Science.gov

Sample records for multi-diode dosimetric system

  1. Multi-diode laser system for UV exposure of the photoresists

    NASA Astrophysics Data System (ADS)

    Barbucha, R.; Tanski, M.; Kocik, M.

    2015-06-01

    PCB (Printed Circuit Board) industry is a global business for many years. PCB can be found in every electronic devices and since it becomes smaller, lighter and more efficient, new sophisticated machines need to be developed to meet this demands. The main parameter for the manufacturing machines is throughput. In this paper a multi-diode laser system for UV exposure of the photoresist on Printed Circuit Board is presented. The multi-diode laser system presents high throughput at high resolution of the pattern as well as low development costs.

  2. Developing and improving a scanning system for dosimetric applications

    SciTech Connect

    Perez, P.; Galvan, V.; Castellanoa, G.; Valente, M.

    2010-08-04

    Radiotherapy is nowadays one of the most used techniques for the treatment of different pathologies, particularly cancer diseases. The accuracy regarding the application of these treatments, which are planned according to patient information, depends mainly on the dosimetric measurements of absorbed dose within irradiated tissues. The present work is devoted to the study, design and construction of an original device capable of performing visible light transmission measurements in order to analyze Fricke gel dosimeters. Furthermore, a suitable bi-dimensional positioning system along with a dedicated control system and image processing software has been adapted to the dosimetric device in order to perform 2D dose mapping. The obtained results confirm the feasibility of the proposed method, therefore suggesting its potentiality for clinical applications.

  3. Dosimetric comparison of linear accelerator-based stereotactic radiosurgery systems

    PubMed Central

    Sharma, S. D.; Kumar, Sudhir; Dagaonkar, S. S.; Bisht, Geetika; Dayanand, S.; Devi, Reena; Deshpande, S. S.; Chaudhary, S.; Bhatt, B. C.; Kannan, S.

    2007-01-01

    Stereotactic radiosurgery (SRS) is a special radiotherapy technique used to irradiate intracranial lesions by 3-D arrangements of narrow photon beams eliminating the needs of invasive surgery. Three different tertiary collimators, namely BrainLab and Radionics circular cones and BrainLab micro multileaf collimator (mMLC), are used for linear accelerator-based SRS systems (X-Knife). Output factor (St), tissue maximum ratio (TMR) and off axis ratio (OAR) of these three SRS systems were measured using CC01 (Scanditronix/ Welhofer) and Pinpoint (PTW) cylindrical and Markus plane parallel ionization chambers as well as TLD and radiochromic film. Measurement results of CC01 and Pinpoint chambers were very close to each other which indicate that further reduction in volume and physical dimensions of cylindrical ionization chamber is not necessary for SRS/SRT dosimetry. Output factors of BrainLab and Radionics SRS cones were very close to each other while output factors of equivalent diameter mMLC field were different from SRS circular cones. TMR of the three SRS systems compared were very close to one another. OAR of Radionics cone and BrainLab mMLC were very close to each other, within 2%. However, OARs of BrainLab cone were found comparable to OARs of Radionics cone and BrainLab mMLC within maximum variation of 4%. In addition, user-measured similar data of other three mMLC X-Knives were compared with the mMLC X-Knife data measured in this work and found comparable. The concept of switching over to mMLC-based SRS/SRT is thus validated from dosimetric characteristics as well. PMID:21217914

  4. [In-phantom dosimetric measurements as quality control for brachytherapy: System check and constancy check].

    PubMed

    Kollefrath, Michael; Bruggmoser, Gregor; Nanko, Norbert; Gainey, Mark

    2015-06-01

    In brachytherapy dosimetric measurements are difficult due to the inherent dose-inhomogenieties. Typically in routine clincal practice only the nominal dose rate is determined for computer controlled afterloading systems. The region of interest lies close to the source when measuring the spatial dose distribution. In this region small errors in the postioning of the detector, and its finite size, lead to large measurement uncertainties that exacerbate the routine dosimetric control of the system in the clinic. The size of the measurement chamber, its energy dependence, and the directional dependence of the measurement apparatus are the factors which have a significant influence on dosimetry. Although ionisation chambers are relatively large, they are employed since similar chambers are commonly found on clincal brachytherapy units. The dose is determined using DIN 6800 [11] since DIN 6809-2 [12], which deals with dosimetry in brachytherapy, is antiquated and is currently in the process of revision. Further information regarding dosimetry for brachytherapy can be found in textbooks [1] and [2]. The measurements for this work were performed with a HDR (High-Dose-Rate) (192)Ir source, type mHDR V2, and a Microselectron Afterloader V2 both from Nucletron/Elekta. In this work two dosimetric procedures are presented which, despite the aforemention difficulties, should assist in performing checks of the proper operation of the system. The first is a system check that measures the dose distribution along a line and is to be performed when first bringing the afterloader into operation, or after significant changes to the system. The other is a dosimetric constancy check, which with little effort can be performed monhtly or weekly. It simultaneously verifies the positioning of the source at two positions, the functionality of the system clock and the automatic re-calculation of the source activity. PMID:25791738

  5. Dosimetric measurements and comparison studies in digital imaging system

    NASA Astrophysics Data System (ADS)

    Jung, Ji-Young; Kim, Hee-Joung; Lee, Chang-Lae; Cho, Hyo-Min; Nam, Sora

    2008-03-01

    Number of radiologic exams using digital imaging systems has rapidly increased with advanced imaging technologies. However, it has not been paid attention to the radiation dose in clinical situations. It was the motivation to study radiation dosimetry in the DR system. The objective of this study was to measure beam quality and patient's dose using DR system and to compare them to both IEC standard and IAEA guidelines. The measured average dose for chest and abdomen was 1.376 mGy and 9.501 mGy, respectively, compared to 0.4 mGy and 10.0 mGy in IAEA guidelines. The results also indicated that the DR system has a lower radiation beam quality than that of the IEC standard. The results showed that the patients may be exposed higher radiation for chest exams and lower radiation for abdomen exams using DR system. IAEA Guidelines were prepared based on western people which may be different weight and height for patients compared them to Korean. In conclusion, a new guideline for acceptable DR dosimetry for Korean patients may need to be developed with further studies for large populations. We believe that this research greatly help to introduce the importance of the dosimetry in diagnostic radiology in Korea. And, a development of database for dosimetry in diagnostic radiology will become an opportunity of making aware of radiation safety of medical examination to patient.

  6. Dosimetric verification of a commercial inverse treatment planning system

    NASA Astrophysics Data System (ADS)

    Xing, Lei; Curran, Bruce; Hill, Robert; Holmes, Tim; Ma, Lijun; Forster, Kenneth M.; Boyer, Arthur L.

    1999-02-01

    A commercial three-dimensional (3D) inverse treatment planning system, Corvus (Nomos Corporation, Sewickley, PA), was recently made available. This paper reports our preliminary results and experience with commissioning this system for clinical implementation. This system uses a simulated annealing inverse planning algorithm to calculate intensity-modulated fields. The intensity-modulated fields are divided into beam profiles that can be delivered by means of a sequence of leaf settings by a multileaf collimator (MLC). The treatments are delivered using a computer-controlled MLC. To test the dose calculation algorithm used by the Corvus software, the dose distributions for single rectangularly shaped fields were compared with water phantom scan data. The dose distributions predicted to be delivered by multiple fields were measured using an ion chamber that could be positioned in a rotatable cylindrical water phantom. Integrated charge collected by the ion chamber was used to check the absolute dose of single- and multifield intensity modulated treatments at various spatial points. The measured and predicted doses were found to agree to within 4% at all measurement points. Another set of measurements used a cubic polystyrene phantom with radiographic film to record the radiation dose distribution. The films were calibrated and scanned to yield two-dimensional isodose distributions. Finally, a beam imaging system (BIS) was used to measure the intensity-modulated x-ray beam patterns in the beam's-eye view. The BIS-measured images were then compared with a theoretical calculation based on the MLC leaf sequence files to verify that the treatment would be executed accurately and without machine faults. Excellent correlation (correlation coefficients ) was found for all cases. Treatment plans generated using intensity

  7. Dosimetric Considerations in Radioimmunotherapy and Systemic Radionuclide Therapies: A Review

    PubMed Central

    Loke, Kelvin S. H.; Padhy, Ajit K.; Ng, David C. E.; Goh, Anthony S.W.; Divgi, Chaitanya

    2011-01-01

    Radiopharmaceutical therapy, once touted as the “magic bullet” in radiation oncology, is increasingly being used in the treatment of a variety of malignancies; albeit in later disease stages. With ever-increasing public and medical awareness of radiation effects, radiation dosimetry is becoming more important. Dosimetry allows administration of the maximum tolerated radiation dose to the tumor/organ to be treated but limiting radiation to critical organs. Traditional tumor dosimetry involved acquiring pretherapy planar scans and plasma estimates with a diagnostic dose of intended radiopharmaceuticals. New advancements in single photon emission computed tomography and positron emission tomography systems allow semi-quantitative measurements of radiation dosimetry thus allowing treatments tailored to each individual patient. PMID:22144871

  8. Dosimetric comparison between two MLC systems commonly used for stereotactic radiosurgery and radiotherapy: a Monte Carlo and experimental study.

    PubMed

    Asnaashari, K; Chow, James C L; Heydarian, Mostafa

    2013-06-01

    In this work dosimetric parameters of two multi-leaf collimator (MLC) systems, namely the beam modulator (BM), which is the MLC commercial name for Elekta "Synergy S" linear accelerator and Radionics micro-MLC (MMLC), are compared using measurements and Monte Carlo simulations. Dosimetric parameters, such as percentage depth doses (PDDs), in-plane and cross-plane dose profiles, and penumbras for different depths and field sizes of the 6 MV photon beams were measured using ionization chamber and a water tank. The collimator leakages were measured using radiographic films. MMLC and BM were modeled using the EGSnrc-based BEAMnrc Monte Carlo code and above dosimetric parameters were calculated. The energy fluence spectra for the two MLCs were also determined using the BEAMnrc and BEAMDP. Dosimetric parameters of the two MLCs were similar, except for penumbras. Leaf-side and leaf-end 80-20% dose penumbras at 10 cm depth for a 10×10 cm(2) field size were 4.8 and 5.1mm for MMLC and 5.3 mm and 6.3 mm for BM, respectively. Both Radionics MMLC and Elekta BM can be used effectively based on their dosimetric characteristics for stereotactic radiosurgery and radiotherapy, although the former showed slightly sharper dose penumbra especially in the leaf-end direction. PMID:22658764

  9. Comparison of the dose distribution obtained from dosimetric systems with intensity modulated radiotherapy planning system in the treatment of prostate cancer

    NASA Astrophysics Data System (ADS)

    Gökçe, M.; Uslu, D. Koçyiǧit; Ertunç, C.; Karalı, T.

    2016-03-01

    The aim of this study is to compare Intensity Modulated Radiation Therapy (IMRT) plan of prostate cancer patients with different dose verification systems in dosimetric aspects and to compare these systems with each other in terms of reliability, applicability and application time. Dosimetric control processes of IMRT plan of three prostate cancer patients were carried out using thermoluminescent dosimeter (TLD), ion chamber (IC) and 2D Array detector systems. The difference between the dose values obtained from the dosimetric systems and treatment planning system (TPS) were found to be about % 5. For the measured (TLD) and calculated (TPS) doses %3 percentage differences were obtained for the points close to center while percentage differences increased at the field edges. It was found that TLD and IC measurements will increase the precision and reliability of the results of 2D Array.

  10. On the implementation of a recently proposed dosimetric formalism to a robotic radiosurgery system

    SciTech Connect

    Pantelis, E.; Moutsatsos, A.; Zourari, K.; Kilby, W.; Antypas, C.; Papagiannis, P.; Karaiskos, P.; Georgiou, E.; Sakelliou, L.

    2010-05-15

    Purpose: The aim of this work is to implement a recently proposed dosimetric formalism for nonstandard fields to the calibration and small field output factor measurement of a robotic stereotactic radiosurgery system. Methods: Reference dosimetry measurements were performed in the nonstandard, 60 mm diameter machine specific reference (msr) field using a Farmer ion chamber, five other cylindrical chambers with cavity lengths ranging from 16.25 down to 2.7 mm, and alanine dosimeters. Output factor measurements were performed for the 5, 7.5, 10, and 15 mm field sizes using microchambers, diode detectors, alanine dosimeters, TLD microcubes, and EBT Gafchromic films. Measurement correction factors as described in the proposed formalism were calculated for the ion chamber and diode detector output factor measurements based on published Monte Carlo data. Corresponding volume averaging correction factors were calculated for the alanine output factor measurements using 3D dose distributions, measured with polymer gel dosimeters. Results: Farmer chamber and alanine reference dosimetry results were found in close agreement, yielding a correction factor of k{sub Q{sub m{sub s{sub r,Q}{sup f{sub m}{sub s}{sub r},f{sub r}{sub e}{sub f}}}}}=0.999{+-}0.016 for the chamber readings. These results were also found to be in agreement within experimental uncertainties with corresponding results obtained using the shorter cavity length ionization chambers. The mean measured dose values of the latter, however, were found to be consistently greater than that of the Farmer chamber. This finding, combined with an observed inverse relationship between the mean measured dose and chamber cavity length that follows the trend predicted by theoretical volume averaging calculations in the msr field, implies that the Farmer k{sub Q{sub m{sub s{sub r,Q}{sup f{sub m}{sub s}{sub r},f{sub r}{sub e}{sub f}}}}} correction is greater than unity. Regarding the output factor results, deviations as large as

  11. Dosimetric evaluation of two treatment planning systems for high dose rate brachytherapy applications

    SciTech Connect

    Shwetha, Bondel; Ravikumar, Manickam; Supe, Sanjay S.; Sathiyan, Saminathan; Lokesh, Vishwanath; Keshava, Subbarao L.

    2012-04-01

    Various treatment planning systems are used to design plans for the treatment of cervical cancer using high-dose-rate brachytherapy. The purpose of this study was to make a dosimetric comparison of the 2 treatment planning systems from Varian medical systems, namely ABACUS and BrachyVision. The dose distribution of Ir-192 source generated with a single dwell position was compared using ABACUS (version 3.1) and BrachyVision (version 6.5) planning systems. Ten patients with intracavitary applications were planned on both systems using orthogonal radiographs. Doses were calculated at the prescription points (point A, right and left) and reference points RU, LU, RM, LM, bladder, and rectum. For single dwell position, little difference was observed in the doses to points along the perpendicular bisector. The mean difference between ABACUS and BrachyVision for these points was 1.88%. The mean difference in the dose calculated toward the distal end of the cable by ABACUS and BrachyVision was 3.78%, whereas along the proximal end the difference was 19.82%. For the patient case there was approximately 2% difference between ABACUS and BrachyVision planning for dose to the prescription points. The dose difference for the reference points ranged from 0.4-1.5%. For bladder and rectum, the differences were 5.2% and 13.5%, respectively. The dose difference between the rectum points was statistically significant. There is considerable difference between the dose calculations performed by the 2 treatment planning systems. It is seen that these discrepancies are caused by the differences in the calculation methodology adopted by the 2 systems.

  12. Dosimetric evaluation of a Monte Carlo IMRT treatment planning system incorporating the MIMiC

    NASA Astrophysics Data System (ADS)

    Rassiah-Szegedi, P.; Fuss, M.; Sheikh-Bagheri, D.; Szegedi, M.; Stathakis, S.; Lancaster, J.; Papanikolaou, N.; Salter, B.

    2007-12-01

    The high dose per fraction delivered to lung lesions in stereotactic body radiation therapy (SBRT) demands high dose calculation and delivery accuracy. The inhomogeneous density in the thoracic region along with the small fields used typically in intensity-modulated radiation therapy (IMRT) treatments poses a challenge in the accuracy of dose calculation. In this study we dosimetrically evaluated a pre-release version of a Monte Carlo planning system (PEREGRINE 1.6b, NOMOS Corp., Cranberry Township, PA), which incorporates the modeling of serial tomotherapy IMRT treatments with the binary multileaf intensity modulating collimator (MIMiC). The aim of this study is to show the validation process of PEREGRINE 1.6b since it was used as a benchmark to investigate the accuracy of doses calculated by a finite size pencil beam (FSPB) algorithm for lung lesions treated on the SBRT dose regime via serial tomotherapy in our previous study. Doses calculated by PEREGRINE were compared against measurements in homogeneous and inhomogeneous materials carried out on a Varian 600C with a 6 MV photon beam. Phantom studies simulating various sized lesions were also carried out to explain some of the large dose discrepancies seen in the dose calculations with small lesions. Doses calculated by PEREGRINE agreed to within 2% in water and up to 3% for measurements in an inhomogeneous phantom containing lung, bone and unit density tissue.

  13. A new fully integrated X-ray irradiator system for dosimetric research.

    PubMed

    Richter, D; Mittelstraß, D; Kreutzer, S; Pintaske, R; Dornich, K; Fuchs, M

    2016-06-01

    A fully housed X-ray irradiator was developed for use within lexsyg or Magnettech desktop equipment. The importance of hardening of the low energy photon radiation is discussed, its performance and feasibility is empirically shown and sustained by basic numerical simulations. Results of the latter for various materials are given for different X-ray source settings in order to provide estimates on the required setup for the irradiation of different geometries and materials. A Si-photodiode provides real-time monitoring of the X-ray-irradiator designed for use in dosimetric dating and other dosimetric application where irradiation of small samples or dosemeters is required. PMID:27041090

  14. Evaluation of the dosimetric accuracy for a couch-based tracking system (CBTS)

    NASA Astrophysics Data System (ADS)

    Chang, Kyung Hwan; Lee, Suk; Kim, Kwang Hyeon; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong; Cao, Yuanjie

    2016-07-01

    In this study, the geometric and dosimetric accuracy of an in-house-developed couch-based tracking system (CBTS) was investigated using both film and in-house-developed polymer gel dosimeters. We evaluated the 1D and the 2D motion accuracies of our couch system by using Gafchromic EBT film. For the 1D test, the couch system was moved 5, 10, and 20 mm in the X, Y, and Z directions, respectively. Meanwhile, for the 2D test, it was moved along the XY, YZ, and ZX directions. We compared the profiles, full widths at half maximum (FWHMs), and penumbras between the static and the tracking fields. For the 3D test, we quantitatively compared the dose distribution between the static and the tracking fields by using the polymer gel dosimeter when it was simultaneously moved in the XYZ directions. We confirmed that the film was moved according to motion amplitudes of 5, 10, and 20 mm in the X, Y, and Z directions, respectively, in the 1D and 2D motion tests. The value of the FWHM of the static field and the three tracking fields were 51.88, 53.28, 57.67, and 64.43 mm, respectively. Two types of penumbras became wider with increasing amplitudes compared to the static field. For the 3D test, the dose distribution of the XYZ tracking field was qualitatively larger than that of the static field. We conclude that this CBTS has the potential for pre-clinical applications in adaptive radiation therapy.

  15. Dosimetric quality control of Eclipse treatment planning system using pelvic digital test object

    NASA Astrophysics Data System (ADS)

    Benhdech, Yassine; Beaumont, Stéphane; Guédon, Jeanpierre; Crespin, Sylvain

    2011-03-01

    Last year, we demonstrated the feasibility of a new method to perform dosimetric quality control of Treatment Planning Systems in radiotherapy, this method is based on Monte-Carlo simulations and uses anatomical Digital Test Objects (DTOs). The pelvic DTO was used in order to assess this new method on an ECLIPSE VARIAN Treatment Planning System. Large dose variations were observed particularly in air and bone equivalent material. In this current work, we discuss the results of the previous paper and provide an explanation for observed dose differences, the VARIAN Eclipse (Anisotropic Analytical) algorithm was investigated. Monte Carlo simulations (MC) were performed with a PENELOPE code version 2003. To increase efficiency of MC simulations, we have used our parallelized version based on the standard MPI (Message Passing Interface). The parallel code has been run on a 32- processor SGI cluster. The study was carried out using pelvic DTOs and was performed for low- and high-energy photon beams (6 and 18MV) on 2100CD VARIAN linear accelerator. A square field (10x10 cm2) was used. Assuming the MC data as reference, χ index analyze was carried out. For this study, a distance to agreement (DTA) was set to 7mm while the dose difference was set to 5% as recommended in the TRS-430 and TG-53 (on the beam axis in 3-D inhomogeneities). When using Monte Carlo PENELOPE, the absorbed dose is computed to the medium, however the TPS computes dose to water. We have used the method described by Siebers et al. based on Bragg-Gray cavity theory to convert MC simulated dose to medium to dose to water. Results show a strong consistency between ECLIPSE and MC calculations on the beam axis.

  16. Dosimetric effects of positioning shifts using 6D-frameless stereotactic Brainlab system in hypofractionated intracranial radiotherapy.

    PubMed

    Jin, Hosang; Keeling, Vance P; Ali, Imad; Ahmad, Salahuddin

    2016-01-01

    Dosimetric consequences of positional shifts were studied using frameless Brainlab ExacTrac X-ray system for hypofractionated (3 or 5 fractions) intracranial stereo-tactic radiotherapy (SRT). SRT treatments of 17 patients with metastatic intracranial tumors using the stereotactic system were retrospectively investigated. The treatments were simulated in a treatment planning system by modifying planning parameters with a matrix conversion technique based on positional shifts for initial infrared (IR)-based setup (XC: X-ray correction) and post-correction (XV: X-ray verification). The simulation was implemented with (a) 3D translational shifts only and (b) 6D translational and rotational shifts for dosimetric effects of angular correction. Mean translations and rotations (± 1 SD) of 77 fractions based on the initial IR setup (XC) were 0.51 ± 0.86 mm (lateral), 0.30 ± 1.55 mm (longitudinal), and -1.63 ± 1.00 mm (vertical); -0.53° ± 0.56° (pitch), 0.42° ± 0.60° (roll), and 0.44°± 0.90° (yaw), respectively. These were -0.07 ± 0.24 mm, -0.07 ± 0.25 mm, 0.06± 0.21 mm, 0.04° ± 0.23°, 0.00° ± 0.30°, and -0.02° ± 0.22°, respectively, for the postcorrection (XV). Substantial degradation of the treatment plans was observed in D95 of PTV (2.6% ± 3.3%; simulated treatment versus treatment planning), Dmin of PTV (13.4% ± 11.6%), and Dmin of CTV (2.8% ± 3.8%, with the maximum error of 10.0%) from XC, while dosimetrically negligible changes (< 0.1%) were detected for both CTV and PTV from XV simulation. 3D angular correction significantly improved CTV dose coverage when the total angular shifts (|pitch| + |roll| + |yaw|) were greater than 2°. With the 6D stereoscopic X-ray verification imaging and frameless immobilization, submillimeter and subdegree accuracy is achieved with negligible dosimetric deviations. 3D angular correction is required when the angular deviation is substantial. A CTV-to-PTV safety margin of 2 mm is large enough to prevent

  17. Commissioning and dosimetric characteristics of TrueBeam system: Composite data of three TrueBeam machines

    SciTech Connect

    Chang Zheng; Wu Qiuwen; Adamson, Justus; Ren Lei; Bowsher, James; Yan Hui; Thomas, Andrew; Yin Fangfang

    2012-11-15

    Purpose: A TrueBeam linear accelerator (TB-LINAC) is designed to deliver traditionally flattened and flattening-filter-free (FFF) beams. Although it has been widely adopted in many clinics for patient treatment, limited information is available related to commissioning of this type of machine. In this work, commissioning data of three units were measured, and multiunit comparison was presented to provide valuable insights and reliable evaluations on the characteristics of the new treatment system. Methods: The TB-LINAC is equipped with newly designed waveguide, carousel assembly, monitoring control, and integrated imaging systems. Each machine in this study has 4, 6, 8, 10, 15 MV flattened photon beams, and 6 MV and 10 MV FFF photon beams as well as 6, 9, 12, 16, 20, and 22 MeV electron beams. Dosimetric characteristics of the three new TB-LINAC treatment units are systematically measured for commissioning. High-resolution diode detectors and ion chambers were used to measure dosimetric data for a range of field sizes from 10 Multiplication-Sign 10 to 400 Multiplication-Sign 400 mm{sup 2}. The composite dosimetric data of the three units are presented in this work. The commissioning of intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), image-guided radiation therapy, and gating systems are also illustrated. Critical considerations of P{sub ion} of FFF photon beams and small field dosimetric measurements were investigated. Results: The authors found all PDDs and profiles matched well among the three machines. Beam data were quantitatively compared and combined through average to yield composite beam data. The discrepancies among the machines were quantified using standard deviation (SD). The mean SD of the PDDs among the three units is 0.12%, and the mean SD of the profiles is 0.40% for 10 MV FFF open fields. The variations of P{sub ion} of the chamber CC13 is 1.2 {+-} 0.1% under 6 MV FFF and 2.0 {+-} 0.5% under 10 MV FFF from dmax to

  18. Dosimetric accuracy of the cone-beam CT-based treatment planning of the Vero system: a phantom study.

    PubMed

    Yohannes, Indra; Prasetio, Heru; Kallis, Karoline; Bert, Christoph

    2016-01-01

    We report an investigation on the accuracy of dose calculation based on the cone-beam computed tomography (CBCT) images of the nonbowtie filter kV imaging system of the Vero linear accelerator. Different sets of materials and tube voltages were employed to generate the Hounsfield unit lookup tables (HLUTs) for both CBCT and fan-beam CT (FBCT) systems. The HLUTs were then implemented for the dose calculation in a treatment planning system (TPS). Dosimetric evaluation was carried out on an in-house-developed cube phantom that consists of water-equivalent slabs and inhomogeneity inserts. Two independent dosimeters positioned in the cube phantom were used in this study for point-dose and two-dimensional (2D) dose distribution measurements. The differences of HLUTs from various materials and tube voltages in both CT systems resulted in differences in dose calculation accuracy. We found that the higher the tube voltage used to obtain CT images, the better the point-dose calculation and the gamma passing rate of the 2D dose distribution agree to the values determined in the TPS. Moreover, the insert materials that are not tissue-equivalent led to higher dose-calculation inaccuracy. There were negligible differences in dosimetric evaluation between the CBCT- and FBCT-based treatment planning if the HLUTs were generated using the tissue-equivalent materials. In this study, the CBCT images of the Vero system from a complex inhomogeneity phantom can be applied for the TPS dose calculation if the system is calibrated using tissue-equivalent materials scanned at high tube voltage (i.e., 120 kV). PMID:27455496

  19. Potential application of metal nanoparticles for dosimetric systems: Concepts and perspectives

    NASA Astrophysics Data System (ADS)

    Guidelli, Eder José; Baffa, Oswaldo

    2014-11-01

    Metallic nanoparticles increase the delivered dose and consequently enhance tissue radio sensitization during radiation therapy of cancer. The Dose Enhancement Factor (DEF) corresponds to the ratio between the dose deposited on a tissue containing nanoparticles, and the dose deposited on a tissue without nanoparticles. In this sense, we have used electron spin resonance spectroscopy (ESR) to investigate how silver and gold nanoparticles affect the dose deposition in alanine dosimeters, which act as a surrogate of soft tissue. Besides optimizing radiation absorption by the dosimeter, the optical properties of these metal nanoparticles could also improve light emission from materials employed as radiation detectors. Therefore, we have also examined how the plasmonic properties of noble metal nanoparticles could enhance radiation detection using optically stimulated luminescence (OSL) dosimetry. This work will show results on how the use of gold and silver nanoparticles are beneficial for the ESR and OSL dosimetric techniques, and will describe the difficulties we have been facing, the challenges to overcome, and the perspectives.

  20. Potential application of metal nanoparticles for dosimetric systems: Concepts and perspectives

    SciTech Connect

    Guidelli, Eder José Baffa, Oswaldo

    2014-11-07

    Metallic nanoparticles increase the delivered dose and consequently enhance tissue radio sensitization during radiation therapy of cancer. The Dose Enhancement Factor (DEF) corresponds to the ratio between the dose deposited on a tissue containing nanoparticles, and the dose deposited on a tissue without nanoparticles. In this sense, we have used electron spin resonance spectroscopy (ESR) to investigate how silver and gold nanoparticles affect the dose deposition in alanine dosimeters, which act as a surrogate of soft tissue. Besides optimizing radiation absorption by the dosimeter, the optical properties of these metal nanoparticles could also improve light emission from materials employed as radiation detectors. Therefore, we have also examined how the plasmonic properties of noble metal nanoparticles could enhance radiation detection using optically stimulated luminescence (OSL) dosimetry. This work will show results on how the use of gold and silver nanoparticles are beneficial for the ESR and OSL dosimetric techniques, and will describe the difficulties we have been facing, the challenges to overcome, and the perspectives.

  1. Preliminary evaluation of the dosimetric accuracy of the in vivo plastic scintillation detector OARtrac system for prostate cancer treatments

    NASA Astrophysics Data System (ADS)

    Klawikowski, Slade J.; Zeringue, Clint; Wootton, Landon S.; Ibbott, Geoffrey S.; Beddar, Sam

    2014-05-01

    A promising, new, in vivo prostate dosimetry system has been developed for clinical radiation therapy. This work outlines the preliminary end-to-end testing of the accuracy and precision of the new OARtrac scintillation dosimetry system. We tested 94 calibrated plastic scintillation detector (PSD) probes before their final integration into endorectal balloon assemblies. These probes had been calibrated at The University of Texas MD Anderson Cancer Center Dosimetry Laboratory. We used a complete clinical OARtrac system including the PSD probes, charge coupled device camera monitoring system, and the manufacturer's integrated software package. The PSD probes were irradiated at 6 MV in a Solid Water® phantom. Irradiations were performed with a 6 MV linear accelerator using anterior-posterior/posterior-anterior matched fields to a maximum dose of 200 cGy in a 100 cm source-axis distance geometry. As a whole, the OARtrac system has good accuracy with a mean error of 0.01% and an error spread of ±5.4% at the 95% confidence interval. These results reflect the PSD probes’ accuracy before their final insertion into endorectal balloons. Future work will test the dosimetric effects of mounting the PSD probes within the endorectal balloon assemblies.

  2. Dosimetric verification of IMAT delivery with a conventional EPID system and a commercial portal dose image prediction tool

    SciTech Connect

    Iori, Mauro; Cagni, Elisabetta; Paiusco, Marta; Munro, Peter; Nahum, Alan E.

    2010-01-15

    Purpose: The electronic portal imaging device (EPID) is a system for checking the patient setup; as a result of its integration with the linear accelerator and software customized for dosimetry, it is increasingly used for verification of the delivery of fixed-field intensity-modulated radiation therapy (IMRT). In order to extend such an approach to intensity-modulated arc therapy (IMAT), the combined use of an EPID system and a portal dose image prediction (PDIP) tool has been investigated. Methods: The dosimetric behavior of an EPID system, mechanically reinforced to maintain its positional stability during the accelerator gantry rotation, has been studied to assess its ability to measure portal dose distributions for IMAT treatment beams. In addition, the PDIP tool of a commercial treatment planning system, commonly used for static IMRT dosimetry, has been validated for simulating the PDIs of IMAT treatment fields. The method has been applied to the delivery verification of 23 treatment fields that were measured in their dual mode of IMRT and IMAT modalities. Results: The EPID system has proved to be appropriate for measuring the PDIs of IMAT fields; additionally the PDIP tool was able to simulate these accurately. The results are quite similar to those obtained for static IMRT treatment verification, although it was necessary to investigate the dependence of the EPID signal and of the accelerator monitor chamber response on variable dose rate. Conclusions: Our initial tests indicate that the EPID system, together with the PDIP tool, is a suitable device for the verification of IMAT plan delivery; however, additional tests are necessary to confirm these results.

  3. Dosimetric evaluation of PLATO and Oncentra treatment planning systems for High Dose Rate (HDR) brachytherapy gynecological treatments

    SciTech Connect

    Singh, Hardev; De La Fuente Herman, Tania; Showalter, Barry; Thompson, Spencer J.; Syzek, Elizabeth J.; Herman, Terence; Ahmad, Salahuddin

    2012-10-23

    This study compares the dosimetric differences in HDR brachytherapy treatment plans calculated with Nucletron's PLATO and Oncentra MasterPlan treatment planning systems (TPS). Ten patients (1 T1b, 1 T2a, 6 T2b, 2 T4) having cervical carcinoma, median age of 43.5 years (range, 34-79 years) treated with tandem and ring applicator in our institution were selected retrospectively for this study. For both Plato and Oncentra TPS, the same orthogonal films anterior-posterior (AP) and lateral were used to manually draw the prescription and anatomical points using definitions from the Manchester system and recommendations from the ICRU report 38. Data input for PLATO was done using a digitizer and Epson Expression 10000XL scanner was used for Oncentra where the points were selected on the images in the screen. The prescription doses for these patients were 30 Gy to points right A (RA) and left A (LA) delivered in 5 fractions with Ir-192 HDR source. Two arrangements: one dwell position and two dwell positions on the tandem were used for dose calculation. The doses to the patient points right B (RB) and left B (LB), and to the organs at risk (OAR), bladder and rectum for each patient were calculated. The mean dose and the mean percentage difference in dose calculated by the two treatment planning systems were compared. Paired t-tests were used for statistical analysis. No significant differences in mean RB, LB, bladder and rectum doses were found with p-values > 0.14. The mean percent difference of doses in RB, LB, bladder and rectum are found to be less than 2.2%, 1.8%, 1.3% and 2.2%, respectively. Dose calculations based on the two different treatment planning systems were found to be consistent and the treatment plans can be made with either system in our department without any concern.

  4. Dosimetric evaluation of PLATO and Oncentra treatment planning systems for High Dose Rate (HDR) brachytherapy gynecological treatments

    NASA Astrophysics Data System (ADS)

    Singh, Hardev; Herman, Tania De La Fuente; Showalter, Barry; Thompson, Spencer J.; Syzek, Elizabeth J.; Herman, Terence; Ahmad, Salahuddin

    2012-10-01

    This study compares the dosimetric differences in HDR brachytherapy treatment plans calculated with Nucletron's PLATO and Oncentra MasterPlan treatment planning systems (TPS). Ten patients (1 T1b, 1 T2a, 6 T2b, 2 T4) having cervical carcinoma, median age of 43.5 years (range, 34-79 years) treated with tandem & ring applicator in our institution were selected retrospectively for this study. For both Plato and Oncentra TPS, the same orthogonal films anterior-posterior (AP) and lateral were used to manually draw the prescription and anatomical points using definitions from the Manchester system and recommendations from the ICRU report 38. Data input for PLATO was done using a digitizer and Epson Expression 10000XL scanner was used for Oncentra where the points were selected on the images in the screen. The prescription doses for these patients were 30 Gy to points right A (RA) and left A (LA) delivered in 5 fractions with Ir-192 HDR source. Two arrangements: one dwell position and two dwell positions on the tandem were used for dose calculation. The doses to the patient points right B (RB) and left B (LB), and to the organs at risk (OAR), bladder and rectum for each patient were calculated. The mean dose and the mean percentage difference in dose calculated by the two treatment planning systems were compared. Paired t-tests were used for statistical analysis. No significant differences in mean RB, LB, bladder and rectum doses were found with p-values > 0.14. The mean percent difference of doses in RB, LB, bladder and rectum are found to be less than 2.2%, 1.8%, 1.3% and 2.2%, respectively. Dose calculations based on the two different treatment planning systems were found to be consistent and the treatment plans can be made with either system in our department without any concern.

  5. Determining the optimal dosimetric leaf gap setting for rounded leaf-end multileaf collimator systems by simple test fields.

    PubMed

    Yao, Weiguang; Farr, Jonathan B

    2015-01-01

    Individual QA for IMRT/VMAT plans is required by protocols. Sometimes plans cannot pass the institute's QA criteria. For the Eclipse treatment planning system (TPS) with rounded leaf-end multileaf collimator (MLC), one practical way to improve the agreement of planned and delivered doses is to tune the value of dosimetric leaf gap (DLG) in the TPS from the measured DLG. We propose that this step may be necessary due to the complexity of the MLC system, including dosimetry of small fields and the tongue-and-groove (T&G) effects, and report our use of test fields to obtain linac-specific optimal DLGs in TPSs. More than 20 original patient plans were reoptimized with the linac-specific optimal DLG value. We examined the distribution of gaps and T&G extensions in typical patient plans and the effect of using the optimal DLG on the distribution. The QA pass rate of patient plans using the optimal DLG was investigated. The dose-volume histograms (DVHs) of targets and organs at risk were checked. We tested three MLC systems (Varian millennium 120 MLC, high-definition 120 MLC, and Siemens 160 MLC) installed in four Varian linear accelerators (linacs) (TrueBEAM STx, Trilogy, Clinac 2300 iX, and Clinac 21 EX) and 1 Siemens linac (Artiste). With an optimal DLG, the individual QA for all those patient plans passed the institute's criteria (95% in DTA test or gamma test with 3%/3 mm/10%), even though most of these plans had failed to pass QA when using original DLGs optimized from typical patient plans or from the optimization process (automodeler) of Pinnacle TPS. Using either our optimal DLG or one optimized from typical patient plans or from the Pinnacle optimization process yielded similar DVHs. PMID:26218999

  6. An integrated Monte Carlo dosimetric verification system for radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Mizowaki, T.; Miyabe, Y.; Takegawa, H.; Narita, Y.; Yano, S.; Nagata, Y.; Teshima, T.; Hiraoka, M.

    2007-04-01

    An integrated Monte Carlo (MC) dose calculation system, MCRTV (Monte Carlo for radiotherapy treatment plan verification), has been developed for clinical treatment plan verification, especially for routine quality assurance (QA) of intensity-modulated radiotherapy (IMRT) plans. The MCRTV system consists of the EGS4/PRESTA MC codes originally written for particle transport through the accelerator, the multileaf collimator (MLC), and the patient/phantom, which run on a 28-CPU Linux cluster, and the associated software developed for the clinical implementation. MCRTV has an interface with a commercial treatment planning system (TPS) (Eclipse, Varian Medical Systems, Palo Alto, CA, USA) and reads the information needed for MC computation transferred in DICOM-RT format. The key features of MCRTV have been presented in detail in this paper. The phase-space data of our 15 MV photon beam from a Varian Clinac 2300C/D have been developed and several benchmarks have been performed under homogeneous and several inhomogeneous conditions (including water, aluminium, lung and bone media). The MC results agreed with the ionization chamber measurements to within 1% and 2% for homogeneous and inhomogeneous conditions, respectively. The MC calculation for a clinical prostate IMRT treatment plan validated the implementation of the beams and the patient/phantom configuration in MCRTV.

  7. EMCCD based luminescence imaging system for spatially resolved geo-chronometric and radiation dosimetric applications

    NASA Astrophysics Data System (ADS)

    Chauhan, N.; Adhyaru, P.; Vaghela, H.; Singhvi, A. K.

    2014-11-01

    We report the development of an Electron Multiplier Charge Coupled Device (EMCCD) based luminescence dating system. The system enables position sensitive measurements of luminescence for the estimation of spatially resolved distribution of equivalent dose for complex geological samples. The system includes: 1) a sample stimulation unit (with both thermal and optical stimulations), 2) an optics unit that comprises imaging optics and, 3) a data acquisition and processing unit. The system works in a LabVIEW environment with a graphical user interface (GUI). User specified stimulation protocols enable thermal and optical stimulation in any desired combination. The optics unit images the luminescence on to a EMCCD (512 × 512 pixels, each of 16μm × 16μm size) and maintains a unit magnification. This unit has flexible focusing and a filter housing that enables change of filters combinations without disturbing the setup. Time integrated EMCCD images of luminescence from the sample are acquired as a function of programmable dwell time and these images are processed using indigenously developed MATLAB based programs. Additionally, the programs align the acquired images using a set of control points (identifier features on the images) to a single pixel accuracy. The dose evaluation is based on integrated intensity from selected pixels followed by generation of a growth curve giving luminescence as a function of applied beta doses. Development of this EMCCD camera based luminescence system will enable in-situ luminescence measurements of the samples, without the requirement of separating mineral grains from their matrix. It will also allow age estimation of samples such as lithic artifacts/structures via dating of their surfaces, fusion crust of meteorites, pedogenic carbonates, etc and will additionally open up possibilities of application like testing spatial uniformity of doping in artificial luminescence phosphors, dating/dosimetry of inclusions etc.

  8. Dosimetric evaluation of total marrow irradiation using 2 different planning systems.

    PubMed

    Nalichowski, Adrian; Eagle, Don G; Burmeister, Jay

    2016-01-01

    This study compared 2 different treatment planning systems (TPSs) for quality and efficiency of total marrow irradiation (TMI) plans. The TPSs used in this study were VOxel-Less Optimization (VoLO) (Accuray Inc, Sunnyvale, CA) using helical dose delivery on a Tomotherapy Hi-Art treatment unit and Eclipse (Varian Medical Systems Inc, Palo Alto, CA) using volumetric modulated arc therapy (VMAT) dose delivery on a Varian iX treatment unit. A total dose of 1200cGy was prescribed to cover 95% of the planning target volume (PTV). The plans were optimized and calculated based on a single CT data and structure set using the Alderson Rando phantom (The Phantom Laboratory, Salem, NY) and physician contoured target and organ at risk (OAR) volumes. The OARs were lungs, heart, liver, kidneys, brain, and small bowel. The plans were evaluated based on plan quality, time to optimize the plan and calculate the dose, and beam on time. The resulting mean and maximum doses to the PTV were 1268 and 1465cGy for VoLO and 1284 and 1541cGy for Eclipse, respectively. For 5 of 6 OAR structures the VoLO system achieved lower mean and D10 doses ranging from 22% to 52% and 3% to 44%, respectively. Total computational time including only optimization and dose calculation were 0.9 hours for VoLO and 3.8 hours for Eclipse. These times do not include user-dependent target delineation and field setup. Both planning systems are capable of creating high-quality plans for total marrow irradiation. The VoLO planning system was able to achieve more uniform dose distribution throughout the target volume and steeper dose fall off, resulting in superior OAR sparing. VoLO׳s graphics processing unit (GPU)-based optimization and dose calculation algorithm also allowed much faster creation of TMI plans. PMID:27372384

  9. Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system

    SciTech Connect

    Li, X. Allen; Stepaniak, Christopher; Gore, Elizabeth

    2006-01-15

    This work introduces a gating technique that uses 4DCT to determine gating parameters and to plan gated treatment, and employs a Siemens linear accelerator to deliver the gated treatment. Because of technology incompatibility, the 4DCT scanner (LightSpeed, GE) and the Siemens accelerator require two different motion-monitoring systems. The motion monitoring system (AZ-773V, Anzai Med.) used for the gated delivery utilizes a pressure sensor to detect the external respiratory motion (pressure change) in real time. Another system (RPM, Varian) used for the 4DCT scanner (LightSpeed, GE) is based on an infrared camera to detect motion of external markers. These two motion monitoring systems (RPM and Anzai systems) were found to correlate well with each other. The depth doses and profile measured for gated delivery (with a duty cycle of 25% or 50%) were found to agree within 1.0% with those measured for ungated delivery, indicating that gating did not significantly alter beam characteristics. The measurement verified also that the MU linearity and beam output remained unchanged (within 0.3%). A practical method of using 4DCT to plan a gated treatment was developed. The duty cycle for either phase or amplitude gating can be determined based on 4DCT with consideration of set-up error and delivery efficiency. The close-loop measurement involving the entire gating process (imaging, planning, and delivery) showed that the measured isodose distributions agreed with those intended, validating the accuracy and reliability of the gating technique. Based these observations, we conclude that the gating technique introduced in this work, integrating Siemens linear accelerator and Anzai pressure sensor device with GE/Varian RPM 4DCT, is reliable and effective, and it can be used clinically to account for respiratory motion during radiation therapy.

  10. Dosimetric and QA aspects of Konrad inverse planning system for commissioning intensity-modulated radiation therapy.

    PubMed

    Deshpande, Shrikant; Sathiyanarayanan, V K; Bhangle, Janhavi; Swamy, Kumara; Basu, Sumit

    2007-04-01

    The intensity-modulated radiation therapy (IMRT) planning is performed using the Konrad inverse treatment planning system and the delivery of the treatment by using Siemens Oncor Impression Plus linear accelerator (step and shoot), which has been commissioned recently. The basic beam data required for commissioning the system were generate. The quality assurance of relative and absolute dose distribution was carried out before clinical implementation. The salient features of Konrad planning system, like dependence of grid size on dose volume histogram (DVH), number of intensity levels and step size in sequencer, are studied quantitatively and qualitatively.To verify whether the planned dose [from treatment planning system (TPS)] and delivered dose are the same, the absolute dose at a point is determined using CC01 ion chamber and the axial plane dose distribution is carried out using Kodak EDR2 in conjunction with OmniPro IMRT Phantom and OmniPro IMRT software from Scanditronix Wellhofer. To obtain the optimum combination in leaf sequencer module, parameters like number of intensity levels, step size are analyzed. The difference between pixel values of optimum fluence profile and the fluence profile obtained for various combinations of number of intensity levels and step size is compared and plotted. The calculations of the volume of any RT structure in the dose volume histogram are compared using grid sizes 3 mm and 4 mm. The measured and planned dose at a point showed good agreement (<3%) except for a few cases wherein the chamber was placed in a relatively high dose gradient region. The axial plane dose distribution using film dosimetry shows excellent agreement (correlation coefficient >0.97) in all the cases. In the leaf sequencer module, the combination of number of intensity level 7 with step size of 3 is the optimal solution for obtaining deliverable segments. The RT structure volume calculation is found to be more accurate with grid size of 3 mm for

  11. Evaluation of MLC leaf positioning accuracy for static and dynamic IMRT treatments using DAVID in vivo dosimetric system.

    PubMed

    Karagoz, Gulay; Zorlu, Faruk; Yeginer, Mete; Yildiz, Demet; Ozyigit, Gokhan

    2016-01-01

    Accuracy and precision of leaf positioning in multileaf collimators (MLCs) are significant factors for the accuracy of IMRT treatments. This study aimed to inves-tigate the accuracy and repeatability of the MLC leaf positioning via the DAVID invivo dosimetric system for dynamic and static MLC systems. The DAVID system was designed as multiwire transmission ionization chamber which is placed in accessory holder of linear accelerators. Each wire of DAVID system corresponds to a MLC leaf-pair to verify the leaf positioning accuracy during IMRT treatment and QA. In this study, verifications of IMRT plans of five head and neck (H&N) and five prostate patients treated in a Varian DHX linear accelerator with 80-leaf MLC were performed using DAVID system. Before DAVID-based dosimetry, Electronics Portal Imaging Device (EPID) and PTW 2D ARRAY dosimetry system were used for 2D verification of each plan. The measurements taken by DAVID system in the first day of the treatments were used as reference for the following measurements taken over the next four weeks. The deviations in leaf positioning were evaluated by "Total Deviation (TD)" parameter calculated by DAVID software. The delivered IMRT plans were originally prepared using dynamic MLC method. The same plans were subsequently calculated based on static MLC method with three different intensity levels of five (IL5), 10 (IL10) and 20 (IL20) in order to compare the performances of MLC leaf positioning repeatability for dynamic and static IMRT plans. The leaf positioning accuracy is also evaluated by analyzing DynaLog files based on error histograms and root mean square (RMS) errors of leaf pairs' positions. Moreover, a correlation analysis between simultaneously taken DAVID and EPID measurements and DynaLog file recordings was subsequently performed. In the analysis of DAVID outputs, the overall deviations of dynamic MLC-based IMRT calculated from the deviations of the four weeks were found as 0.55% ± 0.57% and 1.48% ± 0

  12. Dosimetric characterization of a cone-beam O-arm imaging system.

    PubMed

    Zhang, Jie; Weir, Victor; Fajardo, Liliosa; Lin, Jingying; Hsiung, Hsiang; Ritenour, E Russell

    2009-01-01

    This study compared patient dose and image quality of a mobile O-arm cone beam imaging system in the 3D scan acquisition mode to those of a 64 slice Computed Tomography (CT) imaging system. The investigation included patient dose, scattered radiation, and image quality measurements. The patient dose was measured using a 0.6 cc Farmer ion chamber and 30 cm long Computed Tomography (CT) head and body polymethylmethacrylate (PMMA) phantoms. The results show that under identical radiographic techniques (kVp, mAs, etc.) and with the same scan length, the O-arm in 3D scan acquisition mode delivers approximately half the radiation dose of a 64 slice CT scanner. Scattered radiation was measured at several locations around the O-arm, at 1 m, 2 m and 3 m distances in 3D CT scan acquisition mode with a RadCal 10 x 5-180 pancake ion chamber using a 30 cm long CT body phantom as the source of scatter. Similar measurements were made in a 64 slice CT scanner. The data demonstrate that scattered radiation from the O-arm to personnel involved in a clinical procedure is comparable to that from a 64 slice CT scanner. Image quality was compared by exposing a CATPHAN phantom to comparable doses in both the O-arm and the CT scanner. The resultant images were then evaluated for modulation transfer function (MTF), high-contrast spatial resolution, and low contrast sensitivity for clinical application purpose. The O-arm shows comparable high contrast to the CT (7 lp/cm vs. 8 lp/cm). The low contrast in the O-arm is not visible due to fixed pattern noise. For image guided surgery applications where the location of a structure is emphasized over a survey of all image details, the O-arm has some advantages due to wide radiation beam coverage and lower patient dose. The image quality of the O-arm needs significant improvement for other clinical applications where high image quality is desired. PMID:19923687

  13. Modeling and dosimetric performance evaluation of the RayStation treatment planning system.

    PubMed

    Mzenda, Bongile; Mugabe, Koki V; Sims, Rick; Godwin, Guy; Loria, Dayan

    2014-01-01

    The physics modeling, dose calculation accuracy and plan quality assessment of the RayStation (v3.5) treatment planning system (TPS) is presented in this study, with appropriate comparisons to the more established Pinnacle (v9.2) TPS. Modeling and validation for the Elekta MLCi and Agility beam models resulted in a good match to treatment machine-measured data based on tolerances of 3% for in-field and out-of-field regions, 10% for buildup and penumbral regions, and a gamma 2%/2mm dose/distance acceptance criteria. TPS commissioning using a wide range of appropriately selected dosimetry equipment, and following published guidelines, established the MLC modeling and dose calculation accuracy to be within standard tolerances for all tests performed. In both homogeneous and heterogeneous mediums, central axis calculations agreed with measurements within 2% for open fields and 3% for wedged fields, and within 4% off-axis. Treatment plan comparisons for identical clinical goals were made to Pinnacle for the following complex clinical cases: hypofractionated non-small cell lung carcinoma, head and neck, stereotactic spine, as well as for several standard clinical cases comprising of prostate, brain, and breast plans. DVHs, target, and critical organ doses, as well as measured point doses and gamma indices, applying both local and global (Van Dyk) normalization at 2%/2 mm and 3%/3 mm (10% lower threshold) acceptance criteria for these composite plans were assessed. In addition 3DVH was used to compare the perturbed dose distributions to the TPS 3D dose distributions. For all 32 cases, the patients QA checks showed > 95% of pixels passing 3% global/3mm gamma. PMID:25207563

  14. Prevention of transfusion-associated graft-versus-host disease by irradiation: technical aspect of a new ferrous sulphate dosimetric system.

    PubMed

    Del Lama, Lucas Sacchini; de Góes, Evamberto Garcia; Petchevist, Paulo César Dias; Moretto, Edson Lara; Borges, José Carlos; Covas, Dimas Tadeu; de Almeida, Adelaide

    2013-01-01

    Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a (60)Co teletherapy unit and its validation was accomplished with a (137)Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to determine the dose response and dose rate of the (60)Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs. PMID:23762345

  15. Prevention of Transfusion-Associated Graft-versus-Host Disease by Irradiation: Technical Aspect of a New Ferrous Sulphate Dosimetric System

    PubMed Central

    Del Lama, Lucas Sacchini; de Góes, Evamberto Garcia; Petchevist, Paulo César Dias; Moretto, Edson Lara; Borges, José Carlos; Covas, Dimas Tadeu; de Almeida, Adelaide

    2013-01-01

    Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a 60Co teletherapy unit and its validation was accomplished with a 137Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to determine the dose response and dose rate of the 60Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs. PMID:23762345

  16. Dosimetric audit in brachytherapy

    PubMed Central

    Bradley, D A; Nisbet, A

    2014-01-01

    Dosimetric audit is required for the improvement of patient safety in radiotherapy and to aid optimization of treatment. The reassurance that treatment is being delivered in line with accepted standards, that delivered doses are as prescribed and that quality improvement is enabled is as essential for brachytherapy as it is for the more commonly audited external beam radiotherapy. Dose measurement in brachytherapy is challenging owing to steep dose gradients and small scales, especially in the context of an audit. Several different approaches have been taken for audit measurement to date: thimble and well-type ionization chambers, thermoluminescent detectors, optically stimulated luminescence detectors, radiochromic film and alanine. In this work, we review all of the dosimetric brachytherapy audits that have been conducted in recent years, look at current audits in progress and propose required directions for brachytherapy dosimetric audit in the future. The concern over accurate source strength measurement may be essentially resolved with modern equipment and calibration methods, but brachytherapy is a rapidly developing field and dosimetric audit must keep pace. PMID:24807068

  17. Dosimetric characterization of a multileaf collimator for a new four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, MHI-TM2000

    SciTech Connect

    Nakamura, Mitsuhiro; Sawada, Akira; Ishihara, Yoshitomo; Takayama, Kenji; Mizowaki, Takashi; Kaneko, Shuji; Yamashita, Mikiko; Tanabe, Hiroaki; Kokubo, Masaki; Hiraoka, Masahiro

    2010-09-15

    Purpose: To present the dosimetric characterization of a multileaf collimator (MLC) for a new four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, MHI-TM2000. Methods: MHI-TM2000 has an x-ray head composed of an ultrasmall linear accelerator guide and a system-specific MLC. The x-ray head can rotate along the two orthogonal gimbals (pan and tilt rotations) up to {+-}2.5 deg., which swings the beam up to {+-}41.9 mm in each direction from the isocenter on the isocenter plane perpendicular to the beam. The MLC design is a single-focus type, has 30 pairs of 5 mm thick leaves at the isocenter, and produces a maximum field size of 150x150 mm{sup 2}. Leaf height and length are 110 and 260 mm, respectively. Each leaf end is circular, with a radius of curvature of 370 mm. The distance that each leaf passes over the isocenter is 77.5 mm. Radiation leakage between adjacent leaves is minimized by an interlocking tongue-and-groove (T and G) arrangement with the height of the groove part 55 mm. The dosimetric characterizations including field characteristics, leaf position accuracy, leakage, and T and G effect were evaluated using a well-commissioned 6 MV photon beam, EDR2 films (Kodak, Rochester, NY), and water-equivalent phantoms. Furthermore, the field characteristics and leaf position accuracy were evaluated under conditions of pan or tilt rotation. Results: The differences between nominal and measured field sizes were within {+-}0.5 mm. Although the penumbra widths were greater with wider field size, the maximum width was <5.5 mm even for the fully opened field. Compared to the results of field characteristics without pan or tilt rotation, the variation in field size, penumbra width, flatness, and symmetry was within {+-}1 mm/1% at the maximum pan or tilt rotational angle. The leaf position accuracy was 0.0{+-}0.1 mm, ranging from -0.3 to 0.2 mm at four gantry angles of 0 deg., 90 deg., 180 deg., and 270 deg. with and without pan or tilt rotation

  18. Dosimetric comparison of Linac-based (BrainLAB®) and robotic radiosurgery (CyberKnife ®) stereotactic system plans for acoustic schwannoma.

    PubMed

    Dutta, Debnarayan; Balaji Subramanian, S; Murli, V; Sudahar, H; Gopalakrishna Kurup, P G; Potharaju, Mahadev

    2012-02-01

    A dosimetric comparison of linear accelerator (LA)-based (BrainLAB) and robotic radiosurgery (RS) (CyberKnife) systems for acoustic schwannoma (Acoustic neuroma, AN) was carried out. Seven patients with radiologically confirmed unilateral AN were planned with both an LA-based (BrainLAB) and robotic RS (CyberKnife) system using the same computed tomography (CT) dataset and contours. Gross tumour volume (GTV) was contoured on post-contrast magnetic resonance imaging (MRI) scan [planning target volume (PTV) margin 2 mm]. Planning and calculation were done with appropriate calculation algorithms. The prescribed isodose in both systems was considered adequate to cover at least 95% of the contoured target. Plan evaluations were done by examining the target coverage by the prescribed isodose line, and high- and low-dose volumes. Isodose plans and dose volume histograms generated by the two systems were compared. There was no statistically significant difference between the contoured volumes between the systems. Tumour volumes ranged from 380 to 3,100 mm(3). Dose prescription was 13-15 Gy in single fraction (median prescribed isodose 85%). There were no significant differences in conformity index (CI) (0.53 versus 0.58; P = 0.225), maximum brainstem dose (4.9 versus 4.7 Gy; P = 0.935), 2.5-Gy volume (39.9 versus 52.3 cc; P = 0.238) or 5-Gy volume (11.8 versus 16.8 cc; P = 0.129) between BrainLAB and CyberKnife system plans. There were statistically significant differences in organs at risk (OAR) doses, such as mean cochlear dose (6.9 versus 5.4 Gy; P = 0.001), mean mesial temporal dose (2.6 versus 1.7 Gy; P = 0.07) and high-dose (10 Gy) volume (3.2 versus 5.2 cc; P = 0.017). AN patients planned with the CyberKnife system had superior OAR (cochlea and mesial temporal lobe) sparing compared with those planned with the Linac-based system. Further evaluation of these findings in prospective studies with clinical correlation will provide actual clinical benefit from the

  19. High-resolution digital dosimetric system for spatial characterization of radiation fields using a thermoluminescent CaF/sub 2/:Dy crystal

    SciTech Connect

    Atari, N.A.; Svensson, G.K.

    1986-05-01

    A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF/sub 2/:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +- 2 ..mu..m (1sigma) corresponding to 16 +- 1 line pair/mm measured at the 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +- 4 ..mu..m (1sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields.

  20. A high-resolution digital dosimetric system for spatial characterization of radiation fields using a thermoluminescent CaF2:Dy crystal.

    PubMed

    Atari, N A; Svensson, G K

    1986-01-01

    A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF2:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +/- 2 microns (1 sigma) corresponding to 16 +/- 1 line pairs/mm measured at the 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +/- 4 microns (1 sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields. PMID:3724696

  1. High-resolution digital dosimetric system for spatial characterization of radiation fields using a thermoluminescent CaF2:Dy crystal

    SciTech Connect

    Atari, N.A.; Svensson, G.K.

    1986-05-01

    A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF2:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +/- 2 microns (1 sigma) corresponding to 16 +/- 1 line pairs/mm measured at the 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +/- 4 microns (1 sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields.

  2. Geometric and dosimetric verification of step-and-shoot modulated fields with a new fast and high resolution beam imaging system

    SciTech Connect

    Bindoni, Luca . E-mail: lucabindoni@inwind.it

    2005-06-15

    A technique for geometric and dosimetric pretreatment verification of step-and-shoot intensity modulated radiotherapy treatments (IMRT) using a beam imaging system (BIS) made up of a charge-coupled device (CCD) digital camera optically coupled with a metal-plate/phosphor screen is described. Some physical properties of BIS were investigated in order to demonstrate its capability to perform measurements with a high spatial resolution and a high sampling rate. High-speed imaging, with a minimum charge integration time on the CCD of 120 ms, can be performed. The study of the signal-to-noise ratio as a function of sampling time is presented. In-plane and cross-line pixel size was measured to be 0.368{+-}0.004 mm/pixel, which agrees within 0.5% of the manufacturer value of 0.366 mm. Spatial linearity results are very good and there are no detectable image distortions on whole 30x30 cm{sup 2} detector area. A software routine was written to automatically extract positions of the collimator leaves from the images of the field shaped by the multileaf collimator (MLC) and also to compare them with the coordinates from the treatment planning system (TPS), thus directly testing both the MLC positioning and the treatment parameters transfer from TPS to the linear accelerator in a fast and precise way. The dosimetric capabilities (characteristics) of the imaging device for photon beams with energies of 6 and 15 MV were studied. Additional plexiglass buildup layers, depending on x-ray energy, were needed to reach maximum efficiency. The energy dependence of the BIS response versus dose and dose rate was found to be linear over a wide range. Relative output factors of BIS as a function of field size, compared with values measured with an ionization chamber, were in good accord for smaller field sizes {<=}10x10 cm{sup 2} but showed differences up to 4% for all the energies at the respective buildup depth for bigger fields. Square field profiles at water-equivalent buildup depths

  3. Rectal toxicity profile after transperineal interstitial permanent prostate brachytherapy: Use of a comprehensive toxicity scoring system and identification of rectal dosimetric toxicity predictors

    SciTech Connect

    Shah, Jinesh N.; Ennis, Ronald D. . E-mail: rennis@chpnet.org

    2006-03-01

    Purpose: To better understand rectal toxicity after prostate brachytherapy, we employed the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE version 3.0), a comprehensive system with distinct and separately reported gastrointestinal adverse event items (unlike Radiation Therapy Oncology Group morbidity scoring), to evaluate item-specific postimplant rectal toxicities. Methods and Materials: We analyzed 135 patients treated with brachytherapy {+-} hormonal therapy, using CTCAE v3.0 to score acute/late rectal toxicities (median follow-up, 41 months). Dosimetric parameters were evaluated for ability to predict toxicities. Results: Use of CTCAE yielded a novel rectal toxicity profile consisting of diarrhea, incontinence, urgency, proctitis, pain, spasms, and hemorrhage event rates. No item had a <5% Grade 1-2 acute toxicity rate (except spasms). Rectal dosimetry predicted late toxicities: for diarrhea, 5% Grade 1 toxicity rate for %V{sub 25} (percent of rectal volume receiving 25% of prescribed prostate dose) {<=} 25% vs. 60% for %V{sub 25} > 25% (p < 0.001); for maximum toxicity, 10% Grade 1 toxicity rate for %V{sub 1} {<=} 40% vs. 44% for %V{sub 1} > 40% (p = 0.007). Conclusions: A comprehensive understanding of item-specific postimplant rectal toxicities was obtained using CTCAE. Rectal %V{sub 25} > 25% and %V{sub 1} > 40% predicted worse late diarrhea and maximum toxicity, respectively.

  4. SU-E-T-132: Dosimetric Impact of Positioning Errors in Hypo-Fractionated Cranial Radiation Therapy Using Frameless Stereotactic BrainLAB System

    SciTech Connect

    Keeling, V; Jin, H; Ali, I; Ahmad, S

    2014-06-01

    Purpose: To determine dosimetric impact of positioning errors in the stereotactic hypo-fractionated treatment of intracranial lesions using 3Dtransaltional and 3D-rotational corrections (6D) frameless BrainLAB ExacTrac X-Ray system. Methods: 20 cranial lesions, treated in 3 or 5 fractions, were selected. An infrared (IR) optical positioning system was employed for initial patient setup followed by stereoscopic kV X-ray radiographs for position verification. 6D-translational and rotational shifts were determined to correct patient position. If these shifts were above tolerance (0.7 mm translational and 1° rotational), corrections were applied and another set of X-rays was taken to verify patient position. Dosimetric impact (D95, Dmin, Dmax, and Dmean of planning target volume (PTV) compared to original plans) of positioning errors for initial IR setup (XC: Xray Correction) and post-correction (XV: X-ray Verification) was determined in a treatment planning system using a method proposed by Yue et al. (Med. Phys. 33, 21-31 (2006)) with 3D-translational errors only and 6D-translational and rotational errors. Results: Absolute mean translational errors (±standard deviation) for total 92 fractions (XC/XV) were 0.79±0.88/0.19±0.15 mm (lateral), 1.66±1.71/0.18 ±0.16 mm (longitudinal), 1.95±1.18/0.15±0.14 mm (vertical) and rotational errors were 0.61±0.47/0.17±0.15° (pitch), 0.55±0.49/0.16±0.24° (roll), and 0.68±0.73/0.16±0.15° (yaw). The average changes (loss of coverage) in D95, Dmin, Dmax, and Dmean were 4.5±7.3/0.1±0.2%, 17.8±22.5/1.1±2.5%, 0.4±1.4/0.1±0.3%, and 0.9±1.7/0.0±0.1% using 6Dshifts and 3.1±5.5/0.0±0.1%, 14.2±20.3/0.8±1.7%, 0.0±1.2/0.1±0.3%, and 0.7±1.4/0.0±0.1% using 3D-translational shifts only. The setup corrections (XC-XV) improved the PTV coverage by 4.4±7.3% (D95) and 16.7±23.5% (Dmin) using 6D adjustment. Strong correlations were observed between translation errors and deviations in dose coverage for XC. Conclusion

  5. Dosimetric accuracy of a deterministic radiation transport based {sup 192}Ir brachytherapy treatment planning system. Part III. Comparison to Monte Carlo simulation in voxelized anatomical computational models

    SciTech Connect

    Zourari, K.; Pantelis, E.; Moutsatsos, A.; Sakelliou, L.; Georgiou, E.; Karaiskos, P.; Papagiannis, P.

    2013-01-15

    Purpose: To compare TG43-based and Acuros deterministic radiation transport-based calculations of the BrachyVision treatment planning system (TPS) with corresponding Monte Carlo (MC) simulation results in heterogeneous patient geometries, in order to validate Acuros and quantify the accuracy improvement it marks relative to TG43. Methods: Dosimetric comparisons in the form of isodose lines, percentage dose difference maps, and dose volume histogram results were performed for two voxelized mathematical models resembling an esophageal and a breast brachytherapy patient, as well as an actual breast brachytherapy patient model. The mathematical models were converted to digital imaging and communications in medicine (DICOM) image series for input to the TPS. The MCNP5 v.1.40 general-purpose simulation code input files for each model were prepared using information derived from the corresponding DICOM RT exports from the TPS. Results: Comparisons of MC and TG43 results in all models showed significant differences, as reported previously in the literature and expected from the inability of the TG43 based algorithm to account for heterogeneities and model specific scatter conditions. A close agreement was observed between MC and Acuros results in all models except for a limited number of points that lay in the penumbra of perfectly shaped structures in the esophageal model, or at distances very close to the catheters in all models. Conclusions: Acuros marks a significant dosimetry improvement relative to TG43. The assessment of the clinical significance of this accuracy improvement requires further work. Mathematical patient equivalent models and models prepared from actual patient CT series are useful complementary tools in the methodology outlined in this series of works for the benchmarking of any advanced dose calculation algorithm beyond TG43.

  6. SU-E-T-136: Dosimetric Robustness of a Magnetic Resonance Imaging Guided Radiation Therapy (MR-IGRT) System

    SciTech Connect

    Rodriguez, V; Green, O; Wooten, H; Kashani, R; Mutic, S; Li, H; Dempsey, J

    2014-06-01

    Purpose: To test the radiation delivery robustness of the first MR-IGRT system using a commercial cylindrical diode array detector (ArcCHECK) and an ionization thimble chamber (Exradin A18). Methods: The MR-IGRT system is composed of three evenly spaced Co-60 sources on a rotating gantry located between two magnet halves. The collimator for each source consists of 30 doubly-focused leaf pairs that allow the system to deliver both conformal and intensity modulated (IMRT) treatment plans. The system's delivery robustness was tested over a span of 6 months from September 2013 through February 2014. This was achieved by repeatedly delivering 10 patient plans. These plans consisted of 2 conformal prostates, 2 IMRT prostates, 2 IMRT head and neck, 2 IMRT breast, 1 IMRT pancreas, and 1 IMRT bladder. The plans were generated with the system's treatment planning software. Once the plans were generated, quality assurance plans were created on a digital ArcCHECK dataset. The ArcCHECK used for testing was specially designed to be MR-compatible by moving the power supply outside of the magnetic field. The A18 ionization chamber was placed in a custom plastic plug insert in the center of the ArcCHECK. Gamma analysis was used with the ArcCHECK for relative dose evaluating both 3%/3mm and 2%/2mm. Absolute point dose was compared between ion chamber measurement and treatment plan. Results: The ArcCHECK passing rate remained constant over the 6 month period. The average passing rate for 3%/3mm and 2%/2mm analysis was 98.6% ± 0.7 and 88.8% ± 2.9, respectively. The ion chamber measurements showed little variation with an average percent difference between planned dose verses measured dose of 0.9% ± 0.7. Conclusion: Minimal differences were noted in the delivery of the 10 patient plans. Over a period that included acceptance testing, commissioning, and clinical deliveries, the MR-IGRT system remained consistent in radiation delivery.

  7. A comprehensive system for dosimetric commissioning and Monte Carlo validation for the small animal radiation research platform

    PubMed Central

    Tryggestad, E; Armour, M; Iordachita, I; Verhaegen, F; Wong, J W

    2011-01-01

    Our group has constructed the small animal radiation research platform (SARRP) for delivering focal, kilo-voltage radiation to targets in small animals under robotic control using cone-beam CT guidance. The present work was undertaken to support the SARRP’s treatment planning capabilities. We have devised a comprehensive system for characterizing the radiation dosimetry in water for the SARRP and have developed a Monte Carlo dose engine with the intent of reproducing these measured results. We find that the SARRP provides sufficient therapeutic dose rates ranging from 102 to 228 cGy min−1 at 1 cm depth for the available set of high-precision beams ranging from 0.5 to 5 mm in size. In terms of depth–dose, the mean of the absolute percentage differences between the Monte Carlo calculations and measurement is 3.4% over the full range of sampled depths spanning 0.5–7.2 cm for the 3 and 5 mm beams. The measured and computed profiles for these beams agree well overall; of note, good agreement is observed in the profile tails. Especially for the smallest 0.5 and 1 mm beams, including a more realistic description of the effective x-ray source into the Monte Carlo model may be important. PMID:19687532

  8. Dosimetric Verification by Using the ArcCHECK System and 3DVH Software for Various Target Sizes

    PubMed Central

    Song, Jin Ho; Shin, Hun-Joo; Kay, Chul Seung; Son, Seok Hyun

    2015-01-01

    Objective To investigate the usefulness of the 3DVH software with an ArcCHECK 3D diode array detector in newly designed plans with various target sizes. Methods The isocenter dose was measured with an ion-chamber and was compared with the planned and 3DVH predicted doses. The 2D gamma passing rates were evaluated at the diode level by using the ArcCHECK detector. The 3D gamma passing rates for specific regions of interest (ROIs) were also evaluated by using the 3DVH software. Several dose-volume histograms (DVH)-based predicted metrics for all structures were also obtained by using the 3DVH software. Results The isocenter dose deviation was <1% in all plans except in the case of a 1 cm target. Besides the gamma passing rate at the diode level, the 3D gamma passing rate for specific ROIs tended to decrease with increasing target size; this was more noticeable when a more stringent gamma criterion was applied. No correlation was found with the gamma passing rates and the DVH-based metrics especially in the ROI with high-dose gradients. Conclusions Delivery quality assurance by using 3DVH and ArcCHECK can provide substantial information through a simple and easy approach, although the accuracy of this system should be judged cautiously. PMID:25807544

  9. Dosimetric Verification of the System of Planning Brainscan for Stereotactic Radiosurgery at Oncology Department of the General Hospital of Mexico

    SciTech Connect

    Alvarez R, J. T.; Salinas, B.; Tovar M, V. M.; Villasenor O, L. F.; Molero M, A. C.

    2006-09-08

    The verification consists on the planning and administration of stereotactic treatments by means of conformed static beams, several polyethylene capsules with powder TLD 100 (type IAEA) located inside the head of a phantom Alderson-Rando. Because the planning system corrects for no-homogeneity in the density from the tomographic information, it is assumed that the absorbed dose in the tumor volume (capsule) corresponds to the dose absorbed to LiF: DLiF. Applying different cavity theories, the percent deviations to the nominal dose are: -1.81%{<=}{delta}%{<=}0.71%, which are consistent with the order of the U%'s. The values of DW are calculated from two calibration curve: TL Response (nC) vs DW for the energy of the 60Co corrected for energy dependence to the accelerator photon beam quality D20/D10=0.57. Once curve for 0.5 to 5 Gy and other for 5 to 35 Gy. The traceability for the Dwater is obtained by means of a secondary standard ionization chamber Farmer PTW 30013 calibrated at the NRC.

  10. Dosimetric evaluation of a commercial 3D treatment planning system using the AAPM Task Group 23 test package.

    PubMed

    Casanova Borca, Valeria; Pasquino, Massimo; Bresciani, Sara; Catuzzo, Paola; Ozzello, Franca; Tofani, Santi

    2005-03-01

    The accuracy of the dose calculation algorithm is one of the most critical steps in assessing the radiotherapy treatment to achieve the 5% accuracy in dose delivery, which represents the suggested limit to increase the complication-free local control of tumor. We have used the AAPM Task Group 23 (TG-23) test package for clinical photon external beam therapy to evaluate the accuracy of the new version of the PLATO TPS algorithm. The comparison between tabulated values and calculated ones has been performed for 266 and 297 dose values for the 4 and 18 MV photon beams, respectively. Dose deviations less than 2% were found in the 98.5%- and 90.6% analyzed dose points for the two considered energies, respectively. Larger deviations were obtained for both energies, in large dose gradients, such as the build-up region or near the field edges and blocks. As far as the radiological field width is concerned, 64 points were analyzed for both the energies: 53 points (83%) and 64 points (100%) were within +/-2 millimeters for the 4 and 18 MV photon beams, respectively. The results show the good accuracy of the algorithm either in simple geometry beam conditions or in complex ones, in homogeneous medium, and in the presence of inhomogeneities, for low and high energy beams. Our results fit well the data reported by several authors related to the calculation accuracy of different treatment planning systems (TPSs) (within a mean value of 0.7% and 1.2% for 4 and 18 MV respectively). The TG-23 test package can be considered a powerful instrument to evaluate dose calculation accuracy, and as such may play an important role in a quality assurance program related to the commissioning of a new TPS. PMID:15839346

  11. SU-E-T-130: Dosimetric Evaluation of Tissue Equivalent Gel Dosimeter Using Saccharide in Radiotherapy System

    SciTech Connect

    Cho, Y; Lee, D; Jung, H; Ji, Y; Kim, K; Chang, U; Kwon, S

    2014-06-01

    Purpose: In this study, the dose responses of the MAGIC gel with various concentrations and type of saccharide are examined to clarify the roles of mono and disaccharide in the polymerization process. Then we focused on the tissue equivalence and dose sensitivity of MAGIC gel dosimeters. Methods: The gel is composed of HPLC, 8% gelatin, 2 × 10-3 M L-ascorbic acid, 1.8 × 10-2 M hydroquinone, 8 × 10-5 M copper(II)sulfate and 9% methacrylic acid, new polymer gels are synthesized by adding glucose(monosaccharide), sucrose(disaccharide) and urea in the concentration range of 5∼35%. For irradiation of the gel, cesium-137 gamma-ray irradiator was used, radiation dose was delivered from 5∼50 Gy. MRI images of the gel were acquired by using a 3.0 T MRI system. Results: When saccharide and urea were added, the O/C, O/N and C/N ratios agreed with those of soft tissue with 1.7%. The dose-response of glucose and sucrose gel have slope-to-intercept ratio of 0.044 and 0.283 respectively. The slope-to-ratio is one important determinant of gel sensitivity. R-square values of glucose and sucrose gel dosimeters were 0.984 and 0.994 respectively. Moreover when urea were added, the slope-to-intercept ratio is 0.044 and 0.073 respectively. R-square values of mono and disaccharide gel were 0.973 and 0.989 respectively. When a saccharide is added into the MAGIC gel dosimeter, dose sensitivity is increased. However when urea were added, dose sensitivity is slightly decreased. Conclusion: In this study, it was possible to obtain the following conclusions by looking at the dose response characteristics after adding mono-, di-saccharide and urea to a MAGIC gel dosimeter. Saccharide was a tendency of increasing dose sensitivity with disaccharide. Sa.ccharide is cost effective, safe, soft tissue equivalent, and can be used under various experimental conditions, making it a suitable dosimeter for some radiotherapy applications.

  12. SU-D-18A-06: Variation of Controlled Breath Hold From CT Simulation to Treatment and Its Dosimetric Impact for Left-Sided Breast Radiotherapy with a Real-Time Optical Tracking System

    SciTech Connect

    Mittauer, K; Deraniyagala, R; Li, J; Lu, B; Liu, C; Lightsey, J; Yan, G

    2014-06-01

    Purpose: Different breath-hold (BH) maneuvers (abdominal breathing vs. chest breathing) during CT simulation and treatment can lead to chest wall positional variation. The purpose of this study is to quantify the variation of active breathing control (ABC)-assisted BH and estimate its dosimetric impact for left-sided whole-breast radiotherapy with a real-time optical tracking system (OTS). Methods: Seven breast cancer patients were included. An in-house OTS tracked an infrared (IR) marker affixed over the xiphoid process of the patient at CT simulation and throughout the treatment course to measure BH variations. Correlation between the IR marker and the breast was studied for dosimetric purposes. The positional variations of 860 BHs were retrospectively incorporated into treatment plans to assess their dosimetric impact on breast and cardiac organs (heart and left anterior descending artery [LAD]). Results: The mean intrafraction variations were 2.8 mm, 2.7 mm, and 1.6 mm in the anteroposterior (AP), craniocaudal (CC), and mediolateral (ML) directions, respectively. Mean stability in any direction was within 1.5 mm. A general trend of BH undershoot at treatment relative to CT simulation was observed with an average of 4.4 mm, 3.6 mm, and 0.1 mm in the AP, CC, and ML directions, respectively. Undershoot up to 12.6 mm was observed for individual patients. The difference between the planned and delivered dose to breast targets was negligible. The average planned/delivered mean heart doses, mean LAD doses, and max LAD doses were 1.4/2.1, 7.4/15.7, and 18.6/31.0 Gy, respectively. Conclusion: Systematic undershoot was observed in ABC-assisted BHs from CT simulation to treatment. Its dosimetric impact on breast coverage was minimized with image guidance, but the benefits of cardiac organ sparing were degraded. A real-time tracking system can be used in junction with the ABC device to improve BH reproducibility.

  13. 3.2 Dosimetric Concepts

    NASA Astrophysics Data System (ADS)

    Kramer, H.-M.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '3.2 Dosimetric Concepts' of the Chapter '3 Dosimetry in Diagnostic Radiology and Radiotherapy' with the contents:

  14. Dosimetric Characteristics for Brachytherapy Sources

    NASA Astrophysics Data System (ADS)

    DeWerd, Larry A.; Davis, Stephen D.

    2011-05-01

    Brachytherapy sources are characterized by the dosimetric parameters in a protocol such as the American Association of Physicists in Medicine Task Group 43. The air-kerma strength is measured and traceable to a primary standard. Then the parameters such as dose-rate constant, radial dose function, and anisotropy function are measured and related back to the primary standard. This is normally accomplished with thermoluminescent dosimeters (TLDs). Since radial dose function and anisotropy function are relative parameters, some of the dosimetric corrections are negligible. For the dose-rate constant, parameters such as the energy dependence compared with a calibration beam such as 60Co need to be accounted for. A description of the primary standard measurements and TLD measurements will be discussed.

  15. Dosimetric Characteristics for Brachytherapy Sources

    SciTech Connect

    DeWerd, Larry A.; Davis, Stephen D.

    2011-05-05

    Brachytherapy sources are characterized by the dosimetric parameters in a protocol such as the American Association of Physicists in Medicine Task Group 43. The air-kerma strength is measured and traceable to a primary standard. Then the parameters such as dose-rate constant, radial dose function, and anisotropy function are measured and related back to the primary standard. This is normally accomplished with thermoluminescent dosimeters (TLDs). Since radial dose function and anisotropy function are relative parameters, some of the dosimetric corrections are negligible. For the dose-rate constant, parameters such as the energy dependence compared with a calibration beam such as {sup 60}Co need to be accounted for. A description of the primary standard measurements and TLD measurements will be discussed.

  16. Comparative dosimetric study of three-dimensional conformal, dynamic conformal arc, and intensity-modulated radiotherapy for brain tumor treatment using Novalis system

    SciTech Connect

    Ding Meisong . E-mail: Meisong.Ding@uchsc.edu; Newman, Francis M.S.; Kavanagh, Brian D.; Stuhr, Kelly M.S.; Johnson, Tim K.; Gaspar, Laurie E.

    2006-11-15

    Purpose: To investigate the dosimetric differences among three-dimensional conformal radiotherapy (3D-CRT), dynamic conformal arc therapy (DCAT), and intensity-modulated radiotherapy (IMRT) for brain tumor treatment. Methods and Materials: Fifteen patients treated with Novalis were selected. We performed 3D-CRT, DCAT, and IMRT plans for all patients. The margin for the planning target volume (PTV) was 1 mm, and the specific prescription dose was 90% for all plans. The target coverage at the prescription dose, conformity index (CI), and heterogeneity index were analyzed for all plans. Results: For small tumors (PTV {<=}2 cm{sup 3}), the three dosimetric parameters had approximate values for both 3D-CRT and DCAT plans. The CI for the IMRT plans was high. For medium tumors (PTV >2 to {<=}100 cm{sup 3}), the three plans were competitive with each other. The IMRT plans had a greater CI, better target coverage at the prescription dose, and a better heterogeneity index. For large tumors (PTV >100 cm{sup 3}), the IMRT plan had good target coverage at the prescription dose and heterogeneity index and approximate CI values as those in the 3D-CRT and DCAT plans. Conclusion: The results of our study have shown that DCAT is suitable for most cases in the treatment of brain tumors. For a small target, 3D-CRT is useful, and IMRT is not recommended. For larger tumors, IMRT is superior to 3D-CRT and very competitive in sparing critical structures, especially for big tumors.

  17. Dosimetric methodology of the ICRP

    SciTech Connect

    Eckerman, K.F.

    1994-12-31

    Establishment of guidance for the protection of workers and members of the public from radiation exposures necessitates estimation of the radiation dose to tissues of the body at risk. The dosimetric methodology formulated by the International Commission on Radiological Protection (ICRP) is intended to be responsive to this need. While developed for radiation protection, elements of the methodology are often applied in addressing other radiation issues; e.g., risk assessment. This chapter provides an overview of the methodology, discusses its recent extension to age-dependent considerations, and illustrates specific aspects of the methodology through a number of numerical examples.

  18. Dosimetric Consequences of Intrafraction Prostate Motion

    SciTech Connect

    Li, Haisen S. Chetty, Indrin J.; Enke, Charles A.; Foster, Ryan D.; Willoughby, Twyla R.; Kupellian, Patrick A.; Solberg, Timothy D.

    2008-07-01

    Purpose: To analyze characteristics of intrafraction prostate motion, monitored using the Calypso system, and investigate dosimetric consequences of the motion for different clinical target volume (CTV) to planning target volume (PTV) margins. Methods and Materials: Motion characteristics were analyzed for 1,267 tracking sessions and 35 patients. Using prostate-PTV margins of 0, 1, 2, 3, and 5 mm, dose metrics for the prostate gland, bladder, and rectum were evaluated for scenarios including patient population, individual patients showing the greatest motion during the course of treatment, and the individual session with the largest overall movement. Composite dose distributions incorporating motion blurring were calculated by convolving static intensity-modulated radiotherapy plans with corresponding motion probability functions. Results: For prostate-PTV margins of 2 mm or greater, intrafraction motion did not compromise prostate dose coverage for either the patient population or individual patients. For the patient showing the largest overall movement, the prostate equivalent uniform dose was reduced by only 17.4 cGy (0.23%), and the minimum prostate dose remained greater than 95% of the nominal dose. For margins less than 2 mm, the prostate dose-volume histogram in the same patient was slightly compromised, and the equivalent uniform dose was reduced by 38.5 cGy (0.51%). Sparing of the bladder and rectum was improved substantially by reducing margins. Conclusions: Although significant motion can be observed during individual fractions, the dosimetric consequences are insignificant during a typical course of radiotherapy (30-40 fractions) with CTV-PTV margins of 2 mm or greater provided that the Calypso system is applied for pretreatment localization. Further reduction of the margin is possible if intrafraction realignment is performed.

  19. IPIP: A new approach to inverse planning for HDR brachytherapy by directly optimizing dosimetric indices

    SciTech Connect

    Siauw, Timmy; Cunha, Adam; Atamtuerk, Alper; Hsu, I-Chow; Pouliot, Jean; Goldberg, Ken

    2011-07-15

    Purpose: Many planning methods for high dose rate (HDR) brachytherapy require an iterative approach. A set of computational parameters are hypothesized that will give a dose plan that meets dosimetric criteria. A dose plan is computed using these parameters, and if any dosimetric criteria are not met, the process is iterated until a suitable dose plan is found. In this way, the dose distribution is controlled by abstract parameters. The purpose of this study is to develop a new approach for HDR brachytherapy by directly optimizing the dose distribution based on dosimetric criteria. Methods: The authors developed inverse planning by integer program (IPIP), an optimization model for computing HDR brachytherapy dose plans and a fast heuristic for it. They used their heuristic to compute dose plans for 20 anonymized prostate cancer image data sets from patients previously treated at their clinic database. Dosimetry was evaluated and compared to dosimetric criteria. Results: Dose plans computed from IPIP satisfied all given dosimetric criteria for the target and healthy tissue after a single iteration. The average target coverage was 95%. The average computation time for IPIP was 30.1 s on an Intel(R) Core{sup TM}2 Duo CPU 1.67 GHz processor with 3 Gib RAM. Conclusions: IPIP is an HDR brachytherapy planning system that directly incorporates dosimetric criteria. The authors have demonstrated that IPIP has clinically acceptable performance for the prostate cases and dosimetric criteria used in this study, in both dosimetry and runtime. Further study is required to determine if IPIP performs well for a more general group of patients and dosimetric criteria, including other cancer sites such as GYN.

  20. Dosimetric Predictors of Laryngeal Edema

    SciTech Connect

    Sanguineti, Giuseppe . E-mail: gisangui@utmb.edu; Adapala, Prashanth; Endres, Eugene J. C; Brack, Collin; Fiorino, Claudio; Sormani, Maria Pia; Parker, Brent

    2007-07-01

    Purpose: To investigate dosimetric predictors of laryngeal edema after radiotherapy (RT). Methods and Materials: A total of 66 patients were selected who had squamous cell carcinoma of the head and neck with grossly uninvolved larynx at the time of RT, no prior major surgical operation except for neck dissection and tonsillectomy, treatment planning data available for analysis, and at least one fiberoptic examination of the larynx within 2 years from RT performed by a single observer. Both the biologically equivalent mean dose at 2 Gy per fraction and the cumulative biologic dose-volume histogram of the larynx were extracted for each patient. Laryngeal edema was prospectively scored after treatment. Time to endpoint, moderate or worse laryngeal edema (Radiation Therapy Oncology Group Grade 2+), was calculated with log rank test from the date of treatment end. Results: At a median follow-up of 17.1 months (range, 0.4- 50.0 months), the risk of Grade 2+ edema was 58.9% {+-} 7%. Mean dose to the larynx, V30, V40, V50, V60, and V70 were significantly correlated with Grade 2+ edema at univariate analysis. At multivariate analysis, mean laryngeal dose (continuum, hazard ratio, 1.11; 95% confidence interval, 1.06-1.15; p < 0.001), and positive neck stage at RT (N0-x vs. N +, hazard ratio, 3.66; 95% confidence interval, 1.40-9.58; p = 0.008) were the only independent predictors. Further stratification showed that, to minimize the risk of Grade 2+ edema, the mean dose to the larynx has to be kept {<=}43.5 Gy at 2 Gy per fraction. Conclusion: Laryngeal edema is strictly correlated with various dosimetric parameters; mean dose to the larynx should be kept {<=}43.5 Gy.

  1. Statistical process control for IMRT dosimetric verification

    SciTech Connect

    Breen, Stephen L.; Moseley, Douglas J.; Zhang, Beibei; Sharpe, Michael B.

    2008-10-15

    Patient-specific measurements are typically used to validate the dosimetry of intensity-modulated radiotherapy (IMRT). To evaluate the dosimetric performance over time of our IMRT process, we have used statistical process control (SPC) concepts to analyze the measurements from 330 head and neck (H and N) treatment plans. The objectives of the present work are to: (i) Review the dosimetric measurements of a large series of consecutive head and neck treatment plans to better understand appropriate dosimetric tolerances; (ii) analyze the results with SPC to develop action levels for measured discrepancies; (iii) develop estimates for the number of measurements that are required to describe IMRT dosimetry in the clinical setting; and (iv) evaluate with SPC a new beam model in our planning system. H and N IMRT cases were planned with the PINNACLE{sup 3} treatment planning system versions 6.2b or 7.6c (Philips Medical Systems, Madison, WI) and treated on Varian (Palo Alto, CA) or Elekta (Crawley, UK) linacs. As part of regular quality assurance, plans were recalculated on a 20-cm-diam cylindrical phantom, and ion chamber measurements were made in high-dose volumes (the PTV with highest dose) and in low-dose volumes (spinal cord organ-at-risk, OR). Differences between the planned and measured doses were recorded as a percentage of the planned dose. Differences were stable over time. Measurements with PINNACLE{sup 3} 6.2b and Varian linacs showed a mean difference of 0.6% for PTVs (n=149, range, -4.3% to 6.6%), while OR measurements showed a larger systematic discrepancy (mean 4.5%, range -4.5% to 16.3%) that was due to well-known limitations of the MLC model in the earlier version of the planning system. Measurements with PINNACLE{sup 3} 7.6c and Varian linacs demonstrated a mean difference of 0.2% for PTVs (n=160, range, -3.0%, to 5.0%) and -1.0% for ORs (range -5.8% to 4.4%). The capability index (ratio of specification range to range of the data) was 1.3 for the PTV

  2. Statistical process control for IMRT dosimetric verification.

    PubMed

    Breen, Stephen L; Moseley, Douglas J; Zhang, Beibei; Sharpe, Michael B

    2008-10-01

    Patient-specific measurements are typically used to validate the dosimetry of intensity-modulated radiotherapy (IMRT). To evaluate the dosimetric performance over time of our IMRT process, we have used statistical process control (SPC) concepts to analyze the measurements from 330 head and neck (H&N) treatment plans. The objectives of the present work are to: (i) Review the dosimetric measurements of a large series of consecutive head and neck treatment plans to better understand appropriate dosimetric tolerances; (ii) analyze the results with SPC to develop action levels for measured discrepancies; (iii) develop estimates for the number of measurements that are required to describe IMRT dosimetry in the clinical setting; and (iv) evaluate with SPC a new beam model in our planning system. H&N IMRT cases were planned with the PINNACLE treatment planning system versions 6.2b or 7.6c (Philips Medical Systems, Madison, WI) and treated on Varian (Palo Alto, CA) or Elekta (Crawley, UK) linacs. As part of regular quality assurance, plans were recalculated on a 20-cm-diam cylindrical phantom, and ion chamber measurements were made in high-dose volumes (the PTV with highest dose) and in low-dose volumes (spinal cord organ-at-risk, OR). Differences between the planned and measured doses were recorded as a percentage of the planned dose. Differences were stable over time. Measurements with PINNACLE3 6.2b and Varian linacs showed a mean difference of 0.6% for PTVs (n=149, range, -4.3% to 6.6%), while OR measurements showed a larger systematic discrepancy (mean 4.5%, range -4.5% to 16.3%) that was due to well-known limitations of the MLC model in the earlier version of the planning system. Measurements with PINNACLE3 7.6c and Varian linacs demonstrated a mean difference of 0.2% for PTVs (n=160, range, -3.0%, to 5.0%) and -1.0% for ORs (range -5.8% to 4.4%). The capability index (ratio of specification range to range of the data) was 1.3 for the PTV data, indicating that almost

  3. Practical simplifications for radioimmunotherapy dosimetric models

    SciTech Connect

    Shen, S.; DeNardo, G.L.; O`Donnell, R.T.; Yuan, A.; DeNardo, D.A.; Macey, D.J.; DeNardo, S.J.

    1999-01-01

    Radiation dosimetry is potentially useful for assessment and prediction of efficacy and toxicity for radionuclide therapy. The usefulness of these dose estimates relies on the establishment of a dose-response model using accurate pharmacokinetic data and a radiation dosimetric model. Due to the complexity in radiation dose estimation, many practical simplifications have been introduced in the dosimetric modeling for clinical trials of radioimmunotherapy. Although research efforts are generally needed to improve the simplifications used at each stage of model development, practical simplifications are often possible for specific applications without significant consequences to the dose-response model. In the development of dosimetric methods for radioimmunotherapy, practical simplifications in the dosimetric models were introduced. This study evaluated the magnitude of uncertainty associated with practical simplifications for: (1) organ mass of the MIRD phantom; (2) radiation contribution from target alone; (3) interpolation of S value; (4) macroscopic tumor uniformity; and (5) fit of tumor pharmacokinetic data.

  4. Dosimetric Effects of Setup Uncertainties on Breast Treatment Delivery

    SciTech Connect

    Harron, Elizabeth Christine McCallum, Hazel Mhairi; Lambert, Elizabeth Lyn; Lee, Daniela; Lambert, Geoffrey David

    2008-01-01

    This study aimed to assess the dosimetric impact of setup errors during the delivery of radiotherapy to the breast, and use this information to make recommendations on intervention tolerances for portal imaging of breast treatments. Translational and rotational setup errors were simulated for 10 recent breast patients using an Oncentra MasterPlan treatment planning system. The effect of these errors on the breast and tumor bed target volumes receiving 95% and 107% of the prescribed dose were assessed. For the majority of patients, shifts of up to 10 mm or a 4 deg. patient rotation about the cranio-caudal axis had no significant effect on the dose distribution. Changes in dosimetry were more likely if the reference plan contained large hot or cold spots. For a typical patient, it is estimated that a shift of 5 mm in any one direction, or a 2 deg. patient rotation would not cause more than a 5% change in the target volume receiving between 95% and 107% of the prescribed dose. If combinations of errors occur, greater dosimetric changes would be expected. It is concluded that individual patient shifts of up to 5 mm or rotations about the cranio-caudal axis of 2 deg. or less are unlikely to affect dose-volume histogram parameters by an amount judged as clinically significant. Setup errors exceeding these values may cause large dosimetric changes for some patients, particularly those with larger hot or cold regions in the dose distribution, and intervention is therefore recommended.

  5. Proton Radiotherapy for Liver Tumors: Dosimetric Advantages Over Photon Plans

    SciTech Connect

    Wang Xiaochun Krishnan, Sunil; Zhang Xiaodong; Dong Lei; Briere, Tina; Crane, Christopher H.; Martel, Mary; Gillin, Michael; Mohan, Radhe; Beddar, Sam

    2008-01-01

    The purpose of the study is to dosimetrically investigate the advantages of proton radiotherapy over photon radiotherapy for liver tumors. The proton plan and the photon plan were designed using commercial treatment planning systems. The treatment target dose conformity and heterogeneity and dose-volume analyses of normal structures were compared between proton and photon radiotherapy for 9 patients with liver tumors. Proton radiotherapy delivered a more conformal target dose with slightly less homogeneity when compared with photon radiotherapy. Protons significantly reduced the fractional volume of liver receiving dose greater or equal to 30 Gy (V{sub 30}) and the mean liver dose. The stomach and duodenal V{sub 45} were significantly lower with the use of proton radiotherapy. The V{sub 40} and V{sub 50} of the heart and the maximum spinal cord dose were also significantly lower with the use of proton radiotherapy. Protons were better able to spare one kidney completely and deliver less dose to one (generally the left) kidney than photons. The mean dose to the total body and most critical structures was significantly decreased using protons when compared to corresponding photon plans. In conclusion, our study suggests the dosimetric benefits of proton radiotherapy over photon radiotherapy. These dosimetric advantages of proton plans may permit further dose escalation with lower risk of complications.

  6. Clinical implementation of dynamic intensity-modulated radiotherapy: Dosimetric aspects and initial experience

    PubMed Central

    Sivakumar, S. S.; Krishnamurthy, K.; Davis, C. A.; Ravichandran, R.; Kannadhasan, S.; Biunkumar, J. P.; El Ghamrawy, Kamal

    2008-01-01

    This paper describes the initial experience of quality assurance (QA) tests performed on the millennium multi-leaf collimator (mMLC) for clinical implementation of intensity-modulated radiotherapy (IMRT) using sliding window technique. The various QA tests verified the mechanical and dosimetric stability of the mMLC of linear accelerator when operated in dynamic mode (dMLC). The mechanical QA tests also verified the positional accuracy and kinetic properties of the dMLC. The stability of dMLC was analyzed qualitatively and quantitatively using radiographic film and Omnipro IMRT software. The output stability, variation in output for different sweeping gap widths, and dosimetric leaf separation were measured. Dose delivery with IMRT was verified against the dose computed by the treatment planning system (TPS). Monitor units (MUs) calculated by the planning system for the IMRT were cross-checked with independent commercial dose management software. Visual inspection and qualitative analysis showed that the leaf positioning accuracy was well within the acceptable limits. Dosimetric QA tests confirmed the dosimetric stability of the mMLC in dynamic mode. The verification of MUs using commercial software confirmed the reliability of the IMRT planning system for dose computation. The dosimetric measurements validated the fractional dose delivery. PMID:19893693

  7. NOTE: Dosimetric characterization of a new miniature multileaf collimator

    NASA Astrophysics Data System (ADS)

    Hartmann, G. H.; Föhlisch, F.

    2002-06-01

    The dosimetrical characteristics of a new miniature multileaf collimator (ModuLeaf MLC, MRC Systems GmbH, Heidelberg, Germany) attached to the accessory holder of a Siemens accelerator with 6 MV x-rays (PRIMUS, Siemens OCS, Concord, California, USA) have been investigated. In particular, those parameters which are important for the accuracy of the treatment such as output factors, penumbra, field edge precision and transmission/leakage were determined. These data can now be used to implement specific dose calculation procedures for this miniature multileaf collimator in treatment planning systems.

  8. Dosimetric accuracy of a deterministic radiation transport based {sup 192}Ir brachytherapy treatment planning system. Part II: Monte Carlo and experimental verification of a multiple source dwell position plan employing a shielded applicator

    SciTech Connect

    Petrokokkinos, L.; Zourari, K.; Pantelis, E.; Moutsatsos, A.; Karaiskos, P.; Sakelliou, L.; Seimenis, I.; Georgiou, E.; Papagiannis, P.

    2011-04-15

    Purpose: The aim of this work is the dosimetric validation of a deterministic radiation transport based treatment planning system (BRACHYVISION v. 8.8, referred to as TPS in the following) for multiple {sup 192}Ir source dwell position brachytherapy applications employing a shielded applicator in homogeneous water geometries. Methods: TPS calculations for an irradiation plan employing seven VS2000 {sup 192}Ir high dose rate (HDR) source dwell positions and a partially shielded applicator (GM11004380) were compared to corresponding Monte Carlo (MC) simulation results, as well as experimental results obtained using the VIP polymer gel-magnetic resonance imaging three-dimensional dosimetry method with a custom made phantom. Results: TPS and MC dose distributions were found in agreement which is mainly within {+-}2%. Considerable differences between TPS and MC results (greater than 2%) were observed at points in the penumbra of the shields (i.e., close to the edges of the ''shielded'' segment of the geometries). These differences were experimentally verified and therefore attributed to the TPS. Apart from these regions, experimental and TPS dose distributions were found in agreement within 2 mm distance to agreement and 5% dose difference criteria. As shown in this work, these results mark a significant improvement relative to dosimetry algorithms that disregard the presence of the shielded applicator since the use of the latter leads to dosimetry errors on the order of 20%-30% at the edge of the ''unshielded'' segment of the geometry and even 2%-6% at points corresponding to the potential location of the target volume in clinical applications using the applicator (points in the unshielded segment at short distances from the applicator). Conclusions: Results of this work attest the capability of the TPS to accurately account for the scatter conditions and the increased attenuation involved in HDR brachytherapy applications employing multiple source dwell positions and

  9. CURRENT STATUS OF INDIVIDUAL DOSIMETRIC MONITORING IN UKRAINE.

    PubMed

    Chumak, V; Deniachenko, N; Makarovska, O; Mihailescu, L-C; Prykhodko, A; Voloskyi, V; Vanhavere, F

    2016-09-01

    About 50 000 workers are being occupationally exposed to radiation in Ukraine. Individual dosimetric monitoring (IDM) is provided by 77 dosimetry services and laboratories of very different scale with a number of monitored workers ranging from several persons to ∼9000. In the present work, the current status of personal dosimetry in Ukraine was studied. The First National Intercomparison (FNI) of the IDM labs was accompanied by a survey of the laboratory operation in terms of coverage, types of dosimetry provided, instrumentation and methodologies used, metrological support, data recording, etc. Totally, 34 laboratories responded to the FNI call, and 18 services with 19 different personal dosimetry systems took part in the intercomparison exercise providing 24 dosimeters each for blind irradiation to photons of 6 different qualities (ISO N-series X-rays, S-Cs and S-Co sources) in a dose range of 5-60 mSv. Performance of the dosimetry labs was evaluated according to ISO 14146 criteria of matching trumpet curves with H0 = 0.2 mSv. The test revealed that 8 of the 19 systems meet ISO 14146 criteria in full, 5 other labs show marginal performance and 6 laboratories demonstrated catastrophic quality of dosimetric results. Altogether, 18 participating labs provide dosimetric monitoring to 37 477 workers (about three-fourths of all occupationally exposed workers), usually on monthly (nuclear industry) or quarterly (rest of applications) basis. Of this number, 20 664 persons (55 %) receive completely adequate individual monitoring, and the number of personnel receiving IDM of inadequate quality counts 3054 persons. PMID:26979804

  10. NOTE: Monte Carlo dosimetric study of the BEBIG Co-60 HDR source

    NASA Astrophysics Data System (ADS)

    Ballester, F.; Granero, D.; Pérez-Calatayud, J.; Casal, E.; Agramunt, S.; Cases, R.

    2005-11-01

    Although not as widespread as Ir-192, Co-60 is also available on afterloading equipment devoted to high dose rate brachytherapy, mainly addressed to the treatment of gynaecological lesions. The purpose of this study is to obtain the dosimetric parameters of the Co-60 source used by the BEBIG MultiSource remote afterloader (BEBIG GmbH, Germany) for which there are no dosimetric data available in the literature. The Monte Carlo code GEANT4 has been used to obtain the TG43 parameters and the 2D dose rate table in Cartesian coordinates of the BEBIG Co-60 HDR source. The dose rate constant, radial dose function and anisotropy function have been calculated and are presented in a tabular form as well as a detailed 2D dose rate table in Cartesian coordinates. These dosimetric datasets can be used as input data and to validate the treatment planning system calculations.

  11. Monte Carlo dosimetric study of the BEBIG Co-60 HDR source.

    PubMed

    Ballester, F; Granero, D; Pérez-Calatayud, J; Casal, E; Agramunt, S; Cases, R

    2005-11-01

    Although not as widespread as Ir-192, Co-60 is also available on afterloading equipment devoted to high dose rate brachytherapy, mainly addressed to the treatment of gynaecological lesions. The purpose of this study is to obtain the dosimetric parameters of the Co-60 source used by the BEBIG MultiSource remote afterloader (BEBIG GmbH, Germany) for which there are no dosimetric data available in the literature. The Monte Carlo code GEANT4 has been used to obtain the TG43 parameters and the 2D dose rate table in Cartesian coordinates of the BEBIG Co-60 HDR source. The dose rate constant, radial dose function and anisotropy function have been calculated and are presented in a tabular form as well as a detailed 2D dose rate table in Cartesian coordinates. These dosimetric datasets can be used as input data and to validate the treatment planning system calculations. PMID:16237230

  12. Dosimetric validation and clinical implementation of two 3D dose verification systems for quality assurance in volumetric-modulated arc therapy techniques.

    PubMed

    Clemente-Gutiérrez, Francisco; Pérez-Vara, Consuelo

    2015-01-01

    A pretreatment quality assurance program for volumetric techniques should include redundant calculations and measurement-based verifications. The patient-specific quality assurance process must be based in clinically relevant metrics. The aim of this study was to show the commission, clinical implementation, and comparison of two systems that allow performing a 3D redundant dose calculation. In addition, one of them is capable of reconstructing the dose on patient anatomy from measurements taken with a 2D ion chamber array. Both systems were compared in terms of reference calibration data (absolute dose, output factors, percentage depth-dose curves, and profiles). Results were in good agreement for absolute dose values (discrepancies were below 0.5%) and output factors (mean differences were below 1%). Maximum mean discrepancies were located between 10 and 20 cm of depth for PDDs (-2.7%) and in the penumbra region for profiles (mean DTA of 1.5 mm). Validation of the systems was performed by comparing point-dose measurements with values obtained by the two systems for static, dynamic fields from AAPM TG-119 report, and 12 real VMAT plans for different anatomical sites (differences better than 1.2%). Comparisons between measurements taken with a 2D ion chamber array and results obtained by both systems for real VMAT plans were also performed (mean global gamma passing rates better than 87.0% and 97.9% for the 2%/2 mm and 3%/3 mm criteria). Clinical implementation of the systems was evaluated by comparing dose-volume parameters for all TG-119 tests and real VMAT plans with TPS values (mean differences were below 1%). In addition, comparisons between dose distributions calculated by TPS and those extracted by the two systems for real VMAT plans were also performed (mean global gamma passing rates better than 86.0% and 93.0% for the 2%/2 mm and 3%/ 3 mm criteria). The clinical use of both systems was successfully evaluated. PMID:26103189

  13. Electromagnetic Real-Time Tumor Position Monitoring and Dynamic Multileaf Collimator Tracking Using a Siemens 160 MLC: Geometric and Dosimetric Accuracy of an Integrated System

    SciTech Connect

    Krauss, Andreas; Nill, Simeon; Tacke, Martin; Oelfke, Uwe

    2011-02-01

    Purpose: Dynamic multileaf collimator tracking represents a promising method for high-precision radiotherapy to moving tumors. In the present study, we report on the integration of electromagnetic real-time tumor position monitoring into a multileaf collimator-based tracking system. Methods and Materials: The integrated system was characterized in terms of its geometric and radiologic accuracy. The former was assessed from portal images acquired during radiation delivery to a phantom in tracking mode. The tracking errors were calculated from the positions of the tracking field and of the phantom as extracted from the portal images. Radiologic accuracy was evaluated from film dosimetry performed for conformal and intensity-modulated radiotherapy applied to different phantoms moving on sinusoidal trajectories. A static radiation delivery to the nonmoving target served as a reference for the delivery to the moving phantom with and without tracking applied. Results: Submillimeter tracking accuracy was observed for two-dimensional target motion despite the relatively large system latency of 500 ms. Film dosimetry yielded almost complete recovery of a circular dose distribution with tracking in two dimensions applied: 2%/2 mm gamma-failure rates could be reduced from 59.7% to 3.3%. For single-beam intensity-modulated radiotherapy delivery, accuracy was limited by the finite leaf width. A 2%/2 mm gamma-failure rate of 15.6% remained with tracking applied. Conclusion: The integrated system we have presented marks a major step toward the clinical implementation of high-precision dynamic multileaf collimator tracking. However, several challenges such as irregular motion traces or a thorough quality assurance still need to be addressed.

  14. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation

    NASA Astrophysics Data System (ADS)

    Magro, G.; Molinelli, S.; Mairani, A.; Mirandola, A.; Panizza, D.; Russo, S.; Ferrari, A.; Valvo, F.; Fossati, P.; Ciocca, M.

    2015-09-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo® TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus® chamber. An EBT3® film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification.

  15. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation.

    PubMed

    Magro, G; Molinelli, S; Mairani, A; Mirandola, A; Panizza, D; Russo, S; Ferrari, A; Valvo, F; Fossati, P; Ciocca, M

    2015-09-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo(®) TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus(®) chamber. An EBT3(®) film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification. PMID:26301623

  16. Dosimetric Verification of the System of Planning Brainscan for Stereotactic Radiosurgery at Oncology Department of the General Hospital of México

    NASA Astrophysics Data System (ADS)

    Álvarez R., J. T.; Villaseñor O., L. F.; Molero M., A. C.; Salinas, B.; Tovar M., V. M.

    2006-09-01

    The verification consists on the planning and administration of stereotactic treatments by means of conformed static beams, several polyethylene capsules with powder TLD 100 (type IAEA) located inside the head of a phantom Alderson-Rando. Because the planning system corrects for no-homogeneity in the density from the tomographic information, it is assumed that the absorbed dose in the tumor volume (capsule) corresponds to the dose absorbed to LiF: DLiF. Applying different cavity theories, the percent deviations to the nominal dose are: -1.81%⩽Δ%⩽0.71%, which are consistent with the order of the U%'s. The values of DW are calculated from two calibration curve: TL Response (nC) vs DW for the energy of the 60Co corrected for energy dependence to the accelerator photon beam quality D20/D10=0.57. Once curve for 0.5 to 5 Gy and other for 5 to 35 Gy. The traceability for the Dwater is obtained by means of a secondary standard ionization chamber Farmer PTW 30013 calibrated at the NRC.

  17. Hot pixel generation in active pixel sensors: dosimetric and micro-dosimetric response

    NASA Technical Reports Server (NTRS)

    Scheick, Leif; Novak, Frank

    2003-01-01

    The dosimetric response of an active pixel sensor is analyzed. heavy ions are seen to damage the pixel in much the same way as gamma radiation. The probability of a hot pixel is seen to exhibit behavior that is not typical with other microdose effects.

  18. Evaluation of the applicability of pinpoint ion chambers for SRS dosimetric quality assurance

    NASA Astrophysics Data System (ADS)

    Baek, Jong Geun; Jang, Hyun Soo; Kim, Eng Chan; Lee, Yong Hee; Oh, Young Kee; Kim, Sung Kyu

    2015-06-01

    The aim of the present study was to evaluate the applicability of a Pinpoint ion chamber for the measurement of the absolute dose for dosimetric quality assurance (QA) under the same conditions as are used for actual stereotactic radiosurgery (SRS). A PTW 31014 Pinpoint chamber with a active volume of 0.015 cm3 was used to measure the absolute doses of small beams. The PTW 60003 natural diamond detector was used as a reference dosimeter. A custom-made cylindrical acrylic phantom (15 cm diameter, 15 cm long) was produced to obtain measurements, and a noncoplanar arc plan was devised to deliver a prescription dose (15-25 Gy) to 80% of the maximum dose to the target in a single fraction by using the BrainLAB planning system. All irradiations were performed by using a Varian Clinac IX 6 MV equipped with a micro-multileaf-collimators (m3) designed by BrainLAB. The acceptability criterion used was a dose difference of less than 3%. The diameter of the target volume was considered the standard parameter in the present study and was used to divide the cases into two groups, that is, a ≤ 10 mm target diameter group (10 cases) and a > 10 mm target diameter group (13 cases). For the Pinpoint chamber and target diameters of ≤ 10 mm, dosimetric uncertainties of > 3% were seen in 4 of the 10 cases, and differences ranged widely from 0.7% to 4.85%. On the other hand, for the Pinpoint chamber and target diameters of > 10 mm all dose differences were less than 1.6%, and the mean discrepancy was 0.81%. A highly significant, but moderate, correlation between dosimetric uncertainties and all target diameters was observed for the Pinpoint chamber (R2 = 0.483, p 0.001). This result indicates that Pinpoint chambers exhibit a field-size dependency when used for SRS dosimetric QA. Based on the results of the present study, we conclude that the use of a Pinpoint chamber for verification of SRS dosimetric QA is unsuitable for all field sizes, but that it can be used to verify the

  19. Dosimetric adaptive IMRT driven by fiducial points

    SciTech Connect

    Crijns, Wouter; Van Herck, Hans; Defraene, Gilles; Van den Bergh, Laura; Haustermans, Karin; Slagmolen, Pieter; Maes, Frederik; Van den Heuvel, Frank

    2014-06-15

    Purpose: Intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy have become standard treatments but are more sensitive to anatomical variations than 3D conformal techniques. To correct for inter- and intrafraction anatomical variations, fast and easy to implement methods are needed. Here, the authors propose a full dosimetric IMRT correction that finds a compromise in-between basic repositioning (the current clinical practice) and full replanning. It simplifies replanning by avoiding a recontouring step and a full dose calculation. It surpasses repositioning by updating the preoptimized fluence and monitor units (MU) using a limited number of fiducial points and a pretreatment (CB)CT. To adapt the fluence the fiducial points were projected in the beam's eye view (BEV). To adapt the MUs, point dose calculation towards the same fiducial points were performed. The proposed method is intrinsically fast and robust, and simple to understand for operators, because of the use of only four fiducial points and the beam data based point dose calculations. Methods: To perform our dosimetric adaptation, two fluence corrections in the BEV are combined with two MU correction steps along the beam's path. (1) A transformation of the fluence map such that it is realigned with the current target geometry. (2) A correction for an unintended scaling of the penumbra margin when the treatment beams scale to the current target size. (3) A correction for the target depth relative to the body contour and (4) a correction for the target distance to the source. The impact of the correction strategy and its individual components was evaluated by simulations on a virtual prostate phantom. This heterogeneous reference phantom was systematically subjected to population based prostate transformations to simulate interfraction variations. Additionally, a patient example illustrated the clinical practice. The correction strategy was evaluated using both dosimetric (CTV mean

  20. Initial dosimetric experience with mega voltage computed tomography detectors and estimation of pre and post-repair dosimetric parameters of a first Helical Hi-Art II tomotherapy machine in India.

    PubMed

    Kinhikar, Rajesh A; Master, Zubin; Dhote, Dipak S; Deshpande, Deepak D

    2009-04-01

    A Helical Tomotherapy (HT) Hi-Art II (TomoTherapy, Inc., Madison, WI, USA) has been one of the important innovations to help deliver IMRT with image guidance. On-board, mega voltage computed tomography (MVCT) detectors are used for imaging and dosimetric purpose. The two objectives of this study are: (i) To estimate the dosimetric and general capability (TomoImage registration, reconstruction, contrast and spatial resolution, artifacts-free image and dose in TomoImage) of on-board MVCT detectors. (ii) To measure the dosimetric parameters (output and energy) following major repair. The MVCT detectors also estimated the rotational output constancy well. During this study, dosimetric tests were repeated after replacing MVCT detectors and the target. fixed-gantry/fixed-couch measurements were measured daily to investigate; the system stability. Thermoluminescense dosimeter (TLD) was used during both the measurements subsequently. The MVCT image quality with old and new detectors was comparable and hence acceptable clinically. The spatial resolution was optimal and the dose during TomoImage was 2 cGy (well within the manufacturer tolerance of 4 cGy). The results of lateral beam profiles showed an excellent agreement between the two normalized plots. The output from the rotational procedure revealed 99.7% while the energy was consistent over a period of twelve months. The Hi-Art II system has maintained its calibration to within +/- 2% and energy to within +/- 1.5% over the initial twelve-month period. Based on the periodic measurements for rotational output and consistency in the lateral beam profile shape, the on-board detector proved to be a viable dosimetric quality assurance tool for IMRT with Tomotherapy. Tomotherapy was stable from the dosimetric point of view during the twelve-month period. PMID:20098540

  1. A dosimetric study on the Ir-192 high dose rate flexisource.

    PubMed

    Granero, D; Pérez-Calatayud, J; Casal, E; Ballester, F; Venselaar, J

    2006-12-01

    In this work, the dose rate distribution of a new Ir-192 high dose rate source (Flexisource used in the afterloading Flexitron system, Isodose Control, Veenendaal, The Netherlands) is studied by means of Monte Carlo techniques using the GEANT4 code. The dosimetric parameters of the Task Group No. 43 Report (TG43) formalism and two-dimensional rectangular look-up tables have been obtained. PMID:17278809

  2. A dosimetric study on the Ir-192 high dose rate Flexisource

    SciTech Connect

    Granero, D.; Perez-Calatayud, J.; Casal, E.; Ballester, F.; Venselaar, J.

    2006-12-15

    In this work, the dose rate distribution of a new Ir-192 high dose rate source (Flexisource used in the afterloading Flexitron system, Isodose Control, Veenendaal, The Netherlands) is studied by means of Monte Carlo techniques using the GEANT4 code. The dosimetric parameters of the Task Group No. 43 Report (TG43) formalism and two-dimensional rectangular look-up tables have been obtained.

  3. Dosimetric monitoring in Ukraine--present status and path to the future.

    PubMed

    Chumak, V; Boguslavskaya, A

    2007-01-01

    Despite wide use of nuclear energy and radiation sources in industry and medicine, there is no centralised dose accounting system in Ukraine; existing dosimetry services operate obsolete manual thermoluminescence dosemeter (TLD) readers and do not meet modern proficiency standards. Currently, dosimetric monitoring is required for approximately 42,000 occupationally exposed workers, including 9100 in medicine, 17,000 employees of nuclear power plants and approximately 16,000 workers dealing with other sources of occupational exposure. This article presents the plan of elaboration of the United System for monitoring and registration of individual doses which has the aim of harmonisation of individual monitoring in Ukraine through securing methodical unity; scientific and methodological guidance of individual dosimetric control; procurement of common technical policy regarding nomenclature and operation of instrumentation; implementation of quality assurance programmes; development and support of information infrastructure, in particular operation of the national registry of individual doses; training and certification of personnel engaged in the system of individual dosimetric monitoring. PMID:16987910

  4. A high sensitive phosphor for dosimetric applications

    NASA Astrophysics Data System (ADS)

    Kore, Bhushan P.; Dhoble, N. S.; Lochab, S. P.; Dhoble, S. J.

    2015-06-01

    In this study a novel TL phosphor CaMg3(SO4)4:Dy3+ was prepared by acid distillation method. The TL response of this phosphor towards γ-rays and carbon ion beam was tested. Good dosimetric glow curve was observed which is stable against both the type of radiations. The CaMg3(SO4)4:Dy3+ phosphor doped with 0.2 mol% of Dy3+, irradiated with γ-ray shows nearly equal sensitivity to that of commercially available CaSO4:Dy TLD phosphor whereas 3.5 times more sensitivity than CaSO4:Dy, when irradiated with carbon ion beam. The change in glow peak intensities and glow peak temperature with variation in irradiation species and energy of ion beam is discussed here. The effect of these on trapping parameters is also illustrated.

  5. Dosimetric investigations on Mars-96 mission

    NASA Astrophysics Data System (ADS)

    Semkova, J.; Dachev, Ts.; Matviichuk, Yu.; Koleva, R.; Tomov, B.; Baynov, P.; Petrov, V.; Nguyen, V.; Siegrist, M.; Chene, J.

    1994-10-01

    The dosimetric experiments Dose-M and Liulin as part of the more complex French-German-Bulgarian-Russian experiments for the investigation of the radiation environment for Mars-96 mission are described. The experiments will be realized with dosemeter-radiometer instruments, measuring absorbed dose in semiconductor detectors and the particle flux. Two detectors will be mounted on board the Mars-96 orbiter. Another detector will be on the guiderope of the Mars-96 Aerostate station. The scientific aims of Dose-M and Liulin experiments are: Analysis of the absorbed dose and the flux on the path and around Mars behind different shielding. Study of the shielding characteristics of the Martian atmosphere from galactic and solar cosmic rays including solar proton events. Together with the French gamma-spectrometer and the German neutron detectors the investigation of the radiation environment on the surface of Mars and in the atmosphere up to 4000 m altitude will be conducted.

  6. Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array

    PubMed Central

    Yoganathan, S. A.; Das, K. J. Maria; Raj, D. Gowtham; Kumar, Shaleen

    2015-01-01

    The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams. PMID:26170552

  7. Dosimetric characterization of a bi-directional micromultileaf collimator for stereotactic applications.

    PubMed

    Bucciolini, M; Russo, S; Banci Buonamici, F; Pini, S; Silli, P

    2002-07-01

    A 6 MV photon beam from Linac SL75-5 has been collimated with a new micromultileaf device that is able to shape the field in the two orthogonal directions with four banks of leaves. This is the first clinical installation of the collimator and in this paper the dosimetric characterization of the system is reported. The dosimetric parameters required by the treatment planning system used for the dose calculation in the patient are: tissue maximum ratios, output factors, transmission and leakage of the leaves, penumbra values. Ionization chambers, silicon diode, radiographic films, and LiF thermoluminescent dosimeters have been employed for measurements of absolute dose and beam dosimetric data. Measurements with different dosimeters supply results in reasonable agreement among them and consistent with data available in literature for other models of micromultileaf collimator; that permits the use of the measured parameters for clinical applications. The discrepancies between results obtained with the different detectors (around 2%) for the analyzed parameters can be considered an indication of the accuracy that can be reached by current stereotactic dosimetry. PMID:12148726

  8. Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array.

    PubMed

    Yoganathan, S A; Das, K J Maria; Raj, D Gowtham; Kumar, Shaleen

    2015-01-01

    The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams. PMID:26170552

  9. Dosimetric impacts of applicator displacements and applicator reconstruction-uncertainties on 3D image-guided brachytherapy for cervical cancer

    PubMed Central

    Schindel, Joshua; Zhang, Winson; Bhatia, Sudershan K.; Sun, Wenqing

    2013-01-01

    Purpose To quantify the dosimetric impact of applicator displacements and applicator reconstruction-uncertainties through simulated planning studies of virtual applicator shifts. Material and methods Twenty randomly selected high-dose-rate (HDR) titanium tandem-and-ovoid (T&O) plans were retrospectively studied. MRI-guided, conformal brachytherapy (MRIG-CBT) plans were retrospectively generated. To simulate T&O displacement, the whole T&O set was virtually shifted on treatment planning system in the cranial (+) and the caudal (–) direction after each dose calculation. Each shifted plan was compared to an unshifted plan. To simulate T&O reconstruction-uncertainties, each tandem and ovoid was separately shifted along its axis before performing the dose calculation. After the dose calculation, the calculated isodose lines and T&O were moved back to unshifted T&O position. Shifted and shifted-back plan were compared. Results Regarding the dosimetric impact of the simulated T&O displacements, rectal D2cc values were observed as being the most sensitive to change due to T&O displacement among all dosimetric metrics regardless of point A (p < 0.013) or MRIG-CBT plans (p < 0.0277). To avoid more than 10% change, ± 1.5 mm T&O displacements were accommodated for both point A and MRIG-CBT plans. The dosimetric impact of T&O displacements on sigmoid (p < 0.0005), bladder (p < 0.0001), HR-CTV (p < 0.0036), and point A (p < 0.0015) were significantly larger in the MRIG-CBT plans than point A plans. Regarding the dosimetric impact of T&O reconstruction-uncertainties, less than ± 3.0 mm reconstruction-uncertainties were also required in order to avoid more than 10% dosimetric change in either the point A or MRIG-CBT plans. Conclusions The dosimetric impact of simulated T&O displacements was significantly larger in the MRIG-CBT plans than in the point A plans. Either ± 3 mm T&O displacement or a ± 4.5 mm T&O reconstruction-uncertainty could cause greater than 10% dosimetric

  10. Dosimetric Comparison of Helical Tomotherapy and Dynamic Conformal Arc Therapy in Stereotactic Radiosurgery for Vestibular Schwannomas

    SciTech Connect

    Lee, Tsair-Fwu; Chao, Pei-Ju; Wang, Chang-Yu; Lan, Jen-Hong; Huang, Yu-Je; Hsu, Hsuan-Chih; Sung, Chieh-Cheng; Su, Te-Jen; Lian, Shi-Long; Fang, Fu-Min

    2011-04-01

    The dosimetric results of stereotactic radiosurgery (SRS) for vestibular schwannoma (VS) performed using dynamic conformal arc therapy (DCAT) with the Novalis system and helical TomoTherapy (HT) were compared using plan quality indices. The HT plans were created for 10 consecutive patients with VS previously treated with SRS using the Novalis system. The dosimetric indices used to compare the techniques included the conformity index (CI) and homogeneity index (HI) for the planned target volume (PTV), the comprehensive quality index (CQI) for nine organs at risk (OARs), gradient score index (GSI) for the dose drop-off outside the PTV, and plan quality index (PQI), which was verified using the plan quality discerning power (PQDP) to incorporate 3 plan indices, to evaluate the rival plans. The PTV ranged from 0.27-19.99 cm{sup 3} (median 3.39 cm{sup 3}), with minimum required PTV prescribed doses of 10-16 Gy (median 12 Gy). Both systems satisfied the minimum required PTV prescription doses. HT conformed better to the PTV (CI: 1.51 {+-} 0.23 vs. 1.94 {+-} 0.34; p < 0.01), but had a worse drop-off outside the PTV (GSI: 40.3 {+-} 10.9 vs. 64.9 {+-} 13.6; p < 0.01) compared with DCAT. No significant difference in PTV homogeneity was observed (HI: 1.08 {+-} 0.03 vs. 1.09 {+-} 0.02; p = 0.20). HT had a significantly lower maximum dose in 4 OARs and significant lower mean dose in 1 OAR; by contrast, DCAT had a significantly lower maximum dose in 1 OAR and significant lower mean dose in 2 OARs, with the CQI of the 9 OARs = 0.92 {+-} 0.45. Plan analysis using PQI (HT 0.37 {+-} 0.12 vs. DCAT 0.65 {+-} 0.08; p < 0.01), and verified using the PQDP, confirmed the dosimetric advantage of HT. However, the HT system had a longer beam-on time (33.2 {+-} 7.4 vs. 4.6 {+-} 0.9 min; p < 0.01) and consumed more monitor units (16772 {+-} 3803 vs. 1776 {+-} 356.3; p < 0.01). HT had a better dose conformity and similar dose homogeneity but worse dose gradient than DCAT. Plan analysis

  11. Dosimetric comparison of helical tomotherapy and dynamic conformal arc therapy in stereotactic radiosurgery for vestibular schwannomas.

    PubMed

    Lee, Tsair-Fwu; Chao, Pei-Ju; Wang, Chang-Yu; Lan, Jen-Hong; Huang, Yu-Je; Hsu, Hsuan-Chih; Sung, Chieh-Cheng; Su, Te-Jen; Lian, Shi-Long; Fang, Fu-Min

    2011-01-01

    The dosimetric results of stereotactic radiosurgery (SRS) for vestibular schwannoma (VS) performed using dynamic conformal arc therapy (DCAT) with the Novalis system and helical TomoTherapy (HT) were compared using plan quality indices. The HT plans were created for 10 consecutive patients with VS previously treated with SRS using the Novalis system. The dosimetric indices used to compare the techniques included the conformity index (CI) and homogeneity index (HI) for the planned target volume (PTV), the comprehensive quality index (CQI) for nine organs at risk (OARs), gradient score index (GSI) for the dose drop-off outside the PTV, and plan quality index (PQI), which was verified using the plan quality discerning power (PQDP) to incorporate 3 plan indices, to evaluate the rival plans. The PTV ranged from 0.27-19.99 cm(3) (median 3.39 cm(3)), with minimum required PTV prescribed doses of 10-16 Gy (median 12 Gy). Both systems satisfied the minimum required PTV prescription doses. HT conformed better to the PTV (CI: 1.51 ± 0.23 vs. 1.94 ± 0.34; p < 0.01), but had a worse drop-off outside the PTV (GSI: 40.3 ± 10.9 vs. 64.9 ± 13.6; p < 0.01) compared with DCAT. No significant difference in PTV homogeneity was observed (HI: 1.08 ± 0.03 vs. 1.09 ± 0.02; p = 0.20). HT had a significantly lower maximum dose in 4 OARs and significant lower mean dose in 1 OAR; by contrast, DCAT had a significantly lower maximum dose in 1 OAR and significant lower mean dose in 2 OARs, with the CQI of the 9 OARs = 0.92 ± 0.45. Plan analysis using PQI (HT 0.37 ± 0.12 vs. DCAT 0.65 ± 0.08; p < 0.01), and verified using the PQDP, confirmed the dosimetric advantage of HT. However, the HT system had a longer beam-on time (33.2 ± 7.4 vs. 4.6 ± 0.9 min; p < 0.01) and consumed more monitor units (16772 ± 3803 vs. 1776 ± 356.3; p < 0.01). HT had a better dose conformity and similar dose homogeneity but worse dose gradient than DCAT. Plan analysis confirmed the dosimetric advantage of HT

  12. TU-D-9A-01: TG176: Dosimetric Effects of Couch Tops and Immobilization Devices

    SciTech Connect

    Olch, A

    2014-06-15

    The dosimetric impact from devices external to the patient is a complex combination of increased skin dose, reduced tumor dose, and altered dose distribution. Although small monitor unit or dose corrections are routinely made for blocking trays, ion chamber correction factors, or tissue inhomogeneities, the dose perturbation of the treatment couch top or immobilization devices are often overlooked. These devices also increase surface dose, an effect which is also often ignored or underestimated. These concerns have grown recently due to the increased use of monolithic carbon fiber couch tops which are optimal for imaging for patient position verification but cause attenuation and increased surface dose compared to the ‘tennis racket’ style couch top they often replace. Also, arc delivery techniques have replaced stationary gantry techniques which cause a greater fraction of the dose to be delivered from posterior angles. A host of immobilization devices are available and used to increase patient positioning reproducibility, and these also have attenuation and skin dose implications which are often ignored. This report of Task Group 176 serves to present a survey of published data that illustrates the magnitude of the dosimetric effects of a wide range of devices external to the patient. The report also provides methods for modeling couch tops in treatment planning systems so the physicist can accurately compute the dosimetric effects for indexed patient treatments. Both photon and proton beams are considered. A discussion on avoidance of high density structures during beam planning is also provided. An important aspect of this report are the recommendations we make to clinical physicists, treatment planning system vendors, and device vendors on how to make measurements of skin dose and attenuation, how to report these values, and for the vendors, an appeal is made to work together to provide accurate couch top models in planning systems. Learning Objectives

  13. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources

    PubMed Central

    Ghorbani, Mahdi; Davenport, David

    2016-01-01

    Abstract Aim The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Background Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. Materials and methods MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Results Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Conclusions Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems. PMID:27247558

  14. Monte Carlo dosimetric study of the medium dose rate CSM40 source.

    PubMed

    Vijande, J; Granero, D; Perez-Calatayud, J; Ballester, F

    2013-12-01

    The (137)Cs medium dose rate (MDR) CSM40 source model (Eckert & Ziegler BEBIG, Germany) is in clinical use but no dosimetric dataset has been published. This study aims to obtain dosimetric data for the CSM40 source for its use in clinical practice as required by the American Association of Physicists in Medicine (AAPM) and the European Society for Radiotherapy and Oncology (ESTRO). Penelope2008 and Geant4 Monte Carlo codes were used to characterize this source dosimetrically. It was located in an unbounded water phantom with composition and mass density as recommended by AAPM and ESTRO. Due to the low photon energies of (137)Cs, absorbed dose was approximated by collisional kerma. Additional simulations were performed to obtain the air-kerma strength, sK. Mass-energy absorption coefficients in water and air were consistently derived and used to calculate collisional kerma. Results performed with both radiation transport codes showed agreement typically within 0.05%. Dose rate constant, radial dose function and anisotropy function are provided for the CSM40 and compared with published data for other commercially available (137)Cs sources. An uncertainty analysis has been performed. The data provided by this study can be used as input data and verification in the treatment planning systems. PMID:24121444

  15. Error Analysis of non-TLD HDR Brachytherapy Dosimetric Techniques

    NASA Astrophysics Data System (ADS)

    Amoush, Ahmad

    The American Association of Physicists in Medicine Task Group Report43 (AAPM-TG43) and its updated version TG-43U1 rely on the LiF TLD detector to determine the experimental absolute dose rate for brachytherapy. The recommended uncertainty estimates associated with TLD experimental dosimetry include 5% for statistical errors (Type A) and 7% for systematic errors (Type B). TG-43U1 protocol does not include recommendation for other experimental dosimetric techniques to calculate the absolute dose for brachytherapy. This research used two independent experimental methods and Monte Carlo simulations to investigate and analyze uncertainties and errors associated with absolute dosimetry of HDR brachytherapy for a Tandem applicator. An A16 MicroChamber* and one dose MOSFET detectors† were selected to meet the TG-43U1 recommendations for experimental dosimetry. Statistical and systematic uncertainty analyses associated with each experimental technique were analyzed quantitatively using MCNPX 2.6‡ to evaluate source positional error, Tandem positional error, the source spectrum, phantom size effect, reproducibility, temperature and pressure effects, volume averaging, stem and wall effects, and Tandem effect. Absolute dose calculations for clinical use are based on Treatment Planning System (TPS) with no corrections for the above uncertainties. Absolute dose and uncertainties along the transverse plane were predicted for the A16 microchamber. The generated overall uncertainties are 22%, 17%, 15%, 15%, 16%, 17%, and 19% at 1cm, 2cm, 3cm, 4cm, and 5cm, respectively. Predicting the dose beyond 5cm is complicated due to low signal-to-noise ratio, cable effect, and stem effect for the A16 microchamber. Since dose beyond 5cm adds no clinical information, it has been ignored in this study. The absolute dose was predicted for the MOSFET detector from 1cm to 7cm along the transverse plane. The generated overall uncertainties are 23%, 11%, 8%, 7%, 7%, 9%, and 8% at 1cm, 2cm, 3cm

  16. A high sensitive phosphor for dosimetric applications

    SciTech Connect

    Kore, Bhushan P. Dhoble, S. J.; Dhoble, N. S.; Lochab, S. P.

    2015-06-24

    In this study a novel TL phosphor CaMg{sub 3}(SO{sub 4}){sub 4}:Dy{sup 3+} was prepared by acid distillation method. The TL response of this phosphor towards γ-rays and carbon ion beam was tested. Good dosimetric glow curve was observed which is stable against both the type of radiations. The CaMg{sub 3}(SO{sub 4}){sub 4}:Dy{sup 3+} phosphor doped with 0.2 mol% of Dy{sup 3+}, irradiated with γ-ray shows nearly equal sensitivity to that of commercially available CaSO{sub 4}:Dy TLD phosphor whereas 3.5 times more sensitivity than CaSO{sub 4}:Dy, when irradiated with carbon ion beam. The change in glow peak intensities and glow peak temperature with variation in irradiation species and energy of ion beam is discussed here. The effect of these on trapping parameters is also illustrated.

  17. Dosimetric mapping inside biorack (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Reitz, G.

    1992-01-01

    This experiment documents the radiation environment inside Biorack and compares it to theoretical predictions. Other experiments inside Biorack need this information to determine whether changes to samples are caused by radiation or microgravity. Dosimetric stacks, each with 20 to 100 sheets of plastic detector foils (cellulose nitrate, Lexan, and CR39) and nuclear emulsions of different radiation sensitivity are packed together with Thermoluminescence dosimeters (TLD) inside Type 1 containers. Crew members place two stacks in the 37 C incubator and four in the 36 C incubator, two of which are placed on the 1 g centrifuge. Two stacks are located in a stowage position at ambient temperature. After the mission, the plastic detectors are etched and the nuclear emulsions are developed similar to photographic emulsions. The traces resulting from the interaction of heavy ions with matter can then be evaluated under the microscope. The number, charge, and energy of the particles will be determined. From the TLD readings, the absorbed dose of the low LET components will be received.

  18. Dosimetric evaluation of brain scanning agents

    SciTech Connect

    Eckerman, K.F.; Cristy, M.; Warner, G.G.

    1981-06-01

    Conventional radiopharmaceuticals used for scanning the brain are excluded from normal brain tissue by the presence of an intact blood-brain-barrier (BBB). The current generation of radiopharmaceuticals being developed is capable of crossing the intact BBB thus providing direct measurement of brain function. The dosimetry of the first generation agents is complicated by the presence of the BBB which prevents the agent from achieving uniform distribution as generally assumed in dosimetric evaluation. The second generation radiopharmaceuticals while crossing the BBB are also nonuniformly distributed in the brain. Tabulations of specific absorbed fraction data for photon emitters uniformly distributed in the gray and in the white matter regions of the brain are presented and compared to values for a uniform distribution throughout the brain. Estimates of the specific absorbed fraction for the lens of the eye and the pituitary gland are also presented. Dose values per unit cumulated activity (S-factors) are developed based on the specific absorbed fraction data. The significance of the positron component to the dose to the regions of the brain is indicated for second generation scanning agents containing carbon-11, nitrogen-13, oxygen-15, and fluorine-18.

  19. Experiment "Seeds" on Biokosmos 9. Dosimetric part.

    PubMed

    Baican, B; Schopper, E; Wendnagel, T h; Schott, J U; Heilman, C

    1992-01-01

    The aim of the experiment "Seeds" on the Sowjetic satellite Biokosmos 9 was the observation of mutagenic effects caused at special loci of seeds of Arabidopsis thaliana and assigned to particles of the Cosmic radiation. Two types of exposure units were flown: A low-shielding unit Type I, mounted at the surface of the satellite (1.4 g/cm2 shielding) and, for comparison, an identical item inside (16 g/cm2 shielding), using nuclear emulsion as track detectors. A Type II unit, flown inside (18g/cm2 shielding) was mounted with AgCl track detectors. The layout will be briefly described. A first set of dosimetric data from the physical evaluation of the experiment will be presented. The subdivision into charge- and LET-groups shows a rather high contribution of the intermediate LET-group (350-1000 MeV/cm) due to medium heavy particles (Z = 6-10) and to enders of light (p, alpha) particles. PMID:11537029

  20. Dosimetric characterization of two radium sources for retrospective dosimetry studies

    SciTech Connect

    Candela-Juan, C.; Karlsson, M.; Lundell, M.; Ballester, F.; Tedgren, Å. Carlsson

    2015-05-15

    Purpose: During the first part of the 20th century, {sup 226}Ra was the most used radionuclide for brachytherapy. Retrospective accurate dosimetry, coupled with patient follow up, is important for advancing knowledge on long-term radiation effects. The purpose of this work was to dosimetrically characterize two {sup 226}Ra sources, commonly used in Sweden during the first half of the 20th century, for retrospective dose–effect studies. Methods: An 8 mg {sup 226}Ra tube and a 10 mg {sup 226}Ra needle, used at Radiumhemmet (Karolinska University Hospital, Stockholm, Sweden), from 1925 to the 1960s, were modeled in two independent Monte Carlo (MC) radiation transport codes: GEANT4 and MCNP5. Absorbed dose and collision kerma around the two sources were obtained, from which the TG-43 parameters were derived for the secular equilibrium state. Furthermore, results from this dosimetric formalism were compared with results from a MC simulation with a superficial mould constituted by five needles inside a glass casing, placed over a water phantom, trying to mimic a typical clinical setup. Calculated absorbed doses using the TG-43 formalism were also compared with previously reported measurements and calculations based on the Sievert integral. Finally, the dose rate at large distances from a {sup 226}Ra point-like-source placed in the center of 1 m radius water sphere was calculated with GEANT4. Results: TG-43 parameters [including g{sub L}(r), F(r, θ), Λ, and s{sub K}] have been uploaded in spreadsheets as additional material, and the fitting parameters of a mathematical curve that provides the dose rate between 10 and 60 cm from the source have been provided. Results from TG-43 formalism are consistent within the treatment volume with those of a MC simulation of a typical clinical scenario. Comparisons with reported measurements made with thermoluminescent dosimeters show differences up to 13% along the transverse axis of the radium needle. It has been estimated that

  1. Active pixel as dosimetric device for interventional radiology

    NASA Astrophysics Data System (ADS)

    Servoli, L.; Baldaccini, F.; Biasini, M.; Checcucci, B.; Chiocchini, S.; Cicioni, R.; Conti, E.; Di Lorenzo, R.; Dipilato, A. C.; Esposito, A.; Fanó, L.; Paolucci, M.; Passeri, D.; Pentiricci, A.; Placidi, P.

    2013-08-01

    Interventional Radiology (IR) is a subspecialty of radiology comprehensive of all minimally invasive diagnostic and therapeutic procedures performed using radiological devices to obtain image guidance. The interventional procedures are potentially harmful for interventional radiologists and medical staff due to the X-ray diffusion by the patient's body. The characteristic energy range of the diffused photons spans few tens of keV. In this work we will present a proposal for a new X-ray sensing element in the energy range of interest for IR procedures. The sensing element will then be assembled in a dosimeter prototype, capable of real-time measurement, packaged in a small form-factor, with wireless communication and no external power supply to be used for individual operators dosimetry for IR procedures. For the sensor, which is the heart of the system, we considered three different Active Pixel Sensors (APS). They have shown a good capability as single X-ray photon detectors, up to several tens keV photon energy. Two dosimetric quantities have been considered, the number of detected photons and the measured energy deposition. Both observables have a linear dependence with the dose, as measured by commercial dosimeters. The uncertainties in the measurement are dominated by statistic and can be pushed at ˜5% for all the sensors under test.

  2. Dosimetric implications of new compounds for neutron capture therapy (NCT)

    SciTech Connect

    Fairchild, R.G.

    1982-01-01

    Systemic application of radiolabeled or cytotoxic agents should allow targeting of primary and metastatic neoplasms on a cellular level. In fact, drug uptake in non-target cell pools often exceeds toxic levels before sufficient amounts are delivered to tumor. In addition, at the large concentration of molecules necessary for therapy, effects of saturation are often found. Application of NCT can circumvent problems associated with high uptake in competing non-target cell pools, as the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction is activated only within the radiation field. A comparison with other modes of particle therapy indicated that NCT provides significant advantages. It is however, difficult to obtain vehicles for boron transport which demonstrate both the tumor specificity and concentration requisite for NCT. A number of biomolecules have been investigated which show both the necessary concentration and specificity. These include chlorpromazine, thiouracil, porphyrins, amino acids, and nucleosides. However, these analogs have yet to be made available for NCT. Dosimetric implications of binding sites are considered, as well as alternate neutron sources. (ERB)

  3. Dosimetric Study of a Low-Dose-Rate Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Rodríguez-Villafuerte, M.; Arzamendi, S.; Díaz-Perches, R.

    Carcinoma of the cervix is the most common malignancy - in terms of both incidence and mortality - in Mexican women. Low dose rate (LDR) intracavitary brachytherapy is normally prescribed for the treatment of this disease to the vast majority of patients attending public hospitals in our country. However, most treatment planning systems being used in these hospitals still rely on Sievert integral dose calculations. Moreover, experimental verification of dose distributions are hardly ever done. In this work we present a dosimetric characterisation of the Amersham CDCS-J 137Cs source, an LDR brachytherapy source commonly used in Mexican hospitals. To this end a Monte Carlo simulation was developed, that includes a realistic description of the internal structure of the source embedded in a scattering medium. The Monte Carlo results were compared to experimental measurements of dose distributions. A lucite phantom with the same geometric characteristics as the one used in the simulation was built. Dose measurements were performed using thermoluminescent dosimeters together with commercial RadioChromic dye film. A comparison between our Monte Carlo simulation, the experimental data, and results reported in the literature is presented.

  4. Phantom size in brachytherapy source dosimetric studies.

    PubMed

    Pérez-Calatayud, J; Granero, D; Ballester, F

    2004-07-01

    An important point to consider in a brachytherapy dosimetry study is the phantom size involved in calculations or experimental measurements. As pointed out by Williamson [Med. Phys. 18, 776-786 (1991)] this topic has a relevant influence on final dosimetric results. Presently, one-dimensional (1-D) algorithms and newly-developed 3-D correction algorithms are based on physics data that are obtained under full scatter conditions, i.e., assumed infinite phantom size. One can then assume that reference dose distributions in source dosimetry for photon brachytherapy should use an unbounded phantom size rather than phantom-like dimensions. Our aim in this paper is to study the effect of phantom size on brachytherapy for radionuclide 137Cs, 192Ir, 125I and 103Pd, mainly used for clinical purposes. Using the GEANT4 Monte Carlo code, we can ascertain effects on derived dosimetry parameters and functions to establish a distance dependent difference due to the absence of full scatter conditions. We have found that for 137Cs and 192Ir, a spherical phantom with a 40 cm radius is the equivalent of an unbounded phantom up to a distance of 20 cm from the source, as this size ensures full scatter conditions at this distance. For 125I and 103Pd, the required radius for the spherical phantom in order to ensure full scatter conditions at 10 cm from the source is R = 15 cm. A simple expression based on fits of the dose distributions for various phantom sizes has been developed for 137Cs and 192Ir in order to compare the dose rate distributions published for different phantom sizes. Using these relations it is possible to obtain radial dose functions for unbounded medium from bounded phantom ones. PMID:15305460

  5. Dosimetric measurements of an n-butyl cyanoacrylate embolization material for arteriovenous malformations

    SciTech Connect

    Labby, Zacariah E.; Chaudhary, Neeraj; Gemmete, Joseph J.; Pandey, Aditya S.; Roberts, Donald A.

    2015-04-15

    Purpose: The therapeutic regimen for cranial arteriovenous malformations often involves both stereotactic radiosurgery and endovascular embolization. Embolization agents may contain tantalum or other contrast agents to assist the neurointerventionalists, leading to concerns regarding the dosimetric effects of these agents. This study investigated dosimetric properties of n-butyl cyanoacrylate (n-BCA) plus lipiodol with and without tantalum powder. Methods: The embolization agents were provided cured from the manufacturer with and without added tantalum. Attenuation measurements were made for the samples and compared to the attenuation of a solid water substitute using a 6 MV photon beam. Effective linear attenuation coefficients (ELAC) were derived from attenuation measurements made using a portal imager and derived sample thickness maps projected in an identical geometry. Probable dosimetric errors for calculations in which the embolized regions are overridden with the properties of water were calculated using the ELAC values. Interface effects were investigated using a parallel plate ion chamber placed at set distances below fixed samples. Finally, Hounsfield units (HU) were measured using a stereotactic radiosurgery CT protocol, and more appropriate HU values were derived from the ELAC results and the CT scanner’s HU calibration curve. Results: The ELAC was 0.0516 ± 0.0063 cm{sup −1} and 0.0580 ± 0.0091 cm{sup −1} for n-BCA without and with tantalum, respectively, compared to 0.0487 ± 0.0009 cm{sup −1} for the water substitute. Dose calculations with the embolized region set to be water equivalent in the treatment planning system would result in errors of −0.29% and −0.93% per cm thickness of n-BCA without and with tantalum, respectively. Interface effects compared to water were small in magnitude and limited in distance for both embolization materials. CT values at 120 kVp were 2082 and 2358 HU for n-BCA without and with tantalum, respectively

  6. Electromagnetic and Thermal Dosimetric Techniques in Humans and its Application

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Fujiwara, Osamu

    There has been increasing public concern about the adverse health effects of human exposure to radio frequency fields. Radio frequency fields are also used for medical application. This paper reviews electromagnetic and thermal computational dosimetric techniques, which has been developed by the authors. The feature of the thermal dosimetric method is that body core temperature can be computed reasonably unlike conventional method. This scheme is particularly useful for intense localized or whole-body electromagnetic wave exposure. Computational examples are shown to verify the effectiveness of the proposal.

  7. Dosimetric properties of new europium doped KBr phosphors

    NASA Astrophysics Data System (ADS)

    Bernal, R.; Tostado-García, W.; Alday-Samaniego, K. R.; Cruz-Vázquez, C.; Barboza-Flores, M.

    2003-03-01

    In this work, dosimetric properties of new sintered europium-doped KBr phosphors subjected to beta irradiation are investigated. The obtained results show that these phosphors exhibit promising thermoluminescence properties that made them a viable alternative to substitute the conventional alkali halides crystals of similar composition for dosimetric purposes, considering as important advantages the simplicity and economy of the fabrication. The thermoluminescence response shows a linear dose dependence up to order of some Grays, which is higher than the linearity presented by the crystals of similar composition. Also, the thermoluminiscence fading is stabilized faster than that of the crystals do.

  8. Dosimetric and mechanical characteristics of a commercial dynamic {mu}MLC used in SRS

    SciTech Connect

    Galal, Mohamed M.; Keogh, Sinead; Khalil, Sultan

    2011-07-15

    Purpose: The aim of this work is to carry out mechanical and dosimetric assessments on a commercial dynamic micromulti leaf collimator system to be used for stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT). Mechanical parameters such as leaf position accuracy with different gantry angles and leaf position reproducibility were measured. Also dosimetric measurements of the interleaf leakage, intraleaf transmission, penumbra width, and light field alignment were carried out. Furthermore, measurements of output factors (S{sub cp}) and in-air factors (S{sub c}) for the {mu}MLC system will be reported. Methods: EBT2 films were used to assess the leaf position error with gantry angle and after stress test, penumbra width and light field alignment. Leaf leakage was quantified using both EBT2 film and a pinpoint ion chamber. With regard to output factors, the pinpoint chamber was placed in a water phantom at 10 cm depth and 100 cm SSD. For in-air output factor measurements, 0.2 cm of brass was placed above the photon diode as build-up. Results: Measurements of mechanical parameters gave values of 0.05 cm (SD 0.035) for the average leaf position accuracy for different gantry angles and after stress test. Dosimetric measurements, yielded values of 0.22 {+-} 0.01 and 0.24 {+-} 0.01 cm, respectively, for side and head leaf penumbras. Also, average leaf abutting, leakage and transmission were found to be 0.65, 0.91, and 0.20%, respectively. Conclusions: (a) The add-on {mu}MLC system in combination with our LINAC has been commissioned to be used for clinical purposes and showed good agreement with published results for different {mu}MLC types. (b) This work has lead to the recommendation that leaves should be recalibrated after ten static beams or after each dynamic arc.

  9. Dosimetric effects caused by couch tops and immobilization devices: Report of AAPM Task Group 176

    SciTech Connect

    Olch, Arthur J.; Gerig, Lee; Li, Heng; Mihaylov, Ivaylo; Morgan, Andrew

    2014-06-15

    The dosimetric impact from devices external to the patient is a complex combination of increased skin dose, reduced tumor dose, and altered dose distribution. Although small monitor unit or dose corrections are routinely made for blocking trays, ion chamber correction factors, e.g., accounting for temperature and pressure, or tissue inhomogeneities, the dose perturbation of the treatment couch top or immobilization devices is often overlooked. These devices also increase skin dose, an effect which is also often ignored or underestimated. These concerns have grown recently due to the increased use of monolithic carbon fiber couch tops which are optimal for imaging for patient position verification but cause attenuation and increased skin dose compared to the “tennis racket” style couch top they often replace. Also, arc delivery techniques have replaced stationary gantry techniques which cause a greater fraction of the dose to be delivered from posterior angles. A host of immobilization devices are available and used to increase patient positioning reproducibility, and these also have attenuation and skin dose implications which are often ignored. This report of Task Group 176 serves to present a survey of published data that illustrates the magnitude of the dosimetric effects of a wide range of devices external to the patient. The report also provides methods for modeling couch tops in treatment planning systems so the physicist can accurately compute the dosimetric effects for indexed patient treatments. Both photon and proton beams are considered. A discussion on avoidance of high density structures during beam planning is also provided. An important aspect of this report are the recommendations the authors make to clinical physicists, treatment planning system vendors, and device vendors on how to make measurements of surface dose and attenuation and how to report these values. For the vendors, an appeal is made to work together to provide accurate couch top

  10. The revised International Commission on Radiological Protection (ICRP) dosimetric model for the human respiratory tract

    SciTech Connect

    Bair, W.J.

    1992-05-01

    A task group has revised the dosimetric model of the respiratory tract used to calculate annual limits on intake of radionuclides. The revised model can be used to project respiratory tract doses for workers and members of the public from airborne radionuclides and to assess past exposures. Doses calculated for specific extrathoracic and thoracic tissues can be adjusted to account for differences in radiosensitivity and summed to yield two values of dose for the respiratory tract that are applicable to the ICRP tissue weighted dosimetry system.

  11. The spectral applications of Beer-Lambert law for some biological and dosimetric materials

    NASA Astrophysics Data System (ADS)

    Içelli, Orhan; Yalçin, Zeynel; Karakaya, Vatan; Ilgaz, Işıl P.

    2014-08-01

    The aim of this study is to conduct quantitative and qualitative analysis of biological and dosimetric materials which contain organic and inorganic materials and to make the determination by using the spectral theorem Beer-Lambert law. Beer-Lambert law is a system of linear equations for the spectral theory. It is possible to solve linear equations with a non-zero coefficient matrix determinant forming linear equations. Characteristic matrix of the linear equation with zero determinant is called point spectrum at the spectral theory.

  12. Dosimetric effects of an air cavity for the SAVI partial breast irradiation applicator

    SciTech Connect

    Richardson, Susan L.; Pino, Ramiro

    2010-08-15

    Purpose: To investigate the dosimetric effect of the air inside the SAVI partial breast irradiation device. Methods: The authors have investigated how the air inside the SAVI partial breast irradiation device changes the delivered dose from the homogeneously calculated dose. Measurements were made with the device filled with air and water to allow comparison to a homogenous dose calculation done by the treatment planning system. Measurements were made with an ion chamber, TLDs, and film. Monte Carlo (MC) simulations of the experiment were done using the EGSnrc suite. The MC model was validated by comparing the water-filled calculations to those from a commercial treatment planning system. Results: The magnitude of the dosimetric effect depends on the size of the cavity, the arrangement of sources, and the relative dwell times. For a simple case using only the central catheter of the largest device, MC results indicate that the dose at the prescription point 1 cm away from the air-water boundary is about 9% higher than the homogeneous calculation. Independent measurements in a water phantom with a similar air cavity gave comparable results. MC simulation of a realistic multidwell position plan showed discrepancies of about 5% on average at the prescription point for the largest device. Conclusions: The dosimetric effect of the air cavity is in the range of 3%-9%. Unless a heterogeneous dose calculation algorithm is used, users should be aware of the possibility of small treatment planning dose errors for this device and make modifications to the treatment delivery, if necessary.

  13. Mechanical and dosimetric quality control for computer controlled radiotherapy treatment equipment.

    PubMed

    Thompson, A V; Lam, K L; Balter, J M; McShan, D L; Martel, M K; Weaver, T A; Fraass, B A; Ten Haken, R K

    1995-05-01

    Modern computer controlled radiotherapy treatment equipment offers the possibility of delivering complex, multiple field treatments with minimal operator intervention, thus making multiple field conformal therapy practical. Conventional quality control programs are inadequate for this new technology, so new quality control procedures are needed. A reasonably fast, sensitive, and complete daily quality control program has been developed in our clinic that includes nearly automated mechanical as well as dosimetric tests. Automated delivery of these quality control fields is performed by the control system of the MM50 racetrack microtron, directed by the CCRS sequence processor [D. L. McShan and B. A. Fraass, Proceedings of the XIth International Conference on the use of computers in Radiation Therapy, 20-24 March 1994, Manchester, U.K. (North Western Medical Physics Department, Manchester, U.K., 1994), pp. 210-211], which controls the treatment process. The mechanical tests involve multiple irradiations of a single film to check the accuracy and reproducibility of the computer controlled setup of gantry and collimator angles, table orientation, collimator jaws, and multileaf collimator shape. The dosimetric tests, which involve multiple irradiations of an array of ionization chambers in a commercial dose detector (Keithly model 90100 Tracker System) rigidly attached to the head of the treatment gantry, check the output and symmetry of the treatment unit as a function of gantry and collimator angle and other parameters. For each of the dosimetric tests, readings from the five ionization chambers are automatically read out, stored, and analyzed by the computer, along with the geometric parameters of the treatment unit for that beam.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7643792

  14. Dosimetric impact of intrafractional patient motion in pediatric brain tumor patients.

    PubMed

    Beltran, Chris; Trussell, John; Merchant, Thomas E

    2010-01-01

    The purpose of this study was to determine the dosimetric consequences of intrafractional patient motion on the clinical target volume (CTV), spinal cord, and optic nerves for non-sedated pediatric brain tumor patients. The patients were immobilized for treatment using a customized thermoplastic full-face mask and bite-block attached to an array of reflectors. The array was optically tracked by infra-red cameras at a frequency of 10 Hz. Patients were localized based on skin/mask marks and weekly films were taken to ensure proper setup. Before each noncoplanar field was delivered, the deviation from baseline of the array was recorded. The systematic error (SE) and random error (RE) were calculated. Direct simulation of the intrafractional motion was used to quantify the dosimetric changes to the targets and critical structures. Nine patients utilizing the optical tracking system were evaluated. The patient cohort had a mean of 31 +/- 1.5 treatment fractions; motion data were acquired for a mean of 26 +/- 6.2 fractions. The mean age was 15.6 +/- 4.1 years. The SE and RE were 0.4 and 1.1 mm in the posterior-anterior, 0.5 and 1.0 mm in left-right, and 0.6 and 1.3 mm in superior-inferior directions, respectively. The dosimetric effects of the motion on the CTV were negligible; however, the dose to the critical structures was increased. Patient motion during treatment does affect the dose to critical structures, therefore, planning risk volumes are needed to properly assess the dose to normal tissues. Because the motion did not affect the dose to the CTV, the 3-mm PTV margin used is sufficient to account for intrafractional motion, given the patient is properly localized at the start of treatment. PMID:19931014

  15. Dosimetric Impact of Intrafractional Patient Motion in Pediatric Brain Tumor Patients

    SciTech Connect

    Beltran, Chris Trussell, John; Merchant, Thomas E.

    2010-04-01

    The purpose of this study was to determine the dosimetric consequences of intrafractional patient motion on the clinical target volume (CTV), spinal cord, and optic nerves for non-sedated pediatric brain tumor patients. The patients were immobilized for treatment using a customized thermoplastic full-face mask and bite-block attached to an array of reflectors. The array was optically tracked by infra-red cameras at a frequency of 10 Hz. Patients were localized based on skin/mask marks and weekly films were taken to ensure proper setup. Before each noncoplanar field was delivered, the deviation from baseline of the array was recorded. The systematic error (SE) and random error (RE) were calculated. Direct simulation of the intrafractional motion was used to quantify the dosimetric changes to the targets and critical structures. Nine patients utilizing the optical tracking system were evaluated. The patient cohort had a mean of 31 {+-} 1.5 treatment fractions; motion data were acquired for a mean of 26 {+-} 6.2 fractions. The mean age was 15.6 {+-} 4.1 years. The SE and RE were 0.4 and 1.1 mm in the posterior-anterior, 0.5 and 1.0 mm in left-right, and 0.6 and 1.3 mm in superior-inferior directions, respectively. The dosimetric effects of the motion on the CTV were negligible; however, the dose to the critical structures was increased. Patient motion during treatment does affect the dose to critical structures, therefore, planning risk volumes are needed to properly assess the dose to normal tissues. Because the motion did not affect the dose to the CTV, the 3-mm PTV margin used is sufficient to account for intrafractional motion, given the patient is properly localized at the start of treatment.

  16. Dosimetric characterizations of GZP6 60Co high dose rate brachytherapy sources: application of superimposition method

    PubMed Central

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Mowlavi, Ali Asghar; Meigooni, Ali Soleimani

    2012-01-01

    Background Dosimetric characteristics of a high dose rate (HDR) GZP6 Co-60 brachytherapy source have been evaluated following American Association of Physicists in MedicineTask Group 43U1 (AAPM TG-43U1) recommendations for their clinical applications. Materials and methods MCNP-4C and MCNPX Monte Carlo codes were utilized to calculate dose rate constant, two dimensional (2D) dose distribution, radial dose function and 2D anisotropy function of the source. These parameters of this source are compared with the available data for Ralstron 60Co and microSelectron192Ir sources. Besides, a superimposition method was developed to extend the obtained results for the GZP6 source No. 3 to other GZP6 sources. Results The simulated value for dose rate constant for GZP6 source was 1.104±0.03 cGyh-1U-1. The graphical and tabulated radial dose function and 2D anisotropy function of this source are presented here. The results of these investigations show that the dosimetric parameters of GZP6 source are comparable to those for the Ralstron source. While dose rate constant for the two 60Co sources are similar to that for the microSelectron192Ir source, there are differences between radial dose function and anisotropy functions. Radial dose function of the 192Ir source is less steep than both 60Co source models. In addition, the 60Co sources are showing more isotropic dose distribution than the 192Ir source. Conclusions The superimposition method is applicable to produce dose distributions for other source arrangements from the dose distribution of a single source. The calculated dosimetric quantities of this new source can be introduced as input data to the GZP6 treatment planning system (TPS) and to validate the performance of the TPS. PMID:23077455

  17. Dosimetric Characteristics of Circular 6-MeV X-Ray Beams for Stereotactic Radiotherapy with a Linear Accelerator

    NASA Astrophysics Data System (ADS)

    Wysocka, A.; Rostkowska, J.; Kania, M.; Bulski, W.; Fijuth, J.

    2000-01-01

    Dosimetric characteristics of 6 MeV circular X-ray beams of diameters ranging from 7.5 to 35.0 mm are reported. The 6-MeV X-ray beam from Clinac 2300CD was formed using additional cylindrical BrainLAB's collimators. The mechanical stability of the entire system was verified. Specific quantities measured include tissue maximum ratios (TMR), beam profiles (off-axis ratios OAR) and relative output factors. Measurements of these parameters were performed in a water phantom using small cylindrical ionization chambers and a diamond detector. Comparison of TMR values measured with the ionization chamber and the diamond detector showed no significant differences. It was shown that the latter yields more accurate results for beam profiles than ionization chambers. The mechanical and dosimetric characteristics of this radiotherapy unit are found to be suitable for stereotactic radiosurgery and radiotherapy.

  18. Dosimetric characteristics of fabricated silica fibre for postal radiotherapy dose audits

    NASA Astrophysics Data System (ADS)

    Fadzil, M. S. Ahmad; Ramli, N. N. H.; Jusoh, M. A.; Kadni, T.; Bradley, D. A.; Ung, N. M.; Suhairul, H.; Mohd Noor, N.

    2014-11-01

    Present investigation aims to establish the dosimetric characteristics of a novel fabricated flat fibre TLD system for postal radiotherapy dose audits. Various thermoluminescence (TL) properties have been investigated for five sizes of 6 mol% Ge-doped optical fibres. Key dosimetric characteristics including reproducibility, linearity, fading and energy dependence have been established. Irradiations were carried out using a linear accelerator (linac) and a Cobalt-60 machine. For doses from 0.5 Gy up to 10 Gy, Ge-doped flat fibres exhibit linearity between TL yield and dose, reproducible to better than 8% standard deviation (SD) following repeat measurements (n = 3). For photons generated at potentials from 1.25 MeV to 10 MV an energy-dependent response is noted, with a coefficient of variation (CV) of less than 40% over the range of energies investigated. For 6.0 mm length flat fibres 100 μm thick × 350 pm wide, the TL fading loss following 30 days of storage at room temperature was < 8%. The Ge-doped flat fibre system represents a viable basis for use in postal radiotherapy dose audits, corrections being made for the various factors influencing the TL yield.

  19. Dosimetric comparison of helical tomothearpy and linac-based IMRT in whole abdomen radiotherapy

    NASA Astrophysics Data System (ADS)

    Kang, Young-nam; Kim, Dae-Hyun; Jang, Hong Seok; Song, Jin Ho; Choi, Byung Ock; Cho, Seok Goo; Jung, Ji-Young; Kay, Chul Seung

    2012-10-01

    Recent advances in radiotherapy techniques have allowed a significant improvement in the therapeutic ratio of whole abdominal irradiation (WAI) through linear-accelerator (Linac) based intensity-modulated radiotherapy (IMRT) and helical tomotherapy (HT). IMRT has been shown to reduce the dose to organs at risk (OAR) while adequately treating the tumor volume. HT operates by adjusting 51 beam directions, couch speed, pitch and shapes of a binary multileaf collimator (MLC), with the purpose of clinically increasing the befit to the patient. We incorporated helical tomotherapy as a new modality for WAI for the treatment of non-Hodgkin's lymphoma patients whose disease involved the intestine and the mesenteric lymph nodes. Excellent tumor coverage with effective sparing of normal organ sparings, and homogeneous dose distribution could be achieved. This study dosimetrically compared HT and linac-based IMRT by using several indices, including the conformity index (CI) and the homogeneity index (HI) for the planning target volume (PTV), as well as the, max dose and the mean dose and the quality index (QI) for five organs at risk (OARs). The HI and the CI were used to compare the quality of target coverage while the QI was used compare the dosimetric performans for OAR systems. The target coverages between the two systems were similar, but the most QIs were lower than 1, what means that HT is batter at sparing OARs than IMRT. Tomotherapy enabled excellent target coverage, effective sparing of normal tissues, and homogeneous dose distribution without severe acute toxicity.

  20. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    NASA Astrophysics Data System (ADS)

    Omar, R. S.; Wagiran, H.; Saeed, M. A.

    2016-01-01

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B2O3 - 20 CaO - 10 MgO-(y) Dy2O3 with 0.05 mol % ≤ y ≤ 0.7 mol % of dyprosium were prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy2O3 concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.

  1. First biological and dosimetric results of the free flyer biostack experiment AO015 on LDEF

    NASA Technical Reports Server (NTRS)

    Reitz, G.; Buecker, H.; Facius, R.; Horneck, G.; Schaeffer, M.; Schott, J. U.; Bayonove, J.; Beaujean, R.; Benton, E. V.; Delpoux, M.

    1991-01-01

    The main objectives of the Biostack Experiment are to study the effectiveness of the structured components of the cosmic radiation to bacterial spores, plant seeds, and animal cysts for a long duration spaceflight and to get dosimetric data such as particle fluences and spectra and total doses for the Long Duration Exposure Facility orbit. The configuration of the experiment packages allows the localization of the trajectory of the particles in each biological layer and to correlate the potential biological impairment or injury with the physical characteristics of the responsible particle. Although the Biostack Experiment was designed for a long duration flight of only nine months, most of the biological systems show a high hatching or germination rate. Some of the first observations are an increase of the mutation rate of embryonic lethals in the second generation of Arabidopsis seeds, somatic mutations, and a reduction of growth rates of corn plants and a reduction of life span of Artemia salina shrimps. The different passive detector systems are also in a good shape and give access to a proper dosimetric analysis. The results are summarized, and some aspects of future analysis are shown.

  2. Dosimetric characteristics of a new unit for electronic skin brachytherapy

    PubMed Central

    Garcia-Martinez, Teresa; Chan, Jan-Pieter; Perez-Calatayud, Jose

    2014-01-01

    Purpose Brachytherapy with radioactive high dose rate (HDR) 192Ir source is applied to small skin cancer lesions, using surface applicators, i.e. Leipzig or Valencia type. New developments in the field of radiotherapy for skin cancer include electronic brachytherapy. This technique involves the placement of an HDR X-ray source close to the skin, therefore combining the benefits of brachytherapy with the reduced shielding requirements and targeted energy of low energy X-rays. Recently, the Esteya® Electronic Brachytherapy System (Esteya EBS, Elekta AB-Nucletron, Stockholm, Sweden) has been developed specifically for HDR brachytherapy treatment of surface lesions. The system provides radionuclide free HDR brachytherapy by means of a small 69.5 kV X-ray source. The purpose of this study is to obtain the dosimetric characterization required for clinical implementation, providing the detailed methodology to perform the commissioning. Material and methods Flatness, symmetry and penumbra, percentage of depth dose (PDD), kV stability, HVL, output, spectrum, linearity, and leakage have been evaluated for a set of applicators (from 10 mm to 30 mm in diameter). Results Flatness and symmetry resulted better than 5% with around 1 mm of penumbra. The depth dose gradient is about 7%/mm. A kV value of 68.4 ± 1.0 kV (k = 1) was obtained, in good agreement with manufacturer data (69.5 kV). HVL was 1.85 mm Al. Dose rate for a typical 6 Gy to 7 Gy prescription resulted about 3.3 Gy/min and the leakage value was < 100 µGy/min. Conclusions The new Esteya® Electronic Brachytherapy System presents excellent flatness and penumbra as with the Valencia applicator case, combined with an improved PDD, allowing treatment of lesions of up to a depth of 5 mm in combination with reduced treatment duration. The Esteya unit allows HDR brachytherapy superficial treatment within a minimally shielded environment due its low energy. PMID:24790622

  3. Benchmarking Dosimetric Quality Assessment of Prostate Intensity-Modulated Radiotherapy

    SciTech Connect

    Senthi, Sashendra; Gill, Suki S.; Haworth, Annette; Kron, Tomas; Cramb, Jim; Rolfo, Aldo; Thomas, Jessica; Duchesne, Gillian M.; Hamilton, Christopher H.; Joon, Daryl Lim; Bowden, Patrick; Foroudi, Farshad

    2012-02-01

    Purpose: To benchmark the dosimetric quality assessment of prostate intensity-modulated radiotherapy and determine whether the quality is influenced by disease or treatment factors. Patients and Methods: We retrospectively analyzed the data from 155 consecutive men treated radically for prostate cancer using intensity-modulated radiotherapy to 78 Gy between January 2007 and March 2009 across six radiotherapy treatment centers. The plan quality was determined by the measures of coverage, homogeneity, and conformity. Tumor coverage was measured using the planning target volume (PTV) receiving 95% and 100% of the prescribed dose (V{sub 95%} and V{sub 100%}, respectively) and the clinical target volume (CTV) receiving 95% and 100% of the prescribed dose. Homogeneity was measured using the sigma index of the PTV and CTV. Conformity was measured using the lesion coverage factor, healthy tissue conformity index, and the conformity number. Multivariate regression models were created to determine the relationship between these and T stage, risk status, androgen deprivation therapy use, treatment center, planning system, and treatment date. Results: The largest discriminatory measurements of coverage, homogeneity, and conformity were the PTV V{sub 95%}, PTV sigma index, and conformity number. The mean PTV V{sub 95%} was 92.5% (95% confidence interval, 91.3-93.7%). The mean PTV sigma index was 2.10 Gy (95% confidence interval, 1.90-2.20). The mean conformity number was 0.78 (95% confidence interval, 0.76-0.79). The treatment center independently influenced the coverage, homogeneity, and conformity (all p < .0001). The planning system independently influenced homogeneity (p = .038) and conformity (p = .021). The treatment date independently influenced the PTV V{sub 95%} only, with it being better at the start (p = .013). Risk status, T stage, and the use of androgen deprivation therapy did not influence any aspect of plan quality. Conclusion: Our study has benchmarked measures

  4. Multi-institutional dosimetric and geometric commissioning of image-guided small animal irradiators

    SciTech Connect

    Lindsay, P. E.; Granton, P. V.; Hoof, S. van; Hermans, J.; Gasparini, A.; Jelveh, S.; Clarkson, R.; Kaas, J.; Wittkamper, F.; Sonke, J.-J.; Verhaegen, F.; Jaffray, D. A.

    2014-03-15

    Purpose: To compare the dosimetric and geometric properties of a commercial x-ray based image-guided small animal irradiation system, installed at three institutions and to establish a complete and broadly accessible commissioning procedure. Methods: The system consists of a 225 kVp x-ray tube with fixed field size collimators ranging from 1 to 44 mm equivalent diameter. The x-ray tube is mounted opposite a flat-panel imaging detector, on a C-arm gantry with 360° coplanar rotation. Each institution performed a full commissioning of their system, including half-value layer, absolute dosimetry, relative dosimetry (profiles, percent depth dose, and relative output factors), and characterization of the system geometry and mechanical flex of the x-ray tube and detector. Dosimetric measurements were made using Farmer-type ionization chambers, small volume air and liquid ionization chambers, and radiochromic film. The results between the three institutions were compared. Results: At 225 kVp, with 0.3 mm Cu added filtration, the first half value layer ranged from 0.9 to 1.0 mm Cu. The dose-rate in-air for a 40 × 40 mm{sup 2} field size, at a source-to-axis distance of 30 cm, ranged from 3.5 to 3.9 Gy/min between the three institutions. For field sizes between 2.5 mm diameter and 40 × 40 mm{sup 2}, the differences between percent depth dose curves up to depths of 3.5 cm were between 1% and 4% on average, with the maximum difference being 7%. The profiles agreed very well for fields >5 mm diameter. The relative output factors differed by up to 6% for fields larger than 10 mm diameter, but differed by up to 49% for fields ≤5 mm diameter. The mechanical characteristics of the system (source-to-axis and source-to-detector distances) were consistent between all three institutions. There were substantial differences in the flex of each system. Conclusions: With the exception of the half-value layer, and mechanical properties, there were significant differences between the

  5. TL dosimetric properties of Li2O-B2O3 glasses for gamma dosimetry.

    PubMed

    El-Adawy, A; Khaled, N E; El-Sersy, A R; Hussein, A; Donya, H

    2010-06-01

    In this work, the thermoluminescence (TL) dosimetric characteristics of lithium borate glasses have been studied in detail before and after doping with silver. The glass specimens were prepared using a conventional melt-quenching method and checked using X-ray diffraction (XRD) pattern. The resultant glow curve of the undoped gamma-irradiated samples showed one strong peak at about 178 degrees C and at a constant heating-rate (beta) of 5 degrees C/s. While, the Ag-doped samples showed two TL glow peaks around 220 and 320 degrees C, which were mainly attributed to the Ag(+) ions. Trap parameters of glow peaks of the present glass systems were extracted. The dosimetric characteristics of glass specimens were read from the TL gamma-dose response curve, which showed a reasonably good linearity behavior between glow peak areas and gamma-dose values. The present results revealed the importance of using such current selective glass structures as gamma-radiation detectors within the studied dose-range where an acceptably good fading response was observed. PMID:20122841

  6. A Dosimetric Analysis of IMRT and Multistatic Fields Techniques for Left Breast Radiotherapy

    SciTech Connect

    Moon, Seong Kwon; Kim, Yeon Sil; Kim, Soo Young; Lee, Mi Jo; Keum, Hyun Sup; Kim, Seung Jin; Youn, Seon Min

    2011-10-01

    The purpose of this study was to analyze the dosimetric difference between intensity-modulated radiation therapy (IMRT) using 3 or 5 beams and multistatic field technique (MSF) in radiotherapy of the left breast. We made comparative analysis of two kinds of radiotherapy that can achieve improved dose homogeneity. First is a MSF that uses both major and small irradiation fields at the same time. The other is IMRT using 3 or 5 beams with an inverse planning system using multiple static multileaf collimators. We made treatment plans for 16 early left breast cancer patients who were randomly selected and had undergone breast conserving surgery and radiotherapy, and analyzed them in the dosimetric aspect. For the mean values of V{sub 95} and dose homogeneity index, no statistically significant difference was observed among the three therapies. Extreme hot spots receiving >110% of prescribed dose were not found in any of the three methods. Using Tukey's test, IMRT showed a significantly larger increase in exposure dose to the ipsilateral lung and the heart than MSF in the low-dose area, but in the high-dose area, MSF showed a slight increase. To improve dose homogeneity, the application of MSF, which can be easily planned and applied more widely, is considered optimal as an alternative to IMRT for radiotherapy of early left breast cancer.

  7. Monte Carlo dosimetric study of the Flexisource Co-60 high dose rate source

    PubMed Central

    Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo

    2012-01-01

    Purpose Recently, a new HDR 60Co brachytherapy source, Flexisource Co-60, has been developed (Nucletron B.V. Veenendaal, The Netherlands). This study aims to obtain dosimetric data for this source for its use in clinical practice as required by AAPM and ESTRO. Material and methods Two Monte Carlo radiation transport codes were used: Penelope2008 and GEANT4. The source was centrally-positioned in a 100 cm radius water phantom. Absorbed dose and collisional kerma were obtained using 0.01 cm (close) and 0.1 cm (far) sized voxels to provide high-resolution dosimetry near (far from) the source. Dose rate distributions obtained with the two Monte Carlo codes were compared. Results and Discussion Simulations performed with those two radiation transport codes showed an agreement typically within 0.2% for r > 0.8 cm and up to 2% closer to the source. Detailed results of dose distributions are being made available. Conclusions Dosimetric data are provided for the new Flexisource Co-60 source. These data are meant to be used in treatment planning systems in clinical practice. PMID:23346138

  8. [Mathematical simulation support to the dosimetric monitoring on the Russian segment of the International Space Station].

    PubMed

    Mitrikas, V G

    2014-01-01

    To ensure radiation safety of cosmonauts, it is necessary not only to predict, but also to reconstruct absorbed dose dynamics with the knowledge of how long cosmonauts stay in specific space vehicle compartments with different shielding properties and lacking equipment for dosimetric monitoring. In this situation, calculating is one and only way to make a correct estimate of radiation exposure of cosmonaut's organism as a whole (tissue-average dose) and of separate systems and organs. The paper addresses the issues of mathematical simulation of epy radiation environment of standard dosimetric instruments in the Russian segments of the International Space Station (ISS RS). Results of comparing the simulation and experimental data for the complement of dosimeters including ionization chamber-based radiometer R-16, DB8 dosimeters composed of semiconductor detectors, and Pille dosimeters composed of thermoluminescent detectors evidence that the current methods of simulation in support of the ISS RS radiation monitoring provide a sufficiently good agreement between the calculated and experimental data. PMID:25163341

  9. Impact of cutout off axis on electron beam dosimetric parameters.

    PubMed

    Arunkumar, T; Supe, S S; Ravikumar, M; Sathiyan, S; Ganesh, K M

    2012-04-01

    Dosimetric changes caused by the positional uncertainty of centering a small electron cutout to the machine central axis (CAX) of the linear accelerator (linac) were investigated. Six circular cutouts with 4 cm diameter were made with their centres shifted off by 0, 2, 4, 6, 8 and 10 mm from the machine CAX. The 6 x 6 cm(2) electron applicator was used for the measurement. The percentage depth doses (PDDs) were measured at the Machine CAX and also with respect to cutout centre for 6, 9, 12, 16 and 20 MeV electron beams. The in-line and cross-line profiles were measured at the depth of maximum dose (R100). The relative output factor (ROF) was measured at the reference depth. All the measurements were made at nominal source to surface distance (100 cm SSD) as well as at extended SSDs (100, 102, 106 and 110 cm). When the cutout centre was shifted away from the machine CAX for low energy beams the depth of 100% dose (R(100)), the depth of 90% dose (R(90)) and the depth of 80% dose (R(80)) had no significant change. For higher energies (>9 MeV) there was a reduction in these dosimetric parameters. The isodose coverage of the in-line and cross-line profile was reduced when the cutout centre was shifted away from the machine CAX. At extended SSDs the dosimetric changes are only because of geometric divergence of the beam and not by the positional uncertainty of the cutout. It is important for the radiation oncologist, dosimetrist, therapist and physicist to note such dosimetric changes while using the electron beam to the patients. PMID:22335408

  10. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    PubMed Central

    Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V

    2013-01-01

    Introduction This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Methods Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. Results The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. Conclusions This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT. PMID:26229621

  11. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    SciTech Connect

    Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V

    2013-12-15

    This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT.

  12. Correlation between dosimetric effect and intrafraction motion during prostate treatments delivered with helical tomotherapy

    NASA Astrophysics Data System (ADS)

    Langen, Katja M.; Lu, Weiguo; Ngwa, Wilfred; Willoughby, Twyla R.; Chauhan, Bhavin; Meeks, Sanford L.; Kupelian, Patrick A.; Olivera, Gustavo

    2008-12-01

    The dosimetric impact of intrafraction prostate motion was investigated for helical tomotherapy treatments. Measured motion tracks were used to calculate the dosimetric impact on delivered target dose distributions. A dynamic dose calculation engine was developed to facilitate this evaluation. It was found that the D95% (minimum dose to 95% of the volume) changes in the prostate were well correlated with D95% changes in the PTV. This means that the dosimetric impact of intrafraction motion is not restricted to the periphery of the target. The amount of motion was not well correlated with the dosimetric impact (measured in target D95% changes) of motion. The relationship between motion and its dosimetric impact is complex and depends on the timing and direction of the movement. These findings have implications for motion management techniques. It appears that the use of target margins is not an effective strategy to protect the prostate from the effects of observed intrafraction motion. The complex relationship between motion and its dosimetric effect renders simple threshold-based intervention schemes inefficient. Monitoring of actual prostate motion would allow the documentation of the dosimetric impact and implementation of corrective action if needed. However, when motion management techniques are evaluated, it should be kept in mind that the dosimetric impact of observed prostate motion is small for the majority of fractions.

  13. Dosimetric Verification of IMRT Treatment Plans Using an Electronic Portal Imaging Device

    SciTech Connect

    Kruszyna, Marta

    2010-01-05

    This paper presents the procedures and results of dosimetric verification using an Electronic Portal Imaging Device as a tool for pre-treatment dosimetry in IMRT technique at the Greater Poland Cancer Centre in Poznan, Poland. The evaluation of dosimetric verification for various organ, during a 2 year period is given.

  14. Dosimetric Verification of IMRT Treatment Plans Using an Electronic Portal Imaging Device

    NASA Astrophysics Data System (ADS)

    Kruszyna, Marta

    2010-01-01

    This paper presents the procedures and results of dosimetric verification using an Electronic Portal Imaging Device as a tool for pre-treatment dosimetry in IMRT technique at the Greater Poland Cancer Centre in Poznan, Poland. The ewaluation of dosimetric verification for various organ, during a 2 year period is given.

  15. Dosimetric investigation of high dose rate, gated IMRT

    SciTech Connect

    Lin, Teh; Chen Yan; Hossain, Murshed; Li, Jinsheng; Ma, C.-M.

    2008-11-15

    Increasing the dose rate offers time saving for IMRT delivery but the dosimetric accuracy is a concern, especially in the case of treating a moving target. The objective of this work is to determine the effect of dose rate associated with organ motion and gated treatment using step-and-shoot IMRT delivery. Both measurements and analytical simulation on clinical plans are performed to study the dosimetric differences between high dose rate and low dose rate gated IMRT step-and-shoot delivery. Various sites of IMRT plans for liver, lung, pancreas, and breast cancers were delivered to a custom-made motorized phantom, which simulated sinusoidal movement. Repeated measurements were taken for gated and nongated delivery with different gating settings and three dose rates, 100, 500, and 1000 MU/min using ion chambers and extended dose range films. For the study of the residual motion effect for individual segment dose and composite dose of IMRT plans, our measurements with 30%-60% phase gating and without gating for various dose rates were compared. A small but clinically acceptable difference in delivered dose was observed between 1000, 500, and 100 MU/min at 30%-60% phase gating. A simulation is presented, which can be used for predicting dose profiles for patient cases in the presence of motion and gating to confirm that IMRT step-and-shoot delivery with gating for 1000 MU/min are not much different from 500 MU/min. Based on the authors sample plan analyses, our preliminary results suggest that using 1000 MU/Min dose rate is dosimetrically accurate and efficient for IMRT treatment delivery with gating. Nonetheless, for the concern of patient care and safety, a patient specific QA should be performed as usual for IMRT plans for high dose rate deliveries.

  16. Dosimetric effects of source-offset in intravascular brachytherapy.

    PubMed

    Chibani, Omar; Li, X Allen

    2002-04-01

    In intravascular brachytherapy (IVBT), radioactive sources can be displaced (offset) laterally from the center of the lumen and/or longitudinally from the desired location due to the cardiac motion and/or the absence of a source-centering device. The purpose of this work is to study the dosimetric impact of such a source offset. Dose effects of both lateral and longitudinal source offsets with or without the presence of a calcified plaque or a metallic stent are calculated for the three most commonly used sources (32P, 90Sr/90Y, and 192Ir). The MCNP Monte Carlo code is used in the calculation. Static and random source offsets are considered. The major results include that (a) dose can be changed significantly (by a factor of up to 4) due to a static lateral source offset; (b) this dose variation is reduced if the lateral source offset is considered as random moving within the vessel (the dose at the 2 mm reference radial distance is increased by 5-15% for the three sources in the case of the 2D random offset studied); (c) the presence of a calcified plaque and/or a metallic stent worsens the dosimetric effects; (d) the longitudinal random source offset results in a reduction (15-18%) in the effective treatment length; (e) the dose effects of source offsets for the beta source are higher than those for the gamma source. The data presented in this paper may be used for IVBT treatment planning or for dosimetric analysis of treatment outcome. The dose change due to the source offset should be considered in dose prescription. The reduction of effective treatment length should be taken into account in selection of a proper source length to ensure an adequate coverage of the treatment target. PMID:11991124

  17. Dosimetric Characteristics of 6 MV Modified Beams by Physical Wedges of a Siemens Linear Accelerator.

    PubMed

    Zabihzadeh, Mansour; Birgani, Mohammad Javad Tahmasebi; Hoseini-Ghahfarokhi, Mojtaba; Arvandi, Sholeh; Hoseini, Seyed Mohammad; Fadaei, Mahbube

    2016-01-01

    Physical wedges still can be used as missing tissue compensators or filters to alter the shape of isodose curves in a target volume to reach an optimal radiotherapy plan without creating a hotspot. The aim of this study was to investigate the dosimetric properties of physical wedges filters such as off-axis photon fluence, photon spectrum, output factor and half value layer. The photon beam quality of a 6 MV Primus Siemens modified by 150 and 450 physical wedges was studied with BEAMnrc Monte Carlo (MC) code. The calculated present depth dose and dose profile curves for open and wedged photon beam were in good agreement with the measurements. Increase of wedge angle increased the beam hardening and this effect was more pronounced at the heal region. Using such an accurate MC model to determine of wedge factors and implementation of it as a calculation algorithm in the future treatment planning systems is recommended. PMID:27221838

  18. The Dosimetric Parameters Investigation of the Pulsed X-ray and Gamma Radiation Sources

    NASA Astrophysics Data System (ADS)

    Stuchebrov, S. G.; Miloichikova, I. A.; Shilova, X. O.

    2016-01-01

    The most common type of radiation used for diagnostic purposes are X-rays. However, X-rays methods have limitations related to the radiation dose for the biological objects. It is known that the use of the pulsed emitting source synchronized with the detection equipment for internal density visualization of objects significant reduces the radiation dose to the object. In the article the analysis of the suitability of the different dosimetric equipment for the radiation dose estimation of the pulsed emitting sources is carried out. The approbation results on the pulsed X-ray generator RAP-160-5 of the dosimetry systems workability with the pulse radiation and its operation range are presented. The results of the dose field investigation of the portable betatron OB-4 are demonstrated. The depth dose distribution in the air, lead and water of the pulsed bremsstrahlung generated by betatron are shown.

  19. Dosimetric differences in flattened and flattening filter-free beam treatment plans

    PubMed Central

    Yan, Yue; Yadav, Poonam; Bassetti, Michael; Du, Kaifang; Saenz, Daniel; Harari, Paul; Paliwal, Bhudatt R.

    2016-01-01

    This study investigated the dosimetric differences in treatment plans from flattened and flattening filter-free (FFF) beams from the TrueBeam System. A total of 104 treatment plans with static (sliding window) intensity-modulated radiotherapy beams and volumetric-modulated arc therapy (VMAT) beams were generated for 15 patients involving three cancer sites. In general, the FFF beam provides similar target coverage as the flattened beam with improved dose sparing to organ-at-risk (OAR). Among all three cancer sites, the head and neck showed more important differences between the flattened beam and FFF beam. The maximum reduction of the FFF beam in the mean dose reached up to 2.82 Gy for larynx in head and neck case. Compared to the 6 MV flattened beam, the 10 MV FFF beam provided improved dose sparing to certain OARs, especially for VMAT cases. Thus, 10 MV FFF beam could be used to improve the treatment plan. PMID:27217620

  20. Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy

    SciTech Connect

    Riley, Craig; Yang, Yong Li, Tianfang; Zhang, Yongqian; Heron, Dwight E.; Huq, M. Saiful

    2014-01-15

    Purpose: Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect for the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients’ treatment plans using a moving phantom driven with a patient-specific respiratory curve. Methods: For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. Results: For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated Rapid

  1. Dosimetric advantages of IMPT over IMRT for laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Luo, W.; Li, J.; Fourkal, E.; Fan, J.; Xu, X.; Chen, Z.; Jin, L.; Price, R.; Ma, C.-M.

    2008-12-01

    As a clinical application of an exciting scientific breakthrough, a compact and cost-efficient proton therapy unit using high-power laser acceleration is being developed at Fox Chase Cancer Center. The significance of this application depends on whether or not it can yield dosimetric superiority over intensity-modulated radiation therapy (IMRT). The goal of this study is to show how laser-accelerated proton beams with broad energy spreads can be optimally used for proton therapy including intensity-modulated proton therapy (IMPT) and achieve dosimetric superiority over IMRT for prostate cancer. Desired energies and spreads with a varying δE/E were selected with the particle selection device and used to generate spread-out Bragg peaks (SOBPs). Proton plans were generated on an in-house Monte Carlo-based inverse-planning system. Fifteen prostate IMRT plans previously used for patient treatment have been included for comparison. Identical dose prescriptions, beam arrangement and consistent dose constrains were used for IMRT and IMPT plans to show the dosimetric differences that were caused only by the different physical characteristics of proton and photon beams. Different optimization constrains and beam arrangements were also used to find optimal IMPT. The results show that conventional proton therapy (CPT) plans without intensity modulation were not superior to IMRT, but IMPT can generate better proton plans if appropriate beam setup and optimization are used. Compared to IMRT, IMPT can reduce the target dose heterogeneity ((D5-D95)/D95) by up to 56%. The volume receiving 65 Gy and higher (V65) for the bladder and the rectum can be reduced by up to 45% and 88%, respectively, while the volume receiving 40 Gy and higher (V40) for the bladder and the rectum can be reduced by up to 49% and 68%, respectively. IMPT can also reduce the whole body non-target tissue dose by up to 61% or a factor 2.5. This study has shown that the laser accelerator under development has a

  2. Dosimetric comparison between model 9011 and 6711 sources in prostate implants

    SciTech Connect

    Zhang, Hualin; Beyer, David

    2013-07-01

    The purpose of this work is to evaluate the model 9011 iodine-125 ({sup 125}I) in prostate implants by comparing dosimetric coverage provided by the 6711 vs 9011 source implants. Postimplant dosimetry was performed in 18 consecutively implanted patients with prostate cancer. Two were implanted with the 9011 source and 16 with the 6711 source. For purposes of comparison, each implant was then recalculated assuming use of the other source. The same commercially available planning system was used and the specific source data for both 6711 and 9011 products were entered. The results of these calculations are compared side by side in the terms of the isodose values covering 100% (D100) and 90% (D90) of prostate volume, and the percentages of volumes of prostate, bladder, rectum, and urethra covered by 200% (V200), 150% (V150), 100% (V100), 50% (V50), and 20% (V20) of the prescribed dose as well. The 6711 source data overestimate coverage by 6.4% (ranging from 4.9% to 6.9%; median 6.6%) at D100 and by 6.6% (ranging from 6.2% to 6.8%; median 6.6%) at D90 compared with actual 9011 data. Greater discrepancies of up to 67% are seen at higher dose levels: average reduction for V100 is 2.7% (ranging from 0.6% to 7.7%; median 2.3%), for V150 is 14.6% (ranging from 6.1% to 20.5%; median 15.3%), for V200 is 14.9% (ranging from 4.8% to 19.1%; median 16%); similarly seen in bladder, rectal, and urethral coverage. This work demonstrates a clear difference in dosimetric behavior between the 9011 and 6711 sources. Using the 6711 source data for 9011 source implants would create a pronounced error in dose calculation. This study provides evidence that the 9011 source can provide the same dosimetric quality as the 6711 source, if properly used; however, the 6711 source data should not be considered as a surrogate for the 9011 source implants.

  3. Dosimetric Characteristics of a Two-Dimensional Diode Array Detector Irradiated with Passively Scattered Proton Beams

    PubMed Central

    Liengsawangwong, Praimakorn; Sahoo, Nanayan; Ding, Xiaoning; Lii, MingFwu; Gillin, Michale T.; Zhu, Xiaorong Ronald

    2015-01-01

    Purpose: To evaluate the dosimetric characteristics of a two-dimensional (2D) diode array detector irradiated with passively scattered proton beams. Materials and Methods: A diode array detector, MapCHECK (Model 1175, Sun Nuclear, Melbourne, FL, USA) was characterized in passive-scattered proton beams. The relative sensitivity of the diodes and absolute dose calibration were determined using a 250 MeV beam. The pristine Bragg curves (PBCs) measured by MapCHECK diodes were compared with those of an ion chamber using a range shift method. The water-equivalent thickness (WET) of the diode array detector’s intrinsic buildup also was determined. The inverse square dependence, linearity, and other proton dosimetric quantities measured by MapCHECK were also compared with those of the ion chambers. The change in the absolute dose response of the MapCHECK as a function of accumulated radiation dose was used as an indicator of radiation damage to the diodes. 2D dose distribution with and without the compensator were measured and compared with the treatment planning system (TPS) calculations. Results: The WET of the MapCHECK diode’s buildup was determined to be 1.7 cm. The MapCHECK-measured PBC were virtually identical to those measured by a parallel-plate ion chamber for 160, 180, and 250 MeV proton beams. The inverse square results of the MapCHECK were within ±0.4% of the ion chamber results. The linearity of MapCHECK results was within 1% of those from the ion chamber as measured in the range between 10 and 300 MU. All other dosimetric quantities were within 1.3% of the ion chamber results. The 2D dose distributions for non-clinical fields without compensator and the patient treatment fields with the compensator were consistent with the TPS results. The absolute dose response of the MapCHECK was changed by 7.4% after an accumulated dose increased by 170 Gy. Conclusions: The MapCHECK is a convenient and useful tool for 2D dose distribution measurements using passively

  4. Dosimetric Comparison of Helical Tomotherapy and Linac-IMRT Treatment Plans for Head and Neck Cancer Patients

    SciTech Connect

    Zhang Xin; Penagaricano, Jose; Moros, Eduardo G.; Corry, Peter M.; Yan Yulong; Ratanatharathorn, Vaneerat

    2010-01-01

    The rapid development and clinical implementation of external beam radiation treatment technologies continues. The existence of various commercially available technologies for intensity-modulated radiation therapy (IMRT) has stimulated interest in exploring the differential potential advantage one may have compared with another. Two such technologies, Hi-Art Helical Tomotherapy (HT) and conventional medical linear accelerator-based IMRT (LIMRT) have been shown to be particularly suitable for the treatment of head and neck cancers. In this study, 23 patients who were diagnosed with stages 3 or 4 head and neck cancers, without evidence of distance metastatic disease, were treated in our clinic. Treatment plans were developed for all patients simultaneously on the HT planning station and on the Pinnacle treatment planning system for step-and-shoot IMRT. Patients were treated only on the HT unit, with the LIMRT plan serving as a backup in case the HT system might not be available. All plans were approved for clinical use by a physician. The prescription was that patients receive at least 95% of the planning target volume (PTV), which is 66 Gy at 2.2 Gy per fraction. Several dosimetric parameters were computed: PTV dose coverage; PTV volume conformity index; the normalized total dose (NTD), where doses were converted to 2 Gy per fraction to organs at risk (OAR); and PTV dose homogeneity. Both planning systems satisfied our clinic's PTV prescription requirements. The results suggest that HT plans had, in general, slightly better dosimetric characteristics, especially regarding PTV dose homogeneity and normal tissue sparing. However, for both techniques, doses to OAR were well below the currently accepted normal tissue tolerances. Consequently, factors other than the dosimetric parameters studied here may have to be considered when making a choice between IMRT techniques.

  5. Energy dependence corrections to MOSFET dosimetric sensitivity.

    PubMed

    Cheung, T; Butson, M J; Yu, P K N

    2009-03-01

    Metal Oxide Semiconductor Field Effect Transistors (MOSFET's) are dosimeters which are now frequently utilized in radiotherapy treatment applications. An improved MOSFET, clinical semiconductor dosimetry system (CSDS) which utilizes improved packaging for the MOSFET device has been studied for energy dependence of sensitivity to x-ray radiation measurement. Energy dependence from 50 kVp to 10 MV x-rays has been studied and found to vary by up to a factor of 3.2 with 75 kVp producing the highest sensitivity response. The detectors average life span in high sensitivity mode is energy related and ranges from approximately 100 Gy for 75 kVp x-rays to approximately 300 Gy at 6 MV x-ray energy. The MOSFET detector has also been studied for sensitivity variations with integrated dose history. It was found to become less sensitive to radiation with age and the magnitude of this effect is dependant on radiation energy with lower energies producing a larger sensitivity reduction with integrated dose. The reduction in sensitivity is however approximated reproducibly by a slightly non linear, second order polynomial function allowing corrections to be made to readings to account for this effect to provide more accurate dose assessments both in phantom and in-vivo. PMID:19400548

  6. Dosimetric characteristics of LKB:Cu,P solid TL detector

    NASA Astrophysics Data System (ADS)

    Hashim, S.; Alajerami, Y. S. M.; Ghoshal, S. K.; Saleh, M. A.; Saripan, M. I.; Kadir, A. B. A.; Bradley, D. A.; Alzimami, K.

    2014-11-01

    The dosimetric characteristics of newly developed borate glass dosimeter modified with lithium and potassium carbonate (LKB) and co-doped with CuO and NH4H2PO4 are reported. Broad peaks in the absence of any sharp peak confirms the amorphous nature of the prepared glass. A simple glow curve of Cu doped sample is observed with a single prominent peak (Tm) at 220 °C. The TL intensity response shows an enhancement of ~100 times due to the addition of CuO (0.1 mol%) to LKB compound. A further enhancement of the intensity by a factor of 3 from the addition of 0.25 mol% NH4H2PO4 as a co-dopant impurity is attributed to the creation of extra electron traps with consequent increase in energy transfer of radiation recombination centers. The TL yield performance of LKB:Cu,P with Zeff ≈8.92 is approximately seventeen times less sensitive compared to LiF:Mg,Ti (TLD-100). The proposed dosimeter shows good linearity up to 103 Gy, minimal fading and photon energy independence. These attractive features offered by our dosimeter is expected to pave the way towards dosimetric applications.

  7. Biologic data, models, and dosimetric methods for internal emitters

    SciTech Connect

    Weber, D.A.

    1990-01-01

    The absorbed radiation dose from internal emitters has been and will remain a pivotal factor in assessing risk and therapeutic utility in selecting radiopharmaceuticals for diagnosis and treatment. Although direct measurements of absorbed dose and dose distributions in vivo have been and will continue to be made in limited situations, the measurement of the biodistribution and clearance of radiopharmaceuticals in human subjects and the use of this data is likely to remain the primary means to approach the calculation and estimation of absorbed dose from internal emitters over the next decade. Since several approximations are used in these schema to calculate dose, attention must be given to inspecting and improving the application of this dosimetric method as better techniques are developed to assay body activity and as more experience is gained in applying these schema to calculating absorbed dose. Discussion of the need for considering small scale dosimetry to calculate absorbed dose at the cellular level will be presented in this paper. Other topics include dose estimates for internal emitters, biologic data mathematical models and dosimetric methods employed. 44 refs.

  8. Dosimetric Algorithm to Reproduce Isodose Curves Obtained from a LINAC

    PubMed Central

    Estrada Espinosa, Julio Cesar; Martínez Ovalle, Segundo Agustín; Pereira Benavides, Cinthia Kotzian

    2014-01-01

    In this work isodose curves are obtained by the use of a new dosimetric algorithm using numerical data from percentage depth dose (PDD) and the maximum absorbed dose profile, calculated by Monte Carlo in a 18 MV LINAC. The software allows reproducing the absorbed dose percentage in the whole irradiated volume quickly and with a good approximation. To validate results an 18 MV LINAC with a whole geometry and a water phantom were constructed. On this construction, the distinct simulations were processed by the MCNPX code and then obtained the PDD and profiles for the whole depths of the radiation beam. The results data were used by the code to produce the dose percentages in any point of the irradiated volume. The absorbed dose for any voxel's size was also reproduced at any point of the irradiated volume, even when the voxels are considered to be of a pixel's size. The dosimetric algorithm is able to reproduce the absorbed dose induced by a radiation beam over a water phantom, considering PDD and profiles, whose maximum percent value is in the build-up region. Calculation time for the algorithm is only a few seconds, compared with the days taken when it is carried out by Monte Carlo. PMID:25045398

  9. Dosimetric algorithm to reproduce isodose curves obtained from a LINAC.

    PubMed

    Estrada Espinosa, Julio Cesar; Martínez Ovalle, Segundo Agustín; Pereira Benavides, Cinthia Kotzian

    2014-01-01

    In this work isodose curves are obtained by the use of a new dosimetric algorithm using numerical data from percentage depth dose (PDD) and the maximum absorbed dose profile, calculated by Monte Carlo in a 18 MV LINAC. The software allows reproducing the absorbed dose percentage in the whole irradiated volume quickly and with a good approximation. To validate results an 18 MV LINAC with a whole geometry and a water phantom were constructed. On this construction, the distinct simulations were processed by the MCNPX code and then obtained the PDD and profiles for the whole depths of the radiation beam. The results data were used by the code to produce the dose percentages in any point of the irradiated volume. The absorbed dose for any voxel's size was also reproduced at any point of the irradiated volume, even when the voxels are considered to be of a pixel's size. The dosimetric algorithm is able to reproduce the absorbed dose induced by a radiation beam over a water phantom, considering PDD and profiles, whose maximum percent value is in the build-up region. Calculation time for the algorithm is only a few seconds, compared with the days taken when it is carried out by Monte Carlo. PMID:25045398

  10. Dosimetric Verification and Validation of Conformal and IMRT Treatments Fields with an Ionization Chamber 2D-Array

    NASA Astrophysics Data System (ADS)

    Evangelina, Figueroa M.; Gabriel, Reséndiz G.; Miguel, Pérez P.

    2008-08-01

    A three-dimensional treatment planning system requires comparisons of calculated and measured dose distributions. It is necessary to confirm by means of patient specific QA that the dose distributions are correctly calculated, and that the patient data is correctly transferred to and delivered by the treatment machine. We used an analysis software for bi-dimensional dosimetric verification of conformal treatment and IMRT fields using as objective criterion the gamma index. An ionization chamber bi-dimensional array was used for absolute dose measurement in the complete field area.

  11. A dosimetric study of Leipzig applicators

    SciTech Connect

    Perez-Calatayud, Jose; Granero, Domingo; Ballester, Facundo . E-mail: Facundo.Ballester@uv.es; Puchades, Vicente; Casal, Emilio; Soriano, Angela; Crispin, Vicente

    2005-06-01

    to model these distributions for routine use with a brachytherapy treatment planning system.

  12. Dosimetric Quantities for Computed Tomography Examinations of Paediatric Patients on the Thoracic and Abdominal Regions

    NASA Astrophysics Data System (ADS)

    Flores-M, E.; Buenfil, A. E.; Dies, P.; Gamboa-deBuen, I.; Ruiz-Trejo, C.

    2010-12-01

    Computed Tomography (CT) is a high dose X ray imaging procedure and its use has rapidly increased in the last two decades fueled by the development of helical CT. The aim of this study is to present values of the dosimetric quantities for CT paediatric examinations of thoracic and abdominal regions. The protocols studied were those of chest, lung-mediastine, chest-abdomen, pulmonary high resolution and mediastine-abdomen, which are the more common examinations performed at "Hospital Infantil de México Federico Gómez" in the thoracic-abdominal region. The measurements were performed on a Siemens SOMATOM Sensation 16 CT Scanner and the equipment used was a CT pencil ionization chamber, connected to an electrometer. This system was calibrated for RQT9 CT beam quality. A PMMA head phantom with diameter of 16 cm and length of 15 cm was also used. The dosimetric quantities measured were the weighted air kerma index (Cw), the volumetric dose index (Cvol) and the CT air kerma-length product. It was found that the pulmonary high resolution examination presented the highest values for the Cw (31.1 mGy) and Cvol (11.1 mGy). The examination with the lowest values of these two quantities was the chest-abdomen protocol with 10.5 mGy for Cw and 5.5 mGy for Cvol. However, this protocol presented the highest value for PKL,CT (282.2 mGy cm) when considering the average clinical length of the examinations.

  13. SU-E-J-167: Dosimetric Consequences From Minimal Displacements in APBI with SAVI Applicators

    SciTech Connect

    Chandrasekara, S; Dumitru, N; Hyvarinen, M; Pella, S

    2015-06-15

    Purpose: To determine the importance of providing proper solid immobilization in every fraction of treatment in APBI with brachytherapy. Methods: 125 patients treated with APBI brachytherapy with SAVI applicators at SFRO Boca Raton, from 2013–2015 were considered for this retrospective study. The CT scans of each patient, which were taken before each treatment, were imported in to the Oncentra treatment planning system. Then they were compared with the initial CT scan which was used for the initial plan. Deviation in displacements in reference to ribs and skin surface was measured and dosimetric evaluations respective to the initial image were performed. Results: Small deviations in displacements were observed from the SAVI applicator to the ribs and the skin surface. Dosimetric evaluations revealed, very small changes in the inter-fractionation position make significant differences in the maximum dose to critical organs. Additionally, the volume of the cavity also changed between fractions. As a Result, the maximum dose manifested variance between 10% and 32% in ribs and skin surface respectively. Conclusion: It appears that taking a CT scan before each treatment is necessary to minimize the risk of delivering undesired high doses to the critical organs. This study indicates, in 30% of the cases re-planning was necessary between treatments. We conclude that, treatment planning teams should evaluate the placement of the device by analyzing the CT images before each treatment and they must be prepared for re-planning if needed. This study also reveals the urgent need of improving the immobilization methods with APBI when treating with the SAVI applicator.

  14. SU-E-T-09: A Dosimetric Analysis of Various Clinically Used Bolus Materials

    SciTech Connect

    Stowe, M; Yeager, C; Zhou, F; Hand, C

    2014-06-01

    Purpose: To evaluate the dosimetric effect of various clinically used bolus materials. Methods: Materials investigated include solid water, superflab, wet gauze, wet sheets, Play-Doh{sup ™}, and gauze embedded with petroleum jelly. Each bolusing material was scanned in a Philips CT to determine the Hounsfield unit (HU) and to verify uniformity throughout the material. Using the corresponding HU, boluses of 0.5 cm and 1.0 cm thicknesses were created in the Eclipse treatment planning system (TPS) on a solid water phantom. Dose was calculated at various depths for beam energies 6 MV, 6 MeV, 9 MeV, and 12 MeV to determine the effects of each material on deposition of dose. In addition, linac-based measurements at these energies were made using a farmer chamber in solid water. Wet sheets and wet gauze were measured with various water content to quantify the effects on dose. Results: Preliminary CT scans find a range in HU of bolus materials from −120 to almost 300. There is a trend in the dose at depth based on the HU of the material; however inconsistencies are found when the bolus materials have a negative HU value. The measured data indicates that there is a linear relationship between the mass of water in a material and the dose reading, the slope of which is material dependent. Conclusion: Due to the variation in HU of the bolus materials studied, it is recommended that any new bolus be evaluated before clinical use to determine physical and dosimetric properties. If possible, patients should have bolus included in their CT scans; or if the bolus is created in the TPS, the HU should correspond to the material used. For water-soaked materials, once the bolus material is selected (gauze or sheet), the bolusing effect is only dependent on the amount of water applied to the material.

  15. Dosimetric Quantities for Computed Tomography Examinations of Paediatric Patients on the Thoracic and Abdominal Regions

    SciTech Connect

    Flores-M, E.; Gamboa de Buen, I.; Buenfil, A. E.; Ruiz-Trejo, C.; Dies, P.

    2010-12-07

    Computed Tomography (CT) is a high dose X ray imaging procedure and its use has rapidly increased in the last two decades fueled by the development of helical CT. The aim of this study is to present values of the dosimetric quantities for CT paediatric examinations of thoracic and abdominal regions. The protocols studied were those of chest, lung-mediastine, chest-abdomen, pulmonary high resolution and mediastine-abdomen, which are the more common examinations performed at ''Hospital Infantil de Mexico Federico Gomez'' in the thoracic-abdominal region. The measurements were performed on a Siemens SOMATOM Sensation 16 CT Scanner and the equipment used was a CT pencil ionization chamber, connected to an electrometer. This system was calibrated for RQT9 CT beam quality. A PMMA head phantom with diameter of 16 cm and length of 15 cm was also used. The dosimetric quantities measured were the weighted air kerma index (C{sub w}), the volumetric dose index (C{sub vol}) and the CT air kerma-length product. It was found that the pulmonary high resolution examination presented the highest values for the C{sub w}(31.1 mGy) and C{sub vol}(11.1 mGy). The examination with the lowest values of these two quantities was the chest-abdomen protocol with 10.5 mGy for C{sub w} and 5.5 mGy for C{sub vol}. However, this protocol presented the highest value for P{sub KL,CT}(282.2 mGy cm) when considering the average clinical length of the examinations.

  16. Conventional Versus Automated Implantation of Loose Seeds in Prostate Brachytherapy: Analysis of Dosimetric and Clinical Results

    SciTech Connect

    Genebes, Caroline; Filleron, Thomas; Graff, Pierre; Jonca, Frédéric; Huyghe, Eric; Thoulouzan, Matthieu; Soulie, Michel; Malavaud, Bernard; Aziza, Richard; Brun, Thomas; Delannes, Martine; Bachaud, Jean-Marc

    2013-11-15

    Purpose: To review the clinical outcome of I-125 permanent prostate brachytherapy (PPB) for low-risk and intermediate-risk prostate cancer and to compare 2 techniques of loose-seed implantation. Methods and Materials: 574 consecutive patients underwent I-125 PPB for low-risk and intermediate-risk prostate cancer between 2000 and 2008. Two successive techniques were used: conventional implantation from 2000 to 2004 and automated implantation (Nucletron, FIRST system) from 2004 to 2008. Dosimetric and biochemical recurrence-free (bNED) survival results were reported and compared for the 2 techniques. Univariate and multivariate analysis researched independent predictors for bNED survival. Results: 419 (73%) and 155 (27%) patients with low-risk and intermediate-risk disease, respectively, were treated (median follow-up time, 69.3 months). The 60-month bNED survival rates were 95.2% and 85.7%, respectively, for patients with low-risk and intermediate-risk disease (P=.04). In univariate analysis, patients treated with automated implantation had worse bNED survival rates than did those treated with conventional implantation (P<.0001). By day 30, patients treated with automated implantation showed lower values of dose delivered to 90% of prostate volume (D90) and volume of prostate receiving 100% of prescribed dose (V100). In multivariate analysis, implantation technique, Gleason score, and V100 on day 30 were independent predictors of recurrence-free status. Grade 3 urethritis and urinary incontinence were observed in 2.6% and 1.6% of the cohort, respectively, with no significant differences between the 2 techniques. No grade 3 proctitis was observed. Conclusion: Satisfactory 60-month bNED survival rates (93.1%) and acceptable toxicity (grade 3 urethritis <3%) were achieved by loose-seed implantation. Automated implantation was associated with worse dosimetric and bNED survival outcomes.

  17. Contura Multi-Lumen Balloon Breast Brachytherapy Catheter: Comparative Dosimetric Findings of a Phase 4 Trial

    SciTech Connect

    Arthur, Douglas W.; Vicini, Frank A.; Julian, Thomas B.; Cuttino, Laurie W.; Mukhopadhyay, Nitai D.

    2013-06-01

    Purpose: Final dosimetric findings of a completed, multi-institutional phase 4 registry trial using the Contura Multi-Lumen Balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer are presented. Methods and Materials: Three dosimetric plans with identical target coverage were generated for each patient for comparison: multilumen multidwell (MLMD); central-lumen multidwell (CLMD); and central-lumen single-dwell (CLSD) loading of the Contura catheter. For this study, a successful treatment plan achieved ideal dosimetric goals and included the following: ≥95% of the prescribed dose (PD) covering ≥95% of the target volume (TV); maximum skin dose ≤125% of the PD; maximum rib dose ≤145% of the PD; and V150 ≤50 cc and V200 ≤10 cc. Results: Between January 2008 and February 2011, 23 institutions participated. A total of 318 patients were available for dosimetric review. Using the Contura MLB, all dosimetric criteria were met in 78.93% of cases planned with MLMD versus 55.38% with the CLMD versus 37.66% with the CLSD (P≤.0001). Evaluating all patients with the full range of skin to balloon distance represented, median maximum skin dose was reduced by 12% and median maximum rib dose by 13.9% when using MLMD-based dosimetric plans compared to CLSD. The dosimetric benefit of MLMD was further demonstrated in the subgroup of patients where skin thickness was <5 mm, where MLMD use allowed a 38% reduction in median maximum skin dose over CLSD. For patients with rib distance <5 mm, the median maximum rib dose reduction was 27%. Conclusions: Use of the Contura MLB catheter produced statistically significant improvements in dosimetric capabilities between CLSD and CLMD treatments. This device approach demonstrates the ability not only to overcome the barriers of limited skin thickness and close rib proximity, but to consistently achieve a higher standard of dosimetric planning goals.

  18. Analysis of superficial fluorescence patterns in nonmelanoma skin cancer during photodynamic therapy by a dosimetric model

    NASA Astrophysics Data System (ADS)

    Salas-García, I.; Fanjul-Vélez, F.; Arce-Diego, J. L.

    2016-03-01

    In this work the superficial fluorescence patterns in different nonmelanoma skin cancers and their photodynamic treatment response are analysed by a fluorescence based dosimetric model. Results show differences of even more than 50% in the fluorescence patterns as photodynamic therapy progresses depending on the malignant tissue type. They demonstrate the great relevance of the biological media as an additional dosimetric factor and contribute to the development of a future customized therapy with the assistance of dosimetric tools to interpret the fluorescence images obtained during the treatment monitoring and the differential photodiagnosis.

  19. TH-E-BRE-05: Analysis of Dosimetric Characteristics in Two Leaf Motion Calculator Algorithms for Sliding Window IMRT

    SciTech Connect

    Wu, L; Huang, B; Rowedder, B; Ma, B; Kuang, Y

    2014-06-15

    Purpose: The Smart leaf motion calculator (SLMC) in Eclipse treatment planning system is an advanced fluence delivery modeling algorithm as it takes into account fine MLC features including inter-leaf leakage, rounded leaf tips, non-uniform leaf thickness, and the spindle cavity etc. In this study, SLMC and traditional Varian LMC (VLMC) algorithms were investigated, for the first time, in dosimetric characteristics and delivery accuracy of sliding window (SW) IMRT. Methods: The SW IMRT plans of 51 cancer cases were included to evaluate dosimetric characteristics and dose delivery accuracy from leaf motion calculated by SLMC and VLMC, respectively. All plans were delivered using a Varian TrueBeam Linac. The DVH and MUs of the plans were analyzed. Three patient specific QA tools - independent dose calculation software IMSure, Delta4 phantom, and EPID portal dosimetry were also used to measure the delivered dose distribution. Results: Significant differences in the MUs were observed between the two LMCs (p≤0.001).Gamma analysis shows an excellent agreement between the planned dose distribution calculated by both LMC algorithms and delivered dose distribution measured by three QA tools in all plans at 3%/3 mm, leading to a mean pass rate exceeding 97%. The mean fraction of pixels with gamma < 1 of SLMC is slightly lower than that of VLMC in the IMSure and Delta4 results, but higher in portal dosimetry (the highest spatial resolution), especially in complex cases such as nasopharynx. Conclusion: The study suggests that the two LMCs generates the similar target coverage and sparing patterns of critical structures. However, SLMC is modestly more accurate than VLMC in modeling advanced MLC features, which may lead to a more accurate dose delivery in SW IMRT. Current clinical QA tools might not be specific enough to differentiate the dosimetric discrepancies at the millimeter level calculated by these two LMC algorithms. NIH/NIGMS grant U54 GM104944, Lincy Endowed

  20. Dosimetric Comparison of Split Field and Fixed Jaw Techniques for Large IMRT Target Volumes in the Head and Neck

    SciTech Connect

    Srivastava, Shiv P.; Das, Indra J.; Kumar, Arvind; Johnstone, Peter A.S.

    2011-04-01

    Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed on an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within {+-}1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 {+-} 6.3%) and higher MU (13.7 {+-} 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes.

  1. Correlation of dosimetric parameters obtained with the analytical anisotropic algorithm and toxicity of chest chemoradiation in lung carcinoma

    SciTech Connect

    Cartier, Lysian; Auberdiac, Pierre; Khodri, Mustapha; Malkoun, Nadia; Chargari, Cyrus; Thorin, Julie; Melis, Adrien; Talabard, Jean-Noeel; Laroche, Guy de; Fournel, Pierre; Tiffet, Olivier; Schmitt, Thierry; and others

    2012-07-01

    The purpose of this study was to analyze and revisit toxicity related to chest chemoradiotherapy and to correlate these side effects with dosimetric parameters obtained using analytical anisotropic algorithm (AAA) in locally unresectable advanced lung cancer. We retrospectively analyzed data from 47 lung cancer patients between 2005 and 2008. All received conformal 3D radiotherapy using high-energy linear accelerator plus concomitant chemotherapy. All treatment planning data were transferred into Eclipse 8.05 (Varian Medical Systems, Palo Alto, CA) and dosimetric calculations were performed using AAA. Thirty-three patients (70.2%) developed acute pneumopathy after radiotherapy (grades 1 and 2). One patient (2.1%) presented with grade 3 pneumopathy. Thirty-one (66%) presented with grades 1-2 lung fibrosis, and 1 patient presented with grade 3 lung fibrosis. Thirty-four patients (72.3%) developed grade 1-2 acute oesophagic toxicity. Four patients (8.5%) presented with grades 3 and 4 dysphagia, necessitating prolonged parenteral nutrition. Median prescribed dose was 64 Gy (range 50-74) with conventional fractionation (2 Gy per fraction). Dose-volume constraints were respected with a median V20 of 23.5% (maximum 34%) and a median V30 of 17% (maximum 25%). The median dose delivered to healthy contralateral lung was 13.1 Gy (maximum 18.1 Gy). At univariate analysis, larger planning target volume and V20 were significantly associated with the probability of grade {>=}2 radiation-induced pneumopathy (p = 0.022 and p = 0.017, respectively). No relation between oesophagic toxicity and clinical/dosimetric parameters could be established. Using AAA, the present results confirm the predictive value of the V20 for lung toxicity as already demonstrated with the conventional pencil beam convolution approach.

  2. Dosimetric and geometric evaluation of a novel stereotactic radiotherapy device for breast cancer: The GammaPod Trade-Mark-Sign

    SciTech Connect

    Mutaf, Yildirim D.; Yi, Byong Yong; Prado, Karl; D'Souza, Warren D.; Regine, William F.; Feigenberg, Steven J.; Zhang Jin; Yu, Cedric X.

    2013-04-15

    Purpose: A dedicated stereotactic gamma irradiation device, the GammaPod Trade-Mark-Sign from Xcision Medical Systems, was developed specifically to treat small breast cancers. This study presents the first evaluation of dosimetric and geometric characteristics from the initial prototype installed at University of Maryland Radiation Oncology Department. Methods: The GammaPod Trade-Mark-Sign stereotactic radiotherapy device is an assembly of a hemi-spherical source carrier containing 36 {sup 60}Co sources, a tungsten collimator, a dynamically controlled patient support table, and the breast immobilization system which also functions as a stereotactic frame. The source carrier contains the sources in six columns spaced longitudinally at 60 Degree-Sign intervals and it rotates together with the variable-size collimator to form 36 noncoplanar, concentric arcs focused at the isocenter. The patient support table enables motion in three dimensions to position the patient tumor at the focal point of the irradiation. The table moves continuously in three cardinal dimensions during treatment to provide dynamic shaping of the dose distribution. The breast is immobilized using a breast cup applying a small negative pressure, where the immobilization cup is embedded with fiducials also functioning as the stereotactic frame for the breast. Geometric and dosimetric evaluations of the system as well as a protocol for absorbed dose calibration are provided. Dosimetric verifications of dynamically delivered patient plans are performed for seven patients using radiochromic films in hypothetical preop, postop, and target-in-target treatment scenarios. Results: Loaded with 36 {sup 60}Co sources with cumulative activity of 4320 Ci, the prototype GammaPod Trade-Mark-Sign unit delivers 5.31 Gy/min at the isocenter using the largest 2.5 cm diameter collimator. Due to the noncoplanar beam arrangement and dynamic dose shaping features, the GammaPod Trade-Mark-Sign device is found to deliver

  3. EFFECTIVE DOSIMETRIC HALF LIFE OF CESIUM 137 SOIL CONTAMINATION

    SciTech Connect

    Jannik, T; P Fledderman, P; Michael Paller, M

    2008-01-09

    In the early 1960s, an area of privately-owned swamp adjacent to the US Department of Energy's Savannah River Site (SRS), known as Creek Plantation, was contaminated by site operations. Studies conducted in 1974 estimated that approximately 925 GBq of {sup 137}Cs was deposited in the swamp. Subsequently, a series of surveys--composed of 52 monitoring locations--was initiated to characterize and trend the contaminated environment. The annual, potential, maximum doses to a hypothetical hunter were estimated by conservatively using the maximum {sup 137}Cs concentrations measured in the soil. The purpose of this report is to calculate an 'effective dosimetric' half-life for {sup 137}Cs in soil (based on the maximum concentrations) and compare it to the effective environmental half-life (based on the geometric mean concentrations).

  4. Potential ocular damage from microwave exposure during electrosurgery: dosimetric survey

    SciTech Connect

    Paz, J.D.; Milliken, R.; Ingram, W.T.; Frank, A.; Atkin, A.

    1987-07-01

    A dosimetric survey of microwave radiation emitted by electrosurgical units used in operating rooms indicated that surgeons expose themselves to levels that may be hazardous, and that ocular exposures are especially high: 20 cm from the active lead, electric field strength at the eye/forehead position was 9.0 X 10(6) V2/M2 for the monopolar unit; and magnetic field strength at this position reached a magnitude of 3.5 A2/M2. These electric and magnetic fields exceeded the TLVs of the American National Standards Institute. The authors concluded that the high levels of microwave radiation generated by electrosurgery devices should receive immediate attention to assess health effects associated with such exposures.

  5. Thermoluminescence dosimetric properties and effective atomic numbers of window glass

    NASA Astrophysics Data System (ADS)

    Bootjomchai, Cherdsak; Laopaiboon, Raewat

    2014-03-01

    This work presents the main thermoluminescence (TL) dosimetric characteristics of commercial Thai transparent window glass. The amorphous structure of window glass was investigated by XRD. The glow curve revealed a peak (Tm) at 235 °C. The thermoluminescence response of window glass was studied after irradiation with photons in the absorb dose range of 0-14.05 mGy, which is of interest for the personal protection level of dosimetry. A linear response was obtained after both the first irradiation and the second irradiation. The minimum detectable dose of window glass was 0.15 mGy. The effective atomic number of window glass as a function of photon energy was calculated. The obtained results for the effective atomic number showed that it is very close to that of human biological tissues (Zeff = 6.7-8.4 at studied energy).

  6. SU-E-T-134: Dosimetric Implications From Organ Segmentation

    SciTech Connect

    Wu, Z; Turian, J; Chu, J

    2014-06-01

    Purpose: To evaluate the dosimetric implications resulting from organ segmentation performed by different clinical experts Methods: Twelve patients received SBRT treatment to thoracic region within the past year were selected for this study. Three physicians contoured a set of organs following RTOG guideline. DVHs of all contours were generated from the approved plans used for treatment, and were compared to those produced during planning. Most OARs were evaluated on their max dose, some, such as heart and chest wall, were also evaluated on metrics such as max dose to 4cc of volume, or 30Gy volume dose. Results: In general, there is a greater dosimetric difference between the RTOG contour sets and clinical contour sets than among the three RTOG contour sets themselves for each patient. For example, there was no difference in esophagus max dose between the RTOG contour sets for ten patients. However, they showed an average of 2.3% higher max dose than the clinical contour set, with a standard deviation of 6.6%. The proximal bronchial tree (PBT) showed a similar behavior. The average difference of PBT max dose for seven patients is 0% between the three RTOG contour sets, with standard deviation of 1%. They showed an average of 16.1% higher max dose than the clinical contour set, with a standard deviation of 126%. Conclusion: This study shows that using RTOG contouring standards improves segmentation consistency between different physicians; most of the contours examined showed less than 1% dose difference. When RTOG contour sets were compared to the clinical contour set, the differences are much more significant. Thus it is important to standardize contouring guidelines in radiation therapy treatment planning. This will reduce uncertainties in clinical outcome analysis and research studies.

  7. Dosimetric Analysis of Respiratory-Gated Radiotherapy for Hepatocellular Carcinoma

    SciTech Connect

    Xi Mian; Zhang Li; Liu Mengzhong; Deng Xiaowu; Huang Xiaoyan; Liu Hui

    2011-07-01

    The purpose of this study was to define individualized internal target volume (ITV) for hepatocellular carcinoma (HCC) using 4D computed tomography (4DCT), and to determine the geometric and dosimetric benefits of respiratory gating. Gross tumor volumes (GTVs) were contoured on 10 respiratory phases of 4DCT images for 12 patients with HCC. Three treatment plans were prepared using different planning target volumes (PTVs): (1) PTV{sub 3D}, derived from a single helical clinical target volume (CTV) plus conventional margins; (2) PTV{sub 10phases}, derived from ITV{sub 10phases}, which encompassed all 10 CTVs plus an isotropic margin of 0.8 cm; (3) PTV{sub gating}, derived from ITV{sub gating}, which encompassed three CTVs within gating-window at end-expiration plus an isotropic margin of 0.8 cm. The PTV{sub 3D} was the largest volume for all patients. The ITV-based plans and gating plans spared more normal tissues than 3D plans, especially the liver. Without increasing normal tissue complication probability of the 3D plans, the ITV-based plans allowed for increasing the calculated dose from 50.8 Gy to 54.7 Gy on average, and the gating plans could further escalate the dose to 58.5 Gy. Compared with ITV-based plans, the dosimetric gains with gating plan strongly correlated with GTV mobility in the craniocaudal direction. The ITV-based plans can ensure target coverage with less irradiation of normal tissues compared with 3D plans. Respiratory-gated radiotherapy can further reduce the target volumes to spare more surrounding tissues and allow dose escalation, especially for patients with tumor mobility >1 cm.

  8. Dosimetric Comparison of Craniospinal Irradiation Using Different Tomotherapy Techniques.

    PubMed

    Zhang, X; Penagaricano, J; Han, E Y; Morrill, S; Hardee, M; Liang, X; Gupta, S K; Corry, P M; Ratanatharathom, V

    2015-08-01

    The objective of this study is to compare the new and conventional tomotherapy treatment techniques and to evaluate dosimetric differences between them. A dosimetric analysis was performed by comparing planning target volume (PTV) median dose, 95% of PTV dose coverage, Paddick conformity index (CI), homogeneity index (HI), whole-body integral dose, and OAR median doses. The beam on time (BOT) and the effect of different jaw sizes and pitch values was studied. The study results indicated that the PTV dose coverage for all the techniques was comparable. Treatment plans using dynamic jaw reduced OAR doses to structures located at the treatment field edge compared to fixed jaw plans. The HT-3DCRT plans resulted in higher OAR doses to kidney, liver, and lung compared to the other techniques, and TD-IMRT provided the best dose sparing to liver compared to other techniques. Whole-body integral dose differences were found to be insignificant among the techniques. BOT was found to be higher for fixed jaw treatment plan compared to dynamic jaw plan and comparable between all treatment techniques with 5-cm dynamic jaw. In studying effect of jaw size, better OAR sparing and HI were found for 2.5-cm jaw but at the expense of doubling of BOT as compared to 5-cm jaw. There was no significant improvement found in OAR sparing when the pitch value was increased. Increasing the pitch from 0.2 to 0.43, the CI was improved, HI improved only for 5-cm jaw size, and BOT decreased to approximately half of its original time. PMID:25398680

  9. A revised dosimetric model of the head and brain

    SciTech Connect

    Bolch, W.E.; Poston, J.W. Sr.

    1995-05-01

    The use of PET and SPECT radiopharmaceuticals in brain imaging has greatly expanded over the past several years. Many of these agents localize within particular subregions of the brain, thus allowing for detailed physiologic and metabolic imaging. Dosimetric models to support these advances in nuclear medicine have been lacking. For example, the brain within the phantom of MIRD Pamphlet No. 5 Revised is modeled simply as a single ellipsoid of tissue with no differentiation of its internal structures. To address this need, the MIRD Committee established a Task Group in 1992 to construct a revised dosimetric model of the brain to include the following subregions: the cerebral cortex, the white matter, the cerebellum, the thalamus, the caudate nucleus, the lentiform nucleus (putamen and globus pallidus), the cerebral spinal fluid (within the subarachnoid space of the brain), the lateral ventricles, and the third ventricle. Estimates of both electron and photon absorbed fractions (AF) were subsequently calculated using the EGS4 radiation transport code. For most of the internal brain structures, electron AFs are shown to fall fellow unity for all regions within the energy range of {approximately}200 keV to 4 MeV. For example, AFs for the caudate nucleus as both a source and target region and estimated as 0.98, 0.84, 0.39 for 200-keV, 1-MeV, and 4-MeV electron sources, respectively. Corresponding AFs within the white matter as a source and target region are estimated as 1.0, 0.95, and 0.79 for these same electron energies. Revised S values were subsequently calculated for a variety of beta-particle and positron emitters used in brain imaging.

  10. Dosimetric comparison of two arc-based stereotactic body radiotherapy techniques for early-stage lung cancer

    SciTech Connect

    Liu, Huan Ye, Jingjing; Kim, John J.; Deng, Jun; Kaur, Monica S.; Chen, Zhe

    2015-04-01

    To compare the dosimetric and delivery characteristics of two arc-based stereotactic body radiotherapy (SBRT) techniques for early-stage lung cancer treatment. SBRT treatment plans for lung tumors of different sizes and locations were designed using a single-isocenter multisegment dynamic conformal arc technique (SiMs-arc) and a volumetric modulated arc therapy technique (RapidArc) for 5 representative patients treated previously with lung SBRT. The SiMs-arc plans were generated with the isocenter located in the geometric center of patient's axial plane (which allows for collision-free gantry rotation around the patient) and 6 contiguous 60° arc segments spanning from 1° to 359°. 2 RapidArc plans, one using the same arc geometry as the SiMs-arc and the other using typical partial arcs (210°) with the isocenter inside planning target volume (PTV), were generated for each corresponding SiMs-arc plan. All plans were generated using the Varian Eclipse treatment planning system (V10.0) and were normalized with PTV V{sub 100} to 95%. PTV coverage, dose to organs at risk, and total monitor units (MUs) were then compared and analyzed. For PTV coverage, the RapidArc plans generally produced higher PTV D{sub 99} (by 1.0% to 3.3%) and higher minimum dose (by 2.7% to 12.7%), better PTV conformality index (by 1% to 8%), and less volume of 50% dose outside 2 cm from PTV (by 0 to 20.8 cm{sup 3}) than the corresponding SiMs-arc plans. For normal tissues, no significant dose differences were observed for the lungs, trachea, chest wall, and heart; RapidArc using partial arcs produced lowest maximum dose to spinal cord. For dose delivery, the RapidArc plans typically required 50% to 90% more MUs than SiMs-arc plans to deliver the same prescribed dose. The additional intensity modulation afforded by variable gantry speed and dose rate and by overlapping arcs enabled RapidArc plans to produce dosimetrically improved plans for lung SBRT, but required more MUs (by a factor > 1.5) to

  11. Dosimetric feasibility study for an extracorporeal BNCT application on liver metastases at the TRIGA Mainz.

    PubMed

    Blaickner, M; Kratz, J V; Minouchehr, S; Otto, G; Schmidberger, H; Schütz, C; Vogtländer, L; Wortmann, B; Hampel, G

    2012-01-01

    This study investigates the dosimetric feasibility of Boron Neutron Capture Therapy (BNCT) of explanted livers in the thermal column of the research reactor in Mainz. The Monte Carlo code MCNP5 is used to calculate the biologically weighted dose for different ratios of the (10)B-concentration in tumour to normal liver tissue. The simulation results show that dosimetric goals are only partially met. To guarantee effective BNCT treatment the organ has to be better shielded from all gamma radiation. PMID:21872481

  12. Dosimetric impact of applicator displacement during high dose rate (HDR) Cobalt-60 brachytherapy for cervical cancer: A planning study

    NASA Astrophysics Data System (ADS)

    Yong, J. S.; Ung, N. M.; Jamalludin, Z.; Malik, R. A.; Wong, J. H. D.; Liew, Y. M.; Ng, K. H.

    2016-02-01

    We investigated the dosimetric impact of applicator displacement on dose specification during high dose rate (HDR) Cobalt-60 (Co-60) brachytherapy for cervical cancer through a planning study. Eighteen randomly selected HDR full insertion plans were restrospectively studied. The tandem and ovoids were virtually shifted translationally and rotationally in the x-, y- and z-axis directions on the treatment planning system. Doses to reference points and volumes of interest in the plans with shifted applicators were compared with the original plans. The impact of dose displacement on 2D (point-based) and 3D (volume-based) treatment planning techniques was also assessed. A ±2 mm translational y-axis applicator shift and ±4° rotational x-axis applicator shift resulted in dosimetric changes of more than 5% to organs at risk (OAR) reference points. Changes to the maximum doses to 2 cc of the organ (D2cc) in 3D planning were statistically significant and higher than the reference points in 2D planning for both the rectum and bladder (p<0.05). Rectal D2cc was observed to be the most sensitive to applicator displacement among all dose metrics. Applicator displacement that is greater than ±2 mm translational y-axis and ±4° rotational x-axis resulted in significant dose changes to the OAR. Thus, steps must be taken to minimize the possibility of applicator displacement during brachytherapy.

  13. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    PubMed Central

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Mitch, Michael G.; Rivard, Mark J.; Stump, Kurt E.; Thomadsen, Bruce R.; Venselaar, Jack L. M.

    2011-01-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie–European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used

  14. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    SciTech Connect

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Mitch, Michael G.; Rivard, Mark J.; Stump, Kurt E.; Thomadsen, Bruce R.; Venselaar, Jack L. M.

    2011-02-15

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as

  15. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: report of AAPM Task Group No. 138 and GEC-ESTRO.

    PubMed

    DeWerd, Larry A; Ibbott, Geoffrey S; Meigooni, Ali S; Mitch, Michael G; Rivard, Mark J; Stump, Kurt E; Thomadsen, Bruce R; Venselaar, Jack L M

    2011-02-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as

  16. Dosimetric feasibility of real-time MRI-guided proton therapy

    PubMed Central

    Moteabbed, M.; Schuemann, J.; Paganetti, H.

    2014-01-01

    Purpose: Magnetic resonance imaging (MRI) is a prime candidate for image-guided radiotherapy. This study was designed to assess the feasibility of real-time MRI-guided proton therapy by quantifying the dosimetric effects induced by the magnetic field in patients’ plans and identifying the associated clinical consequences. Methods: Monte Carlo dose calculation was performed for nine patients of various treatment sites (lung, liver, prostate, brain, skull-base, and spine) and tissue homogeneities, in the presence of 0.5 and 1.5 T magnetic fields. Dose volume histogram (DVH) parameters such as D95, D5, and V20 as well as equivalent uniform dose were compared for the target and organs at risk, before and after applying the magnetic field. The authors further assessed whether the plans affected by clinically relevant dose distortions could be corrected independent of the planning system. Results: By comparing the resulting dose distributions and analyzing the respective DVHs, it was determined that despite the observed lateral beam deflection, for magnetic fields of up to 0.5 T, neither was the target coverage jeopardized nor was the dose to the nearby organs increased in all cases except for prostate. However, for a 1.5 T magnetic field, the dose distortions were more pronounced and of clinical concern in all cases except for spine. In such circumstances, the target was severely underdosed, as indicated by a decrease in D95 of up to 41% of the prescribed dose compared to the nominal situation (no magnetic field). Sites such as liver and spine were less affected due to higher tissue homogeneity, typically smaller beam range, and the choice of beam directions. Simulations revealed that small modifications to certain plan parameters such as beam isocenter (up to 19 mm) and gantry angle (up to 10°) are sufficient to compensate for the magnetic field-induced dose disturbances. The authors’ observations indicate that the degree of required corrections strongly depends

  17. Dosimetric feasibility of real-time MRI-guided proton therapy

    SciTech Connect

    Moteabbed, M. Schuemann, J.; Paganetti, H.

    2014-11-01

    Purpose: Magnetic resonance imaging (MRI) is a prime candidate for image-guided radiotherapy. This study was designed to assess the feasibility of real-time MRI-guided proton therapy by quantifying the dosimetric effects induced by the magnetic field in patients’ plans and identifying the associated clinical consequences. Methods: Monte Carlo dose calculation was performed for nine patients of various treatment sites (lung, liver, prostate, brain, skull-base, and spine) and tissue homogeneities, in the presence of 0.5 and 1.5 T magnetic fields. Dose volume histogram (DVH) parameters such as D{sub 95}, D{sub 5}, and V{sub 20} as well as equivalent uniform dose were compared for the target and organs at risk, before and after applying the magnetic field. The authors further assessed whether the plans affected by clinically relevant dose distortions could be corrected independent of the planning system. Results: By comparing the resulting dose distributions and analyzing the respective DVHs, it was determined that despite the observed lateral beam deflection, for magnetic fields of up to 0.5 T, neither was the target coverage jeopardized nor was the dose to the nearby organs increased in all cases except for prostate. However, for a 1.5 T magnetic field, the dose distortions were more pronounced and of clinical concern in all cases except for spine. In such circumstances, the target was severely underdosed, as indicated by a decrease in D{sub 95} of up to 41% of the prescribed dose compared to the nominal situation (no magnetic field). Sites such as liver and spine were less affected due to higher tissue homogeneity, typically smaller beam range, and the choice of beam directions. Simulations revealed that small modifications to certain plan parameters such as beam isocenter (up to 19 mm) and gantry angle (up to 10°) are sufficient to compensate for the magnetic field-induced dose disturbances. The authors’ observations indicate that the degree of required

  18. Characterization and use of a 2D-array of ion chambers for brachytherapy dosimetric quality assurance

    SciTech Connect

    Yewondwossen, Mammo

    2012-10-01

    The two-dimensional (2D) ionization chamber array MatriXX Evolution is one of the 2D ionization chamber arrays developed by IBA Dosimetry (IBA Dosimetry, Germany) for megavoltage real-time absolute 2D dosimetry and verification of intensity-modulated radiation therapy (IMRT). The purpose of this study was to (1) evaluate the performance of ion chamber array for submegavoltage range brachytherapy beam dose verification and quality assurance (QA) and (2) use the end-to-end dosimetric evaluation that mimics a patient treatment procedure and confirm the primary source strength calibration agrees in both the treatment planning system (TPS) and treatment delivery console computers. The dose linearity and energy dependence of the 2D ion chamber array was studied using kilovoltage X-ray beams (100, 180 and 300 kVp). The detector calibration factor was determined using 300 kVp X-ray beams so that we can use the same calibration factor for dosimetric verification of high-dose-rate (HDR) brachytherapy. The phantom used for this measurement consists of multiple catheters, the IBA MatriXX detector, and water-equivalent slab of RW3 to provide full scattering conditions. The treatment planning system (TPS) (Oncentra brachy version 3.3, Nucletron BV, Veenendaal, the Netherlands) dose distribution was calculated on the computed tomography (CT) scan of this phantom. The measured and TPS calculated distributions were compared in IBA Dosimetry OmniPro-I'mRT software. The quality of agreement was quantified by the gamma ({gamma}) index (with 3% delta dose and distance criterion of 2 mm) for 9 sets of plans. Using a dedicated phantom capable of receiving 5 brachytherapy intralumenal catheters a QA procedure was developed for end-to-end dosimetric evaluation for routine QA checks. The 2D ion chamber array dose dependence was found to be linear for 100-300 kVp and the detector response (k{sub user}) showed strong energy dependence for 100-300 kVp energy range. For the Ir-192 brachytherapy

  19. Dosimetric verification of enhanced dynamic wedges by a 2D ion chamber array

    NASA Astrophysics Data System (ADS)

    Oh, Se An; Kim, Sung Kyu; Kang, Min Kyu; Yea, Ji Woon; Kim, Eng Chan

    2013-12-01

    Wedge filters are commonly used to achieve dose uniformity in the target volume in radiotherapy and can be categorized as physical wedges (PWs) and enhanced dynamic wedges (EDWs). The EDW generates PW-like dose profiles while moving the upper jaw in the Y directions with a varying dose rate in the treatment beams. Task Group 53 of the AAPM (American Association of Physicists in Medicine) recommended that the dynamic wedge be verified before implementation in the radiation treatment planning (RTP) system. The aim of this study was to use the I'mRT MatriXX to verify the dose profiles of the EDWs manufactured by Varian. We used Pencil Beam Convolution algorithms (eclipse 8.6) for the calculation and I'mRT MatriXX with Plastic Water® phantom MULTICube for dose measurements. The gamma indices of the calculations and the measurements for the EDWs were 84.84% and 86.54% in 2%/2 mm tolerance, and 99.47% and 99.64% in 3%/3 mm tolerance for wedge angles of 15°, 30°, 45° and 60°, respectively. The dose distributions differed between the calculations using the system and the measurements in the penumbra and the outer beam regions of the wedge fields. We confirmed that the dosimetric verifications of the EDW were acceptable when using the criterion for external beam dose calculations of Task Group 53.

  20. Dosimetric evaluations of the interplay effect in respiratory-gated intensity-modulated radiation therapy

    SciTech Connect

    Chen Hungcheng; Wu, Andrew; Brandner, Edward D.; Heron, Dwight E.; Huq, M. Saiful; Yue, Ning J.; Chen Wencheng

    2009-03-15

    The interplay between a mobile target and a dynamic multileaf collimator can compromise the accuracy of intensity-modulated radiation therapy (IMRT). Our goal in this study is to investigate the dosimetric effects caused by the respiratory motion during IMRT. A moving phantom was built to simulate the typical breathing motion. Different sizes of the gating windows were selected for gated deliveries. The residual motions during the beam-on period ranged from 0.5 to 3 cm. An IMRT plan with five treatment fields from different gantry angles were delivered to the moving phantom for three irradiation conditions: Stationary condition, moving with the use of gating system, and moving without the use of gating system. When the residual motion was 3 cm, the results showed significant differences in dose distributions between the stationary condition and the moving phantom without gating beam control. The overdosed or underdosed areas enclosed about 33% of the treatment area. In contrast, the dose distribution on the moving phantom with gating window set to 0.5 cm showed no significant differences from the stationary phantom. With the appropriate setting of the gating window, the deviation of dose from the respiratory motion can be minimized. It appeals that limiting the residual motion to less than 0.5 cm is critical for the treatments of mobile structures.

  1. Dosimetric estimates for clinical positron emission tomographic scanning after injection of ( sup 18 F)-6-fluorodopamine

    SciTech Connect

    Goldstein, D.S.; Chang, P.C.; Smith, C.B.; Herscovitch, P.; Austin, S.M.; Eisenhofer, G.; Kopin, I.J. )

    1991-01-01

    Positron emission tomographic (PET) scanning after systemic i.v. injection of fluorine-18-6-fluorodopamine (({sup 18}F)-6F-DA) is a method for visualizing and measuring regional sympathetic nervous system innervation and function. Based on results of preclinical studies of rats and dogs and on previous literature about the fate of injected tracer-labeled catecholamines, dosimetric estimates for clinical studies are presented here. After injection of 1 mCi of ({sup 18}F)-F-DA, the radiation dose would be highest to the wall of the urinary bladder (1.40 rem/mCi), due to accumulation of radioactive metabolites of ({sup 18}F)-F-DA in urine. Radioactivity also would accumulate in bile. Organs receiving the next highest dose would be the kidneys (0.9 rem/mCi) and small intestine (0.2 rem/mCi). The parenchymal radiation dose would be lowest in the brain, since there is an effective blood-brain barrier for circulating catecholamines. Radiation doses to all organs after administration of 1 mCi of ({sup 18}F)-F-DA to humans would be less than 3 rem and, therefore, within current FDA guidelines.

  2. Optically stimulated luminescence: Searching for new dosimetric materials

    NASA Astrophysics Data System (ADS)

    Yoshimura, E. M.; Yukihara, E. G.

    2006-09-01

    Optically stimulated luminescence (OSL) is increasingly being used as a dosimetric technique in various fields such as medical, environmental and space dosimetry, and sediment and archaeological dating. Nevertheless few compounds are suitable as OSL materials. In this work, a survey was made of various insulators, searching for candidates for new OSL dosimeters. Natural and synthetic crystals and glasses from numerous sources are included. Luminescence was stimulated with blue LEDs (470 nm) and with IR laser (830 nm) provided by an automatic reader. Irradiation was performed with a 90Sr/ 90Y beta source, and the emitted light was measured with a photomultiplier tube, protected with suitable optical filters. Thermoluminescence (TL) of the samples was also measured, with the same equipment, to evaluate the thermal and optical stability of the defects related to OSL and TL. Among the various investigated materials, Al 2O 3:Cr, Mg, Fe, MgAl 2O 4 spinels, Mg 2SiO 4:Tb, and natural fluorite show potential as OSL dosimeters. Some materials, as barium aluminoborate glasses, although showing intense OSL signals, present a high fading at room temperature. In that situation the OSL signal is related to low temperature TL peaks that also fade at room temperature. None of the investigated materials was specially prepared to be used as an OSL dosimeter, which means that work can be done, mainly in the impurity nature and content, in order to improve OSL signals and to overcome some of the shortcomings that were noticed.

  3. A comprehensive approach to age-dependent dosimetric modeling

    SciTech Connect

    Leggett, R.W.; Cristy, M.; Eckerman, K.F.

    1986-01-01

    In the absence of age-specific biokinetic models, current retention models of the International Commission on Radiological Protection (ICRP) frequently are used as a point of departure for evaluation of exposures to the general population. These models were designed and intended for estimation of long-term integrated doses to the adult worker. Their format and empirical basis preclude incorporation of much valuable physiological information and physiologically reasonable assumptions that could be used in characterizing the age-specific behavior of radioelements in humans. In this paper we discuss a comprehensive approach to age-dependent dosimetric modeling in which consideration is given not only to changes with age in masses and relative geometries of body organs and tissues but also to best available physiological and radiobiological information relating to the age-specific biobehavior of radionuclides. This approach is useful in obtaining more accurate estimates of long-term dose commitments as a function of age at intake, but it may be particularly valuable in establishing more accurate estimates of dose rate as a function of age. Age-specific dose rates are needed for a proper analysis of the potential effects on estimates or risk of elevated dose rates per unit intake in certain stages of life, elevated response per unit dose received during some stages of life, and age-specific non-radiogenic competing risks.

  4. Dosimetrical evaluation of Leksell Gamma Knife 4C radiosurgery unit

    NASA Astrophysics Data System (ADS)

    Sajeev, Thomas; Mustafa, Mohamed M.; Supe, Sanjay S.

    2011-01-01

    A number of experiments was performed using standard protocols, in order to evaluate the dosimetric accuracy of Leksell Gamma Knife 4C unit. Verification of the beam alignment has been performed for all collimators using solid plastic head phantom and Gafchromic™ type MD-55 films. The study showed a good agreement of Leksell Gammaplan calculated dose profiles with experimentally determined profiles in all three axes. Isocentric accuracy is verified using a specially machined cylindrical aluminium film holder tool made with very narrow geometric tolerances aligned between trunnions of 4 mm collimator. Considering all uncertainties in all three dimensions, the estimated accuracy of the unit was 0.1 mm. Dose rate at the centre point of the unit has been determined according to the IAEA, TRS-398 protocol, using Unidose-E (PTW-Freiburg, Germany) with a 0.125 cc ion chamber, over a period of 6 years. The study showed that the Leksell Gamma Knife 4C unit is excellent radiosurgical equipment with high accuracy and precision, which makes it possible to deliver larger doses of radiation, within the limits defined by national and international guidelines, applicable for stereotactic radiosurgery procedures.

  5. Dosimetric implications of age related glandular changes in screening mammography

    NASA Astrophysics Data System (ADS)

    Beckett, J. R.; Kotre, C. J.

    2000-03-01

    The UK National Health Service Breast Screening Programme is currently organized to routinely screen women between the ages of 50 and 64, with screening for older women available on request. The lower end of this age range closely matches the median age for the menopause (51 years), during which significant changes in the composition of the breast are known to occur. In order to quantify the dosimetric effect of these changes, radiographic factors and compressed breast thickness data for a cohort of 1258 women aged between 35 and 79 undergoing breast screening mammography have been used to derive estimates of breast glandularity and mean glandular dose (MGD), and examine their variation with age. The variation of mean radiographic exposure factors with age is also investigated. The presence of a significant number of age trial women within the cohort allowed an extended age range to be studied. Estimates of MGD including corrections for breast glandularity based on compressed breast thickness only, compressed breast thickness and age and for each individual woman are compared with the MGD based on the conventional assumption of a 50:50 adipose/glandular composition. It has been found that the use of the conventional 50:50 assumption leads to overestimates of MGD of up to 13% over the age range considered. By using compressed breast thickness to estimate breast glandularity, this error range can be reduced to 8%, whilst age and compressed breast thickness based glandularity estimates result in an error range of 1%.

  6. Dosimetric characteristics of a MOSFET dosimeter for clinical electron beams.

    PubMed

    Manigandan, D; Bharanidharan, G; Aruna, P; Devan, K; Elangovan, D; Patil, Vikram; Tamilarasan, R; Vasanthan, S; Ganesan, S

    2009-09-01

    The fundamental dosimetric characteristics of commercially available metal oxide semiconductor field effect transistor (MOSFET) detectors were studied for clinical electron beam irradiations. MOSFET showed excellent linearity against doses measured using an ion chamber in the dose range of 20-630cGy. MOSFET reproducibility is better at high doses compared to low doses. The output factors measured with the MOSFET were within +/-3% when compared with those measured with a parallel plate chamber. From 4 to 12MeV, MOSFETs showed a large angular dependence in the tilt directions and less in the axial directions. MOSFETs do not show any dose-rate dependence between 100 and 600MU/min. However, MOSFETs have shown under-response when the dose per pulse of the beam is decreased. No measurable effect in MOSFET response was observed in the temperature range of 23-40 degrees C. The energy dependence of a MOSFET dosimeter was within +/-3.0% for 6-18MeV electron beams and 5.5% for 4MeV ones. This study shows that MOSFET detectors are suitable for dosimetry of electron beams in the energy range of 4-18MeV. PMID:19128995

  7. Dosimetric characterization of a microDiamond detector in clinical scanned carbon ion beams

    SciTech Connect

    Marinelli, Marco; Prestopino, G. Verona, C.; Verona-Rinati, G.; Ciocca, M.; Mirandola, A.; Mairani, A.; Raffaele, L.; Magro, G.

    2015-04-15

    Purpose: To investigate for the first time the dosimetric properties of a new commercial synthetic diamond detector (PTW microDiamond) in high-energy scanned clinical carbon ion beams generated by a synchrotron at the CNAO facility. Methods: The detector response was evaluated in a water phantom with actively scanned carbon ion beams ranging from 115 to 380 MeV/u (30–250 mm Bragg peak depth in water). Homogeneous square fields of 3 × 3 and 6 × 6 cm{sup 2} were used. Short- and medium-term (2 months) detector response stability, dependence on beam energy as well as ion type (carbon ions and protons), linearity with dose, and directional and dose-rate dependence were investigated. The depth dose curve of a 280 MeV/u carbon ion beam, scanned over a 3 × 3 cm{sup 2} area, was measured with the microDiamond detector and compared to that measured using a PTW Advanced Markus ionization chamber, and also simulated using FLUKA Monte Carlo code. The detector response in two spread-out-Bragg-peaks (SOBPs), respectively, centered at 9 and 21 cm depths in water and calculated using the treatment planning system (TPS) used at CNAO, was measured. Results: A negligible drift of detector sensitivity within the experimental session was seen, indicating that no detector preirradiation was needed. Short-term response reproducibility around 1% (1 standard deviation) was found. Only 2% maximum variation of microDiamond sensitivity was observed among all the evaluated proton and carbon ion beam energies. The detector response showed a good linear behavior. Detector sensitivity was found to be dose-rate independent, with a variation below 1.3% in the evaluated dose-rate range. A very good agreement between measured and simulated Bragg curves with both microDiamond and Advanced Markus chamber was found, showing a negligible LET dependence of the tested detector. A depth dose curve was also measured by positioning the microDiamond with its main axis oriented orthogonally to the beam

  8. Dosimetric effects on small-field beam-modeling for stereotactic body radiation therapy

    NASA Astrophysics Data System (ADS)

    Cho, Woong; Kim, Suzy; Kim, Jung-In; Wu, Hong-Gyun; Jung, Joo-Young; Kim, Min-Joo; Suh, Tae-Suk; Kim, Jin-Young; Kim, Jong Won

    2015-02-01

    The treatment planning of stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) requires high accuracy of dosimetric data for small radiation fields. The dosimetric effects on the beam-modeling process of a treatment planning system (TPS) were investigated using different measured small-field data sets. We performed small-field dosimetry with three detectors: a CC13 ion chamber, a CC01 ion chamber, and an edge detector. Percentage depth doses (PDDs) and dose profiles for field sizes given by 3 × 3 cm2, 2 × 2 cm2, and 1 × 1 cm2 were obtained for 6 MV and 15 MV photon beams. Each measured data set was used as data input for a TPS, in which a beam-modeling process was implemented using the collapsed cone convolution (CCC) algorithm for dose calculation. The measured data were used to generate six beam-models based on each combination of detector type and photon energy, which were then used to calculate the corresponding PDDs and dose profiles for various depths and field sizes. Root mean square differences (RMSDs) between the calculated and the measured doses were evaluated for the PDDs and the dose profiles. The RMSDs of PDDs beyond the maximum dose depth were within an accuracy of 0.2-0.6%, being clinically acceptable. The RMSDs of the dose profiles corresponding to the CC13, the CC01, and the edge detector were 2.80%, 1.49%, and 1.46% for a beam energy of 6 MV and 2.34%, 1.15%, and 1.44% for a beam energy of 15 MV, respectively. The calculated results for the CC13 ion chamber showed the most discrepancy compared to the measured data, due to the relatively large sensitive volume of this detector. However, the calculated dose profiles for the detectors were not significantly different from another. The physical algorithm used in the beam-modeling process did not seem to be sensitive to blurred data measured with detectors with large sensitive volumes. Each beam-model was used to clinically evaluate lung and lymphatic node SBRT plans

  9. An evaluation of a novel synthetic diamond probe for dosimetric applications

    NASA Astrophysics Data System (ADS)

    Ade, N.; Nam, T. L.

    2015-10-01

    A study is presented that characterises the dosimetric performances of two synthetic diamond sensors (HP1 and HP2) when either one or both detectors are subjected to clinical beams of various types under large as well as small-field conditions. Detector performances were evaluated using a prototype probe housing constructed of tissue-equivalent materials. The probe can accommodate diamond sensors of various sizes and is configured for radiation detection in different exposure orientations without having first to re-orient the sensor plate within its body. Also, the diamond sensor is aligned in the same configuration as its rectangular housing and the probe is designed to be compatible with commercially available electrometer systems. Dosimetric measurements were conducted using mammography X-rays (25-32 kVp) and megavoltage electron (6-21 MeV) and photon (60Co γ-ray, 6-18 MV X-ray) beams. Whereas HP1 was evaluated using all beam types under large-flied conditions and small-photon-beam fields down to 0.7×0.7 cm2, HP2 was evaluated using small-electron and photon-beam conditions down to 0.3×0.3 cm2 6 MV photon field. Using HP1 sensor, the synthetic diamond probe was found not to require daily pre-irradiation as long as it is properly shielded from ambient light and its response stabilised. Furthermore, the diamond probe exhibited linear response characteristics with absorbed dose and on exposure parameters to various beam types, negligible energy dependence and almost no variation in angular response. Exposing the sensor HP2 under a 0.4×0.4 cm2 6 MV photon radiation field, a sensitivity value of 197.3 nC Gy-1 mm-3 was established compared to a value of 136.1 nC Gy-1 mm-3 obtained with a small-field diode detector. Also, a figure of 5.5×103 for the SNR was established for the sensor in the same radiation field. Relative beam data measured with the diamond sensors were found to agree within 1-2% with data obtained with reference detectors. The presentation

  10. The dosimetric impact of dental implants on head-and-neck volumetric modulated arc therapy.

    PubMed

    Lin, Mu-Han; Li, Jinsheng; Price, Robert A; Wang, Lu; Lee, Chung-Chi; Ma, C-M

    2013-02-21

    This work aims to investigate the dosimetric impact of dental implants on volumetric modulated arc therapy (VMAT) for head-and-neck patients and to evaluate the effectiveness of using the material's electron-density ratio for the correction. An in-house Monte Carlo (MC) code was utilized for the dose calculation to account for the scattering and attenuation caused by the high-Z implant material. Three different dental implant materials were studied in this work: titanium, Degubond®4 and gold. The dose perturbations caused by the dental implant materials were first investigated in a water phantom with a 1 cm(3) insert. The per cent depth dose distributions of a 3 × 3 cm(2) photon field were compared with the insert material as water and the three selected dental implant materials. To evaluate the impact of the dental implant on VMAT patient dose calculation, four head-and-neck cases were selected. For each case, the VMAT plan was designed based on the artifact-corrected patient geometry using a treatment planning system (TPS) that was typically utilized for routine patient treatment. The plans were re-calculated using the MC code for five situations: uncorrected geometry, artifact-corrected geometry and artifact-corrected geometry with one of the three different implant materials. The isodose distributions and the dose-volume histograms were cross-compared with each other. To evaluate the effectiveness of using the material's electron-density ratio for dental implant correction, the implant region was set as water with the material's electron-density ratio and the calculated dose was compared with the MC simulation with the real material. The main effect of the dental implant was the severe attenuation in the downstream. The 1 cm(3) dental implant can lower the downstream dose by 10% (Ti) to 51% (Au) for a 3 × 3 cm(2) field. The TPS failed to account for the dose perturbation if the dental implant material was not precisely defined. For the VMAT

  11. Evaluation of fluence-based dose delivery incorporating the spatial variation of dosimetric leaf gap (DLG).

    PubMed

    Kumaraswamy, Lalith K; Xu, Zhengzheng; Bailey, Daniel W; Schmitt, Jonathan D; Podgorsak, Matthew B

    2016-01-01

    The Eclipse treatment planning system uses a single dosimetric leaf gap (DLG) value to retract all multileaf collimator leaf positions during dose calculation to model the rounded leaf ends. This study evaluates the dosimetric impact of the 2D variation of DLG on clinical treatment plans based on their degree of fluence modulation. In-house software was developed to retrospectively apply the 2D variation of DLG to 61 clinically treated VMAT plans, as well as to several test plans. The level of modulation of the VMAT cases were determined by calculating their modulation complexity score (MCS). Dose measurements were done using the MapCHECK device at a depth of 5.0 cm for plans with and without the 2D DLG correction. Measurements were compared against predicted dose planes from the TPS using absolute 3%/3 mm and 2%/2 mm gamma criteria for test plans and for VMAT cases, respectively. The gamma pass rate for the 2 mm, 4 mm, and 6 mm sweep test plans increased by 23.2%, 28.7%, and 26.0%, respectively, when the measurements were corrected with 2D variation of DLG. The clinical anal VMAT cases, which had very high MLC modulation, showed the most improvement. The majority of the improvement occurred for doses created by the 1.0 cm width leaves for both the test plans and the VMAT cases. The gamma pass rates for the highly modulated head and neck (H&N) cases, moderately modulated prostate and esophageal cases, and minimally modulated brain cases improved only slightly when corrected with 2D variation of DLG. This is because these cases did not employ the 1.0 cm width leaves for dose calculation and delivery. These data suggest that, at the very least, the TPS plans with highly modulated fluences created by the 1.0 cm fields require 2D DLG correction. Incorporating the 2D variation of DLG for the highly modulated clinical treatment plans improves their planar dose gamma pass rates, especially for fields employing the outer 1.0 cm width MLC leaves. This is because there are

  12. The dosimetric impact of dental implants on head-and-neck volumetric modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Lin, Mu-Han; Li, Jinsheng; Price, Robert A., Jr.; Wang, Lu; Lee, Chung-Chi; Ma, C.-M.

    2013-02-01

    This work aims to investigate the dosimetric impact of dental implants on volumetric modulated arc therapy (VMAT) for head-and-neck patients and to evaluate the effectiveness of using the material's electron-density ratio for the correction. An in-house Monte Carlo (MC) code was utilized for the dose calculation to account for the scattering and attenuation caused by the high-Z implant material. Three different dental implant materials were studied in this work: titanium, Degubond®4 and gold. The dose perturbations caused by the dental implant materials were first investigated in a water phantom with a 1 cm3 insert. The per cent depth dose distributions of a 3 × 3 cm2 photon field were compared with the insert material as water and the three selected dental implant materials. To evaluate the impact of the dental implant on VMAT patient dose calculation, four head-and-neck cases were selected. For each case, the VMAT plan was designed based on the artifact-corrected patient geometry using a treatment planning system (TPS) that was typically utilized for routine patient treatment. The plans were re-calculated using the MC code for five situations: uncorrected geometry, artifact-corrected geometry and artifact-corrected geometry with one of the three different implant materials. The isodose distributions and the dose-volume histograms were cross-compared with each other. To evaluate the effectiveness of using the material's electron-density ratio for dental implant correction, the implant region was set as water with the material's electron-density ratio and the calculated dose was compared with the MC simulation with the real material. The main effect of the dental implant was the severe attenuation in the downstream. The 1 cm3 dental implant can lower the downstream dose by 10% (Ti) to 51% (Au) for a 3 × 3 cm2 field. The TPS failed to account for the dose perturbation if the dental implant material was not precisely defined. For the VMAT patient dose calculation

  13. The Application of Elliptic Cylindrical Phantom in Brachytherapy Dosimetric Study of HDR 192Ir Source

    NASA Astrophysics Data System (ADS)

    Ahn, Woo Sang; Park, Sung Ho; Jung, Sang Hoon; Choi, Wonsik; Do Ahn, Seung; Shin, Seong Soo

    2014-06-01

    The purpose of this study is to determine the radial dose function of HDR 192Ir source based on Monte Carlo simulation using elliptic cylindrical phantom, similar to realistic shape of pelvis, in brachytherapy dosimetric study. The elliptic phantom size and shape was determined by analysis of dimensions of pelvis on CT images of 20 patients treated with brachytherapy for cervical cancer. The radial dose function obtained using the elliptic cylindrical water phantom was compared with radial dose functions for different spherical phantom sizes, including the Williamsion's data loaded into conventional planning system. The differences in the radial dose function for the different spherical water phantoms increase with radial distance, r, and the largest differences in the radial dose function appear for the smallest phantom size. The radial dose function of the elliptic cylindrical phantom significantly decreased with radial distance in the vertical direction due to different scatter condition in comparison with the Williamson's data. Considering doses to ICRU rectum and bladder points, doses to reference points can be underestimated up to 1-2% at the distance from 3 to 6 cm. The radial dose function in this study could be used as realistic data for calculating the brachytherapy dosimetry for cervical cancer.

  14. Helical Tomotherapy in Children and Adolescents: Dosimetric Comparisons, Opportunities and Issues

    PubMed Central

    Mascarin, Maurizio; Giugliano, Francesca Maria; Coassin, Elisa; Drigo, Annalisa; Chiovati, Paola; Dassie, Andrea; Franchin, Giovanni; Minatel, Emilio; Trovò, Mauro Gaetano

    2011-01-01

    Helical Tomotherapy (HT) is a highly conformal image-guided radiation technique, introduced into clinical routine in 2006 at the Centro di Riferimento Oncologico Aviano (Italy). With this new technology, intensity-modulated radiotherapy (IMRT) is delivered using a helicoidal method. Here we present our dosimetric experiences using HT in 100 children, adolescents and young adults treated from May 2006 to February 2011. The median age of the patients was 13 years (range 1–24). The most common treated site was the central nervous system (50; of these, 24 were craniospinal irradiations), followed by thorax (22), head and neck (10), abdomen and pelvis (11), and limbs (7). The use of HT was calculated in accordance to the target dose conformation, the target size and shape, the dose to critical organs adjacent to the target, simultaneous treatment of multiple targets, and re-irradiation. HT has demonstrated to improve target volume dose homogeneity and the sparing of critical structures, when compared to 3D Linac-based radiotherapy (RT). In standard cases this technique represented a comparable alternative to IMRT delivered with conventional linear accelerator. In certain cases (e.g., craniospinal and pleural treatments) only HT generated adequate treatment plans with good target volume coverage. However, the gain in target conformality should be balanced with the spread of low-doses to distant areas. This remains an open issue for the potential risk of secondary malignancies (SMNs) and longer follow-up is mandatory. PMID:24213120

  15. Topological detector: measuring continuous dosimetric quantities with few-element detector array.

    PubMed

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-21

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions. PMID:27452789

  16. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    NASA Astrophysics Data System (ADS)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-07-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70-x) B2O3-30 Li2O-(x) Dy2O3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5-5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy2O3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD).

  17. Topological detector: measuring continuous dosimetric quantities with few-element detector array

    NASA Astrophysics Data System (ADS)

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-01

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions.

  18. Dosimetric impact of a CT metal artefact suppression algorithm for proton, electron and photon therapies

    NASA Astrophysics Data System (ADS)

    Wei, Jikun; Sandison, George A.; Hsi, Wen-Chien; Ringor, Michael; Lu, Xiaoyi

    2006-10-01

    Accurate dose calculation is essential to precision radiation treatment planning and this accuracy depends upon anatomic and tissue electron density information. Modern treatment planning inhomogeneity corrections use x-ray CT images and calibrated scales of tissue CT number to electron density to provide this information. The presence of metal in the volume scanned by an x-ray CT scanner causes metal induced image artefacts that influence CT numbers and thereby introduce errors in the radiation dose distribution calculated. This paper investigates the dosimetric improvement achieved by a previously proposed x-ray CT metal artefact suppression technique when the suppressed images of a patient with bilateral hip prostheses are used in commercial treatment planning systems for proton, electron or photon therapies. For all these beam types, this clinical image and treatment planning study reveals that the target may be severely underdosed if a metal artefact-contaminated image is used for dose calculations instead of the artefact suppressed one. Of the three beam types studied, the metal artefact suppression is most important for proton therapy dose calculations, intermediate for electron therapy and least important for x-ray therapy but still significant. The study of a water phantom having a metal rod simulating a hip prosthesis indicates that CT numbers generated after image processing for metal artefact suppression are accurate and thus dose calculations based on the metal artefact suppressed images will be of high fidelity.

  19. Dosimetric consequences of pencil beam width variations in scanned beam particle therapy

    NASA Astrophysics Data System (ADS)

    Chanrion, M. A.; Ammazzalorso, F.; Wittig, A.; Engenhart-Cabillic, R.; Jelen, U.

    2013-06-01

    Scanned ion beam delivery enables the highest degree of target dose conformation attainable in external beam radiotherapy. Nominal pencil beam widths (spot sizes) are recorded during treatment planning system commissioning. Due to changes in the beam-line optics, the actual spot sizes may differ from these commissioning values, leading to differences between planned and delivered dose. The purpose of this study was to analyse the dosimetric consequences of spot size variations in particle therapy treatment plans. For 12 patients with skull base tumours and 12 patients with prostate carcinoma, scanned-beam carbon ion and proton treatment plans were prepared and recomputed simulating spot size changes of (1) ±10% to simulate the typical magnitude of fluctuations, (2) ±25% representing the worst-case scenario and (3) ±50% as a part of a risk analysis in case of fault conditions. The primary effect of the spot size variation was a dose deterioration affecting the target edge: loss of target coverage and broadening of the lateral penumbra (increased spot size) or overdosage and contraction of the lateral penumbra (reduced spot size). For changes ⩽25%, the resulting planning target volume mean 95%-isodose line coverage (CI-95%) deterioration was ranging from negligible to moderate. In some cases changes in the dose to adjoining critical structures were observed.

  20. Verification of dosimetric accuracy on the TrueBeam STx: Rounded leaf effect of the high definition MLC

    SciTech Connect

    Kielar, Kayla N.; Mok, Ed; Hsu, Annie; Wang Lei; Luxton, Gary

    2012-10-15

    Purpose: The dosimetric leaf gap (DLG) in the Varian Eclipse treatment planning system is determined during commissioning and is used to model the effect of the rounded leaf-end of the multileaf collimator (MLC). This parameter attempts to model the physical difference between the radiation and light field and account for inherent leakage between leaf tips. With the increased use of single fraction high dose treatments requiring larger monitor units comes an enhanced concern in the accuracy of leakage calculations, as it accounts for much of the patient dose. This study serves to verify the dosimetric accuracy of the algorithm used to model the rounded leaf effect for the TrueBeam STx, and describes a methodology for determining best-practice parameter values, given the novel capabilities of the linear accelerator such as flattening filter free (FFF) treatments and a high definition MLC (HDMLC). Methods: During commissioning, the nominal MLC position was verified and the DLG parameter was determined using MLC-defined field sizes and moving gap tests, as is common in clinical testing. Treatment plans were created, and the DLG was optimized to achieve less than 1% difference between measured and calculated dose. The DLG value found was tested on treatment plans for all energies (6 MV, 10 MV, 15 MV, 6 MV FFF, 10 MV FFF) and modalities (3D conventional, IMRT, conformal arc, VMAT) available on the TrueBeam STx. Results: The DLG parameter found during the initial MLC testing did not match the leaf gap modeling parameter that provided the most accurate dose delivery in clinical treatment plans. Using the physical leaf gap size as the DLG for the HDMLC can lead to 5% differences in measured and calculated doses. Conclusions: Separate optimization of the DLG parameter using end-to-end tests must be performed to ensure dosimetric accuracy in the modeling of the rounded leaf ends for the Eclipse treatment planning system. The difference in leaf gap modeling versus physical

  1. Dosimetric Analysis of Radiation-induced Gastric Bleeding

    SciTech Connect

    Feng, Mary; Normolle, Daniel; Pan, Charlie C.; Dawson, Laura A.; Amarnath, Sudha; Ensminger, William D.; Lawrence, Theodore S.; Ten Haken, Randall K.

    2012-09-01

    Purpose: Radiation-induced gastric bleeding has been poorly understood. In this study, we described dosimetric predictors for gastric bleeding after fractionated radiation therapy. Methods and Materials: The records of 139 sequential patients treated with 3-dimensional conformal radiation therapy (3D-CRT) for intrahepatic malignancies were reviewed. Median follow-up was 7.4 months. The parameters of a Lyman normal tissue complication probability (NTCP) model for the occurrence of {>=}grade 3 gastric bleed, adjusted for cirrhosis, were fitted to the data. The principle of maximum likelihood was used to estimate parameters for NTCP models. Results: Sixteen of 116 evaluable patients (14%) developed gastric bleeds at a median time of 4.0 months (mean, 6.5 months; range, 2.1-28.3 months) following completion of RT. The median and mean maximum doses to the stomach were 61 and 63 Gy (range, 46-86 Gy), respectively, after biocorrection of each part of the 3D dose distributions to equivalent 2-Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis predicted gastric bleed. Best-fit Lyman NTCP model parameters were n=0.10 and m=0.21 and with TD{sub 50} (normal) = 56 Gy and TD{sub 50} (cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD{sub 50} value for the cirrhosis patients points out their greater sensitivity. Conclusions: This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation.

  2. Dosimetric Analysis of Radiation-Induced Gastric Bleeding

    PubMed Central

    Feng, Mary; Normolle, Daniel; Pan, Charlie C.; Dawson, Laura A.; Amarnath, Sudha; Ensminger, William D.; Lawrence, Theodore S.; Ten Haken, Randall K.

    2012-01-01

    Purpose Radiation-induced gastric bleeding has been poorly understood. In this study, we describe dosimetric predictors for gastric bleeding after fractionated radiotherapy and compare several predictive models. Materials & Methods The records of 139 sequential patients treated with 3-dimensional conformal radiotherapy (3D-CRT) for intrahepatic malignancies between January 1999 and April 2002 were reviewed. Median follow-up was 7.4 months. Logistic regression and Lyman normal tissue complication probability (NTCP) models for the occurrence of ≥ grade 3 gastric bleed were fit to the data. The principle of maximum likelihood was used to estimate parameters for all models. Results Sixteen of 116 evaluable patients (14%) developed gastric bleeds, at a median time of 4.0 months (mean 6.5 months, range 2.1–28.3 months) following completion of RT. The median and mean of the maximum doses to the stomach were 61 and 63 Gy (range 46 Gy–86 Gy), respectively, after bio-correction to equivalent 2 Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis was most predictive of gastric bleed (AUROC=0.92). Best fit Lyman NTCP model parameters were n =0.10, and m =0.21, with TD50(normal) =56 Gy and TD50(cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD50 value for the cirrhosis patients points out their greater sensitivity. Conclusion This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding, and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation. PMID:22541965

  3. A revised dosimetric model of the adult head and brain

    SciTech Connect

    Bouchet, L.G.; Bolch, W.E.; Weber, D.A.

    1996-06-01

    During the last decade, new radiopharmaceutical have been introduced for brain imaging. The marked differences of these tracers in tissue specificity within the brain and their increasing use for diagnostic studies support the need for a more anthropomorphic model of the human brain and head. Brain and head models developed in the past have been only simplistic representations of this anatomic region. For example, the brain within the phantom of MIRD Pamphlet No. 5 Revised is modeled simply as a single ellipsoid of tissue With no differentiation of its internal structures. To address this need, the MIRD Committee established a Task Group in 1992 to construct a more detailed brain model to include the cerebral cortex, the white matter, the cerebellum, the thalamus, the caudate nucleus, the lentiform nucleus, the cerebral spinal fluid, the lateral ventricles, and the third ventricle. This brain model has been included within a slightly modified version of the head model developed by Poston et al. in 1984. This model has been incorporated into the radiation transport code EGS4 so as to calculate photon and electron absorbed fractions in the energy range 10 keV to 4 MeV for each of thirteen sources in the brain. Furthermore, explicit positron transport have been considered, separating the contribution by the positron itself and its associated annihilations photons. No differences are found between the electron and positron absorbed fractions; however, for initial energies of positrons greater than {approximately}0.5 MeV, significant differences are found between absorbed fractions from explicit transport of annihilation photons and those from an assumed uniform distribution of 0.511-MeV photons. Subsequently, S values were calculated for a variety of beta-particle and positron emitters brain imaging agents. Moreover, pediatric head and brain dosimetric models are currently being developed based on this adult head model.

  4. Radioembolization of Hepatic Lesions from a Radiobiology and Dosimetric Perspective

    PubMed Central

    Cremonesi, Marta; Chiesa, Carlo; Strigari, Lidia; Ferrari, Mahila; Botta, Francesca; Guerriero, Francesco; De Cicco, Concetta; Bonomo, Guido; Orsi, Franco; Bodei, Lisa; Di Dia, Amalia; Grana, Chiara Maria; Orecchia, Roberto

    2014-01-01

    Radioembolization (RE) of liver cancer with 90Y-microspheres has been applied in the last two decades with notable responses and acceptable toxicity. Two types of microspheres are available, glass and resin, the main difference being the activity/sphere. Generally, administered activities are established by empirical methods and differ for the two types. Treatment planning based on dosimetry is a prerogative of few centers, but has notably gained interest, with evidence of predictive power of dosimetry on toxicity, lesion response, and overall survival (OS). Radiobiological correlations between absorbed doses and toxicity to organs at risk, and tumor response, have been obtained in many clinical studies. Dosimetry methods have evolved from the macroscopic approach at the organ level to voxel analysis, providing absorbed dose spatial distributions and dose–volume histograms (DVH). The well-known effects of the external beam radiation therapy (EBRT), such as the volume effect, underlying disease influence, cumulative damage in parallel organs, and different tolerability of re-treatment, have been observed also in RE, identifying in EBRT a foremost reference to compare with. The radiobiological models – normal tissue complication probability and tumor control probability – and/or the style (DVH concepts) used in EBRT are introduced in RE. Moreover, attention has been paid to the intrinsic different activity distribution of resin and glass spheres at the microscopic scale, with dosimetric and radiobiological consequences. Dedicated studies and mathematical models have developed this issue and explain some clinical evidences, e.g., the shift of dose to higher toxicity thresholds using glass as compared to resin spheres. This paper offers a comprehensive review of the literature incident to dosimetry and radiobiological issues in RE, with the aim to summarize the results and to identify the most useful methods and information that should accompany future studies

  5. In vivo real-time dosimetric verification in high dose rate prostate brachytherapy

    SciTech Connect

    Seymour, Erin L.; Downes, Simon J.; Fogarty, Gerald B.; Izard, Michael A.; Metcalfe, Peter

    2011-08-15

    Purpose: To evaluate the performance of a diode array in the routine verification of planned dose to points inside the rectum from prostate high dose rate (HDR) brachytherapy using a real-time planning system. Methods: A dosimetric study involving 28 patients was undertaken where measured doses received during treatment were compared to those calculated by the treatment planning system (TPS). After the ultrasound imaging required for treatment planning had been recorded, the ultrasound probe was replaced with a geometric replica that contained an 8 mm diameter cylindrical cavity in which a PTW diode array type 9112 was placed. The replica probe was then positioned inside the rectum with the individual diode positions determined using fluoroscopy. Dose was then recorded during the patients' treatment and compared to associated coordinates in the planning system. Results: Factors influencing diode response and experimental uncertainty were initially investigated to estimate the overall uncertainty involved in dose measurements, which was determined to be {+-}10%. Data was acquired for 28 patients' first fractions, 11 patients' second fractions, and 13 patients' third fractions with collection dependent upon circumstances. Deviations between the diode measurements and predicted values ranged from -42% to +35% with 71% of measurements experiencing less than a 10% deviation from the predicted values. If the {+-}10% measurement uncertainty was combined with a tolerated dose discrepancy of {+-}10% then over 95% of the diode results exhibited agreement with the calculated data to within {+-}20%. It must also be noted that when large dose discrepancies were apparent they did not necessarily occur for all five diodes in the one measurement. Conclusions: This technique provided a method that could be utilized to detect gross errors in dose delivery of a real-time prostate HDR plan. Limitations in the detection system used must be well understood if meaningful results are to

  6. Determination of mass attenuation coefficient of low-Z dosimetric materials

    NASA Astrophysics Data System (ADS)

    El-Khayatt, A. M.; Ali, A. M.; Singh, Vishwanath P.; Badiger, N. M.

    2014-12-01

    The mass attenuation coefficients of some low-Z dosimetric materials with potential applications in dosimetry, medical and radiation protection have been investigated using the Monte Carlo simulation code Monte Carlo N-Particle (MCNP). Appreciable variations are noted for the mass attenuation coefficient by changing the photon energy. The MCNP-simulated parameters are compared with the experimental data wherever possible and theoretical values through the WinXcom program. The simulated results obtained by MCNP generally agree well with the experiment and WinXcom predictions for various low-Z dosimetric and tissue substitute materials. In addition, the mass attenuation coefficients around the k-edges for low-Z dosimetric materials estimated from the MCNP code agree very well with WinXcom prediction. Finally, the results indicate that this simulation process can be followed to determine the interaction parameters of gamma rays in such low-Z materials for which there are no satisfactory experimental values available.

  7. Estimation of electromagnetic dosimetric values from non-ionizing radiofrequency fields in an indoor commercial airplane environment.

    PubMed

    Aguirre, Erik; Arpón, Javier; Azpilicueta, Leire; López, Peio; de Miguel, Silvia; Ramos, Victoria; Falcone, Francisco

    2014-12-01

    In this article, the impact of topology as well as morphology of a complex indoor environment such as a commercial aircraft in the estimation of dosimetric assessment is presented. By means of an in-house developed deterministic 3D ray-launching code, estimation of electric field amplitude as a function of position for the complete volume of a commercial passenger airplane is obtained. Estimation of electromagnetic field exposure in this environment is challenging, due to the complexity and size of the scenario, as well as to the large metallic content, giving rise to strong multipath components. By performing the calculation with a deterministic technique, the complete scenario can be considered with an optimized balance between accuracy and computational cost. The proposed method can aid in the assessment of electromagnetic dosimetry in the future deployment of embarked wireless systems in commercial aircraft. PMID:23915231

  8. Silicon strip detector for a novel 2D dosimetric method for radiotherapy treatment verification

    NASA Astrophysics Data System (ADS)

    Bocci, A.; Cortés-Giraldo, M. A.; Gallardo, M. I.; Espino, J. M.; Arráns, R.; Alvarez, M. A. G.; Abou-Haïdar, Z.; Quesada, J. M.; Pérez Vega-Leal, A.; Pérez Nieto, F. J.

    2012-05-01

    The aim of this work is to characterize a silicon strip detector and its associated data acquisition system, based on discrete electronics, to obtain in a near future absorbed dose maps in axial planes for complex radiotherapy treatments, using a novel technique. The experimental setup is based on two phantom prototypes: the first one is a polyethylene slab phantom used to characterize the detector in terms of linearity, percent depth dose, reproducibility, uniformity and penumbra. The second one is a cylindrical phantom, specifically designed and built to recreate conditions close to those normally found in clinical environments, for treatment planning assessment. This system has been used to study the dosimetric response of the detector, in the axial plane of the phantom, as a function of its angle with respect to the irradiation beam. A software has been developed to operate the rotation of this phantom and to acquire signals from the silicon strip detector. As an innovation, the detector was positioned inside the cylindrical phantom parallel to the beam axis. Irradiation experiments were carried out with a Siemens PRIMUS linac operating in the 6 MV photon mode at the Virgen Macarena Hospital. Monte Carlo simulations were performed using Geant4 toolkit and results were compared to Treatment Planning System (TPS) calculations for the absorbed dose-to-water case. Geant4 simulations were used to estimate the sensitivity of the detector in different experimental configurations, in relation to the absorbed dose in each strip. A final calibration of the detector in this clinical setup was obtained by comparing experimental data with TPS calculations.

  9. Dosimetric study of 2D ion chamber array matrix for the modern radiotherapy treatment verification.

    PubMed

    Saminathan, Sathiyan; Manickam, Ravikumar; Chandraraj, Varatharaj; Supe, Sanjay S

    2010-01-01

    Intensity-modulated radiotherapy treatment demands stringent quality assurance and accurate dose determination for delivery of highly conformal dose to the patients. Generally 3D dose distributions obtained from a treatment planning system have to be verified by dosimetric methods. Mainly, a comparison of two-dimensional calculated and measured data in several coplanar planes is performed. In principle, there are many possibilities to measure two-dimensional dose distributions such as films, flat-panel electronic portal imaging devices (EPID), ion chambers and ionization chamber arrays, and radiographic and radiochromic films. The flat-panel EPIDs show a good resolution and offer a possibility for real-time measurements: however to convert the signal into dose, a separate commercial algorithm is required. The 2D ion chamber array system offers the real-time measurements. In this study, dosimetric characteristics of 2D ion chamber array matrix were analyzed for verification of radiotherapy treatments. The dose linearity and dose rate effect of the I'matriXX device was studied using 6 MV, 18 MV photons and 12 MeV electrons. The output factor was estimated using I'matriXX device and compared with ion chamber measurements. The ion chamber array system was found to be linear in the dose range of 2-500 cGy and the response of the detector was found to be independent of dose rate between 100 MU/min to 600 MU/min. The estimated relative output factor with I'matriXX was found to match very well with the ion chamber measurements. To check the final dose delivered during IMRT planning, dose distribution patterns such as field-in-field, pyramidal, and chair tests were generated with the treatment planning system (TPS) and the same was executed in the accelerator and measured with the I'matriXX device. The dose distribution pattern measured by the matrix device for field-in-field, pyramidal, and chair test were found to be in good agreement with the calculated dose distribution

  10. Predicting Pneumonitis Risk: A Dosimetric Alternative to Mean Lung Dose

    SciTech Connect

    Tucker, Susan L.; Mohan, Radhe; Liengsawangwong, Raweewan; Martel, Mary K.; Liao Zhongxing

    2013-02-01

    Purpose: To determine whether the association between mean lung dose (MLD) and risk of severe (grade {>=}3) radiation pneumonitis (RP) depends on the dose distribution pattern to normal lung among patients receiving 3-dimensional conformal radiation therapy for non-small-cell lung cancer. Methods and Materials: Three cohorts treated with different beam arrangements were identified. One cohort (2-field boost [2FB]) received 2 parallel-opposed (anteroposterior-posteroanterior) fields per fraction initially, followed by a sequential boost delivered using 2 oblique beams. The other 2 cohorts received 3 or 4 straight fields (3FS and 4FS, respectively), ie, all fields were irradiated every day. The incidence of severe RP was plotted against MLD in each cohort, and data were analyzed using the Lyman-Kutcher-Burman (LKB) model. Results: The incidence of grade {>=}3 RP rose more steeply as a function of MLD in the 2FB cohort (N=120) than in the 4FS cohort (N=138), with an intermediate slope for the 3FS group (N=99). The estimated volume parameter from the LKB model was n=0.41 (95% confidence interval, 0.15-1.0) and led to a significant improvement in fit (P=.05) compared to a fit with volume parameter fixed at n=1 (the MLD model). Unlike the MLD model, the LKB model with n=0.41 provided a consistent description of the risk of severe RP in all three cohorts (2FB, 3FS, 4FS) simultaneously. Conclusions: When predicting risk of grade {>=}3 RP, the mean lung dose does not adequately take into account the effects of high doses. Instead, the effective dose, computed from the LKB model using volume parameter n=0.41, may provide a better dosimetric parameter for predicting RP risk. If confirmed, these findings support the conclusion that for the same MLD, high doses to small lung volumes ('a lot to a little') are worse than low doses to large volumes ('a little to a lot').

  11. Dosimetric measurements of Onyx embolization material for stereotactic radiosurgery

    SciTech Connect

    Roberts, Donald A.; Balter, James M.; Chaudhary, Neeraj; Gemmete, Joseph J.; Pandey, Aditya S.

    2012-11-15

    Purpose: Arteriovenous malformations are often treated with a combination of embolization and stereotactic radiosurgery. Concern has been expressed in the past regarding the dosimetric properties of materials used in embolization and the effects that the introduction of these materials into the brain may have on the quality of the radiosurgery plan. To quantify these effects, the authors have taken large volumes of Onyx 34 and Onyx 18 (ethylene-vinyl alcohol copolymer doped with tantalum) and measured the attenuation and interface effects of these embolization materials. Methods: The manufacturer provided large cured volumes ({approx}28 cc) of both Onyx materials. These samples were 8.5 cm in diameter with a nominal thickness of 5 mm. The samples were placed on a block tray above a stack of solid water with an Attix chamber at a depth of 5 cm within the stack. The Attix chamber was used to measure the attenuation. These measurements were made for both 6 and 16 MV beams. Placing the sample directly on the solid water stack and varying the thickness of solid water between the sample and the Attix chamber measured the interface effects. The computed tomography (CT) numbers for bulk material were measured in a phantom using a wide bore CT scanner. Results: The transmission through the Onyx materials relative to solid water was approximately 98% and 97% for 16 and 6 MV beams, respectively. The interface effect shows an enhancement of approximately 2% and 1% downstream for 16 and 6 MV beams. CT numbers of approximately 2600-3000 were measured for both materials, which corresponded to an apparent relative electron density (RED) {rho}{sub e}{sup w} to water of approximately 2.7-2.9 if calculated from the commissioning data of the CT scanner. Conclusions: We performed direct measurements of attenuation and interface effects of Onyx 34 and Onyx 18 embolization materials with large samples. The introduction of embolization materials affects the dose distribution of a MV

  12. Dosimetric accuracy of Kodak EDR2 film for IMRT verifications.

    PubMed

    Childress, Nathan L; Salehpour, Mohammad; Dong, Lei; Bloch, Charles; White, R Allen; Rosen, Isaac I

    2005-02-01

    Patient-specific intensity-modulated radiotherapy (IMRT) verifications require an accurate two-dimensional dosimeter that is not labor-intensive. We assessed the precision and reproducibility of film calibrations over time, measured the elemental composition of the film, measured the intermittency effect, and measured the dosimetric accuracy and reproducibility of calibrated Kodak EDR2 film for single-beam verifications in a solid water phantom and for full-plan verifications in a Rexolite phantom. Repeated measurements of the film sensitometric curve in a single experiment yielded overall uncertainties in dose of 2.1% local and 0.8% relative to 300 cGy. 547 film calibrations over an 18-month period, exposed to a range of doses from 0 to a maximum of 240 MU or 360 MU and using 6 MV or 18 MV energies, had optical density (OD) standard deviations that were 7%-15% of their average values. This indicates that daily film calibrations are essential when EDR2 film is used to obtain absolute dose results. An elemental analysis of EDR2 film revealed that it contains 60% as much silver and 20% as much bromine as Kodak XV2 film. EDR2 film also has an unusual 1.69:1 silver:halide molar ratio, compared with the XV2 film's 1.02:1 ratio, which may affect its chemical reactions. To test EDR2's intermittency effect, the OD generated by a single 300 MU exposure was compared to the ODs generated by exposing the film 1 MU, 2 MU, and 4 MU at a time to a total of 300 MU. An ion chamber recorded the relative dose of all intermittency measurements to account for machine output variations. Using small MU bursts to expose the film resulted in delivery times of 4 to 14 minutes and lowered the film's OD by approximately 2% for both 6 and 18 MV beams. This effect may result in EDR2 film underestimating absolute doses for patient verifications that require long delivery times. After using a calibration to convert EDR2 film's OD to dose values, film measurements agreed within 2% relative

  13. Dosimetric properties of improved GafChromic films for seven different digitizers.

    PubMed

    Devic, Slobodan; Seuntjens, Jan; Hegyi, Gyorgy; Podgorsak, Ervin B; Soares, Christopher G; Kirov, Assen S; Ali, Imad; Williamson, Jeffrey F; Elizondo, Angel

    2004-09-01

    Two recently introduced GafChromic film models, HS and XR-T, have been developed as more sensitive and uniform alternatives to GafChromic MD-55-2 film. The HS model has been specifically designed for measurement of absorbed dose in high-energy photon beams (above 1 MeV), while the XR-T model has been introduced for dose measurements of low energy (0.1 MeV) photons. The goal of this study is to compare the sensitometric curves and estimated dosimetric uncertainties associated with seven different GafChromic film dosimetry systems for the two new film models. The densitometers tested are: LKB Pharmacia UltroScan XL, Molecular Dynamics Personal Densitometer, Nuclear Associates Radiochromic Densitometer Model 37-443, Photoelectron Corporation CMR-604, Laser Pro 16, Vidar VXR-16, and AGFA Arcus II document scanner. Pieces of film were exposed to different doses in a dose range from 0.5 to 50 Gy using 6 MV photon beam. Functional forms for dose vs net optical density have been determined for each of the GafChromic film-dosimetry systems used in this comparison. Two sources of uncertainties in dose measurements, governed by the experimental measurement and calibration curve fit procedure, have been compared for the densitometers used. Among the densitometers tested, it is found that for the HS film type the uncertainty caused by the experimental measurement varies from 1% to 3% while the calibration fit uncertainty ranges from 2% to 4% for doses above 5 Gy. Corresponding uncertainties for XR-T film model are somewhat higher and range from 1% to 5% for experimental and from 2% to 7% for the fit uncertainty estimates. Notwithstanding the significant variations in sensitivity, the studied densitometers exhibit very similar precision for GafChromic film based dose measurements above 5 Gy. PMID:15487718

  14. EGSnrc Monte Carlo-aided dosimetric studies of the new BEBIG 60Co HDR brachytherapy source

    PubMed Central

    Akramuzzaman, Mir Md.; Zakaria, Golam Abu

    2013-01-01

    Purpose The purpose of this study is to obtain the dosimetric parameters of the new BEBIG 60Co brachytherapy source following by TG-43U1 recommendation with appropriate electron cutoff energy (0.521 MeV). Material and methods The new BEBIG 60Co brachytherapy source is used to calculate the TG-43U1 parameters. EGSnrc-based Monte Carlo simulation code has been used to calculate the radial dose functions and anisotropy functions. 2D dose rate table is obtained with Cartesian coordinate system for surrounding the source. Results The radial dose functions are calculated for the distance of 0.06 cm to 100 cm from the source center with different cutoff energies and compared. The anisotropy functions values are calculated with the range of 1° to 179°, and apart from 0.2 cm to 20 cm of radial distances. The along-away dose rate data are calculated for quality assurance purposes. The calculated values are compared with the consensus data set and previous published results. Conclusions The radial dose function values from 0.06 cm to 0.16 cm are low, and these values gradually increased up to 0.3 cm radial distance. The radial dose function values are compared with the values of consensus data set using EGSnrc code system, and it is in good agreement with the published data range. The data for < 0.1 cm is not available in consensus data set, and extrapolated value is included for 0 distances which is the same as the value of 0.1 cm. In this study, the obtained values are strictly fall-off to < 0.1 cm distances. Good agreement with the published data was observed, except the values less than 40° angle at 0.5 cm distance for anisotropy function values. PMID:24143150

  15. SU-E-T-538: Lung SBRT Dosimetric Comparison of 3D Conformal and RapidArc Planning

    SciTech Connect

    Jiang, R; Zhan, L; Osei, E

    2015-06-15

    Purpose: Dose distributions of RapidArc Plan can be quite different from standard 3D conformal radiation therapy. SBRT plans can be optimized with high conformity or mimic the 3D conformal treatment planning with very high dose in the center of the tumor. This study quantifies the dosimetric differences among 3D conformal plan; flattened beam and FFF beam RapidArc Plans for lung SBRT. Methods: Five lung cancer patients treated with 3D non-coplanar SBRT were randomly selected. All the patients were CT scanned with 4DCT to determine the internal target volume. Abdominal compression was applied to minimize respiratory motion for SBRT patients. The prescription dose was 48 Gy in 4 fractions. The PTV coverage was optimized by two groups of objective function: one with high conformity, another mimicking 3D conformal dose distribution with high dose in the center of PTV. Optimization constraints were set to meet the criteria of the RTOG-0915 protocol. All VMAT plans were optimized with the RapidArc technique using four full arcs in Eclipse treatment planning system. The RapidArc SBRT plans with flattened 6MV beam and 6MV FFF beam were generated and dosimetric results were compared with the previous treated 3D non-coplanar plans. Results: All the RapidArc plans with flattened beam and FFF beam had similar results for the PTV and OARs. For the high conformity optimization group, The DVH of PTV exhibited a steep dose fall-off outside the PTV compared to the 3D non-coplanar plan. However, for the group mimicking the 3D conformal target dose distribution, although the PTV is very similar to the 3D conformal plan, the ITV coverage is better than 3D conformal plan. Conclusion: Due to excellent clinical experiences of 3D conformal SBRT treatment, the Rapid Arc optimization mimicking 3D conformal planning may be suggested for clinical use.

  16. Dosimetric Comparison of Intensity-Modulated Stereotactic Radiotherapy With Other Stereotactic Techniques for Locally Recurrent Nasopharyngeal Carcinoma

    SciTech Connect

    Kung, Shiris Wai Sum; Wu, Vincent Wing Cheung; Kam, Michael Koon Ming; Leung, Sing Fai; Yu, Brian Kwok Hung; Ngai, Dennis Yuen Kan; Wong, Simon Chun Fai; Chan, Anthony Tak Cheung

    2011-01-01

    Purpose: Locally recurrent nasopharyngeal carcinoma (NPC) patients can be salvaged by reirradiation with a substantial degree of radiation-related complications. Stereotactic radiotherapy (SRT) is widely used in this regard because of its rapid dose falloff and high geometric precision. The aim of this study was to examine whether the newly developed intensity-modulated stereotactic radiotherapy (IMSRT) has any dosimetric advantages over three other stereotactic techniques, including circular arc (CARC), static conformal beam (SmMLC), and dynamic conformal arc (mARC), in treating locally recurrent NPC. Methods and Materials: Computed tomography images of 32 patients with locally recurrent NPC, previously treated with SRT, were retrieved from the stereotactic planning system for contouring and computing treatment plans. Treatment planning of each patient was performed for the four treatment techniques: CARC, SmMLC, mARC, and IMSRT. The conformity index (CI) and homogeneity index (HI) of the planning target volume (PTV) and doses to the organs at risk (OARs) and normal tissue were compared. Results: All four techniques delivered adequate doses to the PTV. IMSRT, SmMLC, and mARC delivered reasonably conformal and homogenous dose to the PTV (CI <1.47, HI <0.53), but not for CARC (p < 0.05). IMSRT presented with the smallest CI (1.37) and HI (0.40). Among the four techniques, IMSRT spared the greatest number of OARs, namely brainstem, temporal lobes, optic chiasm, and optic nerve, and had the smallest normal tissue volume in the low-dose region. Conclusion: Based on the dosimetric comparison, IMSRT was optimal for locally recurrent NPC by delivering a conformal and homogenous dose to the PTV while sparing OARs.

  17. Internal radiotherapy and dosimetric study for 111In/ 177Lu-pegylated liposomes conjugates in tumor-bearing mice

    NASA Astrophysics Data System (ADS)

    Wang, Hsin-Ell; Yu, Hung-Man; Lu, Yi-Ching; Heish, Ning-Ning; Tseng, Yun-Long; Huang, Kuang-Liang; Chuang, Kuo-Tang; Chen, Chin-Hsiung; Hwang, Jeng-Jong; Lin, Wuu-Jyh; Wang, Shyh-Jen; Ting, Gann; Whang-Peng, Jacqueline; Deng, Win-Ping

    2006-12-01

    In vivo characterization and dosimetric analysis has been performed to evaluate the potential of pegylated liposomes as carriers of radionuclides in tumor internal radiotherapy. MethodsThe DTPA/PEG-liposomes were synthesized with a medium size of 110 nm, conjugated with 111In/ 177Lu-(oxine) 3 to afford 111In/ 177Lu-liposome. The stability of 111In/ 177Lu-liposome in serum was investigated. The biodistribution, scintigraphic imaging and pharmacokinetics of 111In/ 177Lu-liposomes after intravenous(i.v.) injection into C-26 tumor-bearing BALB/cByJ mice were studied. Radiation dose was estimated by MIRD-III program. ResultsThe incorporation efficiency of 111In/ 177Lu into liposomes was 95%. After incubation at 37 °C for 72 h in serum, more than 83% of radioactivity was still retained in the intact 111In/ 177Lu-liposomes. The biodistribution of 111In-liposomes showed that the radioactivity in the blood decreased from 23.14±8.16%ID/g at 1 h to 0.02±0.00%ID/g at 72 h post-injection (p.i.), while reaching its maximum accumulation in tumors at 48 h p.i., with half-life in blood of 10.2 h. The results were supported by that of 177Lu-liposomes. Scintigraphic imaging with 111In-liposomes showed unambiguous tumor images at 48 h p.i. Dose estimation showed that the absorbed dose in tumor from 177Lu-liposomes was 5.74×10 -5 Gy/MBq. ConclusionsThis study provides an in vivo characterization and dosimetric evaluation for the use of liposome systems as carriers in targeted radionuclide therapy. The results suggest that adequate tumor targeting as well as dose delivered to tumors could be achieved by the use of radionuclide targeted liposomes.

  18. SU-D-BRE-03: Dosimetric Impact of In-Air Spot Size Variations for Commissioning a Room-Matched Beam Model for Pencil Beam Scanning Proton Therapy

    SciTech Connect

    Zhang, Y; Giebeler, A; Mascia, A; Piskulich, F; Perles, L; Lepage, R; Dong, L

    2014-06-01

    Purpose: To quantitatively evaluate dosimetric consequence of spot size variations and validate beam-matching criteria for commissioning a pencil beam model for multiple treatment rooms. Methods: A planning study was first conducted by simulating spot size variations to systematically evaluate dosimetric impact of spot size variations in selected cases, which was used to establish the in-air spot size tolerance for beam matching specifications. A beam model in treatment planning system was created using in-air spot profiles acquired in one treatment room. These spot profiles were also acquired from another treatment room for assessing the actual spot size variations between the two treatment rooms. We created twenty five test plans with targets of different sizes at different depths, and performed dose measurement along the entrance, proximal and distal target regions. The absolute doses at those locations were measured using ionization chambers at both treatment rooms, and were compared against the calculated doses by the beam model. Fifteen additional patient plans were also measured and included in our validation. Results: The beam model is relatively insensitive to spot size variations. With an average of less than 15% measured in-air spot size variations between two treatment rooms, the average dose difference was −0.15% with a standard deviation of 0.40% for 55 measurement points within target region; but the differences increased to 1.4%±1.1% in the entrance regions, which are more affected by in-air spot size variations. Overall, our single-room based beam model in the treatment planning system agreed with measurements in both rooms < 0.5% within the target region. For fifteen patient cases, the agreement was within 1%. Conclusion: We have demonstrated that dosimetrically equivalent machines can be established when in-air spot size variations are within 15% between the two treatment rooms.

  19. Dosimetric impact of motion in free-breathing and gated lung radiotherapy: A 4D Monte Carlo study of intrafraction and interfraction effects

    PubMed Central

    Seco, Joao; Sharp, Greg C.; Wu, Ziji; Gierga, David; Buettner, Florian; Paganetti, Harald

    2008-01-01

    The purpose of this study was to investigate if interfraction and intrafraction motion in free-breathing and gated lung IMRT can lead to systematic dose differences between 3DCT and 4DCT. Dosimetric effects were studied considering the breathing pattern of three patients monitored during the course of their treatment and an in-house developed 4D Monte Carlo framework. Imaging data were taken in free-breathing and in cine mode for both 3D and 4D acquisition. Treatment planning for IMRT delivery was done based on the free-breathing data with the corvus (North American Scientific, Chatsworth, CA) planning system. The dose distributions as a function of phase in the breathing cycle were combined using deformable image registration. The study focused on (a) assessing the accuracy of the corvus pencil beam algorithm with Monte Carlo dose calculation in the lung, (b) evaluating the dosimetric effect of motion on the individual breathing phases of the respiratory cycle, and (c) assessing intrafraction and interfraction motion effects during free-breathing or gated radiotherapy. The comparison between (a) the planning system and the Monte Carlo system shows that the pencil beam algorithm underestimates the dose in low-density regions, such as lung tissue, and overestimates the dose in high-density regions, such as bone, by 5% or more of the prescribed dose (corresponding to approximately 3–5 Gy for the cases considered). For the patients studied this could have a significant impact on the dose volume histograms for the target structures depending on the margin added to the clinical target volume (CTV) to produce either the planning target (PTV) or internal target volume (ITV). The dose differences between (b) phases in the breathing cycle and the free-breathing case were shown to be negligible for all phases except for the inhale phase, where an underdosage of the tumor by as much as 9.3 Gy relative to the free-breathing was observed. The large difference was due to

  20. The dosimetric impact of inversely optimized arc radiotherapy plan modulation for real-time dynamic MLC tracking delivery

    SciTech Connect

    Falk, Marianne; Larsson, Tobias; Keall, Paul; Chul Cho, Byung; Aznar, Marianne; Korreman, Stine; Poulsen, Per; Munck af Rosenschoeld, Per

    2012-03-15

    Purpose: Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced by using a leaf position constraint (LPC) that reduces the difference in the position of adjacent MLC leaves in the plan. The purpose of this study was to investigate the impact of the LPC on the quality of inversely optimized arc radiotherapy plans and the effect of the MLC motion pattern on the dosimetric accuracy of MLC tracking delivery. Specifically, the possibility of predicting the accuracy of MLC tracking delivery based on the plan modulation was investigated. Methods: Inversely optimized arc radiotherapy plans were created on CT-data of three lung cancer patients. For each case, five plans with a single 358 deg. arc were generated with LPC priorities of 0 (no LPC), 0.25, 0.5, 0.75, and 1 (highest possible LPC), respectively. All the plans had a prescribed dose of 2 Gy x 30, used 6 MV, a maximum dose rate of 600 MU/min and a collimator angle of 45 deg. or 315 deg. To quantify the plan modulation, an average adjacent leaf distance (ALD) was calculated by averaging the mean adjacent leaf distance for each control point. The linear relationship between the plan quality [i.e., the calculated dose distributions and the number of monitor units (MU)] and the LPC was investigated, and the linear regression coefficient as well as a two tailed confidence level of 95% was used in the evaluation. The effect of the plan modulation on the performance of MLC tracking was tested by delivering the plans to a cylindrical diode array phantom moving with sinusoidal motion in the superior-inferior direction with a peak-to-peak displacement of 2 cm and a cycle time of 6 s. The delivery was adjusted to the target motion using MLC tracking, guided in real-time by an infrared optical system

  1. The dosimetric impact of inversely optimized arc radiotherapy plan modulation for real-time dynamic MLC tracking delivery

    PubMed Central

    Falk, Marianne; Larsson, Tobias; Keall, Paul; Chul Cho, Byung; Aznar, Marianne; Korreman, Stine; Poulsen, Per; af Rosenschöld, Per Munck

    2012-01-01

    Purpose: Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced by using a leaf position constraint (LPC) that reduces the difference in the position of adjacent MLC leaves in the plan. The purpose of this study was to investigate the impact of the LPC on the quality of inversely optimized arc radiotherapy plans and the effect of the MLC motion pattern on the dosimetric accuracy of MLC tracking delivery. Specifically, the possibility of predicting the accuracy of MLC tracking delivery based on the plan modulation was investigated. Methods: Inversely optimized arc radiotherapy plans were created on CT-data of three lung cancer patients. For each case, five plans with a single 358° arc were generated with LPC priorities of 0 (no LPC), 0.25, 0.5, 0.75, and 1 (highest possible LPC), respectively. All the plans had a prescribed dose of 2 Gy × 30, used 6 MV, a maximum dose rate of 600 MU/min and a collimator angle of 45° or 315°. To quantify the plan modulation, an average adjacent leaf distance (ALD) was calculated by averaging the mean adjacent leaf distance for each control point. The linear relationship between the plan quality [i.e., the calculated dose distributions and the number of monitor units (MU)] and the LPC was investigated, and the linear regression coefficient as well as a two tailed confidence level of 95% was used in the evaluation. The effect of the plan modulation on the performance of MLC tracking was tested by delivering the plans to a cylindrical diode array phantom moving with sinusoidal motion in the superior–inferior direction with a peak-to-peak displacement of 2 cm and a cycle time of 6 s. The delivery was adjusted to the target motion using MLC tracking, guided in real-time by an infrared optical system. The

  2. Comparative dosimetric study of two strategies of intensity-modulated radiotherapy in nasopharyngeal cancer

    SciTech Connect

    Chen, S.-W.; Yang, S.-N.; Liang, J.-A.; Shiau, A.-C. . E-mail: joseph.shiau@msa.hinet.net; Lin, F.-J.

    2005-01-01

    This study compared the target volume coverage and normal tissues sparing of simultaneous integrated boost (SIB-IMRT, 1-phase) and sequential-IMRT (2-phase) for nasopharyngeal carcinoma (NPC). Fourteen consecutive patients with newly diagnosed primary NPC were enrolled in this study. The CT images were transferred to a commercial planning system for structural delineation. The gross tumor volume (GTV) included gross nasopharyngeal tumor and involved lymph nodes of more than 1-cm diameter. The clinical target volume (CTV) modeled two regions considered to represent different risks. CTV1 encompassed the GTV with 5-10-mm margin of adjacent tissues. CTV2 encompassed ipsilateral or contralateral elective nodal regions at risk of harboring microscopic tumor. A commercial IMRT treatment planning system (Eclipse Version 7.1) was used to provide treatment planning. Seven fixed-gantry (0{sup o}, 50{sup o}, 100{sup o}, 150{sup o}, 210{sup o}, 260{sup o}, 310{sup o}) angles were designated. The 14 patients were treated with sequential-IMRT, and treatment was then replanned with an SIB strategy to compare the dosimetric difference. For the sequential strategy, the dose delivered to CTV1/CTV2 in the first course was 54 Gy (1.8 Gy x 30 Fr); while CTV1 was boosted by an additional 16.2 Gy (1.8 Gy x 9 Fr) in the second course. For SIB-IMRT, the dose prescribed to CTV1 was 69.7 Gy (2.05 Gy x 34 Fr); 56.1 Gy was given to CTV2 (1.65 Gy x 34 Fr). A statistical analysis of the dose-volume-histogram of target volumes and critical organs was performed. Paired Student's t-test was used to compare the dosimetric differences between the two techniques. The mean dose to CTV1 was 101.7 {+-} 2.4% and 102.3 {+-} 3.1% of the prescribed dose for SIB-IMRT and sequential-IMRT, respectively. The mean CTV2 dose was 109.8 {+-} 4.7% of the prescribed dose for SIB-IMRT and 112.6 {+-} 6.0% of the prescribed dose for sequential-IMRT. The maximal dose to the spinal cord was 4489 {+-} 495 cGy and 3547

  3. Dosimetric comparison of Acuros XB, AAA, and XVMC in stereotactic body radiotherapy for lung cancer

    SciTech Connect

    Tsuruta, Yusuke; Nakata, Manabu; Higashimura, Kyoji; Nakamura, Mitsuhiro Matsuo, Yukinori; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro

    2014-08-15

    Purpose: To compare the dosimetric performance of Acuros XB (AXB), anisotropic analytical algorithm (AAA), and x-ray voxel Monte Carlo (XVMC) in heterogeneous phantoms and lung stereotactic body radiotherapy (SBRT) plans. Methods: Water- and lung-equivalent phantoms were combined to evaluate the percentage depth dose and dose profile. The radiation treatment machine Novalis (BrainLab AG, Feldkirchen, Germany) with an x-ray beam energy of 6 MV was used to calculate the doses in the composite phantom at a source-to-surface distance of 100 cm with a gantry angle of 0°. Subsequently, the clinical lung SBRT plans for the 26 consecutive patients were transferred from the iPlan (ver. 4.1; BrainLab AG) to the Eclipse treatment planning systems (ver. 11.0.3; Varian Medical Systems, Palo Alto, CA). The doses were then recalculated with AXB and AAA while maintaining the XVMC-calculated monitor units and beam arrangement. Then the dose-volumetric data obtained using the three different radiation dose calculation algorithms were compared. Results: The results from AXB and XVMC agreed with measurements within ±3.0% for the lung-equivalent phantom with a 6 × 6 cm{sup 2} field size, whereas AAA values were higher than measurements in the heterogeneous zone and near the boundary, with the greatest difference being 4.1%. AXB and XVMC agreed well with measurements in terms of the profile shape at the boundary of the heterogeneous zone. For the lung SBRT plans, AXB yielded lower values than XVMC in terms of the maximum doses of ITV and PTV; however, the differences were within ±3.0%. In addition to the dose-volumetric data, the dose distribution analysis showed that AXB yielded dose distribution calculations that were closer to those with XVMC than did AAA. Means ± standard deviation of the computation time was 221.6 ± 53.1 s (range, 124–358 s), 66.1 ± 16.0 s (range, 42–94 s), and 6.7 ± 1.1 s (range, 5–9 s) for XVMC, AXB, and AAA, respectively. Conclusions: In the

  4. Computed Tomography Appearance of Early Radiation Injury to the Lung: Correlation With Clinical and Dosimetric Factors

    SciTech Connect

    Jenkins, Peter; Welsh, Anne

    2011-09-01

    Purpose: To systematically assess the spectrum of radiologic changes in the lung after radiation therapy for non-small-cell lung cancer. Methods and Materials: We reviewed the cases of 146 patients treated with radical radiotherapy at our institution. All patients had computed tomography (CT) scans performed 3 months after completion of therapy. Radiographic appearances were categorized using a standard grading system. The association of these abnormalities with pretreatment factors and clinical radiation pneumonitis (RP) was investigated. Results: New intrapulmonary abnormalities were seen in 92 patients (63%). These were ground-glass opacity in 16 (11%), patchy consolidation in 19 (13%), and diffuse consolidation in 57 (39%). Twenty-five patients (17%) developed clinical symptoms of RP. Although 80% of the patients with RP had areas of consolidation seen on the posttreatment CT scan, the majority (74%) of patients with such radiographic changes were asymptomatic. For patients with lung infiltrates, the minimum isodose encompassing the volume of radiologic abnormality was usually {>=}27 Gy. Traditional dose-volume metrics, pulmonary function tests, and the coadministration of angiotensin converting enzyme inhibitors (ACE-I) were all strongly correlated with the presence of radiologic injury on univariate analysis (p {<=} 0.002). There was also an inverse correlation between prior smoking history and CT scan changes (p = 0.02). On multivariate analysis, dosimetric parameters and the use of ACE-I retained significance (p = 0.005). Conclusions: Our findings suggest that there is substantial interindividual variation in lung radiosensitivity. ACE-I prevented the radiologic changes seen after high-dose radiation therapy, and their role as radioprotectants warrants further investigation.

  5. Dosimetric comparison of IMRT rectal and anal canal plans generated using an anterior dose avoidance structure

    SciTech Connect

    Leicher, Brian; Day, Ellen; Colonias, Athanasios; Gayou, Olivier

    2014-10-01

    To describe a dosimetric method using an anterior dose avoidance structure (ADAS) during the treatment planning process for intensity-modulated radiation therapy (IMRT) for patients with anal canal and rectal carcinomas. A total of 20 patients were planned on the Elekta/CMS XiO treatment planning system, version 4.5.1 (Maryland Heights MO) with a superposition algorithm. For each patient, 2 plans were created: one employing an ADAS (ADAS plan) and the other replanned without an ADAS (non-ADAS plan). The ADAS was defined to occupy the volume between the inguinal nodes and primary target providing a single organ at risk that is completely outside of the target volume. Each plan used the same beam parameters and was analyzed by comparing target coverage, overall plan dose conformity using a conformity number (CN) equation, bowel dose-volume histograms, and the number of segments, daily treatment duration, and global maximum dose. The ADAS and non-ADAS plans were equivalent in target coverage, mean global maximum dose, and sparing of small bowel in low-dose regions (5, 10, 15, and 20 Gy). The mean difference between the CN value for the non-ADAS plans and ADAS plans was 0.04 ± 0.03 (p < 0.001). The mean difference in the number of segments was 15.7 ± 12.7 (p < 0.001) in favor of ADAS plans. The ADAS plan delivery time was shorter by 2.0 ± 1.5 minutes (p < 0.001) than the non-ADAS one. The ADAS has proven to be a powerful tool when planning rectal and anal canal IMRT cases with critical structures partially contained inside the target volume.

  6. Dosimetric characteristics of linear accelerator photon beams with small monitor unit settings.

    PubMed

    Kang, Sei-Kwon; Cheong, Kwang-Ho; Hwang, Taejin; Cho, Byung Chul; Kim, Su Ssan; Kim, Kyoung Ju; Oh, Do Hoon; Bae, Hoonsik; Suh, Tae-Suk

    2008-11-01

    Several studies on the effect of tumor cell killing by dose rate variation have implied that the use of a shorter treatment time is more favorable for intensity modulated radiation therapy (IMRT). Aiming at step-and-shoot IMRT with higher dose rates, the stabilities of beam output and profiles with small monitor unit (MU) settings were investigated for various dose rates. With the use of a Varian 21EX (Varian Medical Systems Inc., Palo Alto, CA), static and step-and-shoot IMRT beam output along with profiles were measured by use of an ion chamber and a two-dimensional diode array detector as a function of monitor units and dose rates. For a static case, as the MU approached 1, the beam output increased up to 2% for 300 MU/min and 4.5% for 600 MU/min, showing a larger overdose as the dose rate increased. Deterioration of the beam symmetry and flatness were also observed as the MU decreased to 1 monitor unit. For the step-and-shoot IMRT case, a large dosimetric error of more than 10% was also detected with the use of a small MU segment. However, no definite correlation with the dose rate was observed due to the combined beam start-up effects by the grid pulse and finite communication time between the machine console and multileaf collimator (MLC) controller. For step-and-shoot IMRT with higher dose rates, beam output and beam profile stability with small MU needs to be checked, and adequate MU limitation where segments are not allowed need to be reflected in the step-and-shoot IMRT planning. PMID:19070251

  7. Dosimetric verification of stereotactic radiosurgery/stereotactic radiotherapy dose distributions using Gafchromic EBT3

    SciTech Connect

    Cusumano, Davide; Fumagalli, Maria L.; Marchetti, Marcello; Fariselli, Laura; De Martin, Elena

    2015-10-01

    Aim of this study is to examine the feasibility of using the new Gafchromic EBT3 film in a high-dose stereotactic radiosurgery and radiotherapy quality assurance procedure. Owing to the reduced dimensions of the involved lesions, the feasibility of scanning plan verification films on the scanner plate area with the best uniformity rather than using a correction mask was evaluated. For this purpose, signal values dispersion and reproducibility of film scans were investigated. Uniformity was then quantified in the selected area and was found to be within 1.5% for doses up to 8 Gy. A high-dose threshold level for analyses using this procedure was established evaluating the sensitivity of the irradiated films. Sensitivity was found to be of the order of centiGray for doses up to 6.2 Gy and decreasing for higher doses. The obtained results were used to implement a procedure comparing dose distributions delivered with a CyberKnife system to planned ones. The procedure was validated through single beam irradiation on a Gafchromic film. The agreement between dose distributions was then evaluated for 13 patients (brain lesions, 5 Gy/die prescription isodose ~80%) using gamma analysis. Results obtained using Gamma test criteria of 5%/1 mm show a pass rate of 94.3%. Gamma frequency parameters calculation for EBT3 films showed to strongly depend on subtraction of unexposed film pixel values from irradiated ones. In the framework of the described dosimetric procedure, EBT3 films proved to be effective in the verification of high doses delivered to lesions with complex shapes and adjacent to organs at risk.

  8. Poster — Thur Eve — 58: Dosimetric validation of electronic compensation for radiotherapy treatment planning

    SciTech Connect

    Gräfe, James; Khan, Rao; Meyer, Tyler

    2014-08-15

    In this study we investigate the deliverability of dosimetric plans generated by the irregular surface compensator (ISCOMP) algorithm for 6 MV photon beams in Eclipse (Varian Medical System, CA). In contrast to physical tissue compensation, the electronic ISCOMP uses MLCs to dynamically modulate the fluence of a photon beam in order to deliver a uniform dose at a user defined plane in tissue. This method can be used to shield critical organs that are located within the treatment portal or improve dose uniformity by tissue compensation in inhomogeneous regions. Three site specific plans and a set of test fields were evaluated using the γ-metric of 3%/ 3 mm on Varian EPID, MapCHECK, and Gafchromic EBT3 film with a clinical tolerance of >95% passing rates. Point dose measurements with an NRCC calibrated ionization chamber were also performed to verify the absolute dose delivered. In all cases the MapCHECK measured plans met the gamma criteria. The mean passing rate for the six EBT3 film field measurements was 96.2%, with only two fields at 93.4 and 94.0% passing rates. The EPID plans passed for fields encompassing the central ∼10 × 10 cm{sup 2} region of the detector; however for larger fields and greater off-axis distances discrepancies were observed and attributed to the profile corrections and modeling of backscatter in the portal dose calculation. The magnitude of the average percentage difference for 21 ion chamber point dose measurements and 17 different fields was 1.4 ± 0.9%, and the maximum percentage difference was −3.3%. These measurements qualify the algorithm for routine clinical use subject to the same pre-treatment patient specific QA as IMRT.

  9. Fractionated stereotactic radiotherapy: A method to evaluate geometric and dosimetric uncertainties using radiochromic films

    SciTech Connect

    Coscia, Gianluca; Vaccara, Elena; Corvisiero, Roberta; Cavazzani, Paolo; Ruggieri, Filippo Grillo; Taccini, Gianni

    2009-07-15

    In the authors' hospital, stereotactic radiotherapy treatments are performed with a Varian Clinac 600C equipped with a BrainLAB m3 micro-multileaf-collimator generally using the dynamic conformal arc technique. Patient immobilization during the treatment is achieved with a fixation mask supplied by BrainLAB, made with two reinforced thermoplastic sheets fitting the patient's head. With this work the authors propose a method to evaluate treatment geometric accuracy and, consequently, to determine the amount of the margin to keep in the CTV-PTV expansion during the treatment planning. The reproducibility of the isocenter position was tested by simulating a complete treatment on the anthropomorphic phantom Alderson Rando, inserting in between two phantom slices a high sensitivity Gafchromic EBT film, properly prepared and calibrated, and repeating several treatment sessions, each time removing the fixing mask and replacing the film inside the phantom. The comparison between the dose distributions measured on films and computed by TPS, after a precise image registration procedure performed by a commercial piece of software (FILMQA, 3cognition LLC (Division of ISP), Wayne, NJ), allowed the authors to measure the repositioning errors, obtaining about 0.5 mm in case of central spherical PTV and about 1.5 mm in case of peripheral irregular PTV. Moreover, an evaluation of the errors in the registration procedure was performed, giving negligible values with respect to the quantities to be measured. The above intrinsic two-dimensional estimate of treatment accuracy has to be increased for the error in the third dimension, but the 2 mm margin the authors generally use for the CTV-PTV expansion seems adequate anyway. Using the same EBT films, a dosimetric verification of the treatment planning system was done. Measured dose values are larger or smaller than the nominal ones depending on geometric irradiation conditions, but, in the authors' experimental conditions, always

  10. Fractionated stereotactic radiotherapy: a method to evaluate geometric and dosimetric uncertainties using radiochromic films.

    PubMed

    Coscia, Gianluca; Vaccara, Elena; Corvisiero, Roberta; Cavazzani, Paolo; Ruggieri, Filippo Grillo; Taccini, Gianni

    2009-07-01

    In the authors' hospital, stereotactic radiotherapy treatments are performed with a Varian Clinac 600C equipped with a BrainLAB m3 micro-multileaf-collimator generally using the dynamic conformal arc technique. Patient immobilization during the treatment is achieved with a fixation mask supplied by BrainLAB, made with two reinforced thermoplastic sheets fitting the patient's head. With this work the authors propose a method to evaluate treatment geometric accuracy and, consequently, to determine the amount of the margin to keep in the CTV-PTV expansion during the treatment planning. The reproducibility of the isocenter position was tested by simulating a complete treatment on the anthropomorphic phantom Alderson Rando, inserting in between two phantom slices a high sensitivity Gafchromic EBT film, properly prepared and calibrated, and repeating several treatment sessions, each time removing the fixing mask and replacing the film inside the phantom. The comparison between the dose distributions measured on films and computed by TPS, after a precise image registration procedure performed by a commercial piece of software (FILMQA, 3cognition LLC (Division of ISP), Wayne, NJ), allowed the authors to measure the repositioning errors, obtaining about 0.5 mm in case of central spherical PTV and about 1.5 mm in case of peripheral irregular PTV. Moreover, an evaluation of the errors in the registration procedure was performed, giving negligible values with respect to the quantities to be measured. The above intrinsic two-dimensional estimate of treatment accuracy has to be increased for the error in the third dimension, but the 2 mm margin the authors generally use for the CTV-PTV expansion seems adequate anyway. Using the same EBT films, a dosimetric verification of the treatment planning system was done. Measured dose values are larger or smaller than the nominal ones depending on geometric irradiation conditions, but, in the authors' experimental conditions, always

  11. Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy

    SciTech Connect

    Wang, Jiazhou; Zhao, Kuaike; Peng, Jiayuan; Xie, Jiang; Chen, Junchao; Zhang, Zhen; Hu, Weigang; Jin, Xiance; Studenski, Matthew

    2015-02-15

    Purpose: To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient’s anatomic and dosimetric parameters for esophageal cancer patients. Methods: Eighty esophagus patients in the authors’ institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlap volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman’s rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. Results: With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. Conclusions: It is feasible to use patients’ anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.

  12. Dosimetric effects of endorectal balloons on intensity-modulated radiation therapy plans for prostate cancer

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Sung; Chung, Jin-Beom; Kim, In-Ah; Eom, Keun-Yong

    2013-10-01

    We used an endorectal balloon (ERB) for prostate immobilization during intensity-modulated radiotherapy (IMRT) for prostate cancer treatment. To investigate the dosimetric effects of ERB-filling materials, we changed the ERB Hounsfield unit (HU) from 0 to 1000 HU in 200-HU intervals to simulate the various ERB fillings; 0 HU simulated a water-filled ERB, and 1000 HU simulated the densest material-filled ERB. Dosimetric data (coverage, homogeneity, conformity, maximal dose, and typical volume dose) for the tumor and the organs at risk (OARs) were evaluated in prostate IMRT treatment plans with 6-MV and 15-MV beams. The tumor coverage appeared to differ by approximately 1%, except for the clinical target volume (CTV) V100% and the planning target volume (PTV) V100%. The largest difference for the various ERB fillings was observed in the PTV V100%. In spite of increasing HU, the prostate IMRT plans at both energies had relatively low dosimetric effects on the PTV and the CTV. However, the maximal and the typical volume doses (D25%, D30%, and D50%) to the rectal wall and the bladder increased with increasing HU. For an air-filled ERB, the maximal doses to the rectal wall and the monitor units were lower than the corresponding values for the water-filled and the densest material-filled ERBs. An air-filled ERB spared the rectal wall because of its dosimetric effect. Thus, we conclude that the use of an air-filled ERB provides a dosimetric benefit to the rectal wall without a loss of target coverage and is an effective option for prostate IMRT treatment.

  13. Study of the Phototransference in GR-200 Dosimetric Material and its Convenience for Dose Re-estimation

    SciTech Connect

    Baly, L.; Otazo, M. R.; Molina, D.; Pernas, R.

    2006-09-08

    A study of the phototransference of charges from deep to dosimetric traps in GR-200 material is presented and its convenience for dose re-estimation in the dose range between 2 and 100mSv is also analyzed. The recovering coefficient (RC) defined as the ratio between the phototransferred thermoluminescence (PTTL) and the original thermoluminescence (TL) of the dosimetric trap was used to evaluate the ratio of phototransferred charges from deep traps and the original charges in the dosimetric traps. The results show the convenience of this method for dose re-estimation for this material in the selected range of doses.

  14. Surface and superficial dose dosimetric verification for postmastectomy radiotherapy

    SciTech Connect

    Shiau, An-Cheng; Chiu, Min-Chi; Chen, Tung-Ho; Chiou, Jeng-Fong; Shueng, Pei-Wei; Chen, Shang-Wen; Chen, Wei-Li; Kuan, Wei-Peng

    2012-01-01

    In patients given postmastectomy radiotherapy (PMRT), the chest wall is a very thin layer of soft tissue with a low-density lung tissue behind. Chest wall treated in this situation with a high-energy photon beam presents a high dosimetric uncertainty region for both calculation and measurement. The purpose of this study was to measure and to evaluate the surface and superficial doses for patients requiring PMRT with different treatment techniques. An elliptic cylinder cork and superflab boluses were used to simulate the lung and the chest wall, respectively. Sets of computed tomography (CT) images with different chest wall thicknesses were acquired for the study phantom. Hypothetical clinical target volumes (CTVs) were outlined and modified to fit a margin of 1-3 mm, depending on the chest wall thickness, away from the surface for the sets of CT images. The planning target volume (PTV) was initially created by expanding an isotropic 3-mm margin from the CTV, and then a margin of 3 mm was shrunk from the phantom surface to avoid artifact-driven results in the beam-let intensity. Treatment techniques using a pair of tangential wedged fields (TWFs) and 4-field intensity-modulated radiation therapy (IMRT) were designed with a prescribed fraction dose (D{sub p}) of 180 cGy. Superficial dose profiles around the phantom circumference at depths of 0, 1, 2, 3, and 5 mm were obtained for each treatment technique using radiochromic external beam therapy (EBT) films. EBT film exhibits good characteristics for dose measurements in the buildup region. Underdoses at the median and lateral regions of the TWF plans were shown. The dose profiles at shallow depths for the TWF plans show a dose buildup about 3 mm at the median and lateral tangential incident regions with a surface dose of about 52% of D{sub p}. The dose was gradually increased toward the most obliquely tangential angle with a maximum dose of about 118% of D{sub p.} Dose profiles were more uniform in the PTV region for

  15. A dosimetric analysis of volumetric-modulated arc radiotherapy with jaw width restriction vs 7 field intensity-modulated radiotherapy for definitive treatment of cervical cancer

    PubMed Central

    Huang, B; Fang, Z; Huang, Y; Lin, P

    2014-01-01

    Objective: Radiation therapy treatment planning was performed to compare the dosimetric difference between volumetric-modulated arc radiotherapy (RapidArc™ v. 10; Varian® Medical Systems, Palo Alto, CA) and 7-field intensity-modulated radiotherapy (7f-IMRT) in the definitive treatment of cervical cancer. Methods: 13 patients with cervical cancer were enrolled in this study. Planning target volume (PTV) 50 and PTV60 were prescribed at a dose of 50 and 60 Gy in 28 fractions, respectively. The dose to the PTV60 was delivered as a simultaneous integrated boost to the pelvic lymph nodes. Owing to the mechanical limitation of the multileaf collimator in which the maximum displacement was limited to 15 cm, two types of RapidArc with different jaw width restrictions (15 and 20–23 cm) were investigated to evaluate their dosimetric differences. The RapidArc plan type with dosimetric superiority was then compared against the 7f-IMRT on the target coverage, sparing of the organs at risk (OARs), monitor units, treatment time and delivery accuracy to determine whether RapidArc is beneficial for the treatment of cervical cancer. Results: The 15-cm jaw width restriction had better performance compared with the restrictions that were longer than 15 cm in the sparing of the OARs. The 15-cm RapidArc spared the OARs, that is, the bladder, rectum, small intestine, femoral heads and bones, and improved treatment efficiency compared with 7f-IMRT. Both techniques delivered a high quality-assurance passing rate (>90%) according to the Γ3mm,3% criterion. Conclusion: RapidArc with a 15-cm jaw width restriction spares the OARs and improves treatment efficiency in cervical cancer compared with 7f-IMRT. Advances in knowledge: This study describes the dosimetric superiority of RapidArc with a 15-cm jaw width restriction and explores the feasibility of using RapidArc for the definitive treatment of cervical cancer. PMID:24834477

  16. The investigation of prostatic calcifications using μ-PIXE analysis and their dosimetric effect in low dose rate brachytherapy treatments using Geant4.

    PubMed

    Pope, D J; Cutajar, D L; George, S P; Guatelli, S; Bucci, J A; Enari, K E; Miller, S; Siegele, R; Rosenfeld, A B

    2015-06-01

    Low dose rate brachytherapy is a widely used modality for the treatment of prostate cancer. Most clinical treatment planning systems currently in use approximate all tissue to water, neglecting the existence of inhomogeneities, such as calcifications. The presence of prostatic calcifications may perturb the dose due to the higher photoelectric effect cross section in comparison to water. This study quantitatively evaluates the effect of prostatic calcifications on the dosimetric outcome of brachytherapy treatments by means of Monte Carlo simulations and its potential clinical consequences.Four pathological calcification samples were characterised with micro-particle induced x-ray emission (μ-PIXE) to determine their heavy elemental composition. Calcium, phosphorus and zinc were found to be the predominant heavy elements in the calcification composition. Four clinical patient brachytherapy treatments were modelled using Geant4 based Monte Carlo simulations, in terms of the distribution of brachytherapy seeds and calcifications in the prostate. Dose reductions were observed to be up to 30% locally to the calcification boundary, calcification size dependent. Single large calcifications and closely placed calculi caused local dose reductions of between 30-60%. Individual calculi smaller than 0.5 mm in diameter showed minimal dosimetric impact, however, the effects of small or diffuse calcifications within the prostatic tissue could not be determined using the methods employed in the study. The simulation study showed a varying reduction on common dosimetric parameters. D90 showed a reduction of 2-5%, regardless of calcification surface area and volume. The parameters V100, V150 and V200 were also reduced by as much as 3% and on average by 1%. These reductions were also found to relate to the surface area and volume of calcifications, which may have a significant dosimetric impact on brachytherapy treatment, however, such impacts depend strongly on specific factors

  17. The investigation of prostatic calcifications using μ-PIXE analysis and their dosimetric effect in low dose rate brachytherapy treatments using Geant4

    NASA Astrophysics Data System (ADS)

    Pope, D. J.; Cutajar, D. L.; George, S. P.; Guatelli, S.; Bucci, J. A.; Enari, K. E.; Miller, S.; Siegele, R.; Rosenfeld, A. B.

    2015-06-01

    Low dose rate brachytherapy is a widely used modality for the treatment of prostate cancer. Most clinical treatment planning systems currently in use approximate all tissue to water, neglecting the existence of inhomogeneities, such as calcifications. The presence of prostatic calcifications may perturb the dose due to the higher photoelectric effect cross section in comparison to water. This study quantitatively evaluates the effect of prostatic calcifications on the dosimetric outcome of brachytherapy treatments by means of Monte Carlo simulations and its potential clinical consequences. Four pathological calcification samples were characterised with micro-particle induced x-ray emission (μ-PIXE) to determine their heavy elemental composition. Calcium, phosphorus and zinc were found to be the predominant heavy elements in the calcification composition. Four clinical patient brachytherapy treatments were modelled using Geant4 based Monte Carlo simulations, in terms of the distribution of brachytherapy seeds and calcifications in the prostate. Dose reductions were observed to be up to 30% locally to the calcification boundary, calcification size dependent. Single large calcifications and closely placed calculi caused local dose reductions of between 30-60%. Individual calculi smaller than 0.5 mm in diameter showed minimal dosimetric impact, however, the effects of small or diffuse calcifications within the prostatic tissue could not be determined using the methods employed in the study. The simulation study showed a varying reduction on common dosimetric parameters. D90 showed a reduction of 2-5%, regardless of calcification surface area and volume. The parameters V100, V150 and V200 were also reduced by as much as 3% and on average by 1%. These reductions were also found to relate to the surface area and volume of calcifications, which may have a significant dosimetric impact on brachytherapy treatment, however, such impacts depend strongly on specific factors

  18. Energy and angular dependences of common types of personal dosemeters in the mirror of the First national intercomparison of individual dosimetric monitoring laboratories in Ukraine.

    PubMed

    Chumak, V; Deniachenko, N; Volosky, V

    2015-12-01

    In depth analysis of the results of the First National Intercomparison of individual dosimetry laboratories in Ukraine has revealed energy and angular responses of the most common types of personal dosemeters and dosi metric systems. Participating laboratories use 9 different types of dosimetric systems - automatic, semi automat ic and manual. If was found that energy dependences of the most common dosemeter types in Ukraine generally correspond to the literature data on respective TLD materials (LiF:Mg,Cu,P, LiF:Mg,TiandAl2O3:С), however, due to peculiarities of holders (filters) and dose algorithms, for some dosimetry systems the energy dependences can be improved (compensated). Angular dependences proved to be more pronounced: only two systems revealed weak dependence of response on the incident angle, for other systems at large angles (α=60°) dosemeters overestimate true dose values. PMID:26695907

  19. Dosimetric properties of a proton beamline dedicated to the treatment of ocular disease

    SciTech Connect

    Slopsema, R. L. Mamalui, M.; Yeung, D.; Malyapa, R.; Li, Z.; Zhao, T.

    2014-01-15

    Purpose: A commercial proton eyeline has been developed to treat ocular disease. Radiotherapy of intraocular lesions (e.g., uveal melanoma, age-related macular degeneration) requires sharp dose gradients to avoid critical structures like the macula and optic disc. A high dose rate is needed to limit patient gazing times during delivery of large fractional dose. Dose delivery needs to be accurate and predictable, not in the least because current treatment planning algorithms have limited dose modeling capabilities. The purpose of this paper is to determine the dosimetric properties of a new proton eyeline. These properties are compared to those of existing systems and evaluated in the context of the specific clinical requirements of ocular treatments. Methods: The eyeline is part of a high-energy, cyclotron-based proton therapy system. The energy at the entrance of the eyeline is 105 MeV. A range modulator (RM) wheel generates the spread-out Bragg peak, while a variable range shifter system adjusts the range and spreads the beam laterally. The range can be adjusted from 0.5 up to 3.4 g/cm{sup 2}; the modulation width can be varied in steps of 0.3 g/cm{sup 2} or less. Maximum field diameter is 2.5 cm. All fields can be delivered with a dose rate of 30 Gy/min or more. The eyeline is calibrated according to the IAEA TRS-398 protocol using a cylindrical ionization chamber. Depth dose distributions and dose/MU are measured with a parallel-plate ionization chamber; lateral profiles with radiochromic film. The dose/MU is modeled as a function of range, modulation width, and instantaneous MU rate with fit parameters determined per option (RM wheel). Results: The distal fall-off of the spread-out Bragg peak is 0.3 g/cm{sup 2}, larger than for most existing systems. The lateral penumbra varies between 0.9 and 1.4 mm, except for fully modulated fields that have a larger penumbra at skin. The source-to-axis distance is found to be 169 cm. The dose/MU shows a strong dependence

  20. A feasibility study of using couch-based real time dosimetric device in external beam radiotherapy

    SciTech Connect

    Prabhakar, Ramachandran; Cramb, Jim; Kron, Tomas

    2011-12-15

    Purpose: Measurement of actual dose delivered during radiotherapy treatment aids in checking the accuracy of dose delivered to the patient. In this study, a couch-based real time dosimetric device has been proposed to measure the exit or entrance dose to a patient during external beam radiotherapy. The utility and feasibility of such a device using a 2D array of diodes has been demonstrated. Methods: Two MAPCHECK devices: MAPCHECK (1175) and MAPCHECK 2 (both SunNuclear) were embedded in a foam block in the treatment couch of a Varian 21iX linear accelerator. The angular dependence of the detector response for both devices was studied before implementing the MAPCHECKs for experimental purposes. An Alderson Rando head phantom was scanned with the MAPCHECK and MAPCHECK 2 devices separately and four different treatment plans were generated with target volumes at three different positions simulating typical clinical situations. The analytical anisotropic algorithm (AAA) was used to compute the doses in an Eclipse treatment planning system (Varian Medical Systems). The Rando phantom with the MAPCHECK device was exposed in Clinac 21iX linear accelerator. The measured dose distribution was compared with the calculated dose distribution to check for the accuracy in dose delivery. Results: Measured and computed dose distribution were found to agree with more than 93% of pixels passing at 3% and 3 mm gamma criteria for all the treatment plans. The couch-based real time dosimetry system may also be applied for noncoplanar beams where electronic portal imaging device (EPID) is not practical to measure the dose. Other advantages include checking the beam stability during the patient treatment, performing routine morning quality assurance (QA) tests in the linear accelerator, and to perform pretreatment verification of intensity modulated radiation therapy (IMRT). One of the drawbacks of this system is that it cannot be used for measuring the dose at 90 deg. or 270 deg. gantry

  1. ADVANCES IN EXPERIMENTAL EXPOSURE METHODS AND DOSIMETRIC TECHNIQUES USED IN RADIO-FREQUENCY RADIATION BIOLOGICAL EFFECTS STUDIES

    EPA Science Inventory

    The various techniques and methodologies used for exposure and dosimetric assessment in radio-frequency (RF) biological effects studies are reviewed. Techniques are compared and the advantages and disadvantages of each are discussed. Significant progress has been made during the ...

  2. Dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer

    SciTech Connect

    Yang, Yun; Catalano, Suzanne; Kelsey, Chris R.; Yoo, David S.; Yin, Fang-Fang; Cai, Jing

    2014-04-01

    To quantitatively evaluate dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer. Overall, 11 lung SBRT patients (8 female and 3 male; mean age: 75.0 years) with medially located tumors were included. Treatment plans with simulated rotational offsets of 1°, 3°, and 5° in roll, yaw, and pitch were generated and compared with the original plans. Both clockwise and counterclockwise rotations were investigated. The following dosimetric metrics were quantitatively evaluated: planning target volume coverage (PTV V{sub 100%}), max PTV dose (PTV D{sub max}), percentage prescription dose to 0.35 cc of cord (cord D{sub 0.35} {sub cc}), percentage prescription dose to 0.35 cc and 5 cc of esophagus (esophagus D{sub 0.35} {sub cc} and D{sub 5} {sub cc}), and volume of the lungs receiving at least 20 Gy (lung V{sub 20}). Statistical significance was tested using Wilcoxon signed rank test at the significance level of 0.05. Overall, small differences were found in all dosimetric matrices at all rotational offsets: 95.6% of differences were < 1% or < 1 Gy. Of all rotational offsets, largest change in PTV V{sub 100%}, PTV D{sub max}, cord D{sub 0.35} {sub cc}, esophagus D{sub 0.35} {sub cc}, esophagus D{sub 5} {sub cc}, and lung V{sub 20} was − 8.36%, − 6.06%, 11.96%, 8.66%, 6.02%, and − 0.69%, respectively. No significant correlation was found between any dosimetric change and tumor-to-cord/esophagus distances (R{sup 2} range: 0 to 0.44). Larger dosimetric changes and intersubject variations were observed at larger rotational offsets. Small dosimetric differences were found owing to rotational offsets up to 5° in lung SBRT for medially located tumors. Larger intersubject variations were observed at larger rotational offsets.

  3. Dosimetric characterization of whole brain radiotherapy of pediatric patients using modulated proton beams.

    PubMed

    Jin, Hosang; Hsi, Wen; Yeung, Daniel; Li, Zuofeng; Mendenhall, Nancy P; Marcus, Robert B

    2011-01-01

    This study was designed to investigate dosimetric variations between proton plans with (PPW) and without (PPWO), a compensator for whole brain radiotherapy (WBRT). The retrospective study on PPW and PPWO in Eclipse and XiO systems and photon plans (XP) using controlled segments in Pinnacle system was performed on nine pediatric patients for craniospinal irradiations. DVHs and derived metrics, such as the homogeneity index (HI), the doses to 2% (D(2%)) and 5% (D(5%)) volumes, and mean dose (D(mean)) of the whole brain (i.e., PTV), and the organs at risk (OARs) such as lens and skull, were obtained. The PPW plans from both Eclipse and XiO systems uncovered the following advantages: (1) encompassing a cribriform plate area with the 100% isodose line was better than either PPWO or XP, according to calculated two-dimensional distributions of one patient; (2) the mean value of D(5%) for lens was reduced to 23.6% of D(P) from 54.1% for PPWO or 41.6% for XP; and (3) the mean value of D(mean) for skull was reduced to 94.8% of D(P) from either 98.4% for PPWO or 98.3% for XP. However, the PPW plans also exposed several disadvantages including: (1) the HI of PTV increased to 7.7 from 4.7 for PPWO or 3.7 for XP; (2) D(2%) to PTV increased to 108.8% of D(P) from 104.8% for PPWO or 105.1% for XP; and (3) D(5%) to the skull increased to 104.9% of D(P) from 101.6% for PPWO or 103.4% of for XP. One-half of the observed variations were caused by different penumbra on lateral profiles and distal fall-off depth doses of protons in Eclipse and XiO. Because the utilization on the sharp proton distal fall-off was limited for WBRT, the difference between PPW and PPWO or XP indicated no distinguishable improvement by using a compensator in proton plans. PMID:21587172

  4. Dosimetric properties of high energy current (HEC) detector in keV x-ray beams

    NASA Astrophysics Data System (ADS)

    Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno

    2015-04-01

    We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications.

  5. Dosimetric characterization of a {sup 131}Cs brachytherapy source by thermoluminescence dosimetry in liquid water

    SciTech Connect

    Tailor, Ramesh; Ibbott, Geoffrey; Lampe, Stephanie; Bivens Warren, Whitney; Tolani, Naresh

    2008-12-15

    Dosimetry measurements of a {sup 131}Cs brachytherapy source have been performed in liquid water employing thermoluminescence dosimeters. A search of the literature reveals that this is the first time a complete set of dosimetric parameters for a brachytherapy ''seed'' source has been measured in liquid water. This method avoids the medium correction uncertainties introduced by the use of water-equivalent plastic phantoms. To assure confidence in the results, four different sources were employed for each parameter measured, and measurements were performed multiple times. The measured dosimetric parameters presented here are based on the AAPM Task Group 43 formalism. The dose-rate constant measured in liquid water was (1.063{+-}0.023) cGy h{sup -1} U{sup -1} and was based on the air-kerma strength standard for this source established by the National Institute of Standards and Technology. Measured values for the 2D anisotropy function and the radial dose function are presented.

  6. SU-E-T-618: Dosimetric Comparison of Manual and Beam Angle Optimization of Gantry Angles in IMRT for Cervical Cancer

    SciTech Connect

    Lin, X; Sun, T; Liu, T; Zhang, G; Yin, Y

    2014-06-01

    Purpose: To evaluate the dosimetric characteristics of intensity-modulated radiotherapy (IMRT) treatment plan with beam angle optimization. Methods: Ten post-operation patients with cervical cancer were included in this analysis. Two IMRT plans using seven beams were designed in each patient. A standard coplanar equi-space beam angles were used in the first plan (plan 1), whereas the selection of beam angle was optimized by beam angle optimization algorithm in Varian Eclipse treatment planning system for the same number of beams in the second plan (plan 2). Two plans were designed for each patient with the same dose-volume constraints and prescription dose. All plans were normalized to the mean dose to PTV. The dose distribution in the target, the dose to the organs at risk and total MU were compared. Results: For conformity and homogeneity in PTV, no statistically differences were observed in the two plans. For the mean dose in bladder, plan 2 were significantly lower than plan 1(p<0.05). No statistically significant differences were observed between two plans for the mean doses in rectum, left and right femur heads. Compared with plan1, the average monitor units reduced 16% in plan 2. Conclusion: The IMRT plan based on beam angle optimization for cervical cancer could reduce the dose delivered to bladder and also reduce MU. Therefore there were some dosimetric advantages in the IMRT plan with beam angle optimization for cervical cancer.

  7. Overview on the dosimetric uncertainty analysis for photon-emitting brachytherapy sources, in the light of the AAPM Task Group No 138 and GEC-ESTRO report

    NASA Astrophysics Data System (ADS)

    DeWerd, Larry A.; Venselaar, Jack L. M.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Stump, Kurt E.; Thomadsen, Bruce R.; Rivard, Mark J.

    2012-10-01

    In 2011, the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO) published a report pertaining to uncertainties in brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization's Guide to the Expression of Uncertainty in Measurement and Technical Note 1297 by the National Institute of Standards and Technology are taken as reference standards for uncertainty formalism. Uncertainties involved in measurements or Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is given with uncertainties in each of the brachytherapy dosimetry parameters of the AAPM TG-43 dose-calculation formalism. For low-energy and high-energy brachytherapy sources of low dose-rate and high dose-rate, a combined dosimetric uncertainty <5% (k = 1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and manufacturers of brachytherapy sources and treatment planning systems. These recommendations reflect the guidance of the AAPM and GEC-ESTRO for their members, and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for conventional brachytherapy sources used in routine clinical treatments.

  8. Dosimetric Effects of Magnetic Resonance Imaging-assisted Radiotherapy Planning: Dose Optimization for Target Volumes at High Risk and Analytic Radiobiological Dose Evaluation.

    PubMed

    Park, Ji-Yeon; Suh, Tae Suk; Lee, Jeong-Woo; Ahn, Kook-Jin; Park, Hae-Jin; Choe, Bo-Young; Hong, Semie

    2015-10-01

    Based on the assumption that apparent diffusion coefficients (ADCs) define high-risk clinical target volume (aCTVHR) in high-grade glioma in a cellularity-dependent manner, the dosimetric effects of aCTVHR-targeted dose optimization were evaluated in two intensity-modulated radiation therapy (IMRT) plans. Diffusion-weighted magnetic resonance (MR) images and ADC maps were analyzed qualitatively and quantitatively to determine aCTVHR in a high-grade glioma with high cellularity. After confirming tumor malignancy using the average and minimum ADCs and ADC ratios, the aCTVHR with double- or triple-restricted water diffusion was defined on computed tomography images through image registration. Doses to the aCTVHR and CTV defined on T1-weighted MR images were optimized using a simultaneous integrated boost technique. The dosimetric benefits for CTVs and organs at risk (OARs) were compared using dose volume histograms and various biophysical indices in an ADC map-based IMRT (IMRTADC) plan and a conventional IMRT (IMRTconv) plan. The IMRTADC plan improved dose conformity up to 15 times, compared to the IMRTconv plan. It reduced the equivalent uniform doses in the visual system and brain stem by more than 10% and 16%, respectively. The ADC-based target differentiation and dose optimization may facilitate conformal dose distribution to the aCTVHR and OAR sparing in an IMRT plan. PMID:26425053

  9. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy

    SciTech Connect

    Letourneau, Daniel; Keller, Harald; Sharpe, Michael B.; Jaffray, David A.

    2007-05-15

    The objective of this work is to develop a dosimetric phantom quality assurance (QA) of linear accelerators capable of cone-beam CT (CBCT) image guided and intensity-modulated radiotherapy (IG-IMRT). This phantom is to be used in an integral test to quantify in real-time both the performance of the image guidance and the dose delivery systems in terms of dose localization. The prototype IG-IMRT QA phantom consisted of a cylindrical imaging phantom (CatPhan) combined with an array of 11 radiation diodes mounted on a 10 cm diameter disk, oriented perpendicular to the phantom axis. Basic diode response characterization was performed for 6 and 18 MV photons. The diode response was compared to planning system calculations in the open and penumbrae regions of simple and complex beam arrangements. The clinical use of the QA phantom was illustrated in an integral test of an IG-IMRT treatment designed for a clinical spinal radiosurgery case. The sensitivity of the phantom to multileaf collimator (MLC) calibration and setup errors in the clinical setting was assessed by introducing errors in the IMRT plan or by displacing the phantom. The diodes offered good response linearity and long-term reproducibility for both 6 and 18 MV. Axial dosimetry of coplanar beams (in a plane containing the beam axes) was made possible with the nearly isoplanatic response of the diodes over 360 deg. of gantry (usually within {+-}1%). For single beam geometry, errors in phantom placement as small as 0.5 mm could be accurately detected (in gradient {>=}1%/mm). In clinical setting, MLC systematic errors of 1 mm on a single MLC bank introduced in the IMRT plan were easily detectable with the QA phantom. The QA phantom demonstrated also sufficient sensitivity for the detection of setup errors as small as 1 mm for the IMRT delivery. These results demonstrated that the prototype can accurately and efficiently verify the entire IG-IMRT process. This tool, in conjunction with image guidance capabilities

  10. Investigating the dosimetric and tumor control consequences of prostate seed loss and migration

    SciTech Connect

    Knaup, Courtney; Mavroidis, Panayiotis; Esquivel, Carlos; Stathakis, Sotirios; Swanson, Gregory; Baltas, Dimos; Papanikolaou, Nikos

    2012-06-15

    Purpose: Low dose-rate brachytherapy is commonly used to treat prostate cancer. However, once implanted, the seeds are vulnerable to loss and movement. The goal of this work is to investigate the dosimetric and radiobiological effects of the types of seed loss and migration commonly seen in prostate brachytherapy. Methods: Five patients were used in this study. For each patient three treatment plans were created using Iodine-125, Palladium-103, and Cesium-131 seeds. The three seeds that were closest to the urethra were identified and modeled as the seeds lost through the urethra. The three seeds closest to the exterior of prostatic capsule were identified and modeled as those lost from the prostate periphery. The seed locations and organ contours were exported from Prowess and used by in-house software to perform the dosimetric and radiobiological evaluation. Seed loss was simulated by simultaneously removing 1, 2, or 3 seeds near the urethra 0, 2, or 4 days after the implant or removing seeds near the exterior of the prostate 14, 21, or 28 days after the implant. Results: Loss of one, two or three seeds through the urethra results in a D{sub 90} reduction of 2%, 5%, and 7% loss, respectively. Due to delayed loss of peripheral seeds, the dosimetric effects are less severe than for loss through the urethra. However, while the dose reduction is modest for multiple lost seeds, the reduction in tumor control probability was minimal. Conclusions: The goal of this work was to investigate the dosimetric and radiobiological effects of the types of seed loss and migration commonly seen in prostate brachytherapy. The results presented show that loss of multiple seeds can cause a substantial reduction of D{sub 90} coverage. However, for the patients in this study the dose reduction was not seen to reduce tumor control probability.