importance scores (RIS) were calculated. Nineteen patients reported 34 attributes during the focus groups and 185 patients evaluated the importance of the attributes in the survey. The effect on disease progression received the highest RIS (RIS = 9.64, 95% confidence interval: [9.48-9.81]), followed by quality of life (RIS = 9.21 [9.00-9.42]), relapse rate (RIS = 7.76 [7.39-8.13]), severity of side effects (RIS = 7.63 [7.33-7.94]) and relapse severity (RIS = 7.39 [7.06-7.73]). Subgroup analyses showed heterogeneity in preference of patients. For example, side effect-related attributes were statistically more important for patients who had no experience in using disease-modifying drugs compared to experienced patients (p < .001). This study shows that, on average, patients valued effectiveness and unwanted effects as most important. Clinicians should be aware of the average preferences but also that attributes of disease-modifying drugs are valued differently by different patients. Person-centred clinical decision making would be needed and requires eliciting

  8. HIV or HIV-Therapy? Causal attributions of symptoms and their impact on treatment decisions among women and men with HIV

    PubMed Central

    2009-01-01

    Objectives Among people with HIV, we examined symptom attribution to HIV or HIV-therapy, awareness of potential side effects and discontinuation of treatment, as well as sex/gender differences. Methods HIV-patients (N = 168, 46% female) completed a comprehensive symptom checklist (attributing each endorsed symptom to HIV, HIV-therapy, or other causes), reported reasons for treatment discontinuations and potential ART-related laboratory abnormalities. Results Main symptom areas were fatigue/sleep/energy, depression/mood, lipodystrophy, and gastrointestinal, dermatological, and neurological problems. Top HIV-attributed symptoms were lack of stamina/energy in both genders, night sweats, depression, mood swings in women; and fatigue, lethargy, difficulties concentrating in men. Women attributed symptoms less frequently to HIV than men, particularly fa-tigue(p < .01). Top treatment-attributed symptoms were lipodystrophy and gastrointestinal problems in both genders. Symptom attribution to HIV-therapy did not differ between genders. Over the past six months, 22% switched/interrupted ART due to side effects. In women, side effect-related treatment decisions were more complex, involving more side effects and substances. Remarkably, women took predominantly protease inhibitor-sparing regimens (p = .05). Both genders reported only 15% of potential ART-related laboratory abnormalities but more than 50% had laboratory abnormalities. Notably, women had fewer elevated renal parameters (p < .01). Conclusions Men may attribute symptoms more often to HIV and maintain a treatment-regimen despite side effects, whereas women may be more prudent in avoiding treatment side effects. Lacking awareness of laboratory abnormalities in both genders potentially indicates gaps in physician-patient communication. Gender differences in causal attributions of symptoms/side effects may influence treatment decisions. PMID:19380286

  9. Theory of the decision/problem state

    NASA Technical Reports Server (NTRS)

    Dieterly, D. L.

    1980-01-01

    A theory of the decision-problem state was introduced and elaborated. Starting with the basic model of a decision-problem condition, an attempt was made to explain how a major decision-problem may consist of subsets of decision-problem conditions composing different condition sequences. In addition, the basic classical decision-tree model was modified to allow for the introduction of a series of characteristics that may be encountered in an analysis of a decision-problem state. The resulting hierarchical model reflects the unique attributes of the decision-problem state. The basic model of a decision-problem condition was used as a base to evolve a more complex model that is more representative of the decision-problem state and may be used to initiate research on decision-problem states.

  10. Merging information from multi-model flood projections in a hierarchical Bayesian framework

    NASA Astrophysics Data System (ADS)

    Le Vine, Nataliya

    2016-04-01

    Multi-model ensembles are becoming widely accepted for flood frequency change analysis. The use of multiple models results in large uncertainty around estimates of flood magnitudes, due to both uncertainty in model selection and natural variability of river flow. The challenge is therefore to extract the most meaningful signal from the multi-model predictions, accounting for both model quality and uncertainties in individual model estimates. The study demonstrates the potential of a recently proposed hierarchical Bayesian approach to combine information from multiple models. The approach facilitates explicit treatment of shared multi-model discrepancy as well as the probabilistic nature of the flood estimates, by treating the available models as a sample from a hypothetical complete (but unobserved) set of models. The advantages of the approach are: 1) to insure an adequate 'baseline' conditions with which to compare future changes; 2) to reduce flood estimate uncertainty; 3) to maximize use of statistical information in circumstances where multiple weak predictions individually lack power, but collectively provide meaningful information; 4) to adjust multi-model consistency criteria when model biases are large; and 5) to explicitly consider the influence of the (model performance) stationarity assumption. Moreover, the analysis indicates that reducing shared model discrepancy is the key to further reduction of uncertainty in the flood frequency analysis. The findings are of value regarding how conclusions about changing exposure to flooding are drawn, and to flood frequency change attribution studies.

  11. A Fuzzy-Based Decision Support Model for Selecting the Best Dialyser Flux in Haemodialysis.

    PubMed

    Oztürk, Necla; Tozan, Hakan

    2015-01-01

    Decision making is an important procedure for every organization. The procedure is particularly challenging for complicated multi-criteria problems. Selection of dialyser flux is one of the decisions routinely made for haemodialysis treatment provided for chronic kidney failure patients. This study provides a decision support model for selecting the best dialyser flux between high-flux and low-flux dialyser alternatives. The preferences of decision makers were collected via a questionnaire. A total of 45 questionnaires filled by dialysis physicians and nephrologists were assessed. A hybrid fuzzy-based decision support software that enables the use of Analytic Hierarchy Process (AHP), Fuzzy Analytic Hierarchy Process (FAHP), Analytic Network Process (ANP), and Fuzzy Analytic Network Process (FANP) was used to evaluate the flux selection model. In conclusion, the results showed that a high-flux dialyser is the best. option for haemodialysis treatment.

  12. A new fit-for-purpose model testing framework: Decision Crash Tests

    NASA Astrophysics Data System (ADS)

    Tolson, Bryan; Craig, James

    2016-04-01

    Decision-makers in water resources are often burdened with selecting appropriate multi-million dollar strategies to mitigate the impacts of climate or land use change. Unfortunately, the suitability of existing hydrologic simulation models to accurately inform decision-making is in doubt because the testing procedures used to evaluate model utility (i.e., model validation) are insufficient. For example, many authors have identified that a good standard framework for model testing called the Klemes Crash Tests (KCTs), which are the classic model validation procedures from Klemeš (1986) that Andréassian et al. (2009) rename as KCTs, have yet to become common practice in hydrology. Furthermore, Andréassian et al. (2009) claim that the progression of hydrological science requires widespread use of KCT and the development of new crash tests. Existing simulation (not forecasting) model testing procedures such as KCTs look backwards (checking for consistency between simulations and past observations) rather than forwards (explicitly assessing if the model is likely to support future decisions). We propose a fundamentally different, forward-looking, decision-oriented hydrologic model testing framework based upon the concept of fit-for-purpose model testing that we call Decision Crash Tests or DCTs. Key DCT elements are i) the model purpose (i.e., decision the model is meant to support) must be identified so that model outputs can be mapped to management decisions ii) the framework evaluates not just the selected hydrologic model but the entire suite of model-building decisions associated with model discretization, calibration etc. The framework is constructed to directly and quantitatively evaluate model suitability. The DCT framework is applied to a model building case study on the Grand River in Ontario, Canada. A hypothetical binary decision scenario is analysed (upgrade or not upgrade the existing flood control structure) under two different sets of model building

  13. A stochastic multi-agent optimization model for energy infrastructure planning under uncertainty and competition.

    DOT National Transportation Integrated Search

    2017-07-04

    This paper presents a stochastic multi-agent optimization model that supports energy infrastruc- : ture planning under uncertainty. The interdependence between dierent decision entities in the : system is captured in an energy supply chain network, w...

  14. Decision Making Methods in Space Economics and Systems Engineering

    NASA Technical Reports Server (NTRS)

    Shishko, Robert

    2006-01-01

    This viewgraph presentation reviews various methods of decision making and the impact that they have on space economics and systems engineering. Some of the methods discussed are: Present Value and Internal Rate of Return (IRR); Cost-Benefit Analysis; Real Options; Cost-Effectiveness Analysis; Cost-Utility Analysis; Multi-Attribute Utility Theory (MAUT); and Analytic Hierarchy Process (AHP).

  15. Review of Multi-Criteria Decision Aid for Integrated Sustainability Assessment of Urban Water Systems - MCEARD

    EPA Science Inventory

    Integrated sustainability assessment is part of a new paradigm for urban water decision making. Multi-criteria decision aid (MCDA) is an integrative framework used in urban water sustainability assessment, which has a particular focus on utilising stakeholder participation. Here ...

  16. Modeling Common-Sense Decisions in Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2010-01-01

    A methodology has been conceived for efficient synthesis of dynamical models that simulate common-sense decision- making processes. This methodology is intended to contribute to the design of artificial-intelligence systems that could imitate human common-sense decision making or assist humans in making correct decisions in unanticipated circumstances. This methodology is a product of continuing research on mathematical models of the behaviors of single- and multi-agent systems known in biology, economics, and sociology, ranging from a single-cell organism at one extreme to the whole of human society at the other extreme. Earlier results of this research were reported in several prior NASA Tech Briefs articles, the three most recent and relevant being Characteristics of Dynamics of Intelligent Systems (NPO -21037), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 48; Self-Supervised Dynamical Systems (NPO-30634), NASA Tech Briefs, Vol. 27, No. 3 (March 2003), page 72; and Complexity for Survival of Living Systems (NPO- 43302), NASA Tech Briefs, Vol. 33, No. 7 (July 2009), page 62. The methodology involves the concepts reported previously, albeit viewed from a different perspective. One of the main underlying ideas is to extend the application of physical first principles to the behaviors of living systems. Models of motor dynamics are used to simulate the observable behaviors of systems or objects of interest, and models of mental dynamics are used to represent the evolution of the corresponding knowledge bases. For a given system, the knowledge base is modeled in the form of probability distributions and the mental dynamics is represented by models of the evolution of the probability densities or, equivalently, models of flows of information. Autonomy is imparted to the decisionmaking process by feedback from mental to motor dynamics. This feedback replaces unavailable external information by information stored in the internal knowledge base. Representation

  17. Possibility-induced simplified neutrosophic aggregation operators and their application to multi-criteria group decision-making

    NASA Astrophysics Data System (ADS)

    Şahin, Rıdvan; Liu, Peide

    2017-07-01

    Simplified neutrosophic set (SNS) is an appropriate tool used to express the incompleteness, indeterminacy and uncertainty of the evaluation objects in decision-making process. In this study, we define the concept of possibility SNS including two types of information such as the neutrosophic performance provided from the evaluation objects and its possibility degree using a value ranging from zero to one. Then by extending the existing neutrosophic information, aggregation models for SNSs that cannot be used effectively to fusion the two different information described above, we propose two novel neutrosophic aggregation operators considering possibility, which are named as a possibility-induced simplified neutrosophic weighted arithmetic averaging operator and possibility-induced simplified neutrosophic weighted geometric averaging operator, and discuss their properties. Moreover, we develop a useful method based on the proposed aggregation operators for solving a multi-criteria group decision-making problem with the possibility simplified neutrosophic information, in which the weights of decision-makers and decision criteria are calculated based on entropy measure. Finally, a practical example is utilised to show the practicality and effectiveness of the proposed method.

  18. The CAULDRON game: Helping decision makers understand extreme weather event attribution

    NASA Astrophysics Data System (ADS)

    Walton, P.; Otto, F. E. L.

    2014-12-01

    There is a recognition from academics and stakeholders that climate science has a fundamental role to play in the decision making process, but too frequently there is still uncertainty about what, when, how and why to use it. Stakeholders suggest that it is because the science is presented in an inaccessible manner, while academics suggest it is because the stakeholders do not have the scientific knowledge to understand and apply the science appropriately. What is apparent is that stakeholders need support, and that there is an onus on academia to provide it. This support is even more important with recent developments in climate science, such as extreme weather event attribution. We are already seeing the impacts of extreme weather events around the world causing lost of life and damage to property and infrastructure with current research suggesting that these events could become more frequent and more intense. If this is to be the case then a better understanding of the science will be vital in developing robust adaptation and business planning. The use of games, role playing and simulations to aid learning has long been understood in education but less so as a tool to support stakeholder understanding of climate science. Providing a 'safe' space where participants can actively engage with concepts, ideas and often emotions, can lead to deep understanding that is not possible through more passive mechanisms such as papers and web sites. This paper reports on a game that was developed through a collaboration led by the Red Cross/Red Crescent, University of Oxford and University of Reading to help stakeholders understand the role of weather event attribution in the decision making process. The game has already been played successfully at a number of high profile events including COP 19 and the African Climate Conference. It has also been used with students as part of a postgraduate environmental management course. As well as describing the design principles of the

  19. Application of TOPSIS and VIKOR improved versions in a multi criteria decision analysis to develop an optimized municipal solid waste management model.

    PubMed

    Aghajani Mir, M; Taherei Ghazvinei, P; Sulaiman, N M N; Basri, N E A; Saheri, S; Mahmood, N Z; Jahan, A; Begum, R A; Aghamohammadi, N

    2016-01-15

    Selecting a suitable Multi Criteria Decision Making (MCDM) method is a crucial stage to establish a Solid Waste Management (SWM) system. Main objective of the current study is to demonstrate and evaluate a proposed method using Multiple Criteria Decision Making methods (MCDM). An improved version of Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) applied to obtain the best municipal solid waste management method by comparing and ranking the scenarios. Applying this method in order to rank treatment methods is introduced as one contribution of the study. Besides, Viekriterijumsko Kompromisno Rangiranje (VIKOR) compromise solution method applied for sensitivity analyses. The proposed method can assist urban decision makers in prioritizing and selecting an optimized Municipal Solid Waste (MSW) treatment system. Besides, a logical and systematic scientific method was proposed to guide an appropriate decision-making. A modified TOPSIS methodology as a superior to existing methods for first time was applied for MSW problems. Applying this method in order to rank treatment methods is introduced as one contribution of the study. Next, 11 scenarios of MSW treatment methods are defined and compared environmentally and economically based on the waste management conditions. Results show that integrating a sanitary landfill (18.1%), RDF (3.1%), composting (2%), anaerobic digestion (40.4%), and recycling (36.4%) was an optimized model of integrated waste management. An applied decision-making structure provides the opportunity for optimum decision-making. Therefore, the mix of recycling and anaerobic digestion and a sanitary landfill with Electricity Production (EP) are the preferred options for MSW management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Age-related differences in reliance behavior attributable to costs within a human-decision aid system.

    PubMed

    Ezer, Neta; Fisk, Arthur D; Rogers, Wendy A

    2008-12-01

    An empirical investigation was done to determine if there are age-related differences attributable to costs in reliance on a decision aid. Costs of reliance on a decision aid may affect reliance on the aid. Older and younger adults may not perceive and respond to a dynamic cost structure equally or objectively. Sixteen older adults (65-74 years) and 16 younger adults (18-28 years) performed a counting task with an imperfect decision aid. Two types of costs were manipulated: (a) cost of error (CoE) and (b) cost of verification (CoV). The percentage of trials in which participants agreed with the decision aid and did not perform the task manually was recorded as reliance. Participants decreased their reliance as the CoE increased and increased their reliance with a lower CoV; however, they tended to underrely on the decision aid. Younger adults tended to change their reliance behavior more than older adults did with the changing cost structure. Older and younger adults appear to interpret costs differently, with older adults being less responsive to changes in costs. Older adults may have been less able to monitor the changing costs and hence not adapt to them as well as younger adults. Designers of decision aids should consider explicitly stating costs associated with reliance on the aid, as individuals may differ in how they interpret and respond to changing costs.

  1. Modelling and simulating decision processes of linked lives: An approach based on concurrent processes and stochastic race.

    PubMed

    Warnke, Tom; Reinhardt, Oliver; Klabunde, Anna; Willekens, Frans; Uhrmacher, Adelinde M

    2017-10-01

    Individuals' decision processes play a central role in understanding modern migration phenomena and other demographic processes. Their integration into agent-based computational demography depends largely on suitable support by a modelling language. We are developing the Modelling Language for Linked Lives (ML3) to describe the diverse decision processes of linked lives succinctly in continuous time. The context of individuals is modelled by networks the individual is part of, such as family ties and other social networks. Central concepts, such as behaviour conditional on agent attributes, age-dependent behaviour, and stochastic waiting times, are tightly integrated in the language. Thereby, alternative decisions are modelled by concurrent processes that compete by stochastic race. Using a migration model, we demonstrate how this allows for compact description of complex decisions, here based on the Theory of Planned Behaviour. We describe the challenges for the simulation algorithm posed by stochastic race between multiple concurrent complex decisions.

  2. Application of Bayesian techniques to model the burden of human salmonellosis attributable to U.S. food commodities at the point of processing: adaptation of a Danish model.

    PubMed

    Guo, Chuanfa; Hoekstra, Robert M; Schroeder, Carl M; Pires, Sara Monteiro; Ong, Kanyin Liane; Hartnett, Emma; Naugle, Alecia; Harman, Jane; Bennett, Patricia; Cieslak, Paul; Scallan, Elaine; Rose, Bonnie; Holt, Kristin G; Kissler, Bonnie; Mbandi, Evelyne; Roodsari, Reza; Angulo, Frederick J; Cole, Dana

    2011-04-01

    Mathematical models that estimate the proportion of foodborne illnesses attributable to food commodities at specific points in the food chain may be useful to risk managers and policy makers to formulate public health goals, prioritize interventions, and document the effectiveness of mitigations aimed at reducing illness. Using human surveillance data on laboratory-confirmed Salmonella infections from the Centers for Disease Control and Prevention and Salmonella testing data from U.S. Department of Agriculture Food Safety and Inspection Service's regulatory programs, we developed a point-of-processing foodborne illness attribution model by adapting the Hald Salmonella Bayesian source attribution model. Key model outputs include estimates of the relative proportions of domestically acquired sporadic human Salmonella infections resulting from contamination of raw meat, poultry, and egg products processed in the United States from 1998 through 2003. The current model estimates the relative contribution of chicken (48%), ground beef (28%), turkey (17%), egg products (6%), intact beef (1%), and pork (<1%) across 109 Salmonella serotypes found in food commodities at point of processing. While interpretation of the attribution estimates is constrained by data inputs, the adapted model shows promise and may serve as a basis for a common approach to attribution of human salmonellosis and food safety decision-making in more than one country. © Mary Ann Liebert, Inc.

  3. Impact of Decision Criteria on Federal Aviation Administration Certification of Military Commercial Derivative Aircraft

    DTIC Science & Technology

    2012-03-01

    Capt Low was a member of the Sigma Iota Epsilon professional management fraternity. He has performed as an on-equipment and off-equipment...FAA Certification, Military Commercial Derivative Aircraft, Multi-Attribute Decision Making 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  4. Multi-Criteria Decision-Making Methods and Their Applications for Human Resources

    NASA Astrophysics Data System (ADS)

    D'Urso, M. G.; Masi, D.

    2015-05-01

    Both within the formation field and the labor market Multi-Criteria Decision Methods (MCDM) provide a significant support to the management of human resources in which the best choice among several alternatives can be very complex. This contribution addresses fuzzy logic in multi-criteria decision techniques since they have several applications in the management of human resources with the advantage of ruling out mistakes due to the subjectivity of the person in charge of making a choice. Evaluating educational achievements as well as the professional profile of a technician more suitable for a job in a firm, industry or a professional office are valuable examples of fuzzy logic. For all of the previous issues subjectivity is a fundamental aspect so that fuzzy logic, due to the very meaning of the word fuzzy, should be the preferred choice. However, this is not sufficient to justify its use; fuzzy technique has to make the system of evaluation and choice more effective and objective. The methodological structure of the multi-criteria fuzzy criterion is hierarchic and allows one to select the best alternatives in all those cases in which several alternatives are possible; thus, the optimal choice can be achieved by analyzing the different scopes of each criterion and sub-criterion as well as the relevant weights.

  5. Innovation attributes and adoption decisions: perspectives from leaders of a national sample of addiction treatment organizations.

    PubMed

    Knudsen, Hannah K; Roman, Paul M

    2015-02-01

    Drawing on diffusion theory to further knowledge about evidence-based practices (EBPs) in the treatment of substance use disorders (SUDs), this study describes the perceived importance of innovation attributes in adoption decisions within a national sample of SUD treatment organizations. Face-to-face interviews were conducted with leaders of 307 organizations. A typology differentiated organizations reporting: (1) adoption of a treatment innovation in the past year ("recent adoption"), (2) plans to adopt an innovation in the upcoming year ("planned adoption"), or (3) no actual or planned adoption ("non-adoption"). About 30.7% of organizations reported recent adoption, 20.5% indicated planned adoption, and 48.8% were non-adopters. Leaders of organizations reporting recent adoption (n=93) or planned adoption (n=62) rated the importance of innovation attributes, including relative advantage, compatibility, complexity, and observability, on these adoption decisions using a Likert scale that ranged from 0 to 5. Innovation attributes most strongly endorsed were consistency with the program's treatment philosophy (mean=4.47, SD=1.03), improvement in the program's reputation with referral sources (mean=4.00, SD=1.33), reputational improvement with clients and their families (mean=3.98, SD=1.31), and reductions in treatment dropout (mean=3.75, SD=1.54). Innovation characteristics reflecting organizational growth and implementation costs were less strongly endorsed. Adopters and planners were generally similar in their importance ratings. There were modest differences in importance ratings when pharmacological innovations were compared to psychosocial interventions. These findings are consistent with diffusion theory and suggest that efforts to link EBPs with client satisfaction and potential reputational benefits may enhance the diffusion of EBPs. Attention to these attributes when developing and evaluating SUD treatment interventions may enhance efforts to increase

  6. Innovation Attributes and Adoption Decisions: Perspectives from Leaders of a National Sample of Addiction Treatment Organizations

    PubMed Central

    Knudsen, Hannah K.; Roman, Paul M

    2014-01-01

    Drawing on diffusion theory to further knowledge about evidence-based practices (EBPs) in the treatment of substance use disorders (SUDs), this study describes the perceived importance of innovation attributes in adoption decisions within a national sample of SUD treatment organizations. Face-to-face interviews were conducted with leaders of 307 organizations. A typology differentiated organizations reporting: (1) adoption of a treatment innovation in the past year (“recent adoption”), (2) plans to adopt an innovation in the upcoming year (“planned adoption”), or (3) no actual or planned adoption (“non-adoption”). About 30.7% of organizations reported recent adoption, 20.5% indicated planned adoption, and 48.8% were non-adopters. Leaders of organizations reporting recent adoption (n = 93) or planned adoption (n = 62) rated the importance of innovation attributes, including relative advantage, compatibility, complexity, and observability, on these adoption decisions using a Likert scale that ranged from 0 to 5. Innovation attributes most strongly endorsed were consistency with the program's treatment philosophy (mean = 4.47, SD = 1.03), improvement in the program's reputation with referral sources (mean = 4.00, SD = 1.33), reputational improvement with clients and their families (mean = 3.98, SD = 1.31), and reductions in treatment dropout (mean = 3.75, SD = 1.54). Innovation characteristics reflecting organizational growth and implementation costs were less strongly endorsed. Adopters and planners were generally similar in their importance ratings. There were modest differences in importance ratings when pharmacological innovations were compared to psychosocial interventions. These findings are consistent with diffusion theory and suggest that efforts to link EBPs with client satisfaction and potential reputational benefits may enhance the diffusion of EBPs. Attention to these attributes when developing and evaluating SUD treatment interventions may

  7. A framework for multi-stakeholder decision-making and ...

    EPA Pesticide Factsheets

    We propose a decision-making framework to compute compromise solutions that balance conflicting priorities of multiple stakeholders on multiple objectives. In our setting, we shape the stakeholder dis-satisfaction distribution by solving a conditional-value-at-risk (CVaR) minimization problem. The CVaR problem is parameterized by a probability level that shapes the tail of the dissatisfaction distribution. The proposed approach allows us to compute a family of compromise solutions and generalizes multi-stakeholder settings previously proposed in the literature that minimize average and worst-case dissatisfactions. We use the concept of the CVaR norm to give a geometric interpretation to this problem +and use the properties of this norm to prove that the CVaR minimization problem yields Pareto optimal solutions for any choice of the probability level. We discuss a broad range of potential applications of the framework that involve complex decision-making processes. We demonstrate the developments using a biowaste facility location case study in which we seek to balance stakeholder priorities on transportation, safety, water quality, and capital costs. This manuscript describes the methodology of a new decision-making framework that computes compromise solutions that balance conflicting priorities of multiple stakeholders on multiple objectives as needed for SHC Decision Science and Support Tools project. A biowaste facility location is employed as the case study

  8. Multi-model groundwater-management optimization: reconciling disparate conceptual models

    NASA Astrophysics Data System (ADS)

    Timani, Bassel; Peralta, Richard

    2015-09-01

    Disagreement among policymakers often involves policy issues and differences between the decision makers' implicit utility functions. Significant disagreement can also exist concerning conceptual models of the physical system. Disagreement on the validity of a single simulation model delays discussion on policy issues and prevents the adoption of consensus management strategies. For such a contentious situation, the proposed multi-conceptual model optimization (MCMO) can help stakeholders reach a compromise strategy. MCMO computes mathematically optimal strategies that simultaneously satisfy analogous constraints and bounds in multiple numerical models that differ in boundary conditions, hydrogeologic stratigraphy, and discretization. Shadow prices and trade-offs guide the process of refining the first MCMO-developed `multi-model strategy into a realistic compromise management strategy. By employing automated cycling, MCMO is practical for linear and nonlinear aquifer systems. In this reconnaissance study, MCMO application to the multilayer Cache Valley (Utah and Idaho, USA) river-aquifer system employs two simulation models with analogous background conditions but different vertical discretization and boundary conditions. The objective is to maximize additional safe pumping (beyond current pumping), subject to constraints on groundwater head and seepage from the aquifer to surface waters. MCMO application reveals that in order to protect the local ecosystem, increased groundwater pumping can satisfy only 40 % of projected water demand increase. To explore the possibility of increasing that pumping while protecting the ecosystem, MCMO clearly identifies localities requiring additional field data. MCMO is applicable to other areas and optimization problems than used here. Steps to prepare comparable sub-models for MCMO use are area-dependent.

  9. Multi-Criteria Decision Analysis for Assessment and Appraisal of Orphan Drugs.

    PubMed

    Iskrov, Georgi; Miteva-Katrandzhieva, Tsonka; Stefanov, Rumen

    2016-01-01

    Limited resources and expanding expectations push all countries and types of health systems to adopt new approaches in priority setting and resources allocation. Despite best efforts, it is difficult to reconcile all competing interests, and trade-offs are inevitable. This is why multi-criteria decision analysis (MCDA) has played a major role in recent uptake of value-based reimbursement. MCDA framework enables exploration of stakeholders' preferences, as well as explicit organization of broad range of criteria on which real-world decisions are made. Assessment and appraisal of orphan drugs tend to be one of the most complicated health technology assessment (HTA) tasks. Access to market approved orphan therapies remains an issue. Early constructive dialog among rare disease stakeholders and elaboration of orphan drug-tailored decision support tools could set the scene for ongoing accumulation of evidence, as well as for proper reimbursement decision-making. The objective of this study was to create an MCDA value measurement model to assess and appraise orphan drugs. This was achieved by exploring the preferences on decision criteria's weights and performance scores through a stakeholder-representative survey and a focus group discussion that were both organized in Bulgaria. Decision criteria that describe the health technology's characteristics were unanimously agreed as the most important group of reimbursement considerations. This outcome, combined with the high individual weight of disease severity and disease burden criteria, underlined some of the fundamental principles of health care - equity and fairness. Our study proved that strength of evidence may be a key criterion in orphan drug assessment and appraisal. Evidence is used not only to shape reimbursement decision-making but also to lend legitimacy to policies pursued. The need for real-world data on orphan drugs was largely stressed. Improved knowledge on MCDA feasibility and integration to HTA is of

  10. Learning of Rule Ensembles for Multiple Attribute Ranking Problems

    NASA Astrophysics Data System (ADS)

    Dembczyński, Krzysztof; Kotłowski, Wojciech; Słowiński, Roman; Szeląg, Marcin

    In this paper, we consider the multiple attribute ranking problem from a Machine Learning perspective. We propose two approaches to statistical learning of an ensemble of decision rules from decision examples provided by the Decision Maker in terms of pairwise comparisons of some objects. The first approach consists in learning a preference function defining a binary preference relation for a pair of objects. The result of application of this function on all pairs of objects to be ranked is then exploited using the Net Flow Score procedure, giving a linear ranking of objects. The second approach consists in learning a utility function for single objects. The utility function also gives a linear ranking of objects. In both approaches, the learning is based on the boosting technique. The presented approaches to Preference Learning share good properties of the decision rule preference model and have good performance in the massive-data learning problems. As Preference Learning and Multiple Attribute Decision Aiding share many concepts and methodological issues, in the introduction, we review some aspects bridging these two fields. To illustrate the two approaches proposed in this paper, we solve with them a toy example concerning the ranking of a set of cars evaluated by multiple attributes. Then, we perform a large data experiment on real data sets. The first data set concerns credit rating. Since recent research in the field of Preference Learning is motivated by the increasing role of modeling preferences in recommender systems and information retrieval, we chose two other massive data sets from this area - one comes from movie recommender system MovieLens, and the other concerns ranking of text documents from 20 Newsgroups data set.

  11. A Quadrupole Dalton-based multi-attribute method for product characterization, process development, and quality control of therapeutic proteins.

    PubMed

    Xu, Weichen; Jimenez, Rod Brian; Mowery, Rachel; Luo, Haibin; Cao, Mingyan; Agarwal, Nitin; Ramos, Irina; Wang, Xiangyang; Wang, Jihong

    2017-10-01

    During manufacturing and storage process, therapeutic proteins are subject to various post-translational modifications (PTMs), such as isomerization, deamidation, oxidation, disulfide bond modifications and glycosylation. Certain PTMs may affect bioactivity, stability or pharmacokinetics and pharmacodynamics profile and are therefore classified as potential critical quality attributes (pCQAs). Identifying, monitoring and controlling these PTMs are usually key elements of the Quality by Design (QbD) approach. Traditionally, multiple analytical methods are utilized for these purposes, which is time consuming and costly. In recent years, multi-attribute monitoring methods have been developed in the biopharmaceutical industry. However, these methods combine high-end mass spectrometry with complicated data analysis software, which could pose difficulty when implementing in a quality control (QC) environment. Here we report a multi-attribute method (MAM) using a Quadrupole Dalton (QDa) mass detector to selectively monitor and quantitate PTMs in a therapeutic monoclonal antibody. The result output from the QDa-based MAM is straightforward and automatic. Evaluation results indicate this method provides comparable results to the traditional assays. To ensure future application in the QC environment, this method was qualified according to the International Conference on Harmonization (ICH) guideline and applied in the characterization of drug substance and stability samples. The QDa-based MAM is shown to be an extremely useful tool for product and process characterization studies that facilitates facile understanding of process impact on multiple quality attributes, while being QC friendly and cost-effective.

  12. A dynamic dual process model of risky decision making.

    PubMed

    Diederich, Adele; Trueblood, Jennifer S

    2018-03-01

    Many phenomena in judgment and decision making are often attributed to the interaction of 2 systems of reasoning. Although these so-called dual process theories can explain many types of behavior, they are rarely formalized as mathematical or computational models. Rather, dual process models are typically verbal theories, which are difficult to conclusively evaluate or test. In the cases in which formal (i.e., mathematical) dual process models have been proposed, they have not been quantitatively fit to experimental data and are often silent when it comes to the timing of the 2 systems. In the current article, we present a dynamic dual process model framework of risky decision making that provides an account of the timing and interaction of the 2 systems and can explain both choice and response-time data. We outline several predictions of the model, including how changes in the timing of the 2 systems as well as time pressure can influence behavior. The framework also allows us to explore different assumptions about how preferences are constructed by the 2 systems as well as the dynamic interaction of the 2 systems. In particular, we examine 3 different possible functional forms of the 2 systems and 2 possible ways the systems can interact (simultaneously or serially). We compare these dual process models with 2 single process models using risky decision making data from Guo, Trueblood, and Diederich (2017). Using this data, we find that 1 of the dual process models significantly outperforms the other models in accounting for both choices and response times. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. Variable cycle control model for intersection based on multi-source information

    NASA Astrophysics Data System (ADS)

    Sun, Zhi-Yuan; Li, Yue; Qu, Wen-Cong; Chen, Yan-Yan

    2018-05-01

    In order to improve the efficiency of traffic control system in the era of big data, a new variable cycle control model based on multi-source information is presented for intersection in this paper. Firstly, with consideration of multi-source information, a unified framework based on cyber-physical system is proposed. Secondly, taking into account the variable length of cell, hysteresis phenomenon of traffic flow and the characteristics of lane group, a Lane group-based Cell Transmission Model is established to describe the physical properties of traffic flow under different traffic signal control schemes. Thirdly, the variable cycle control problem is abstracted into a bi-level programming model. The upper level model is put forward for cycle length optimization considering traffic capacity and delay. The lower level model is a dynamic signal control decision model based on fairness analysis. Then, a Hybrid Intelligent Optimization Algorithm is raised to solve the proposed model. Finally, a case study shows the efficiency and applicability of the proposed model and algorithm.

  14. An evaluation of treatment decisions at a colorectal cancer multi-disciplinary team.

    PubMed

    Wood, J J; Metcalfe, C; Paes, A; Sylvester, P; Durdey, P; Thomas, M G; Blazeby, J M

    2008-10-01

    It is mandatory for treatment decisions for patients with colorectal cancer to be made within the context of a multi-disciplinary team (MDT) meeting. It is currently uncertain, however, how to best evaluate the quality of MDT decision-making. This study examined MDT decision-making by studying whether MDT treatment decisions were implemented and investigated the reasons why some decisions changed after the meeting. Consecutive MDT treatment decisions were prospectively recorded. Implementation of decisions was studied by examining hospital records. Reasons for changes in MDT decisions were identified. In all, 201 consecutive treatment decisions were analysed, concerning 157 patients. Twenty decisions (10.0%, 95% confidence interval 6.3-15.2%) were not implemented. Looking at the reasons for nonimplementation, nine (40%) related to co-morbidity, seven (35%) to patient choice, two changed in light of new clinical information, one doctor changed a decision and for one changed decision, no reason was apparent. When decisions changed, the final treatment was always more conservative than was originally planned and decisions were more likely to change for colon rather than rectal cancer (P = 0.024). The vast majority of colorectal MDT decisions were implemented and when decisions changed, it mostly related to patient factors that had not been taken into account. Analysis of the implementation of team decisions is an informative process to monitor the quality of MDT decision-making.

  15. Addressing multi-use issues in sustainable forest management with signal-transfer modeling

    Treesearch

    Robert J. Luxmoore; William W. Hargrove; M. Lynn Tharp; W. Mac Post; Michael W. Berry; Karen S. Minser; Wendell P. Cropper; Dale W. Johnson; Boris Zeide; Ralph L. Amateis; Harold E. Burkhart; V. Clark Baldwin; Kelly D. Peterson

    2002-01-01

    Management decisions concerning impacts of projected changes in environmental and social conditions on multi-use forest products and services, such as productivity, water supply or carbon sequestration, may be facilitated with signal-transfer modeling. This simulation method utilizes a hierarchy of simulators in which the integrated responses (signals) from smaller-...

  16. Texas Urban Triangle : pilot study to implement a spatial decision support system (SDSS) for sustainable mobility.

    DOT National Transportation Integrated Search

    2011-03-01

    This project addressed sustainable transportation in the Texas Urban Triangle (TUT) by conducting a pilot : project at the county scale. The project tested and developed the multi-attribute Spatial Decision Support : System (SDSS) developed in 2009 u...

  17. Selecting the Best Thermal Building Insulation Using a Multi-Attribute Decision Model

    DTIC Science & Technology

    2008-03-01

    materials which come in various forms. Rock wool, also called mineral wool , is made from natural minerals and was developed in the mid-1800s (NAIMA...2008). Fiberglass is a form of mineral wool and accounts for approximately 85% of the market for residential insulation. Synthetic insulating

  18. Career Vitalization and Stress among Professors: An Attributional Model.

    ERIC Educational Resources Information Center

    Bumpus, J. Frank

    A model that conceptualizes career stress for faculty members and that suggests options for enhancing career vitality is considered. The model draws upon attribution theory, the locus of control in work of Julian Rotter and the literature of depression by Martin E. P. Seligman. It suggests that perceived causes, or attributions, are directly…

  19. An Integrated Decision-Making Model for Categorizing Weather Products and Decision Aids

    NASA Technical Reports Server (NTRS)

    Elgin, Peter D.; Thomas, Rickey P.

    2004-01-01

    The National Airspace System s capacity will experience considerable growth in the next few decades. Weather adversely affects safe air travel. The FAA and NASA are working to develop new technologies that display weather information to support situation awareness and optimize pilot decision-making in avoiding hazardous weather. Understanding situation awareness and naturalistic decision-making is an important step in achieving this goal. Information representation and situation time stress greatly influence attentional resource allocation and working memory capacity, potentially obstructing accurate situation awareness assessments. Three naturalistic decision-making theories were integrated to provide an understanding of the levels of decision making incorporated in three operational situations and two conditions. The task characteristics associated with each phase of flight govern the level of situation awareness attained and the decision making processes utilized. Weather product s attributes and situation task characteristics combine to classify weather products according to the decision-making processes best supported. In addition, a graphical interface is described that affords intuitive selection of the appropriate weather product relative to the pilot s current flight situation.

  20. Advanced GPR imaging of sedimentary features: integrated attribute analysis applied to sand dunes

    NASA Astrophysics Data System (ADS)

    Zhao, Wenke; Forte, Emanuele; Fontolan, Giorgio; Pipan, Michele

    2018-04-01

    We evaluate the applicability and the effectiveness of integrated GPR attribute analysis to image the internal sedimentary features of the Piscinas Dunes, SW Sardinia, Italy. The main objective is to explore the limits of GPR techniques to study sediment-bodies geometry and to provide a non-invasive high-resolution characterization of the different subsurface domains of dune architecture. On such purpose, we exploit the high-quality Piscinas data-set to extract and test different attributes of the GPR trace. Composite displays of multi-attributes related to amplitude, frequency, similarity and textural features are displayed with overlays and RGB mixed models. A multi-attribute comparative analysis is used to characterize different radar facies to better understand the characteristics of internal reflection patterns. The results demonstrate that the proposed integrated GPR attribute analysis can provide enhanced information about the spatial distribution of sediment bodies, allowing an enhanced and more constrained data interpretation.

  1. Nicotine replacement therapy decision based on fuzzy multi-criteria analysis

    NASA Astrophysics Data System (ADS)

    Tarmudi, Zamali; Matmali, Norfazillah; Abdullah, Mohd Lazim

    2017-08-01

    It has been observed that Nicotine Replacement Therapy (NRT) is one of the alternatives to control and reduce smoking addiction among smokers. Since the decision to choose the best NRT alternative involves uncertainty, ambiguity factors and diverse input datasets, thus, this paper proposes a fuzzy multi-criteria analysis (FMA) to overcome these issues. It focuses on how the fuzzy approach can unify the diversity of datasets based on NRT's decision-making problem. The analysis done employed the advantage of the cost-benefit criterion to unify the mixture of dataset input. The performance matrix was utilised to derive the performance scores. An empirical example regarding the NRT's decision-making problem was employed to illustrate the proposed approach. Based on the calculations, this analytical approach was found to be highly beneficial in terms of usability. It was also very applicable and efficient in dealing with the mixture of input datasets. Hence, the decision-making process can easily be used by experts and patients who are interested to join the therapy/cessation program.

  2. Automatic Scoring of Multiple Semantic Attributes With Multi-Task Feature Leverage: A Study on Pulmonary Nodules in CT Images.

    PubMed

    Sihong Chen; Jing Qin; Xing Ji; Baiying Lei; Tianfu Wang; Dong Ni; Jie-Zhi Cheng

    2017-03-01

    The gap between the computational and semantic features is the one of major factors that bottlenecks the computer-aided diagnosis (CAD) performance from clinical usage. To bridge this gap, we exploit three multi-task learning (MTL) schemes to leverage heterogeneous computational features derived from deep learning models of stacked denoising autoencoder (SDAE) and convolutional neural network (CNN), as well as hand-crafted Haar-like and HoG features, for the description of 9 semantic features for lung nodules in CT images. We regard that there may exist relations among the semantic features of "spiculation", "texture", "margin", etc., that can be explored with the MTL. The Lung Image Database Consortium (LIDC) data is adopted in this study for the rich annotation resources. The LIDC nodules were quantitatively scored w.r.t. 9 semantic features from 12 radiologists of several institutes in U.S.A. By treating each semantic feature as an individual task, the MTL schemes select and map the heterogeneous computational features toward the radiologists' ratings with cross validation evaluation schemes on the randomly selected 2400 nodules from the LIDC dataset. The experimental results suggest that the predicted semantic scores from the three MTL schemes are closer to the radiologists' ratings than the scores from single-task LASSO and elastic net regression methods. The proposed semantic attribute scoring scheme may provide richer quantitative assessments of nodules for better support of diagnostic decision and management. Meanwhile, the capability of the automatic association of medical image contents with the clinical semantic terms by our method may also assist the development of medical search engine.

  3. Integrated Risk-Informed Decision-Making for an ALMR PRISM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhlheim, Michael David; Belles, Randy; Denning, Richard S.

    Decision-making is the process of identifying decision alternatives, assessing those alternatives based on predefined metrics, selecting an alternative (i.e., making a decision), and then implementing that alternative. The generation of decisions requires a structured, coherent process, or a decision-making process. The overall objective for this work is that the generalized framework is adopted into an autonomous decision-making framework and tailored to specific requirements for various applications. In this context, automation is the use of computing resources to make decisions and implement a structured decision-making process with limited or no human intervention. The overriding goal of automation is to replace ormore » supplement human decision makers with reconfigurable decision-making modules that can perform a given set of tasks rationally, consistently, and reliably. Risk-informed decision-making requires a probabilistic assessment of the likelihood of success given the status of the plant/systems and component health, and a deterministic assessment between plant operating parameters and reactor protection parameters to prevent unnecessary trips and challenges to plant safety systems. The probabilistic portion of the decision-making engine of the supervisory control system is based on the control actions associated with an ALMR PRISM. Newly incorporated into the probabilistic models are the prognostic/diagnostic models developed by Pacific Northwest National Laboratory. These allow decisions to incorporate the health of components into the decision–making process. Once the control options are identified and ranked based on the likelihood of success, the supervisory control system transmits the options to the deterministic portion of the platform. The deterministic portion of the decision-making engine uses thermal-hydraulic modeling and components for an advanced liquid-metal reactor Power Reactor Inherently Safe Module. The deterministic multi-attribute

  4. Multi-criteria decision analysis for waste management in Saharawi refugee camps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garfi, M.; Tondelli, S.; Bonoli, A.

    2009-10-15

    The aim of this paper is to compare different waste management solutions in Saharawi refugee camps (Algeria) and to test the feasibility of a decision-making method developed to be applied in particular conditions in which environmental and social aspects must be considered. It is based on multi criteria analysis, and in particular on the analytic hierarchy process (AHP), a mathematical technique for multi-criteria decision making (Saaty, T.L., 1980. The Analytic Hierarchy Process. McGraw-Hill, New York, USA; Saaty, T.L., 1990. How to Make a Decision: The Analytic Hierarchy Process. European Journal of Operational Research; Saaty, T.L., 1994. Decision Making for Leaders:more » The Analytic Hierarchy Process in a Complex World. RWS Publications, Pittsburgh, PA), and on participatory approach, focusing on local community's concerns. The research compares four different waste collection and management alternatives: waste collection by using three tipper trucks, disposal and burning in an open area; waste collection by using seven dumpers and disposal in a landfill; waste collection by using seven dumpers and three tipper trucks and disposal in a landfill; waste collection by using three tipper trucks and disposal in a landfill. The results show that the second and the third solutions provide better scenarios for waste management. Furthermore, the discussion of the results points out the multidisciplinarity of the approach, and the equilibrium between social, environmental and technical impacts. This is a very important aspect in a humanitarian and environmental project, confirming the appropriateness of the chosen method.« less

  5. Multi-objective, multiple participant decision support for water management in the Andarax catchment, Almeria

    NASA Astrophysics Data System (ADS)

    van Cauwenbergh, N.; Pinte, D.; Tilmant, A.; Frances, I.; Pulido-Bosch, A.; Vanclooster, M.

    2008-04-01

    Water management in the Andarax river basin (Almeria, Spain) is a multi-objective, multi-participant, long-term decision-making problem that faces several challenges. Adequate water allocation needs informed decisions to meet increasing socio-economic demands while respecting the environmental integrity of this basin. Key players in the Andarax water sector include the municipality of Almeria, the irrigators involved in the intensive greenhouse agricultural sector, and booming second residences. A decision support system (DSS) is developed to rank different sustainable planning and management alternatives according to their socio-economic and environmental performance. The DSS is intimately linked to sustainability indicators and is designed through a public participation process. Indicators are linked to criteria reflecting stakeholders concerns in the 2005 field survey, such as fulfilling water demand, water price, technical and economical efficiency, social and environmental impacts. Indicators can be partly quantified after simulating the operation of the groundwater reservoir over a 20-year planning period and partly through a parallel expert evaluation process. To predict the impact of future water demand in the catchment, several development scenarios are designed to be evaluated in the DSS. The successive multi-criteria analysis of the performance indicators permits the ranking of the different management alternatives according to the multiple objectives formulated by the different sectors/participants. This allows more informed and transparent decision-making processes for the Andarax river basin, recognizing both the socio-economic and environmental dimensions of water resources management.

  6. A Multi-Period Optimization Model for Service Providers Using Online Reservation Systems: An Application to Hotels.

    PubMed

    Xu, Ming; Jiao, Yan; Li, Xiaoming; Cao, Qingfeng; Wang, Xiaoyang

    2015-01-01

    This paper presents a multi-period optimization model for high margin and zero salvage products in online distribution channels with classifying customers based on number of products required. Taking hotel customers as an example, one is regular customers who reserve rooms for one day, and the other is long term stay (LTS) customers who reserve rooms for a number of days. LTS may guarantee a specific amount of demand and generate opportunity income for a certain number of periods, meanwhile with risk of punishment incurred by overselling. By developing an operational optimization model and exploring the effects of parameters on optimal decisions, we suggest that service providers should make decisions based on the types of customers, number of products required, and duration of multi-period to reduce the loss of reputation and obtain more profit; at the same time, multi-period buying customers should buy products early. Finally, the paper conducts a numerical experiment, and the results are consistent with prevailing situations.

  7. A Multi-Period Optimization Model for Service Providers Using Online Reservation Systems: An Application to Hotels

    PubMed Central

    Xu, Ming; Jiao, Yan; Li, Xiaoming; Cao, Qingfeng; Wang, Xiaoyang

    2015-01-01

    This paper presents a multi-period optimization model for high margin and zero salvage products in online distribution channels with classifying customers based on number of products required. Taking hotel customers as an example, one is regular customers who reserve rooms for one day, and the other is long term stay (LTS) customers who reserve rooms for a number of days. LTS may guarantee a specific amount of demand and generate opportunity income for a certain number of periods, meanwhile with risk of punishment incurred by overselling. By developing an operational optimization model and exploring the effects of parameters on optimal decisions, we suggest that service providers should make decisions based on the types of customers, number of products required, and duration of multi-period to reduce the loss of reputation and obtain more profit; at the same time, multi-period buying customers should buy products early. Finally, the paper conducts a numerical experiment, and the results are consistent with prevailing situations. PMID:26147663

  8. Neural network modeling for surgical decisions on traumatic brain injury patients.

    PubMed

    Li, Y C; Liu, L; Chiu, W T; Jian, W S

    2000-01-01

    Computerized medical decision support systems have been a major research topic in recent years. Intelligent computer programs were implemented to aid physicians and other medical professionals in making difficult medical decisions. This report compares three different mathematical models for building a traumatic brain injury (TBI) medical decision support system (MDSS). These models were developed based on a large TBI patient database. This MDSS accepts a set of patient data such as the types of skull fracture, Glasgow Coma Scale (GCS), episode of convulsion and return the chance that a neurosurgeon would recommend an open-skull surgery for this patient. The three mathematical models described in this report including a logistic regression model, a multi-layer perceptron (MLP) neural network and a radial-basis-function (RBF) neural network. From the 12,640 patients selected from the database. A randomly drawn 9480 cases were used as the training group to develop/train our models. The other 3160 cases were in the validation group which we used to evaluate the performance of these models. We used sensitivity, specificity, areas under receiver-operating characteristics (ROC) curve and calibration curves as the indicator of how accurate these models are in predicting a neurosurgeon's decision on open-skull surgery. The results showed that, assuming equal importance of sensitivity and specificity, the logistic regression model had a (sensitivity, specificity) of (73%, 68%), compared to (80%, 80%) from the RBF model and (88%, 80%) from the MLP model. The resultant areas under ROC curve for logistic regression, RBF and MLP neural networks are 0.761, 0.880 and 0.897, respectively (P < 0.05). Among these models, the logistic regression has noticeably poorer calibration. This study demonstrated the feasibility of applying neural networks as the mechanism for TBI decision support systems based on clinical databases. The results also suggest that neural networks may be a

  9. Diffusion theory of decision making in continuous report.

    PubMed

    Smith, Philip L

    2016-07-01

    I present a diffusion model for decision making in continuous report tasks, in which a continuous, circularly distributed, stimulus attribute in working memory is matched to a representation of the attribute in the stimulus display. Memory retrieval is modeled as a 2-dimensional diffusion process with vector-valued drift on a disk, whose bounding circle represents the decision criterion. The direction and magnitude of the drift vector describe the identity of the stimulus and the quality of its representation in memory, respectively. The point at which the diffusion exits the disk determines the reported value of the attribute and the time to exit the disk determines the decision time. Expressions for the joint distribution of decision times and report outcomes are obtained by means of the Girsanov change-of-measure theorem, which allows the properties of the nonzero-drift diffusion process to be characterized as a function of a Euclidian-distance Bessel process. Predicted report precision is equal to the product of the decision criterion and the drift magnitude and follows a von Mises distribution, in agreement with the treatment of precision in the working memory literature. Trial-to-trial variability in criterion and drift rate leads, respectively, to direct and inverse relationships between report accuracy and decision times, in agreement with, and generalizing, the standard diffusion model of 2-choice decisions. The 2-dimensional model provides a process account of working memory precision and its relationship with the diffusion model, and a new way to investigate the properties of working memory, via the distributions of decision times. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Experimental Evaluation of Suitability of Selected Multi-Criteria Decision-Making Methods for Large-Scale Agent-Based Simulations.

    PubMed

    Tučník, Petr; Bureš, Vladimír

    2016-01-01

    Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the-server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models.

  11. Multi-model ensembles for assessment of flood losses and associated uncertainty

    NASA Astrophysics Data System (ADS)

    Figueiredo, Rui; Schröter, Kai; Weiss-Motz, Alexander; Martina, Mario L. V.; Kreibich, Heidi

    2018-05-01

    Flood loss modelling is a crucial part of risk assessments. However, it is subject to large uncertainty that is often neglected. Most models available in the literature are deterministic, providing only single point estimates of flood loss, and large disparities tend to exist among them. Adopting any one such model in a risk assessment context is likely to lead to inaccurate loss estimates and sub-optimal decision-making. In this paper, we propose the use of multi-model ensembles to address these issues. This approach, which has been applied successfully in other scientific fields, is based on the combination of different model outputs with the aim of improving the skill and usefulness of predictions. We first propose a model rating framework to support ensemble construction, based on a probability tree of model properties, which establishes relative degrees of belief between candidate models. Using 20 flood loss models in two test cases, we then construct numerous multi-model ensembles, based both on the rating framework and on a stochastic method, differing in terms of participating members, ensemble size and model weights. We evaluate the performance of ensemble means, as well as their probabilistic skill and reliability. Our results demonstrate that well-designed multi-model ensembles represent a pragmatic approach to consistently obtain more accurate flood loss estimates and reliable probability distributions of model uncertainty.

  12. New paradigms for Salmonella source attribution based on microbial subtyping.

    PubMed

    Mughini-Gras, Lapo; Franz, Eelco; van Pelt, Wilfrid

    2018-05-01

    Microbial subtyping is the most common approach for Salmonella source attribution. Typically, attributions are computed using frequency-matching models like the Dutch and Danish models based on phenotyping data (serotyping, phage-typing, and antimicrobial resistance profiling). Herewith, we critically review three major paradigms facing Salmonella source attribution today: (i) the use of genotyping data, particularly Multi-Locus Variable Number of Tandem Repeats Analysis (MLVA), which is replacing traditional Salmonella phenotyping beyond serotyping; (ii) the integration of case-control data into source attribution to improve risk factor identification/characterization; (iii) the investigation of non-food sources, as attributions tend to focus on foods of animal origin only. Population genetics models or simplified MLVA schemes may provide feasible options for source attribution, although there is a strong need to explore novel modelling options as we move towards whole-genome sequencing as the standard. Classical case-control studies are enhanced by incorporating source attribution results, as individuals acquiring salmonellosis from different sources have different associated risk factors. Thus, the more such analyses are performed the better Salmonella epidemiology will be understood. Reparametrizing current models allows for inclusion of sources like reptiles, the study of which improves our understanding of Salmonella epidemiology beyond food to tackle the pathogen in a more holistic way. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Multi-criteria decision analysis and environmental risk assessment for nanomaterials

    NASA Astrophysics Data System (ADS)

    Linkov, Igor; Satterstrom, F. Kyle; Steevens, Jeffery; Ferguson, Elizabeth; Pleus, Richard C.

    2007-08-01

    Nanotechnology is a broad and complex discipline that holds great promise for innovations that can benefit mankind. Yet, one must not overlook the wide array of factors involved in managing nanomaterial development, ranging from the technical specifications of the material to possible adverse effects in humans. Other opportunities to evaluate benefits and risks are inherent in environmental health and safety (EHS) issues related to nanotechnology. However, there is currently no structured approach for making justifiable and transparent decisions with explicit trade-offs between the many factors that need to be taken into account. While many possible decision-making approaches exist, we believe that multi-criteria decision analysis (MCDA) is a powerful and scientifically sound decision analytical framework for nanomaterial risk assessment and management. This paper combines state-of-the-art research in MCDA methods applicable to nanotechnology with a hypothetical case study for nanomaterial management. The example shows how MCDA application can balance societal benefits against unintended side effects and risks, and how it can also bring together multiple lines of evidence to estimate the likely toxicity and risk of nanomaterials given limited information on physical and chemical properties. The essential contribution of MCDA is to link this performance information with decision criteria and weightings elicited from scientists and managers, allowing visualization and quantification of the trade-offs involved in the decision-making process.

  14. Identifying attributes of food literacy: a scoping review.

    PubMed

    Azevedo Perry, Elsie; Thomas, Heather; Samra, H Ruby; Edmonstone, Shannon; Davidson, Lyndsay; Faulkner, Amy; Petermann, Lisa; Manafò, Elizabeth; Kirkpatrick, Sharon I

    2017-09-01

    An absence of food literacy measurement tools makes it challenging for nutrition practitioners to assess the impact of food literacy on healthy diets and to evaluate the outcomes of food literacy interventions. The objective of the present scoping review was to identify the attributes of food literacy. A scoping review of peer-reviewed and grey literature was conducted and attributes of food literacy identified. Subjects included in the search were high-risk groups. Eligible articles were limited to research from Canada, USA, the UK, Australia and New Zealand. The search identified nineteen peer-reviewed and thirty grey literature sources. Fifteen identified food literacy attributes were organized into five categories. Food and Nutrition Knowledge informs decisions about intake and distinguishing between 'healthy' and 'unhealthy' foods. Food Skills focuses on techniques of food purchasing, preparation, handling and storage. Self-Efficacy and Confidence represent one's capacity to perform successfully in specific situations. Ecologic refers to beyond self and the interaction of macro- and microsystems with food decisions and behaviours. Food Decisions reflects the application of knowledge, information and skills to make food choices. These interdependent attributes are depicted in a proposed conceptual model. The lack of evaluated tools inhibits the ability to assess and monitor food literacy; tailor, target and evaluate programmes; identify gaps in programming; engage in advocacy; and allocate resources. The present scoping review provides the foundation for the development of a food literacy measurement tool to address these gaps.

  15. Making Good Decisions in Healthcare with Multi-Criteria Decision Analysis: The Use, Current Research and Future Development of MCDA.

    PubMed

    Mühlbacher, Axel C; Kaczynski, Anika

    2016-02-01

    Healthcare decision making is usually characterized by a low degree of transparency. The demand for transparent decision processes can be fulfilled only when assessment, appraisal and decisions about health technologies are performed under a systematic construct of benefit assessment. The benefit of an intervention is often multidimensional and, thus, must be represented by several decision criteria. Complex decision problems require an assessment and appraisal of various criteria; therefore, a decision process that systematically identifies the best available alternative and enables an optimal and transparent decision is needed. For that reason, decision criteria must be weighted and goal achievement must be scored for all alternatives. Methods of multi-criteria decision analysis (MCDA) are available to analyse and appraise multiple clinical endpoints and structure complex decision problems in healthcare decision making. By means of MCDA, value judgments, priorities and preferences of patients, insurees and experts can be integrated systematically and transparently into the decision-making process. This article describes the MCDA framework and identifies potential areas where MCDA can be of use (e.g. approval, guidelines and reimbursement/pricing of health technologies). A literature search was performed to identify current research in healthcare. The results showed that healthcare decision making is addressing the problem of multiple decision criteria and is focusing on the future development and use of techniques to weight and score different decision criteria. This article emphasizes the use and future benefit of MCDA.

  16. Amplifying Each Patient's Voice: A Systematic Review of Multi-criteria Decision Analyses Involving Patients.

    PubMed

    Marsh, Kevin; Caro, J Jaime; Hamed, Alaa; Zaiser, Erica

    2017-04-01

    Qualitative methods tend to be used to incorporate patient preferences into healthcare decision making. However, for patient preferences to be given adequate consideration by decision makers they need to be quantified. Multi-criteria decision analysis (MCDA) is one way to quantify and capture the patient voice. The objective of this review was to report on existing MCDAs involving patients to support the future use of MCDA to capture the patient voice. MEDLINE and EMBASE were searched in June 2014 for English-language papers with no date restriction. The following search terms were used: 'multi-criteria decision*', 'multiple criteria decision*', 'MCDA', 'benefit risk assessment*', 'risk benefit assessment*', 'multicriteri* decision*', 'MCDM', 'multi-criteri* decision*'. Abstracts were included if they reported the application of MCDA to assess healthcare interventions where patients were the source of weights. Abstracts were excluded if they did not apply MCDA, such as discussions of how MCDA could be used; or did not evaluate healthcare interventions, such as MCDAs to assess the level of health need in a locality. Data were extracted on weighting method, variation in patient and expert preferences, and discussion on different weighting techniques. The review identified ten English-language studies that reported an MCDA to assess healthcare interventions and involved patients as a source of weights. These studies reported 12 applications of MCDA. Different methods of preference elicitation were employed: direct weighting in workshops; discrete choice experiment surveys; and the analytical hierarchy process using both workshops and surveys. There was significant heterogeneity in patient responses and differences between patients, who put greater weight on disease characteristics and treatment convenience, and experts, who put more weight on efficacy. The studies highlighted cognitive challenges associated with some weighting methods, though patients' views on their

  17. [Treatment Decision-Making Process of Cancer Patients].

    PubMed

    Lee, Shiu-Yu C Katie

    2016-10-01

    The decision-making process that is used by cancer patients to determine their treatment has become more multi-foci, difficult and complicated in recent years. This has in part been attributed to the increasing incidence rate of cancer in Taiwan and the rapid development of medical technologies and treatment modalities. Oncology nurses must assist patients and family to make informed and value-based treatment decisions. Decision-making is an information process that involves appraising one's own expectation and values based on his/her knowledge on cancer and treatment options. Because cancer treatment involves risks and uncertainties, and impacts quality of life, the treatment decision-making for cancer is often stressful, or even conflicting. This paper discusses the decision-making behaviors of cancer patients and the decisional conflict, participation, and informational needs that are involved in cancer treatment. The trend toward shared decision-making and decisional support will be also explored in order to facilitate the future development of appropriate clinical interventions and research.

  18. A Multi-criteria Decision Analysis System for Prioritizing Sites and Types of Low Impact Development Practices

    NASA Astrophysics Data System (ADS)

    Song, Jae Yeol; Chung, Eun-Sung

    2017-04-01

    This study developed a multi-criteria decision analysis framework to prioritize sites and types of low impact development (LID) practices. This framework was systemized as a web-based system coupled with the Storm Water Management Model (SWMM) from the Environmental Protection Agency (EPA). Using the technique for order of preference by similarity to ideal solution (TOPSIS), which is a type of multi-criteria decision-making (MCDM) method, multiple types and sites of designated LID practices are prioritized. This system is named the Water Management Prioritization Module (WMPM) and is an improved version of the Water Management Analysis Module (WMAM) that automatically generates and simulates multiple scenarios of LID design and planning parameters for a single LID type. WMPM can simultaneously determine the priority of multiple LID types and sites. In this study, an infiltration trench and permeable pavement were considered for multiple sub-catchments in South Korea to demonstrate the WMPM procedures. The TOPSIS method was manually incorporated to select the vulnerable target sub-catchments and to prioritize the LID planning scenarios for multiple types and sites considering socio-economic, hydrologic and physical-geometric factors. In this application, the Delphi method and entropy theory were used to determine the subjective and objective weights, respectively. Comparing the ranks derived by this system, two sub-catchments, S16 and S4, out of 18 were considered to be the most suitable places for installing an infiltration trench and porous pavement to reduce the peak and total flow, respectively, considering both socio-economic factors and hydrological effectiveness. WMPM can help policy-makers to objectively develop urban water plans for sustainable development. Keywords: Low Impact Development, Multi-Criteria Decision Analysis, SWMM, TOPSIS, Water Management Prioritization Module (WMPM)

  19. [Comparative study on promoting blood effects of Danshen-Honghua herb pair with different preparations based on chemometrics and multi-attribute comprehensive index methods].

    PubMed

    Qu, Cheng; Tang, Yu-Ping; Shi, Xu-Qin; Zhou, Gui-Sheng; Shang, Er-Xin; Shang, Li-Li; Guo, Jian-Ming; Liu, Pei; Zhao, Jing; Zhao, Bu-Chang; Duan, Jin-Ao

    2017-08-01

    To evaluate the promoting blood circulation and removing blood stasis effects of Danshen-Honghua(DH) herb pair with different preparations (alcohol, 50% alcohol and water) on blood rheology and coagulation functions in acute blood stasis rats, and optimize the best preparation method of DH based on principal component analysis(PCA), hierarchical cluster heatmap analysis and multi-attribute comprehensive index methods. Ice water bath and subcutaneous injection of adrenaline were both used to establish the acute blood stasis rat model. Then the blood stasis rats were administrated intragastrically with DH (alcohol, 50% alcohol and water) extracts. The whole blood viscosity(WBV), plasma viscosity(PV), erythrocyte sedimentation rate(ESR) and haematocrit(HCT) were tested to observe the effects of DH herb pair with different preparations and doses on hemorheology of blood stasis rats; the activated partial thromboplastin time(APTT), thrombin time(TT), prothrombin time(PT), and plasma fibrinogen(FIB) were tested to observe the effects of DH herb pair with different preparations on blood coagulation function and platelet aggregation of blood stasis rats. Then PCA, hierarchical cluster heatmap analysis and multi-attribute comprehensive index methods were all used to comprehensively evaluate the total promoting blood circulation and removing blood stasis effects of DH herb pair with different preparations. The hemorheological indexes and coagulation parameters of model group had significant differences with normal blank group. As compared with the model group, the DH herb pair with different preparations at low, middle and high doses could improve the blood hemorheology indexes and coagulation parameters in acute blood stasis rats with dose-effect relation. Based on the PCA, hierarchical cluster heatmap analysis and multi-attribute comprehensive index methods, the high dose group of 50% alcohol extract had the best effect of promoting blood circulation and removing blood

  20. Based on a multi-agent system for multi-scale simulation and application of household's LUCC: a case study for Mengcha village, Mizhi county, Shaanxi province.

    PubMed

    Chen, Hai; Liang, Xiaoying; Li, Rui

    2013-01-01

    Multi-Agent Systems (MAS) offer a conceptual approach to include multi-actor decision making into models of land use change. Through the simulation based on the MAS, this paper tries to show the application of MAS in the micro scale LUCC, and reveal the transformation mechanism of difference scale. This paper starts with a description of the context of MAS research. Then, it adopts the Nested Spatial Choice (NSC) method to construct the multi-scale LUCC decision-making model. And a case study for Mengcha village, Mizhi County, Shaanxi Province is reported. Finally, the potentials and drawbacks of the following approach is discussed and concluded. From our design and implementation of the MAS in multi-scale model, a number of observations and conclusions can be drawn on the implementation and future research directions. (1) The use of the LUCC decision-making and multi-scale transformation framework provides, according to us, a more realistic modeling of multi-scale decision making process. (2) By using continuous function, rather than discrete function, to construct the decision-making of the households is more realistic to reflect the effect. (3) In this paper, attempts have been made to give a quantitative analysis to research the household interaction. And it provides the premise and foundation for researching the communication and learning among the households. (4) The scale transformation architecture constructed in this paper helps to accumulate theory and experience for the interaction research between the micro land use decision-making and the macro land use landscape pattern. Our future research work will focus on: (1) how to rational use risk aversion principle, and put the rule on rotation between household parcels into model. (2) Exploring the methods aiming at researching the household decision-making over a long period, it allows us to find the bridge between the long-term LUCC data and the short-term household decision-making. (3) Researching the

  1. Enhancing image classification models with multi-modal biomarkers

    NASA Astrophysics Data System (ADS)

    Caban, Jesus J.; Liao, David; Yao, Jianhua; Mollura, Daniel J.; Gochuico, Bernadette; Yoo, Terry

    2011-03-01

    Currently, most computer-aided diagnosis (CAD) systems rely on image analysis and statistical models to diagnose, quantify, and monitor the progression of a particular disease. In general, CAD systems have proven to be effective at providing quantitative measurements and assisting physicians during the decision-making process. As the need for more flexible and effective CADs continues to grow, questions about how to enhance their accuracy have surged. In this paper, we show how statistical image models can be augmented with multi-modal physiological values to create more robust, stable, and accurate CAD systems. In particular, this paper demonstrates how highly correlated blood and EKG features can be treated as biomarkers and used to enhance image classification models designed to automatically score subjects with pulmonary fibrosis. In our results, a 3-5% improvement was observed when comparing the accuracy of CADs that use multi-modal biomarkers with those that only used image features. Our results show that lab values such as Erythrocyte Sedimentation Rate and Fibrinogen, as well as EKG measurements such as QRS and I:40, are statistically significant and can provide valuable insights about the severity of the pulmonary fibrosis disease.

  2. Assessment of flood susceptible areas using spatially explicit, probabilistic multi-criteria decision analysis

    NASA Astrophysics Data System (ADS)

    Tang, Zhongqian; Zhang, Hua; Yi, Shanzhen; Xiao, Yangfan

    2018-03-01

    GIS-based multi-criteria decision analysis (MCDA) is increasingly used to support flood risk assessment. However, conventional GIS-MCDA methods fail to adequately represent spatial variability and are accompanied with considerable uncertainty. It is, thus, important to incorporate spatial variability and uncertainty into GIS-based decision analysis procedures. This research develops a spatially explicit, probabilistic GIS-MCDA approach for the delineation of potentially flood susceptible areas. The approach integrates the probabilistic and the local ordered weighted averaging (OWA) methods via Monte Carlo simulation, to take into account the uncertainty related to criteria weights, spatial heterogeneity of preferences and the risk attitude of the analyst. The approach is applied to a pilot study for the Gucheng County, central China, heavily affected by the hazardous 2012 flood. A GIS database of six geomorphological and hydrometeorological factors for the evaluation of susceptibility was created. Moreover, uncertainty and sensitivity analysis were performed to investigate the robustness of the model. The results indicate that the ensemble method improves the robustness of the model outcomes with respect to variation in criteria weights and identifies which criteria weights are most responsible for the variability of model outcomes. Therefore, the proposed approach is an improvement over the conventional deterministic method and can provides a more rational, objective and unbiased tool for flood susceptibility evaluation.

  3. Personalized Modeling for Prediction with Decision-Path Models

    PubMed Central

    Visweswaran, Shyam; Ferreira, Antonio; Ribeiro, Guilherme A.; Oliveira, Alexandre C.; Cooper, Gregory F.

    2015-01-01

    Deriving predictive models in medicine typically relies on a population approach where a single model is developed from a dataset of individuals. In this paper we describe and evaluate a personalized approach in which we construct a new type of decision tree model called decision-path model that takes advantage of the particular features of a given person of interest. We introduce three personalized methods that derive personalized decision-path models. We compared the performance of these methods to that of Classification And Regression Tree (CART) that is a population decision tree to predict seven different outcomes in five medical datasets. Two of the three personalized methods performed statistically significantly better on area under the ROC curve (AUC) and Brier skill score compared to CART. The personalized approach of learning decision path models is a new approach for predictive modeling that can perform better than a population approach. PMID:26098570

  4. Modelling decision-making by pilots

    NASA Technical Reports Server (NTRS)

    Patrick, Nicholas J. M.

    1993-01-01

    Our scientific goal is to understand the process of human decision-making. Specifically, a model of human decision-making in piloting modern commercial aircraft which prescribes optimal behavior, and against which we can measure human sub-optimality is sought. This model should help us understand such diverse aspects of piloting as strategic decision-making, and the implicit decisions involved in attention allocation. Our engineering goal is to provide design specifications for (1) better computer-based decision-aids, and (2) better training programs for the human pilot (or human decision-maker, DM).

  5. Maladaptive Decision Making in Adults with a History of Adolescent Alcohol use, in a Preclinical Model, Is Attributable to the Compromised Assignment of Incentive Value during Stimulus-Reward Learning.

    PubMed

    Kruse, Lauren C; Schindler, Abigail G; Williams, Rapheal G; Weber, Sophia J; Clark, Jeremy J

    2017-01-01

    According to recent WHO reports, alcohol remains the number one substance used and abused by adolescents, despite public health efforts to curb its use. Adolescence is a critical period of biological maturation where brain development, particularly the mesocorticolimbic dopamine system, undergoes substantial remodeling. These circuits are implicated in complex decision making, incentive learning and reinforcement during substance use and abuse. An appealing theoretical approach has been to suggest that alcohol alters the normal development of these processes to promote deficits in reinforcement learning and decision making, which together make individuals vulnerable to developing substance use disorders in adulthood. Previously we have used a preclinical model of voluntary alcohol intake in rats to show that use in adolescence promotes risky decision making in adulthood that is mirrored by selective perturbations in dopamine network dynamics. Further, we have demonstrated that incentive learning processes in adulthood are also altered by adolescent alcohol use, again mirrored by changes in cue-evoked dopamine signaling. Indeed, we have proposed that these two processes, risk-based decision making and incentive learning, are fundamentally linked through dysfunction of midbrain circuitry where inputs to the dopamine system are disrupted by adolescent alcohol use. Here, we test the behavioral predictions of this model in rats and present the findings in the context of the prevailing literature with reference to the long-term consequences of early-life substance use on the vulnerability to develop substance use disorders. We utilize an impulsive choice task to assess the selectivity of alcohol's effect on decision-making profiles and conditioned reinforcement to parse out the effect of incentive value attribution, one mechanism of incentive learning. Finally, we use the differential reinforcement of low rates of responding (DRL) task to examine the degree to which

  6. Maladaptive Decision Making in Adults with a History of Adolescent Alcohol use, in a Preclinical Model, Is Attributable to the Compromised Assignment of Incentive Value during Stimulus-Reward Learning

    PubMed Central

    Kruse, Lauren C.; Schindler, Abigail G.; Williams, Rapheal G.; Weber, Sophia J.; Clark, Jeremy J.

    2017-01-01

    According to recent WHO reports, alcohol remains the number one substance used and abused by adolescents, despite public health efforts to curb its use. Adolescence is a critical period of biological maturation where brain development, particularly the mesocorticolimbic dopamine system, undergoes substantial remodeling. These circuits are implicated in complex decision making, incentive learning and reinforcement during substance use and abuse. An appealing theoretical approach has been to suggest that alcohol alters the normal development of these processes to promote deficits in reinforcement learning and decision making, which together make individuals vulnerable to developing substance use disorders in adulthood. Previously we have used a preclinical model of voluntary alcohol intake in rats to show that use in adolescence promotes risky decision making in adulthood that is mirrored by selective perturbations in dopamine network dynamics. Further, we have demonstrated that incentive learning processes in adulthood are also altered by adolescent alcohol use, again mirrored by changes in cue-evoked dopamine signaling. Indeed, we have proposed that these two processes, risk-based decision making and incentive learning, are fundamentally linked through dysfunction of midbrain circuitry where inputs to the dopamine system are disrupted by adolescent alcohol use. Here, we test the behavioral predictions of this model in rats and present the findings in the context of the prevailing literature with reference to the long-term consequences of early-life substance use on the vulnerability to develop substance use disorders. We utilize an impulsive choice task to assess the selectivity of alcohol’s effect on decision-making profiles and conditioned reinforcement to parse out the effect of incentive value attribution, one mechanism of incentive learning. Finally, we use the differential reinforcement of low rates of responding (DRL) task to examine the degree to which

  7. Stakeholder engagement in dredged material management decisions.

    PubMed

    Collier, Zachary A; Bates, Matthew E; Wood, Matthew D; Linkov, Igor

    2014-10-15

    Dredging and disposal issues often become controversial with local stakeholders because of their competing interests. These interests tend to manifest themselves in stakeholders holding onto entrenched positions, and deadlock can result without a methodology to move the stakeholder group past the status quo. However, these situations can be represented as multi-stakeholder, multi-criteria decision problems. In this paper, we describe a case study in which multi-criteria decision analysis was implemented in a multi-stakeholder setting in order to generate recommendations on dredged material placement for Long Island Sound's Dredged Material Management Plan. A working-group of representatives from various stakeholder organizations was formed and consulted to help prioritize sediment placement sites for each dredging center in the region by collaboratively building a multi-criteria decision model. The resulting model framed the problem as several alternatives, criteria, sub-criteria, and metrics relevant to stakeholder interests in the Long Island Sound region. An elicitation of values, represented as criteria weights, was then conducted. Results show that in general, stakeholders tended to agree that all criteria were at least somewhat important, and on average there was strong agreement on the order of preferences among the diverse groups of stakeholders. By developing the decision model iteratively with stakeholders as a group and soliciting their preferences, the process sought to increase stakeholder involvement at the front-end of the prioritization process and lead to increased knowledge and consensus regarding the importance of site-specific criteria. Published by Elsevier B.V.

  8. The necessary burden of involving stakeholders in agent-based modelling for education and decision-making

    NASA Astrophysics Data System (ADS)

    Bommel, P.; Bautista Solís, P.; Leclerc, G.

    2016-12-01

    We implemented a participatory process with water stakeholders for improving resilience to drought at watershed scale, and for reducing water pollution disputes in drought prone Northwestern Costa Rica. The purpose is to facilitate co-management in a rural watershed impacted by recurrent droughts related to ENSO. The process involved designing "ContaMiCuenca", a hybrid agent-based model where users can specify the decisions of their agents. We followed a Companion Modeling approach (www.commod.org) and organized 10 workshops that included research techniques such as participatory diagnostics, actor-resources-interaction and UML diagrams, multi-agents model design, and interactive simulation sessions. We collectively assessed the main water issues in the watershed, prioritized their importance, defined the objectives of the process, and pilot-tested ContaMiCuenca for environmental education with adults and children. Simulation sessions resulted in debates about the need to improve the model accuracy, arguably more relevant for decision-making. This helped identify sensible knowledge gaps in the groundwater pollution and aquifer dynamics that need to be addressed in order to improve our collective learning. Significant mismatches among participants expectations, objectives, and agendas considerably slowed down the participatory process. The main issue may originate in participants expecting technical solutions from a positivist science, as constantly promoted in the region by dole-out initiatives, which is incompatible with the constructivist stance of participatory modellers. This requires much closer interaction of community members with modellers, which may be hard to attain in the current research practice and institutional context. Nevertheless, overcoming these constraints is necessary for a true involvement of water stakeholders to achieve community-based decisions that facilitate integrated water management. Our findings provide significant guidance for

  9. A General Cognitive Diagnosis Model for Expert-Defined Polytomous Attributes

    ERIC Educational Resources Information Center

    Chen, Jinsong; de la Torre, Jimmy

    2013-01-01

    Polytomous attributes, particularly those defined as part of the test development process, can provide additional diagnostic information. The present research proposes the polytomous generalized deterministic inputs, noisy, "and" gate (pG-DINA) model to accommodate such attributes. The pG-DINA model allows input from substantive experts…

  10. Fuzzy Logic Approaches to Multi-Objective Decision-Making in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.

    1994-01-01

    Fuzzy logic allows for the quantitative representation of multi-objective decision-making problems which have vague or fuzzy objectives and parameters. As such, fuzzy logic approaches are well-suited to situations where alternatives must be assessed by using criteria that are subjective and of unequal importance. This paper presents an overview of fuzzy logic and provides sample applications from the aerospace industry. Applications include an evaluation of vendor proposals, an analysis of future space vehicle options, and the selection of a future space propulsion system. On the basis of the results provided in this study, fuzzy logic provides a unique perspective on the decision-making process, allowing the evaluator to assess the degree to which each option meets the evaluation criteria. Future decision-making should take full advantage of fuzzy logic methods to complement existing approaches in the selection of alternatives.

  11. Application of Visual Attention in Seismic Attribute Analysis

    NASA Astrophysics Data System (ADS)

    He, M.; Gu, H.; Wang, F.

    2016-12-01

    It has been proved that seismic attributes can be used to predict reservoir. The joint of multi-attribute and geological statistics, data mining, artificial intelligence, further promote the development of the seismic attribute analysis. However, the existing methods tend to have multiple solutions and insufficient generalization ability, which is mainly due to the complex relationship between seismic data and geological information, and undoubtedly own partly to the methods applied. Visual attention is a mechanism model of the human visual system which can concentrate on a few significant visual objects rapidly, even in a mixed scene. Actually, the model qualify good ability of target detection and recognition. In our study, the targets to be predicted are treated as visual objects, and an object representation based on well data is made in the attribute dimensions. Then in the same attribute space, the representation is served as a criterion to search the potential targets outside the wells. This method need not predict properties by building up a complicated relation between attributes and reservoir properties, but with reference to the standard determined before. So it has pretty good generalization ability, and the problem of multiple solutions can be weakened by defining the threshold of similarity.

  12. k-RP*{sub s}: A scalable distributed data structure for high-performance multi-attribute access

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, W.; Neimat, M.A.

    k-RP*{sub s} is a new data structure for scalable multicomputer files with multi-attribute (k-d) keys. We discuss the k-RP*{sub s} file evolution and search algorithms. Performance analysis shows that a k-RP*{sub s} file can be much larger and orders of magnitude faster than a traditional k-d file. The speed-up is especially important for range and partial match searches that are often impractical with traditional k-d files. This opens up a new perspective for many applications.

  13. Stochastic multi-objective auto-optimization for resource allocation decision-making in fixed-input health systems.

    PubMed

    Bastian, Nathaniel D; Ekin, Tahir; Kang, Hyojung; Griffin, Paul M; Fulton, Lawrence V; Grannan, Benjamin C

    2017-06-01

    The management of hospitals within fixed-input health systems such as the U.S. Military Health System (MHS) can be challenging due to the large number of hospitals, as well as the uncertainty in input resources and achievable outputs. This paper introduces a stochastic multi-objective auto-optimization model (SMAOM) for resource allocation decision-making in fixed-input health systems. The model can automatically identify where to re-allocate system input resources at the hospital level in order to optimize overall system performance, while considering uncertainty in the model parameters. The model is applied to 128 hospitals in the three services (Air Force, Army, and Navy) in the MHS using hospital-level data from 2009 - 2013. The results are compared to the traditional input-oriented variable returns-to-scale Data Envelopment Analysis (DEA) model. The application of SMAOM to the MHS increases the expected system-wide technical efficiency by 18 % over the DEA model while also accounting for uncertainty of health system inputs and outputs. The developed method is useful for decision-makers in the Defense Health Agency (DHA), who have a strategic level objective of integrating clinical and business processes through better sharing of resources across the MHS and through system-wide standardization across the services. It is also less sensitive to data outliers or sampling errors than traditional DEA methods.

  14. A new spatial multi-criteria decision support tool for site selection for implementation of managed aquifer recharge.

    PubMed

    Rahman, M Azizur; Rusteberg, Bernd; Gogu, R C; Lobo Ferreira, J P; Sauter, Martin

    2012-05-30

    This study reports the development of a new spatial multi-criteria decision analysis (SMCDA) software tool for selecting suitable sites for Managed Aquifer Recharge (MAR) systems. The new SMCDA software tool functions based on the combination of existing multi-criteria evaluation methods with modern decision analysis techniques. More specifically, non-compensatory screening, criteria standardization and weighting, and Analytical Hierarchy Process (AHP) have been combined with Weighted Linear Combination (WLC) and Ordered Weighted Averaging (OWA). This SMCDA tool may be implemented with a wide range of decision maker's preferences. The tool's user-friendly interface helps guide the decision maker through the sequential steps for site selection, those steps namely being constraint mapping, criteria hierarchy, criteria standardization and weighting, and criteria overlay. The tool offers some predetermined default criteria and standard methods to increase the trade-off between ease-of-use and efficiency. Integrated into ArcGIS, the tool has the advantage of using GIS tools for spatial analysis, and herein data may be processed and displayed. The tool is non-site specific, adaptive, and comprehensive, and may be applied to any type of site-selection problem. For demonstrating the robustness of the new tool, a case study was planned and executed at Algarve Region, Portugal. The efficiency of the SMCDA tool in the decision making process for selecting suitable sites for MAR was also demonstrated. Specific aspects of the tool such as built-in default criteria, explicit decision steps, and flexibility in choosing different options were key features, which benefited the study. The new SMCDA tool can be augmented by groundwater flow and transport modeling so as to achieve a more comprehensive approach to the selection process for the best locations of the MAR infiltration basins, as well as the locations of recovery wells and areas of groundwater protection. The new spatial

  15. Noise Suppression Based on Multi-Model Compositions Using Multi-Pass Search with Multi-Label N-gram Models

    NASA Astrophysics Data System (ADS)

    Jitsuhiro, Takatoshi; Toriyama, Tomoji; Kogure, Kiyoshi

    We propose a noise suppression method based on multi-model compositions and multi-pass search. In real environments, input speech for speech recognition includes many kinds of noise signals. To obtain good recognized candidates, suppressing many kinds of noise signals at once and finding target speech is important. Before noise suppression, to find speech and noise label sequences, we introduce multi-pass search with acoustic models including many kinds of noise models and their compositions, their n-gram models, and their lexicon. Noise suppression is frame-synchronously performed using the multiple models selected by recognized label sequences with time alignments. We evaluated this method using the E-Nightingale task, which contains voice memoranda spoken by nurses during actual work at hospitals. The proposed method obtained higher performance than the conventional method.

  16. Multi-criteria development and incorporation into decision tools for health technology adoption.

    PubMed

    Poulin, Paule; Austen, Lea; Scott, Catherine M; Waddell, Cameron D; Dixon, Elijah; Poulin, Michelle; Lafrenière, René

    2013-01-01

    When introducing new health technologies, decision makers must integrate research evidence with local operational management information to guide decisions about whether and under what conditions the technology will be used. Multi-criteria decision analysis can support the adoption or prioritization of health interventions by using criteria to explicitly articulate the health organization's needs, limitations, and values in addition to evaluating evidence for safety and effectiveness. This paper seeks to describe the development of a framework to create agreed-upon criteria and decision tools to enhance a pre-existing local health technology assessment (HTA) decision support program. The authors compiled a list of published criteria from the literature, consulted with experts to refine the criteria list, and used a modified Delphi process with a group of key stakeholders to review, modify, and validate each criterion. In a workshop setting, the criteria were used to create decision tools. A set of user-validated criteria for new health technology evaluation and adoption was developed and integrated into the local HTA decision support program. Technology evaluation and decision guideline tools were created using these criteria to ensure that the decision process is systematic, consistent, and transparent. This framework can be used by others to develop decision-making criteria and tools to enhance similar technology adoption programs. The development of clear, user-validated criteria for evaluating new technologies adds a critical element to improve decision-making on technology adoption, and the decision tools ensure consistency, transparency, and real-world relevance.

  17. A prospective analysis of implementation of multi-disciplinary team decisions in breast cancer.

    PubMed

    English, Rachel; Metcalfe, Chris; Day, James; Rayter, Zenon; Blazeby, Jane M

    2012-09-01

    Multi-disciplinary teams (MDTs) management of patients with cancer is mandatory in the United Kingdom, and auditing team decision-making by examining rates of decision implementation and reasons for nonimplementation may inform this practice. Consecutive breast cancer MDT decisions, subsequent decision implementation, and reasons for nonimplementation were prospectively recorded. Factors associated with nonimplementation of the MDT decision were analyzed with logistic regression. Of 289 consecutive MDT decisions involving 210 women, 20 (6.9%, 95% CIs 4.3%-10.5%) were not implemented. Most changed MDT decisions did so because of patient preferences (n = 13, 65%), with the discovery of new clinical information (n = 3) and individual doctor's views (n = 4) also leading to decision nonimplementation. MDT decisions were significantly less likely to be adhered to in patients with confirmed malignant disease compared to those with benign or 'unknown' disease categories (p < 0.001) and MDT decisions in older patients were significantly more likely not to be implemented than in younger patients (p = 0.002). Auditing nonimplementation of MDT recommendations and examining reasons for changed decisions is a useful process to monitor team performance and to identify factors that need more attention during the MDT meeting to ensure that the process makes optimal patient centered decisions. © 2012 Wiley Periodicals, Inc.

  18. Source Attribution of Near-surface Ozone in the Western US: Improved Estimates by TF HTAP2 Multi-model Experiment and Multi-scale Chemical Data Assimilation

    NASA Astrophysics Data System (ADS)

    Huang, M.; Bowman, K. W.; Carmichael, G. R.; Lee, M.; Park, R.; Henze, D. K.; Chai, T.; Flemming, J.; Lin, M.; Weinheimer, A. J.; Wisthaler, A.; Jaffe, D. A.

    2014-12-01

    Near-surface ozone in the western US can be sensitive to transported background pollutants from the free troposphere over the eastern Pacific, as well as various local emissions sources. Accurately estimating ozone source contributions in this region has strong policy-relevant significance as the air quality standards tend to go down. Here we improve modeled contributions from local and non-local sources to western US ozone base on the HTAP2 (Task Force on Hemispheric Transport of Air Pollution) multi-model experiment, along with multi-scale chemical data assimilation. We simulate western US air quality using the STEM regional model on a 12 km horizontal resolution grid, during the NASA ARCTAS field campaign period in June 2008. STEM simulations use time-varying boundary conditions downscaled from global GEOS-Chem model simulations. Standard GEOS-Chem simulation overall underpredicted ozone at 1-5 km in the eastern Pacific, resulting in underestimated contributions from the transported background pollutants to surface ozone inland. These negative biases can be reduced by using the output from several global models that support the HTAP2 experiment, which all ran with the HTAP2 harmonized emission inventory and also calculated the contributions from east Asian anthropogenic emissions. We demonstrate that the biases in GEOS-Chem boundary conditions can be more efficiently reduced via assimilating satellite ozone profiles from the Tropospheric Emission Spectrometer (TES) instrument using the three dimensional variational (3D-Var) approach. Base upon these TES-constrained GEOS-Chem boundary conditions, we then update regional nitrogen dioxide and isoprene emissions in STEM through the four dimensional variational (4D-Var) assimilation of the Ozone Monitoring Instrument (OMI) nitrogen dioxide columns and the NASA DC-8 aircraft isoprene measurements. The 4D-Var assimilation spatially redistributed the emissions of nitrogen oxides and isoprene from various US sources, and

  19. Contribution of the Multi Attribute Value Theory to conflict resolution in groundwater management. Application to the Mancha Oriental groundwater system, Spain

    NASA Astrophysics Data System (ADS)

    Apperl, B.; Andreu, J.; Karjalainen, T. P.; Pulido-Velazquez, M.

    2014-09-01

    The implementation of the EU Water Framework Directive demands participatory water resource management approaches. Decision making in groundwater quantity and quality management is complex because of the existence of many independent actors, heterogeneous stakeholder interests, multiple objectives, different potential policies, and uncertain outcomes. Conflicting stakeholder interests have been often identified as an impediment to the realization and success of water regulations and policies. The management of complex groundwater systems requires clarifying stakeholders' positions (identifying stakeholders preferences and values), improving transparency with respect to outcomes of alternatives, and moving the discussion from the selection of alternatives towards definition of fundamental objectives (value-thinking approach), what facilitates negotiation. The aims of the study are to analyse the potential of the multi attribute value theory for conflict resolution in groundwater management and to evaluate the benefit of stakeholder incorporation in the different stages of the planning process to find an overall satisfying solution for groundwater management. The research was conducted in the Mancha Oriental groundwater system (Spain), subject to an intensive use of groundwater for irrigation. A complex set of objectives and attributes were defined, and the management alternatives were created by a combination of different fundamental actions, considering different implementation stages and future changes in water resources availability. Interviews were conducted with representative stakeholder groups using an interactive platform, showing simultaneously the consequences of changes of preferences to the alternative ranking. Results show that the acceptation of alternatives depends strongly on the combination of measures and the implementation stages. Uncertainties of the results were notable but did not influence heavily on the alternative ranking. The expected

  20. Contribution of the multi-attribute value theory to conflict resolution in groundwater management - application to the Mancha Oriental groundwater system, Spain

    NASA Astrophysics Data System (ADS)

    Apperl, B.; Pulido-Velazquez, M.; Andreu, J.; Karjalainen, T. P.

    2015-03-01

    The implementation of the EU Water Framework Directive demands participatory water resource management approaches. Decision making in groundwater quantity and quality management is complex because of the existence of many independent actors, heterogeneous stakeholder interests, multiple objectives, different potential policies, and uncertain outcomes. Conflicting stakeholder interests have often been identified as an impediment to the realisation and success of water regulations and policies. The management of complex groundwater systems requires the clarification of stakeholders' positions (identifying stakeholder preferences and values), improving transparency with respect to outcomes of alternatives, and moving the discussion from the selection of alternatives towards the definition of fundamental objectives (value-thinking approach), which facilitates negotiation. The aims of the study are to analyse the potential of the multi-attribute value theory for conflict resolution in groundwater management and to evaluate the benefit of stakeholder incorporation into the different stages of the planning process, to find an overall satisfying solution for groundwater management. The research was conducted in the Mancha Oriental groundwater system (Spain), subject to intensive use of groundwater for irrigation. A complex set of objectives and attributes was defined, and the management alternatives were created by a combination of different fundamental actions, considering different implementation stages and future changes in water resource availability. Interviews were conducted with representative stakeholder groups using an interactive platform, showing simultaneously the consequences of changes in preferences to the alternative ranking. Results show that the approval of alternatives depends strongly on the combination of measures and the implementation stages. Uncertainties in the results were notable, but did not influence the alternative ranking heavily. The

  1. Decision-support models for empiric antibiotic selection in Gram-negative bloodstream infections.

    PubMed

    MacFadden, D R; Coburn, B; Shah, N; Robicsek, A; Savage, R; Elligsen, M; Daneman, N

    2018-04-25

    Early empiric antibiotic therapy in patients can improve clinical outcomes in Gram-negative bacteraemia. However, the widespread prevalence of antibiotic-resistant pathogens compromises our ability to provide adequate therapy while minimizing use of broad antibiotics. We sought to determine whether readily available electronic medical record data could be used to develop predictive models for decision support in Gram-negative bacteraemia. We performed a multi-centre cohort study, in Canada and the USA, of hospitalized patients with Gram-negative bloodstream infection from April 2010 to March 2015. We analysed multivariable models for prediction of antibiotic susceptibility at two empiric windows: Gram-stain-guided and pathogen-guided treatment. Decision-support models for empiric antibiotic selection were developed based on three clinical decision thresholds of acceptable adequate coverage (80%, 90% and 95%). A total of 1832 patients with Gram-negative bacteraemia were evaluated. Multivariable models showed good discrimination across countries and at both Gram-stain-guided (12 models, areas under the curve (AUCs) 0.68-0.89, optimism-corrected AUCs 0.63-0.85) and pathogen-guided (12 models, AUCs 0.75-0.98, optimism-corrected AUCs 0.64-0.95) windows. Compared to antibiogram-guided therapy, decision-support models of antibiotic selection incorporating individual patient characteristics and prior culture results have the potential to increase use of narrower-spectrum antibiotics (in up to 78% of patients) while reducing inadequate therapy. Multivariable models using readily available epidemiologic factors can be used to predict antimicrobial susceptibility in infecting pathogens with reasonable discriminatory ability. Implementation of sequential predictive models for real-time individualized empiric antibiotic decision-making has the potential to both optimize adequate coverage for patients while minimizing overuse of broad-spectrum antibiotics, and therefore requires

  2. Emerging medical informatics with case-based reasoning for aiding clinical decision in multi-agent system.

    PubMed

    Shen, Ying; Colloc, Joël; Jacquet-Andrieu, Armelle; Lei, Kai

    2015-08-01

    This research aims to depict the methodological steps and tools about the combined operation of case-based reasoning (CBR) and multi-agent system (MAS) to expose the ontological application in the field of clinical decision support. The multi-agent architecture works for the consideration of the whole cycle of clinical decision-making adaptable to many medical aspects such as the diagnosis, prognosis, treatment, therapeutic monitoring of gastric cancer. In the multi-agent architecture, the ontological agent type employs the domain knowledge to ease the extraction of similar clinical cases and provide treatment suggestions to patients and physicians. Ontological agent is used for the extension of domain hierarchy and the interpretation of input requests. Case-based reasoning memorizes and restores experience data for solving similar problems, with the help of matching approach and defined interfaces of ontologies. A typical case is developed to illustrate the implementation of the knowledge acquisition and restitution of medical experts. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Experimental Evaluation of Suitability of Selected Multi-Criteria Decision-Making Methods for Large-Scale Agent-Based Simulations

    PubMed Central

    2016-01-01

    Multi-criteria decision-making (MCDM) can be formally implemented by various methods. This study compares suitability of four selected MCDM methods, namely WPM, TOPSIS, VIKOR, and PROMETHEE, for future applications in agent-based computational economic (ACE) models of larger scale (i.e., over 10 000 agents in one geographical region). These four MCDM methods were selected according to their appropriateness for computational processing in ACE applications. Tests of the selected methods were conducted on four hardware configurations. For each method, 100 tests were performed, which represented one testing iteration. With four testing iterations conducted on each hardware setting and separated testing of all configurations with the–server parameter de/activated, altogether, 12800 data points were collected and consequently analyzed. An illustrational decision-making scenario was used which allows the mutual comparison of all of the selected decision making methods. Our test results suggest that although all methods are convenient and can be used in practice, the VIKOR method accomplished the tests with the best results and thus can be recommended as the most suitable for simulations of large-scale agent-based models. PMID:27806061

  4. Integrated catchment modelling within a strategic planning and decision making process: Werra case study

    NASA Astrophysics Data System (ADS)

    Dietrich, Jörg; Funke, Markus

    Integrated water resources management (IWRM) redefines conventional water management approaches through a closer cross-linkage between environment and society. The role of public participation and socio-economic considerations becomes more important within the planning and decision making process. In this paper we address aspects of the integration of catchment models into such a process taking the implementation of the European Water Framework Directive (WFD) as an example. Within a case study situated in the Werra river basin (Central Germany), a systems analytic decision process model was developed. This model uses the semantics of the Unified Modeling Language (UML) activity model. As an example application, the catchment model SWAT and the water quality model RWQM1 were applied to simulate the effect of phosphorus emissions from non-point and point sources on water quality. The decision process model was able to guide the participants of the case study through the interdisciplinary planning and negotiation of actions. Further improvements of the integration framework include tools for quantitative uncertainty analyses, which are crucial for real life application of models within an IWRM decision making toolbox. For the case study, the multi-criteria assessment of actions indicates that the polluter pays principle can be met at larger scales (sub-catchment or river basin) without significantly compromising cost efficiency for the local situation.

  5. Toward an operational model of decision making, emotional regulation, and mental health impact.

    PubMed

    Collura, Thomas Francis; Zalaquett, Ronald P; Bonnstetter, Carlos Joyce; Chatters, Seria J

    2014-01-01

    Current brain research increasingly reveals the underlying mechanisms and processes of human behavior, cognition, and emotion. In addition to being of interest to a wide range of scientists, educators, and professionals, as well as laypeople, brain-based models are of particular value in a clinical setting. Psychiatrists, psychologists, counselors, and other mental health professionals are in need of operational models that integrate recent findings in the physical, cognitive, and emotional domains, and offer a common language for interdisciplinary understanding and communication. Based on individual traits, predispositions, and responses to stimuli, we can begin to identify emotional and behavioral pathways and mental processing patterns. The purpose of this article is to present a brain-path activation model to understand individual differences in decision making and psychopathology. The first section discusses the role of frontal lobe electroencephalography (EEG) asymmetry, summarizes state- and trait-based models of decision making, and provides a more complex analysis that supplements the traditional simple left-right brain model. Key components of the new model are the introduction of right hemisphere parallel and left hemisphere serial scanning in rendering decisions, and the proposition of pathways that incorporate both past experiences as well as future implications into the decision process. Main attributes of each decision-making mechanism are provided. The second section applies the model within the realm of clinical mental health as a tool to understand specific human behavior and pathology. Applications include general and chronic anxiety, depression, paranoia, risk taking, and the pathways employed when well-functioning operational integration is observed. Finally, specific applications such as meditation and mindfulness are offered to facilitate positive functioning.

  6. A Multi-criterial Decision Support System for Forest Management

    Treesearch

    Donald Nute; Geneho Kim; Walter D. Potter; Mark J. Twery; H. Michael Rauscher; Scott Thomasma; Deborah Bennett; Peter Kollasch

    1999-01-01

    We describe a research project that has as its goal development of a full-featured decision support system for managing forested land to satisfy multiple criteria represented as timber, wildlife, water, ecological, and wildlife objectives. The decision process proposed for what was originally conceived of as a Northeast Decision Model (NED) includes data acquisition,...

  7. Attributing Asymmetric Productivity Responses to Internal Ecosystem Dynamics and External Drivers Using Probabilistic Models

    NASA Astrophysics Data System (ADS)

    Parolari, A.; Goulden, M.

    2017-12-01

    A major challenge to interpreting asymmetric changes in ecosystem productivity is the attribution of these changes to external climate forcing or to internal ecophysiological processes that respond to these drivers (e.g., photosynthesis response to drying soil). For example, positive asymmetry in productivity can result from either positive skewness in the distribution of annual rainfall amount or from negative curvature in the productivity response to annual rainfall. To analyze the relative influences of climate and ecosystem dynamics on both positive and negative asymmetry in multi-year ANPP experiments, we use a multi-scale coupled ecosystem water-carbon model to interpret field experimental results that span gradients of rainfall skewness and ANPP response curvature. The model integrates rainfall variability, soil moisture dynamics, and net carbon assimilation from the daily to inter-annual scales. From the underlying physical basis of the model, we compute the joint probability distribution of the minimum and maximum ANPP for an annual ANPP experiment of N years. The distribution is used to estimate the likelihood that either positive or negative asymmetry will be observed in an experiment, given the annual rainfall distribution and the ANPP response curve. We estimate the total asymmetry as the mode of this joint distribution and the relative contribution attributable to rainfall skewness as the mode for a linear ANPP response curve. Applied to data from several long-term ANPP experiments, we find that there is a wide range of observed ANPP asymmetry (positive and negative) and a spectrum of contributions from internal and external factors. We identify the soil water holding capacity relative to the mean rain event depth as a critical ecosystem characteristic that controls the non-linearity of the ANPP response and positive curvature at high rainfall. Further, the seasonal distribution of rainfall is shown to control the presence or absence of negative

  8. Identification and Prioritization of Important Attributes of Disease-Modifying Drugs in Decision Making among Patients with Multiple Sclerosis: A Nominal Group Technique and Best-Worst Scaling

    PubMed Central

    Kremer, Ingrid E. H.; van der Weijden, Trudy; van de Kolk, Ilona

    2016-01-01

    Objectives Understanding the preferences of patients with multiple sclerosis (MS) for disease-modifying drugs and involving these patients in clinical decision making can improve the concordance between medical decisions and patient values and may, subsequently, improve adherence to disease-modifying drugs. This study aims first to identify which characteristics–or attributes–of disease-modifying drugs influence patients´ decisions about these treatments and second to quantify the attributes’ relative importance among patients. Methods First, three focus groups of relapsing-remitting MS patients were formed to compile a preliminary list of attributes using a nominal group technique. Based on this qualitative research, a survey with several choice tasks (best-worst scaling) was developed to prioritize attributes, asking a larger patient group to choose the most and least important attributes. The attributes’ mean relative importance scores (RIS) were calculated. Results Nineteen patients reported 34 attributes during the focus groups and 185 patients evaluated the importance of the attributes in the survey. The effect on disease progression received the highest RIS (RIS = 9.64, 95% confidence interval: [9.48–9.81]), followed by quality of life (RIS = 9.21 [9.00–9.42]), relapse rate (RIS = 7.76 [7.39–8.13]), severity of side effects (RIS = 7.63 [7.33–7.94]) and relapse severity (RIS = 7.39 [7.06–7.73]). Subgroup analyses showed heterogeneity in preference of patients. For example, side effect-related attributes were statistically more important for patients who had no experience in using disease-modifying drugs compared to experienced patients (p < .001). Conclusions This study shows that, on average, patients valued effectiveness and unwanted effects as most important. Clinicians should be aware of the average preferences but also that attributes of disease-modifying drugs are valued differently by different patients. Person-centred clinical

  9. GIS-based suitability modeling and multi-criteria decision analysis for utility scale solar plants in four states in the Southeast U.S

    NASA Astrophysics Data System (ADS)

    Tisza, Kata

    Photovoltaic (PV) development shows significantly smaller growth in the Southeast U.S., than in the Southwest; which is mainly due to the low cost of fossil-fuel based energy production in the region and the lack of solar incentives. However, the Southeast has appropriate insolation conditions (4.0-6.0 KWh/m2/day) for photovoltaic deployment and in the past decade the region has experienced the highest population growth for the entire country. These factors, combined with new renewable energy portfolio policies, could create an opportunity for PV to provide some of the energy that will be required to sustain this growth. The goal of the study was to investigate the potential for PV generation in the Southeast region by identifying suitable areas for a utility-scale solar power plant deployment. Four states with currently low solar penetration were studied: Georgia, North Carolina, South Carolina and Tennessee. Feasible areas were assessed with Geographic Information Systems (GIS) software using solar, land use and population growth criteria combined with proximity to transmission lines and roads. After the GIS-based assessment of the areas, technological potential was calculated for each state. Multi-decision analysis model (MCDA) was used to simulate the decision making method for a strategic PV installation. The model accounted for all criteria necessary to consider in case of a PV development and also included economic and policy criteria, which is thought to be a strong influence on the PV market. Three different scenarios were established, representing decision makers' theoretical preferences. Map layers created in the first part were used as basis for the MCDA and additional technical, economic and political/market criteria were added. A sensitivity analysis was conducted to test the model's robustness. Finally, weighted criteria were assigned to the GIS map layers, so that the different preference systems could be visualized. As a result, lands suitable for

  10. Design of a multi-agent hydroeconomic model to simulate a complex human-water system: Early insights from the Jordan Water Project

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Klassert, C. J. A.; Lachaut, T.; Selby, P. D.; Knox, S.; Gorelick, S.; Rajsekhar, D.; Tilmant, A.; Avisse, N.; Harou, J. J.; Gawel, E.; Klauer, B.; Mustafa, D.; Talozi, S.; Sigel, K.

    2015-12-01

    Our work focuses on development of a multi-agent, hydroeconomic model for purposes of water policy evaluation in Jordan. The model adopts a modular approach, integrating biophysical modules that simulate natural and engineered phenomena with human modules that represent behavior at multiple levels of decision making. The hydrologic modules are developed using spatially-distributed groundwater and surface water models, which are translated into compact simulators for efficient integration into the multi-agent model. For the groundwater model, we adopt a response matrix method approach in which a 3-dimensional MODFLOW model of a complex regional groundwater system is converted into a linear simulator of groundwater response by pre-processing drawdown results from several hundred numerical simulation runs. Surface water models for each major surface water basin in the country are developed in SWAT and similarly translated into simple rainfall-runoff functions for integration with the multi-agent model. The approach balances physically-based, spatially-explicit representation of hydrologic systems with the efficiency required for integration into a complex multi-agent model that is computationally amenable to robust scenario analysis. For the multi-agent model, we explicitly represent human agency at multiple levels of decision making, with agents representing riparian, management, supplier, and water user groups. The agents' decision making models incorporate both rule-based heuristics as well as economic optimization. The model is programmed in Python using Pynsim, a generalizable, open-source object-oriented code framework for modeling network-based water resource systems. The Jordan model is one of the first applications of Pynsim to a real-world water management case study. Preliminary results from a tanker market scenario run through year 2050 are presented in which several salient features of the water system are investigated: competition between urban and

  11. Integrating evidence and individual preferences using a web-based multi-criteria decision analytic tool: an application to prostate cancer screening.

    PubMed

    Cunich, Michelle; Salkeld, Glenn; Dowie, Jack; Henderson, Joan; Bayram, Clare; Britt, Helena; Howard, Kirsten

    2011-01-01

    Annalisa© (AL) is a web-based decision-support template grounded in multi-criteria decision analysis (MCDA). It uses a simple expected value algorithm to calculate a score for each option by taking into account the individual's preferences for different criteria (as importance weights) and the evidence of the performance of each option on each criterion. Given the uncertainty surrounding the trade offs between benefits and harms for prostate cancer screening, this topic was chosen as the vehicle to introduce this new decision-support template. The aim of the study was to introduce a new decision-support template, AL, and to develop and pilot a decision-support tool for prostate cancer screening using it. A decision-support tool for prostate cancer screening (ALProst) was implemented in the AL template. ALProst incorporated evidence on both the benefits and the potential harms of prostate cancer screening (the 'attributes') from published randomized controlled trials (RCTs). Individual weights for each attribute were elicited during interviews. By combining the individual's preferences and the evidence, the best option for the user was identified on the basis of quantified scores. A convenience sample of computer-proficient primary-care physicians (general practitioners [GPs] in Australia) from the Sydney Metropolitan area (Australia) were invited to complete a face-to-face interview involving the decision-support tool. Preference for undergoing prostate-specific antigen testing for prostate cancer, both personally and for their patients, was sought prior to seeing the tool. After gaining hands-on experience with using the tool, GPs were asked to comment on the merits of the template and the tool. Preference for presenting the benefits of prostate cancer screening as the relative or absolute risk reduction in prostate cancer-specific mortality was also sought. Of 60 GPs approached, ten (six men and four women) completed an interview (16.7% response rate). Most GPs

  12. Combining multi-criteria decision analysis and mini-health technology assessment: A funding decision-support tool for medical devices in a university hospital setting.

    PubMed

    Martelli, Nicolas; Hansen, Paul; van den Brink, Hélène; Boudard, Aurélie; Cordonnier, Anne-Laure; Devaux, Capucine; Pineau, Judith; Prognon, Patrice; Borget, Isabelle

    2016-02-01

    At the hospital level, decisions about purchasing new and oftentimes expensive medical devices must take into account multiple criteria simultaneously. Multi-criteria decision analysis (MCDA) is increasingly used for health technology assessment (HTA). One of the most successful hospital-based HTA approaches is mini-HTA, of which a notable example is the Matrix4value model. To develop a funding decision-support tool combining MCDA and mini-HTA, based on Matrix4value, suitable for medical devices for individual patient use in French university hospitals - known as the IDA tool, short for 'innovative device assessment'. Criteria for assessing medical devices were identified from a literature review and a survey of 18 French university hospitals. Weights for the criteria, representing their relative importance, were derived from a survey of 25 members of a medical devices committee using an elicitation technique involving pairwise comparisons. As a test of its usefulness, the IDA tool was applied to two new drug-eluting beads (DEBs) for transcatheter arterial chemoembolization. The IDA tool comprises five criteria and weights for each of two over-arching categories: risk and value. The tool revealed that the two new DEBs conferred no additional value relative to DEBs currently available. Feedback from participating decision-makers about the IDA tool was very positive. The tool could help to promote a more structured and transparent approach to HTA decision-making in French university hospitals. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. A Decision Support Framework For Science-Based, Multi-Stakeholder Deliberation: A Coral Reef Example

    EPA Science Inventory

    We present a decision support framework for science-based assessment and multi-stakeholder deliberation. The framework consists of two parts: a DPSIR (Drivers-Pressures-States-Impacts-Responses) analysis to identify the important causal relationships among anthropogenic environ...

  14. The prioritisation of invasive alien plant control projects using a multi-criteria decision model informed by stakeholder input and spatial data.

    PubMed

    Forsyth, G G; Le Maitre, D C; O'Farrell, P J; van Wilgen, B W

    2012-07-30

    Invasions by alien plants are a significant threat to the biodiversity and functioning of ecosystems and the services they provide. The South African Working for Water program was established to address this problem. It needs to formulate objective and transparent priorities for clearing in the face of multiple and sometimes conflicting demands. This study used the analytic hierarchy process (a multi-criteria decision support technique) to develop and rank criteria for prioritising alien plant control operations in the Western Cape, South Africa. Stakeholder workshops were held to identify a goal and criteria and to conduct pair-wise comparisons to weight the criteria with respect to invasive alien plant control. The combination of stakeholder input (to develop decision models) with data-driven model solutions enabled us to include many alternatives (water catchments), that would otherwise not have been feasible. The most important criteria included the capacity to maintain gains made through control operations, the potential to enhance water resources and conserve biodiversity, and threats from priority invasive alien plant species. We selected spatial datasets and used them to generate weights that could be used to objectively compare alternatives with respect to agreed criteria. The analysis showed that there are many high priority catchments which are not receiving any funding and low priority catchments which are receiving substantial allocations. Clearly, there is a need for realigning priorities, including directing sufficient funds to the highest priority catchments to provide effective control. This approach provided a tractable, consensus-based solution that can be used to direct clearing operations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Visual Attention Allocation Between Robotic Arm and Environmental Process Control: Validating the STOM Task Switching Model

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher; Vieanne, Alex; Clegg, Benjamin; Sebok, Angelia; Janes, Jessica

    2015-01-01

    Fifty six participants time shared a spacecraft environmental control system task with a realistic space robotic arm control task in either a manual or highly automated version. The former could suffer minor failures, whose diagnosis and repair were supported by a decision aid. At the end of the experiment this decision aid unexpectedly failed. We measured visual attention allocation and switching between the two tasks, in each of the eight conditions formed by manual-automated arm X expected-unexpected failure X monitoring- failure management. We also used our multi-attribute task switching model, based on task attributes of priority interest, difficulty and salience that were self-rated by participants, to predict allocation. An un-weighted model based on attributes of difficulty, interest and salience accounted for 96 percent of the task allocation variance across the 8 different conditions. Task difficulty served as an attractor, with more difficult tasks increasing the tendency to stay on task.

  16. Why do multi-attribute utility instruments produce different utilities: the relative importance of the descriptive systems, scale and 'micro-utility' effects.

    PubMed

    Richardson, Jeff; Iezzi, Angelo; Khan, Munir A

    2015-08-01

    Health state utilities measured by the major multi-attribute utility instruments differ. Understanding the reasons for this is important for the choice of instrument and for research designed to reconcile these differences. This paper investigates these reasons by explaining pairwise differences between utilities derived from six multi-attribute utility instruments in terms of (1) their implicit measurement scales; (2) the structure of their descriptive systems; and (3) 'micro-utility effects', scale-adjusted differences attributable to their utility formula. The EQ-5D-5L, SF-6D, HUI 3, 15D and AQoL-8D were administered to 8,019 individuals. Utilities and unweighted values were calculated using each instrument. Scale effects were determined by the linear relationship between utilities, the effect of the descriptive system by comparison of scale-adjusted values and 'micro-utility effects' by the unexplained difference between utilities and values. Overall, 66 % of the differences between utilities was attributable to the descriptive systems, 30.3 % to scale effects and 3.7 % to micro-utility effects. Results imply that the revision of utility algorithms will not reconcile differences between instruments. The dominating importance of the descriptive system highlights the need for researchers to select the instrument most capable of describing the health states relevant for a study. Reconciliation of inconsistent utilities produced by different instruments must focus primarily upon the content of the descriptive system. Utility weights primarily determine the measurement scale. Other differences, attributable to utility formula, are comparatively unimportant.

  17. Multi-objective optimization for generating a weighted multi-model ensemble

    NASA Astrophysics Data System (ADS)

    Lee, H.

    2017-12-01

    Many studies have demonstrated that multi-model ensembles generally show better skill than each ensemble member. When generating weighted multi-model ensembles, the first step is measuring the performance of individual model simulations using observations. There is a consensus on the assignment of weighting factors based on a single evaluation metric. When considering only one evaluation metric, the weighting factor for each model is proportional to a performance score or inversely proportional to an error for the model. While this conventional approach can provide appropriate combinations of multiple models, the approach confronts a big challenge when there are multiple metrics under consideration. When considering multiple evaluation metrics, it is obvious that a simple averaging of multiple performance scores or model ranks does not address the trade-off problem between conflicting metrics. So far, there seems to be no best method to generate weighted multi-model ensembles based on multiple performance metrics. The current study applies the multi-objective optimization, a mathematical process that provides a set of optimal trade-off solutions based on a range of evaluation metrics, to combining multiple performance metrics for the global climate models and their dynamically downscaled regional climate simulations over North America and generating a weighted multi-model ensemble. NASA satellite data and the Regional Climate Model Evaluation System (RCMES) software toolkit are used for assessment of the climate simulations. Overall, the performance of each model differs markedly with strong seasonal dependence. Because of the considerable variability across the climate simulations, it is important to evaluate models systematically and make future projections by assigning optimized weighting factors to the models with relatively good performance. Our results indicate that the optimally weighted multi-model ensemble always shows better performance than an arithmetic

  18. WeightLifter: Visual Weight Space Exploration for Multi-Criteria Decision Making.

    PubMed

    Pajer, Stephan; Streit, Marc; Torsney-Weir, Thomas; Spechtenhauser, Florian; Muller, Torsten; Piringer, Harald

    2017-01-01

    A common strategy in Multi-Criteria Decision Making (MCDM) is to rank alternative solutions by weighted summary scores. Weights, however, are often abstract to the decision maker and can only be set by vague intuition. While previous work supports a point-wise exploration of weight spaces, we argue that MCDM can benefit from a regional and global visual analysis of weight spaces. Our main contribution is WeightLifter, a novel interactive visualization technique for weight-based MCDM that facilitates the exploration of weight spaces with up to ten criteria. Our technique enables users to better understand the sensitivity of a decision to changes of weights, to efficiently localize weight regions where a given solution ranks high, and to filter out solutions which do not rank high enough for any plausible combination of weights. We provide a comprehensive requirement analysis for weight-based MCDM and describe an interactive workflow that meets these requirements. For evaluation, we describe a usage scenario of WeightLifter in automotive engineering and report qualitative feedback from users of a deployed version as well as preliminary feedback from decision makers in multiple domains. This feedback confirms that WeightLifter increases both the efficiency of weight-based MCDM and the awareness of uncertainty in the ultimate decisions.

  19. mPLR-Loc: an adaptive decision multi-label classifier based on penalized logistic regression for protein subcellular localization prediction.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2015-03-15

    Proteins located in appropriate cellular compartments are of paramount importance to exert their biological functions. Prediction of protein subcellular localization by computational methods is required in the post-genomic era. Recent studies have been focusing on predicting not only single-location proteins but also multi-location proteins. However, most of the existing predictors are far from effective for tackling the challenges of multi-label proteins. This article proposes an efficient multi-label predictor, namely mPLR-Loc, based on penalized logistic regression and adaptive decisions for predicting both single- and multi-location proteins. Specifically, for each query protein, mPLR-Loc exploits the information from the Gene Ontology (GO) database by using its accession number (AC) or the ACs of its homologs obtained via BLAST. The frequencies of GO occurrences are used to construct feature vectors, which are then classified by an adaptive decision-based multi-label penalized logistic regression classifier. Experimental results based on two recent stringent benchmark datasets (virus and plant) show that mPLR-Loc remarkably outperforms existing state-of-the-art multi-label predictors. In addition to being able to rapidly and accurately predict subcellular localization of single- and multi-label proteins, mPLR-Loc can also provide probabilistic confidence scores for the prediction decisions. For readers' convenience, the mPLR-Loc server is available online (http://bioinfo.eie.polyu.edu.hk/mPLRLocServer). Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Causal attribution of mental illness in South-Eastern Nigeria.

    PubMed

    Ikwuka, Ugo; Galbraith, Niall; Nyatanga, Lovemore

    2014-05-01

    Understanding of mental illness in sub-Saharan Africa has remained under-researched in spite of the high and increasing neuropsychiatric burden of disease in the region. This study investigated the causal beliefs that the Igbo people of south-eastern Nigeria hold about schizophrenia, with a view to establishing the extent to which the population makes psychosocial, biological and supernatural attributions. Multi-stage sampling was used to select participants (N = 200) to which questionnaires were administered. Mean comparison of the three causal models revealed a significant endorsement of supernatural causation. Logistic regressions revealed significant contributions of old age and female gender to supernatural attribution; old age, high education and Catholic religious denomination to psychosocial attributions; and high education to biological attributions. It is hoped that the findings would enlighten, augment literature and enhance mental health care service delivery.

  1. Fuzzy Naive Bayesian model for medical diagnostic decision support.

    PubMed

    Wagholikar, Kavishwar B; Vijayraghavan, Sundararajan; Deshpande, Ashok W

    2009-01-01

    This work relates to the development of computational algorithms to provide decision support to physicians. The authors propose a Fuzzy Naive Bayesian (FNB) model for medical diagnosis, which extends the Fuzzy Bayesian approach proposed by Okuda. A physician's interview based method is described to define a orthogonal fuzzy symptom information system, required to apply the model. For the purpose of elaboration and elicitation of characteristics, the algorithm is applied to a simple simulated dataset, and compared with conventional Naive Bayes (NB) approach. As a preliminary evaluation of FNB in real world scenario, the comparison is repeated on a real fuzzy dataset of 81 patients diagnosed with infectious diseases. The case study on simulated dataset elucidates that FNB can be optimal over NB for diagnosing patients with imprecise-fuzzy information, on account of the following characteristics - 1) it can model the information that, values of some attributes are semantically closer than values of other attributes, and 2) it offers a mechanism to temper exaggerations in patient information. Although the algorithm requires precise training data, its utility for fuzzy training data is argued for. This is supported by the case study on infectious disease dataset, which indicates optimality of FNB over NB for the infectious disease domain. Further case studies on large datasets are required to establish utility of FNB.

  2. The double-edged sword of genetic accounts of criminality: causal attributions from genetic ascriptions affect legal decision making.

    PubMed

    Cheung, Benjamin Y; Heine, Steven J

    2015-12-01

    Much debate exists surrounding the applicability of genetic information in the courtroom, making the psychological processes underlying how people consider this information important to explore. This article addresses how people think about different kinds of causal explanations in legal decision-making contexts. Three studies involving a total of 600 Mechanical Turk and university participants found that genetic, versus environmental, explanations of criminal behavior lead people to view the applicability of various defense claims differently, perceive the perpetrator's mental state differently, and draw different causal attributions. Moreover, mediation and path analyses highlight the double-edged nature of genetic attributions-they simultaneously reduce people's perception of the perpetrator's sense of control while increasing people's tendencies to attribute the cause to internal factors and to expect the perpetrator to reoffend. These countervailing relations, in turn, predict sentencing in opposite directions, although no overall differences in sentencing or ultimate verdicts were found. © 2015 by the Society for Personality and Social Psychology, Inc.

  3. Discussion about decision support systems using continuous multi-criteria methods for planning in areas with hydro-basins, agriculture and forests, from examples in Argentine.

    NASA Astrophysics Data System (ADS)

    Anton, J. M.; Grau, J. B.; Tarquis, A. M.; Andina, D.; Cisneros, J. M.; Sanchez, E.

    2012-04-01

    The authors were involved last years in projects considering diverse decision problems on the use of some regions in Argentine, and also related to rivers or rural services in them. They used sets of multi-criteria decision methods, first discrete when the problem included few distinct alternatives, such as e.g. forestry, traditional or intensive agriculture. For attributes they were different effects, classified then in environmental, economic and social criteria. Extending to other gentler areas, such as at South of the Province of Córdoba, Arg., they have balanced more delicately effects of continuous levels of actions, with a combination of Goal Programming linked methods, and they adopted compromises to have precise solutions. That has shown, and in part open, a line of research, as the setting of such models require various kinds of definitions and valuations, including optimizations, goals with penalties in deviations and restrictions. That can be in diverse detail level and horizon, in presence of various technical and human horizons, and that can influence politics of use of terrain and production that will require public and private agents. The research will consider consideration of use and conservation of soils, human systems and agro productions, and hence models for optimization, preferably in such Goal Programming ways. That will require considering various systems of models, first in theory to be reliable, and then in different areas to evaluate the quality of conclusions, and maybe that successively if results are found advantageous. The Bayesian ways will be considered, but they would require a prospective of sets of precise future states of nature or markets with elicited probabilities, which are neither evident nor decisive for the moment, as changes may occur in years but will be very unexpected or uncertain. The results will be lines of models to aid to establish policies of use of territories, by public agencies setting frames for private

  4. Modeling of a production system using the multi-agent approach

    NASA Astrophysics Data System (ADS)

    Gwiazda, A.; Sękala, A.; Banaś, W.

    2017-08-01

    The method that allows for the analysis of complex systems is a multi-agent simulation. The multi-agent simulation (Agent-based modeling and simulation - ABMS) is modeling of complex systems consisting of independent agents. In the case of the model of the production system agents may be manufactured pieces set apart from other types of agents like machine tools, conveyors or replacements stands. Agents are magazines and buffers. More generally speaking, the agents in the model can be single individuals, but you can also be defined as agents of collective entities. They are allowed hierarchical structures. It means that a single agent could belong to a certain class. Depending on the needs of the agent may also be a natural or physical resource. From a technical point of view, the agent is a bundle of data and rules describing its behavior in different situations. Agents can be autonomous or non-autonomous in making the decision about the types of classes of agents, class sizes and types of connections between elements of the system. Multi-agent modeling is a very flexible technique for modeling and model creating in the convention that could be adapted to any research problem analyzed from different points of views. One of the major problems associated with the organization of production is the spatial organization of the production process. Secondly, it is important to include the optimal scheduling. For this purpose use can approach multi-purposeful. In this regard, the model of the production process will refer to the design and scheduling of production space for four different elements. The program system was developed in the environment NetLogo. It was also used elements of artificial intelligence. The main agent represents the manufactured pieces that, according to previously assumed rules, generate the technological route and allow preprint the schedule of that line. Machine lines, reorientation stands, conveyors and transport devices also represent the

  5. Sensitivity Analysis in Sequential Decision Models.

    PubMed

    Chen, Qiushi; Ayer, Turgay; Chhatwal, Jagpreet

    2017-02-01

    Sequential decision problems are frequently encountered in medical decision making, which are commonly solved using Markov decision processes (MDPs). Modeling guidelines recommend conducting sensitivity analyses in decision-analytic models to assess the robustness of the model results against the uncertainty in model parameters. However, standard methods of conducting sensitivity analyses cannot be directly applied to sequential decision problems because this would require evaluating all possible decision sequences, typically in the order of trillions, which is not practically feasible. As a result, most MDP-based modeling studies do not examine confidence in their recommended policies. In this study, we provide an approach to estimate uncertainty and confidence in the results of sequential decision models. First, we provide a probabilistic univariate method to identify the most sensitive parameters in MDPs. Second, we present a probabilistic multivariate approach to estimate the overall confidence in the recommended optimal policy considering joint uncertainty in the model parameters. We provide a graphical representation, which we call a policy acceptability curve, to summarize the confidence in the optimal policy by incorporating stakeholders' willingness to accept the base case policy. For a cost-effectiveness analysis, we provide an approach to construct a cost-effectiveness acceptability frontier, which shows the most cost-effective policy as well as the confidence in that for a given willingness to pay threshold. We demonstrate our approach using a simple MDP case study. We developed a method to conduct sensitivity analysis in sequential decision models, which could increase the credibility of these models among stakeholders.

  6. Data-driven modeling of hydroclimatic trends and soil moisture: Multi-scale data integration and decision support

    NASA Astrophysics Data System (ADS)

    Coopersmith, Evan Joseph

    The techniques and information employed for decision-making vary with the spatial and temporal scope of the assessment required. In modern agriculture, the farm owner or manager makes decisions on a day-to-day or even hour-to-hour basis for dozens of fields scattered over as much as a fifty-mile radius from some central location. Following precipitation events, land begins to dry. Land-owners and managers often trace serpentine paths of 150+ miles every morning to inspect the conditions of their various parcels. His or her objective lies in appropriate resource usage -- is a given tract of land dry enough to be workable at this moment or would he or she be better served waiting patiently? Longer-term, these owners and managers decide upon which seeds will grow most effectively and which crops will make their operations profitable. At even longer temporal scales, decisions are made regarding which fields must be acquired and sold and what types of equipment will be necessary in future operations. This work develops and validates algorithms for these shorter-term decisions, along with models of national climate patterns and climate changes to enable longer-term operational planning. A test site at the University of Illinois South Farms (Urbana, IL, USA) served as the primary location to validate machine learning algorithms, employing public sources of precipitation and potential evapotranspiration to model the wetting/drying process. In expanding such local decision support tools to locations on a national scale, one must recognize the heterogeneity of hydroclimatic and soil characteristics throughout the United States. Machine learning algorithms modeling the wetting/drying process must address this variability, and yet it is wholly impractical to construct a separate algorithm for every conceivable location. For this reason, a national hydrological classification system is presented, allowing clusters of hydroclimatic similarity to emerge naturally from annual

  7. Application of multi-criteria decision-making on strategic municipal solid waste management in Dalmatia, Croatia.

    PubMed

    Vego, Goran; Kucar-Dragicević, Savka; Koprivanac, Natalija

    2008-11-01

    The efficiency of providing a waste management system in the coastal part of Croatia consisting of four Dalmatian counties has been modelled. Two multi-criteria decision-making (MCDM) methods, PROMETHEE and GAIA, were applied to assist with the systematic analysis and evaluation of the alternatives. The analysis covered two levels; first, the potential number of waste management centres resulting from possible inter-county cooperation; and second, the relative merits of siting of waste management centres in the coastal or hinterland zone was evaluated. The problem was analysed according to several criteria; and ecological, economic, social and functional criteria sets were identified as relevant to the decision-making process. The PROMETHEE and GAIA methods were shown to be efficient tools for analysing the problem considered. Such an approach provided new insights to waste management planning at the strategic level, and gave a reason for rethinking some of the existing strategic waste management documents in Croatia.

  8. History matching through dynamic decision-making

    PubMed Central

    Maschio, Célio; Santos, Antonio Alberto; Schiozer, Denis; Rocha, Anderson

    2017-01-01

    History matching is the process of modifying the uncertain attributes of a reservoir model to reproduce the real reservoir performance. It is a classical reservoir engineering problem and plays an important role in reservoir management since the resulting models are used to support decisions in other tasks such as economic analysis and production strategy. This work introduces a dynamic decision-making optimization framework for history matching problems in which new models are generated based on, and guided by, the dynamic analysis of the data of available solutions. The optimization framework follows a ‘learning-from-data’ approach, and includes two optimizer components that use machine learning techniques, such as unsupervised learning and statistical analysis, to uncover patterns of input attributes that lead to good output responses. These patterns are used to support the decision-making process while generating new, and better, history matched solutions. The proposed framework is applied to a benchmark model (UNISIM-I-H) based on the Namorado field in Brazil. Results show the potential the dynamic decision-making optimization framework has for improving the quality of history matching solutions using a substantial smaller number of simulations when compared with a previous work on the same benchmark. PMID:28582413

  9. Non-monetary valuation using Multi-Criteria Decision Analysis: Sensitivity of additive aggregation methods to scaling and compensation assumptions

    EPA Science Inventory

    Analytical methods for Multi-Criteria Decision Analysis (MCDA) support the non-monetary valuation of ecosystem services for environmental decision making. Many published case studies transform ecosystem service outcomes into a common metric and aggregate the outcomes to set land ...

  10. Quantifying multi-dimensional attributes of human activities at various geographic scales based on smartphone tracking.

    PubMed

    Zhou, Xiaolu; Li, Dongying

    2018-05-09

    Advancement in location-aware technologies, and information and communication technology in the past decades has furthered our knowledge of the interaction between human activities and the built environment. An increasing number of studies have collected data regarding individual activities to better understand how the environment shapes human behavior. Despite this growing interest, some challenges exist in collecting and processing individual's activity data, e.g., capturing people's precise environmental contexts and analyzing data at multiple spatial scales. In this study, we propose and implement an innovative system that integrates smartphone-based step tracking with an app and the sequential tile scan techniques to collect and process activity data. We apply the OpenStreetMap tile system to aggregate positioning points at various scales. We also propose duration, step and probability surfaces to quantify the multi-dimensional attributes of activities. Results show that, by running the app in the background, smartphones can measure multi-dimensional attributes of human activities, including space, duration, step, and location uncertainty at various spatial scales. By coordinating Global Positioning System (GPS) sensor with accelerometer sensor, this app can save battery which otherwise would be drained by GPS sensor quickly. Based on a test dataset, we were able to detect the recreational center and sports center as the space where the user was most active, among other places visited. The methods provide techniques to address key issues in analyzing human activity data. The system can support future studies on behavioral and health consequences related to individual's environmental exposure.

  11. Cognitive processes and conflict in close relationships: an attribution-efficacy model.

    PubMed

    Fincham, F D; Bradbury, T N

    1987-12-01

    A recently proposed model of cognitive processes underlying conflict in close relationships (Doherty, 1978, 1981a, 1981b) is revised and tested in two studies. Central to the original model are the causal attributions made for conflict and the perceived efficacy or ability to resolve conflict. The model is revised to incorporate judgments of responsibility and to provide a closer link to self-efficacy theory. The first study examines attributions and efficacy expectations in mother-child relationships. As anticipated, only weak evidence was obtained for predictions retained from the original model, high-lighting the relationship-specific nature of cognitive processes for conflict in families. A second study examines husband-wife relationships and provides evidence for the usefulness of an attribution-efficacy model for marital conflict. The attributional component of the model received greater support than that pertaining to efficacy expectations. In both studies, support was obtained for the proposal that the relation between conflict dimensions (e.g., blame) and causal dimensions is mediated by judgments of responsibility. The significance of the revisions to Doherty's model for understanding conflict in close relationships is discussed, and several avenues for further research are outlined.

  12. A multi-criteria decision analysis assessment of waste paper management options.

    PubMed

    Hanan, Deirdre; Burnley, Stephen; Cooke, David

    2013-03-01

    The use of Multi-criteria Decision Analysis (MCDA) was investigated in an exercise using a panel of local residents and stakeholders to assess the options for managing waste paper on the Isle of Wight. Seven recycling, recovery and disposal options were considered by the panel who evaluated each option against seven environmental, financial and social criteria. The panel preferred options where the waste was managed on the island with gasification and recycling achieving the highest scores. Exporting the waste to the English mainland for incineration or landfill proved to be the least preferred options. This research has demonstrated that MCDA is an effective way of involving community groups in waste management decision making. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. An export coefficient based inexact fuzzy bi-level multi-objective programming model for the management of agricultural nonpoint source pollution under uncertainty

    NASA Astrophysics Data System (ADS)

    Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Yue, Wencong; Tan, Qian

    2018-02-01

    In this research, an export coefficient based inexact fuzzy bi-level multi-objective programming (EC-IFBLMOP) model was developed through integrating export coefficient model (ECM), interval parameter programming (IPP) and fuzzy parameter programming (FPP) within a bi-level multi-objective programming framework. The proposed EC-IFBLMOP model can effectively deal with the multiple uncertainties expressed as discrete intervals and fuzzy membership functions. Also, the complexities in agricultural systems, such as the cooperation and gaming relationship between the decision makers at different levels, can be fully considered in the model. The developed model was then applied to identify the optimal land use patterns and BMP implementing levels for agricultural nonpoint source (NPS) pollution management in a subcatchment in the upper stream watershed of the Miyun Reservoir in north China. The results of the model showed that the desired optimal land use patterns and implementing levels of best management of practices (BMPs) would be obtained. It is the gaming result between the upper- and lower-level decision makers, when the allowable discharge amounts of NPS pollutants were limited. Moreover, results corresponding to different decision scenarios could provide a set of decision alternatives for the upper- and lower-level decision makers to identify the most appropriate management strategy. The model has a good applicability and can be effectively utilized for agricultural NPS pollution management.

  14. Decision-Aiding and Optimization for Vertical Navigation of Long-Haul Aircraft

    NASA Technical Reports Server (NTRS)

    Patrick, Nicholas J. M.; Sheridan, Thomas B.

    1996-01-01

    different airspace design and air traffic management policies. A decision aid is proposed which would combine the pilot's notion of optimility with the GA-based optimization, provide the pilot with a number of alternative pareto-optimal trajectories, and allow him to consider un-modelled attributes and constraints in choosing among them. A solution to the problem of displaying alternatives in a multi-attribute decision space is also presented.

  15. A decision support tool to prioritize risk management options for contaminated sites.

    PubMed

    Sorvari, Jaana; Seppälä, Jyri

    2010-03-15

    The decisions on risk management (RM) of contaminated sites in Finland have typically been driven by practical factors such as time and money. However, RM is a multifaceted task that generally involves several additional determinants, e.g. performance and environmental effects of remediation methods, psychological and social factors. Therefore, we adopted a multi-criteria decision analysis approach and developed a decision support tool (DST) that is viable in decision-making in such a complex situation. The basic components of the DST are based on the Dutch REC system. However, our DST is more case-specific and allows the consideration of the type, magnitude and scale of contamination, land use, environmental conditions and socio-cultural aspects (e.g. loss of cultural heritage, image aspects). The construction of the DST was started by structuring the decision problem using a value tree. Based on this work we adopted the Multi-Attribute Value Theory (MAVT) for data aggregation. The final DST was demonstrated by two model sites for which the RM alternatives and site-specific data were created on the basis of factual remediation projects and by interviewing experts. The demonstration of the DST was carried out in a workshop where representatives of different stakeholders were requested to rank and weight the decision criteria involved. To get information on the consistency of the ranking of the RM alternatives, we used different weighting techniques (ratio estimation and pair-wise weighting) and alternative ways to treat individual respondents' weights in calculating the preference scores for each RM alternative. These dissimilar approaches resulted in some differences in the preference order of the RM alternatives. The demonstration showed that attention has to be paid to the proper description of the site, the principles of the procedure and the decision criteria. Nevertheless, the procedure proved to enable efficient communication between different stakeholders

  16. Collaborative Multi-Scale 3d City and Infrastructure Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Breunig, M.; Borrmann, A.; Rank, E.; Hinz, S.; Kolbe, T.; Schilcher, M.; Mundani, R.-P.; Jubierre, J. R.; Flurl, M.; Thomsen, A.; Donaubauer, A.; Ji, Y.; Urban, S.; Laun, S.; Vilgertshofer, S.; Willenborg, B.; Menninghaus, M.; Steuer, H.; Wursthorn, S.; Leitloff, J.; Al-Doori, M.; Mazroobsemnani, N.

    2017-09-01

    Computer-aided collaborative and multi-scale 3D planning are challenges for complex railway and subway track infrastructure projects in the built environment. Many legal, economic, environmental, and structural requirements have to be taken into account. The stringent use of 3D models in the different phases of the planning process facilitates communication and collaboration between the stake holders such as civil engineers, geological engineers, and decision makers. This paper presents concepts, developments, and experiences gained by an interdisciplinary research group coming from civil engineering informatics and geo-informatics banding together skills of both, the Building Information Modeling and the 3D GIS world. New approaches including the development of a collaborative platform and 3D multi-scale modelling are proposed for collaborative planning and simulation to improve the digital 3D planning of subway tracks and other infrastructures. Experiences during this research and lessons learned are presented as well as an outlook on future research focusing on Building Information Modeling and 3D GIS applications for cities of the future.

  17. A neuroimaging investigation of attribute framing and individual differences

    PubMed Central

    Murch, Kevin B.

    2014-01-01

    Functional magnetic resonance imaging was used to evaluate the neural basis of framing effects. We tested the reflexive and reflective systems model of social cognition as it relates to framing. We also examined the relationships among frame susceptibility, intelligence and personality measures. Participants evaluated whether personal attributes applied to themselves from multiple perspectives and in positive and negative frames. Participants rated whether each statement was descriptive or not and endorsed positive frames more than negative frames. Individual differences on frame decisions enabled us to form high and low frame susceptibility groups. Endorsement of frame-consistent attributes was associated with personality factors, cognitive reflection and intelligence. Reflexive brain regions were associated with positive frames while reflective areas were associated with negative frames. Region of Interest analyses showed that frame-inconsistent responses were associated with increased activation within reflective cognitive control regions including the left dorsolateral prefrontal cortex (PFC), dorsomedial PFC and left ventrolateral PFC. Frame-consistent responses were associated with increased activation in the right orbitofrontal cortex. These results demonstrate that individual differences in frame susceptibility influence personal attribute evaluations. Overall, this study clarifies the neural correlates of the reflective and reflexive systems of social cognition as applied to decisions about social attributions. PMID:23988759

  18. Dynamic remapping decisions in multi-phase parallel computations

    NASA Technical Reports Server (NTRS)

    Nicol, D. M.; Reynolds, P. F., Jr.

    1986-01-01

    The effectiveness of any given mapping of workload to processors in a parallel system is dependent on the stochastic behavior of the workload. Program behavior is often characterized by a sequence of phases, with phase changes occurring unpredictably. During a phase, the behavior is fairly stable, but may become quite different during the next phase. Thus a workload assignment generated for one phase may hinder performance during the next phase. We consider the problem of deciding whether to remap a paralled computation in the face of uncertainty in remapping's utility. Fundamentally, it is necessary to balance the expected remapping performance gain against the delay cost of remapping. This paper treats this problem formally by constructing a probabilistic model of a computation with at most two phases. We use stochastic dynamic programming to show that the remapping decision policy which minimizes the expected running time of the computation has an extremely simple structure: the optimal decision at any step is followed by comparing the probability of remapping gain against a threshold. This theoretical result stresses the importance of detecting a phase change, and assessing the possibility of gain from remapping. We also empirically study the sensitivity of optimal performance to imprecise decision threshold. Under a wide range of model parameter values, we find nearly optimal performance if remapping is chosen simply when the gain probability is high. These results strongly suggest that except in extreme cases, the remapping decision problem is essentially that of dynamically determining whether gain can be achieved by remapping after a phase change; precise quantification of the decision model parameters is not necessary.

  19. Models of Affective Decision Making

    PubMed Central

    Charpentier, Caroline J.; De Neve, Jan-Emmanuel; Li, Xinyi; Roiser, Jonathan P.; Sharot, Tali

    2016-01-01

    Intuitively, how you feel about potential outcomes will determine your decisions. Indeed, an implicit assumption in one of the most influential theories in psychology, prospect theory, is that feelings govern choice. Surprisingly, however, very little is known about the rules by which feelings are transformed into decisions. Here, we specified a computational model that used feelings to predict choices. We found that this model predicted choice better than existing value-based models, showing a unique contribution of feelings to decisions, over and above value. Similar to the value function in prospect theory, our feeling function showed diminished sensitivity to outcomes as value increased. However, loss aversion in choice was explained by an asymmetry in how feelings about losses and gains were weighted when making a decision, not by an asymmetry in the feelings themselves. The results provide new insights into how feelings are utilized to reach a decision. PMID:27071751

  20. Fire behavior modeling-a decision tool

    Treesearch

    Jack Cohen; Bill Bradshaw

    1986-01-01

    The usefulness of an analytical model as a fire management decision tool is determined by the correspondence of its descriptive capability to the specific decision context. Fire managers must determine the usefulness of fire models as a decision tool when applied to varied situations. Because the wildland fire phenomenon is complex, analytical fire spread models will...

  1. Neural Signatures of Controlled and Automatic Retrieval Processes in Memory-based Decision-making.

    PubMed

    Khader, Patrick H; Pachur, Thorsten; Weber, Lilian A E; Jost, Kerstin

    2016-01-01

    Decision-making often requires retrieval from memory. Drawing on the neural ACT-R theory [Anderson, J. R., Fincham, J. M., Qin, Y., & Stocco, A. A central circuit of the mind. Trends in Cognitive Sciences, 12, 136-143, 2008] and other neural models of memory, we delineated the neural signatures of two fundamental retrieval aspects during decision-making: automatic and controlled activation of memory representations. To disentangle these processes, we combined a paradigm developed to examine neural correlates of selective and sequential memory retrieval in decision-making with a manipulation of associative fan (i.e., the decision options were associated with one, two, or three attributes). The results show that both the automatic activation of all attributes associated with a decision option and the controlled sequential retrieval of specific attributes can be traced in material-specific brain areas. Moreover, the two facets of memory retrieval were associated with distinct activation patterns within the frontoparietal network: The dorsolateral prefrontal cortex was found to reflect increasing retrieval effort during both automatic and controlled activation of attributes. In contrast, the superior parietal cortex only responded to controlled retrieval, arguably reflecting the sequential updating of attribute information in working memory. This dissociation in activation pattern is consistent with ACT-R and constitutes an important step toward a neural model of the retrieval dynamics involved in memory-based decision-making.

  2. Earthquake Vulnerability Assessment for Hospital Buildings Using a Gis-Based Group Multi Criteria Decision Making Approach: a Case Study of Tehran, Iran

    NASA Astrophysics Data System (ADS)

    Delavar, M. R.; Moradi, M.; Moshiri, B.

    2015-12-01

    Nowadays, urban areas are threatened by a number of natural hazards such as flood, landslide and earthquake. They can cause huge damages to buildings and human beings which necessitates disaster mitigation and preparation. One of the most important steps in disaster management is to understand all impacts and effects of disaster on urban facilities. Given that hospitals take care of vulnerable people reaction of hospital buildings against earthquake is vital. In this research, the vulnerability of hospital buildings against earthquake is analysed. The vulnerability of buildings is related to a number of criteria including age of building, number of floors, the quality of materials and intensity of the earthquake. Therefore, the problem of seismic vulnerability assessment is a multi-criteria assessment problem and multi criteria decision making methods can be used to address the problem. In this paper a group multi criteria decision making model is applied because using only one expert's judgments can cause biased vulnerability maps. Sugeno integral which is able to take into account the interaction among criteria is employed to assess the vulnerability degree of buildings. Fuzzy capacities which are similar to layer weights in weighted linear averaging operator are calculated using particle swarm optimization. Then, calculated fuzzy capacities are included into the model to compute a vulnerability degree for each hospital.

  3. A multiobjective modeling approach to locate multi-compartment containers for urban-sorted waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tralhao, Lino, E-mail: lmlrt@inescc.p; Coutinho-Rodrigues, Joao, E-mail: coutinho@dec.uc.p; Alcada-Almeida, Luis, E-mail: alcada@inescc.p

    2010-12-15

    The location of multi-compartment sorted waste containers for recycling purposes in cities is an important problem in the context of urban waste management. The costs associated with those facilities and the impacts placed on populations are important concerns. This paper introduces a mixed-integer, multiobjective programming approach to identify the locations and capacities of such facilities. The approach incorporates an optimization model in a Geographical Information System (GIS)-based interactive decision support system that includes four objectives. The first objective minimizes the total investment cost; the second one minimizes the average distance from dwellings to the respective multi-compartment container; the last twomore » objectives address the 'pull' and 'push' characteristics of the decision problem, one by minimizing the number of individuals too close to any container, and the other by minimizing the number of dwellings too far from the respective multi-compartment container. The model determines the number of facilities to be opened, the respective container capacities, their locations, their respective shares of the total waste of each type to be collected, and the dwellings assigned to each facility. The approach proposed was tested with a case study for the historical center of Coimbra city, Portugal, where a large urban renovation project, addressing about 800 buildings, is being undertaken. This paper demonstrates that the models and techniques incorporated in the interactive decision support system (IDSS) can be used to assist a decision maker (DM) in analyzing this complex problem in a realistically sized urban application. Ten solutions consisting of different combinations of underground containers for the disposal of four types of sorted waste in 12 candidate sites, were generated. These solutions and tradeoffs among the objectives are presented to the DM via tables, graphs, color-coded maps and other graphics. The DM can then use this

  4. Blame attribution as a moderator of perceptions of sexual orientation-based hate crimes.

    PubMed

    Cramer, Robert J; Chandler, Joseph F; Wakeman, Emily E

    2010-05-01

    Blame attribution is a valuable mechanism explaining decision making. However, present literature mainly employs blame attribution as a dependent variable. The shortcoming of this fact is that blame attribution offers a potentially valuable explanatory mechanism for decision making. The authors designed two studies to investigate blame attribution as a moderator of sentencing decisions in sexual orientation-based hate crimes. Study 1 showed that mock jurors punished perpetrators of hate crimes more severely than a control condition. Also, degree of victim blame influenced punitive decision making. In Study 2, mock jurors extended findings that perpetrators of hate crimes are more harshly punished than those of other types of crimes. Victim and perpetrator blame failed to moderate decision making in this more complex scenario. Results are discussed in relation to hate crimes definitions and attribution theory.

  5. Quality Assurance Decisions with Air Models: A Case Study of ImputatIon of Missing Input Data Using EPA's Multi-Layer Model

    EPA Science Inventory

    Abstract Environmental models are frequently used within regulatory and policy frameworks to estimate environmental metrics that are difficult or impossible to physically measure. As important decision tools, the uncertainty associated with the model outputs should impact their ...

  6. Qualitative analysis of MTEM response using instantaneous attributes

    NASA Astrophysics Data System (ADS)

    Fayemi, Olalekan; Di, Qingyun

    2017-11-01

    This paper introduces new technique for qualitative analysis of multi-transient electromagnetic (MTEM) earth impulse response over complex geological structures. Instantaneous phase and frequency attributes were used in place of the conventional common offset section for improved qualitative interpretation of MTEM data by obtaining more detailed information from the earth impulse response. The instantaneous attributes were used to describe the lateral variation in subsurface resistivity and the visible geological structure with respect to given offsets. Instantaneous phase attribute was obtained by converting the impulse response into a complex form using the Hilbert transform. Conversely, the polynomial phase difference (PPD) estimator was favored over the center finite difference (CFD) approximation method in calculating the instantaneous frequency attribute because it is computationally efficient and has the ability to give a smooth variation of the instantaneous frequency over a common offset section. The observed results from the instantaneous attributes were in good agreement with both the subsurface model used and the apparent resistivity section obtained from the MTEM earth impulse response. Hence, this study confirms the capability of both instantaneous phase and frequency attributes as highly effective tools for MTEM qualitative analysis.

  7. Numerical modeling of macrodispersion in heterogeneous media: a comparison of multi-Gaussian and non-multi-Gaussian models

    NASA Astrophysics Data System (ADS)

    Wen, Xian-Huan; Gómez-Hernández, J. Jaime

    1998-03-01

    The macrodispersion of an inert solute in a 2-D heterogeneous porous media is estimated numerically in a series of fields of varying heterogeneity. Four different random function (RF) models are used to model log-transmissivity (ln T) spatial variability, and for each of these models, ln T variance is varied from 0.1 to 2.0. The four RF models share the same univariate Gaussian histogram and the same isotropic covariance, but differ from one another in terms of the spatial connectivity patterns at extreme transmissivity values. More specifically, model A is a multivariate Gaussian model for which, by definition, extreme values (both high and low) are spatially uncorrelated. The other three models are non-multi-Gaussian: model B with high connectivity of high extreme values, model C with high connectivity of low extreme values, and model D with high connectivities of both high and low extreme values. Residence time distributions (RTDs) and macrodispersivities (longitudinal and transverse) are computed on ln T fields corresponding to the different RF models, for two different flow directions and at several scales. They are compared with each other, as well as with predicted values based on first-order analytical results. Numerically derived RTDs and macrodispersivities for the multi-Gaussian model are in good agreement with analytically derived values using first-order theories for log-transmissivity variance up to 2.0. The results from the non-multi-Gaussian models differ from each other and deviate largely from the multi-Gaussian results even when ln T variance is small. RTDs in non-multi-Gaussian realizations with high connectivity at high extreme values display earlier breakthrough than in multi-Gaussian realizations, whereas later breakthrough and longer tails are observed for RTDs from non-multi-Gaussian realizations with high connectivity at low extreme values. Longitudinal macrodispersivities in the non-multi-Gaussian realizations are, in general, larger than

  8. A lexicographic weighted Tchebycheff approach for multi-constrained multi-objective optimization of the surface grinding process

    NASA Astrophysics Data System (ADS)

    Khalilpourazari, Soheyl; Khalilpourazary, Saman

    2017-05-01

    In this article a multi-objective mathematical model is developed to minimize total time and cost while maximizing the production rate and surface finish quality in the grinding process. The model aims to determine optimal values of the decision variables considering process constraints. A lexicographic weighted Tchebycheff approach is developed to obtain efficient Pareto-optimal solutions of the problem in both rough and finished conditions. Utilizing a polyhedral branch-and-cut algorithm, the lexicographic weighted Tchebycheff model of the proposed multi-objective model is solved using GAMS software. The Pareto-optimal solutions provide a proper trade-off between conflicting objective functions which helps the decision maker to select the best values for the decision variables. Sensitivity analyses are performed to determine the effect of change in the grain size, grinding ratio, feed rate, labour cost per hour, length of workpiece, wheel diameter and downfeed of grinding parameters on each value of the objective function.

  9. Multi-criteria decision assessments using Subjective Logic: Methodology and the case of urban water strategies

    NASA Astrophysics Data System (ADS)

    Moglia, Magnus; Sharma, Ashok K.; Maheepala, Shiroma

    2012-07-01

    SummaryPlanning of regional and urban water resources, and in particular with Integrated Urban Water Management approaches, often considers inter-relationships between human uses of water, the health of the natural environment as well as the cost of various management strategies. Decision makers hence typically need to consider a combination of social, environmental and economic goals. The types of strategies employed can include water efficiency measures, water sensitive urban design, stormwater management, or catchment management. Therefore, decision makers need to choose between different scenarios and to evaluate them against a number of criteria. This type of problem has a discipline devoted to it, i.e. Multi-Criteria Decision Analysis, which has often been applied in water management contexts. This paper describes the application of Subjective Logic in a basic Bayesian Network to a Multi-Criteria Decision Analysis problem. By doing this, it outlines a novel methodology that explicitly incorporates uncertainty and information reliability. The application of the methodology to a known case study context allows for exploration. By making uncertainty and reliability of assessments explicit, it allows for assessing risks of various options, and this may help in alleviating cognitive biases and move towards a well formulated risk management policy.

  10. An improved hybrid multi-criteria/multidimensional model for strategic industrial location selection: Casablanca industrial zones as a case study.

    PubMed

    Boutkhoum, Omar; Hanine, Mohamed; Agouti, Tarik; Tikniouine, Abdessadek

    2015-01-01

    In this paper, we examine the issue of strategic industrial location selection in uncertain decision making environments for implanting new industrial corporation. In fact, the industrial location issue is typically considered as a crucial factor in business research field which is related to many calculations about natural resources, distributors, suppliers, customers, and most other things. Based on the integration of environmental, economic and social decisive elements of sustainable development, this paper presents a hybrid decision making model combining fuzzy multi-criteria analysis with analytical capabilities that OLAP systems can provide for successful and optimal industrial location selection. The proposed model mainly consists in three stages. In the first stage, a decision-making committee has been established to identify the evaluation criteria impacting the location selection process. In the second stage, we develop fuzzy AHP software based on the extent analysis method to assign the importance weights to the selected criteria, which allows us to model the linguistic vagueness, ambiguity, and incomplete knowledge. In the last stage, OLAP analysis integrated with multi-criteria analysis employs these weighted criteria as inputs to evaluate, rank and select the strategic industrial location for implanting new business corporation in the region of Casablanca, Morocco. Finally, a sensitivity analysis is performed to evaluate the impact of criteria weights and the preferences given by decision makers on the final rankings of strategic industrial locations.

  11. Decision Making Under Uncertainty and Complexity: A Model-Based Scenario Approach to Supporting Integrated Water Resources Management

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gupta, H.; Wagener, T.; Stewart, S.; Mahmoud, M.; Hartmann, H.; Springer, E.

    2007-12-01

    Some of the most challenging issues facing contemporary water resources management are those typified by complex coupled human-environmental systems with poorly characterized uncertainties. In other words, major decisions regarding water resources have to be made in the face of substantial uncertainty and complexity. It has been suggested that integrated models can be used to coherently assemble information from a broad set of domains, and can therefore serve as an effective means for tackling the complexity of environmental systems. Further, well-conceived scenarios can effectively inform decision making, particularly when high complexity and poorly characterized uncertainties make the problem intractable via traditional uncertainty analysis methods. This presentation discusses the integrated modeling framework adopted by SAHRA, an NSF Science & Technology Center, to investigate stakeholder-driven water sustainability issues within the semi-arid southwestern US. The multi-disciplinary, multi-resolution modeling framework incorporates a formal scenario approach to analyze the impacts of plausible (albeit uncertain) alternative futures to support adaptive management of water resources systems. Some of the major challenges involved in, and lessons learned from, this effort will be discussed.

  12. Cost-effectiveness Analysis in R Using a Multi-state Modeling Survival Analysis Framework: A Tutorial.

    PubMed

    Williams, Claire; Lewsey, James D; Briggs, Andrew H; Mackay, Daniel F

    2017-05-01

    This tutorial provides a step-by-step guide to performing cost-effectiveness analysis using a multi-state modeling approach. Alongside the tutorial, we provide easy-to-use functions in the statistics package R. We argue that this multi-state modeling approach using a package such as R has advantages over approaches where models are built in a spreadsheet package. In particular, using a syntax-based approach means there is a written record of what was done and the calculations are transparent. Reproducing the analysis is straightforward as the syntax just needs to be run again. The approach can be thought of as an alternative way to build a Markov decision-analytic model, which also has the option to use a state-arrival extended approach. In the state-arrival extended multi-state model, a covariate that represents patients' history is included, allowing the Markov property to be tested. We illustrate the building of multi-state survival models, making predictions from the models and assessing fits. We then proceed to perform a cost-effectiveness analysis, including deterministic and probabilistic sensitivity analyses. Finally, we show how to create 2 common methods of visualizing the results-namely, cost-effectiveness planes and cost-effectiveness acceptability curves. The analysis is implemented entirely within R. It is based on adaptions to functions in the existing R package mstate to accommodate parametric multi-state modeling that facilitates extrapolation of survival curves.

  13. Technical attributes, health attribute, consumer attributes and their roles in adoption intention of healthcare wearable technology.

    PubMed

    Zhang, Min; Luo, Meifen; Nie, Rui; Zhang, Yan

    2017-12-01

    This paper aims to explore factors influencing the healthcare wearable technology adoption intention from perspectives of technical attributes (perceived convenience, perceived irreplaceability, perceived credibility and perceived usefulness), health attribute (health belief) and consumer attributes (consumer innovativeness, conspicuous consumption, informational reference group influence and gender difference). By integrating technology acceptance model, health belief model, snob effect and conformity and reference group theory, hypotheses and research model are proposed. The empirical investigation (N=436) collects research data through questionnaire. Results show that the adoption intention of healthcare wearable technology is influenced by technical attributes, health attribute and consumer attributes simultaneously. For technical attributes, perceived convenience and perceived credibility both positively affect perceived usefulness, and perceived usefulness influences adoption intention. The relation between perceived irreplaceability and perceived usefulness is only supported by males. For health attribute, health belief affects perceived usefulness for females. For consumer attributes, conspicuous consumption and informational reference group influence can significantly moderate the relation between perceived usefulness and adoption intention and the relation between consumer innovativeness and adoption intention respectively. What's more, consumer innovativeness significantly affects adoption intention for males. This paper aims to discuss technical attributes, health attribute and consumer attributes and their roles in the adoption intention of healthcare wearable technology. Findings may provide enlightenment to differentiate product developing and marketing strategies and provide some implications for clinical medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Implementing interactive decision support: A case for combining cyberinfrastructure, data fusion, and social process to mobilize scientific knowledge in sustainability problems

    NASA Astrophysics Data System (ADS)

    Pierce, S. A.

    2014-12-01

    Geosciences are becoming increasingly data intensive, particularly in relation to sustainability problems, which are multi-dimensional, weakly structured and characterized by high levels of uncertainty. In the case of complex resource management problems, the challenge is to extract meaningful information from data and make sense of it. Simultaneously, scientific knowledge alone is insufficient to change practice. Creating tools, and group decision support processes for end users to interact with data are key challenges to transforming science-based information into actionable knowledge. The ENCOMPASS project began as a multi-year case study in the Atacama Desert of Chile to design and implement a knowledge transfer model for energy-water-mining conflicts in the region. ENCOMPASS combines the use of cyberinfrastructure (CI), automated data collection, interactive interfaces for dynamic decision support, and participatory modelling to support social learning. A pilot version of the ENCOMPASS CI uses open source systems and serves as a structure to integrate and store multiple forms of data and knowledge, such as DEM, meteorological, water quality, geomicrobiological, energy demand, and groundwater models. In the case study, informatics and data fusion needs related to scientific uncertainty around deep groundwater flowpaths and energy-water connections. Users may upload data from field sites with handheld devices or desktops. Once uploaded, data assets are accessible for a variety of uses. To address multi-attributed decision problems in the Atacama region a standalone application with touch-enabled interfaces was created to improve real-time interactions with datasets by groups. The tool was used to merge datasets from the ENCOMPASS CI to support exploration among alternatives and build shared understanding among stakeholders. To date, the project has increased technical capacity among stakeholders, resulted in the creation of both for-profit and non

  15. Decision Making and Priority Setting: The Evolving Path Towards Universal Health Coverage.

    PubMed

    Paolucci, Francesco; Redekop, Ken; Fouda, Ayman; Fiorentini, Gianluca

    2017-12-01

    Health technology assessment (HTA) is widely viewed as an essential component in good universal health coverage (UHC) decision-making in any country. Various HTA tools and metrics have been developed and refined over the years, including systematic literature reviews (Cochrane), economic modelling, and cost-effectiveness ratios and acceptability curves. However, while the cost-effectiveness ratio is faithfully reported in most full economic evaluations, it is viewed by many as an insufficient basis for reimbursement decisions. Emotional debates about the reimbursement of cancer drugs, orphan drugs, and end-of-life treatments have revealed fundamental disagreements about what should and should not be considered in reimbursement decisions. Part of this disagreement seems related to the equity-efficiency tradeoff, which reflects fundamental differences in priorities. All in all, it is clear that countries aiming to improve UHC policies will have to go beyond the capacity building needed to utilize the available HTA toolbox. Multi-criteria decision analysis (MCDA) offers a more comprehensive tool for reimbursement decisions where different weights of different factors/attributes can give policymakers important insights to consider. Sooner or later, every country will have to develop their own way to carefully combine the results of those tools with their own priorities. In the end, all policymaking is based on a mix of facts and values.

  16. Aggregation of Environmental Model Data for Decision Support

    NASA Astrophysics Data System (ADS)

    Alpert, J. C.

    2013-12-01

    Weather forecasts and warnings must be prepared and then delivered so as to reach their intended audience in good time to enable effective decision-making. An effort to mitigate these difficulties was studied at a Workshop, 'Sustaining National Meteorological Services - Strengthening WMO Regional and Global Centers' convened, June , 2013, by the World Bank, WMO and the US National Weather Service (NWS). The skill and accuracy of atmospheric forecasts from deterministic models have increased and there are now ensembles of such models that improve decisions to protect life, property and commerce. The NWS production of numerical weather prediction products result in model output from global and high resolution regional ensemble forecasts. Ensembles are constructed by changing the initial conditions to make a 'cloud' of forecasts that attempt to span the space of possible atmospheric realizations which can quantify not only the most likely forecast, but also the uncertainty. This has led to an unprecedented increase in data production and information content from higher resolution, multi-model output and secondary calculations. One difficulty is to obtain the needed subset of data required to estimate the probability of events, and report the information. The calibration required to reliably estimate the probability of events, and honing of threshold adjustments to reduce false alarms for decision makers is also needed. To meet the future needs of the ever-broadening user community and address these issues on a national and international basis, the weather service implemented the NOAA Operational Model Archive and Distribution System (NOMADS). NOMADS provides real-time and retrospective format independent access to climate, ocean and weather model data and delivers high availability content services as part of NOAA's official real time data dissemination at its new NCWCP web operations center. An important aspect of the server's abilities is to aggregate the matrix of

  17. Visualization-based decision support for value-driven system design

    NASA Astrophysics Data System (ADS)

    Tibor, Elliott

    In the past 50 years, the military, communication, and transportation systems that permeate our world, have grown exponentially in size and complexity. The development and production of these systems has seen ballooning costs and increased risk. This is particularly critical for the aerospace industry. The inability to deal with growing system complexity is a crippling force in the advancement of engineered systems. Value-Driven Design represents a paradigm shift in the field of design engineering that has potential to help counteract this trend. The philosophy of Value-Driven Design places the desires of the stakeholder at the forefront of the design process to capture true preferences and reveal system alternatives that were never previously thought possible. Modern aerospace engineering design problems are large, complex, and involve multiple levels of decision-making. To find the best design, the decision-maker is often required to analyze hundreds or thousands of combinations of design variables and attributes. Visualization can be used to support these decisions, by communicating large amounts of data in a meaningful way. Understanding the design space, the subsystem relationships, and the design uncertainties is vital to the advancement of Value-Driven Design as an accepted process for the development of more effective, efficient, robust, and elegant aerospace systems. This research investigates the use of multi-dimensional data visualization tools to support decision-making under uncertainty during the Value-Driven Design process. A satellite design system comprising a satellite, ground station, and launch vehicle is used to demonstrate effectiveness of new visualization methods to aid in decision support during complex aerospace system design. These methods are used to facilitate the exploration of the feasible design space by representing the value impact of system attribute changes and comparing the results of multi-objective optimization formulations

  18. A tuning algorithm for model predictive controllers based on genetic algorithms and fuzzy decision making.

    PubMed

    van der Lee, J H; Svrcek, W Y; Young, B R

    2008-01-01

    Model Predictive Control is a valuable tool for the process control engineer in a wide variety of applications. Because of this the structure of an MPC can vary dramatically from application to application. There have been a number of works dedicated to MPC tuning for specific cases. Since MPCs can differ significantly, this means that these tuning methods become inapplicable and a trial and error tuning approach must be used. This can be quite time consuming and can result in non-optimum tuning. In an attempt to resolve this, a generalized automated tuning algorithm for MPCs was developed. This approach is numerically based and combines a genetic algorithm with multi-objective fuzzy decision-making. The key advantages to this approach are that genetic algorithms are not problem specific and only need to be adapted to account for the number and ranges of tuning parameters for a given MPC. As well, multi-objective fuzzy decision-making can handle qualitative statements of what optimum control is, in addition to being able to use multiple inputs to determine tuning parameters that best match the desired results. This is particularly useful for multi-input, multi-output (MIMO) cases where the definition of "optimum" control is subject to the opinion of the control engineer tuning the system. A case study will be presented in order to illustrate the use of the tuning algorithm. This will include how different definitions of "optimum" control can arise, and how they are accounted for in the multi-objective decision making algorithm. The resulting tuning parameters from each of the definition sets will be compared, and in doing so show that the tuning parameters vary in order to meet each definition of optimum control, thus showing the generalized automated tuning algorithm approach for tuning MPCs is feasible.

  19. Multi-Model Ensemble Wake Vortex Prediction

    NASA Technical Reports Server (NTRS)

    Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  20. Can streamlined multi-criteria decision analysis be used to implement shared decision making for colorectal cancer screening?

    PubMed Central

    Dolan, James G.; Boohaker, Emily; Allison, Jeroan; Imperiale, Thomas F.

    2013-01-01

    Background Current US colorectal cancer screening guidelines that call for shared decision making regarding the choice among several recommended screening options are difficult to implement. Multi-criteria decision analysis (MCDA) is an established methodology well suited for supporting shared decision making. Our study goal was to determine if a streamlined form of MCDA using rank order based judgments can accurately assess patients’ colorectal cancer screening priorities. Methods We converted priorities for four decision criteria and three sub-criteria regarding colorectal cancer screening obtained from 484 average risk patients using the Analytic Hierarchy Process (AHP) in a prior study into rank order-based priorities using rank order centroids. We compared the two sets of priorities using Spearman rank correlation and non-parametric Bland-Altman limits of agreement analysis. We assessed the differential impact of using the rank order-based versus the AHP-based priorities on the results of a full MCDA comparing three currently recommended colorectal cancer screening strategies. Generalizability of the results was assessed using Monte Carlo simulation. Results Correlations between the two sets of priorities for the seven criteria ranged from 0.55 to 0.92. The proportions of absolute differences between rank order-based and AHP-based priorities that were more than ± 0.15 ranged from 1% to 16%. Differences in the full MCDA results were minimal and the relative rankings of the three screening options were identical more than 88% of the time. The Monte Carlo simulation results were similar. Conclusion Rank order-based MCDA could be a simple, practical way to guide individual decisions and assess population decision priorities regarding colorectal cancer screening strategies. Additional research is warranted to further explore the use of these methods for promoting shared decision making. PMID:24300851

  1. Energy Decision Science and Informatics | Integrated Energy Solutions |

    Science.gov Websites

    Science Advanced decision science methods include multi-objective and multi-criteria decision support. Our decision science methods, including multi-objective and multi-criteria decision support. For example, we

  2. A Bayesian Attractor Model for Perceptual Decision Making

    PubMed Central

    Bitzer, Sebastian; Bruineberg, Jelle; Kiebel, Stefan J.

    2015-01-01

    Even for simple perceptual decisions, the mechanisms that the brain employs are still under debate. Although current consensus states that the brain accumulates evidence extracted from noisy sensory information, open questions remain about how this simple model relates to other perceptual phenomena such as flexibility in decisions, decision-dependent modulation of sensory gain, or confidence about a decision. We propose a novel approach of how perceptual decisions are made by combining two influential formalisms into a new model. Specifically, we embed an attractor model of decision making into a probabilistic framework that models decision making as Bayesian inference. We show that the new model can explain decision making behaviour by fitting it to experimental data. In addition, the new model combines for the first time three important features: First, the model can update decisions in response to switches in the underlying stimulus. Second, the probabilistic formulation accounts for top-down effects that may explain recent experimental findings of decision-related gain modulation of sensory neurons. Finally, the model computes an explicit measure of confidence which we relate to recent experimental evidence for confidence computations in perceptual decision tasks. PMID:26267143

  3. Advanced 3D Geological Modelling Using Multi Geophysical Data in the Yamagawa Geothermal Field, Japan

    NASA Astrophysics Data System (ADS)

    Mochinaga, H.; Aoki, N.; Mouri, T.

    2017-12-01

    We propose a robust workflow of 3D geological modelling based on integrated analysis while honouring seismic, gravity, and wellbore data for exploration and development at flash steam geothermal power plants. We design the workflow using temperature logs at less than 10 well locations for practical use at an early stage of geothermal exploration and development. In the workflow, geostatistical technique, multi-attribute analysis, and artificial neural network are employed for the integration of multi geophysical data. The geological modelling is verified by using a 3D seismic data which was acquired in the Yamagawa Demonstration Area (approximately 36 km2), located at the city of Ibusuki in Kagoshima, Japan in 2015. Temperature-depth profiles are typically characterized by heat transfer of conduction, outflow, and up-flow which have low frequency trends. On the other hand, feed and injection zones with high permeability would cause high frequency perturbation on temperature-depth profiles. Each trend is supposed to be caused by different geological properties and subsurface structures. In this study, we estimate high frequency (> 2 cycles/km) and low frequency (< 1 cycle/km) models separately by means of different types of attribute volumes. These attributes are mathematically generated from P-impedance and density volumes derived from seismic inversion, an ant-tracking seismic volume, and a geostatistical temperature model prior to application of artificial neural network on the geothermal modelling. As a result, the band-limited stepwise approach predicts a more precise geothermal model than that of full-band temperature profiles at a time. Besides, lithofacies interpretation confirms reliability of the predicted geothermal model. The integrated interpretation is significantly consistent with geological reports from previous studies. Isotherm geobodies illustrate specific features of geothermal reservoir and cap rock, shallow aquifer, and its hydrothermal

  4. Near-Earth object hazardous impact: A Multi-Criteria Decision Making approach.

    PubMed

    Sánchez-Lozano, J M; Fernández-Martínez, M

    2016-11-16

    The impact of a near-Earth object (NEO) may release large amounts of energy and cause serious damage. Several NEO hazard studies conducted over the past few years provide forecasts, impact probabilities and assessment ratings, such as the Torino and Palermo scales. These high-risk NEO assessments involve several criteria, including impact energy, mass, and absolute magnitude. The main objective of this paper is to provide the first Multi-Criteria Decision Making (MCDM) approach to classify hazardous NEOs. Our approach applies a combination of two methods from a widely utilized decision making theory. Specifically, the Analytic Hierarchy Process (AHP) methodology is employed to determine the criteria weights, which influence the decision making, and the Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) is used to obtain a ranking of alternatives (potentially hazardous NEOs). In addition, NEO datasets provided by the NASA Near-Earth Object Program are utilized. This approach allows the classification of NEOs by descending order of their TOPSIS ratio, a single quantity that contains all of the relevant information for each object.

  5. A control-theory model for human decision-making

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Tanner, R. B.

    1971-01-01

    A model for human decision making is an adaptation of an optimal control model for pilot/vehicle systems. The models for decision and control both contain concepts of time delay, observation noise, optimal prediction, and optimal estimation. The decision making model was intended for situations in which the human bases his decision on his estimate of the state of a linear plant. Experiments are described for the following task situations: (a) single decision tasks, (b) two-decision tasks, and (c) simultaneous manual control and decision making. Using fixed values for model parameters, single-task and two-task decision performance can be predicted to within an accuracy of 10 percent. Agreement is less good for the simultaneous decision and control situation.

  6. A multi-objective decision-making approach to the journal submission problem.

    PubMed

    Wong, Tony E; Srikrishnan, Vivek; Hadka, David; Keller, Klaus

    2017-01-01

    When researchers complete a manuscript, they need to choose a journal to which they will submit the study. This decision requires to navigate trade-offs between multiple objectives. One objective is to share the new knowledge as widely as possible. Citation counts can serve as a proxy to quantify this objective. A second objective is to minimize the time commitment put into sharing the research, which may be estimated by the total time from initial submission to final decision. A third objective is to minimize the number of rejections and resubmissions. Thus, researchers often consider the trade-offs between the objectives of (i) maximizing citations, (ii) minimizing time-to-decision, and (iii) minimizing the number of resubmissions. To complicate matters further, this is a decision with multiple, potentially conflicting, decision-maker rationalities. Co-authors might have different preferences, for example about publishing fast versus maximizing citations. These diverging preferences can lead to conflicting trade-offs between objectives. Here, we apply a multi-objective decision analytical framework to identify the Pareto-front between these objectives and determine the set of journal submission pathways that balance these objectives for three stages of a researcher's career. We find multiple strategies that researchers might pursue, depending on how they value minimizing risk and effort relative to maximizing citations. The sequences that maximize expected citations within each strategy are generally similar, regardless of time horizon. We find that the "conditional impact factor"-impact factor times acceptance rate-is a suitable heuristic method for ranking journals, to strike a balance between minimizing effort objectives and maximizing citation count. Finally, we examine potential co-author tension resulting from differing rationalities by mapping out each researcher's preferred Pareto front and identifying compromise submission strategies. The explicit

  7. Decision aids for people facing health treatment or screening decisions.

    PubMed

    Stacey, Dawn; Légaré, France; Col, Nananda F; Bennett, Carol L; Barry, Michael J; Eden, Karen B; Holmes-Rovner, Margaret; Llewellyn-Thomas, Hilary; Lyddiatt, Anne; Thomson, Richard; Trevena, Lyndal; Wu, Julie H C

    2014-01-28

    Decision aids are intended to help people participate in decisions that involve weighing the benefits and harms of treatment options often with scientific uncertainty. To assess the effects of decision aids for people facing treatment or screening decisions. For this update, we searched from 2009 to June 2012 in MEDLINE; CENTRAL; EMBASE; PsycINFO; and grey literature. Cumulatively, we have searched each database since its start date including CINAHL (to September 2008). We included published randomized controlled trials of decision aids, which are interventions designed to support patients' decision making by making explicit the decision, providing information about treatment or screening options and their associated outcomes, compared to usual care and/or alternative interventions. We excluded studies of participants making hypothetical decisions. Two review authors independently screened citations for inclusion, extracted data, and assessed risk of bias. The primary outcomes, based on the International Patient Decision Aid Standards (IPDAS), were:A) 'choice made' attributes;B) 'decision-making process' attributes.Secondary outcomes were behavioral, health, and health-system effects. We pooled results using mean differences (MD) and relative risks (RR), applying a random-effects model. This update includes 33 new studies for a total of 115 studies involving 34,444 participants. For risk of bias, selective outcome reporting and blinding of participants and personnel were mostly rated as unclear due to inadequate reporting. Based on 7 items, 8 of 115 studies had high risk of bias for 1 or 2 items each.Of 115 included studies, 88 (76.5%) used at least one of the IPDAS effectiveness criteria: A) 'choice made' attributes criteria: knowledge scores (76 studies); accurate risk perceptions (25 studies); and informed value-based choice (20 studies); and B) 'decision-making process' attributes criteria: feeling informed (34 studies) and feeling clear about values (29

  8. Does response evaluation and decision (RED) mediate the relation between hostile attributional style and antisocial behavior in adolescence?

    PubMed

    Fontaine, Reid Griffith; Tanha, Marieh; Yang, Chongming; Dodge, Kenneth A; Bates, John E; Pettit, Gregory S

    2010-07-01

    The role of hostile attributional style (HAS) in antisocial development has been well-documented. We analyzed longitudinal data on 585 youths (48% female; 19% ethnic minority) to test the hypothesis that response evaluation and decision (RED) mediates the relation between HAS and antisocial behavior in adolescence. In Grades 10 and 12, adolescent participants and their parents reported participants' antisocial conduct. In Grade 11, participants were asked to imagine themselves in videotaped ambiguous-provocation scenarios. Segment 1 of each scenario presented an ambiguous provocation, after which participants answered HAS questions. In segment 2, participants were asked to imagine themselves responding aggressively to the provocateur, after which RED was assessed. Structural equation modeling indicated that RED mediates the relation between HAS and subsequent antisocial conduct, controlling for previous misconduct. Findings are consistent with research on the development of executive function processes in adolescence, and suggest that the relation between HAS and RED changes after childhood.

  9. Does Response Evaluation and Decision (RED) Mediate the Relation between Hostile Attributional Style and Antisocial Behavior in Adolescence?

    PubMed Central

    Tanha, Marieh; Yang, Chongming; Dodge, Kenneth A.; Bates, John E.; Pettit, Gregory S.

    2013-01-01

    The role of hostile attributional style (HAS) in antisocial development has been well-documented. We analyzed longitudinal data on 585 youths (48% female; 19% ethnic minority) to test the hypothesis that response evaluation and decision (RED) mediates the relation between HAS and antisocial behavior in adolescence. In Grades 10 and 12, adolescent participants and their parents reported participants’ antisocial conduct. In Grade 11, participants were asked to imagine themselves in videotaped ambiguous-provocation scenarios. Segment 1 of each scenario presented an ambiguous provocation, after which participants answered HAS questions. In segment 2, participants were asked to imagine themselves responding aggressively to the provocateur, after which RED was assessed. Structural equation modeling indicated that RED mediates the relation between HAS and subsequent antisocial conduct, controlling for previous misconduct. Findings are consistent with research on the development of executive function processes in adolescence, and suggest that the relation between HAS and RED changes after childhood. PMID:20186477

  10. Multi-criteria decision-making on assessment of proposed tidal barrage schemes in terms of environmental impacts.

    PubMed

    Wu, Yunna; Xu, Chuanbo; Ke, Yiming; Chen, Kaifeng; Xu, Hu

    2017-12-15

    For tidal range power plants to be sustainable, the environmental impacts caused by the implement of various tidal barrage schemes must be assessed before construction. However, several problems exist in the current researches: firstly, evaluation criteria of the tidal barrage schemes environmental impact assessment (EIA) are not adequate; secondly, uncertainty of criteria information fails to be processed properly; thirdly, correlation among criteria is unreasonably measured. Hence the contributions of this paper are as follows: firstly, an evaluation criteria system is established from three dimensions of hydrodynamic, biological and morphological aspects. Secondly, cloud model is applied to describe the uncertainty of criteria information. Thirdly, Choquet integral with respect to λ-fuzzy measure is introduced to measure the correlation among criteria. On the above bases, a multi-criteria decision-making decision framework for tidal barrage scheme EIA is established to select the optimal scheme. Finally, a case study demonstrates the effectiveness of the proposed framework. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Systematic narrative review of decision frameworks to select the appropriate modelling approaches for health economic evaluations.

    PubMed

    Tsoi, B; O'Reilly, D; Jegathisawaran, J; Tarride, J-E; Blackhouse, G; Goeree, R

    2015-06-17

    In constructing or appraising a health economic model, an early consideration is whether the modelling approach selected is appropriate for the given decision problem. Frameworks and taxonomies that distinguish between modelling approaches can help make this decision more systematic and this study aims to identify and compare the decision frameworks proposed to date on this topic area. A systematic review was conducted to identify frameworks from peer-reviewed and grey literature sources. The following databases were searched: OVID Medline and EMBASE; Wiley's Cochrane Library and Health Economic Evaluation Database; PubMed; and ProQuest. Eight decision frameworks were identified, each focused on a different set of modelling approaches and employing a different collection of selection criterion. The selection criteria can be categorized as either: (i) structural features (i.e. technical elements that are factual in nature) or (ii) practical considerations (i.e. context-dependent attributes). The most commonly mentioned structural features were population resolution (i.e. aggregate vs. individual) and interactivity (i.e. static vs. dynamic). Furthermore, understanding the needs of the end-users and stakeholders was frequently incorporated as a criterion within these frameworks. There is presently no universally-accepted framework for selecting an economic modelling approach. Rather, each highlights different criteria that may be of importance when determining whether a modelling approach is appropriate. Further discussion is thus necessary as the modelling approach selected will impact the validity of the underlying economic model and have downstream implications on its efficiency, transparency and relevance to decision-makers.

  12. Comparison of Multi-Criteria Decision Support Methods (AHP, TOPSIS, SAW & PROMENTHEE) for Employee Placement

    NASA Astrophysics Data System (ADS)

    Widianta, M. M. D.; Rizaldi, T.; Setyohadi, D. P. S.; Riskiawan, H. Y.

    2018-01-01

    The right decision in placing employees in an appropriate position in a company will support the quality of management and will have an impact on improving the quality of human resources of the company. Such decision-making can be assisted by an approach through the Decision Support System (DSS) to improve accuracy in the employee placement process. The purpose of this paper is to compare the four methods of Multi Criteria Decision Making (MCDM), ie Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Simple Additive Weighting (SAW), Analytic Hierarchy Process (AHP) and Preference Ranking Organization Method for Enrichment Of Evaluations (PROMETHEE) for the application of employee placement in accordance with predetermined criteria. The ranking results and the accuracy level obtained from each method are different depending on the different scaling and weighting processes in each method.

  13. Multi-Attribute Task Battery - Applications in pilot workload and strategic behavior research

    NASA Technical Reports Server (NTRS)

    Arnegard, Ruth J.; Comstock, J. R., Jr.

    1991-01-01

    The Multi-Attribute Task (MAT) Battery provides a benchmark set of tasks for use in a wide range of lab studies of operator performance and workload. The battery incorporates tasks analogous to activities that aircraft crewmembers perform in flight, while providing a high degree of experimenter control, performance data on each subtask, and freedom to nonpilot test subjects. Features not found in existing computer based tasks include an auditory communication task (to simulate Air Traffic Control communication), a resource management task permitting many avenues or strategies of maintaining target performance, a scheduling window which gives the operator information about future task demands, and the option of manual or automated control of tasks. Performance data are generated for each subtask. In addition, the task battery may be paused and onscreen workload rating scales presented to the subject. The MAT Battery requires a desktop computer with color graphics. The communication task requires a serial link to a second desktop computer with a voice synthesizer or digitizer card.

  14. Three Human Attributes

    ERIC Educational Resources Information Center

    Eaves, Ronald C.; Williams, Thomas O., Jr.

    2004-01-01

    This study represents a beginning step in research that may ultimately show that the multitudes of human behavior that educators currently encounter may be reduced to three broad human attributes: arousal, affect, and cognition. The resulting simplicity should lead to improved understanding and better decision making by practitioners. Four…

  15. Participatory modeling and structured decision making

    USGS Publications Warehouse

    Robinson, Kelly F.; Fuller, Angela K.

    2016-01-01

    Structured decision making (SDM) provides a framework for making sound decisions even when faced with uncertainty, and is a transparent, defensible, and replicable method used to understand complex problems. A hallmark of SDM is the explicit incorporation of values and science, which often includes participation from multiple stakeholders, helping to garner trust and ultimately result in a decision that is more likely to be implemented. The core steps in the SDM process are used to structure thinking about natural resources management choices, and include: (1) properly defining the problem and the decision context, (2) determining the objectives that help describe the aspirations of the decision maker, (3) devising management actions or alternatives that can achieve those objectives, (4) evaluating the outcomes or consequences of each alternative on each of the objectives, (5) evaluating trade-offs, and (6) implementing the decision. Participatory modeling for SDM includes engaging stakeholders in some or all of the steps of the SDM process listed above. In addition, participatory modeling often is crucial for creating qualitative and quantitative models of how the system works, providing data for these models, and eliciting expert opinion when data are unavailable. In these ways, SDM provides a framework for decision making in natural resources management that includes participation from stakeholder groups throughout the process, including the modeling phase.

  16. A neuroimaging investigation of attribute framing and individual differences.

    PubMed

    Murch, Kevin B; Krawczyk, Daniel C

    2014-10-01

    Functional magnetic resonance imaging was used to evaluate the neural basis of framing effects. We tested the reflexive and reflective systems model of social cognition as it relates to framing. We also examined the relationships among frame susceptibility, intelligence and personality measures. Participants evaluated whether personal attributes applied to themselves from multiple perspectives and in positive and negative frames. Participants rated whether each statement was descriptive or not and endorsed positive frames more than negative frames. Individual differences on frame decisions enabled us to form high and low frame susceptibility groups. Endorsement of frame-consistent attributes was associated with personality factors, cognitive reflection and intelligence. Reflexive brain regions were associated with positive frames while reflective areas were associated with negative frames. Region of Interest analyses showed that frame-inconsistent responses were associated with increased activation within reflective cognitive control regions including the left dorsolateral prefrontal cortex (PFC), dorsomedial PFC and left ventrolateral PFC. Frame-consistent responses were associated with increased activation in the right orbitofrontal cortex. These results demonstrate that individual differences in frame susceptibility influence personal attribute evaluations. Overall, this study clarifies the neural correlates of the reflective and reflexive systems of social cognition as applied to decisions about social attributions. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. A multi-objective optimization model for hub network design under uncertainty: An inexact rough-interval fuzzy approach

    NASA Astrophysics Data System (ADS)

    Niakan, F.; Vahdani, B.; Mohammadi, M.

    2015-12-01

    This article proposes a multi-objective mixed-integer model to optimize the location of hubs within a hub network design problem under uncertainty. The considered objectives include minimizing the maximum accumulated travel time, minimizing the total costs including transportation, fuel consumption and greenhouse emissions costs, and finally maximizing the minimum service reliability. In the proposed model, it is assumed that for connecting two nodes, there are several types of arc in which their capacity, transportation mode, travel time, and transportation and construction costs are different. Moreover, in this model, determining the capacity of the hubs is part of the decision-making procedure and balancing requirements are imposed on the network. To solve the model, a hybrid solution approach is utilized based on inexact programming, interval-valued fuzzy programming and rough interval programming. Furthermore, a hybrid multi-objective metaheuristic algorithm, namely multi-objective invasive weed optimization (MOIWO), is developed for the given problem. Finally, various computational experiments are carried out to assess the proposed model and solution approaches.

  18. A robust multi-objective global supplier selection model under currency fluctuation and price discount

    NASA Astrophysics Data System (ADS)

    Zarindast, Atousa; Seyed Hosseini, Seyed Mohamad; Pishvaee, Mir Saman

    2017-06-01

    Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss decision variables, respectively, by a two-stage stochastic planning model, a robust stochastic optimization planning model which integrates worst case scenario in modeling approach and finally by equivalent deterministic planning model. The experimental study is carried out to compare the performances of the three models. Robust model resulted in remarkable cost saving and it illustrated that to cope with such uncertainties, we should consider them in advance in our planning. In our case study different supplier were selected due to this uncertainties and since supplier selection is a strategic decision, it is crucial to consider these uncertainties in planning approach.

  19. Game Relativity: How Context Influences Strategic Decision Making

    ERIC Educational Resources Information Center

    Vlaev, Ivo; Chater, Nick

    2006-01-01

    Existing models of strategic decision making typically assume that only the attributes of the currently played game need be considered when reaching a decision. The results presented in this article demonstrate that the so-called "cooperativeness" of the previously played prisoner's dilemma games influence choices and predictions in the current…

  20. Risk-based analysis and decision making in multi-disciplinary environments

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Cornford, Steven L.; Moran, Kelly

    2003-01-01

    A risk-based decision-making process conceived of and developed at JPL and NASA, has been used to help plan and guide novel technology applications for use on spacecraft. These applications exemplify key challenges inherent in multi-disciplinary design of novel technologies deployed in mission-critical settings. 1) Cross-disciplinary concerns are numerous (e.g., spacecraft involve navigation, propulsion, telecommunications). These concems are cross-coupled and interact in multiple ways (e.g., electromagnetic interference, heat transfer). 2) Time and budget pressures constrain development, operational resources constrain the resulting system (e.g., mass, volume, power). 3) Spacecraft are critical systems that must operate correctly the first time in only partially understood environments, with no chance for repair. 4) Past experience provides only a partial guide: New mission concepts are enhanced and enabled by new technologies, for which past experience is lacking. The decision-making process rests on quantitative assessments of the relationships between three classes of information - objectives (the things the system is to accomplish and constraints on its operation and development), risks (whose occurrence detracts from objectives), and mitigations (options for reducing the likelihood and or severity of risks). The process successfully guides experts to pool their knowledge, using custom-built software to support information gathering and decision-making.

  1. Decision support for risk prioritisation of environmental health hazards in a UK city.

    PubMed

    Woods, Mae; Crabbe, Helen; Close, Rebecca; Studden, Mike; Milojevic, Ai; Leonardi, Giovanni; Fletcher, Tony; Chalabi, Zaid

    2016-03-08

    There is increasing appreciation of the proportion of the health burden that is attributed to modifiable population exposure to environmental health hazards. To manage this avoidable burden in the United Kingdom (UK), government policies and interventions are implemented. In practice, this procedure is interdisciplinary in action and multi-dimensional in context. Here, we demonstrate how Multi Criteria Decision Analysis (MCDA) can be used as a decision support tool to facilitate priority setting for environmental public health interventions within local authorities. We combine modelling and expert elicitation to gather evidence on the impacts and ranking of interventions. To present the methodology, we consider a hypothetical scenario in a UK city. We use MCDA to evaluate and compare the impact of interventions to reduce the health burden associated with four environmental health hazards and rank them in terms of their overall performance across several criteria. For illustrative purposes, we focus on heavy goods vehicle controls to reduce outdoor air pollution, remediation to control levels of indoor radon, carbon monoxide and fitting alarms, and encouraging cycling to target the obesogenic environment. Regional data was included as model evidence to construct a ratings matrix for the city. When MCDA is performed with uniform weights, the intervention of heavy goods vehicle controls to reduce outdoor air pollution is ranked the highest. Cycling and the obesogenic environment is ranked second. We argue that a MCDA based approach provides a framework to guide environmental public health decision makers. This is demonstrated through an online interactive MCDA tool. We conclude that MCDA is a transparent tool that can be used to compare the impact of alternative interventions on a set of pre-defined criteria. In our illustrative example, we ranked the best intervention across the equally weighted selected criteria out of the four alternatives. Further work is needed

  2. Seeking for the rational basis of the median model: the optimal combination of multi-model ensemble results

    NASA Astrophysics Data System (ADS)

    Riccio, A.; Giunta, G.; Galmarini, S.

    2007-04-01

    In this paper we present an approach for the statistical analysis of multi-model ensemble results. The models considered here are operational long-range transport and dispersion models, also used for the real-time simulation of pollutant dispersion or the accidental release of radioactive nuclides. We first introduce the theoretical basis (with its roots sinking into the Bayes theorem) and then apply this approach to the analysis of model results obtained during the ETEX-1 exercise. We recover some interesting results, supporting the heuristic approach called "median model", originally introduced in Galmarini et al. (2004a, b). This approach also provides a way to systematically reduce (and quantify) model uncertainties, thus supporting the decision-making process and/or regulatory-purpose activities in a very effective manner.

  3. Seeking for the rational basis of the Median Model: the optimal combination of multi-model ensemble results

    NASA Astrophysics Data System (ADS)

    Riccio, A.; Giunta, G.; Galmarini, S.

    2007-12-01

    In this paper we present an approach for the statistical analysis of multi-model ensemble results. The models considered here are operational long-range transport and dispersion models, also used for the real-time simulation of pollutant dispersion or the accidental release of radioactive nuclides. We first introduce the theoretical basis (with its roots sinking into the Bayes theorem) and then apply this approach to the analysis of model results obtained during the ETEX-1 exercise. We recover some interesting results, supporting the heuristic approach called "median model", originally introduced in Galmarini et al. (2004a, b). This approach also provides a way to systematically reduce (and quantify) model uncertainties, thus supporting the decision-making process and/or regulatory-purpose activities in a very effective manner.

  4. An integrated approach to engineering curricula improvement with multi-objective decision modeling and linear programming

    NASA Astrophysics Data System (ADS)

    Shea, John E.

    The structure of engineering curricula currently in place at most colleges and universities has existed since the early 1950's, and reflects an historical emphasis on a solid foundation in math, science, and engineering science. However, there is often not a close match between elements of the traditional engineering education, and the skill sets that graduates need to possess for success in the industrial environment. Considerable progress has been made to restructure engineering courses and curricula. What is lacking, however, are tools and methodologies that incorporate the many dimensions of college courses, and how they are structured to form a curriculum. If curriculum changes are to be made, the first objective must be to determine what knowledge and skills engineering graduates need to possess. To accomplish this, a set of engineering competencies was developed from existing literature, and used in the development of a comprehensive mail survey of alumni, employers, students and faculty. Respondents proposed some changes to the topics in the curriculum and recommended that work to improve the curriculum be focused on communication, problem solving and people skills. The process of designing a curriculum is similar to engineering design, with requirements that must be met, and objectives that must be optimized. From this similarity came the idea for developing a linear, additive, multi-objective model that identifies the objectives that must be considered when designing a curriculum, and contains the mathematical relationships necessary to quantify the value of a specific alternative. The model incorporates the three primary objectives of engineering topics, skills, and curriculum design principles and uses data from the survey. It was used to design new courses, to evaluate various curricula alternatives, and to conduct sensitivity analysis to better understand their differences. Using the multi-objective model to identify the highest scoring curriculum

  5. Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management.

    PubMed

    Cruz-Piris, Luis; Rivera, Diego; Fernandez, Susel; Marsa-Maestre, Ivan

    2018-02-02

    One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network.

  6. Optimized Sensor Network and Multi-Agent Decision Support for Smart Traffic Light Management

    PubMed Central

    2018-01-01

    One of the biggest challenges in modern societies is to solve vehicular traffic problems. Sensor networks in traffic environments have contributed to improving the decision-making process of Intelligent Transportation Systems. However, one of the limiting factors for the effectiveness of these systems is in the deployment of sensors to provide accurate information about the traffic. Our proposal is using the centrality measurement of a graph as a base to locate the best locations for sensor installation in a traffic network. After integrating these sensors in a simulation scenario, we define a Multi-Agent Systems composed of three types of agents: traffic light management agents, traffic jam detection agents, and agents that control the traffic lights at an intersection. The ultimate goal of these Multi-Agent Systems is to improve the trip duration for vehicles in the network. To validate our solution, we have developed the needed elements for modelling the sensors and agents in the simulation environment. We have carried out experiments using the Simulation of Urban MObility (SUMO) traffic simulator and the Travel and Activity PAtterns Simulation (TAPAS) Cologne traffic scenario. The obtained results show that our proposal allows to reduce the sensor network while still obtaining relevant information to have a global view of the environment. Finally, regarding the Multi-Agent Systems, we have carried out experiments that show that our proposal is able to improve other existing solutions such as conventional traffic light management systems (static or dynamic) in terms of reduction of vehicle trip duration and reduction of the message exchange overhead in the sensor network. PMID:29393884

  7. Markov Decision Process Measurement Model.

    PubMed

    LaMar, Michelle M

    2018-03-01

    Within-task actions can provide additional information on student competencies but are challenging to model. This paper explores the potential of using a cognitive model for decision making, the Markov decision process, to provide a mapping between within-task actions and latent traits of interest. Psychometric properties of the model are explored, and simulation studies report on parameter recovery within the context of a simple strategy game. The model is then applied to empirical data from an educational game. Estimates from the model are found to correlate more strongly with posttest results than a partial-credit IRT model based on outcome data alone.

  8. A Moral (Normative) Framework for the Judgment of Actions and Decisions in the Construction Industry and Engineering: Part II.

    PubMed

    Alkhatib, Omar J

    2017-12-01

    The construction industry is typically characterized as a fragmented, multi-organizational setting in which members from different technical backgrounds and moral values join together to develop a particular business or project. The most challenging obstacle in the construction process is to achieve a successful practice and to identify and apply an ethical framework to manage the behavior of involved specialists and contractors and to ensure the quality of all completed construction activities. The framework should reflect a common moral ground for myriad people involved in this process to survive and compete ethically in today's turbulent construction market. This study establishes a framework for moral judgment of behavior and actions conducted in the construction process. The moral framework provides the basis of judging actions as "moral" or "immoral" based on three levels of moral accountability: personal, professional, and social. The social aspect of the proposed framework is developed primarily from the essential attributes of normative business decision-making models identified in the literature review and subsequently incorporates additional attributes related to professional and personal moral values. The normative decision-making models reviewed are based primarily on social attributes as related to moral theories (e.g., utilitarianism, duty, rights, virtue, etc.). The professional and moral attributes are established by identifying a set of common moral values recognized by professionals in the construction industry and required to prevent common construction breaches. The moral framework presented here is the complementary part of the ethical framework developed in Part I of this article and is based primarily on the personal behavior or the moral aspect of professional responsibility. The framework can be implemented as a form of preventive personal ethics, which would help avoid ethical dilemmas and moral implications in the first place

  9. Induced simplified neutrosophic correlated aggregation operators for multi-criteria group decision-making

    NASA Astrophysics Data System (ADS)

    Şahin, Rıdvan; Zhang, Hong-yu

    2018-03-01

    Induced Choquet integral is a powerful tool to deal with imprecise or uncertain nature. This study proposes a combination process of the induced Choquet integral and neutrosophic information. We first give the operational properties of simplified neutrosophic numbers (SNNs). Then, we develop some new information aggregation operators, including an induced simplified neutrosophic correlated averaging (I-SNCA) operator and an induced simplified neutrosophic correlated geometric (I-SNCG) operator. These operators not only consider the importance of elements or their ordered positions, but also take into account the interactions phenomena among decision criteria or their ordered positions under multiple decision-makers. Moreover, we present a detailed analysis of I-SNCA and I-SNCG operators, including the properties of idempotency, commutativity and monotonicity, and study the relationships among the proposed operators and existing simplified neutrosophic aggregation operators. In order to handle the multi-criteria group decision-making (MCGDM) situations where the weights of criteria and decision-makers usually correlative and the criterion values are considered as SNNs, an approach is established based on I-SNCA operator. Finally, a numerical example is presented to demonstrate the proposed approach and to verify its effectiveness and practicality.

  10. A Framework of Multi Objectives Negotiation for Dynamic Supply Chain Model

    NASA Astrophysics Data System (ADS)

    Chai, Jia Yee; Sakaguchi, Tatsuhiko; Shirase, Keiichi

    Trends of globalization and advances in Information Technology (IT) have created opportunity in collaborative manufacturing across national borders. A dynamic supply chain utilizes these advances to enable more flexibility in business cooperation. This research proposes a concurrent decision making framework for a three echelons dynamic supply chain model. The dynamic supply chain is formed by autonomous negotiation among agents based on multi agents approach. Instead of generating negotiation aspects (such as amount, price and due date) arbitrary, this framework proposes to utilize the information available at operational level of an organization in order to generate realistic negotiation aspect. The effectiveness of the proposed model is demonstrated by various case studies.

  11. Blame Attribution as a Moderator of Perceptions of Sexual Orientation-Based Hate Crimes

    ERIC Educational Resources Information Center

    Cramer, Robert J.; Chandler, Joseph F.; Wakeman, Emily E.

    2010-01-01

    Blame attribution is a valuable mechanism explaining decision making. However, present literature mainly employs blame attribution as a dependent variable. The shortcoming of this fact is that blame attribution offers a potentially valuable explanatory mechanism for decision making. The authors designed two studies to investigate blame attribution…

  12. A spiral model of musical decision-making.

    PubMed

    Bangert, Daniel; Schubert, Emery; Fabian, Dorottya

    2014-01-01

    This paper describes a model of how musicians make decisions about performing notated music. The model builds on psychological theories of decision-making and was developed from empirical studies of Western art music performance that aimed to identify intuitive and deliberate processes of decision-making, a distinction consistent with dual-process theories of cognition. The model proposes that the proportion of intuitive (Type 1) and deliberate (Type 2) decision-making processes changes with increasing expertise and conceptualizes this change as movement along a continually narrowing upward spiral where the primary axis signifies principal decision-making type and the vertical axis marks level of expertise. The model is intended to have implications for the development of expertise as described in two main phases. The first is movement from a primarily intuitive approach in the early stages of learning toward greater deliberation as analytical techniques are applied during practice. The second phase occurs as deliberate decisions gradually become automatic (procedural), increasing the role of intuitive processes. As a performer examines more issues or reconsiders decisions, the spiral motion toward the deliberate side and back to the intuitive is repeated indefinitely. With increasing expertise, the spiral tightens to signify greater control over decision type selection. The model draws on existing theories, particularly Evans' (2011) Intervention Model of dual-process theories, Cognitive Continuum Theory Hammond et al. (1987), Hammond (2007), Baylor's (2001) U-shaped model for the development of intuition by level of expertise. By theorizing how musical decision-making operates over time and with increasing expertise, this model could be used as a framework for future research in music performance studies and performance science more generally.

  13. A spiral model of musical decision-making

    PubMed Central

    Bangert, Daniel; Schubert, Emery; Fabian, Dorottya

    2014-01-01

    This paper describes a model of how musicians make decisions about performing notated music. The model builds on psychological theories of decision-making and was developed from empirical studies of Western art music performance that aimed to identify intuitive and deliberate processes of decision-making, a distinction consistent with dual-process theories of cognition. The model proposes that the proportion of intuitive (Type 1) and deliberate (Type 2) decision-making processes changes with increasing expertise and conceptualizes this change as movement along a continually narrowing upward spiral where the primary axis signifies principal decision-making type and the vertical axis marks level of expertise. The model is intended to have implications for the development of expertise as described in two main phases. The first is movement from a primarily intuitive approach in the early stages of learning toward greater deliberation as analytical techniques are applied during practice. The second phase occurs as deliberate decisions gradually become automatic (procedural), increasing the role of intuitive processes. As a performer examines more issues or reconsiders decisions, the spiral motion toward the deliberate side and back to the intuitive is repeated indefinitely. With increasing expertise, the spiral tightens to signify greater control over decision type selection. The model draws on existing theories, particularly Evans’ (2011) Intervention Model of dual-process theories, Cognitive Continuum Theory Hammond et al. (1987), Hammond (2007), Baylor’s (2001) U-shaped model for the development of intuition by level of expertise. By theorizing how musical decision-making operates over time and with increasing expertise, this model could be used as a framework for future research in music performance studies and performance science more generally. PMID:24795673

  14. Development of policies for Natura 2000 sites: a multi-criteria approach to support decision makers.

    PubMed

    Cortina, Carla; Boggia, Antonio

    2014-08-01

    The aim of this study is to present a methodology to support decision makers in the choice of Natura 2000 sites needing an appropriate management plan to ensure a sustainable socio-economic development. In order to promote sustainable development in the Natura 2000 sites compatible with nature preservation, conservation measures or management plans are necessary. The main issue is to decide when only conservation measures can be applied and when the sites need an appropriate management plan. We present a case study for the Italian Region of Umbria. The methodology is based on a multi-criteria approach to identify the biodiversity index (BI), and on the development of a human activities index (HAI). By crossing the two indexes for each site on a Cartesian plane, four groups of sites were identified. Each group corresponds to a specific need for an appropriate management plan. Sites in the first group with a high level both of biodiversity and human activities have the most urgent need of an appropriate management plan to ensure sustainable development. The proposed methodology and analysis is replicable in other regions or countries by using the data available for each site in the Natura 2000 standard data form. A multi-criteria analysis is especially suitable for supporting decision makers when they deal with a multidimensional decision process. We found the multi-criteria approach particularly sound in this case, due to the concept of biodiversity itself, which is complex and multidimensional, and to the high number of alternatives (Natura 2000 sites) to be assessed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Integrated multi-choice goal programming and multi-segment goal programming for supplier selection considering imperfect-quality and price-quantity discounts in a multiple sourcing environment

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Ter; Chen, Huang-Mu; Zhuang, Zheng-Yun

    2014-05-01

    Supplier selection (SS) is a multi-criteria and multi-objective problem, in which multi-segment (e.g. imperfect-quality discount (IQD) and price-quantity discount (PQD)) and multi-aspiration level problems may be significantly important; however, little attention had been given to dealing with both of them simultaneously in the past. This study proposes a model for integrating multi-choice goal programming and multi-segment goal programming to solve the above-mentioned problems by providing the following main contributions: (1) it allows decision-makers to set multiple aspiration levels on the right-hand side of each goal to suit real-world situations, (2) the PQD and IQD conditions are considered in the proposed model simultaneously and (3) the proposed model can solve a SS problem with n suppliers where each supplier offers m IQD with r PQD intervals, where only ? extra binary variables are required. The usefulness of the proposed model is explained using a real case. The results indicate that the proposed model not only can deal with a SS problem with multi-segment and multi-aspiration levels, but also can help the decision-maker to find the appropriate order quantities for each supplier by considering cost, quality and delivery.

  16. Catchment-wide wetland assessment and prioritization using the multi-criteria decision-making method TOPSIS.

    PubMed

    Liu, Canran; Frazier, Paul; Kumar, Lalit; Macgregor, Catherine; Blake, Nigel

    2006-08-01

    It is widely accepted that wetland ecosystems are under threat worldwide. Many communities are now trying to establish wetland rehabilitation programs, but are confounded by a lack of objective information on wetland condition or significance. In this study, a multi-criteria decision-making method, TOPSIS (the Technique for Order Preference by Similarity to Ideal Solution), was adapted to assist in the role of assessing wetland condition and rehabilitation priority in the Clarence River Catchment (New South Wales, Australia). Using 13 GIS data layers that described wetland character, wetland protection, and wetland threats, the wetlands were ranked in terms of condition. Through manipulation of the original model, the wetlands were prioritized for rehabilitation. The method offered a screening tool for the managers in choosing potential candidate wetlands for rehabilitation in a region.

  17. A communication model of shared decision making: accounting for cancer treatment decisions.

    PubMed

    Siminoff, Laura A; Step, Mary M

    2005-07-01

    The authors present a communication model of shared decision making (CMSDM) that explicitly identifies the communication process as the vehicle for decision making in cancer treatment. In this view, decision making is necessarily a sociocommunicative process whereby people enter into a relationship, exchange information, establish preferences, and choose a course of action. The model derives from contemporary notions of behavioral decision making and ethical conceptions of the doctor-patient relationship. This article briefly reviews the theoretical approaches to decision making, notes deficiencies, and embeds a more socially based process into the dynamics of the physician-patient relationship, focusing on cancer treatment decisions. In the CMSDM, decisions depend on (a) antecedent factors that have potential to influence communication, (b) jointly constructed communication climate, and (c) treatment preferences established by the physician and the patient.

  18. Relative importance of attributes of drug benefit plans: Thai civil servants' perspective.

    PubMed

    Ngorsuraches, Surachat; Wanishayakorn, Tanatape; Tanvejsilp, Pimwara; Udomaksorn, Siripa

    2013-01-01

    The drug benefit plan of Thailand's Civil Servant Medical Benefit Scheme (CSMBS) must be amended to control increasing costs; to that end, it is important to gather the views of beneficiaries before making changes to the benefit plan. To examine the relative importance of attributes of drug benefit plans from the perspective of CSMBS beneficiaries. Attributes and levels adopted from focus group discussions and a preliminary survey were used to develop a questionnaire concerning hypothetical drug benefit plans. A convenience sample of 650 CSMBS beneficiaries in Songkhla province was asked to rate the drug benefit plans. To determine the beneficiaries' decision models, judgment analysis was used. Policy-capturing analysis was used to examine the beneficiaries' preferences, and cluster analysis was conducted to explore the variability among judgment plans. Judgment policy insight was also examined. The results of the study showed that the beneficiaries weighed on cost-sharing as their most important attribute. The results remained unchanged, although only data from the beneficiaries who used the compensatory model were analyzed. The results of the cluster analysis showed that the largest cluster of beneficiaries weighed mostly on the cost-sharing attribute. The judgment policy insight results not only supported the finding that most beneficiaries focused on the cost-sharing attribute but also revealed that they might have the least understanding of how the formulary attribute affected beneficiaries' decision making. Cost-sharing was the most important attribute for the CSMBS beneficiaries. This study indicated that a possible preferred drug benefit plan should have no cost-sharing, permit access only to drugs listed in a closed formulary, allow beneficiaries to obtain 3 months of drugs, and allow them to obtain drugs from either a community pharmacy or a government hospital. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Research on Multi - Person Parallel Modeling Method Based on Integrated Model Persistent Storage

    NASA Astrophysics Data System (ADS)

    Qu, MingCheng; Wu, XiangHu; Tao, YongChao; Liu, Ying

    2018-03-01

    This paper mainly studies the multi-person parallel modeling method based on the integrated model persistence storage. The integrated model refers to a set of MDDT modeling graphics system, which can carry out multi-angle, multi-level and multi-stage description of aerospace general embedded software. Persistent storage refers to converting the data model in memory into a storage model and converting the storage model into a data model in memory, where the data model refers to the object model and the storage model is a binary stream. And multi-person parallel modeling refers to the need for multi-person collaboration, the role of separation, and even real-time remote synchronization modeling.

  20. Multi-criteria decision analysis for health technology assessment in Canada: insights from an expert panel discussion.

    PubMed

    Diaby, Vakaramoko; Goeree, Ron; Hoch, Jeffrey; Siebert, Uwe

    2015-02-01

    Multi-criteria decision analysis (MCDA), a decision-making tool, has received increasing attention in recent years, notably in the healthcare field. For Canada, it is unclear whether and how MCDA should be incorporated into the existing health technology assessment (HTA) decision-making process. To facilitate debate on improving HTA decision-making in Canada, a workshop was held in conjunction with the 8th World Congress on Health Economics of the International Health Economics Association in Toronto, Canada in July 2011. The objective of the workshop was to discuss the potential benefits and challenges related to the use of MCDA for HTA decision-making in Canada. This paper summarizes and discusses the recommendations of an expert panel convened at the workshop to discuss opportunities and concerns with reference to the implementation of MCDA in Canada.

  1. Critical Thinking as a Leadership Attribute.

    PubMed

    Werner, Stacy H; Bleich, Michael R

    2017-01-01

    Leaders are tasked with making decisions that have substantial impact on an organization's well-being. Decision making requires critical thinking and requisite action taking. The nature of critical thinking and how professional development educators can strengthen this attribute are presented. J Contin Educ Nurs. 2017;48(1):9-11. Copyright 2017, SLACK Incorporated.

  2. Modeling Psychological Attributes in Psychology – An Epistemological Discussion: Network Analysis vs. Latent Variables

    PubMed Central

    Guyon, Hervé; Falissard, Bruno; Kop, Jean-Luc

    2017-01-01

    Network Analysis is considered as a new method that challenges Latent Variable models in inferring psychological attributes. With Network Analysis, psychological attributes are derived from a complex system of components without the need to call on any latent variables. But the ontological status of psychological attributes is not adequately defined with Network Analysis, because a psychological attribute is both a complex system and a property emerging from this complex system. The aim of this article is to reappraise the legitimacy of latent variable models by engaging in an ontological and epistemological discussion on psychological attributes. Psychological attributes relate to the mental equilibrium of individuals embedded in their social interactions, as robust attractors within complex dynamic processes with emergent properties, distinct from physical entities located in precise areas of the brain. Latent variables thus possess legitimacy, because the emergent properties can be conceptualized and analyzed on the sole basis of their manifestations, without exploring the upstream complex system. However, in opposition with the usual Latent Variable models, this article is in favor of the integration of a dynamic system of manifestations. Latent Variables models and Network Analysis thus appear as complementary approaches. New approaches combining Latent Network Models and Network Residuals are certainly a promising new way to infer psychological attributes, placing psychological attributes in an inter-subjective dynamic approach. Pragmatism-realism appears as the epistemological framework required if we are to use latent variables as representations of psychological attributes. PMID:28572780

  3. Multi-basin, Multi-sector Drought Economic Impact Model in Python: Development and Applications

    NASA Astrophysics Data System (ADS)

    Gutenson, J. L.; Zhu, L.; Ernest, A. N. S.; Oubeidillah, A.; Bearden, B.; Johnson, T. G.

    2015-12-01

    Drought is one of the most economically disastrous natural hazards, one whose impacts are exacerbated by the lack of abrupt onset and offset that define tornados and hurricanes. In the United States, about 30 billion dollars losses is caused by drought in 2012, resulting in widespread economic impacts for societies, industries, agriculture, and recreation. And in California, the drought cost statewide economic losses about 2.2 billion, with a total loss of 17,100 seasonal and part-time jobs. Driven by a variety of factors including climate change, population growth, increased water demands, alteration to land cover, drought occurs widely all over the world. Drought economic consequence assessment tool are greatly needed to allow decision makers and stakeholders to anticipate and manage effectively. In this study, current drought economic impact modeling methods were reviewed. Most of these models only deal with the impact in the agricultural sector with a focus on a single basin; few of these models analyze long term impact. However, drought impacts are rarely restricted to basin boundaries, and cascading economic impacts are likely to be significant. A holistic approach to multi-basin, multi-sector drought economic impact assessment is needed.In this work, we developed a new model for drought economic impact assessment, Drought Economic Impact Model in Python (PyDEM). This model classified all business establishments into thirteen categories based on NAICS, and using a continuous dynamic social accounting matrix approach, coupled with calculation of the indirect consequences for the local and regional economies and the various resilience. In addition, Environmental Policy Integrated Climate model was combined for analyzing drought caused soil erosion together with agriculture production, and then the long term impacts of drought were achieved. A visible output of this model was presented in GIS. In this presentation, Choctawhatchee-Pea-Yellow River Basins, Alabama

  4. Multi-Model Combination techniques for Hydrological Forecasting: Application to Distributed Model Intercomparison Project Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajami, N K; Duan, Q; Gao, X

    2005-04-11

    This paper examines several multi-model combination techniques: the Simple Multi-model Average (SMA), the Multi-Model Super Ensemble (MMSE), Modified Multi-Model Super Ensemble (M3SE) and the Weighted Average Method (WAM). These model combination techniques were evaluated using the results from the Distributed Model Intercomparison Project (DMIP), an international project sponsored by the National Weather Service (NWS) Office of Hydrologic Development (OHD). All of the multi-model combination results were obtained using uncalibrated DMIP model outputs and were compared against the best uncalibrated as well as the best calibrated individual model results. The purpose of this study is to understand how different combination techniquesmore » affect the skill levels of the multi-model predictions. This study revealed that the multi-model predictions obtained from uncalibrated single model predictions are generally better than any single member model predictions, even the best calibrated single model predictions. Furthermore, more sophisticated multi-model combination techniques that incorporated bias correction steps work better than simple multi-model average predictions or multi-model predictions without bias correction.« less

  5. A multi-objective decision-making approach to the journal submission problem

    PubMed Central

    Hadka, David; Keller, Klaus

    2017-01-01

    When researchers complete a manuscript, they need to choose a journal to which they will submit the study. This decision requires to navigate trade-offs between multiple objectives. One objective is to share the new knowledge as widely as possible. Citation counts can serve as a proxy to quantify this objective. A second objective is to minimize the time commitment put into sharing the research, which may be estimated by the total time from initial submission to final decision. A third objective is to minimize the number of rejections and resubmissions. Thus, researchers often consider the trade-offs between the objectives of (i) maximizing citations, (ii) minimizing time-to-decision, and (iii) minimizing the number of resubmissions. To complicate matters further, this is a decision with multiple, potentially conflicting, decision-maker rationalities. Co-authors might have different preferences, for example about publishing fast versus maximizing citations. These diverging preferences can lead to conflicting trade-offs between objectives. Here, we apply a multi-objective decision analytical framework to identify the Pareto-front between these objectives and determine the set of journal submission pathways that balance these objectives for three stages of a researcher’s career. We find multiple strategies that researchers might pursue, depending on how they value minimizing risk and effort relative to maximizing citations. The sequences that maximize expected citations within each strategy are generally similar, regardless of time horizon. We find that the “conditional impact factor”—impact factor times acceptance rate—is a suitable heuristic method for ranking journals, to strike a balance between minimizing effort objectives and maximizing citation count. Finally, we examine potential co-author tension resulting from differing rationalities by mapping out each researcher’s preferred Pareto front and identifying compromise submission strategies. The

  6. Statistical post-processing of seasonal multi-model forecasts: Why is it so hard to beat the multi-model mean?

    NASA Astrophysics Data System (ADS)

    Siegert, Stefan

    2017-04-01

    Initialised climate forecasts on seasonal time scales, run several months or even years ahead, are now an integral part of the battery of products offered by climate services world-wide. The availability of seasonal climate forecasts from various modeling centres gives rise to multi-model ensemble forecasts. Post-processing such seasonal-to-decadal multi-model forecasts is challenging 1) because the cross-correlation structure between multiple models and observations can be complicated, 2) because the amount of training data to fit the post-processing parameters is very limited, and 3) because the forecast skill of numerical models tends to be low on seasonal time scales. In this talk I will review new statistical post-processing frameworks for multi-model ensembles. I will focus particularly on Bayesian hierarchical modelling approaches, which are flexible enough to capture commonly made assumptions about collective and model-specific biases of multi-model ensembles. Despite the advances in statistical methodology, it turns out to be very difficult to out-perform the simplest post-processing method, which just recalibrates the multi-model ensemble mean by linear regression. I will discuss reasons for this, which are closely linked to the specific characteristics of seasonal multi-model forecasts. I explore possible directions for improvements, for example using informative priors on the post-processing parameters, and jointly modelling forecasts and observations.

  7. Management of complex knowledge in planning for sustainable development: The use of multi-criteria decision aids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kain, Jaan-Henrik; Soederberg, Henriette

    2008-01-15

    The vision of sustainable development entails new and complex planning situations, confronting local policy makers with changing political conditions, different content in decision making and planning and new working methods. Moreover, the call for sustainable development has been a major driving force towards an increasingly multi-stakeholder planning system. This situation requires competence in working in, and managing, groups of actors, including not only experts and project owners but also other categories of stakeholders. Among other qualities, such competence requires a working strategy aimed at integrating various, and sometimes incommensurable, forms of knowledge to construct a relevant and valid knowledge basemore » prior to decision making. Consequently, there lies great potential in methods that facilitate the evaluation of strategies for infrastructural development across multiple knowledge areas, so-called multi-criteria decision aids (MCDAs). In the present article, observations from six case studies are discussed, where the common denominators are infrastructural planning, multi-stakeholder participation and the use of MCDAs as interactive decision support. Three MCDAs are discussed - NAIADE, SCA and STRAD - with an emphasis on how they function in their procedural context. Accordingly, this is not an analysis of MCDA algorithms, of software programming aspects or of MCDAs as context-independent 'decision machines'-the focus is on MCDAs as actor systems, not as expert systems. The analysis is carried out across four main themes: (a) symmetrical management of different forms of knowledge; (b) management of heterogeneity, pluralism and conflict; (c) functionality and ease of use; and (d) transparency and trust. It shows that STRAD, by far, seems to be the most useful MCDA in interactive settings. NAIADE and SCA are roughly equivalent but have their strengths and weaknesses in different areas. Moreover, it was found that some MCDA issues require

  8. Reinforcement Learning Multi-Agent Modeling of Decision-Making Agents for the Study of Transboundary Surface Water Conflicts with Application to the Syr Darya River Basin

    NASA Astrophysics Data System (ADS)

    Riegels, N.; Siegfried, T.; Pereira Cardenal, S. J.; Jensen, R. A.; Bauer-Gottwein, P.

    2008-12-01

    In most economics--driven approaches to optimizing water use at the river basin scale, the system is modelled deterministically with the goal of maximizing overall benefits. However, actual operation and allocation decisions must be made under hydrologic and economic uncertainty. In addition, river basins often cross political boundaries, and different states may not be motivated to cooperate so as to maximize basin- scale benefits. Even within states, competing agents such as irrigation districts, municipal water agencies, and large industrial users may not have incentives to cooperate to realize efficiency gains identified in basin- level studies. More traditional simulation--optimization approaches assume pre-commitment by individual agents and stakeholders and unconditional compliance on each side. While this can help determine attainable gains and tradeoffs from efficient management, such hardwired policies do not account for dynamic feedback between agents themselves or between agents and their environments (e.g. due to climate change etc.). In reality however, we are dealing with an out-of-equilibrium multi-agent system, where there is neither global knowledge nor global control, but rather continuous strategic interaction between decision making agents. Based on the theory of stochastic games, we present a computational framework that allows for studying the dynamic feedback between decision--making agents themselves and an inherently uncertain environment in a spatially and temporally distributed manner. Agents with decision-making control over water allocation such as countries, irrigation districts, and municipalities are represented by reinforcement learning agents and coupled to a detailed hydrologic--economic model. This approach emphasizes learning by agents from their continuous interaction with other agents and the environment. It provides a convenient framework for the solution of the problem of dynamic decision-making in a mixed cooperative / non

  9. Using multi-criteria decision analysis to appraise orphan drugs: a systematic review.

    PubMed

    Friedmann, Carlotta; Levy, Pierre; Hensel, Paul; Hiligsmann, Mickaël

    2018-04-01

    Multi-criteria decision analysis (MCDA) could potentially solve current methodological difficulties in the appraisal of orphan drugs. Areas covered: We provide an overview of the existing evidence regarding the use of MCDA in the appraisal of orphan drugs worldwide. Three databases (Pubmed, Embase, Web of Science) were searched for English, French and German literature published between January 2000 and April 2017. Full-text articles were supplemented with conference abstracts. A total of seven articles and six abstracts were identified. Expert commentary: The literature suggests that MCDA is increasingly being used in the context of appraising orphan drugs. It has shown itself to be a flexible approach with the potential to assist in decision-making regarding reimbursement for orphan drugs. However, further research regarding its application must be conducted.

  10. A multi agent model for the limit order book dynamics

    NASA Astrophysics Data System (ADS)

    Bartolozzi, M.

    2010-11-01

    In the present work we introduce a novel multi-agent model with the aim to reproduce the dynamics of a double auction market at microscopic time scale through a faithful simulation of the matching mechanics in the limit order book. The agents follow a noise decision making process where their actions are related to a stochastic variable, the market sentiment, which we define as a mixture of public and private information. The model, despite making just few basic assumptions over the trading strategies of the agents, is able to reproduce several empirical features of the high-frequency dynamics of the market microstructure not only related to the price movements but also to the deposition of the orders in the book.

  11. Critical multi-level governance issues of integrated modelling: An example of low-water management in the Adour-Garonne basin (France)

    NASA Astrophysics Data System (ADS)

    Mazzega, Pierre; Therond, Olivier; Debril, Thomas; March, Hug; Sibertin-Blanc, Christophe; Lardy, Romain; Sant'ana, Daniel

    2014-11-01

    This paper presents the experience gained related to the development of an integrated simulation model of water policy. Within this context, we analyze particular difficulties raised by the inclusion of multi-level governance that assigns the responsibility of individual or collective decision-making to a variety of actors, regarding measures of which the implementation has significant effects toward the sustainability of socio-hydrosystems. Multi-level governance procedures are compared with the potential of model-based impact assessment. Our discussion is illustrated on the basis of the exploitation of the multi-agent platform MAELIA dedicated to the simulation of social, economic and environmental impacts of low-water management in a context of climate and regulatory changes. We focus on three major decision-making processes occurring in the Adour-Garonne basin, France: (i) the participatory development of the Master Scheme for Water Planning and Management (SDAGE) under the auspices of the Water Agency; (ii) the publication of water use restrictions in situations of water scarcity; and (iii) the determination of the abstraction volumes for irrigation and their allocation. The MAELIA platform explicitly takes into account the mode of decision-making when it is framed by a procedure set beforehand, focusing on the actors' participation and on the nature and parameters of the measures to be implemented. It is observed that in some water organizations decision-making follows patterns that can be represented as rule-based actions triggered by thresholds of resource states. When decisions are resulting from individual choice, endowing virtual agents with bounded rationality allows us to reproduce (in silico) their behavior and decisions in a reliable way. However, the negotiation processes taking place during the period of time simulated by the models in arenas of collective choices are not all reproducible. Outcomes of some collective decisions are very little or

  12. Evidencing Learning Outcomes: A Multi-Level, Multi-Dimensional Course Alignment Model

    ERIC Educational Resources Information Center

    Sridharan, Bhavani; Leitch, Shona; Watty, Kim

    2015-01-01

    This conceptual framework proposes a multi-level, multi-dimensional course alignment model to implement a contextualised constructive alignment of rubric design that authentically evidences and assesses learning outcomes. By embedding quality control mechanisms at each level for each dimension, this model facilitates the development of an aligned…

  13. Decision modeling for fire incident analysis

    Treesearch

    Donald G. MacGregor; Armando González-Cabán

    2009-01-01

    This paper reports on methods for representing and modeling fire incidents based on concepts and models from the decision and risk sciences. A set of modeling techniques are used to characterize key fire management decision processes and provide a basis for incident analysis. The results of these methods can be used to provide insights into the structure of fire...

  14. A Multi-Level Decision Fusion Strategy for Condition Based Maintenance of Composite Structures

    PubMed Central

    Sharif Khodaei, Zahra; Aliabadi, M.H.

    2016-01-01

    In this work, a multi-level decision fusion strategy is proposed which weighs the Value of Information (VoI) against the intended functions of a Structural Health Monitoring (SHM) system. This paper presents a multi-level approach for three different maintenance strategies in which the performance of the SHM systems is evaluated against its intended functions. Level 1 diagnosis results in damage existence with minimum sensors covering a large area by finding the maximum energy difference for the guided waves propagating in pristine structure and the post-impact state; Level 2 diagnosis provides damage detection and approximate localization using an approach based on Electro-Mechanical Impedance (EMI) measures, while Level 3 characterizes damage (exact location and size) in addition to its detection by utilising a Weighted Energy Arrival Method (WEAM). The proposed multi-level strategy is verified and validated experimentally by detection of Barely Visible Impact Damage (BVID) on a curved composite fuselage panel. PMID:28773910

  15. Multi-criteria analysis for PM10 planning

    NASA Astrophysics Data System (ADS)

    Pisoni, Enrico; Carnevale, Claudio; Volta, Marialuisa

    To implement sound air quality policies, Regulatory Agencies require tools to evaluate outcomes and costs associated to different emission reduction strategies. These tools are even more useful when considering atmospheric PM10 concentrations due to the complex nonlinear processes that affect production and accumulation of the secondary fraction of this pollutant. The approaches presented in the literature (Integrated Assessment Modeling) are mainly cost-benefit and cost-effective analysis. In this work, the formulation of a multi-objective problem to control particulate matter is proposed. The methodology defines: (a) the control objectives (the air quality indicator and the emission reduction cost functions); (b) the decision variables (precursor emission reductions); (c) the problem constraints (maximum feasible technology reductions). The cause-effect relations between air quality indicators and decision variables are identified tuning nonlinear source-receptor models. The multi-objective problem solution provides to the decision maker a set of not-dominated scenarios representing the efficient trade-off between the air quality benefit and the internal costs (emission reduction technology costs). The methodology has been implemented for Northern Italy, often affected by high long-term exposure to PM10. The source-receptor models used in the multi-objective analysis are identified processing long-term simulations of GAMES multiphase modeling system, performed in the framework of CAFE-Citydelta project.

  16. A multi-period distribution network design model under demand uncertainty

    NASA Astrophysics Data System (ADS)

    Tabrizi, Babak H.; Razmi, Jafar

    2013-05-01

    Supply chain management is taken into account as an inseparable component in satisfying customers' requirements. This paper deals with the distribution network design (DND) problem which is a critical issue in achieving supply chain accomplishments. A capable DND can guarantee the success of the entire network performance. However, there are many factors that can cause fluctuations in input data determining market treatment, with respect to short-term planning, on the one hand. On the other hand, network performance may be threatened by the changes that take place within practicing periods, with respect to long-term planning. Thus, in order to bring both kinds of changes under control, we considered a new multi-period, multi-commodity, multi-source DND problem in circumstances where the network encounters uncertain demands. The fuzzy logic is applied here as an efficient tool for controlling the potential customers' demand risk. The defuzzifying framework leads the practitioners and decision-makers to interact with the solution procedure continuously. The fuzzy model is then validated by a sensitivity analysis test, and a typical problem is solved in order to illustrate the implementation steps. Finally, the formulation is tested by some different-sized problems to show its total performance.

  17. Controlling for endogeneity in attributable costs of vancomycin-resistant enterococci from a Canadian hospital.

    PubMed

    Lloyd-Smith, Patrick

    2017-12-01

    Decisions regarding the optimal provision of infection prevention and control resources depend on accurate estimates of the attributable costs of health care-associated infections. This is challenging given the skewed nature of health care cost data and the endogeneity of health care-associated infections. The objective of this study is to determine the hospital costs attributable to vancomycin-resistant enterococci (VRE) while accounting for endogeneity. This study builds on an attributable cost model conducted by a retrospective cohort study including 1,292 patients admitted to an urban hospital in Vancouver, Canada. Attributable hospital costs were estimated with multivariate generalized linear models (GLMs). To account for endogeneity, a control function approach was used. The analysis sample included 217 patients with health care-associated VRE. In the standard GLM, the costs attributable to VRE are $17,949 (SEM, $2,993). However, accounting for endogeneity, the attributable costs were estimated to range from $14,706 (SEM, $7,612) to $42,101 (SEM, $15,533). Across all model specifications, attributable costs are 76% higher on average when controlling for endogeneity. VRE was independently associated with increased hospital costs, and controlling for endogeneity lead to higher attributable cost estimates. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  18. The C20C+ Detection and Attribution Project

    NASA Astrophysics Data System (ADS)

    Stone, D. A.; Angélil, O. M.; Cholia, S.; Christidis, N.; Dittus, A. J.; Folland, C. K.; King, A.; Kinter, J. L.; Krishnan, H.; Min, S. K.; Shiogama, H.; Wehner, M. F.; Wolski, P.

    2015-12-01

    Over the past decade there has been a remarkable growth in interest concerning the effects of anthropogenic emissions on extreme weather. However, research has been constrained by the lack of a public climate-model-based data product optimised for investigation of extreme weather in the context of climate change, relying instead on products designed for other purposes or on bespoke simulations designed for the particular study and not generally applicable to other extremes. The international Climate of the 20th Century Plus (C20C+) Detection and Attribution Project is filling this gap by producing the first large ensemble, multi-model, multi-year, and multi-scenario historical climate data product, specifically designed for resolving variations in the occurrence and characteristics of extreme weather from year to year and their differences from what might have been in the absence of anthropogenic emissions. Updates on project status and tens of terabytes of simulation output are available at http://portal.nersc.gov/c20c.Here we describe the experimental design of the first phase of the project, conducted with six atmospheric climate models, and discuss its various strengths and weaknesses with respect to various types of extreme weather. We also present analyses of the relative importance of climate model, estimate of anthropogenic ocean warming, spatial and temporal scale, and aspects of experimental design on estimates of how much emissions have affected extreme weather.

  19. A Decision Support Framework for Science-Based, Multi-Stakeholder Deliberation: A Coral Reef Example

    NASA Astrophysics Data System (ADS)

    Rehr, Amanda P.; Small, Mitchell J.; Bradley, Patricia; Fisher, William S.; Vega, Ann; Black, Kelly; Stockton, Tom

    2012-12-01

    We present a decision support framework for science-based assessment and multi-stakeholder deliberation. The framework consists of two parts: a DPSIR (Drivers-Pressures-States-Impacts-Responses) analysis to identify the important causal relationships among anthropogenic environmental stressors, processes, and outcomes; and a Decision Landscape analysis to depict the legal, social, and institutional dimensions of environmental decisions. The Decision Landscape incorporates interactions among government agencies, regulated businesses, non-government organizations, and other stakeholders. It also identifies where scientific information regarding environmental processes is collected and transmitted to improve knowledge about elements of the DPSIR and to improve the scientific basis for decisions. Our application of the decision support framework to coral reef protection and restoration in the Florida Keys focusing on anthropogenic stressors, such as wastewater, proved to be successful and offered several insights. Using information from a management plan, it was possible to capture the current state of the science with a DPSIR analysis as well as important decision options, decision makers and applicable laws with a the Decision Landscape analysis. A structured elicitation of values and beliefs conducted at a coral reef management workshop held in Key West, Florida provided a diversity of opinion and also indicated a prioritization of several environmental stressors affecting coral reef health. The integrated DPSIR/Decision landscape framework for the Florida Keys developed based on the elicited opinion and the DPSIR analysis can be used to inform management decisions, to reveal the role that further scientific information and research might play to populate the framework, and to facilitate better-informed agreement among participants.

  20. Time to decision: the drivers of innovation adoption decisions

    NASA Astrophysics Data System (ADS)

    Ciganek, Andrew Paul; (Dave) Haseman, William; Ramamurthy, K.

    2014-03-01

    Organisations desire timeliness. Timeliness facilitates a better responsiveness to changes in an organisation's external environment to either attain or maintain competitiveness. Despite its importance, decision timeliness has not been explicitly examined. Decision timeliness is measured in this study as the time taken to commit to a decision. The research objective is to identify the drivers of decision timeliness in the context of adopting service-oriented architecture (SOA), an innovation for enterprise computing. A research model rooted in the technology-organisation-environment (TOE) framework is proposed and tested with data collected in a large-scale study. The research variables have been examined before in the context of adoption, but their applicability to the timeliness of innovation decision-making has not received much attention and their salience is unclear. The results support multiple hypothesised relationships, including the finding that a risk-oriented organisational culture as well as normative and coercive pressures accelerates decision timeliness. Top management support as well as the traditional innovation attributes (compatibility, relative advantage and complexity/ease-of-use) were not found to be significant when examining their influence on decision timeliness, which appears inconsistent with generally accepted knowledge and deserves further examination.

  1. Highlights from the 17th International Conference on Multi-Criteria Decision Making, Whistler, BC, August 6-11, 2004

    DTIC Science & Technology

    2005-04-01

    related to one of the following areas: 1. Group Decision Support Methods; 2. Decision Support Methods; 3. AHP applications; 4. Multi...Objective Linear Programming (MOLP) algorithms; 5. Industrial engineering applications; 6. Behavioural considerations, and 7. Fuzzy MCDM. 3...making. This is especially important when using software like AHP or when constructing questionnaires for SME’s ( see [10] for many examples

  2. Modeling the leadership attributes of top management in green innovation implementation

    NASA Astrophysics Data System (ADS)

    Ishak, Noormaizatul Akmar; Ramli, Mohammad Fadzli

    2015-05-01

    The implementation of green innovation in the companies is the interest of the governments all over the world. This has been the main focus of the Copenhagen Protocol and Kyoto Protocol that require all governments to preserve the nature through green initiatives. This paper proposes a mathematical model on the leadership attributes of the top management in ensuring green innovation implementation in their companies' strategies to reduce operational cost. With green innovation implementation in the Government-Linked Companies (GLCs), we identify the leadership attributes are tied up to the leadership style of the top managers in the companies. Through this model we have proved that green type leadership always contributes better in cost saving, therefore it is a more efficient leadership attribute for the GLCs especially.

  3. Decision making for Pap testing among Pacific Islander women.

    PubMed

    Weiss, Jie W; Mouttapa, Michele; Sablan-Santos, Lola; DeGuzman Lacsamana, Jasmine; Quitugua, Lourdes; Park Tanjasiri, Sora

    2016-12-01

    This study employed a Multi-Attribute Utility (MAU) model to examine the Pap test decision-making process among Pacific Islanders (PI) residing in Southern California. A total of 585 PI women were recruited through social networks from Samoan and Tongan churches, and Chamorro family clans. A questionnaire assessed Pap test knowledge, beliefs and past behaviour. The three MAU parameters of subjective value, subjective probability and momentary salience were measured for eight anticipated consequences of having a Pap test (e.g., feeling embarrassed, spending money). Logistic regression indicated that women who had a Pap test (Pap women) had higher total MAU utility scores compared to women who had not had a Pap test within the past three years (No Pap women) (adjusted Odds Ratio = 1.10). In particular, Pap women had higher utilities for the positive consequences 'Detecting cervical cancer early, Peace of mind, and Protecting my family', compared to No Pap women. It is concluded that the connection between utility and behaviour offers a promising pathway toward a better understanding of the decision to undergo Pap testing. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Interval MULTIMOORA method with target values of attributes based on interval distance and preference degree: biomaterials selection

    NASA Astrophysics Data System (ADS)

    Hafezalkotob, Arian; Hafezalkotob, Ashkan

    2017-06-01

    A target-based MADM method covers beneficial and non-beneficial attributes besides target values for some attributes. Such techniques are considered as the comprehensive forms of MADM approaches. Target-based MADM methods can also be used in traditional decision-making problems in which beneficial and non-beneficial attributes only exist. In many practical selection problems, some attributes have given target values. The values of decision matrix and target-based attributes can be provided as intervals in some of such problems. Some target-based decision-making methods have recently been developed; however, a research gap exists in the area of MADM techniques with target-based attributes under uncertainty of information. We extend the MULTIMOORA method for solving practical material selection problems in which material properties and their target values are given as interval numbers. We employ various concepts of interval computations to reduce degeneration of uncertain data. In this regard, we use interval arithmetic and introduce innovative formula for interval distance of interval numbers to create interval target-based normalization technique. Furthermore, we use a pairwise preference matrix based on the concept of degree of preference of interval numbers to calculate the maximum, minimum, and ranking of these numbers. Two decision-making problems regarding biomaterials selection of hip and knee prostheses are discussed. Preference degree-based ranking lists for subordinate parts of the extended MULTIMOORA method are generated by calculating the relative degrees of preference for the arranged assessment values of the biomaterials. The resultant rankings for the problem are compared with the outcomes of other target-based models in the literature.

  5. MultiMetEval: Comparative and Multi-Objective Analysis of Genome-Scale Metabolic Models

    PubMed Central

    Gevorgyan, Albert; Kierzek, Andrzej M.; Breitling, Rainer; Takano, Eriko

    2012-01-01

    Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to allow efficient comparative analysis of multiple models in the context of multiple cellular objectives. Here, we present the user-friendly software framework Multi-Metabolic Evaluator (MultiMetEval), built upon SurreyFBA, which allows the user to compose collections of metabolic models that together can be subjected to flux balance analysis. Additionally, MultiMetEval implements functionalities for multi-objective analysis by calculating the Pareto front between two cellular objectives. Using a previously generated dataset of 38 actinobacterial genome-scale metabolic models, we show how these approaches can lead to exciting novel insights. Firstly, after incorporating several pathways for the biosynthesis of natural products into each of these models, comparative flux balance analysis predicted that species like Streptomyces that harbour the highest diversity of secondary metabolite biosynthetic gene clusters in their genomes do not necessarily have the metabolic network topology most suitable for compound overproduction. Secondly, multi-objective analysis of biomass production and natural product biosynthesis in these actinobacteria shows that the well-studied occurrence of discrete metabolic switches during the change of cellular objectives is inherent to their metabolic network architecture. Comparative and multi-objective modelling can lead to insights that could not be obtained by normal flux balance analyses. MultiMetEval provides a powerful platform that makes these analyses straightforward for biologists. Sources and binaries of MultiMetEval are freely available from https://github.com/PiotrZakrzewski/MetEval/downloads. PMID:23272111

  6. Attribute And-Or Grammar for Joint Parsing of Human Pose, Parts and Attributes.

    PubMed

    Park, Seyoung; Nie, Xiaohan; Zhu, Song-Chun

    2017-07-25

    This paper presents an attribute and-or grammar (A-AOG) model for jointly inferring human body pose and human attributes in a parse graph with attributes augmented to nodes in the hierarchical representation. In contrast to other popular methods in the current literature that train separate classifiers for poses and individual attributes, our method explicitly represents the decomposition and articulation of body parts, and account for the correlations between poses and attributes. The A-AOG model is an amalgamation of three traditional grammar formulations: (i)Phrase structure grammar representing the hierarchical decomposition of the human body from whole to parts; (ii)Dependency grammar modeling the geometric articulation by a kinematic graph of the body pose; and (iii)Attribute grammar accounting for the compatibility relations between different parts in the hierarchy so that their appearances follow a consistent style. The parse graph outputs human detection, pose estimation, and attribute prediction simultaneously, which are intuitive and interpretable. We conduct experiments on two tasks on two datasets, and experimental results demonstrate the advantage of joint modeling in comparison with computing poses and attributes independently. Furthermore, our model obtains better performance over existing methods for both pose estimation and attribute prediction tasks.

  7. A Novel Multi-Class Ensemble Model for Classifying Imbalanced Biomedical Datasets

    NASA Astrophysics Data System (ADS)

    Bikku, Thulasi; Sambasiva Rao, N., Dr; Rao, Akepogu Ananda, Dr

    2017-08-01

    This paper mainly focuseson developing aHadoop based framework for feature selection and classification models to classify high dimensionality data in heterogeneous biomedical databases. Wide research has been performing in the fields of Machine learning, Big data and Data mining for identifying patterns. The main challenge is extracting useful features generated from diverse biological systems. The proposed model can be used for predicting diseases in various applications and identifying the features relevant to particular diseases. There is an exponential growth of biomedical repositories such as PubMed and Medline, an accurate predictive model is essential for knowledge discovery in Hadoop environment. Extracting key features from unstructured documents often lead to uncertain results due to outliers and missing values. In this paper, we proposed a two phase map-reduce framework with text preprocessor and classification model. In the first phase, mapper based preprocessing method was designed to eliminate irrelevant features, missing values and outliers from the biomedical data. In the second phase, a Map-Reduce based multi-class ensemble decision tree model was designed and implemented in the preprocessed mapper data to improve the true positive rate and computational time. The experimental results on the complex biomedical datasets show that the performance of our proposed Hadoop based multi-class ensemble model significantly outperforms state-of-the-art baselines.

  8. Multi-criteria decision making development of ion chromatographic method for determination of inorganic anions in oilfield waters based on artificial neural networks retention model.

    PubMed

    Stefanović, Stefica Cerjan; Bolanča, Tomislav; Luša, Melita; Ukić, Sime; Rogošić, Marko

    2012-02-24

    This paper describes the development of ad hoc methodology for determination of inorganic anions in oilfield water, since their composition often significantly differs from the average (concentration of components and/or matrix). Therefore, fast and reliable method development has to be performed in order to ensure the monitoring of desired properties under new conditions. The method development was based on computer assisted multi-criteria decision making strategy. The used criteria were: maximal value of objective functions used, maximal robustness of the separation method, minimal analysis time, and maximal retention distance between two nearest components. Artificial neural networks were used for modeling of anion retention. The reliability of developed method was extensively tested by the validation of performance characteristics. Based on validation results, the developed method shows satisfactory performance characteristics, proving the successful application of computer assisted methodology in the described case study. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. The multi-attribute task battery for human operator workload and strategic behavior research

    NASA Technical Reports Server (NTRS)

    Comstock, J. Raymond, Jr.; Arnegard, Ruth J.

    1992-01-01

    The Multi-Attribute Task (MAT) Battery provides a benchmark set of tasks for use in a wide range of lab studies of operator performance and workload. The battery incorporates tasks analogous to activities that aircraft crewmembers perform in flight, while providing a high degree of experimenter control, performance data on each subtask, and freedom to use nonpilot test subjects. Features not found in existing computer based tasks include an auditory communication task (to simulate Air Traffic Control communication), a resource management task permitting many avenues or strategies of maintaining target performance, a scheduling window which gives the operator information about future task demands, and the option of manual or automated control of tasks. Performance data are generated for each subtask. In addition, the task battery may be paused and onscreen workload rating scales presented to the subject. The MAT Battery requires a desktop computer with color graphics. The communication task requires a serial link to a second desktop computer with a voice synthesizer or digitizer card.

  10. Demographics of reintroduced populations: estimation, modeling, and decision analysis

    USGS Publications Warehouse

    Converse, Sarah J.; Moore, Clinton T.; Armstrong, Doug P.

    2013-01-01

    Reintroduction can be necessary for recovering populations of threatened species. However, the success of reintroduction efforts has been poorer than many biologists and managers would hope. To increase the benefits gained from reintroduction, management decision making should be couched within formal decision-analytic frameworks. Decision analysis is a structured process for informing decision making that recognizes that all decisions have a set of components—objectives, alternative management actions, predictive models, and optimization methods—that can be decomposed, analyzed, and recomposed to facilitate optimal, transparent decisions. Because the outcome of interest in reintroduction efforts is typically population viability or related metrics, models used in decision analysis efforts for reintroductions will need to include population models. In this special section of the Journal of Wildlife Management, we highlight examples of the construction and use of models for informing management decisions in reintroduced populations. In this introductory contribution, we review concepts in decision analysis, population modeling for analysis of decisions in reintroduction settings, and future directions. Increased use of formal decision analysis, including adaptive management, has great potential to inform reintroduction efforts. Adopting these practices will require close collaboration among managers, decision analysts, population modelers, and field biologists.

  11. Mass discharge estimation from contaminated sites: Multi-model solutions for assessment of conceptual uncertainty

    NASA Astrophysics Data System (ADS)

    Thomsen, N. I.; Troldborg, M.; McKnight, U. S.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    Mass discharge estimates are increasingly being used in the management of contaminated sites. Such estimates have proven useful for supporting decisions related to the prioritization of contaminated sites in a groundwater catchment. Potential management options can be categorised as follows: (1) leave as is, (2) clean up, or (3) further investigation needed. However, mass discharge estimates are often very uncertain, which may hamper the management decisions. If option 1 is incorrectly chosen soil and water quality will decrease, threatening or destroying drinking water resources. The risk of choosing option 2 is to spend money on remediating a site that does not pose a problem. Choosing option 3 will often be safest, but may not be the optimal economic solution. Quantification of the uncertainty in mass discharge estimates can therefore greatly improve the foundation for selecting the appropriate management option. The uncertainty of mass discharge estimates depends greatly on the extent of the site characterization. A good approach for uncertainty estimation will be flexible with respect to the investigation level, and account for both parameter and conceptual model uncertainty. We propose a method for quantifying the uncertainty of dynamic mass discharge estimates from contaminant point sources on the local scale. The method considers both parameter and conceptual uncertainty through a multi-model approach. The multi-model approach evaluates multiple conceptual models for the same site. The different conceptual models consider different source characterizations and hydrogeological descriptions. The idea is to include a set of essentially different conceptual models where each model is believed to be realistic representation of the given site, based on the current level of information. Parameter uncertainty is quantified using Monte Carlo simulations. For each conceptual model we calculate a transient mass discharge estimate with uncertainty bounds resulting from

  12. Comparing Selections of Environmental Variables for Ecological Studies: A Focus on Terrain Attributes.

    PubMed

    Lecours, Vincent; Brown, Craig J; Devillers, Rodolphe; Lucieer, Vanessa L; Edinger, Evan N

    2016-01-01

    Selecting appropriate environmental variables is a key step in ecology. Terrain attributes (e.g. slope, rugosity) are routinely used as abiotic surrogates of species distribution and to produce habitat maps that can be used in decision-making for conservation or management. Selecting appropriate terrain attributes for ecological studies may be a challenging process that can lead users to select a subjective, potentially sub-optimal combination of attributes for their applications. The objective of this paper is to assess the impacts of subjectively selecting terrain attributes for ecological applications by comparing the performance of different combinations of terrain attributes in the production of habitat maps and species distribution models. Seven different selections of terrain attributes, alone or in combination with other environmental variables, were used to map benthic habitats of German Bank (off Nova Scotia, Canada). 29 maps of potential habitats based on unsupervised classifications of biophysical characteristics of German Bank were produced, and 29 species distribution models of sea scallops were generated using MaxEnt. The performances of the 58 maps were quantified and compared to evaluate the effectiveness of the various combinations of environmental variables. One of the combinations of terrain attributes-recommended in a related study and that includes a measure of relative position, slope, two measures of orientation, topographic mean and a measure of rugosity-yielded better results than the other selections for both methodologies, confirming that they together best describe terrain properties. Important differences in performance (up to 47% in accuracy measurement) and spatial outputs (up to 58% in spatial distribution of habitats) highlighted the importance of carefully selecting variables for ecological applications. This paper demonstrates that making a subjective choice of variables may reduce map accuracy and produce maps that do not

  13. EDgE multi-model hydro-meteorological seasonal hindcast experiments over Europe

    NASA Astrophysics Data System (ADS)

    Samaniego, Luis; Thober, Stephan; Kumar, Rohini; Rakovec, Oldrich; Wood, Eric; Sheffield, Justin; Pan, Ming; Wanders, Niko; Prudhomme, Christel

    2017-04-01

    Extreme hydrometeorological events (e.g., floods, droughts and heat waves) caused serious damage to society and infrastructures over Europe during the past decades. Developing a seamless and skillful operational seasonal forecasting system of these extreme events is therefore a key tool for short-term decision making at local and regional scales. The EDgE project funded by the Copernicus programme (C3S) provides an unique opportunity to investigate the skill of a newly created large multi-model hydro-meteorological ensemble for predicting extreme events over the Pan-EU domain at a higher resolution 5×5 km2. Two state-of-the-art seasonal prediction systems were chosen for this project. Two models from the North American MultiModel ensemble (NMME) with 22 realizations, and two models provided by the ECMWF with 30 realizations. All models provide daily forcings (P, Ta, Tmin, Tmax) of the the Pan-EU at 1°. Downscaling has been carried out with the MTCLIM algorithm (Bohn et al. 2013) and external drift Kriging using elevation as drift to induce orographic effects. In this project, four high-resolution seamless hydrologic simulations with the mHM (www.ufz.de/mhm), Noah-MP, VIC and PCR-GLOBWB have been completed for the common hindcast period of 1993-2012 resulting in an ensemble size of 208 realizations. Key indicators are focussing on six terrestrial Essential Climate Variables (tECVs): river runoff, soil moisture, groundwater recharge, precipitation, potential evapotranspiration, and snow water equivalent. Impact Indicators have been co-designed with stakeholders in Norway (hydro-power), UK (water supply), and Spain (river basin authority) to provide an improved information for decision making. The Indicators encompass diverse information such as the occurrence of high and low streamflow percentiles (floods, and hydrological drought) and lower percentiles of top soil moisture (agricultural drought) among others. Preliminary results evaluated at study sites in Norway

  14. A road map for multi-way calibration models.

    PubMed

    Escandar, Graciela M; Olivieri, Alejandro C

    2017-08-07

    A large number of experimental applications of multi-way calibration are known, and a variety of chemometric models are available for the processing of multi-way data. While the main focus has been directed towards three-way data, due to the availability of various instrumental matrix measurements, a growing number of reports are being produced on order signals of increasing complexity. The purpose of this review is to present a general scheme for selecting the appropriate data processing model, according to the properties exhibited by the multi-way data. In spite of the complexity of the multi-way instrumental measurements, simple criteria can be proposed for model selection, based on the presence and number of the so-called multi-linearity breaking modes (instrumental modes that break the low-rank multi-linearity of the multi-way arrays), and also on the existence of mutually dependent instrumental modes. Recent literature reports on multi-way calibration are reviewed, with emphasis on the models that were selected for data processing.

  15. Multiple stakeholders in multi-criteria decision-making in the context of Municipal Solid Waste Management: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltani, Atousa; Hewage, Kasun; Reza, Bahareh

    2015-01-15

    Highlights: • We review Municipal Solid Waste Management studies with focus on multiple stakeholders. • We focus on studies with multi-criteria decision analysis methods and discover their trends. • Most studies do not offer solutions for situations where stakeholders compete for more benefits or have unequal voting powers. • Governments and experts are the most participated stakeholders and AHP is the most dominant method. - Abstract: Municipal Solid Waste Management (MSWM) is a complicated process that involves multiple environmental and socio-economic criteria. Decision-makers look for decision support frameworks that can guide in defining alternatives, relevant criteria and their weights, andmore » finding a suitable solution. In addition, decision-making in MSWM problems such as finding proper waste treatment locations or strategies often requires multiple stakeholders such as government, municipalities, industries, experts, and/or general public to get involved. Multi-criteria Decision Analysis (MCDA) is the most popular framework employed in previous studies on MSWM; MCDA methods help multiple stakeholders evaluate the often conflicting criteria, communicate their different preferences, and rank or prioritize MSWM strategies to finally agree on some elements of these strategies and make an applicable decision. This paper reviews and brings together research on the application of MCDA for solving MSWM problems with more focus on the studies that have considered multiple stakeholders and offers solutions for such problems. Results of this study show that AHP is the most common approach in consideration of multiple stakeholders and experts and governments/municipalities are the most common participants in these studies.« less

  16. Multi-model analysis in hydrological prediction

    NASA Astrophysics Data System (ADS)

    Lanthier, M.; Arsenault, R.; Brissette, F.

    2017-12-01

    Hydrologic modelling, by nature, is a simplification of the real-world hydrologic system. Therefore ensemble hydrological predictions thus obtained do not present the full range of possible streamflow outcomes, thereby producing ensembles which demonstrate errors in variance such as under-dispersion. Past studies show that lumped models used in prediction mode can return satisfactory results, especially when there is not enough information available on the watershed to run a distributed model. But all lumped models greatly simplify the complex processes of the hydrologic cycle. To generate more spread in the hydrologic ensemble predictions, multi-model ensembles have been considered. In this study, the aim is to propose and analyse a method that gives an ensemble streamflow prediction that properly represents the forecast probabilities and reduced ensemble bias. To achieve this, three simple lumped models are used to generate an ensemble. These will also be combined using multi-model averaging techniques, which generally generate a more accurate hydrogram than the best of the individual models in simulation mode. This new predictive combined hydrogram is added to the ensemble, thus creating a large ensemble which may improve the variability while also improving the ensemble mean bias. The quality of the predictions is then assessed on different periods: 2 weeks, 1 month, 3 months and 6 months using a PIT Histogram of the percentiles of the real observation volumes with respect to the volumes of the ensemble members. Initially, the models were run using historical weather data to generate synthetic flows. This worked for individual models, but not for the multi-model and for the large ensemble. Consequently, by performing data assimilation at each prediction period and thus adjusting the initial states of the models, the PIT Histogram could be constructed using the observed flows while allowing the use of the multi-model predictions. The under-dispersion has been

  17. Grey Language Hesitant Fuzzy Group Decision Making Method Based on Kernel and Grey Scale

    PubMed Central

    Diao, Yuzhu; Hu, Aqin

    2018-01-01

    Based on grey language multi-attribute group decision making, a kernel and grey scale scoring function is put forward according to the definition of grey language and the meaning of the kernel and grey scale. The function introduces grey scale into the decision-making method to avoid information distortion. This method is applied to the grey language hesitant fuzzy group decision making, and the grey correlation degree is used to sort the schemes. The effectiveness and practicability of the decision-making method are further verified by the industry chain sustainable development ability evaluation example of a circular economy. Moreover, its simplicity and feasibility are verified by comparing it with the traditional grey language decision-making method and the grey language hesitant fuzzy weighted arithmetic averaging (GLHWAA) operator integration method after determining the index weight based on the grey correlation. PMID:29498699

  18. Grey Language Hesitant Fuzzy Group Decision Making Method Based on Kernel and Grey Scale.

    PubMed

    Li, Qingsheng; Diao, Yuzhu; Gong, Zaiwu; Hu, Aqin

    2018-03-02

    Based on grey language multi-attribute group decision making, a kernel and grey scale scoring function is put forward according to the definition of grey language and the meaning of the kernel and grey scale. The function introduces grey scale into the decision-making method to avoid information distortion. This method is applied to the grey language hesitant fuzzy group decision making, and the grey correlation degree is used to sort the schemes. The effectiveness and practicability of the decision-making method are further verified by the industry chain sustainable development ability evaluation example of a circular economy. Moreover, its simplicity and feasibility are verified by comparing it with the traditional grey language decision-making method and the grey language hesitant fuzzy weighted arithmetic averaging (GLHWAA) operator integration method after determining the index weight based on the grey correlation.

  19. Decision-Aiding and Optimization for Vertical Navigation of Long-Haul Aircraft

    NASA Technical Reports Server (NTRS)

    Patrick, Nicholas J. M.; Sheridan, Thomas B.

    1996-01-01

    Most decisions made in the cockpit are related to safety, and have therefore been proceduralized in order to reduce risk. There are very few which are made on the basis of a value metric such as economic cost. One which can be shown to be value based, however, is the selection of a flight profile. Fuel consumption and flight time both have a substantial effect on aircraft operating cost, but they cannot be minimized simultaneously. In addition, winds, turbulence, and performance vary widely with altitude and time. These factors make it important and difficult for pilots to (a) evaluate the outcomes associated with a particular trajectory before it is flown and (b) decide among possible trajectories. The two elements of this problem considered here are: (1) determining what constitutes optimality, and (2) finding optimal trajectories. Pilots and dispatchers from major u.s. airlines were surveyed to determine which attributes of the outcome of a flight they considered the most important. Avoiding turbulence-for passenger comfort-topped the list of items which were not safety related. Pilots' decision making about the selection of flight profile on the basis of flight time, fuel burn, and exposure to turbulence was then observed. Of the several behavioral and prescriptive decision models invoked to explain the pilots' choices, utility maximization is shown to best reproduce the pilots' decisions. After considering more traditional methods for optimizing trajectories, a novel method is developed using a genetic algorithm (GA) operating on a discrete representation of the trajectory search space. The representation is a sequence of command altitudes, and was chosen to be compatible with the constraints imposed by Air Traffic Control, and with the training given to pilots. Since trajectory evaluation for the GA is performed holistically, a wide class of objective functions can be optimized easily. Also, using the GA it is possible to compare the costs associated with

  20. A novel design process for selection of attributes for inclusion in discrete choice experiments: case study exploring variation in clinical decision-making about thrombolysis in the treatment of acute ischaemic stroke.

    PubMed

    De Brún, Aoife; Flynn, Darren; Ternent, Laura; Price, Christopher I; Rodgers, Helen; Ford, Gary A; Rudd, Matthew; Lancsar, Emily; Simpson, Stephen; Teah, John; Thomson, Richard G

    2018-06-22

    A discrete choice experiment (DCE) is a method used to elicit participants' preferences and the relative importance of different attributes and levels within a decision-making process. DCEs have become popular in healthcare; however, approaches to identify the attributes/levels influencing a decision of interest and to selection methods for their inclusion in a DCE are under-reported. Our objectives were: to explore the development process used to select/present attributes/levels from the identified range that may be influential; to describe a systematic and rigorous development process for design of a DCE in the context of thrombolytic therapy for acute stroke; and, to discuss the advantages of our five-stage approach to enhance current guidance for developing DCEs. A five-stage DCE development process was undertaken. Methods employed included literature review, qualitative analysis of interview and ethnographic data, expert panel discussions, a quantitative structured prioritisation (ranking) exercise and pilot testing of the DCE using a 'think aloud' approach. The five-stage process reported helped to reduce the list of 22 initial patient-related factors to a final set of nine variable factors and six fixed factors for inclusion in a testable DCE using a vignette model of presentation. In order for the data and conclusions generated by DCEs to be deemed valid, it is crucial that the methods of design and development are documented and reported. This paper has detailed a rigorous and systematic approach to DCE development which may be useful to researchers seeking to establish methods for reducing and prioritising attributes for inclusion in future DCEs.