Science.gov

Sample records for multi-diode dosimetric system

  1. Multi-diode laser system for UV exposure of the photoresists

    NASA Astrophysics Data System (ADS)

    Barbucha, R.; Tanski, M.; Kocik, M.

    2015-06-01

    PCB (Printed Circuit Board) industry is a global business for many years. PCB can be found in every electronic devices and since it becomes smaller, lighter and more efficient, new sophisticated machines need to be developed to meet this demands. The main parameter for the manufacturing machines is throughput. In this paper a multi-diode laser system for UV exposure of the photoresist on Printed Circuit Board is presented. The multi-diode laser system presents high throughput at high resolution of the pattern as well as low development costs.

  2. Developing and improving a scanning system for dosimetric applications

    SciTech Connect

    Perez, P.; Galvan, V.; Castellanoa, G.; Valente, M.

    2010-08-04

    Radiotherapy is nowadays one of the most used techniques for the treatment of different pathologies, particularly cancer diseases. The accuracy regarding the application of these treatments, which are planned according to patient information, depends mainly on the dosimetric measurements of absorbed dose within irradiated tissues. The present work is devoted to the study, design and construction of an original device capable of performing visible light transmission measurements in order to analyze Fricke gel dosimeters. Furthermore, a suitable bi-dimensional positioning system along with a dedicated control system and image processing software has been adapted to the dosimetric device in order to perform 2D dose mapping. The obtained results confirm the feasibility of the proposed method, therefore suggesting its potentiality for clinical applications.

  3. Dosimetric comparison of linear accelerator-based stereotactic radiosurgery systems

    PubMed Central

    Sharma, S. D.; Kumar, Sudhir; Dagaonkar, S. S.; Bisht, Geetika; Dayanand, S.; Devi, Reena; Deshpande, S. S.; Chaudhary, S.; Bhatt, B. C.; Kannan, S.

    2007-01-01

    Stereotactic radiosurgery (SRS) is a special radiotherapy technique used to irradiate intracranial lesions by 3-D arrangements of narrow photon beams eliminating the needs of invasive surgery. Three different tertiary collimators, namely BrainLab and Radionics circular cones and BrainLab micro multileaf collimator (mMLC), are used for linear accelerator-based SRS systems (X-Knife). Output factor (St), tissue maximum ratio (TMR) and off axis ratio (OAR) of these three SRS systems were measured using CC01 (Scanditronix/ Welhofer) and Pinpoint (PTW) cylindrical and Markus plane parallel ionization chambers as well as TLD and radiochromic film. Measurement results of CC01 and Pinpoint chambers were very close to each other which indicate that further reduction in volume and physical dimensions of cylindrical ionization chamber is not necessary for SRS/SRT dosimetry. Output factors of BrainLab and Radionics SRS cones were very close to each other while output factors of equivalent diameter mMLC field were different from SRS circular cones. TMR of the three SRS systems compared were very close to one another. OAR of Radionics cone and BrainLab mMLC were very close to each other, within 2%. However, OARs of BrainLab cone were found comparable to OARs of Radionics cone and BrainLab mMLC within maximum variation of 4%. In addition, user-measured similar data of other three mMLC X-Knives were compared with the mMLC X-Knife data measured in this work and found comparable. The concept of switching over to mMLC-based SRS/SRT is thus validated from dosimetric characteristics as well. PMID:21217914

  4. [In-phantom dosimetric measurements as quality control for brachytherapy: System check and constancy check].

    PubMed

    Kollefrath, Michael; Bruggmoser, Gregor; Nanko, Norbert; Gainey, Mark

    2015-06-01

    In brachytherapy dosimetric measurements are difficult due to the inherent dose-inhomogenieties. Typically in routine clincal practice only the nominal dose rate is determined for computer controlled afterloading systems. The region of interest lies close to the source when measuring the spatial dose distribution. In this region small errors in the postioning of the detector, and its finite size, lead to large measurement uncertainties that exacerbate the routine dosimetric control of the system in the clinic. The size of the measurement chamber, its energy dependence, and the directional dependence of the measurement apparatus are the factors which have a significant influence on dosimetry. Although ionisation chambers are relatively large, they are employed since similar chambers are commonly found on clincal brachytherapy units. The dose is determined using DIN 6800 [11] since DIN 6809-2 [12], which deals with dosimetry in brachytherapy, is antiquated and is currently in the process of revision. Further information regarding dosimetry for brachytherapy can be found in textbooks [1] and [2]. The measurements for this work were performed with a HDR (High-Dose-Rate) (192)Ir source, type mHDR V2, and a Microselectron Afterloader V2 both from Nucletron/Elekta. In this work two dosimetric procedures are presented which, despite the aforemention difficulties, should assist in performing checks of the proper operation of the system. The first is a system check that measures the dose distribution along a line and is to be performed when first bringing the afterloader into operation, or after significant changes to the system. The other is a dosimetric constancy check, which with little effort can be performed monhtly or weekly. It simultaneously verifies the positioning of the source at two positions, the functionality of the system clock and the automatic re-calculation of the source activity. PMID:25791738

  5. Dosimetric measurements and comparison studies in digital imaging system

    NASA Astrophysics Data System (ADS)

    Jung, Ji-Young; Kim, Hee-Joung; Lee, Chang-Lae; Cho, Hyo-Min; Nam, Sora

    2008-03-01

    Number of radiologic exams using digital imaging systems has rapidly increased with advanced imaging technologies. However, it has not been paid attention to the radiation dose in clinical situations. It was the motivation to study radiation dosimetry in the DR system. The objective of this study was to measure beam quality and patient's dose using DR system and to compare them to both IEC standard and IAEA guidelines. The measured average dose for chest and abdomen was 1.376 mGy and 9.501 mGy, respectively, compared to 0.4 mGy and 10.0 mGy in IAEA guidelines. The results also indicated that the DR system has a lower radiation beam quality than that of the IEC standard. The results showed that the patients may be exposed higher radiation for chest exams and lower radiation for abdomen exams using DR system. IAEA Guidelines were prepared based on western people which may be different weight and height for patients compared them to Korean. In conclusion, a new guideline for acceptable DR dosimetry for Korean patients may need to be developed with further studies for large populations. We believe that this research greatly help to introduce the importance of the dosimetry in diagnostic radiology in Korea. And, a development of database for dosimetry in diagnostic radiology will become an opportunity of making aware of radiation safety of medical examination to patient.

  6. Dosimetric verification of a commercial inverse treatment planning system

    NASA Astrophysics Data System (ADS)

    Xing, Lei; Curran, Bruce; Hill, Robert; Holmes, Tim; Ma, Lijun; Forster, Kenneth M.; Boyer, Arthur L.

    1999-02-01

    A commercial three-dimensional (3D) inverse treatment planning system, Corvus (Nomos Corporation, Sewickley, PA), was recently made available. This paper reports our preliminary results and experience with commissioning this system for clinical implementation. This system uses a simulated annealing inverse planning algorithm to calculate intensity-modulated fields. The intensity-modulated fields are divided into beam profiles that can be delivered by means of a sequence of leaf settings by a multileaf collimator (MLC). The treatments are delivered using a computer-controlled MLC. To test the dose calculation algorithm used by the Corvus software, the dose distributions for single rectangularly shaped fields were compared with water phantom scan data. The dose distributions predicted to be delivered by multiple fields were measured using an ion chamber that could be positioned in a rotatable cylindrical water phantom. Integrated charge collected by the ion chamber was used to check the absolute dose of single- and multifield intensity modulated treatments at various spatial points. The measured and predicted doses were found to agree to within 4% at all measurement points. Another set of measurements used a cubic polystyrene phantom with radiographic film to record the radiation dose distribution. The films were calibrated and scanned to yield two-dimensional isodose distributions. Finally, a beam imaging system (BIS) was used to measure the intensity-modulated x-ray beam patterns in the beam's-eye view. The BIS-measured images were then compared with a theoretical calculation based on the MLC leaf sequence files to verify that the treatment would be executed accurately and without machine faults. Excellent correlation (correlation coefficients ) was found for all cases. Treatment plans generated using intensity

  7. Dosimetric Considerations in Radioimmunotherapy and Systemic Radionuclide Therapies: A Review

    PubMed Central

    Loke, Kelvin S. H.; Padhy, Ajit K.; Ng, David C. E.; Goh, Anthony S.W.; Divgi, Chaitanya

    2011-01-01

    Radiopharmaceutical therapy, once touted as the “magic bullet” in radiation oncology, is increasingly being used in the treatment of a variety of malignancies; albeit in later disease stages. With ever-increasing public and medical awareness of radiation effects, radiation dosimetry is becoming more important. Dosimetry allows administration of the maximum tolerated radiation dose to the tumor/organ to be treated but limiting radiation to critical organs. Traditional tumor dosimetry involved acquiring pretherapy planar scans and plasma estimates with a diagnostic dose of intended radiopharmaceuticals. New advancements in single photon emission computed tomography and positron emission tomography systems allow semi-quantitative measurements of radiation dosimetry thus allowing treatments tailored to each individual patient. PMID:22144871

  8. Dosimetric comparison between two MLC systems commonly used for stereotactic radiosurgery and radiotherapy: a Monte Carlo and experimental study.

    PubMed

    Asnaashari, K; Chow, James C L; Heydarian, Mostafa

    2013-06-01

    In this work dosimetric parameters of two multi-leaf collimator (MLC) systems, namely the beam modulator (BM), which is the MLC commercial name for Elekta "Synergy S" linear accelerator and Radionics micro-MLC (MMLC), are compared using measurements and Monte Carlo simulations. Dosimetric parameters, such as percentage depth doses (PDDs), in-plane and cross-plane dose profiles, and penumbras for different depths and field sizes of the 6 MV photon beams were measured using ionization chamber and a water tank. The collimator leakages were measured using radiographic films. MMLC and BM were modeled using the EGSnrc-based BEAMnrc Monte Carlo code and above dosimetric parameters were calculated. The energy fluence spectra for the two MLCs were also determined using the BEAMnrc and BEAMDP. Dosimetric parameters of the two MLCs were similar, except for penumbras. Leaf-side and leaf-end 80-20% dose penumbras at 10 cm depth for a 10×10 cm(2) field size were 4.8 and 5.1mm for MMLC and 5.3 mm and 6.3 mm for BM, respectively. Both Radionics MMLC and Elekta BM can be used effectively based on their dosimetric characteristics for stereotactic radiosurgery and radiotherapy, although the former showed slightly sharper dose penumbra especially in the leaf-end direction. PMID:22658764

  9. Comparison of the dose distribution obtained from dosimetric systems with intensity modulated radiotherapy planning system in the treatment of prostate cancer

    NASA Astrophysics Data System (ADS)

    Gökçe, M.; Uslu, D. Koçyiǧit; Ertunç, C.; Karalı, T.

    2016-03-01

    The aim of this study is to compare Intensity Modulated Radiation Therapy (IMRT) plan of prostate cancer patients with different dose verification systems in dosimetric aspects and to compare these systems with each other in terms of reliability, applicability and application time. Dosimetric control processes of IMRT plan of three prostate cancer patients were carried out using thermoluminescent dosimeter (TLD), ion chamber (IC) and 2D Array detector systems. The difference between the dose values obtained from the dosimetric systems and treatment planning system (TPS) were found to be about % 5. For the measured (TLD) and calculated (TPS) doses %3 percentage differences were obtained for the points close to center while percentage differences increased at the field edges. It was found that TLD and IC measurements will increase the precision and reliability of the results of 2D Array.

  10. On the implementation of a recently proposed dosimetric formalism to a robotic radiosurgery system

    SciTech Connect

    Pantelis, E.; Moutsatsos, A.; Zourari, K.; Kilby, W.; Antypas, C.; Papagiannis, P.; Karaiskos, P.; Georgiou, E.; Sakelliou, L.

    2010-05-15

    Purpose: The aim of this work is to implement a recently proposed dosimetric formalism for nonstandard fields to the calibration and small field output factor measurement of a robotic stereotactic radiosurgery system. Methods: Reference dosimetry measurements were performed in the nonstandard, 60 mm diameter machine specific reference (msr) field using a Farmer ion chamber, five other cylindrical chambers with cavity lengths ranging from 16.25 down to 2.7 mm, and alanine dosimeters. Output factor measurements were performed for the 5, 7.5, 10, and 15 mm field sizes using microchambers, diode detectors, alanine dosimeters, TLD microcubes, and EBT Gafchromic films. Measurement correction factors as described in the proposed formalism were calculated for the ion chamber and diode detector output factor measurements based on published Monte Carlo data. Corresponding volume averaging correction factors were calculated for the alanine output factor measurements using 3D dose distributions, measured with polymer gel dosimeters. Results: Farmer chamber and alanine reference dosimetry results were found in close agreement, yielding a correction factor of k{sub Q{sub m{sub s{sub r,Q}{sup f{sub m}{sub s}{sub r},f{sub r}{sub e}{sub f}}}}}=0.999{+-}0.016 for the chamber readings. These results were also found to be in agreement within experimental uncertainties with corresponding results obtained using the shorter cavity length ionization chambers. The mean measured dose values of the latter, however, were found to be consistently greater than that of the Farmer chamber. This finding, combined with an observed inverse relationship between the mean measured dose and chamber cavity length that follows the trend predicted by theoretical volume averaging calculations in the msr field, implies that the Farmer k{sub Q{sub m{sub s{sub r,Q}{sup f{sub m}{sub s}{sub r},f{sub r}{sub e}{sub f}}}}} correction is greater than unity. Regarding the output factor results, deviations as large as

  11. Dosimetric evaluation of two treatment planning systems for high dose rate brachytherapy applications

    SciTech Connect

    Shwetha, Bondel; Ravikumar, Manickam; Supe, Sanjay S.; Sathiyan, Saminathan; Lokesh, Vishwanath; Keshava, Subbarao L.

    2012-04-01

    Various treatment planning systems are used to design plans for the treatment of cervical cancer using high-dose-rate brachytherapy. The purpose of this study was to make a dosimetric comparison of the 2 treatment planning systems from Varian medical systems, namely ABACUS and BrachyVision. The dose distribution of Ir-192 source generated with a single dwell position was compared using ABACUS (version 3.1) and BrachyVision (version 6.5) planning systems. Ten patients with intracavitary applications were planned on both systems using orthogonal radiographs. Doses were calculated at the prescription points (point A, right and left) and reference points RU, LU, RM, LM, bladder, and rectum. For single dwell position, little difference was observed in the doses to points along the perpendicular bisector. The mean difference between ABACUS and BrachyVision for these points was 1.88%. The mean difference in the dose calculated toward the distal end of the cable by ABACUS and BrachyVision was 3.78%, whereas along the proximal end the difference was 19.82%. For the patient case there was approximately 2% difference between ABACUS and BrachyVision planning for dose to the prescription points. The dose difference for the reference points ranged from 0.4-1.5%. For bladder and rectum, the differences were 5.2% and 13.5%, respectively. The dose difference between the rectum points was statistically significant. There is considerable difference between the dose calculations performed by the 2 treatment planning systems. It is seen that these discrepancies are caused by the differences in the calculation methodology adopted by the 2 systems.

  12. Dosimetric evaluation of a Monte Carlo IMRT treatment planning system incorporating the MIMiC

    NASA Astrophysics Data System (ADS)

    Rassiah-Szegedi, P.; Fuss, M.; Sheikh-Bagheri, D.; Szegedi, M.; Stathakis, S.; Lancaster, J.; Papanikolaou, N.; Salter, B.

    2007-12-01

    The high dose per fraction delivered to lung lesions in stereotactic body radiation therapy (SBRT) demands high dose calculation and delivery accuracy. The inhomogeneous density in the thoracic region along with the small fields used typically in intensity-modulated radiation therapy (IMRT) treatments poses a challenge in the accuracy of dose calculation. In this study we dosimetrically evaluated a pre-release version of a Monte Carlo planning system (PEREGRINE 1.6b, NOMOS Corp., Cranberry Township, PA), which incorporates the modeling of serial tomotherapy IMRT treatments with the binary multileaf intensity modulating collimator (MIMiC). The aim of this study is to show the validation process of PEREGRINE 1.6b since it was used as a benchmark to investigate the accuracy of doses calculated by a finite size pencil beam (FSPB) algorithm for lung lesions treated on the SBRT dose regime via serial tomotherapy in our previous study. Doses calculated by PEREGRINE were compared against measurements in homogeneous and inhomogeneous materials carried out on a Varian 600C with a 6 MV photon beam. Phantom studies simulating various sized lesions were also carried out to explain some of the large dose discrepancies seen in the dose calculations with small lesions. Doses calculated by PEREGRINE agreed to within 2% in water and up to 3% for measurements in an inhomogeneous phantom containing lung, bone and unit density tissue.

  13. A new fully integrated X-ray irradiator system for dosimetric research.

    PubMed

    Richter, D; Mittelstraß, D; Kreutzer, S; Pintaske, R; Dornich, K; Fuchs, M

    2016-06-01

    A fully housed X-ray irradiator was developed for use within lexsyg or Magnettech desktop equipment. The importance of hardening of the low energy photon radiation is discussed, its performance and feasibility is empirically shown and sustained by basic numerical simulations. Results of the latter for various materials are given for different X-ray source settings in order to provide estimates on the required setup for the irradiation of different geometries and materials. A Si-photodiode provides real-time monitoring of the X-ray-irradiator designed for use in dosimetric dating and other dosimetric application where irradiation of small samples or dosemeters is required. PMID:27041090

  14. Evaluation of the dosimetric accuracy for a couch-based tracking system (CBTS)

    NASA Astrophysics Data System (ADS)

    Chang, Kyung Hwan; Lee, Suk; Kim, Kwang Hyeon; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong; Cao, Yuanjie

    2016-07-01

    In this study, the geometric and dosimetric accuracy of an in-house-developed couch-based tracking system (CBTS) was investigated using both film and in-house-developed polymer gel dosimeters. We evaluated the 1D and the 2D motion accuracies of our couch system by using Gafchromic EBT film. For the 1D test, the couch system was moved 5, 10, and 20 mm in the X, Y, and Z directions, respectively. Meanwhile, for the 2D test, it was moved along the XY, YZ, and ZX directions. We compared the profiles, full widths at half maximum (FWHMs), and penumbras between the static and the tracking fields. For the 3D test, we quantitatively compared the dose distribution between the static and the tracking fields by using the polymer gel dosimeter when it was simultaneously moved in the XYZ directions. We confirmed that the film was moved according to motion amplitudes of 5, 10, and 20 mm in the X, Y, and Z directions, respectively, in the 1D and 2D motion tests. The value of the FWHM of the static field and the three tracking fields were 51.88, 53.28, 57.67, and 64.43 mm, respectively. Two types of penumbras became wider with increasing amplitudes compared to the static field. For the 3D test, the dose distribution of the XYZ tracking field was qualitatively larger than that of the static field. We conclude that this CBTS has the potential for pre-clinical applications in adaptive radiation therapy.

  15. Dosimetric quality control of Eclipse treatment planning system using pelvic digital test object

    NASA Astrophysics Data System (ADS)

    Benhdech, Yassine; Beaumont, Stéphane; Guédon, Jeanpierre; Crespin, Sylvain

    2011-03-01

    Last year, we demonstrated the feasibility of a new method to perform dosimetric quality control of Treatment Planning Systems in radiotherapy, this method is based on Monte-Carlo simulations and uses anatomical Digital Test Objects (DTOs). The pelvic DTO was used in order to assess this new method on an ECLIPSE VARIAN Treatment Planning System. Large dose variations were observed particularly in air and bone equivalent material. In this current work, we discuss the results of the previous paper and provide an explanation for observed dose differences, the VARIAN Eclipse (Anisotropic Analytical) algorithm was investigated. Monte Carlo simulations (MC) were performed with a PENELOPE code version 2003. To increase efficiency of MC simulations, we have used our parallelized version based on the standard MPI (Message Passing Interface). The parallel code has been run on a 32- processor SGI cluster. The study was carried out using pelvic DTOs and was performed for low- and high-energy photon beams (6 and 18MV) on 2100CD VARIAN linear accelerator. A square field (10x10 cm2) was used. Assuming the MC data as reference, χ index analyze was carried out. For this study, a distance to agreement (DTA) was set to 7mm while the dose difference was set to 5% as recommended in the TRS-430 and TG-53 (on the beam axis in 3-D inhomogeneities). When using Monte Carlo PENELOPE, the absorbed dose is computed to the medium, however the TPS computes dose to water. We have used the method described by Siebers et al. based on Bragg-Gray cavity theory to convert MC simulated dose to medium to dose to water. Results show a strong consistency between ECLIPSE and MC calculations on the beam axis.

  16. Dosimetric effects of positioning shifts using 6D-frameless stereotactic Brainlab system in hypofractionated intracranial radiotherapy.

    PubMed

    Jin, Hosang; Keeling, Vance P; Ali, Imad; Ahmad, Salahuddin

    2016-01-01

    Dosimetric consequences of positional shifts were studied using frameless Brainlab ExacTrac X-ray system for hypofractionated (3 or 5 fractions) intracranial stereo-tactic radiotherapy (SRT). SRT treatments of 17 patients with metastatic intracranial tumors using the stereotactic system were retrospectively investigated. The treatments were simulated in a treatment planning system by modifying planning parameters with a matrix conversion technique based on positional shifts for initial infrared (IR)-based setup (XC: X-ray correction) and post-correction (XV: X-ray verification). The simulation was implemented with (a) 3D translational shifts only and (b) 6D translational and rotational shifts for dosimetric effects of angular correction. Mean translations and rotations (± 1 SD) of 77 fractions based on the initial IR setup (XC) were 0.51 ± 0.86 mm (lateral), 0.30 ± 1.55 mm (longitudinal), and -1.63 ± 1.00 mm (vertical); -0.53° ± 0.56° (pitch), 0.42° ± 0.60° (roll), and 0.44°± 0.90° (yaw), respectively. These were -0.07 ± 0.24 mm, -0.07 ± 0.25 mm, 0.06± 0.21 mm, 0.04° ± 0.23°, 0.00° ± 0.30°, and -0.02° ± 0.22°, respectively, for the postcorrection (XV). Substantial degradation of the treatment plans was observed in D95 of PTV (2.6% ± 3.3%; simulated treatment versus treatment planning), Dmin of PTV (13.4% ± 11.6%), and Dmin of CTV (2.8% ± 3.8%, with the maximum error of 10.0%) from XC, while dosimetrically negligible changes (< 0.1%) were detected for both CTV and PTV from XV simulation. 3D angular correction significantly improved CTV dose coverage when the total angular shifts (|pitch| + |roll| + |yaw|) were greater than 2°. With the 6D stereoscopic X-ray verification imaging and frameless immobilization, submillimeter and subdegree accuracy is achieved with negligible dosimetric deviations. 3D angular correction is required when the angular deviation is substantial. A CTV-to-PTV safety margin of 2 mm is large enough to prevent

  17. Commissioning and dosimetric characteristics of TrueBeam system: Composite data of three TrueBeam machines

    SciTech Connect

    Chang Zheng; Wu Qiuwen; Adamson, Justus; Ren Lei; Bowsher, James; Yan Hui; Thomas, Andrew; Yin Fangfang

    2012-11-15

    Purpose: A TrueBeam linear accelerator (TB-LINAC) is designed to deliver traditionally flattened and flattening-filter-free (FFF) beams. Although it has been widely adopted in many clinics for patient treatment, limited information is available related to commissioning of this type of machine. In this work, commissioning data of three units were measured, and multiunit comparison was presented to provide valuable insights and reliable evaluations on the characteristics of the new treatment system. Methods: The TB-LINAC is equipped with newly designed waveguide, carousel assembly, monitoring control, and integrated imaging systems. Each machine in this study has 4, 6, 8, 10, 15 MV flattened photon beams, and 6 MV and 10 MV FFF photon beams as well as 6, 9, 12, 16, 20, and 22 MeV electron beams. Dosimetric characteristics of the three new TB-LINAC treatment units are systematically measured for commissioning. High-resolution diode detectors and ion chambers were used to measure dosimetric data for a range of field sizes from 10 Multiplication-Sign 10 to 400 Multiplication-Sign 400 mm{sup 2}. The composite dosimetric data of the three units are presented in this work. The commissioning of intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), image-guided radiation therapy, and gating systems are also illustrated. Critical considerations of P{sub ion} of FFF photon beams and small field dosimetric measurements were investigated. Results: The authors found all PDDs and profiles matched well among the three machines. Beam data were quantitatively compared and combined through average to yield composite beam data. The discrepancies among the machines were quantified using standard deviation (SD). The mean SD of the PDDs among the three units is 0.12%, and the mean SD of the profiles is 0.40% for 10 MV FFF open fields. The variations of P{sub ion} of the chamber CC13 is 1.2 {+-} 0.1% under 6 MV FFF and 2.0 {+-} 0.5% under 10 MV FFF from dmax to

  18. Dosimetric accuracy of the cone-beam CT-based treatment planning of the Vero system: a phantom study.

    PubMed

    Yohannes, Indra; Prasetio, Heru; Kallis, Karoline; Bert, Christoph

    2016-01-01

    We report an investigation on the accuracy of dose calculation based on the cone-beam computed tomography (CBCT) images of the nonbowtie filter kV imaging system of the Vero linear accelerator. Different sets of materials and tube voltages were employed to generate the Hounsfield unit lookup tables (HLUTs) for both CBCT and fan-beam CT (FBCT) systems. The HLUTs were then implemented for the dose calculation in a treatment planning system (TPS). Dosimetric evaluation was carried out on an in-house-developed cube phantom that consists of water-equivalent slabs and inhomogeneity inserts. Two independent dosimeters positioned in the cube phantom were used in this study for point-dose and two-dimensional (2D) dose distribution measurements. The differences of HLUTs from various materials and tube voltages in both CT systems resulted in differences in dose calculation accuracy. We found that the higher the tube voltage used to obtain CT images, the better the point-dose calculation and the gamma passing rate of the 2D dose distribution agree to the values determined in the TPS. Moreover, the insert materials that are not tissue-equivalent led to higher dose-calculation inaccuracy. There were negligible differences in dosimetric evaluation between the CBCT- and FBCT-based treatment planning if the HLUTs were generated using the tissue-equivalent materials. In this study, the CBCT images of the Vero system from a complex inhomogeneity phantom can be applied for the TPS dose calculation if the system is calibrated using tissue-equivalent materials scanned at high tube voltage (i.e., 120 kV). PMID:27455496

  19. Potential application of metal nanoparticles for dosimetric systems: Concepts and perspectives

    SciTech Connect

    Guidelli, Eder José Baffa, Oswaldo

    2014-11-07

    Metallic nanoparticles increase the delivered dose and consequently enhance tissue radio sensitization during radiation therapy of cancer. The Dose Enhancement Factor (DEF) corresponds to the ratio between the dose deposited on a tissue containing nanoparticles, and the dose deposited on a tissue without nanoparticles. In this sense, we have used electron spin resonance spectroscopy (ESR) to investigate how silver and gold nanoparticles affect the dose deposition in alanine dosimeters, which act as a surrogate of soft tissue. Besides optimizing radiation absorption by the dosimeter, the optical properties of these metal nanoparticles could also improve light emission from materials employed as radiation detectors. Therefore, we have also examined how the plasmonic properties of noble metal nanoparticles could enhance radiation detection using optically stimulated luminescence (OSL) dosimetry. This work will show results on how the use of gold and silver nanoparticles are beneficial for the ESR and OSL dosimetric techniques, and will describe the difficulties we have been facing, the challenges to overcome, and the perspectives.

  20. Potential application of metal nanoparticles for dosimetric systems: Concepts and perspectives

    NASA Astrophysics Data System (ADS)

    Guidelli, Eder José; Baffa, Oswaldo

    2014-11-01

    Metallic nanoparticles increase the delivered dose and consequently enhance tissue radio sensitization during radiation therapy of cancer. The Dose Enhancement Factor (DEF) corresponds to the ratio between the dose deposited on a tissue containing nanoparticles, and the dose deposited on a tissue without nanoparticles. In this sense, we have used electron spin resonance spectroscopy (ESR) to investigate how silver and gold nanoparticles affect the dose deposition in alanine dosimeters, which act as a surrogate of soft tissue. Besides optimizing radiation absorption by the dosimeter, the optical properties of these metal nanoparticles could also improve light emission from materials employed as radiation detectors. Therefore, we have also examined how the plasmonic properties of noble metal nanoparticles could enhance radiation detection using optically stimulated luminescence (OSL) dosimetry. This work will show results on how the use of gold and silver nanoparticles are beneficial for the ESR and OSL dosimetric techniques, and will describe the difficulties we have been facing, the challenges to overcome, and the perspectives.

  1. Preliminary evaluation of the dosimetric accuracy of the in vivo plastic scintillation detector OARtrac system for prostate cancer treatments

    NASA Astrophysics Data System (ADS)

    Klawikowski, Slade J.; Zeringue, Clint; Wootton, Landon S.; Ibbott, Geoffrey S.; Beddar, Sam

    2014-05-01

    A promising, new, in vivo prostate dosimetry system has been developed for clinical radiation therapy. This work outlines the preliminary end-to-end testing of the accuracy and precision of the new OARtrac scintillation dosimetry system. We tested 94 calibrated plastic scintillation detector (PSD) probes before their final integration into endorectal balloon assemblies. These probes had been calibrated at The University of Texas MD Anderson Cancer Center Dosimetry Laboratory. We used a complete clinical OARtrac system including the PSD probes, charge coupled device camera monitoring system, and the manufacturer's integrated software package. The PSD probes were irradiated at 6 MV in a Solid Water® phantom. Irradiations were performed with a 6 MV linear accelerator using anterior-posterior/posterior-anterior matched fields to a maximum dose of 200 cGy in a 100 cm source-axis distance geometry. As a whole, the OARtrac system has good accuracy with a mean error of 0.01% and an error spread of ±5.4% at the 95% confidence interval. These results reflect the PSD probes’ accuracy before their final insertion into endorectal balloons. Future work will test the dosimetric effects of mounting the PSD probes within the endorectal balloon assemblies.

  2. Dosimetric verification of IMAT delivery with a conventional EPID system and a commercial portal dose image prediction tool

    SciTech Connect

    Iori, Mauro; Cagni, Elisabetta; Paiusco, Marta; Munro, Peter; Nahum, Alan E.

    2010-01-15

    Purpose: The electronic portal imaging device (EPID) is a system for checking the patient setup; as a result of its integration with the linear accelerator and software customized for dosimetry, it is increasingly used for verification of the delivery of fixed-field intensity-modulated radiation therapy (IMRT). In order to extend such an approach to intensity-modulated arc therapy (IMAT), the combined use of an EPID system and a portal dose image prediction (PDIP) tool has been investigated. Methods: The dosimetric behavior of an EPID system, mechanically reinforced to maintain its positional stability during the accelerator gantry rotation, has been studied to assess its ability to measure portal dose distributions for IMAT treatment beams. In addition, the PDIP tool of a commercial treatment planning system, commonly used for static IMRT dosimetry, has been validated for simulating the PDIs of IMAT treatment fields. The method has been applied to the delivery verification of 23 treatment fields that were measured in their dual mode of IMRT and IMAT modalities. Results: The EPID system has proved to be appropriate for measuring the PDIs of IMAT fields; additionally the PDIP tool was able to simulate these accurately. The results are quite similar to those obtained for static IMRT treatment verification, although it was necessary to investigate the dependence of the EPID signal and of the accelerator monitor chamber response on variable dose rate. Conclusions: Our initial tests indicate that the EPID system, together with the PDIP tool, is a suitable device for the verification of IMAT plan delivery; however, additional tests are necessary to confirm these results.

  3. Dosimetric evaluation of PLATO and Oncentra treatment planning systems for High Dose Rate (HDR) brachytherapy gynecological treatments

    SciTech Connect

    Singh, Hardev; De La Fuente Herman, Tania; Showalter, Barry; Thompson, Spencer J.; Syzek, Elizabeth J.; Herman, Terence; Ahmad, Salahuddin

    2012-10-23

    This study compares the dosimetric differences in HDR brachytherapy treatment plans calculated with Nucletron's PLATO and Oncentra MasterPlan treatment planning systems (TPS). Ten patients (1 T1b, 1 T2a, 6 T2b, 2 T4) having cervical carcinoma, median age of 43.5 years (range, 34-79 years) treated with tandem and ring applicator in our institution were selected retrospectively for this study. For both Plato and Oncentra TPS, the same orthogonal films anterior-posterior (AP) and lateral were used to manually draw the prescription and anatomical points using definitions from the Manchester system and recommendations from the ICRU report 38. Data input for PLATO was done using a digitizer and Epson Expression 10000XL scanner was used for Oncentra where the points were selected on the images in the screen. The prescription doses for these patients were 30 Gy to points right A (RA) and left A (LA) delivered in 5 fractions with Ir-192 HDR source. Two arrangements: one dwell position and two dwell positions on the tandem were used for dose calculation. The doses to the patient points right B (RB) and left B (LB), and to the organs at risk (OAR), bladder and rectum for each patient were calculated. The mean dose and the mean percentage difference in dose calculated by the two treatment planning systems were compared. Paired t-tests were used for statistical analysis. No significant differences in mean RB, LB, bladder and rectum doses were found with p-values > 0.14. The mean percent difference of doses in RB, LB, bladder and rectum are found to be less than 2.2%, 1.8%, 1.3% and 2.2%, respectively. Dose calculations based on the two different treatment planning systems were found to be consistent and the treatment plans can be made with either system in our department without any concern.

  4. Dosimetric evaluation of PLATO and Oncentra treatment planning systems for High Dose Rate (HDR) brachytherapy gynecological treatments

    NASA Astrophysics Data System (ADS)

    Singh, Hardev; Herman, Tania De La Fuente; Showalter, Barry; Thompson, Spencer J.; Syzek, Elizabeth J.; Herman, Terence; Ahmad, Salahuddin

    2012-10-01

    This study compares the dosimetric differences in HDR brachytherapy treatment plans calculated with Nucletron's PLATO and Oncentra MasterPlan treatment planning systems (TPS). Ten patients (1 T1b, 1 T2a, 6 T2b, 2 T4) having cervical carcinoma, median age of 43.5 years (range, 34-79 years) treated with tandem & ring applicator in our institution were selected retrospectively for this study. For both Plato and Oncentra TPS, the same orthogonal films anterior-posterior (AP) and lateral were used to manually draw the prescription and anatomical points using definitions from the Manchester system and recommendations from the ICRU report 38. Data input for PLATO was done using a digitizer and Epson Expression 10000XL scanner was used for Oncentra where the points were selected on the images in the screen. The prescription doses for these patients were 30 Gy to points right A (RA) and left A (LA) delivered in 5 fractions with Ir-192 HDR source. Two arrangements: one dwell position and two dwell positions on the tandem were used for dose calculation. The doses to the patient points right B (RB) and left B (LB), and to the organs at risk (OAR), bladder and rectum for each patient were calculated. The mean dose and the mean percentage difference in dose calculated by the two treatment planning systems were compared. Paired t-tests were used for statistical analysis. No significant differences in mean RB, LB, bladder and rectum doses were found with p-values > 0.14. The mean percent difference of doses in RB, LB, bladder and rectum are found to be less than 2.2%, 1.8%, 1.3% and 2.2%, respectively. Dose calculations based on the two different treatment planning systems were found to be consistent and the treatment plans can be made with either system in our department without any concern.

  5. Determining the optimal dosimetric leaf gap setting for rounded leaf-end multileaf collimator systems by simple test fields.

    PubMed

    Yao, Weiguang; Farr, Jonathan B

    2015-01-01

    Individual QA for IMRT/VMAT plans is required by protocols. Sometimes plans cannot pass the institute's QA criteria. For the Eclipse treatment planning system (TPS) with rounded leaf-end multileaf collimator (MLC), one practical way to improve the agreement of planned and delivered doses is to tune the value of dosimetric leaf gap (DLG) in the TPS from the measured DLG. We propose that this step may be necessary due to the complexity of the MLC system, including dosimetry of small fields and the tongue-and-groove (T&G) effects, and report our use of test fields to obtain linac-specific optimal DLGs in TPSs. More than 20 original patient plans were reoptimized with the linac-specific optimal DLG value. We examined the distribution of gaps and T&G extensions in typical patient plans and the effect of using the optimal DLG on the distribution. The QA pass rate of patient plans using the optimal DLG was investigated. The dose-volume histograms (DVHs) of targets and organs at risk were checked. We tested three MLC systems (Varian millennium 120 MLC, high-definition 120 MLC, and Siemens 160 MLC) installed in four Varian linear accelerators (linacs) (TrueBEAM STx, Trilogy, Clinac 2300 iX, and Clinac 21 EX) and 1 Siemens linac (Artiste). With an optimal DLG, the individual QA for all those patient plans passed the institute's criteria (95% in DTA test or gamma test with 3%/3 mm/10%), even though most of these plans had failed to pass QA when using original DLGs optimized from typical patient plans or from the optimization process (automodeler) of Pinnacle TPS. Using either our optimal DLG or one optimized from typical patient plans or from the Pinnacle optimization process yielded similar DVHs. PMID:26218999

  6. An integrated Monte Carlo dosimetric verification system for radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Mizowaki, T.; Miyabe, Y.; Takegawa, H.; Narita, Y.; Yano, S.; Nagata, Y.; Teshima, T.; Hiraoka, M.

    2007-04-01

    An integrated Monte Carlo (MC) dose calculation system, MCRTV (Monte Carlo for radiotherapy treatment plan verification), has been developed for clinical treatment plan verification, especially for routine quality assurance (QA) of intensity-modulated radiotherapy (IMRT) plans. The MCRTV system consists of the EGS4/PRESTA MC codes originally written for particle transport through the accelerator, the multileaf collimator (MLC), and the patient/phantom, which run on a 28-CPU Linux cluster, and the associated software developed for the clinical implementation. MCRTV has an interface with a commercial treatment planning system (TPS) (Eclipse, Varian Medical Systems, Palo Alto, CA, USA) and reads the information needed for MC computation transferred in DICOM-RT format. The key features of MCRTV have been presented in detail in this paper. The phase-space data of our 15 MV photon beam from a Varian Clinac 2300C/D have been developed and several benchmarks have been performed under homogeneous and several inhomogeneous conditions (including water, aluminium, lung and bone media). The MC results agreed with the ionization chamber measurements to within 1% and 2% for homogeneous and inhomogeneous conditions, respectively. The MC calculation for a clinical prostate IMRT treatment plan validated the implementation of the beams and the patient/phantom configuration in MCRTV.

  7. Dosimetric evaluation of total marrow irradiation using 2 different planning systems.

    PubMed

    Nalichowski, Adrian; Eagle, Don G; Burmeister, Jay

    2016-01-01

    This study compared 2 different treatment planning systems (TPSs) for quality and efficiency of total marrow irradiation (TMI) plans. The TPSs used in this study were VOxel-Less Optimization (VoLO) (Accuray Inc, Sunnyvale, CA) using helical dose delivery on a Tomotherapy Hi-Art treatment unit and Eclipse (Varian Medical Systems Inc, Palo Alto, CA) using volumetric modulated arc therapy (VMAT) dose delivery on a Varian iX treatment unit. A total dose of 1200cGy was prescribed to cover 95% of the planning target volume (PTV). The plans were optimized and calculated based on a single CT data and structure set using the Alderson Rando phantom (The Phantom Laboratory, Salem, NY) and physician contoured target and organ at risk (OAR) volumes. The OARs were lungs, heart, liver, kidneys, brain, and small bowel. The plans were evaluated based on plan quality, time to optimize the plan and calculate the dose, and beam on time. The resulting mean and maximum doses to the PTV were 1268 and 1465cGy for VoLO and 1284 and 1541cGy for Eclipse, respectively. For 5 of 6 OAR structures the VoLO system achieved lower mean and D10 doses ranging from 22% to 52% and 3% to 44%, respectively. Total computational time including only optimization and dose calculation were 0.9 hours for VoLO and 3.8 hours for Eclipse. These times do not include user-dependent target delineation and field setup. Both planning systems are capable of creating high-quality plans for total marrow irradiation. The VoLO planning system was able to achieve more uniform dose distribution throughout the target volume and steeper dose fall off, resulting in superior OAR sparing. VoLO׳s graphics processing unit (GPU)-based optimization and dose calculation algorithm also allowed much faster creation of TMI plans. PMID:27372384

  8. Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system

    SciTech Connect

    Li, X. Allen; Stepaniak, Christopher; Gore, Elizabeth

    2006-01-15

    This work introduces a gating technique that uses 4DCT to determine gating parameters and to plan gated treatment, and employs a Siemens linear accelerator to deliver the gated treatment. Because of technology incompatibility, the 4DCT scanner (LightSpeed, GE) and the Siemens accelerator require two different motion-monitoring systems. The motion monitoring system (AZ-773V, Anzai Med.) used for the gated delivery utilizes a pressure sensor to detect the external respiratory motion (pressure change) in real time. Another system (RPM, Varian) used for the 4DCT scanner (LightSpeed, GE) is based on an infrared camera to detect motion of external markers. These two motion monitoring systems (RPM and Anzai systems) were found to correlate well with each other. The depth doses and profile measured for gated delivery (with a duty cycle of 25% or 50%) were found to agree within 1.0% with those measured for ungated delivery, indicating that gating did not significantly alter beam characteristics. The measurement verified also that the MU linearity and beam output remained unchanged (within 0.3%). A practical method of using 4DCT to plan a gated treatment was developed. The duty cycle for either phase or amplitude gating can be determined based on 4DCT with consideration of set-up error and delivery efficiency. The close-loop measurement involving the entire gating process (imaging, planning, and delivery) showed that the measured isodose distributions agreed with those intended, validating the accuracy and reliability of the gating technique. Based these observations, we conclude that the gating technique introduced in this work, integrating Siemens linear accelerator and Anzai pressure sensor device with GE/Varian RPM 4DCT, is reliable and effective, and it can be used clinically to account for respiratory motion during radiation therapy.

  9. EMCCD based luminescence imaging system for spatially resolved geo-chronometric and radiation dosimetric applications

    NASA Astrophysics Data System (ADS)

    Chauhan, N.; Adhyaru, P.; Vaghela, H.; Singhvi, A. K.

    2014-11-01

    We report the development of an Electron Multiplier Charge Coupled Device (EMCCD) based luminescence dating system. The system enables position sensitive measurements of luminescence for the estimation of spatially resolved distribution of equivalent dose for complex geological samples. The system includes: 1) a sample stimulation unit (with both thermal and optical stimulations), 2) an optics unit that comprises imaging optics and, 3) a data acquisition and processing unit. The system works in a LabVIEW environment with a graphical user interface (GUI). User specified stimulation protocols enable thermal and optical stimulation in any desired combination. The optics unit images the luminescence on to a EMCCD (512 × 512 pixels, each of 16μm × 16μm size) and maintains a unit magnification. This unit has flexible focusing and a filter housing that enables change of filters combinations without disturbing the setup. Time integrated EMCCD images of luminescence from the sample are acquired as a function of programmable dwell time and these images are processed using indigenously developed MATLAB based programs. Additionally, the programs align the acquired images using a set of control points (identifier features on the images) to a single pixel accuracy. The dose evaluation is based on integrated intensity from selected pixels followed by generation of a growth curve giving luminescence as a function of applied beta doses. Development of this EMCCD camera based luminescence system will enable in-situ luminescence measurements of the samples, without the requirement of separating mineral grains from their matrix. It will also allow age estimation of samples such as lithic artifacts/structures via dating of their surfaces, fusion crust of meteorites, pedogenic carbonates, etc and will additionally open up possibilities of application like testing spatial uniformity of doping in artificial luminescence phosphors, dating/dosimetry of inclusions etc.

  10. Dosimetric and QA aspects of Konrad inverse planning system for commissioning intensity-modulated radiation therapy.

    PubMed

    Deshpande, Shrikant; Sathiyanarayanan, V K; Bhangle, Janhavi; Swamy, Kumara; Basu, Sumit

    2007-04-01

    The intensity-modulated radiation therapy (IMRT) planning is performed using the Konrad inverse treatment planning system and the delivery of the treatment by using Siemens Oncor Impression Plus linear accelerator (step and shoot), which has been commissioned recently. The basic beam data required for commissioning the system were generate. The quality assurance of relative and absolute dose distribution was carried out before clinical implementation. The salient features of Konrad planning system, like dependence of grid size on dose volume histogram (DVH), number of intensity levels and step size in sequencer, are studied quantitatively and qualitatively.To verify whether the planned dose [from treatment planning system (TPS)] and delivered dose are the same, the absolute dose at a point is determined using CC01 ion chamber and the axial plane dose distribution is carried out using Kodak EDR2 in conjunction with OmniPro IMRT Phantom and OmniPro IMRT software from Scanditronix Wellhofer. To obtain the optimum combination in leaf sequencer module, parameters like number of intensity levels, step size are analyzed. The difference between pixel values of optimum fluence profile and the fluence profile obtained for various combinations of number of intensity levels and step size is compared and plotted. The calculations of the volume of any RT structure in the dose volume histogram are compared using grid sizes 3 mm and 4 mm. The measured and planned dose at a point showed good agreement (<3%) except for a few cases wherein the chamber was placed in a relatively high dose gradient region. The axial plane dose distribution using film dosimetry shows excellent agreement (correlation coefficient >0.97) in all the cases. In the leaf sequencer module, the combination of number of intensity level 7 with step size of 3 is the optimal solution for obtaining deliverable segments. The RT structure volume calculation is found to be more accurate with grid size of 3 mm for

  11. Evaluation of MLC leaf positioning accuracy for static and dynamic IMRT treatments using DAVID in vivo dosimetric system.

    PubMed

    Karagoz, Gulay; Zorlu, Faruk; Yeginer, Mete; Yildiz, Demet; Ozyigit, Gokhan

    2016-01-01

    Accuracy and precision of leaf positioning in multileaf collimators (MLCs) are significant factors for the accuracy of IMRT treatments. This study aimed to inves-tigate the accuracy and repeatability of the MLC leaf positioning via the DAVID invivo dosimetric system for dynamic and static MLC systems. The DAVID system was designed as multiwire transmission ionization chamber which is placed in accessory holder of linear accelerators. Each wire of DAVID system corresponds to a MLC leaf-pair to verify the leaf positioning accuracy during IMRT treatment and QA. In this study, verifications of IMRT plans of five head and neck (H&N) and five prostate patients treated in a Varian DHX linear accelerator with 80-leaf MLC were performed using DAVID system. Before DAVID-based dosimetry, Electronics Portal Imaging Device (EPID) and PTW 2D ARRAY dosimetry system were used for 2D verification of each plan. The measurements taken by DAVID system in the first day of the treatments were used as reference for the following measurements taken over the next four weeks. The deviations in leaf positioning were evaluated by "Total Deviation (TD)" parameter calculated by DAVID software. The delivered IMRT plans were originally prepared using dynamic MLC method. The same plans were subsequently calculated based on static MLC method with three different intensity levels of five (IL5), 10 (IL10) and 20 (IL20) in order to compare the performances of MLC leaf positioning repeatability for dynamic and static IMRT plans. The leaf positioning accuracy is also evaluated by analyzing DynaLog files based on error histograms and root mean square (RMS) errors of leaf pairs' positions. Moreover, a correlation analysis between simultaneously taken DAVID and EPID measurements and DynaLog file recordings was subsequently performed. In the analysis of DAVID outputs, the overall deviations of dynamic MLC-based IMRT calculated from the deviations of the four weeks were found as 0.55% ± 0.57% and 1.48% ± 0

  12. Dosimetric characterization of a cone-beam O-arm imaging system.

    PubMed

    Zhang, Jie; Weir, Victor; Fajardo, Liliosa; Lin, Jingying; Hsiung, Hsiang; Ritenour, E Russell

    2009-01-01

    This study compared patient dose and image quality of a mobile O-arm cone beam imaging system in the 3D scan acquisition mode to those of a 64 slice Computed Tomography (CT) imaging system. The investigation included patient dose, scattered radiation, and image quality measurements. The patient dose was measured using a 0.6 cc Farmer ion chamber and 30 cm long Computed Tomography (CT) head and body polymethylmethacrylate (PMMA) phantoms. The results show that under identical radiographic techniques (kVp, mAs, etc.) and with the same scan length, the O-arm in 3D scan acquisition mode delivers approximately half the radiation dose of a 64 slice CT scanner. Scattered radiation was measured at several locations around the O-arm, at 1 m, 2 m and 3 m distances in 3D CT scan acquisition mode with a RadCal 10 x 5-180 pancake ion chamber using a 30 cm long CT body phantom as the source of scatter. Similar measurements were made in a 64 slice CT scanner. The data demonstrate that scattered radiation from the O-arm to personnel involved in a clinical procedure is comparable to that from a 64 slice CT scanner. Image quality was compared by exposing a CATPHAN phantom to comparable doses in both the O-arm and the CT scanner. The resultant images were then evaluated for modulation transfer function (MTF), high-contrast spatial resolution, and low contrast sensitivity for clinical application purpose. The O-arm shows comparable high contrast to the CT (7 lp/cm vs. 8 lp/cm). The low contrast in the O-arm is not visible due to fixed pattern noise. For image guided surgery applications where the location of a structure is emphasized over a survey of all image details, the O-arm has some advantages due to wide radiation beam coverage and lower patient dose. The image quality of the O-arm needs significant improvement for other clinical applications where high image quality is desired. PMID:19923687

  13. Modeling and dosimetric performance evaluation of the RayStation treatment planning system.

    PubMed

    Mzenda, Bongile; Mugabe, Koki V; Sims, Rick; Godwin, Guy; Loria, Dayan

    2014-01-01

    The physics modeling, dose calculation accuracy and plan quality assessment of the RayStation (v3.5) treatment planning system (TPS) is presented in this study, with appropriate comparisons to the more established Pinnacle (v9.2) TPS. Modeling and validation for the Elekta MLCi and Agility beam models resulted in a good match to treatment machine-measured data based on tolerances of 3% for in-field and out-of-field regions, 10% for buildup and penumbral regions, and a gamma 2%/2mm dose/distance acceptance criteria. TPS commissioning using a wide range of appropriately selected dosimetry equipment, and following published guidelines, established the MLC modeling and dose calculation accuracy to be within standard tolerances for all tests performed. In both homogeneous and heterogeneous mediums, central axis calculations agreed with measurements within 2% for open fields and 3% for wedged fields, and within 4% off-axis. Treatment plan comparisons for identical clinical goals were made to Pinnacle for the following complex clinical cases: hypofractionated non-small cell lung carcinoma, head and neck, stereotactic spine, as well as for several standard clinical cases comprising of prostate, brain, and breast plans. DVHs, target, and critical organ doses, as well as measured point doses and gamma indices, applying both local and global (Van Dyk) normalization at 2%/2 mm and 3%/3 mm (10% lower threshold) acceptance criteria for these composite plans were assessed. In addition 3DVH was used to compare the perturbed dose distributions to the TPS 3D dose distributions. For all 32 cases, the patients QA checks showed > 95% of pixels passing 3% global/3mm gamma. PMID:25207563

  14. Prevention of transfusion-associated graft-versus-host disease by irradiation: technical aspect of a new ferrous sulphate dosimetric system.

    PubMed

    Del Lama, Lucas Sacchini; de Góes, Evamberto Garcia; Petchevist, Paulo César Dias; Moretto, Edson Lara; Borges, José Carlos; Covas, Dimas Tadeu; de Almeida, Adelaide

    2013-01-01

    Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a (60)Co teletherapy unit and its validation was accomplished with a (137)Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to determine the dose response and dose rate of the (60)Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs. PMID:23762345

  15. Prevention of Transfusion-Associated Graft-versus-Host Disease by Irradiation: Technical Aspect of a New Ferrous Sulphate Dosimetric System

    PubMed Central

    Del Lama, Lucas Sacchini; de Góes, Evamberto Garcia; Petchevist, Paulo César Dias; Moretto, Edson Lara; Borges, José Carlos; Covas, Dimas Tadeu; de Almeida, Adelaide

    2013-01-01

    Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a 60Co teletherapy unit and its validation was accomplished with a 137Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to determine the dose response and dose rate of the 60Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs. PMID:23762345

  16. Dosimetric audit in brachytherapy

    PubMed Central

    Bradley, D A; Nisbet, A

    2014-01-01

    Dosimetric audit is required for the improvement of patient safety in radiotherapy and to aid optimization of treatment. The reassurance that treatment is being delivered in line with accepted standards, that delivered doses are as prescribed and that quality improvement is enabled is as essential for brachytherapy as it is for the more commonly audited external beam radiotherapy. Dose measurement in brachytherapy is challenging owing to steep dose gradients and small scales, especially in the context of an audit. Several different approaches have been taken for audit measurement to date: thimble and well-type ionization chambers, thermoluminescent detectors, optically stimulated luminescence detectors, radiochromic film and alanine. In this work, we review all of the dosimetric brachytherapy audits that have been conducted in recent years, look at current audits in progress and propose required directions for brachytherapy dosimetric audit in the future. The concern over accurate source strength measurement may be essentially resolved with modern equipment and calibration methods, but brachytherapy is a rapidly developing field and dosimetric audit must keep pace. PMID:24807068

  17. Dosimetric characterization of a multileaf collimator for a new four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, MHI-TM2000

    SciTech Connect

    Nakamura, Mitsuhiro; Sawada, Akira; Ishihara, Yoshitomo; Takayama, Kenji; Mizowaki, Takashi; Kaneko, Shuji; Yamashita, Mikiko; Tanabe, Hiroaki; Kokubo, Masaki; Hiraoka, Masahiro

    2010-09-15

    Purpose: To present the dosimetric characterization of a multileaf collimator (MLC) for a new four-dimensional image-guided radiotherapy system with a gimbaled x-ray head, MHI-TM2000. Methods: MHI-TM2000 has an x-ray head composed of an ultrasmall linear accelerator guide and a system-specific MLC. The x-ray head can rotate along the two orthogonal gimbals (pan and tilt rotations) up to {+-}2.5 deg., which swings the beam up to {+-}41.9 mm in each direction from the isocenter on the isocenter plane perpendicular to the beam. The MLC design is a single-focus type, has 30 pairs of 5 mm thick leaves at the isocenter, and produces a maximum field size of 150x150 mm{sup 2}. Leaf height and length are 110 and 260 mm, respectively. Each leaf end is circular, with a radius of curvature of 370 mm. The distance that each leaf passes over the isocenter is 77.5 mm. Radiation leakage between adjacent leaves is minimized by an interlocking tongue-and-groove (T and G) arrangement with the height of the groove part 55 mm. The dosimetric characterizations including field characteristics, leaf position accuracy, leakage, and T and G effect were evaluated using a well-commissioned 6 MV photon beam, EDR2 films (Kodak, Rochester, NY), and water-equivalent phantoms. Furthermore, the field characteristics and leaf position accuracy were evaluated under conditions of pan or tilt rotation. Results: The differences between nominal and measured field sizes were within {+-}0.5 mm. Although the penumbra widths were greater with wider field size, the maximum width was <5.5 mm even for the fully opened field. Compared to the results of field characteristics without pan or tilt rotation, the variation in field size, penumbra width, flatness, and symmetry was within {+-}1 mm/1% at the maximum pan or tilt rotational angle. The leaf position accuracy was 0.0{+-}0.1 mm, ranging from -0.3 to 0.2 mm at four gantry angles of 0 deg., 90 deg., 180 deg., and 270 deg. with and without pan or tilt rotation

  18. Dosimetric comparison of Linac-based (BrainLAB®) and robotic radiosurgery (CyberKnife ®) stereotactic system plans for acoustic schwannoma.

    PubMed

    Dutta, Debnarayan; Balaji Subramanian, S; Murli, V; Sudahar, H; Gopalakrishna Kurup, P G; Potharaju, Mahadev

    2012-02-01

    A dosimetric comparison of linear accelerator (LA)-based (BrainLAB) and robotic radiosurgery (RS) (CyberKnife) systems for acoustic schwannoma (Acoustic neuroma, AN) was carried out. Seven patients with radiologically confirmed unilateral AN were planned with both an LA-based (BrainLAB) and robotic RS (CyberKnife) system using the same computed tomography (CT) dataset and contours. Gross tumour volume (GTV) was contoured on post-contrast magnetic resonance imaging (MRI) scan [planning target volume (PTV) margin 2 mm]. Planning and calculation were done with appropriate calculation algorithms. The prescribed isodose in both systems was considered adequate to cover at least 95% of the contoured target. Plan evaluations were done by examining the target coverage by the prescribed isodose line, and high- and low-dose volumes. Isodose plans and dose volume histograms generated by the two systems were compared. There was no statistically significant difference between the contoured volumes between the systems. Tumour volumes ranged from 380 to 3,100 mm(3). Dose prescription was 13-15 Gy in single fraction (median prescribed isodose 85%). There were no significant differences in conformity index (CI) (0.53 versus 0.58; P = 0.225), maximum brainstem dose (4.9 versus 4.7 Gy; P = 0.935), 2.5-Gy volume (39.9 versus 52.3 cc; P = 0.238) or 5-Gy volume (11.8 versus 16.8 cc; P = 0.129) between BrainLAB and CyberKnife system plans. There were statistically significant differences in organs at risk (OAR) doses, such as mean cochlear dose (6.9 versus 5.4 Gy; P = 0.001), mean mesial temporal dose (2.6 versus 1.7 Gy; P = 0.07) and high-dose (10 Gy) volume (3.2 versus 5.2 cc; P = 0.017). AN patients planned with the CyberKnife system had superior OAR (cochlea and mesial temporal lobe) sparing compared with those planned with the Linac-based system. Further evaluation of these findings in prospective studies with clinical correlation will provide actual clinical benefit from the

  19. High-resolution digital dosimetric system for spatial characterization of radiation fields using a thermoluminescent CaF/sub 2/:Dy crystal

    SciTech Connect

    Atari, N.A.; Svensson, G.K.

    1986-05-01

    A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF/sub 2/:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +- 2 ..mu..m (1sigma) corresponding to 16 +- 1 line pair/mm measured at the 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +- 4 ..mu..m (1sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields.

  20. A high-resolution digital dosimetric system for spatial characterization of radiation fields using a thermoluminescent CaF2:Dy crystal.

    PubMed

    Atari, N A; Svensson, G K

    1986-01-01

    A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF2:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +/- 2 microns (1 sigma) corresponding to 16 +/- 1 line pairs/mm measured at the 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +/- 4 microns (1 sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields. PMID:3724696

  1. High-resolution digital dosimetric system for spatial characterization of radiation fields using a thermoluminescent CaF2:Dy crystal

    SciTech Connect

    Atari, N.A.; Svensson, G.K.

    1986-05-01

    A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF2:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +/- 2 microns (1 sigma) corresponding to 16 +/- 1 line pairs/mm measured at the 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +/- 4 microns (1 sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields.

  2. Geometric and dosimetric verification of step-and-shoot modulated fields with a new fast and high resolution beam imaging system

    SciTech Connect

    Bindoni, Luca . E-mail: lucabindoni@inwind.it

    2005-06-15

    A technique for geometric and dosimetric pretreatment verification of step-and-shoot intensity modulated radiotherapy treatments (IMRT) using a beam imaging system (BIS) made up of a charge-coupled device (CCD) digital camera optically coupled with a metal-plate/phosphor screen is described. Some physical properties of BIS were investigated in order to demonstrate its capability to perform measurements with a high spatial resolution and a high sampling rate. High-speed imaging, with a minimum charge integration time on the CCD of 120 ms, can be performed. The study of the signal-to-noise ratio as a function of sampling time is presented. In-plane and cross-line pixel size was measured to be 0.368{+-}0.004 mm/pixel, which agrees within 0.5% of the manufacturer value of 0.366 mm. Spatial linearity results are very good and there are no detectable image distortions on whole 30x30 cm{sup 2} detector area. A software routine was written to automatically extract positions of the collimator leaves from the images of the field shaped by the multileaf collimator (MLC) and also to compare them with the coordinates from the treatment planning system (TPS), thus directly testing both the MLC positioning and the treatment parameters transfer from TPS to the linear accelerator in a fast and precise way. The dosimetric capabilities (characteristics) of the imaging device for photon beams with energies of 6 and 15 MV were studied. Additional plexiglass buildup layers, depending on x-ray energy, were needed to reach maximum efficiency. The energy dependence of the BIS response versus dose and dose rate was found to be linear over a wide range. Relative output factors of BIS as a function of field size, compared with values measured with an ionization chamber, were in good accord for smaller field sizes {<=}10x10 cm{sup 2} but showed differences up to 4% for all the energies at the respective buildup depth for bigger fields. Square field profiles at water-equivalent buildup depths

  3. Rectal toxicity profile after transperineal interstitial permanent prostate brachytherapy: Use of a comprehensive toxicity scoring system and identification of rectal dosimetric toxicity predictors

    SciTech Connect

    Shah, Jinesh N.; Ennis, Ronald D. . E-mail: rennis@chpnet.org

    2006-03-01

    Purpose: To better understand rectal toxicity after prostate brachytherapy, we employed the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE version 3.0), a comprehensive system with distinct and separately reported gastrointestinal adverse event items (unlike Radiation Therapy Oncology Group morbidity scoring), to evaluate item-specific postimplant rectal toxicities. Methods and Materials: We analyzed 135 patients treated with brachytherapy {+-} hormonal therapy, using CTCAE v3.0 to score acute/late rectal toxicities (median follow-up, 41 months). Dosimetric parameters were evaluated for ability to predict toxicities. Results: Use of CTCAE yielded a novel rectal toxicity profile consisting of diarrhea, incontinence, urgency, proctitis, pain, spasms, and hemorrhage event rates. No item had a <5% Grade 1-2 acute toxicity rate (except spasms). Rectal dosimetry predicted late toxicities: for diarrhea, 5% Grade 1 toxicity rate for %V{sub 25} (percent of rectal volume receiving 25% of prescribed prostate dose) {<=} 25% vs. 60% for %V{sub 25} > 25% (p < 0.001); for maximum toxicity, 10% Grade 1 toxicity rate for %V{sub 1} {<=} 40% vs. 44% for %V{sub 1} > 40% (p = 0.007). Conclusions: A comprehensive understanding of item-specific postimplant rectal toxicities was obtained using CTCAE. Rectal %V{sub 25} > 25% and %V{sub 1} > 40% predicted worse late diarrhea and maximum toxicity, respectively.

  4. SU-E-T-132: Dosimetric Impact of Positioning Errors in Hypo-Fractionated Cranial Radiation Therapy Using Frameless Stereotactic BrainLAB System

    SciTech Connect

    Keeling, V; Jin, H; Ali, I; Ahmad, S

    2014-06-01

    Purpose: To determine dosimetric impact of positioning errors in the stereotactic hypo-fractionated treatment of intracranial lesions using 3Dtransaltional and 3D-rotational corrections (6D) frameless BrainLAB ExacTrac X-Ray system. Methods: 20 cranial lesions, treated in 3 or 5 fractions, were selected. An infrared (IR) optical positioning system was employed for initial patient setup followed by stereoscopic kV X-ray radiographs for position verification. 6D-translational and rotational shifts were determined to correct patient position. If these shifts were above tolerance (0.7 mm translational and 1° rotational), corrections were applied and another set of X-rays was taken to verify patient position. Dosimetric impact (D95, Dmin, Dmax, and Dmean of planning target volume (PTV) compared to original plans) of positioning errors for initial IR setup (XC: Xray Correction) and post-correction (XV: X-ray Verification) was determined in a treatment planning system using a method proposed by Yue et al. (Med. Phys. 33, 21-31 (2006)) with 3D-translational errors only and 6D-translational and rotational errors. Results: Absolute mean translational errors (±standard deviation) for total 92 fractions (XC/XV) were 0.79±0.88/0.19±0.15 mm (lateral), 1.66±1.71/0.18 ±0.16 mm (longitudinal), 1.95±1.18/0.15±0.14 mm (vertical) and rotational errors were 0.61±0.47/0.17±0.15° (pitch), 0.55±0.49/0.16±0.24° (roll), and 0.68±0.73/0.16±0.15° (yaw). The average changes (loss of coverage) in D95, Dmin, Dmax, and Dmean were 4.5±7.3/0.1±0.2%, 17.8±22.5/1.1±2.5%, 0.4±1.4/0.1±0.3%, and 0.9±1.7/0.0±0.1% using 6Dshifts and 3.1±5.5/0.0±0.1%, 14.2±20.3/0.8±1.7%, 0.0±1.2/0.1±0.3%, and 0.7±1.4/0.0±0.1% using 3D-translational shifts only. The setup corrections (XC-XV) improved the PTV coverage by 4.4±7.3% (D95) and 16.7±23.5% (Dmin) using 6D adjustment. Strong correlations were observed between translation errors and deviations in dose coverage for XC. Conclusion

  5. Dosimetric accuracy of a deterministic radiation transport based {sup 192}Ir brachytherapy treatment planning system. Part III. Comparison to Monte Carlo simulation in voxelized anatomical computational models

    SciTech Connect

    Zourari, K.; Pantelis, E.; Moutsatsos, A.; Sakelliou, L.; Georgiou, E.; Karaiskos, P.; Papagiannis, P.

    2013-01-15

    Purpose: To compare TG43-based and Acuros deterministic radiation transport-based calculations of the BrachyVision treatment planning system (TPS) with corresponding Monte Carlo (MC) simulation results in heterogeneous patient geometries, in order to validate Acuros and quantify the accuracy improvement it marks relative to TG43. Methods: Dosimetric comparisons in the form of isodose lines, percentage dose difference maps, and dose volume histogram results were performed for two voxelized mathematical models resembling an esophageal and a breast brachytherapy patient, as well as an actual breast brachytherapy patient model. The mathematical models were converted to digital imaging and communications in medicine (DICOM) image series for input to the TPS. The MCNP5 v.1.40 general-purpose simulation code input files for each model were prepared using information derived from the corresponding DICOM RT exports from the TPS. Results: Comparisons of MC and TG43 results in all models showed significant differences, as reported previously in the literature and expected from the inability of the TG43 based algorithm to account for heterogeneities and model specific scatter conditions. A close agreement was observed between MC and Acuros results in all models except for a limited number of points that lay in the penumbra of perfectly shaped structures in the esophageal model, or at distances very close to the catheters in all models. Conclusions: Acuros marks a significant dosimetry improvement relative to TG43. The assessment of the clinical significance of this accuracy improvement requires further work. Mathematical patient equivalent models and models prepared from actual patient CT series are useful complementary tools in the methodology outlined in this series of works for the benchmarking of any advanced dose calculation algorithm beyond TG43.

  6. SU-E-T-136: Dosimetric Robustness of a Magnetic Resonance Imaging Guided Radiation Therapy (MR-IGRT) System

    SciTech Connect

    Rodriguez, V; Green, O; Wooten, H; Kashani, R; Mutic, S; Li, H; Dempsey, J

    2014-06-01

    Purpose: To test the radiation delivery robustness of the first MR-IGRT system using a commercial cylindrical diode array detector (ArcCHECK) and an ionization thimble chamber (Exradin A18). Methods: The MR-IGRT system is composed of three evenly spaced Co-60 sources on a rotating gantry located between two magnet halves. The collimator for each source consists of 30 doubly-focused leaf pairs that allow the system to deliver both conformal and intensity modulated (IMRT) treatment plans. The system's delivery robustness was tested over a span of 6 months from September 2013 through February 2014. This was achieved by repeatedly delivering 10 patient plans. These plans consisted of 2 conformal prostates, 2 IMRT prostates, 2 IMRT head and neck, 2 IMRT breast, 1 IMRT pancreas, and 1 IMRT bladder. The plans were generated with the system's treatment planning software. Once the plans were generated, quality assurance plans were created on a digital ArcCHECK dataset. The ArcCHECK used for testing was specially designed to be MR-compatible by moving the power supply outside of the magnetic field. The A18 ionization chamber was placed in a custom plastic plug insert in the center of the ArcCHECK. Gamma analysis was used with the ArcCHECK for relative dose evaluating both 3%/3mm and 2%/2mm. Absolute point dose was compared between ion chamber measurement and treatment plan. Results: The ArcCHECK passing rate remained constant over the 6 month period. The average passing rate for 3%/3mm and 2%/2mm analysis was 98.6% ± 0.7 and 88.8% ± 2.9, respectively. The ion chamber measurements showed little variation with an average percent difference between planned dose verses measured dose of 0.9% ± 0.7. Conclusion: Minimal differences were noted in the delivery of the 10 patient plans. Over a period that included acceptance testing, commissioning, and clinical deliveries, the MR-IGRT system remained consistent in radiation delivery.

  7. A comprehensive system for dosimetric commissioning and Monte Carlo validation for the small animal radiation research platform

    PubMed Central

    Tryggestad, E; Armour, M; Iordachita, I; Verhaegen, F; Wong, J W

    2011-01-01

    Our group has constructed the small animal radiation research platform (SARRP) for delivering focal, kilo-voltage radiation to targets in small animals under robotic control using cone-beam CT guidance. The present work was undertaken to support the SARRP’s treatment planning capabilities. We have devised a comprehensive system for characterizing the radiation dosimetry in water for the SARRP and have developed a Monte Carlo dose engine with the intent of reproducing these measured results. We find that the SARRP provides sufficient therapeutic dose rates ranging from 102 to 228 cGy min−1 at 1 cm depth for the available set of high-precision beams ranging from 0.5 to 5 mm in size. In terms of depth–dose, the mean of the absolute percentage differences between the Monte Carlo calculations and measurement is 3.4% over the full range of sampled depths spanning 0.5–7.2 cm for the 3 and 5 mm beams. The measured and computed profiles for these beams agree well overall; of note, good agreement is observed in the profile tails. Especially for the smallest 0.5 and 1 mm beams, including a more realistic description of the effective x-ray source into the Monte Carlo model may be important. PMID:19687532

  8. Dosimetric Verification by Using the ArcCHECK System and 3DVH Software for Various Target Sizes

    PubMed Central

    Song, Jin Ho; Shin, Hun-Joo; Kay, Chul Seung; Son, Seok Hyun

    2015-01-01

    Objective To investigate the usefulness of the 3DVH software with an ArcCHECK 3D diode array detector in newly designed plans with various target sizes. Methods The isocenter dose was measured with an ion-chamber and was compared with the planned and 3DVH predicted doses. The 2D gamma passing rates were evaluated at the diode level by using the ArcCHECK detector. The 3D gamma passing rates for specific regions of interest (ROIs) were also evaluated by using the 3DVH software. Several dose-volume histograms (DVH)-based predicted metrics for all structures were also obtained by using the 3DVH software. Results The isocenter dose deviation was <1% in all plans except in the case of a 1 cm target. Besides the gamma passing rate at the diode level, the 3D gamma passing rate for specific ROIs tended to decrease with increasing target size; this was more noticeable when a more stringent gamma criterion was applied. No correlation was found with the gamma passing rates and the DVH-based metrics especially in the ROI with high-dose gradients. Conclusions Delivery quality assurance by using 3DVH and ArcCHECK can provide substantial information through a simple and easy approach, although the accuracy of this system should be judged cautiously. PMID:25807544

  9. Dosimetric Verification of the System of Planning Brainscan for Stereotactic Radiosurgery at Oncology Department of the General Hospital of Mexico

    SciTech Connect

    Alvarez R, J. T.; Salinas, B.; Tovar M, V. M.; Villasenor O, L. F.; Molero M, A. C.

    2006-09-08

    The verification consists on the planning and administration of stereotactic treatments by means of conformed static beams, several polyethylene capsules with powder TLD 100 (type IAEA) located inside the head of a phantom Alderson-Rando. Because the planning system corrects for no-homogeneity in the density from the tomographic information, it is assumed that the absorbed dose in the tumor volume (capsule) corresponds to the dose absorbed to LiF: DLiF. Applying different cavity theories, the percent deviations to the nominal dose are: -1.81%{<=}{delta}%{<=}0.71%, which are consistent with the order of the U%'s. The values of DW are calculated from two calibration curve: TL Response (nC) vs DW for the energy of the 60Co corrected for energy dependence to the accelerator photon beam quality D20/D10=0.57. Once curve for 0.5 to 5 Gy and other for 5 to 35 Gy. The traceability for the Dwater is obtained by means of a secondary standard ionization chamber Farmer PTW 30013 calibrated at the NRC.

  10. Dosimetric evaluation of a commercial 3D treatment planning system using the AAPM Task Group 23 test package.

    PubMed

    Casanova Borca, Valeria; Pasquino, Massimo; Bresciani, Sara; Catuzzo, Paola; Ozzello, Franca; Tofani, Santi

    2005-03-01

    The accuracy of the dose calculation algorithm is one of the most critical steps in assessing the radiotherapy treatment to achieve the 5% accuracy in dose delivery, which represents the suggested limit to increase the complication-free local control of tumor. We have used the AAPM Task Group 23 (TG-23) test package for clinical photon external beam therapy to evaluate the accuracy of the new version of the PLATO TPS algorithm. The comparison between tabulated values and calculated ones has been performed for 266 and 297 dose values for the 4 and 18 MV photon beams, respectively. Dose deviations less than 2% were found in the 98.5%- and 90.6% analyzed dose points for the two considered energies, respectively. Larger deviations were obtained for both energies, in large dose gradients, such as the build-up region or near the field edges and blocks. As far as the radiological field width is concerned, 64 points were analyzed for both the energies: 53 points (83%) and 64 points (100%) were within +/-2 millimeters for the 4 and 18 MV photon beams, respectively. The results show the good accuracy of the algorithm either in simple geometry beam conditions or in complex ones, in homogeneous medium, and in the presence of inhomogeneities, for low and high energy beams. Our results fit well the data reported by several authors related to the calculation accuracy of different treatment planning systems (TPSs) (within a mean value of 0.7% and 1.2% for 4 and 18 MV respectively). The TG-23 test package can be considered a powerful instrument to evaluate dose calculation accuracy, and as such may play an important role in a quality assurance program related to the commissioning of a new TPS. PMID:15839346

  11. SU-E-T-130: Dosimetric Evaluation of Tissue Equivalent Gel Dosimeter Using Saccharide in Radiotherapy System

    SciTech Connect

    Cho, Y; Lee, D; Jung, H; Ji, Y; Kim, K; Chang, U; Kwon, S

    2014-06-01

    Purpose: In this study, the dose responses of the MAGIC gel with various concentrations and type of saccharide are examined to clarify the roles of mono and disaccharide in the polymerization process. Then we focused on the tissue equivalence and dose sensitivity of MAGIC gel dosimeters. Methods: The gel is composed of HPLC, 8% gelatin, 2 × 10-3 M L-ascorbic acid, 1.8 × 10-2 M hydroquinone, 8 × 10-5 M copper(II)sulfate and 9% methacrylic acid, new polymer gels are synthesized by adding glucose(monosaccharide), sucrose(disaccharide) and urea in the concentration range of 5∼35%. For irradiation of the gel, cesium-137 gamma-ray irradiator was used, radiation dose was delivered from 5∼50 Gy. MRI images of the gel were acquired by using a 3.0 T MRI system. Results: When saccharide and urea were added, the O/C, O/N and C/N ratios agreed with those of soft tissue with 1.7%. The dose-response of glucose and sucrose gel have slope-to-intercept ratio of 0.044 and 0.283 respectively. The slope-to-ratio is one important determinant of gel sensitivity. R-square values of glucose and sucrose gel dosimeters were 0.984 and 0.994 respectively. Moreover when urea were added, the slope-to-intercept ratio is 0.044 and 0.073 respectively. R-square values of mono and disaccharide gel were 0.973 and 0.989 respectively. When a saccharide is added into the MAGIC gel dosimeter, dose sensitivity is increased. However when urea were added, dose sensitivity is slightly decreased. Conclusion: In this study, it was possible to obtain the following conclusions by looking at the dose response characteristics after adding mono-, di-saccharide and urea to a MAGIC gel dosimeter. Saccharide was a tendency of increasing dose sensitivity with disaccharide. Sa.ccharide is cost effective, safe, soft tissue equivalent, and can be used under various experimental conditions, making it a suitable dosimeter for some radiotherapy applications.

  12. SU-D-18A-06: Variation of Controlled Breath Hold From CT Simulation to Treatment and Its Dosimetric Impact for Left-Sided Breast Radiotherapy with a Real-Time Optical Tracking System

    SciTech Connect

    Mittauer, K; Deraniyagala, R; Li, J; Lu, B; Liu, C; Lightsey, J; Yan, G

    2014-06-01

    Purpose: Different breath-hold (BH) maneuvers (abdominal breathing vs. chest breathing) during CT simulation and treatment can lead to chest wall positional variation. The purpose of this study is to quantify the variation of active breathing control (ABC)-assisted BH and estimate its dosimetric impact for left-sided whole-breast radiotherapy with a real-time optical tracking system (OTS). Methods: Seven breast cancer patients were included. An in-house OTS tracked an infrared (IR) marker affixed over the xiphoid process of the patient at CT simulation and throughout the treatment course to measure BH variations. Correlation between the IR marker and the breast was studied for dosimetric purposes. The positional variations of 860 BHs were retrospectively incorporated into treatment plans to assess their dosimetric impact on breast and cardiac organs (heart and left anterior descending artery [LAD]). Results: The mean intrafraction variations were 2.8 mm, 2.7 mm, and 1.6 mm in the anteroposterior (AP), craniocaudal (CC), and mediolateral (ML) directions, respectively. Mean stability in any direction was within 1.5 mm. A general trend of BH undershoot at treatment relative to CT simulation was observed with an average of 4.4 mm, 3.6 mm, and 0.1 mm in the AP, CC, and ML directions, respectively. Undershoot up to 12.6 mm was observed for individual patients. The difference between the planned and delivered dose to breast targets was negligible. The average planned/delivered mean heart doses, mean LAD doses, and max LAD doses were 1.4/2.1, 7.4/15.7, and 18.6/31.0 Gy, respectively. Conclusion: Systematic undershoot was observed in ABC-assisted BHs from CT simulation to treatment. Its dosimetric impact on breast coverage was minimized with image guidance, but the benefits of cardiac organ sparing were degraded. A real-time tracking system can be used in junction with the ABC device to improve BH reproducibility.

  13. 3.2 Dosimetric Concepts

    NASA Astrophysics Data System (ADS)

    Kramer, H.-M.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '3.2 Dosimetric Concepts' of the Chapter '3 Dosimetry in Diagnostic Radiology and Radiotherapy' with the contents:

  14. Dosimetric Characteristics for Brachytherapy Sources

    SciTech Connect

    DeWerd, Larry A.; Davis, Stephen D.

    2011-05-05

    Brachytherapy sources are characterized by the dosimetric parameters in a protocol such as the American Association of Physicists in Medicine Task Group 43. The air-kerma strength is measured and traceable to a primary standard. Then the parameters such as dose-rate constant, radial dose function, and anisotropy function are measured and related back to the primary standard. This is normally accomplished with thermoluminescent dosimeters (TLDs). Since radial dose function and anisotropy function are relative parameters, some of the dosimetric corrections are negligible. For the dose-rate constant, parameters such as the energy dependence compared with a calibration beam such as {sup 60}Co need to be accounted for. A description of the primary standard measurements and TLD measurements will be discussed.

  15. Dosimetric Characteristics for Brachytherapy Sources

    NASA Astrophysics Data System (ADS)

    DeWerd, Larry A.; Davis, Stephen D.

    2011-05-01

    Brachytherapy sources are characterized by the dosimetric parameters in a protocol such as the American Association of Physicists in Medicine Task Group 43. The air-kerma strength is measured and traceable to a primary standard. Then the parameters such as dose-rate constant, radial dose function, and anisotropy function are measured and related back to the primary standard. This is normally accomplished with thermoluminescent dosimeters (TLDs). Since radial dose function and anisotropy function are relative parameters, some of the dosimetric corrections are negligible. For the dose-rate constant, parameters such as the energy dependence compared with a calibration beam such as 60Co need to be accounted for. A description of the primary standard measurements and TLD measurements will be discussed.

  16. Comparative dosimetric study of three-dimensional conformal, dynamic conformal arc, and intensity-modulated radiotherapy for brain tumor treatment using Novalis system

    SciTech Connect

    Ding Meisong . E-mail: Meisong.Ding@uchsc.edu; Newman, Francis M.S.; Kavanagh, Brian D.; Stuhr, Kelly M.S.; Johnson, Tim K.; Gaspar, Laurie E.

    2006-11-15

    Purpose: To investigate the dosimetric differences among three-dimensional conformal radiotherapy (3D-CRT), dynamic conformal arc therapy (DCAT), and intensity-modulated radiotherapy (IMRT) for brain tumor treatment. Methods and Materials: Fifteen patients treated with Novalis were selected. We performed 3D-CRT, DCAT, and IMRT plans for all patients. The margin for the planning target volume (PTV) was 1 mm, and the specific prescription dose was 90% for all plans. The target coverage at the prescription dose, conformity index (CI), and heterogeneity index were analyzed for all plans. Results: For small tumors (PTV {<=}2 cm{sup 3}), the three dosimetric parameters had approximate values for both 3D-CRT and DCAT plans. The CI for the IMRT plans was high. For medium tumors (PTV >2 to {<=}100 cm{sup 3}), the three plans were competitive with each other. The IMRT plans had a greater CI, better target coverage at the prescription dose, and a better heterogeneity index. For large tumors (PTV >100 cm{sup 3}), the IMRT plan had good target coverage at the prescription dose and heterogeneity index and approximate CI values as those in the 3D-CRT and DCAT plans. Conclusion: The results of our study have shown that DCAT is suitable for most cases in the treatment of brain tumors. For a small target, 3D-CRT is useful, and IMRT is not recommended. For larger tumors, IMRT is superior to 3D-CRT and very competitive in sparing critical structures, especially for big tumors.

  17. Dosimetric methodology of the ICRP

    SciTech Connect

    Eckerman, K.F.

    1994-12-31

    Establishment of guidance for the protection of workers and members of the public from radiation exposures necessitates estimation of the radiation dose to tissues of the body at risk. The dosimetric methodology formulated by the International Commission on Radiological Protection (ICRP) is intended to be responsive to this need. While developed for radiation protection, elements of the methodology are often applied in addressing other radiation issues; e.g., risk assessment. This chapter provides an overview of the methodology, discusses its recent extension to age-dependent considerations, and illustrates specific aspects of the methodology through a number of numerical examples.

  18. Dosimetric Consequences of Intrafraction Prostate Motion

    SciTech Connect

    Li, Haisen S. Chetty, Indrin J.; Enke, Charles A.; Foster, Ryan D.; Willoughby, Twyla R.; Kupellian, Patrick A.; Solberg, Timothy D.

    2008-07-01

    Purpose: To analyze characteristics of intrafraction prostate motion, monitored using the Calypso system, and investigate dosimetric consequences of the motion for different clinical target volume (CTV) to planning target volume (PTV) margins. Methods and Materials: Motion characteristics were analyzed for 1,267 tracking sessions and 35 patients. Using prostate-PTV margins of 0, 1, 2, 3, and 5 mm, dose metrics for the prostate gland, bladder, and rectum were evaluated for scenarios including patient population, individual patients showing the greatest motion during the course of treatment, and the individual session with the largest overall movement. Composite dose distributions incorporating motion blurring were calculated by convolving static intensity-modulated radiotherapy plans with corresponding motion probability functions. Results: For prostate-PTV margins of 2 mm or greater, intrafraction motion did not compromise prostate dose coverage for either the patient population or individual patients. For the patient showing the largest overall movement, the prostate equivalent uniform dose was reduced by only 17.4 cGy (0.23%), and the minimum prostate dose remained greater than 95% of the nominal dose. For margins less than 2 mm, the prostate dose-volume histogram in the same patient was slightly compromised, and the equivalent uniform dose was reduced by 38.5 cGy (0.51%). Sparing of the bladder and rectum was improved substantially by reducing margins. Conclusions: Although significant motion can be observed during individual fractions, the dosimetric consequences are insignificant during a typical course of radiotherapy (30-40 fractions) with CTV-PTV margins of 2 mm or greater provided that the Calypso system is applied for pretreatment localization. Further reduction of the margin is possible if intrafraction realignment is performed.

  19. IPIP: A new approach to inverse planning for HDR brachytherapy by directly optimizing dosimetric indices

    SciTech Connect

    Siauw, Timmy; Cunha, Adam; Atamtuerk, Alper; Hsu, I-Chow; Pouliot, Jean; Goldberg, Ken

    2011-07-15

    Purpose: Many planning methods for high dose rate (HDR) brachytherapy require an iterative approach. A set of computational parameters are hypothesized that will give a dose plan that meets dosimetric criteria. A dose plan is computed using these parameters, and if any dosimetric criteria are not met, the process is iterated until a suitable dose plan is found. In this way, the dose distribution is controlled by abstract parameters. The purpose of this study is to develop a new approach for HDR brachytherapy by directly optimizing the dose distribution based on dosimetric criteria. Methods: The authors developed inverse planning by integer program (IPIP), an optimization model for computing HDR brachytherapy dose plans and a fast heuristic for it. They used their heuristic to compute dose plans for 20 anonymized prostate cancer image data sets from patients previously treated at their clinic database. Dosimetry was evaluated and compared to dosimetric criteria. Results: Dose plans computed from IPIP satisfied all given dosimetric criteria for the target and healthy tissue after a single iteration. The average target coverage was 95%. The average computation time for IPIP was 30.1 s on an Intel(R) Core{sup TM}2 Duo CPU 1.67 GHz processor with 3 Gib RAM. Conclusions: IPIP is an HDR brachytherapy planning system that directly incorporates dosimetric criteria. The authors have demonstrated that IPIP has clinically acceptable performance for the prostate cases and dosimetric criteria used in this study, in both dosimetry and runtime. Further study is required to determine if IPIP performs well for a more general group of patients and dosimetric criteria, including other cancer sites such as GYN.

  20. Dosimetric Predictors of Laryngeal Edema

    SciTech Connect

    Sanguineti, Giuseppe . E-mail: gisangui@utmb.edu; Adapala, Prashanth; Endres, Eugene J. C; Brack, Collin; Fiorino, Claudio; Sormani, Maria Pia; Parker, Brent

    2007-07-01

    Purpose: To investigate dosimetric predictors of laryngeal edema after radiotherapy (RT). Methods and Materials: A total of 66 patients were selected who had squamous cell carcinoma of the head and neck with grossly uninvolved larynx at the time of RT, no prior major surgical operation except for neck dissection and tonsillectomy, treatment planning data available for analysis, and at least one fiberoptic examination of the larynx within 2 years from RT performed by a single observer. Both the biologically equivalent mean dose at 2 Gy per fraction and the cumulative biologic dose-volume histogram of the larynx were extracted for each patient. Laryngeal edema was prospectively scored after treatment. Time to endpoint, moderate or worse laryngeal edema (Radiation Therapy Oncology Group Grade 2+), was calculated with log rank test from the date of treatment end. Results: At a median follow-up of 17.1 months (range, 0.4- 50.0 months), the risk of Grade 2+ edema was 58.9% {+-} 7%. Mean dose to the larynx, V30, V40, V50, V60, and V70 were significantly correlated with Grade 2+ edema at univariate analysis. At multivariate analysis, mean laryngeal dose (continuum, hazard ratio, 1.11; 95% confidence interval, 1.06-1.15; p < 0.001), and positive neck stage at RT (N0-x vs. N +, hazard ratio, 3.66; 95% confidence interval, 1.40-9.58; p = 0.008) were the only independent predictors. Further stratification showed that, to minimize the risk of Grade 2+ edema, the mean dose to the larynx has to be kept {<=}43.5 Gy at 2 Gy per fraction. Conclusion: Laryngeal edema is strictly correlated with various dosimetric parameters; mean dose to the larynx should be kept {<=}43.5 Gy.

  1. Statistical process control for IMRT dosimetric verification

    SciTech Connect

    Breen, Stephen L.; Moseley, Douglas J.; Zhang, Beibei; Sharpe, Michael B.

    2008-10-15

    Patient-specific measurements are typically used to validate the dosimetry of intensity-modulated radiotherapy (IMRT). To evaluate the dosimetric performance over time of our IMRT process, we have used statistical process control (SPC) concepts to analyze the measurements from 330 head and neck (H and N) treatment plans. The objectives of the present work are to: (i) Review the dosimetric measurements of a large series of consecutive head and neck treatment plans to better understand appropriate dosimetric tolerances; (ii) analyze the results with SPC to develop action levels for measured discrepancies; (iii) develop estimates for the number of measurements that are required to describe IMRT dosimetry in the clinical setting; and (iv) evaluate with SPC a new beam model in our planning system. H and N IMRT cases were planned with the PINNACLE{sup 3} treatment planning system versions 6.2b or 7.6c (Philips Medical Systems, Madison, WI) and treated on Varian (Palo Alto, CA) or Elekta (Crawley, UK) linacs. As part of regular quality assurance, plans were recalculated on a 20-cm-diam cylindrical phantom, and ion chamber measurements were made in high-dose volumes (the PTV with highest dose) and in low-dose volumes (spinal cord organ-at-risk, OR). Differences between the planned and measured doses were recorded as a percentage of the planned dose. Differences were stable over time. Measurements with PINNACLE{sup 3} 6.2b and Varian linacs showed a mean difference of 0.6% for PTVs (n=149, range, -4.3% to 6.6%), while OR measurements showed a larger systematic discrepancy (mean 4.5%, range -4.5% to 16.3%) that was due to well-known limitations of the MLC model in the earlier version of the planning system. Measurements with PINNACLE{sup 3} 7.6c and Varian linacs demonstrated a mean difference of 0.2% for PTVs (n=160, range, -3.0%, to 5.0%) and -1.0% for ORs (range -5.8% to 4.4%). The capability index (ratio of specification range to range of the data) was 1.3 for the PTV

  2. Statistical process control for IMRT dosimetric verification.

    PubMed

    Breen, Stephen L; Moseley, Douglas J; Zhang, Beibei; Sharpe, Michael B

    2008-10-01

    Patient-specific measurements are typically used to validate the dosimetry of intensity-modulated radiotherapy (IMRT). To evaluate the dosimetric performance over time of our IMRT process, we have used statistical process control (SPC) concepts to analyze the measurements from 330 head and neck (H&N) treatment plans. The objectives of the present work are to: (i) Review the dosimetric measurements of a large series of consecutive head and neck treatment plans to better understand appropriate dosimetric tolerances; (ii) analyze the results with SPC to develop action levels for measured discrepancies; (iii) develop estimates for the number of measurements that are required to describe IMRT dosimetry in the clinical setting; and (iv) evaluate with SPC a new beam model in our planning system. H&N IMRT cases were planned with the PINNACLE treatment planning system versions 6.2b or 7.6c (Philips Medical Systems, Madison, WI) and treated on Varian (Palo Alto, CA) or Elekta (Crawley, UK) linacs. As part of regular quality assurance, plans were recalculated on a 20-cm-diam cylindrical phantom, and ion chamber measurements were made in high-dose volumes (the PTV with highest dose) and in low-dose volumes (spinal cord organ-at-risk, OR). Differences between the planned and measured doses were recorded as a percentage of the planned dose. Differences were stable over time. Measurements with PINNACLE3 6.2b and Varian linacs showed a mean difference of 0.6% for PTVs (n=149, range, -4.3% to 6.6%), while OR measurements showed a larger systematic discrepancy (mean 4.5%, range -4.5% to 16.3%) that was due to well-known limitations of the MLC model in the earlier version of the planning system. Measurements with PINNACLE3 7.6c and Varian linacs demonstrated a mean difference of 0.2% for PTVs (n=160, range, -3.0%, to 5.0%) and -1.0% for ORs (range -5.8% to 4.4%). The capability index (ratio of specification range to range of the data) was 1.3 for the PTV data, indicating that almost

  3. Practical simplifications for radioimmunotherapy dosimetric models

    SciTech Connect

    Shen, S.; DeNardo, G.L.; O`Donnell, R.T.; Yuan, A.; DeNardo, D.A.; Macey, D.J.; DeNardo, S.J.

    1999-01-01

    Radiation dosimetry is potentially useful for assessment and prediction of efficacy and toxicity for radionuclide therapy. The usefulness of these dose estimates relies on the establishment of a dose-response model using accurate pharmacokinetic data and a radiation dosimetric model. Due to the complexity in radiation dose estimation, many practical simplifications have been introduced in the dosimetric modeling for clinical trials of radioimmunotherapy. Although research efforts are generally needed to improve the simplifications used at each stage of model development, practical simplifications are often possible for specific applications without significant consequences to the dose-response model. In the development of dosimetric methods for radioimmunotherapy, practical simplifications in the dosimetric models were introduced. This study evaluated the magnitude of uncertainty associated with practical simplifications for: (1) organ mass of the MIRD phantom; (2) radiation contribution from target alone; (3) interpolation of S value; (4) macroscopic tumor uniformity; and (5) fit of tumor pharmacokinetic data.

  4. Proton Radiotherapy for Liver Tumors: Dosimetric Advantages Over Photon Plans

    SciTech Connect

    Wang Xiaochun Krishnan, Sunil; Zhang Xiaodong; Dong Lei; Briere, Tina; Crane, Christopher H.; Martel, Mary; Gillin, Michael; Mohan, Radhe; Beddar, Sam

    2008-01-01

    The purpose of the study is to dosimetrically investigate the advantages of proton radiotherapy over photon radiotherapy for liver tumors. The proton plan and the photon plan were designed using commercial treatment planning systems. The treatment target dose conformity and heterogeneity and dose-volume analyses of normal structures were compared between proton and photon radiotherapy for 9 patients with liver tumors. Proton radiotherapy delivered a more conformal target dose with slightly less homogeneity when compared with photon radiotherapy. Protons significantly reduced the fractional volume of liver receiving dose greater or equal to 30 Gy (V{sub 30}) and the mean liver dose. The stomach and duodenal V{sub 45} were significantly lower with the use of proton radiotherapy. The V{sub 40} and V{sub 50} of the heart and the maximum spinal cord dose were also significantly lower with the use of proton radiotherapy. Protons were better able to spare one kidney completely and deliver less dose to one (generally the left) kidney than photons. The mean dose to the total body and most critical structures was significantly decreased using protons when compared to corresponding photon plans. In conclusion, our study suggests the dosimetric benefits of proton radiotherapy over photon radiotherapy. These dosimetric advantages of proton plans may permit further dose escalation with lower risk of complications.

  5. Dosimetric Effects of Setup Uncertainties on Breast Treatment Delivery

    SciTech Connect

    Harron, Elizabeth Christine McCallum, Hazel Mhairi; Lambert, Elizabeth Lyn; Lee, Daniela; Lambert, Geoffrey David

    2008-01-01

    This study aimed to assess the dosimetric impact of setup errors during the delivery of radiotherapy to the breast, and use this information to make recommendations on intervention tolerances for portal imaging of breast treatments. Translational and rotational setup errors were simulated for 10 recent breast patients using an Oncentra MasterPlan treatment planning system. The effect of these errors on the breast and tumor bed target volumes receiving 95% and 107% of the prescribed dose were assessed. For the majority of patients, shifts of up to 10 mm or a 4 deg. patient rotation about the cranio-caudal axis had no significant effect on the dose distribution. Changes in dosimetry were more likely if the reference plan contained large hot or cold spots. For a typical patient, it is estimated that a shift of 5 mm in any one direction, or a 2 deg. patient rotation would not cause more than a 5% change in the target volume receiving between 95% and 107% of the prescribed dose. If combinations of errors occur, greater dosimetric changes would be expected. It is concluded that individual patient shifts of up to 5 mm or rotations about the cranio-caudal axis of 2 deg. or less are unlikely to affect dose-volume histogram parameters by an amount judged as clinically significant. Setup errors exceeding these values may cause large dosimetric changes for some patients, particularly those with larger hot or cold regions in the dose distribution, and intervention is therefore recommended.

  6. Clinical implementation of dynamic intensity-modulated radiotherapy: Dosimetric aspects and initial experience

    PubMed Central

    Sivakumar, S. S.; Krishnamurthy, K.; Davis, C. A.; Ravichandran, R.; Kannadhasan, S.; Biunkumar, J. P.; El Ghamrawy, Kamal

    2008-01-01

    This paper describes the initial experience of quality assurance (QA) tests performed on the millennium multi-leaf collimator (mMLC) for clinical implementation of intensity-modulated radiotherapy (IMRT) using sliding window technique. The various QA tests verified the mechanical and dosimetric stability of the mMLC of linear accelerator when operated in dynamic mode (dMLC). The mechanical QA tests also verified the positional accuracy and kinetic properties of the dMLC. The stability of dMLC was analyzed qualitatively and quantitatively using radiographic film and Omnipro IMRT software. The output stability, variation in output for different sweeping gap widths, and dosimetric leaf separation were measured. Dose delivery with IMRT was verified against the dose computed by the treatment planning system (TPS). Monitor units (MUs) calculated by the planning system for the IMRT were cross-checked with independent commercial dose management software. Visual inspection and qualitative analysis showed that the leaf positioning accuracy was well within the acceptable limits. Dosimetric QA tests confirmed the dosimetric stability of the mMLC in dynamic mode. The verification of MUs using commercial software confirmed the reliability of the IMRT planning system for dose computation. The dosimetric measurements validated the fractional dose delivery. PMID:19893693

  7. NOTE: Dosimetric characterization of a new miniature multileaf collimator

    NASA Astrophysics Data System (ADS)

    Hartmann, G. H.; Föhlisch, F.

    2002-06-01

    The dosimetrical characteristics of a new miniature multileaf collimator (ModuLeaf MLC, MRC Systems GmbH, Heidelberg, Germany) attached to the accessory holder of a Siemens accelerator with 6 MV x-rays (PRIMUS, Siemens OCS, Concord, California, USA) have been investigated. In particular, those parameters which are important for the accuracy of the treatment such as output factors, penumbra, field edge precision and transmission/leakage were determined. These data can now be used to implement specific dose calculation procedures for this miniature multileaf collimator in treatment planning systems.

  8. Dosimetric accuracy of a deterministic radiation transport based {sup 192}Ir brachytherapy treatment planning system. Part II: Monte Carlo and experimental verification of a multiple source dwell position plan employing a shielded applicator

    SciTech Connect

    Petrokokkinos, L.; Zourari, K.; Pantelis, E.; Moutsatsos, A.; Karaiskos, P.; Sakelliou, L.; Seimenis, I.; Georgiou, E.; Papagiannis, P.

    2011-04-15

    Purpose: The aim of this work is the dosimetric validation of a deterministic radiation transport based treatment planning system (BRACHYVISION v. 8.8, referred to as TPS in the following) for multiple {sup 192}Ir source dwell position brachytherapy applications employing a shielded applicator in homogeneous water geometries. Methods: TPS calculations for an irradiation plan employing seven VS2000 {sup 192}Ir high dose rate (HDR) source dwell positions and a partially shielded applicator (GM11004380) were compared to corresponding Monte Carlo (MC) simulation results, as well as experimental results obtained using the VIP polymer gel-magnetic resonance imaging three-dimensional dosimetry method with a custom made phantom. Results: TPS and MC dose distributions were found in agreement which is mainly within {+-}2%. Considerable differences between TPS and MC results (greater than 2%) were observed at points in the penumbra of the shields (i.e., close to the edges of the ''shielded'' segment of the geometries). These differences were experimentally verified and therefore attributed to the TPS. Apart from these regions, experimental and TPS dose distributions were found in agreement within 2 mm distance to agreement and 5% dose difference criteria. As shown in this work, these results mark a significant improvement relative to dosimetry algorithms that disregard the presence of the shielded applicator since the use of the latter leads to dosimetry errors on the order of 20%-30% at the edge of the ''unshielded'' segment of the geometry and even 2%-6% at points corresponding to the potential location of the target volume in clinical applications using the applicator (points in the unshielded segment at short distances from the applicator). Conclusions: Results of this work attest the capability of the TPS to accurately account for the scatter conditions and the increased attenuation involved in HDR brachytherapy applications employing multiple source dwell positions and

  9. CURRENT STATUS OF INDIVIDUAL DOSIMETRIC MONITORING IN UKRAINE.

    PubMed

    Chumak, V; Deniachenko, N; Makarovska, O; Mihailescu, L-C; Prykhodko, A; Voloskyi, V; Vanhavere, F

    2016-09-01

    About 50 000 workers are being occupationally exposed to radiation in Ukraine. Individual dosimetric monitoring (IDM) is provided by 77 dosimetry services and laboratories of very different scale with a number of monitored workers ranging from several persons to ∼9000. In the present work, the current status of personal dosimetry in Ukraine was studied. The First National Intercomparison (FNI) of the IDM labs was accompanied by a survey of the laboratory operation in terms of coverage, types of dosimetry provided, instrumentation and methodologies used, metrological support, data recording, etc. Totally, 34 laboratories responded to the FNI call, and 18 services with 19 different personal dosimetry systems took part in the intercomparison exercise providing 24 dosimeters each for blind irradiation to photons of 6 different qualities (ISO N-series X-rays, S-Cs and S-Co sources) in a dose range of 5-60 mSv. Performance of the dosimetry labs was evaluated according to ISO 14146 criteria of matching trumpet curves with H0 = 0.2 mSv. The test revealed that 8 of the 19 systems meet ISO 14146 criteria in full, 5 other labs show marginal performance and 6 laboratories demonstrated catastrophic quality of dosimetric results. Altogether, 18 participating labs provide dosimetric monitoring to 37 477 workers (about three-fourths of all occupationally exposed workers), usually on monthly (nuclear industry) or quarterly (rest of applications) basis. Of this number, 20 664 persons (55 %) receive completely adequate individual monitoring, and the number of personnel receiving IDM of inadequate quality counts 3054 persons. PMID:26979804

  10. NOTE: Monte Carlo dosimetric study of the BEBIG Co-60 HDR source

    NASA Astrophysics Data System (ADS)

    Ballester, F.; Granero, D.; Pérez-Calatayud, J.; Casal, E.; Agramunt, S.; Cases, R.

    2005-11-01

    Although not as widespread as Ir-192, Co-60 is also available on afterloading equipment devoted to high dose rate brachytherapy, mainly addressed to the treatment of gynaecological lesions. The purpose of this study is to obtain the dosimetric parameters of the Co-60 source used by the BEBIG MultiSource remote afterloader (BEBIG GmbH, Germany) for which there are no dosimetric data available in the literature. The Monte Carlo code GEANT4 has been used to obtain the TG43 parameters and the 2D dose rate table in Cartesian coordinates of the BEBIG Co-60 HDR source. The dose rate constant, radial dose function and anisotropy function have been calculated and are presented in a tabular form as well as a detailed 2D dose rate table in Cartesian coordinates. These dosimetric datasets can be used as input data and to validate the treatment planning system calculations.

  11. Monte Carlo dosimetric study of the BEBIG Co-60 HDR source.

    PubMed

    Ballester, F; Granero, D; Pérez-Calatayud, J; Casal, E; Agramunt, S; Cases, R

    2005-11-01

    Although not as widespread as Ir-192, Co-60 is also available on afterloading equipment devoted to high dose rate brachytherapy, mainly addressed to the treatment of gynaecological lesions. The purpose of this study is to obtain the dosimetric parameters of the Co-60 source used by the BEBIG MultiSource remote afterloader (BEBIG GmbH, Germany) for which there are no dosimetric data available in the literature. The Monte Carlo code GEANT4 has been used to obtain the TG43 parameters and the 2D dose rate table in Cartesian coordinates of the BEBIG Co-60 HDR source. The dose rate constant, radial dose function and anisotropy function have been calculated and are presented in a tabular form as well as a detailed 2D dose rate table in Cartesian coordinates. These dosimetric datasets can be used as input data and to validate the treatment planning system calculations. PMID:16237230

  12. Dosimetric validation and clinical implementation of two 3D dose verification systems for quality assurance in volumetric-modulated arc therapy techniques.

    PubMed

    Clemente-Gutiérrez, Francisco; Pérez-Vara, Consuelo

    2015-01-01

    A pretreatment quality assurance program for volumetric techniques should include redundant calculations and measurement-based verifications. The patient-specific quality assurance process must be based in clinically relevant metrics. The aim of this study was to show the commission, clinical implementation, and comparison of two systems that allow performing a 3D redundant dose calculation. In addition, one of them is capable of reconstructing the dose on patient anatomy from measurements taken with a 2D ion chamber array. Both systems were compared in terms of reference calibration data (absolute dose, output factors, percentage depth-dose curves, and profiles). Results were in good agreement for absolute dose values (discrepancies were below 0.5%) and output factors (mean differences were below 1%). Maximum mean discrepancies were located between 10 and 20 cm of depth for PDDs (-2.7%) and in the penumbra region for profiles (mean DTA of 1.5 mm). Validation of the systems was performed by comparing point-dose measurements with values obtained by the two systems for static, dynamic fields from AAPM TG-119 report, and 12 real VMAT plans for different anatomical sites (differences better than 1.2%). Comparisons between measurements taken with a 2D ion chamber array and results obtained by both systems for real VMAT plans were also performed (mean global gamma passing rates better than 87.0% and 97.9% for the 2%/2 mm and 3%/3 mm criteria). Clinical implementation of the systems was evaluated by comparing dose-volume parameters for all TG-119 tests and real VMAT plans with TPS values (mean differences were below 1%). In addition, comparisons between dose distributions calculated by TPS and those extracted by the two systems for real VMAT plans were also performed (mean global gamma passing rates better than 86.0% and 93.0% for the 2%/2 mm and 3%/ 3 mm criteria). The clinical use of both systems was successfully evaluated. PMID:26103189

  13. Electromagnetic Real-Time Tumor Position Monitoring and Dynamic Multileaf Collimator Tracking Using a Siemens 160 MLC: Geometric and Dosimetric Accuracy of an Integrated System

    SciTech Connect

    Krauss, Andreas; Nill, Simeon; Tacke, Martin; Oelfke, Uwe

    2011-02-01

    Purpose: Dynamic multileaf collimator tracking represents a promising method for high-precision radiotherapy to moving tumors. In the present study, we report on the integration of electromagnetic real-time tumor position monitoring into a multileaf collimator-based tracking system. Methods and Materials: The integrated system was characterized in terms of its geometric and radiologic accuracy. The former was assessed from portal images acquired during radiation delivery to a phantom in tracking mode. The tracking errors were calculated from the positions of the tracking field and of the phantom as extracted from the portal images. Radiologic accuracy was evaluated from film dosimetry performed for conformal and intensity-modulated radiotherapy applied to different phantoms moving on sinusoidal trajectories. A static radiation delivery to the nonmoving target served as a reference for the delivery to the moving phantom with and without tracking applied. Results: Submillimeter tracking accuracy was observed for two-dimensional target motion despite the relatively large system latency of 500 ms. Film dosimetry yielded almost complete recovery of a circular dose distribution with tracking in two dimensions applied: 2%/2 mm gamma-failure rates could be reduced from 59.7% to 3.3%. For single-beam intensity-modulated radiotherapy delivery, accuracy was limited by the finite leaf width. A 2%/2 mm gamma-failure rate of 15.6% remained with tracking applied. Conclusion: The integrated system we have presented marks a major step toward the clinical implementation of high-precision dynamic multileaf collimator tracking. However, several challenges such as irregular motion traces or a thorough quality assurance still need to be addressed.

  14. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation.

    PubMed

    Magro, G; Molinelli, S; Mairani, A; Mirandola, A; Panizza, D; Russo, S; Ferrari, A; Valvo, F; Fossati, P; Ciocca, M

    2015-09-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo(®) TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus(®) chamber. An EBT3(®) film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification. PMID:26301623

  15. Dosimetric Verification of the System of Planning Brainscan for Stereotactic Radiosurgery at Oncology Department of the General Hospital of México

    NASA Astrophysics Data System (ADS)

    Álvarez R., J. T.; Villaseñor O., L. F.; Molero M., A. C.; Salinas, B.; Tovar M., V. M.

    2006-09-01

    The verification consists on the planning and administration of stereotactic treatments by means of conformed static beams, several polyethylene capsules with powder TLD 100 (type IAEA) located inside the head of a phantom Alderson-Rando. Because the planning system corrects for no-homogeneity in the density from the tomographic information, it is assumed that the absorbed dose in the tumor volume (capsule) corresponds to the dose absorbed to LiF: DLiF. Applying different cavity theories, the percent deviations to the nominal dose are: -1.81%⩽Δ%⩽0.71%, which are consistent with the order of the U%'s. The values of DW are calculated from two calibration curve: TL Response (nC) vs DW for the energy of the 60Co corrected for energy dependence to the accelerator photon beam quality D20/D10=0.57. Once curve for 0.5 to 5 Gy and other for 5 to 35 Gy. The traceability for the Dwater is obtained by means of a secondary standard ionization chamber Farmer PTW 30013 calibrated at the NRC.

  16. Dosimetric accuracy of a treatment planning system for actively scanned proton beams and small target volumes: Monte Carlo and experimental validation

    NASA Astrophysics Data System (ADS)

    Magro, G.; Molinelli, S.; Mairani, A.; Mirandola, A.; Panizza, D.; Russo, S.; Ferrari, A.; Valvo, F.; Fossati, P.; Ciocca, M.

    2015-09-01

    This study was performed to evaluate the accuracy of a commercial treatment planning system (TPS), in optimising proton pencil beam dose distributions for small targets of different sizes (5-30 mm side) located at increasing depths in water. The TPS analytical algorithm was benchmarked against experimental data and the FLUKA Monte Carlo (MC) code, previously validated for the selected beam-line. We tested the Siemens syngo® TPS plan optimisation module for water cubes fixing the configurable parameters at clinical standards, with homogeneous target coverage to a 2 Gy (RBE) dose prescription as unique goal. Plans were delivered and the dose at each volume centre was measured in water with a calibrated PTW Advanced Markus® chamber. An EBT3® film was also positioned at the phantom entrance window for the acquisition of 2D dose maps. Discrepancies between TPS calculated and MC simulated values were mainly due to the different lateral spread modeling and resulted in being related to the field-to-spot size ratio. The accuracy of the TPS was proved to be clinically acceptable in all cases but very small and shallow volumes. In this contest, the use of MC to validate TPS results proved to be a reliable procedure for pre-treatment plan verification.

  17. Hot pixel generation in active pixel sensors: dosimetric and micro-dosimetric response

    NASA Technical Reports Server (NTRS)

    Scheick, Leif; Novak, Frank

    2003-01-01

    The dosimetric response of an active pixel sensor is analyzed. heavy ions are seen to damage the pixel in much the same way as gamma radiation. The probability of a hot pixel is seen to exhibit behavior that is not typical with other microdose effects.

  18. Evaluation of the applicability of pinpoint ion chambers for SRS dosimetric quality assurance

    NASA Astrophysics Data System (ADS)

    Baek, Jong Geun; Jang, Hyun Soo; Kim, Eng Chan; Lee, Yong Hee; Oh, Young Kee; Kim, Sung Kyu

    2015-06-01

    The aim of the present study was to evaluate the applicability of a Pinpoint ion chamber for the measurement of the absolute dose for dosimetric quality assurance (QA) under the same conditions as are used for actual stereotactic radiosurgery (SRS). A PTW 31014 Pinpoint chamber with a active volume of 0.015 cm3 was used to measure the absolute doses of small beams. The PTW 60003 natural diamond detector was used as a reference dosimeter. A custom-made cylindrical acrylic phantom (15 cm diameter, 15 cm long) was produced to obtain measurements, and a noncoplanar arc plan was devised to deliver a prescription dose (15-25 Gy) to 80% of the maximum dose to the target in a single fraction by using the BrainLAB planning system. All irradiations were performed by using a Varian Clinac IX 6 MV equipped with a micro-multileaf-collimators (m3) designed by BrainLAB. The acceptability criterion used was a dose difference of less than 3%. The diameter of the target volume was considered the standard parameter in the present study and was used to divide the cases into two groups, that is, a ≤ 10 mm target diameter group (10 cases) and a > 10 mm target diameter group (13 cases). For the Pinpoint chamber and target diameters of ≤ 10 mm, dosimetric uncertainties of > 3% were seen in 4 of the 10 cases, and differences ranged widely from 0.7% to 4.85%. On the other hand, for the Pinpoint chamber and target diameters of > 10 mm all dose differences were less than 1.6%, and the mean discrepancy was 0.81%. A highly significant, but moderate, correlation between dosimetric uncertainties and all target diameters was observed for the Pinpoint chamber (R2 = 0.483, p 0.001). This result indicates that Pinpoint chambers exhibit a field-size dependency when used for SRS dosimetric QA. Based on the results of the present study, we conclude that the use of a Pinpoint chamber for verification of SRS dosimetric QA is unsuitable for all field sizes, but that it can be used to verify the

  19. Dosimetric adaptive IMRT driven by fiducial points

    SciTech Connect

    Crijns, Wouter; Van Herck, Hans; Defraene, Gilles; Van den Bergh, Laura; Haustermans, Karin; Slagmolen, Pieter; Maes, Frederik; Van den Heuvel, Frank

    2014-06-15

    Purpose: Intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy have become standard treatments but are more sensitive to anatomical variations than 3D conformal techniques. To correct for inter- and intrafraction anatomical variations, fast and easy to implement methods are needed. Here, the authors propose a full dosimetric IMRT correction that finds a compromise in-between basic repositioning (the current clinical practice) and full replanning. It simplifies replanning by avoiding a recontouring step and a full dose calculation. It surpasses repositioning by updating the preoptimized fluence and monitor units (MU) using a limited number of fiducial points and a pretreatment (CB)CT. To adapt the fluence the fiducial points were projected in the beam's eye view (BEV). To adapt the MUs, point dose calculation towards the same fiducial points were performed. The proposed method is intrinsically fast and robust, and simple to understand for operators, because of the use of only four fiducial points and the beam data based point dose calculations. Methods: To perform our dosimetric adaptation, two fluence corrections in the BEV are combined with two MU correction steps along the beam's path. (1) A transformation of the fluence map such that it is realigned with the current target geometry. (2) A correction for an unintended scaling of the penumbra margin when the treatment beams scale to the current target size. (3) A correction for the target depth relative to the body contour and (4) a correction for the target distance to the source. The impact of the correction strategy and its individual components was evaluated by simulations on a virtual prostate phantom. This heterogeneous reference phantom was systematically subjected to population based prostate transformations to simulate interfraction variations. Additionally, a patient example illustrated the clinical practice. The correction strategy was evaluated using both dosimetric (CTV mean

  20. Initial dosimetric experience with mega voltage computed tomography detectors and estimation of pre and post-repair dosimetric parameters of a first Helical Hi-Art II tomotherapy machine in India.

    PubMed

    Kinhikar, Rajesh A; Master, Zubin; Dhote, Dipak S; Deshpande, Deepak D

    2009-04-01

    A Helical Tomotherapy (HT) Hi-Art II (TomoTherapy, Inc., Madison, WI, USA) has been one of the important innovations to help deliver IMRT with image guidance. On-board, mega voltage computed tomography (MVCT) detectors are used for imaging and dosimetric purpose. The two objectives of this study are: (i) To estimate the dosimetric and general capability (TomoImage registration, reconstruction, contrast and spatial resolution, artifacts-free image and dose in TomoImage) of on-board MVCT detectors. (ii) To measure the dosimetric parameters (output and energy) following major repair. The MVCT detectors also estimated the rotational output constancy well. During this study, dosimetric tests were repeated after replacing MVCT detectors and the target. fixed-gantry/fixed-couch measurements were measured daily to investigate; the system stability. Thermoluminescense dosimeter (TLD) was used during both the measurements subsequently. The MVCT image quality with old and new detectors was comparable and hence acceptable clinically. The spatial resolution was optimal and the dose during TomoImage was 2 cGy (well within the manufacturer tolerance of 4 cGy). The results of lateral beam profiles showed an excellent agreement between the two normalized plots. The output from the rotational procedure revealed 99.7% while the energy was consistent over a period of twelve months. The Hi-Art II system has maintained its calibration to within +/- 2% and energy to within +/- 1.5% over the initial twelve-month period. Based on the periodic measurements for rotational output and consistency in the lateral beam profile shape, the on-board detector proved to be a viable dosimetric quality assurance tool for IMRT with Tomotherapy. Tomotherapy was stable from the dosimetric point of view during the twelve-month period. PMID:20098540

  1. A dosimetric study on the Ir-192 high dose rate flexisource.

    PubMed

    Granero, D; Pérez-Calatayud, J; Casal, E; Ballester, F; Venselaar, J

    2006-12-01

    In this work, the dose rate distribution of a new Ir-192 high dose rate source (Flexisource used in the afterloading Flexitron system, Isodose Control, Veenendaal, The Netherlands) is studied by means of Monte Carlo techniques using the GEANT4 code. The dosimetric parameters of the Task Group No. 43 Report (TG43) formalism and two-dimensional rectangular look-up tables have been obtained. PMID:17278809

  2. A dosimetric study on the Ir-192 high dose rate Flexisource

    SciTech Connect

    Granero, D.; Perez-Calatayud, J.; Casal, E.; Ballester, F.; Venselaar, J.

    2006-12-15

    In this work, the dose rate distribution of a new Ir-192 high dose rate source (Flexisource used in the afterloading Flexitron system, Isodose Control, Veenendaal, The Netherlands) is studied by means of Monte Carlo techniques using the GEANT4 code. The dosimetric parameters of the Task Group No. 43 Report (TG43) formalism and two-dimensional rectangular look-up tables have been obtained.

  3. Dosimetric monitoring in Ukraine--present status and path to the future.

    PubMed

    Chumak, V; Boguslavskaya, A

    2007-01-01

    Despite wide use of nuclear energy and radiation sources in industry and medicine, there is no centralised dose accounting system in Ukraine; existing dosimetry services operate obsolete manual thermoluminescence dosemeter (TLD) readers and do not meet modern proficiency standards. Currently, dosimetric monitoring is required for approximately 42,000 occupationally exposed workers, including 9100 in medicine, 17,000 employees of nuclear power plants and approximately 16,000 workers dealing with other sources of occupational exposure. This article presents the plan of elaboration of the United System for monitoring and registration of individual doses which has the aim of harmonisation of individual monitoring in Ukraine through securing methodical unity; scientific and methodological guidance of individual dosimetric control; procurement of common technical policy regarding nomenclature and operation of instrumentation; implementation of quality assurance programmes; development and support of information infrastructure, in particular operation of the national registry of individual doses; training and certification of personnel engaged in the system of individual dosimetric monitoring. PMID:16987910

  4. A high sensitive phosphor for dosimetric applications

    NASA Astrophysics Data System (ADS)

    Kore, Bhushan P.; Dhoble, N. S.; Lochab, S. P.; Dhoble, S. J.

    2015-06-01

    In this study a novel TL phosphor CaMg3(SO4)4:Dy3+ was prepared by acid distillation method. The TL response of this phosphor towards γ-rays and carbon ion beam was tested. Good dosimetric glow curve was observed which is stable against both the type of radiations. The CaMg3(SO4)4:Dy3+ phosphor doped with 0.2 mol% of Dy3+, irradiated with γ-ray shows nearly equal sensitivity to that of commercially available CaSO4:Dy TLD phosphor whereas 3.5 times more sensitivity than CaSO4:Dy, when irradiated with carbon ion beam. The change in glow peak intensities and glow peak temperature with variation in irradiation species and energy of ion beam is discussed here. The effect of these on trapping parameters is also illustrated.

  5. Dosimetric investigations on Mars-96 mission

    NASA Astrophysics Data System (ADS)

    Semkova, J.; Dachev, Ts.; Matviichuk, Yu.; Koleva, R.; Tomov, B.; Baynov, P.; Petrov, V.; Nguyen, V.; Siegrist, M.; Chene, J.

    1994-10-01

    The dosimetric experiments Dose-M and Liulin as part of the more complex French-German-Bulgarian-Russian experiments for the investigation of the radiation environment for Mars-96 mission are described. The experiments will be realized with dosemeter-radiometer instruments, measuring absorbed dose in semiconductor detectors and the particle flux. Two detectors will be mounted on board the Mars-96 orbiter. Another detector will be on the guiderope of the Mars-96 Aerostate station. The scientific aims of Dose-M and Liulin experiments are: Analysis of the absorbed dose and the flux on the path and around Mars behind different shielding. Study of the shielding characteristics of the Martian atmosphere from galactic and solar cosmic rays including solar proton events. Together with the French gamma-spectrometer and the German neutron detectors the investigation of the radiation environment on the surface of Mars and in the atmosphere up to 4000 m altitude will be conducted.

  6. Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array.

    PubMed

    Yoganathan, S A; Das, K J Maria; Raj, D Gowtham; Kumar, Shaleen

    2015-01-01

    The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams. PMID:26170552

  7. Dosimetric characterization of a bi-directional micromultileaf collimator for stereotactic applications.

    PubMed

    Bucciolini, M; Russo, S; Banci Buonamici, F; Pini, S; Silli, P

    2002-07-01

    A 6 MV photon beam from Linac SL75-5 has been collimated with a new micromultileaf device that is able to shape the field in the two orthogonal directions with four banks of leaves. This is the first clinical installation of the collimator and in this paper the dosimetric characterization of the system is reported. The dosimetric parameters required by the treatment planning system used for the dose calculation in the patient are: tissue maximum ratios, output factors, transmission and leakage of the leaves, penumbra values. Ionization chambers, silicon diode, radiographic films, and LiF thermoluminescent dosimeters have been employed for measurements of absolute dose and beam dosimetric data. Measurements with different dosimeters supply results in reasonable agreement among them and consistent with data available in literature for other models of micromultileaf collimator; that permits the use of the measured parameters for clinical applications. The discrepancies between results obtained with the different detectors (around 2%) for the analyzed parameters can be considered an indication of the accuracy that can be reached by current stereotactic dosimetry. PMID:12148726

  8. Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array

    PubMed Central

    Yoganathan, S. A.; Das, K. J. Maria; Raj, D. Gowtham; Kumar, Shaleen

    2015-01-01

    The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams. PMID:26170552

  9. Dosimetric impacts of applicator displacements and applicator reconstruction-uncertainties on 3D image-guided brachytherapy for cervical cancer

    PubMed Central

    Schindel, Joshua; Zhang, Winson; Bhatia, Sudershan K.; Sun, Wenqing

    2013-01-01

    Purpose To quantify the dosimetric impact of applicator displacements and applicator reconstruction-uncertainties through simulated planning studies of virtual applicator shifts. Material and methods Twenty randomly selected high-dose-rate (HDR) titanium tandem-and-ovoid (T&O) plans were retrospectively studied. MRI-guided, conformal brachytherapy (MRIG-CBT) plans were retrospectively generated. To simulate T&O displacement, the whole T&O set was virtually shifted on treatment planning system in the cranial (+) and the caudal (–) direction after each dose calculation. Each shifted plan was compared to an unshifted plan. To simulate T&O reconstruction-uncertainties, each tandem and ovoid was separately shifted along its axis before performing the dose calculation. After the dose calculation, the calculated isodose lines and T&O were moved back to unshifted T&O position. Shifted and shifted-back plan were compared. Results Regarding the dosimetric impact of the simulated T&O displacements, rectal D2cc values were observed as being the most sensitive to change due to T&O displacement among all dosimetric metrics regardless of point A (p < 0.013) or MRIG-CBT plans (p < 0.0277). To avoid more than 10% change, ± 1.5 mm T&O displacements were accommodated for both point A and MRIG-CBT plans. The dosimetric impact of T&O displacements on sigmoid (p < 0.0005), bladder (p < 0.0001), HR-CTV (p < 0.0036), and point A (p < 0.0015) were significantly larger in the MRIG-CBT plans than point A plans. Regarding the dosimetric impact of T&O reconstruction-uncertainties, less than ± 3.0 mm reconstruction-uncertainties were also required in order to avoid more than 10% dosimetric change in either the point A or MRIG-CBT plans. Conclusions The dosimetric impact of simulated T&O displacements was significantly larger in the MRIG-CBT plans than in the point A plans. Either ± 3 mm T&O displacement or a ± 4.5 mm T&O reconstruction-uncertainty could cause greater than 10% dosimetric

  10. Dosimetric Comparison of Helical Tomotherapy and Dynamic Conformal Arc Therapy in Stereotactic Radiosurgery for Vestibular Schwannomas

    SciTech Connect

    Lee, Tsair-Fwu; Chao, Pei-Ju; Wang, Chang-Yu; Lan, Jen-Hong; Huang, Yu-Je; Hsu, Hsuan-Chih; Sung, Chieh-Cheng; Su, Te-Jen; Lian, Shi-Long; Fang, Fu-Min

    2011-04-01

    The dosimetric results of stereotactic radiosurgery (SRS) for vestibular schwannoma (VS) performed using dynamic conformal arc therapy (DCAT) with the Novalis system and helical TomoTherapy (HT) were compared using plan quality indices. The HT plans were created for 10 consecutive patients with VS previously treated with SRS using the Novalis system. The dosimetric indices used to compare the techniques included the conformity index (CI) and homogeneity index (HI) for the planned target volume (PTV), the comprehensive quality index (CQI) for nine organs at risk (OARs), gradient score index (GSI) for the dose drop-off outside the PTV, and plan quality index (PQI), which was verified using the plan quality discerning power (PQDP) to incorporate 3 plan indices, to evaluate the rival plans. The PTV ranged from 0.27-19.99 cm{sup 3} (median 3.39 cm{sup 3}), with minimum required PTV prescribed doses of 10-16 Gy (median 12 Gy). Both systems satisfied the minimum required PTV prescription doses. HT conformed better to the PTV (CI: 1.51 {+-} 0.23 vs. 1.94 {+-} 0.34; p < 0.01), but had a worse drop-off outside the PTV (GSI: 40.3 {+-} 10.9 vs. 64.9 {+-} 13.6; p < 0.01) compared with DCAT. No significant difference in PTV homogeneity was observed (HI: 1.08 {+-} 0.03 vs. 1.09 {+-} 0.02; p = 0.20). HT had a significantly lower maximum dose in 4 OARs and significant lower mean dose in 1 OAR; by contrast, DCAT had a significantly lower maximum dose in 1 OAR and significant lower mean dose in 2 OARs, with the CQI of the 9 OARs = 0.92 {+-} 0.45. Plan analysis using PQI (HT 0.37 {+-} 0.12 vs. DCAT 0.65 {+-} 0.08; p < 0.01), and verified using the PQDP, confirmed the dosimetric advantage of HT. However, the HT system had a longer beam-on time (33.2 {+-} 7.4 vs. 4.6 {+-} 0.9 min; p < 0.01) and consumed more monitor units (16772 {+-} 3803 vs. 1776 {+-} 356.3; p < 0.01). HT had a better dose conformity and similar dose homogeneity but worse dose gradient than DCAT. Plan analysis

  11. Dosimetric comparison of helical tomotherapy and dynamic conformal arc therapy in stereotactic radiosurgery for vestibular schwannomas.

    PubMed

    Lee, Tsair-Fwu; Chao, Pei-Ju; Wang, Chang-Yu; Lan, Jen-Hong; Huang, Yu-Je; Hsu, Hsuan-Chih; Sung, Chieh-Cheng; Su, Te-Jen; Lian, Shi-Long; Fang, Fu-Min

    2011-01-01

    The dosimetric results of stereotactic radiosurgery (SRS) for vestibular schwannoma (VS) performed using dynamic conformal arc therapy (DCAT) with the Novalis system and helical TomoTherapy (HT) were compared using plan quality indices. The HT plans were created for 10 consecutive patients with VS previously treated with SRS using the Novalis system. The dosimetric indices used to compare the techniques included the conformity index (CI) and homogeneity index (HI) for the planned target volume (PTV), the comprehensive quality index (CQI) for nine organs at risk (OARs), gradient score index (GSI) for the dose drop-off outside the PTV, and plan quality index (PQI), which was verified using the plan quality discerning power (PQDP) to incorporate 3 plan indices, to evaluate the rival plans. The PTV ranged from 0.27-19.99 cm(3) (median 3.39 cm(3)), with minimum required PTV prescribed doses of 10-16 Gy (median 12 Gy). Both systems satisfied the minimum required PTV prescription doses. HT conformed better to the PTV (CI: 1.51 ± 0.23 vs. 1.94 ± 0.34; p < 0.01), but had a worse drop-off outside the PTV (GSI: 40.3 ± 10.9 vs. 64.9 ± 13.6; p < 0.01) compared with DCAT. No significant difference in PTV homogeneity was observed (HI: 1.08 ± 0.03 vs. 1.09 ± 0.02; p = 0.20). HT had a significantly lower maximum dose in 4 OARs and significant lower mean dose in 1 OAR; by contrast, DCAT had a significantly lower maximum dose in 1 OAR and significant lower mean dose in 2 OARs, with the CQI of the 9 OARs = 0.92 ± 0.45. Plan analysis using PQI (HT 0.37 ± 0.12 vs. DCAT 0.65 ± 0.08; p < 0.01), and verified using the PQDP, confirmed the dosimetric advantage of HT. However, the HT system had a longer beam-on time (33.2 ± 7.4 vs. 4.6 ± 0.9 min; p < 0.01) and consumed more monitor units (16772 ± 3803 vs. 1776 ± 356.3; p < 0.01). HT had a better dose conformity and similar dose homogeneity but worse dose gradient than DCAT. Plan analysis confirmed the dosimetric advantage of HT

  12. TU-D-9A-01: TG176: Dosimetric Effects of Couch Tops and Immobilization Devices

    SciTech Connect

    Olch, A

    2014-06-15

    The dosimetric impact from devices external to the patient is a complex combination of increased skin dose, reduced tumor dose, and altered dose distribution. Although small monitor unit or dose corrections are routinely made for blocking trays, ion chamber correction factors, or tissue inhomogeneities, the dose perturbation of the treatment couch top or immobilization devices are often overlooked. These devices also increase surface dose, an effect which is also often ignored or underestimated. These concerns have grown recently due to the increased use of monolithic carbon fiber couch tops which are optimal for imaging for patient position verification but cause attenuation and increased surface dose compared to the ‘tennis racket’ style couch top they often replace. Also, arc delivery techniques have replaced stationary gantry techniques which cause a greater fraction of the dose to be delivered from posterior angles. A host of immobilization devices are available and used to increase patient positioning reproducibility, and these also have attenuation and skin dose implications which are often ignored. This report of Task Group 176 serves to present a survey of published data that illustrates the magnitude of the dosimetric effects of a wide range of devices external to the patient. The report also provides methods for modeling couch tops in treatment planning systems so the physicist can accurately compute the dosimetric effects for indexed patient treatments. Both photon and proton beams are considered. A discussion on avoidance of high density structures during beam planning is also provided. An important aspect of this report are the recommendations we make to clinical physicists, treatment planning system vendors, and device vendors on how to make measurements of skin dose and attenuation, how to report these values, and for the vendors, an appeal is made to work together to provide accurate couch top models in planning systems. Learning Objectives

  13. Monte Carlo dosimetric study of the medium dose rate CSM40 source.

    PubMed

    Vijande, J; Granero, D; Perez-Calatayud, J; Ballester, F

    2013-12-01

    The (137)Cs medium dose rate (MDR) CSM40 source model (Eckert & Ziegler BEBIG, Germany) is in clinical use but no dosimetric dataset has been published. This study aims to obtain dosimetric data for the CSM40 source for its use in clinical practice as required by the American Association of Physicists in Medicine (AAPM) and the European Society for Radiotherapy and Oncology (ESTRO). Penelope2008 and Geant4 Monte Carlo codes were used to characterize this source dosimetrically. It was located in an unbounded water phantom with composition and mass density as recommended by AAPM and ESTRO. Due to the low photon energies of (137)Cs, absorbed dose was approximated by collisional kerma. Additional simulations were performed to obtain the air-kerma strength, sK. Mass-energy absorption coefficients in water and air were consistently derived and used to calculate collisional kerma. Results performed with both radiation transport codes showed agreement typically within 0.05%. Dose rate constant, radial dose function and anisotropy function are provided for the CSM40 and compared with published data for other commercially available (137)Cs sources. An uncertainty analysis has been performed. The data provided by this study can be used as input data and verification in the treatment planning systems. PMID:24121444

  14. Effect of photon energy spectrum on dosimetric parameters of brachytherapy sources

    PubMed Central

    Ghorbani, Mahdi; Davenport, David

    2016-01-01

    Abstract Aim The aim of this study is to quantify the influence of the photon energy spectrum of brachytherapy sources on task group No. 43 (TG-43) dosimetric parameters. Background Different photon spectra are used for a specific radionuclide in Monte Carlo simulations of brachytherapy sources. Materials and methods MCNPX code was used to simulate 125I, 103Pd, 169Yb, and 192Ir brachytherapy sources. Air kerma strength per activity, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated and isodose curves were plotted for three different photon energy spectra. The references for photon energy spectra were: published papers, Lawrence Berkeley National Laboratory (LBNL), and National Nuclear Data Center (NNDC). The data calculated by these photon energy spectra were compared. Results Dose rate constant values showed a maximum difference of 24.07% for 103Pd source with different photon energy spectra. Radial dose function values based on different spectra were relatively the same. 2D anisotropy function values showed minor differences in most of distances and angles. There was not any detectable difference between the isodose contours. Conclusions Dosimetric parameters obtained with different photon spectra were relatively the same, however it is suggested that more accurate and updated photon energy spectra be used in Monte Carlo simulations. This would allow for calculation of reliable dosimetric data for source modeling and calculation in brachytherapy treatment planning systems. PMID:27247558

  15. Error Analysis of non-TLD HDR Brachytherapy Dosimetric Techniques

    NASA Astrophysics Data System (ADS)

    Amoush, Ahmad

    The American Association of Physicists in Medicine Task Group Report43 (AAPM-TG43) and its updated version TG-43U1 rely on the LiF TLD detector to determine the experimental absolute dose rate for brachytherapy. The recommended uncertainty estimates associated with TLD experimental dosimetry include 5% for statistical errors (Type A) and 7% for systematic errors (Type B). TG-43U1 protocol does not include recommendation for other experimental dosimetric techniques to calculate the absolute dose for brachytherapy. This research used two independent experimental methods and Monte Carlo simulations to investigate and analyze uncertainties and errors associated with absolute dosimetry of HDR brachytherapy for a Tandem applicator. An A16 MicroChamber* and one dose MOSFET detectors† were selected to meet the TG-43U1 recommendations for experimental dosimetry. Statistical and systematic uncertainty analyses associated with each experimental technique were analyzed quantitatively using MCNPX 2.6‡ to evaluate source positional error, Tandem positional error, the source spectrum, phantom size effect, reproducibility, temperature and pressure effects, volume averaging, stem and wall effects, and Tandem effect. Absolute dose calculations for clinical use are based on Treatment Planning System (TPS) with no corrections for the above uncertainties. Absolute dose and uncertainties along the transverse plane were predicted for the A16 microchamber. The generated overall uncertainties are 22%, 17%, 15%, 15%, 16%, 17%, and 19% at 1cm, 2cm, 3cm, 4cm, and 5cm, respectively. Predicting the dose beyond 5cm is complicated due to low signal-to-noise ratio, cable effect, and stem effect for the A16 microchamber. Since dose beyond 5cm adds no clinical information, it has been ignored in this study. The absolute dose was predicted for the MOSFET detector from 1cm to 7cm along the transverse plane. The generated overall uncertainties are 23%, 11%, 8%, 7%, 7%, 9%, and 8% at 1cm, 2cm, 3cm

  16. Dosimetric mapping inside biorack (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Reitz, G.

    1992-01-01

    This experiment documents the radiation environment inside Biorack and compares it to theoretical predictions. Other experiments inside Biorack need this information to determine whether changes to samples are caused by radiation or microgravity. Dosimetric stacks, each with 20 to 100 sheets of plastic detector foils (cellulose nitrate, Lexan, and CR39) and nuclear emulsions of different radiation sensitivity are packed together with Thermoluminescence dosimeters (TLD) inside Type 1 containers. Crew members place two stacks in the 37 C incubator and four in the 36 C incubator, two of which are placed on the 1 g centrifuge. Two stacks are located in a stowage position at ambient temperature. After the mission, the plastic detectors are etched and the nuclear emulsions are developed similar to photographic emulsions. The traces resulting from the interaction of heavy ions with matter can then be evaluated under the microscope. The number, charge, and energy of the particles will be determined. From the TLD readings, the absorbed dose of the low LET components will be received.

  17. Dosimetric evaluation of brain scanning agents

    SciTech Connect

    Eckerman, K.F.; Cristy, M.; Warner, G.G.

    1981-06-01

    Conventional radiopharmaceuticals used for scanning the brain are excluded from normal brain tissue by the presence of an intact blood-brain-barrier (BBB). The current generation of radiopharmaceuticals being developed is capable of crossing the intact BBB thus providing direct measurement of brain function. The dosimetry of the first generation agents is complicated by the presence of the BBB which prevents the agent from achieving uniform distribution as generally assumed in dosimetric evaluation. The second generation radiopharmaceuticals while crossing the BBB are also nonuniformly distributed in the brain. Tabulations of specific absorbed fraction data for photon emitters uniformly distributed in the gray and in the white matter regions of the brain are presented and compared to values for a uniform distribution throughout the brain. Estimates of the specific absorbed fraction for the lens of the eye and the pituitary gland are also presented. Dose values per unit cumulated activity (S-factors) are developed based on the specific absorbed fraction data. The significance of the positron component to the dose to the regions of the brain is indicated for second generation scanning agents containing carbon-11, nitrogen-13, oxygen-15, and fluorine-18.

  18. A high sensitive phosphor for dosimetric applications

    SciTech Connect

    Kore, Bhushan P. Dhoble, S. J.; Dhoble, N. S.; Lochab, S. P.

    2015-06-24

    In this study a novel TL phosphor CaMg{sub 3}(SO{sub 4}){sub 4}:Dy{sup 3+} was prepared by acid distillation method. The TL response of this phosphor towards γ-rays and carbon ion beam was tested. Good dosimetric glow curve was observed which is stable against both the type of radiations. The CaMg{sub 3}(SO{sub 4}){sub 4}:Dy{sup 3+} phosphor doped with 0.2 mol% of Dy{sup 3+}, irradiated with γ-ray shows nearly equal sensitivity to that of commercially available CaSO{sub 4}:Dy TLD phosphor whereas 3.5 times more sensitivity than CaSO{sub 4}:Dy, when irradiated with carbon ion beam. The change in glow peak intensities and glow peak temperature with variation in irradiation species and energy of ion beam is discussed here. The effect of these on trapping parameters is also illustrated.

  19. Experiment "Seeds" on Biokosmos 9. Dosimetric part.

    PubMed

    Baican, B; Schopper, E; Wendnagel, T h; Schott, J U; Heilman, C

    1992-01-01

    The aim of the experiment "Seeds" on the Sowjetic satellite Biokosmos 9 was the observation of mutagenic effects caused at special loci of seeds of Arabidopsis thaliana and assigned to particles of the Cosmic radiation. Two types of exposure units were flown: A low-shielding unit Type I, mounted at the surface of the satellite (1.4 g/cm2 shielding) and, for comparison, an identical item inside (16 g/cm2 shielding), using nuclear emulsion as track detectors. A Type II unit, flown inside (18g/cm2 shielding) was mounted with AgCl track detectors. The layout will be briefly described. A first set of dosimetric data from the physical evaluation of the experiment will be presented. The subdivision into charge- and LET-groups shows a rather high contribution of the intermediate LET-group (350-1000 MeV/cm) due to medium heavy particles (Z = 6-10) and to enders of light (p, alpha) particles. PMID:11537029

  20. Dosimetric characterization of two radium sources for retrospective dosimetry studies

    SciTech Connect

    Candela-Juan, C.; Karlsson, M.; Lundell, M.; Ballester, F.; Tedgren, Å. Carlsson

    2015-05-15

    Purpose: During the first part of the 20th century, {sup 226}Ra was the most used radionuclide for brachytherapy. Retrospective accurate dosimetry, coupled with patient follow up, is important for advancing knowledge on long-term radiation effects. The purpose of this work was to dosimetrically characterize two {sup 226}Ra sources, commonly used in Sweden during the first half of the 20th century, for retrospective dose–effect studies. Methods: An 8 mg {sup 226}Ra tube and a 10 mg {sup 226}Ra needle, used at Radiumhemmet (Karolinska University Hospital, Stockholm, Sweden), from 1925 to the 1960s, were modeled in two independent Monte Carlo (MC) radiation transport codes: GEANT4 and MCNP5. Absorbed dose and collision kerma around the two sources were obtained, from which the TG-43 parameters were derived for the secular equilibrium state. Furthermore, results from this dosimetric formalism were compared with results from a MC simulation with a superficial mould constituted by five needles inside a glass casing, placed over a water phantom, trying to mimic a typical clinical setup. Calculated absorbed doses using the TG-43 formalism were also compared with previously reported measurements and calculations based on the Sievert integral. Finally, the dose rate at large distances from a {sup 226}Ra point-like-source placed in the center of 1 m radius water sphere was calculated with GEANT4. Results: TG-43 parameters [including g{sub L}(r), F(r, θ), Λ, and s{sub K}] have been uploaded in spreadsheets as additional material, and the fitting parameters of a mathematical curve that provides the dose rate between 10 and 60 cm from the source have been provided. Results from TG-43 formalism are consistent within the treatment volume with those of a MC simulation of a typical clinical scenario. Comparisons with reported measurements made with thermoluminescent dosimeters show differences up to 13% along the transverse axis of the radium needle. It has been estimated that

  1. Active pixel as dosimetric device for interventional radiology

    NASA Astrophysics Data System (ADS)

    Servoli, L.; Baldaccini, F.; Biasini, M.; Checcucci, B.; Chiocchini, S.; Cicioni, R.; Conti, E.; Di Lorenzo, R.; Dipilato, A. C.; Esposito, A.; Fanó, L.; Paolucci, M.; Passeri, D.; Pentiricci, A.; Placidi, P.

    2013-08-01

    Interventional Radiology (IR) is a subspecialty of radiology comprehensive of all minimally invasive diagnostic and therapeutic procedures performed using radiological devices to obtain image guidance. The interventional procedures are potentially harmful for interventional radiologists and medical staff due to the X-ray diffusion by the patient's body. The characteristic energy range of the diffused photons spans few tens of keV. In this work we will present a proposal for a new X-ray sensing element in the energy range of interest for IR procedures. The sensing element will then be assembled in a dosimeter prototype, capable of real-time measurement, packaged in a small form-factor, with wireless communication and no external power supply to be used for individual operators dosimetry for IR procedures. For the sensor, which is the heart of the system, we considered three different Active Pixel Sensors (APS). They have shown a good capability as single X-ray photon detectors, up to several tens keV photon energy. Two dosimetric quantities have been considered, the number of detected photons and the measured energy deposition. Both observables have a linear dependence with the dose, as measured by commercial dosimeters. The uncertainties in the measurement are dominated by statistic and can be pushed at ˜5% for all the sensors under test.

  2. Dosimetric implications of new compounds for neutron capture therapy (NCT)

    SciTech Connect

    Fairchild, R.G.

    1982-01-01

    Systemic application of radiolabeled or cytotoxic agents should allow targeting of primary and metastatic neoplasms on a cellular level. In fact, drug uptake in non-target cell pools often exceeds toxic levels before sufficient amounts are delivered to tumor. In addition, at the large concentration of molecules necessary for therapy, effects of saturation are often found. Application of NCT can circumvent problems associated with high uptake in competing non-target cell pools, as the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction is activated only within the radiation field. A comparison with other modes of particle therapy indicated that NCT provides significant advantages. It is however, difficult to obtain vehicles for boron transport which demonstrate both the tumor specificity and concentration requisite for NCT. A number of biomolecules have been investigated which show both the necessary concentration and specificity. These include chlorpromazine, thiouracil, porphyrins, amino acids, and nucleosides. However, these analogs have yet to be made available for NCT. Dosimetric implications of binding sites are considered, as well as alternate neutron sources. (ERB)

  3. Dosimetric Study of a Low-Dose-Rate Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Rodríguez-Villafuerte, M.; Arzamendi, S.; Díaz-Perches, R.

    Carcinoma of the cervix is the most common malignancy - in terms of both incidence and mortality - in Mexican women. Low dose rate (LDR) intracavitary brachytherapy is normally prescribed for the treatment of this disease to the vast majority of patients attending public hospitals in our country. However, most treatment planning systems being used in these hospitals still rely on Sievert integral dose calculations. Moreover, experimental verification of dose distributions are hardly ever done. In this work we present a dosimetric characterisation of the Amersham CDCS-J 137Cs source, an LDR brachytherapy source commonly used in Mexican hospitals. To this end a Monte Carlo simulation was developed, that includes a realistic description of the internal structure of the source embedded in a scattering medium. The Monte Carlo results were compared to experimental measurements of dose distributions. A lucite phantom with the same geometric characteristics as the one used in the simulation was built. Dose measurements were performed using thermoluminescent dosimeters together with commercial RadioChromic dye film. A comparison between our Monte Carlo simulation, the experimental data, and results reported in the literature is presented.

  4. Phantom size in brachytherapy source dosimetric studies.

    PubMed

    Pérez-Calatayud, J; Granero, D; Ballester, F

    2004-07-01

    An important point to consider in a brachytherapy dosimetry study is the phantom size involved in calculations or experimental measurements. As pointed out by Williamson [Med. Phys. 18, 776-786 (1991)] this topic has a relevant influence on final dosimetric results. Presently, one-dimensional (1-D) algorithms and newly-developed 3-D correction algorithms are based on physics data that are obtained under full scatter conditions, i.e., assumed infinite phantom size. One can then assume that reference dose distributions in source dosimetry for photon brachytherapy should use an unbounded phantom size rather than phantom-like dimensions. Our aim in this paper is to study the effect of phantom size on brachytherapy for radionuclide 137Cs, 192Ir, 125I and 103Pd, mainly used for clinical purposes. Using the GEANT4 Monte Carlo code, we can ascertain effects on derived dosimetry parameters and functions to establish a distance dependent difference due to the absence of full scatter conditions. We have found that for 137Cs and 192Ir, a spherical phantom with a 40 cm radius is the equivalent of an unbounded phantom up to a distance of 20 cm from the source, as this size ensures full scatter conditions at this distance. For 125I and 103Pd, the required radius for the spherical phantom in order to ensure full scatter conditions at 10 cm from the source is R = 15 cm. A simple expression based on fits of the dose distributions for various phantom sizes has been developed for 137Cs and 192Ir in order to compare the dose rate distributions published for different phantom sizes. Using these relations it is possible to obtain radial dose functions for unbounded medium from bounded phantom ones. PMID:15305460

  5. Dosimetric measurements of an n-butyl cyanoacrylate embolization material for arteriovenous malformations

    SciTech Connect

    Labby, Zacariah E.; Chaudhary, Neeraj; Gemmete, Joseph J.; Pandey, Aditya S.; Roberts, Donald A.

    2015-04-15

    Purpose: The therapeutic regimen for cranial arteriovenous malformations often involves both stereotactic radiosurgery and endovascular embolization. Embolization agents may contain tantalum or other contrast agents to assist the neurointerventionalists, leading to concerns regarding the dosimetric effects of these agents. This study investigated dosimetric properties of n-butyl cyanoacrylate (n-BCA) plus lipiodol with and without tantalum powder. Methods: The embolization agents were provided cured from the manufacturer with and without added tantalum. Attenuation measurements were made for the samples and compared to the attenuation of a solid water substitute using a 6 MV photon beam. Effective linear attenuation coefficients (ELAC) were derived from attenuation measurements made using a portal imager and derived sample thickness maps projected in an identical geometry. Probable dosimetric errors for calculations in which the embolized regions are overridden with the properties of water were calculated using the ELAC values. Interface effects were investigated using a parallel plate ion chamber placed at set distances below fixed samples. Finally, Hounsfield units (HU) were measured using a stereotactic radiosurgery CT protocol, and more appropriate HU values were derived from the ELAC results and the CT scanner’s HU calibration curve. Results: The ELAC was 0.0516 ± 0.0063 cm{sup −1} and 0.0580 ± 0.0091 cm{sup −1} for n-BCA without and with tantalum, respectively, compared to 0.0487 ± 0.0009 cm{sup −1} for the water substitute. Dose calculations with the embolized region set to be water equivalent in the treatment planning system would result in errors of −0.29% and −0.93% per cm thickness of n-BCA without and with tantalum, respectively. Interface effects compared to water were small in magnitude and limited in distance for both embolization materials. CT values at 120 kVp were 2082 and 2358 HU for n-BCA without and with tantalum, respectively

  6. Dosimetric properties of new europium doped KBr phosphors

    NASA Astrophysics Data System (ADS)

    Bernal, R.; Tostado-García, W.; Alday-Samaniego, K. R.; Cruz-Vázquez, C.; Barboza-Flores, M.

    2003-03-01

    In this work, dosimetric properties of new sintered europium-doped KBr phosphors subjected to beta irradiation are investigated. The obtained results show that these phosphors exhibit promising thermoluminescence properties that made them a viable alternative to substitute the conventional alkali halides crystals of similar composition for dosimetric purposes, considering as important advantages the simplicity and economy of the fabrication. The thermoluminescence response shows a linear dose dependence up to order of some Grays, which is higher than the linearity presented by the crystals of similar composition. Also, the thermoluminiscence fading is stabilized faster than that of the crystals do.

  7. Electromagnetic and Thermal Dosimetric Techniques in Humans and its Application

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Fujiwara, Osamu

    There has been increasing public concern about the adverse health effects of human exposure to radio frequency fields. Radio frequency fields are also used for medical application. This paper reviews electromagnetic and thermal computational dosimetric techniques, which has been developed by the authors. The feature of the thermal dosimetric method is that body core temperature can be computed reasonably unlike conventional method. This scheme is particularly useful for intense localized or whole-body electromagnetic wave exposure. Computational examples are shown to verify the effectiveness of the proposal.

  8. Dosimetric and mechanical characteristics of a commercial dynamic {mu}MLC used in SRS

    SciTech Connect

    Galal, Mohamed M.; Keogh, Sinead; Khalil, Sultan

    2011-07-15

    Purpose: The aim of this work is to carry out mechanical and dosimetric assessments on a commercial dynamic micromulti leaf collimator system to be used for stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT). Mechanical parameters such as leaf position accuracy with different gantry angles and leaf position reproducibility were measured. Also dosimetric measurements of the interleaf leakage, intraleaf transmission, penumbra width, and light field alignment were carried out. Furthermore, measurements of output factors (S{sub cp}) and in-air factors (S{sub c}) for the {mu}MLC system will be reported. Methods: EBT2 films were used to assess the leaf position error with gantry angle and after stress test, penumbra width and light field alignment. Leaf leakage was quantified using both EBT2 film and a pinpoint ion chamber. With regard to output factors, the pinpoint chamber was placed in a water phantom at 10 cm depth and 100 cm SSD. For in-air output factor measurements, 0.2 cm of brass was placed above the photon diode as build-up. Results: Measurements of mechanical parameters gave values of 0.05 cm (SD 0.035) for the average leaf position accuracy for different gantry angles and after stress test. Dosimetric measurements, yielded values of 0.22 {+-} 0.01 and 0.24 {+-} 0.01 cm, respectively, for side and head leaf penumbras. Also, average leaf abutting, leakage and transmission were found to be 0.65, 0.91, and 0.20%, respectively. Conclusions: (a) The add-on {mu}MLC system in combination with our LINAC has been commissioned to be used for clinical purposes and showed good agreement with published results for different {mu}MLC types. (b) This work has lead to the recommendation that leaves should be recalibrated after ten static beams or after each dynamic arc.

  9. Dosimetric effects caused by couch tops and immobilization devices: Report of AAPM Task Group 176

    SciTech Connect

    Olch, Arthur J.; Gerig, Lee; Li, Heng; Mihaylov, Ivaylo; Morgan, Andrew

    2014-06-15

    The dosimetric impact from devices external to the patient is a complex combination of increased skin dose, reduced tumor dose, and altered dose distribution. Although small monitor unit or dose corrections are routinely made for blocking trays, ion chamber correction factors, e.g., accounting for temperature and pressure, or tissue inhomogeneities, the dose perturbation of the treatment couch top or immobilization devices is often overlooked. These devices also increase skin dose, an effect which is also often ignored or underestimated. These concerns have grown recently due to the increased use of monolithic carbon fiber couch tops which are optimal for imaging for patient position verification but cause attenuation and increased skin dose compared to the “tennis racket” style couch top they often replace. Also, arc delivery techniques have replaced stationary gantry techniques which cause a greater fraction of the dose to be delivered from posterior angles. A host of immobilization devices are available and used to increase patient positioning reproducibility, and these also have attenuation and skin dose implications which are often ignored. This report of Task Group 176 serves to present a survey of published data that illustrates the magnitude of the dosimetric effects of a wide range of devices external to the patient. The report also provides methods for modeling couch tops in treatment planning systems so the physicist can accurately compute the dosimetric effects for indexed patient treatments. Both photon and proton beams are considered. A discussion on avoidance of high density structures during beam planning is also provided. An important aspect of this report are the recommendations the authors make to clinical physicists, treatment planning system vendors, and device vendors on how to make measurements of surface dose and attenuation and how to report these values. For the vendors, an appeal is made to work together to provide accurate couch top

  10. The spectral applications of Beer-Lambert law for some biological and dosimetric materials

    NASA Astrophysics Data System (ADS)

    Içelli, Orhan; Yalçin, Zeynel; Karakaya, Vatan; Ilgaz, Işıl P.

    2014-08-01

    The aim of this study is to conduct quantitative and qualitative analysis of biological and dosimetric materials which contain organic and inorganic materials and to make the determination by using the spectral theorem Beer-Lambert law. Beer-Lambert law is a system of linear equations for the spectral theory. It is possible to solve linear equations with a non-zero coefficient matrix determinant forming linear equations. Characteristic matrix of the linear equation with zero determinant is called point spectrum at the spectral theory.

  11. The revised International Commission on Radiological Protection (ICRP) dosimetric model for the human respiratory tract

    SciTech Connect

    Bair, W.J.

    1992-05-01

    A task group has revised the dosimetric model of the respiratory tract used to calculate annual limits on intake of radionuclides. The revised model can be used to project respiratory tract doses for workers and members of the public from airborne radionuclides and to assess past exposures. Doses calculated for specific extrathoracic and thoracic tissues can be adjusted to account for differences in radiosensitivity and summed to yield two values of dose for the respiratory tract that are applicable to the ICRP tissue weighted dosimetry system.

  12. Mechanical and dosimetric quality control for computer controlled radiotherapy treatment equipment.

    PubMed

    Thompson, A V; Lam, K L; Balter, J M; McShan, D L; Martel, M K; Weaver, T A; Fraass, B A; Ten Haken, R K

    1995-05-01

    Modern computer controlled radiotherapy treatment equipment offers the possibility of delivering complex, multiple field treatments with minimal operator intervention, thus making multiple field conformal therapy practical. Conventional quality control programs are inadequate for this new technology, so new quality control procedures are needed. A reasonably fast, sensitive, and complete daily quality control program has been developed in our clinic that includes nearly automated mechanical as well as dosimetric tests. Automated delivery of these quality control fields is performed by the control system of the MM50 racetrack microtron, directed by the CCRS sequence processor [D. L. McShan and B. A. Fraass, Proceedings of the XIth International Conference on the use of computers in Radiation Therapy, 20-24 March 1994, Manchester, U.K. (North Western Medical Physics Department, Manchester, U.K., 1994), pp. 210-211], which controls the treatment process. The mechanical tests involve multiple irradiations of a single film to check the accuracy and reproducibility of the computer controlled setup of gantry and collimator angles, table orientation, collimator jaws, and multileaf collimator shape. The dosimetric tests, which involve multiple irradiations of an array of ionization chambers in a commercial dose detector (Keithly model 90100 Tracker System) rigidly attached to the head of the treatment gantry, check the output and symmetry of the treatment unit as a function of gantry and collimator angle and other parameters. For each of the dosimetric tests, readings from the five ionization chambers are automatically read out, stored, and analyzed by the computer, along with the geometric parameters of the treatment unit for that beam.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7643792

  13. Dosimetric effects of an air cavity for the SAVI partial breast irradiation applicator

    SciTech Connect

    Richardson, Susan L.; Pino, Ramiro

    2010-08-15

    Purpose: To investigate the dosimetric effect of the air inside the SAVI partial breast irradiation device. Methods: The authors have investigated how the air inside the SAVI partial breast irradiation device changes the delivered dose from the homogeneously calculated dose. Measurements were made with the device filled with air and water to allow comparison to a homogenous dose calculation done by the treatment planning system. Measurements were made with an ion chamber, TLDs, and film. Monte Carlo (MC) simulations of the experiment were done using the EGSnrc suite. The MC model was validated by comparing the water-filled calculations to those from a commercial treatment planning system. Results: The magnitude of the dosimetric effect depends on the size of the cavity, the arrangement of sources, and the relative dwell times. For a simple case using only the central catheter of the largest device, MC results indicate that the dose at the prescription point 1 cm away from the air-water boundary is about 9% higher than the homogeneous calculation. Independent measurements in a water phantom with a similar air cavity gave comparable results. MC simulation of a realistic multidwell position plan showed discrepancies of about 5% on average at the prescription point for the largest device. Conclusions: The dosimetric effect of the air cavity is in the range of 3%-9%. Unless a heterogeneous dose calculation algorithm is used, users should be aware of the possibility of small treatment planning dose errors for this device and make modifications to the treatment delivery, if necessary.

  14. Dosimetric Impact of Intrafractional Patient Motion in Pediatric Brain Tumor Patients

    SciTech Connect

    Beltran, Chris Trussell, John; Merchant, Thomas E.

    2010-04-01

    The purpose of this study was to determine the dosimetric consequences of intrafractional patient motion on the clinical target volume (CTV), spinal cord, and optic nerves for non-sedated pediatric brain tumor patients. The patients were immobilized for treatment using a customized thermoplastic full-face mask and bite-block attached to an array of reflectors. The array was optically tracked by infra-red cameras at a frequency of 10 Hz. Patients were localized based on skin/mask marks and weekly films were taken to ensure proper setup. Before each noncoplanar field was delivered, the deviation from baseline of the array was recorded. The systematic error (SE) and random error (RE) were calculated. Direct simulation of the intrafractional motion was used to quantify the dosimetric changes to the targets and critical structures. Nine patients utilizing the optical tracking system were evaluated. The patient cohort had a mean of 31 {+-} 1.5 treatment fractions; motion data were acquired for a mean of 26 {+-} 6.2 fractions. The mean age was 15.6 {+-} 4.1 years. The SE and RE were 0.4 and 1.1 mm in the posterior-anterior, 0.5 and 1.0 mm in left-right, and 0.6 and 1.3 mm in superior-inferior directions, respectively. The dosimetric effects of the motion on the CTV were negligible; however, the dose to the critical structures was increased. Patient motion during treatment does affect the dose to critical structures, therefore, planning risk volumes are needed to properly assess the dose to normal tissues. Because the motion did not affect the dose to the CTV, the 3-mm PTV margin used is sufficient to account for intrafractional motion, given the patient is properly localized at the start of treatment.

  15. Dosimetric characterizations of GZP6 60Co high dose rate brachytherapy sources: application of superimposition method

    PubMed Central

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Mowlavi, Ali Asghar; Meigooni, Ali Soleimani

    2012-01-01

    Background Dosimetric characteristics of a high dose rate (HDR) GZP6 Co-60 brachytherapy source have been evaluated following American Association of Physicists in MedicineTask Group 43U1 (AAPM TG-43U1) recommendations for their clinical applications. Materials and methods MCNP-4C and MCNPX Monte Carlo codes were utilized to calculate dose rate constant, two dimensional (2D) dose distribution, radial dose function and 2D anisotropy function of the source. These parameters of this source are compared with the available data for Ralstron 60Co and microSelectron192Ir sources. Besides, a superimposition method was developed to extend the obtained results for the GZP6 source No. 3 to other GZP6 sources. Results The simulated value for dose rate constant for GZP6 source was 1.104±0.03 cGyh-1U-1. The graphical and tabulated radial dose function and 2D anisotropy function of this source are presented here. The results of these investigations show that the dosimetric parameters of GZP6 source are comparable to those for the Ralstron source. While dose rate constant for the two 60Co sources are similar to that for the microSelectron192Ir source, there are differences between radial dose function and anisotropy functions. Radial dose function of the 192Ir source is less steep than both 60Co source models. In addition, the 60Co sources are showing more isotropic dose distribution than the 192Ir source. Conclusions The superimposition method is applicable to produce dose distributions for other source arrangements from the dose distribution of a single source. The calculated dosimetric quantities of this new source can be introduced as input data to the GZP6 treatment planning system (TPS) and to validate the performance of the TPS. PMID:23077455

  16. Dosimetric impact of intrafractional patient motion in pediatric brain tumor patients.

    PubMed

    Beltran, Chris; Trussell, John; Merchant, Thomas E

    2010-01-01

    The purpose of this study was to determine the dosimetric consequences of intrafractional patient motion on the clinical target volume (CTV), spinal cord, and optic nerves for non-sedated pediatric brain tumor patients. The patients were immobilized for treatment using a customized thermoplastic full-face mask and bite-block attached to an array of reflectors. The array was optically tracked by infra-red cameras at a frequency of 10 Hz. Patients were localized based on skin/mask marks and weekly films were taken to ensure proper setup. Before each noncoplanar field was delivered, the deviation from baseline of the array was recorded. The systematic error (SE) and random error (RE) were calculated. Direct simulation of the intrafractional motion was used to quantify the dosimetric changes to the targets and critical structures. Nine patients utilizing the optical tracking system were evaluated. The patient cohort had a mean of 31 +/- 1.5 treatment fractions; motion data were acquired for a mean of 26 +/- 6.2 fractions. The mean age was 15.6 +/- 4.1 years. The SE and RE were 0.4 and 1.1 mm in the posterior-anterior, 0.5 and 1.0 mm in left-right, and 0.6 and 1.3 mm in superior-inferior directions, respectively. The dosimetric effects of the motion on the CTV were negligible; however, the dose to the critical structures was increased. Patient motion during treatment does affect the dose to critical structures, therefore, planning risk volumes are needed to properly assess the dose to normal tissues. Because the motion did not affect the dose to the CTV, the 3-mm PTV margin used is sufficient to account for intrafractional motion, given the patient is properly localized at the start of treatment. PMID:19931014

  17. Dosimetric Characteristics of Circular 6-MeV X-Ray Beams for Stereotactic Radiotherapy with a Linear Accelerator

    NASA Astrophysics Data System (ADS)

    Wysocka, A.; Rostkowska, J.; Kania, M.; Bulski, W.; Fijuth, J.

    2000-01-01

    Dosimetric characteristics of 6 MeV circular X-ray beams of diameters ranging from 7.5 to 35.0 mm are reported. The 6-MeV X-ray beam from Clinac 2300CD was formed using additional cylindrical BrainLAB's collimators. The mechanical stability of the entire system was verified. Specific quantities measured include tissue maximum ratios (TMR), beam profiles (off-axis ratios OAR) and relative output factors. Measurements of these parameters were performed in a water phantom using small cylindrical ionization chambers and a diamond detector. Comparison of TMR values measured with the ionization chamber and the diamond detector showed no significant differences. It was shown that the latter yields more accurate results for beam profiles than ionization chambers. The mechanical and dosimetric characteristics of this radiotherapy unit are found to be suitable for stereotactic radiosurgery and radiotherapy.

  18. Dosimetric properties of dysprosium doped calcium magnesium borate glass subjected to Co-60 gamma ray

    NASA Astrophysics Data System (ADS)

    Omar, R. S.; Wagiran, H.; Saeed, M. A.

    2016-01-01

    Thermoluminescence (TL) dosimetric properties of dysprosium doped calcium magnesium borate (CMB:Dy) glass are presented. This study is deemed to understand the application of calcium as the modifier in magnesium borate glass with the presence of dysprosium as the activator to be performed as TL dosimeter (TLD). The study provides fundamental knowledge of a glass system that may lead to perform new TL glass dosimetry application in future research. Calcium magnesium borate glass systems of (70-y) B2O3 - 20 CaO - 10 MgO-(y) Dy2O3 with 0.05 mol % ≤ y ≤ 0.7 mol % of dyprosium were prepared by melt-quenching technique. The amorphous structure and TL properties of the prepared samples were determined using powder X-ray diffraction (XRD) and TL reader; model Harshaw 4500 respectively. The samples were irradiated to Co-60 gamma source at a dose of 50 Gy. Dosimetric properties such as annealing procedure, time temperature profile (TTP) setting, optimization of Dy2O3 concentration of 0.5 mol % were determined for thermoluminescence dosimeter (TLD) reader used.

  19. First biological and dosimetric results of the free flyer biostack experiment AO015 on LDEF

    NASA Technical Reports Server (NTRS)

    Reitz, G.; Buecker, H.; Facius, R.; Horneck, G.; Schaeffer, M.; Schott, J. U.; Bayonove, J.; Beaujean, R.; Benton, E. V.; Delpoux, M.

    1991-01-01

    The main objectives of the Biostack Experiment are to study the effectiveness of the structured components of the cosmic radiation to bacterial spores, plant seeds, and animal cysts for a long duration spaceflight and to get dosimetric data such as particle fluences and spectra and total doses for the Long Duration Exposure Facility orbit. The configuration of the experiment packages allows the localization of the trajectory of the particles in each biological layer and to correlate the potential biological impairment or injury with the physical characteristics of the responsible particle. Although the Biostack Experiment was designed for a long duration flight of only nine months, most of the biological systems show a high hatching or germination rate. Some of the first observations are an increase of the mutation rate of embryonic lethals in the second generation of Arabidopsis seeds, somatic mutations, and a reduction of growth rates of corn plants and a reduction of life span of Artemia salina shrimps. The different passive detector systems are also in a good shape and give access to a proper dosimetric analysis. The results are summarized, and some aspects of future analysis are shown.

  20. Dosimetric comparison of helical tomothearpy and linac-based IMRT in whole abdomen radiotherapy

    NASA Astrophysics Data System (ADS)

    Kang, Young-nam; Kim, Dae-Hyun; Jang, Hong Seok; Song, Jin Ho; Choi, Byung Ock; Cho, Seok Goo; Jung, Ji-Young; Kay, Chul Seung

    2012-10-01

    Recent advances in radiotherapy techniques have allowed a significant improvement in the therapeutic ratio of whole abdominal irradiation (WAI) through linear-accelerator (Linac) based intensity-modulated radiotherapy (IMRT) and helical tomotherapy (HT). IMRT has been shown to reduce the dose to organs at risk (OAR) while adequately treating the tumor volume. HT operates by adjusting 51 beam directions, couch speed, pitch and shapes of a binary multileaf collimator (MLC), with the purpose of clinically increasing the befit to the patient. We incorporated helical tomotherapy as a new modality for WAI for the treatment of non-Hodgkin's lymphoma patients whose disease involved the intestine and the mesenteric lymph nodes. Excellent tumor coverage with effective sparing of normal organ sparings, and homogeneous dose distribution could be achieved. This study dosimetrically compared HT and linac-based IMRT by using several indices, including the conformity index (CI) and the homogeneity index (HI) for the planning target volume (PTV), as well as the, max dose and the mean dose and the quality index (QI) for five organs at risk (OARs). The HI and the CI were used to compare the quality of target coverage while the QI was used compare the dosimetric performans for OAR systems. The target coverages between the two systems were similar, but the most QIs were lower than 1, what means that HT is batter at sparing OARs than IMRT. Tomotherapy enabled excellent target coverage, effective sparing of normal tissues, and homogeneous dose distribution without severe acute toxicity.

  1. Dosimetric characteristics of fabricated silica fibre for postal radiotherapy dose audits

    NASA Astrophysics Data System (ADS)

    Fadzil, M. S. Ahmad; Ramli, N. N. H.; Jusoh, M. A.; Kadni, T.; Bradley, D. A.; Ung, N. M.; Suhairul, H.; Mohd Noor, N.

    2014-11-01

    Present investigation aims to establish the dosimetric characteristics of a novel fabricated flat fibre TLD system for postal radiotherapy dose audits. Various thermoluminescence (TL) properties have been investigated for five sizes of 6 mol% Ge-doped optical fibres. Key dosimetric characteristics including reproducibility, linearity, fading and energy dependence have been established. Irradiations were carried out using a linear accelerator (linac) and a Cobalt-60 machine. For doses from 0.5 Gy up to 10 Gy, Ge-doped flat fibres exhibit linearity between TL yield and dose, reproducible to better than 8% standard deviation (SD) following repeat measurements (n = 3). For photons generated at potentials from 1.25 MeV to 10 MV an energy-dependent response is noted, with a coefficient of variation (CV) of less than 40% over the range of energies investigated. For 6.0 mm length flat fibres 100 μm thick × 350 pm wide, the TL fading loss following 30 days of storage at room temperature was < 8%. The Ge-doped flat fibre system represents a viable basis for use in postal radiotherapy dose audits, corrections being made for the various factors influencing the TL yield.

  2. Benchmarking Dosimetric Quality Assessment of Prostate Intensity-Modulated Radiotherapy

    SciTech Connect

    Senthi, Sashendra; Gill, Suki S.; Haworth, Annette; Kron, Tomas; Cramb, Jim; Rolfo, Aldo; Thomas, Jessica; Duchesne, Gillian M.; Hamilton, Christopher H.; Joon, Daryl Lim; Bowden, Patrick; Foroudi, Farshad

    2012-02-01

    Purpose: To benchmark the dosimetric quality assessment of prostate intensity-modulated radiotherapy and determine whether the quality is influenced by disease or treatment factors. Patients and Methods: We retrospectively analyzed the data from 155 consecutive men treated radically for prostate cancer using intensity-modulated radiotherapy to 78 Gy between January 2007 and March 2009 across six radiotherapy treatment centers. The plan quality was determined by the measures of coverage, homogeneity, and conformity. Tumor coverage was measured using the planning target volume (PTV) receiving 95% and 100% of the prescribed dose (V{sub 95%} and V{sub 100%}, respectively) and the clinical target volume (CTV) receiving 95% and 100% of the prescribed dose. Homogeneity was measured using the sigma index of the PTV and CTV. Conformity was measured using the lesion coverage factor, healthy tissue conformity index, and the conformity number. Multivariate regression models were created to determine the relationship between these and T stage, risk status, androgen deprivation therapy use, treatment center, planning system, and treatment date. Results: The largest discriminatory measurements of coverage, homogeneity, and conformity were the PTV V{sub 95%}, PTV sigma index, and conformity number. The mean PTV V{sub 95%} was 92.5% (95% confidence interval, 91.3-93.7%). The mean PTV sigma index was 2.10 Gy (95% confidence interval, 1.90-2.20). The mean conformity number was 0.78 (95% confidence interval, 0.76-0.79). The treatment center independently influenced the coverage, homogeneity, and conformity (all p < .0001). The planning system independently influenced homogeneity (p = .038) and conformity (p = .021). The treatment date independently influenced the PTV V{sub 95%} only, with it being better at the start (p = .013). Risk status, T stage, and the use of androgen deprivation therapy did not influence any aspect of plan quality. Conclusion: Our study has benchmarked measures

  3. Dosimetric characteristics of a new unit for electronic skin brachytherapy

    PubMed Central

    Garcia-Martinez, Teresa; Chan, Jan-Pieter; Perez-Calatayud, Jose

    2014-01-01

    Purpose Brachytherapy with radioactive high dose rate (HDR) 192Ir source is applied to small skin cancer lesions, using surface applicators, i.e. Leipzig or Valencia type. New developments in the field of radiotherapy for skin cancer include electronic brachytherapy. This technique involves the placement of an HDR X-ray source close to the skin, therefore combining the benefits of brachytherapy with the reduced shielding requirements and targeted energy of low energy X-rays. Recently, the Esteya® Electronic Brachytherapy System (Esteya EBS, Elekta AB-Nucletron, Stockholm, Sweden) has been developed specifically for HDR brachytherapy treatment of surface lesions. The system provides radionuclide free HDR brachytherapy by means of a small 69.5 kV X-ray source. The purpose of this study is to obtain the dosimetric characterization required for clinical implementation, providing the detailed methodology to perform the commissioning. Material and methods Flatness, symmetry and penumbra, percentage of depth dose (PDD), kV stability, HVL, output, spectrum, linearity, and leakage have been evaluated for a set of applicators (from 10 mm to 30 mm in diameter). Results Flatness and symmetry resulted better than 5% with around 1 mm of penumbra. The depth dose gradient is about 7%/mm. A kV value of 68.4 ± 1.0 kV (k = 1) was obtained, in good agreement with manufacturer data (69.5 kV). HVL was 1.85 mm Al. Dose rate for a typical 6 Gy to 7 Gy prescription resulted about 3.3 Gy/min and the leakage value was < 100 µGy/min. Conclusions The new Esteya® Electronic Brachytherapy System presents excellent flatness and penumbra as with the Valencia applicator case, combined with an improved PDD, allowing treatment of lesions of up to a depth of 5 mm in combination with reduced treatment duration. The Esteya unit allows HDR brachytherapy superficial treatment within a minimally shielded environment due its low energy. PMID:24790622

  4. Multi-institutional dosimetric and geometric commissioning of image-guided small animal irradiators

    SciTech Connect

    Lindsay, P. E.; Granton, P. V.; Hoof, S. van; Hermans, J.; Gasparini, A.; Jelveh, S.; Clarkson, R.; Kaas, J.; Wittkamper, F.; Sonke, J.-J.; Verhaegen, F.; Jaffray, D. A.

    2014-03-15

    Purpose: To compare the dosimetric and geometric properties of a commercial x-ray based image-guided small animal irradiation system, installed at three institutions and to establish a complete and broadly accessible commissioning procedure. Methods: The system consists of a 225 kVp x-ray tube with fixed field size collimators ranging from 1 to 44 mm equivalent diameter. The x-ray tube is mounted opposite a flat-panel imaging detector, on a C-arm gantry with 360° coplanar rotation. Each institution performed a full commissioning of their system, including half-value layer, absolute dosimetry, relative dosimetry (profiles, percent depth dose, and relative output factors), and characterization of the system geometry and mechanical flex of the x-ray tube and detector. Dosimetric measurements were made using Farmer-type ionization chambers, small volume air and liquid ionization chambers, and radiochromic film. The results between the three institutions were compared. Results: At 225 kVp, with 0.3 mm Cu added filtration, the first half value layer ranged from 0.9 to 1.0 mm Cu. The dose-rate in-air for a 40 × 40 mm{sup 2} field size, at a source-to-axis distance of 30 cm, ranged from 3.5 to 3.9 Gy/min between the three institutions. For field sizes between 2.5 mm diameter and 40 × 40 mm{sup 2}, the differences between percent depth dose curves up to depths of 3.5 cm were between 1% and 4% on average, with the maximum difference being 7%. The profiles agreed very well for fields >5 mm diameter. The relative output factors differed by up to 6% for fields larger than 10 mm diameter, but differed by up to 49% for fields ≤5 mm diameter. The mechanical characteristics of the system (source-to-axis and source-to-detector distances) were consistent between all three institutions. There were substantial differences in the flex of each system. Conclusions: With the exception of the half-value layer, and mechanical properties, there were significant differences between the

  5. A Dosimetric Analysis of IMRT and Multistatic Fields Techniques for Left Breast Radiotherapy

    SciTech Connect

    Moon, Seong Kwon; Kim, Yeon Sil; Kim, Soo Young; Lee, Mi Jo; Keum, Hyun Sup; Kim, Seung Jin; Youn, Seon Min

    2011-10-01

    The purpose of this study was to analyze the dosimetric difference between intensity-modulated radiation therapy (IMRT) using 3 or 5 beams and multistatic field technique (MSF) in radiotherapy of the left breast. We made comparative analysis of two kinds of radiotherapy that can achieve improved dose homogeneity. First is a MSF that uses both major and small irradiation fields at the same time. The other is IMRT using 3 or 5 beams with an inverse planning system using multiple static multileaf collimators. We made treatment plans for 16 early left breast cancer patients who were randomly selected and had undergone breast conserving surgery and radiotherapy, and analyzed them in the dosimetric aspect. For the mean values of V{sub 95} and dose homogeneity index, no statistically significant difference was observed among the three therapies. Extreme hot spots receiving >110% of prescribed dose were not found in any of the three methods. Using Tukey's test, IMRT showed a significantly larger increase in exposure dose to the ipsilateral lung and the heart than MSF in the low-dose area, but in the high-dose area, MSF showed a slight increase. To improve dose homogeneity, the application of MSF, which can be easily planned and applied more widely, is considered optimal as an alternative to IMRT for radiotherapy of early left breast cancer.

  6. Monte Carlo dosimetric study of the Flexisource Co-60 high dose rate source

    PubMed Central

    Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo

    2012-01-01

    Purpose Recently, a new HDR 60Co brachytherapy source, Flexisource Co-60, has been developed (Nucletron B.V. Veenendaal, The Netherlands). This study aims to obtain dosimetric data for this source for its use in clinical practice as required by AAPM and ESTRO. Material and methods Two Monte Carlo radiation transport codes were used: Penelope2008 and GEANT4. The source was centrally-positioned in a 100 cm radius water phantom. Absorbed dose and collisional kerma were obtained using 0.01 cm (close) and 0.1 cm (far) sized voxels to provide high-resolution dosimetry near (far from) the source. Dose rate distributions obtained with the two Monte Carlo codes were compared. Results and Discussion Simulations performed with those two radiation transport codes showed an agreement typically within 0.2% for r > 0.8 cm and up to 2% closer to the source. Detailed results of dose distributions are being made available. Conclusions Dosimetric data are provided for the new Flexisource Co-60 source. These data are meant to be used in treatment planning systems in clinical practice. PMID:23346138

  7. [Mathematical simulation support to the dosimetric monitoring on the Russian segment of the International Space Station].

    PubMed

    Mitrikas, V G

    2014-01-01

    To ensure radiation safety of cosmonauts, it is necessary not only to predict, but also to reconstruct absorbed dose dynamics with the knowledge of how long cosmonauts stay in specific space vehicle compartments with different shielding properties and lacking equipment for dosimetric monitoring. In this situation, calculating is one and only way to make a correct estimate of radiation exposure of cosmonaut's organism as a whole (tissue-average dose) and of separate systems and organs. The paper addresses the issues of mathematical simulation of epy radiation environment of standard dosimetric instruments in the Russian segments of the International Space Station (ISS RS). Results of comparing the simulation and experimental data for the complement of dosimeters including ionization chamber-based radiometer R-16, DB8 dosimeters composed of semiconductor detectors, and Pille dosimeters composed of thermoluminescent detectors evidence that the current methods of simulation in support of the ISS RS radiation monitoring provide a sufficiently good agreement between the calculated and experimental data. PMID:25163341

  8. TL dosimetric properties of Li2O-B2O3 glasses for gamma dosimetry.

    PubMed

    El-Adawy, A; Khaled, N E; El-Sersy, A R; Hussein, A; Donya, H

    2010-06-01

    In this work, the thermoluminescence (TL) dosimetric characteristics of lithium borate glasses have been studied in detail before and after doping with silver. The glass specimens were prepared using a conventional melt-quenching method and checked using X-ray diffraction (XRD) pattern. The resultant glow curve of the undoped gamma-irradiated samples showed one strong peak at about 178 degrees C and at a constant heating-rate (beta) of 5 degrees C/s. While, the Ag-doped samples showed two TL glow peaks around 220 and 320 degrees C, which were mainly attributed to the Ag(+) ions. Trap parameters of glow peaks of the present glass systems were extracted. The dosimetric characteristics of glass specimens were read from the TL gamma-dose response curve, which showed a reasonably good linearity behavior between glow peak areas and gamma-dose values. The present results revealed the importance of using such current selective glass structures as gamma-radiation detectors within the studied dose-range where an acceptably good fading response was observed. PMID:20122841

  9. Impact of cutout off axis on electron beam dosimetric parameters.

    PubMed

    Arunkumar, T; Supe, S S; Ravikumar, M; Sathiyan, S; Ganesh, K M

    2012-04-01

    Dosimetric changes caused by the positional uncertainty of centering a small electron cutout to the machine central axis (CAX) of the linear accelerator (linac) were investigated. Six circular cutouts with 4 cm diameter were made with their centres shifted off by 0, 2, 4, 6, 8 and 10 mm from the machine CAX. The 6 x 6 cm(2) electron applicator was used for the measurement. The percentage depth doses (PDDs) were measured at the Machine CAX and also with respect to cutout centre for 6, 9, 12, 16 and 20 MeV electron beams. The in-line and cross-line profiles were measured at the depth of maximum dose (R100). The relative output factor (ROF) was measured at the reference depth. All the measurements were made at nominal source to surface distance (100 cm SSD) as well as at extended SSDs (100, 102, 106 and 110 cm). When the cutout centre was shifted away from the machine CAX for low energy beams the depth of 100% dose (R(100)), the depth of 90% dose (R(90)) and the depth of 80% dose (R(80)) had no significant change. For higher energies (>9 MeV) there was a reduction in these dosimetric parameters. The isodose coverage of the in-line and cross-line profile was reduced when the cutout centre was shifted away from the machine CAX. At extended SSDs the dosimetric changes are only because of geometric divergence of the beam and not by the positional uncertainty of the cutout. It is important for the radiation oncologist, dosimetrist, therapist and physicist to note such dosimetric changes while using the electron beam to the patients. PMID:22335408

  10. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    SciTech Connect

    Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V

    2013-12-15

    This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT.

  11. Retrospective evaluation of dosimetric quality for prostate carcinomas treated with 3D conformal, intensity modulated and volumetric modulated arc radiotherapy

    PubMed Central

    Crowe, Scott B; Kairn, Tanya; Middlebrook, Nigel; Hill, Brendan; Christie, David R H; Knight, Richard T; Kenny, John; Langton, Christian M; Trapp, Jamie V

    2013-01-01

    Introduction This study examines and compares the dosimetric quality of radiotherapy treatment plans for prostate carcinoma across a cohort of 163 patients treated across five centres: 83 treated with three-dimensional conformal radiotherapy (3DCRT), 33 treated with intensity modulated radiotherapy (IMRT) and 47 treated with volumetric modulated arc therapy (VMAT). Methods Treatment plan quality was evaluated in terms of target dose homogeneity and organs at risk (OAR), through the use of a set of dose metrics. These included the mean, maximum and minimum doses; the homogeneity and conformity indices for the target volumes; and a selection of dose coverage values that were relevant to each OAR. Statistical significance was evaluated using two-tailed Welch's T-tests. The Monte Carlo DICOM ToolKit software was adapted to permit the evaluation of dose metrics from DICOM data exported from a commercial radiotherapy treatment planning system. Results The 3DCRT treatment plans offered greater planning target volume dose homogeneity than the other two treatment modalities. The IMRT and VMAT plans offered greater dose reduction in the OAR: with increased compliance with recommended OAR dose constraints, compared to conventional 3DCRT treatments. When compared to each other, IMRT and VMAT did not provide significantly different treatment plan quality for like-sized tumour volumes. Conclusions This study indicates that IMRT and VMAT have provided similar dosimetric quality, which is superior to the dosimetric quality achieved with 3DCRT. PMID:26229621

  12. Correlation between dosimetric effect and intrafraction motion during prostate treatments delivered with helical tomotherapy

    NASA Astrophysics Data System (ADS)

    Langen, Katja M.; Lu, Weiguo; Ngwa, Wilfred; Willoughby, Twyla R.; Chauhan, Bhavin; Meeks, Sanford L.; Kupelian, Patrick A.; Olivera, Gustavo

    2008-12-01

    The dosimetric impact of intrafraction prostate motion was investigated for helical tomotherapy treatments. Measured motion tracks were used to calculate the dosimetric impact on delivered target dose distributions. A dynamic dose calculation engine was developed to facilitate this evaluation. It was found that the D95% (minimum dose to 95% of the volume) changes in the prostate were well correlated with D95% changes in the PTV. This means that the dosimetric impact of intrafraction motion is not restricted to the periphery of the target. The amount of motion was not well correlated with the dosimetric impact (measured in target D95% changes) of motion. The relationship between motion and its dosimetric impact is complex and depends on the timing and direction of the movement. These findings have implications for motion management techniques. It appears that the use of target margins is not an effective strategy to protect the prostate from the effects of observed intrafraction motion. The complex relationship between motion and its dosimetric effect renders simple threshold-based intervention schemes inefficient. Monitoring of actual prostate motion would allow the documentation of the dosimetric impact and implementation of corrective action if needed. However, when motion management techniques are evaluated, it should be kept in mind that the dosimetric impact of observed prostate motion is small for the majority of fractions.

  13. Dosimetric Verification of IMRT Treatment Plans Using an Electronic Portal Imaging Device

    SciTech Connect

    Kruszyna, Marta

    2010-01-05

    This paper presents the procedures and results of dosimetric verification using an Electronic Portal Imaging Device as a tool for pre-treatment dosimetry in IMRT technique at the Greater Poland Cancer Centre in Poznan, Poland. The evaluation of dosimetric verification for various organ, during a 2 year period is given.

  14. Dosimetric Verification of IMRT Treatment Plans Using an Electronic Portal Imaging Device

    NASA Astrophysics Data System (ADS)

    Kruszyna, Marta

    2010-01-01

    This paper presents the procedures and results of dosimetric verification using an Electronic Portal Imaging Device as a tool for pre-treatment dosimetry in IMRT technique at the Greater Poland Cancer Centre in Poznan, Poland. The ewaluation of dosimetric verification for various organ, during a 2 year period is given.

  15. Dosimetric effects of source-offset in intravascular brachytherapy.

    PubMed

    Chibani, Omar; Li, X Allen

    2002-04-01

    In intravascular brachytherapy (IVBT), radioactive sources can be displaced (offset) laterally from the center of the lumen and/or longitudinally from the desired location due to the cardiac motion and/or the absence of a source-centering device. The purpose of this work is to study the dosimetric impact of such a source offset. Dose effects of both lateral and longitudinal source offsets with or without the presence of a calcified plaque or a metallic stent are calculated for the three most commonly used sources (32P, 90Sr/90Y, and 192Ir). The MCNP Monte Carlo code is used in the calculation. Static and random source offsets are considered. The major results include that (a) dose can be changed significantly (by a factor of up to 4) due to a static lateral source offset; (b) this dose variation is reduced if the lateral source offset is considered as random moving within the vessel (the dose at the 2 mm reference radial distance is increased by 5-15% for the three sources in the case of the 2D random offset studied); (c) the presence of a calcified plaque and/or a metallic stent worsens the dosimetric effects; (d) the longitudinal random source offset results in a reduction (15-18%) in the effective treatment length; (e) the dose effects of source offsets for the beta source are higher than those for the gamma source. The data presented in this paper may be used for IVBT treatment planning or for dosimetric analysis of treatment outcome. The dose change due to the source offset should be considered in dose prescription. The reduction of effective treatment length should be taken into account in selection of a proper source length to ensure an adequate coverage of the treatment target. PMID:11991124

  16. Dosimetric investigation of high dose rate, gated IMRT

    SciTech Connect

    Lin, Teh; Chen Yan; Hossain, Murshed; Li, Jinsheng; Ma, C.-M.

    2008-11-15

    Increasing the dose rate offers time saving for IMRT delivery but the dosimetric accuracy is a concern, especially in the case of treating a moving target. The objective of this work is to determine the effect of dose rate associated with organ motion and gated treatment using step-and-shoot IMRT delivery. Both measurements and analytical simulation on clinical plans are performed to study the dosimetric differences between high dose rate and low dose rate gated IMRT step-and-shoot delivery. Various sites of IMRT plans for liver, lung, pancreas, and breast cancers were delivered to a custom-made motorized phantom, which simulated sinusoidal movement. Repeated measurements were taken for gated and nongated delivery with different gating settings and three dose rates, 100, 500, and 1000 MU/min using ion chambers and extended dose range films. For the study of the residual motion effect for individual segment dose and composite dose of IMRT plans, our measurements with 30%-60% phase gating and without gating for various dose rates were compared. A small but clinically acceptable difference in delivered dose was observed between 1000, 500, and 100 MU/min at 30%-60% phase gating. A simulation is presented, which can be used for predicting dose profiles for patient cases in the presence of motion and gating to confirm that IMRT step-and-shoot delivery with gating for 1000 MU/min are not much different from 500 MU/min. Based on the authors sample plan analyses, our preliminary results suggest that using 1000 MU/Min dose rate is dosimetrically accurate and efficient for IMRT treatment delivery with gating. Nonetheless, for the concern of patient care and safety, a patient specific QA should be performed as usual for IMRT plans for high dose rate deliveries.

  17. Dosimetric Characteristics of 6 MV Modified Beams by Physical Wedges of a Siemens Linear Accelerator.

    PubMed

    Zabihzadeh, Mansour; Birgani, Mohammad Javad Tahmasebi; Hoseini-Ghahfarokhi, Mojtaba; Arvandi, Sholeh; Hoseini, Seyed Mohammad; Fadaei, Mahbube

    2016-01-01

    Physical wedges still can be used as missing tissue compensators or filters to alter the shape of isodose curves in a target volume to reach an optimal radiotherapy plan without creating a hotspot. The aim of this study was to investigate the dosimetric properties of physical wedges filters such as off-axis photon fluence, photon spectrum, output factor and half value layer. The photon beam quality of a 6 MV Primus Siemens modified by 150 and 450 physical wedges was studied with BEAMnrc Monte Carlo (MC) code. The calculated present depth dose and dose profile curves for open and wedged photon beam were in good agreement with the measurements. Increase of wedge angle increased the beam hardening and this effect was more pronounced at the heal region. Using such an accurate MC model to determine of wedge factors and implementation of it as a calculation algorithm in the future treatment planning systems is recommended. PMID:27221838

  18. Dosimetric differences in flattened and flattening filter-free beam treatment plans

    PubMed Central

    Yan, Yue; Yadav, Poonam; Bassetti, Michael; Du, Kaifang; Saenz, Daniel; Harari, Paul; Paliwal, Bhudatt R.

    2016-01-01

    This study investigated the dosimetric differences in treatment plans from flattened and flattening filter-free (FFF) beams from the TrueBeam System. A total of 104 treatment plans with static (sliding window) intensity-modulated radiotherapy beams and volumetric-modulated arc therapy (VMAT) beams were generated for 15 patients involving three cancer sites. In general, the FFF beam provides similar target coverage as the flattened beam with improved dose sparing to organ-at-risk (OAR). Among all three cancer sites, the head and neck showed more important differences between the flattened beam and FFF beam. The maximum reduction of the FFF beam in the mean dose reached up to 2.82 Gy for larynx in head and neck case. Compared to the 6 MV flattened beam, the 10 MV FFF beam provided improved dose sparing to certain OARs, especially for VMAT cases. Thus, 10 MV FFF beam could be used to improve the treatment plan. PMID:27217620

  19. The Dosimetric Parameters Investigation of the Pulsed X-ray and Gamma Radiation Sources

    NASA Astrophysics Data System (ADS)

    Stuchebrov, S. G.; Miloichikova, I. A.; Shilova, X. O.

    2016-01-01

    The most common type of radiation used for diagnostic purposes are X-rays. However, X-rays methods have limitations related to the radiation dose for the biological objects. It is known that the use of the pulsed emitting source synchronized with the detection equipment for internal density visualization of objects significant reduces the radiation dose to the object. In the article the analysis of the suitability of the different dosimetric equipment for the radiation dose estimation of the pulsed emitting sources is carried out. The approbation results on the pulsed X-ray generator RAP-160-5 of the dosimetry systems workability with the pulse radiation and its operation range are presented. The results of the dose field investigation of the portable betatron OB-4 are demonstrated. The depth dose distribution in the air, lead and water of the pulsed bremsstrahlung generated by betatron are shown.

  20. Dosimetric advantages of IMPT over IMRT for laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Luo, W.; Li, J.; Fourkal, E.; Fan, J.; Xu, X.; Chen, Z.; Jin, L.; Price, R.; Ma, C.-M.

    2008-12-01

    As a clinical application of an exciting scientific breakthrough, a compact and cost-efficient proton therapy unit using high-power laser acceleration is being developed at Fox Chase Cancer Center. The significance of this application depends on whether or not it can yield dosimetric superiority over intensity-modulated radiation therapy (IMRT). The goal of this study is to show how laser-accelerated proton beams with broad energy spreads can be optimally used for proton therapy including intensity-modulated proton therapy (IMPT) and achieve dosimetric superiority over IMRT for prostate cancer. Desired energies and spreads with a varying δE/E were selected with the particle selection device and used to generate spread-out Bragg peaks (SOBPs). Proton plans were generated on an in-house Monte Carlo-based inverse-planning system. Fifteen prostate IMRT plans previously used for patient treatment have been included for comparison. Identical dose prescriptions, beam arrangement and consistent dose constrains were used for IMRT and IMPT plans to show the dosimetric differences that were caused only by the different physical characteristics of proton and photon beams. Different optimization constrains and beam arrangements were also used to find optimal IMPT. The results show that conventional proton therapy (CPT) plans without intensity modulation were not superior to IMRT, but IMPT can generate better proton plans if appropriate beam setup and optimization are used. Compared to IMRT, IMPT can reduce the target dose heterogeneity ((D5-D95)/D95) by up to 56%. The volume receiving 65 Gy and higher (V65) for the bladder and the rectum can be reduced by up to 45% and 88%, respectively, while the volume receiving 40 Gy and higher (V40) for the bladder and the rectum can be reduced by up to 49% and 68%, respectively. IMPT can also reduce the whole body non-target tissue dose by up to 61% or a factor 2.5. This study has shown that the laser accelerator under development has a

  1. Dosimetric comparison between model 9011 and 6711 sources in prostate implants

    SciTech Connect

    Zhang, Hualin; Beyer, David

    2013-07-01

    The purpose of this work is to evaluate the model 9011 iodine-125 ({sup 125}I) in prostate implants by comparing dosimetric coverage provided by the 6711 vs 9011 source implants. Postimplant dosimetry was performed in 18 consecutively implanted patients with prostate cancer. Two were implanted with the 9011 source and 16 with the 6711 source. For purposes of comparison, each implant was then recalculated assuming use of the other source. The same commercially available planning system was used and the specific source data for both 6711 and 9011 products were entered. The results of these calculations are compared side by side in the terms of the isodose values covering 100% (D100) and 90% (D90) of prostate volume, and the percentages of volumes of prostate, bladder, rectum, and urethra covered by 200% (V200), 150% (V150), 100% (V100), 50% (V50), and 20% (V20) of the prescribed dose as well. The 6711 source data overestimate coverage by 6.4% (ranging from 4.9% to 6.9%; median 6.6%) at D100 and by 6.6% (ranging from 6.2% to 6.8%; median 6.6%) at D90 compared with actual 9011 data. Greater discrepancies of up to 67% are seen at higher dose levels: average reduction for V100 is 2.7% (ranging from 0.6% to 7.7%; median 2.3%), for V150 is 14.6% (ranging from 6.1% to 20.5%; median 15.3%), for V200 is 14.9% (ranging from 4.8% to 19.1%; median 16%); similarly seen in bladder, rectal, and urethral coverage. This work demonstrates a clear difference in dosimetric behavior between the 9011 and 6711 sources. Using the 6711 source data for 9011 source implants would create a pronounced error in dose calculation. This study provides evidence that the 9011 source can provide the same dosimetric quality as the 6711 source, if properly used; however, the 6711 source data should not be considered as a surrogate for the 9011 source implants.

  2. Dosimetric Characteristics of a Two-Dimensional Diode Array Detector Irradiated with Passively Scattered Proton Beams

    PubMed Central

    Liengsawangwong, Praimakorn; Sahoo, Nanayan; Ding, Xiaoning; Lii, MingFwu; Gillin, Michale T.; Zhu, Xiaorong Ronald

    2015-01-01

    Purpose: To evaluate the dosimetric characteristics of a two-dimensional (2D) diode array detector irradiated with passively scattered proton beams. Materials and Methods: A diode array detector, MapCHECK (Model 1175, Sun Nuclear, Melbourne, FL, USA) was characterized in passive-scattered proton beams. The relative sensitivity of the diodes and absolute dose calibration were determined using a 250 MeV beam. The pristine Bragg curves (PBCs) measured by MapCHECK diodes were compared with those of an ion chamber using a range shift method. The water-equivalent thickness (WET) of the diode array detector’s intrinsic buildup also was determined. The inverse square dependence, linearity, and other proton dosimetric quantities measured by MapCHECK were also compared with those of the ion chambers. The change in the absolute dose response of the MapCHECK as a function of accumulated radiation dose was used as an indicator of radiation damage to the diodes. 2D dose distribution with and without the compensator were measured and compared with the treatment planning system (TPS) calculations. Results: The WET of the MapCHECK diode’s buildup was determined to be 1.7 cm. The MapCHECK-measured PBC were virtually identical to those measured by a parallel-plate ion chamber for 160, 180, and 250 MeV proton beams. The inverse square results of the MapCHECK were within ±0.4% of the ion chamber results. The linearity of MapCHECK results was within 1% of those from the ion chamber as measured in the range between 10 and 300 MU. All other dosimetric quantities were within 1.3% of the ion chamber results. The 2D dose distributions for non-clinical fields without compensator and the patient treatment fields with the compensator were consistent with the TPS results. The absolute dose response of the MapCHECK was changed by 7.4% after an accumulated dose increased by 170 Gy. Conclusions: The MapCHECK is a convenient and useful tool for 2D dose distribution measurements using passively

  3. Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy

    SciTech Connect

    Riley, Craig; Yang, Yong Li, Tianfang; Zhang, Yongqian; Heron, Dwight E.; Huq, M. Saiful

    2014-01-15

    Purpose: Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect for the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients’ treatment plans using a moving phantom driven with a patient-specific respiratory curve. Methods: For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. Results: For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated Rapid

  4. Dosimetric Comparison of Helical Tomotherapy and Linac-IMRT Treatment Plans for Head and Neck Cancer Patients

    SciTech Connect

    Zhang Xin; Penagaricano, Jose; Moros, Eduardo G.; Corry, Peter M.; Yan Yulong; Ratanatharathorn, Vaneerat

    2010-01-01

    The rapid development and clinical implementation of external beam radiation treatment technologies continues. The existence of various commercially available technologies for intensity-modulated radiation therapy (IMRT) has stimulated interest in exploring the differential potential advantage one may have compared with another. Two such technologies, Hi-Art Helical Tomotherapy (HT) and conventional medical linear accelerator-based IMRT (LIMRT) have been shown to be particularly suitable for the treatment of head and neck cancers. In this study, 23 patients who were diagnosed with stages 3 or 4 head and neck cancers, without evidence of distance metastatic disease, were treated in our clinic. Treatment plans were developed for all patients simultaneously on the HT planning station and on the Pinnacle treatment planning system for step-and-shoot IMRT. Patients were treated only on the HT unit, with the LIMRT plan serving as a backup in case the HT system might not be available. All plans were approved for clinical use by a physician. The prescription was that patients receive at least 95% of the planning target volume (PTV), which is 66 Gy at 2.2 Gy per fraction. Several dosimetric parameters were computed: PTV dose coverage; PTV volume conformity index; the normalized total dose (NTD), where doses were converted to 2 Gy per fraction to organs at risk (OAR); and PTV dose homogeneity. Both planning systems satisfied our clinic's PTV prescription requirements. The results suggest that HT plans had, in general, slightly better dosimetric characteristics, especially regarding PTV dose homogeneity and normal tissue sparing. However, for both techniques, doses to OAR were well below the currently accepted normal tissue tolerances. Consequently, factors other than the dosimetric parameters studied here may have to be considered when making a choice between IMRT techniques.

  5. Energy dependence corrections to MOSFET dosimetric sensitivity.

    PubMed

    Cheung, T; Butson, M J; Yu, P K N

    2009-03-01

    Metal Oxide Semiconductor Field Effect Transistors (MOSFET's) are dosimeters which are now frequently utilized in radiotherapy treatment applications. An improved MOSFET, clinical semiconductor dosimetry system (CSDS) which utilizes improved packaging for the MOSFET device has been studied for energy dependence of sensitivity to x-ray radiation measurement. Energy dependence from 50 kVp to 10 MV x-rays has been studied and found to vary by up to a factor of 3.2 with 75 kVp producing the highest sensitivity response. The detectors average life span in high sensitivity mode is energy related and ranges from approximately 100 Gy for 75 kVp x-rays to approximately 300 Gy at 6 MV x-ray energy. The MOSFET detector has also been studied for sensitivity variations with integrated dose history. It was found to become less sensitive to radiation with age and the magnitude of this effect is dependant on radiation energy with lower energies producing a larger sensitivity reduction with integrated dose. The reduction in sensitivity is however approximated reproducibly by a slightly non linear, second order polynomial function allowing corrections to be made to readings to account for this effect to provide more accurate dose assessments both in phantom and in-vivo. PMID:19400548

  6. Dosimetric characteristics of LKB:Cu,P solid TL detector

    NASA Astrophysics Data System (ADS)

    Hashim, S.; Alajerami, Y. S. M.; Ghoshal, S. K.; Saleh, M. A.; Saripan, M. I.; Kadir, A. B. A.; Bradley, D. A.; Alzimami, K.

    2014-11-01

    The dosimetric characteristics of newly developed borate glass dosimeter modified with lithium and potassium carbonate (LKB) and co-doped with CuO and NH4H2PO4 are reported. Broad peaks in the absence of any sharp peak confirms the amorphous nature of the prepared glass. A simple glow curve of Cu doped sample is observed with a single prominent peak (Tm) at 220 °C. The TL intensity response shows an enhancement of ~100 times due to the addition of CuO (0.1 mol%) to LKB compound. A further enhancement of the intensity by a factor of 3 from the addition of 0.25 mol% NH4H2PO4 as a co-dopant impurity is attributed to the creation of extra electron traps with consequent increase in energy transfer of radiation recombination centers. The TL yield performance of LKB:Cu,P with Zeff ≈8.92 is approximately seventeen times less sensitive compared to LiF:Mg,Ti (TLD-100). The proposed dosimeter shows good linearity up to 103 Gy, minimal fading and photon energy independence. These attractive features offered by our dosimeter is expected to pave the way towards dosimetric applications.

  7. Biologic data, models, and dosimetric methods for internal emitters

    SciTech Connect

    Weber, D.A.

    1990-01-01

    The absorbed radiation dose from internal emitters has been and will remain a pivotal factor in assessing risk and therapeutic utility in selecting radiopharmaceuticals for diagnosis and treatment. Although direct measurements of absorbed dose and dose distributions in vivo have been and will continue to be made in limited situations, the measurement of the biodistribution and clearance of radiopharmaceuticals in human subjects and the use of this data is likely to remain the primary means to approach the calculation and estimation of absorbed dose from internal emitters over the next decade. Since several approximations are used in these schema to calculate dose, attention must be given to inspecting and improving the application of this dosimetric method as better techniques are developed to assay body activity and as more experience is gained in applying these schema to calculating absorbed dose. Discussion of the need for considering small scale dosimetry to calculate absorbed dose at the cellular level will be presented in this paper. Other topics include dose estimates for internal emitters, biologic data mathematical models and dosimetric methods employed. 44 refs.

  8. Dosimetric Algorithm to Reproduce Isodose Curves Obtained from a LINAC

    PubMed Central

    Estrada Espinosa, Julio Cesar; Martínez Ovalle, Segundo Agustín; Pereira Benavides, Cinthia Kotzian

    2014-01-01

    In this work isodose curves are obtained by the use of a new dosimetric algorithm using numerical data from percentage depth dose (PDD) and the maximum absorbed dose profile, calculated by Monte Carlo in a 18 MV LINAC. The software allows reproducing the absorbed dose percentage in the whole irradiated volume quickly and with a good approximation. To validate results an 18 MV LINAC with a whole geometry and a water phantom were constructed. On this construction, the distinct simulations were processed by the MCNPX code and then obtained the PDD and profiles for the whole depths of the radiation beam. The results data were used by the code to produce the dose percentages in any point of the irradiated volume. The absorbed dose for any voxel's size was also reproduced at any point of the irradiated volume, even when the voxels are considered to be of a pixel's size. The dosimetric algorithm is able to reproduce the absorbed dose induced by a radiation beam over a water phantom, considering PDD and profiles, whose maximum percent value is in the build-up region. Calculation time for the algorithm is only a few seconds, compared with the days taken when it is carried out by Monte Carlo. PMID:25045398

  9. Dosimetric algorithm to reproduce isodose curves obtained from a LINAC.

    PubMed

    Estrada Espinosa, Julio Cesar; Martínez Ovalle, Segundo Agustín; Pereira Benavides, Cinthia Kotzian

    2014-01-01

    In this work isodose curves are obtained by the use of a new dosimetric algorithm using numerical data from percentage depth dose (PDD) and the maximum absorbed dose profile, calculated by Monte Carlo in a 18 MV LINAC. The software allows reproducing the absorbed dose percentage in the whole irradiated volume quickly and with a good approximation. To validate results an 18 MV LINAC with a whole geometry and a water phantom were constructed. On this construction, the distinct simulations were processed by the MCNPX code and then obtained the PDD and profiles for the whole depths of the radiation beam. The results data were used by the code to produce the dose percentages in any point of the irradiated volume. The absorbed dose for any voxel's size was also reproduced at any point of the irradiated volume, even when the voxels are considered to be of a pixel's size. The dosimetric algorithm is able to reproduce the absorbed dose induced by a radiation beam over a water phantom, considering PDD and profiles, whose maximum percent value is in the build-up region. Calculation time for the algorithm is only a few seconds, compared with the days taken when it is carried out by Monte Carlo. PMID:25045398

  10. Dosimetric Verification and Validation of Conformal and IMRT Treatments Fields with an Ionization Chamber 2D-Array

    NASA Astrophysics Data System (ADS)

    Evangelina, Figueroa M.; Gabriel, Reséndiz G.; Miguel, Pérez P.

    2008-08-01

    A three-dimensional treatment planning system requires comparisons of calculated and measured dose distributions. It is necessary to confirm by means of patient specific QA that the dose distributions are correctly calculated, and that the patient data is correctly transferred to and delivered by the treatment machine. We used an analysis software for bi-dimensional dosimetric verification of conformal treatment and IMRT fields using as objective criterion the gamma index. An ionization chamber bi-dimensional array was used for absolute dose measurement in the complete field area.

  11. A dosimetric study of Leipzig applicators

    SciTech Connect

    Perez-Calatayud, Jose; Granero, Domingo; Ballester, Facundo . E-mail: Facundo.Ballester@uv.es; Puchades, Vicente; Casal, Emilio; Soriano, Angela; Crispin, Vicente

    2005-06-01

    to model these distributions for routine use with a brachytherapy treatment planning system.

  12. Dosimetric Quantities for Computed Tomography Examinations of Paediatric Patients on the Thoracic and Abdominal Regions

    SciTech Connect

    Flores-M, E.; Gamboa de Buen, I.; Buenfil, A. E.; Ruiz-Trejo, C.; Dies, P.

    2010-12-07

    Computed Tomography (CT) is a high dose X ray imaging procedure and its use has rapidly increased in the last two decades fueled by the development of helical CT. The aim of this study is to present values of the dosimetric quantities for CT paediatric examinations of thoracic and abdominal regions. The protocols studied were those of chest, lung-mediastine, chest-abdomen, pulmonary high resolution and mediastine-abdomen, which are the more common examinations performed at ''Hospital Infantil de Mexico Federico Gomez'' in the thoracic-abdominal region. The measurements were performed on a Siemens SOMATOM Sensation 16 CT Scanner and the equipment used was a CT pencil ionization chamber, connected to an electrometer. This system was calibrated for RQT9 CT beam quality. A PMMA head phantom with diameter of 16 cm and length of 15 cm was also used. The dosimetric quantities measured were the weighted air kerma index (C{sub w}), the volumetric dose index (C{sub vol}) and the CT air kerma-length product. It was found that the pulmonary high resolution examination presented the highest values for the C{sub w}(31.1 mGy) and C{sub vol}(11.1 mGy). The examination with the lowest values of these two quantities was the chest-abdomen protocol with 10.5 mGy for C{sub w} and 5.5 mGy for C{sub vol}. However, this protocol presented the highest value for P{sub KL,CT}(282.2 mGy cm) when considering the average clinical length of the examinations.

  13. Conventional Versus Automated Implantation of Loose Seeds in Prostate Brachytherapy: Analysis of Dosimetric and Clinical Results

    SciTech Connect

    Genebes, Caroline; Filleron, Thomas; Graff, Pierre; Jonca, Frédéric; Huyghe, Eric; Thoulouzan, Matthieu; Soulie, Michel; Malavaud, Bernard; Aziza, Richard; Brun, Thomas; Delannes, Martine; Bachaud, Jean-Marc

    2013-11-15

    Purpose: To review the clinical outcome of I-125 permanent prostate brachytherapy (PPB) for low-risk and intermediate-risk prostate cancer and to compare 2 techniques of loose-seed implantation. Methods and Materials: 574 consecutive patients underwent I-125 PPB for low-risk and intermediate-risk prostate cancer between 2000 and 2008. Two successive techniques were used: conventional implantation from 2000 to 2004 and automated implantation (Nucletron, FIRST system) from 2004 to 2008. Dosimetric and biochemical recurrence-free (bNED) survival results were reported and compared for the 2 techniques. Univariate and multivariate analysis researched independent predictors for bNED survival. Results: 419 (73%) and 155 (27%) patients with low-risk and intermediate-risk disease, respectively, were treated (median follow-up time, 69.3 months). The 60-month bNED survival rates were 95.2% and 85.7%, respectively, for patients with low-risk and intermediate-risk disease (P=.04). In univariate analysis, patients treated with automated implantation had worse bNED survival rates than did those treated with conventional implantation (P<.0001). By day 30, patients treated with automated implantation showed lower values of dose delivered to 90% of prostate volume (D90) and volume of prostate receiving 100% of prescribed dose (V100). In multivariate analysis, implantation technique, Gleason score, and V100 on day 30 were independent predictors of recurrence-free status. Grade 3 urethritis and urinary incontinence were observed in 2.6% and 1.6% of the cohort, respectively, with no significant differences between the 2 techniques. No grade 3 proctitis was observed. Conclusion: Satisfactory 60-month bNED survival rates (93.1%) and acceptable toxicity (grade 3 urethritis <3%) were achieved by loose-seed implantation. Automated implantation was associated with worse dosimetric and bNED survival outcomes.

  14. SU-E-T-09: A Dosimetric Analysis of Various Clinically Used Bolus Materials

    SciTech Connect

    Stowe, M; Yeager, C; Zhou, F; Hand, C

    2014-06-01

    Purpose: To evaluate the dosimetric effect of various clinically used bolus materials. Methods: Materials investigated include solid water, superflab, wet gauze, wet sheets, Play-Doh{sup ™}, and gauze embedded with petroleum jelly. Each bolusing material was scanned in a Philips CT to determine the Hounsfield unit (HU) and to verify uniformity throughout the material. Using the corresponding HU, boluses of 0.5 cm and 1.0 cm thicknesses were created in the Eclipse treatment planning system (TPS) on a solid water phantom. Dose was calculated at various depths for beam energies 6 MV, 6 MeV, 9 MeV, and 12 MeV to determine the effects of each material on deposition of dose. In addition, linac-based measurements at these energies were made using a farmer chamber in solid water. Wet sheets and wet gauze were measured with various water content to quantify the effects on dose. Results: Preliminary CT scans find a range in HU of bolus materials from −120 to almost 300. There is a trend in the dose at depth based on the HU of the material; however inconsistencies are found when the bolus materials have a negative HU value. The measured data indicates that there is a linear relationship between the mass of water in a material and the dose reading, the slope of which is material dependent. Conclusion: Due to the variation in HU of the bolus materials studied, it is recommended that any new bolus be evaluated before clinical use to determine physical and dosimetric properties. If possible, patients should have bolus included in their CT scans; or if the bolus is created in the TPS, the HU should correspond to the material used. For water-soaked materials, once the bolus material is selected (gauze or sheet), the bolusing effect is only dependent on the amount of water applied to the material.

  15. Dosimetric Quantities for Computed Tomography Examinations of Paediatric Patients on the Thoracic and Abdominal Regions

    NASA Astrophysics Data System (ADS)

    Flores-M, E.; Buenfil, A. E.; Dies, P.; Gamboa-deBuen, I.; Ruiz-Trejo, C.

    2010-12-01

    Computed Tomography (CT) is a high dose X ray imaging procedure and its use has rapidly increased in the last two decades fueled by the development of helical CT. The aim of this study is to present values of the dosimetric quantities for CT paediatric examinations of thoracic and abdominal regions. The protocols studied were those of chest, lung-mediastine, chest-abdomen, pulmonary high resolution and mediastine-abdomen, which are the more common examinations performed at "Hospital Infantil de México Federico Gómez" in the thoracic-abdominal region. The measurements were performed on a Siemens SOMATOM Sensation 16 CT Scanner and the equipment used was a CT pencil ionization chamber, connected to an electrometer. This system was calibrated for RQT9 CT beam quality. A PMMA head phantom with diameter of 16 cm and length of 15 cm was also used. The dosimetric quantities measured were the weighted air kerma index (Cw), the volumetric dose index (Cvol) and the CT air kerma-length product. It was found that the pulmonary high resolution examination presented the highest values for the Cw (31.1 mGy) and Cvol (11.1 mGy). The examination with the lowest values of these two quantities was the chest-abdomen protocol with 10.5 mGy for Cw and 5.5 mGy for Cvol. However, this protocol presented the highest value for PKL,CT (282.2 mGy cm) when considering the average clinical length of the examinations.

  16. SU-E-J-167: Dosimetric Consequences From Minimal Displacements in APBI with SAVI Applicators

    SciTech Connect

    Chandrasekara, S; Dumitru, N; Hyvarinen, M; Pella, S

    2015-06-15

    Purpose: To determine the importance of providing proper solid immobilization in every fraction of treatment in APBI with brachytherapy. Methods: 125 patients treated with APBI brachytherapy with SAVI applicators at SFRO Boca Raton, from 2013–2015 were considered for this retrospective study. The CT scans of each patient, which were taken before each treatment, were imported in to the Oncentra treatment planning system. Then they were compared with the initial CT scan which was used for the initial plan. Deviation in displacements in reference to ribs and skin surface was measured and dosimetric evaluations respective to the initial image were performed. Results: Small deviations in displacements were observed from the SAVI applicator to the ribs and the skin surface. Dosimetric evaluations revealed, very small changes in the inter-fractionation position make significant differences in the maximum dose to critical organs. Additionally, the volume of the cavity also changed between fractions. As a Result, the maximum dose manifested variance between 10% and 32% in ribs and skin surface respectively. Conclusion: It appears that taking a CT scan before each treatment is necessary to minimize the risk of delivering undesired high doses to the critical organs. This study indicates, in 30% of the cases re-planning was necessary between treatments. We conclude that, treatment planning teams should evaluate the placement of the device by analyzing the CT images before each treatment and they must be prepared for re-planning if needed. This study also reveals the urgent need of improving the immobilization methods with APBI when treating with the SAVI applicator.

  17. Contura Multi-Lumen Balloon Breast Brachytherapy Catheter: Comparative Dosimetric Findings of a Phase 4 Trial

    SciTech Connect

    Arthur, Douglas W.; Vicini, Frank A.; Julian, Thomas B.; Cuttino, Laurie W.; Mukhopadhyay, Nitai D.

    2013-06-01

    Purpose: Final dosimetric findings of a completed, multi-institutional phase 4 registry trial using the Contura Multi-Lumen Balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer are presented. Methods and Materials: Three dosimetric plans with identical target coverage were generated for each patient for comparison: multilumen multidwell (MLMD); central-lumen multidwell (CLMD); and central-lumen single-dwell (CLSD) loading of the Contura catheter. For this study, a successful treatment plan achieved ideal dosimetric goals and included the following: ≥95% of the prescribed dose (PD) covering ≥95% of the target volume (TV); maximum skin dose ≤125% of the PD; maximum rib dose ≤145% of the PD; and V150 ≤50 cc and V200 ≤10 cc. Results: Between January 2008 and February 2011, 23 institutions participated. A total of 318 patients were available for dosimetric review. Using the Contura MLB, all dosimetric criteria were met in 78.93% of cases planned with MLMD versus 55.38% with the CLMD versus 37.66% with the CLSD (P≤.0001). Evaluating all patients with the full range of skin to balloon distance represented, median maximum skin dose was reduced by 12% and median maximum rib dose by 13.9% when using MLMD-based dosimetric plans compared to CLSD. The dosimetric benefit of MLMD was further demonstrated in the subgroup of patients where skin thickness was <5 mm, where MLMD use allowed a 38% reduction in median maximum skin dose over CLSD. For patients with rib distance <5 mm, the median maximum rib dose reduction was 27%. Conclusions: Use of the Contura MLB catheter produced statistically significant improvements in dosimetric capabilities between CLSD and CLMD treatments. This device approach demonstrates the ability not only to overcome the barriers of limited skin thickness and close rib proximity, but to consistently achieve a higher standard of dosimetric planning goals.

  18. Analysis of superficial fluorescence patterns in nonmelanoma skin cancer during photodynamic therapy by a dosimetric model

    NASA Astrophysics Data System (ADS)

    Salas-García, I.; Fanjul-Vélez, F.; Arce-Diego, J. L.

    2016-03-01

    In this work the superficial fluorescence patterns in different nonmelanoma skin cancers and their photodynamic treatment response are analysed by a fluorescence based dosimetric model. Results show differences of even more than 50% in the fluorescence patterns as photodynamic therapy progresses depending on the malignant tissue type. They demonstrate the great relevance of the biological media as an additional dosimetric factor and contribute to the development of a future customized therapy with the assistance of dosimetric tools to interpret the fluorescence images obtained during the treatment monitoring and the differential photodiagnosis.

  19. Dosimetric Comparison of Split Field and Fixed Jaw Techniques for Large IMRT Target Volumes in the Head and Neck

    SciTech Connect

    Srivastava, Shiv P.; Das, Indra J.; Kumar, Arvind; Johnstone, Peter A.S.

    2011-04-01

    Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed on an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within {+-}1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 {+-} 6.3%) and higher MU (13.7 {+-} 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes.

  20. TH-E-BRE-05: Analysis of Dosimetric Characteristics in Two Leaf Motion Calculator Algorithms for Sliding Window IMRT

    SciTech Connect

    Wu, L; Huang, B; Rowedder, B; Ma, B; Kuang, Y

    2014-06-15

    Purpose: The Smart leaf motion calculator (SLMC) in Eclipse treatment planning system is an advanced fluence delivery modeling algorithm as it takes into account fine MLC features including inter-leaf leakage, rounded leaf tips, non-uniform leaf thickness, and the spindle cavity etc. In this study, SLMC and traditional Varian LMC (VLMC) algorithms were investigated, for the first time, in dosimetric characteristics and delivery accuracy of sliding window (SW) IMRT. Methods: The SW IMRT plans of 51 cancer cases were included to evaluate dosimetric characteristics and dose delivery accuracy from leaf motion calculated by SLMC and VLMC, respectively. All plans were delivered using a Varian TrueBeam Linac. The DVH and MUs of the plans were analyzed. Three patient specific QA tools - independent dose calculation software IMSure, Delta4 phantom, and EPID portal dosimetry were also used to measure the delivered dose distribution. Results: Significant differences in the MUs were observed between the two LMCs (p≤0.001).Gamma analysis shows an excellent agreement between the planned dose distribution calculated by both LMC algorithms and delivered dose distribution measured by three QA tools in all plans at 3%/3 mm, leading to a mean pass rate exceeding 97%. The mean fraction of pixels with gamma < 1 of SLMC is slightly lower than that of VLMC in the IMSure and Delta4 results, but higher in portal dosimetry (the highest spatial resolution), especially in complex cases such as nasopharynx. Conclusion: The study suggests that the two LMCs generates the similar target coverage and sparing patterns of critical structures. However, SLMC is modestly more accurate than VLMC in modeling advanced MLC features, which may lead to a more accurate dose delivery in SW IMRT. Current clinical QA tools might not be specific enough to differentiate the dosimetric discrepancies at the millimeter level calculated by these two LMC algorithms. NIH/NIGMS grant U54 GM104944, Lincy Endowed

  1. Correlation of dosimetric parameters obtained with the analytical anisotropic algorithm and toxicity of chest chemoradiation in lung carcinoma

    SciTech Connect

    Cartier, Lysian; Auberdiac, Pierre; Khodri, Mustapha; Malkoun, Nadia; Chargari, Cyrus; Thorin, Julie; Melis, Adrien; Talabard, Jean-Noeel; Laroche, Guy de; Fournel, Pierre; Tiffet, Olivier; Schmitt, Thierry; and others

    2012-07-01

    The purpose of this study was to analyze and revisit toxicity related to chest chemoradiotherapy and to correlate these side effects with dosimetric parameters obtained using analytical anisotropic algorithm (AAA) in locally unresectable advanced lung cancer. We retrospectively analyzed data from 47 lung cancer patients between 2005 and 2008. All received conformal 3D radiotherapy using high-energy linear accelerator plus concomitant chemotherapy. All treatment planning data were transferred into Eclipse 8.05 (Varian Medical Systems, Palo Alto, CA) and dosimetric calculations were performed using AAA. Thirty-three patients (70.2%) developed acute pneumopathy after radiotherapy (grades 1 and 2). One patient (2.1%) presented with grade 3 pneumopathy. Thirty-one (66%) presented with grades 1-2 lung fibrosis, and 1 patient presented with grade 3 lung fibrosis. Thirty-four patients (72.3%) developed grade 1-2 acute oesophagic toxicity. Four patients (8.5%) presented with grades 3 and 4 dysphagia, necessitating prolonged parenteral nutrition. Median prescribed dose was 64 Gy (range 50-74) with conventional fractionation (2 Gy per fraction). Dose-volume constraints were respected with a median V20 of 23.5% (maximum 34%) and a median V30 of 17% (maximum 25%). The median dose delivered to healthy contralateral lung was 13.1 Gy (maximum 18.1 Gy). At univariate analysis, larger planning target volume and V20 were significantly associated with the probability of grade {>=}2 radiation-induced pneumopathy (p = 0.022 and p = 0.017, respectively). No relation between oesophagic toxicity and clinical/dosimetric parameters could be established. Using AAA, the present results confirm the predictive value of the V20 for lung toxicity as already demonstrated with the conventional pencil beam convolution approach.

  2. Dosimetric and geometric evaluation of a novel stereotactic radiotherapy device for breast cancer: The GammaPod Trade-Mark-Sign

    SciTech Connect

    Mutaf, Yildirim D.; Yi, Byong Yong; Prado, Karl; D'Souza, Warren D.; Regine, William F.; Feigenberg, Steven J.; Zhang Jin; Yu, Cedric X.

    2013-04-15

    Purpose: A dedicated stereotactic gamma irradiation device, the GammaPod Trade-Mark-Sign from Xcision Medical Systems, was developed specifically to treat small breast cancers. This study presents the first evaluation of dosimetric and geometric characteristics from the initial prototype installed at University of Maryland Radiation Oncology Department. Methods: The GammaPod Trade-Mark-Sign stereotactic radiotherapy device is an assembly of a hemi-spherical source carrier containing 36 {sup 60}Co sources, a tungsten collimator, a dynamically controlled patient support table, and the breast immobilization system which also functions as a stereotactic frame. The source carrier contains the sources in six columns spaced longitudinally at 60 Degree-Sign intervals and it rotates together with the variable-size collimator to form 36 noncoplanar, concentric arcs focused at the isocenter. The patient support table enables motion in three dimensions to position the patient tumor at the focal point of the irradiation. The table moves continuously in three cardinal dimensions during treatment to provide dynamic shaping of the dose distribution. The breast is immobilized using a breast cup applying a small negative pressure, where the immobilization cup is embedded with fiducials also functioning as the stereotactic frame for the breast. Geometric and dosimetric evaluations of the system as well as a protocol for absorbed dose calibration are provided. Dosimetric verifications of dynamically delivered patient plans are performed for seven patients using radiochromic films in hypothetical preop, postop, and target-in-target treatment scenarios. Results: Loaded with 36 {sup 60}Co sources with cumulative activity of 4320 Ci, the prototype GammaPod Trade-Mark-Sign unit delivers 5.31 Gy/min at the isocenter using the largest 2.5 cm diameter collimator. Due to the noncoplanar beam arrangement and dynamic dose shaping features, the GammaPod Trade-Mark-Sign device is found to deliver

  3. EFFECTIVE DOSIMETRIC HALF LIFE OF CESIUM 137 SOIL CONTAMINATION

    SciTech Connect

    Jannik, T; P Fledderman, P; Michael Paller, M

    2008-01-09

    In the early 1960s, an area of privately-owned swamp adjacent to the US Department of Energy's Savannah River Site (SRS), known as Creek Plantation, was contaminated by site operations. Studies conducted in 1974 estimated that approximately 925 GBq of {sup 137}Cs was deposited in the swamp. Subsequently, a series of surveys--composed of 52 monitoring locations--was initiated to characterize and trend the contaminated environment. The annual, potential, maximum doses to a hypothetical hunter were estimated by conservatively using the maximum {sup 137}Cs concentrations measured in the soil. The purpose of this report is to calculate an 'effective dosimetric' half-life for {sup 137}Cs in soil (based on the maximum concentrations) and compare it to the effective environmental half-life (based on the geometric mean concentrations).

  4. Thermoluminescence dosimetric properties and effective atomic numbers of window glass

    NASA Astrophysics Data System (ADS)

    Bootjomchai, Cherdsak; Laopaiboon, Raewat

    2014-03-01

    This work presents the main thermoluminescence (TL) dosimetric characteristics of commercial Thai transparent window glass. The amorphous structure of window glass was investigated by XRD. The glow curve revealed a peak (Tm) at 235 °C. The thermoluminescence response of window glass was studied after irradiation with photons in the absorb dose range of 0-14.05 mGy, which is of interest for the personal protection level of dosimetry. A linear response was obtained after both the first irradiation and the second irradiation. The minimum detectable dose of window glass was 0.15 mGy. The effective atomic number of window glass as a function of photon energy was calculated. The obtained results for the effective atomic number showed that it is very close to that of human biological tissues (Zeff = 6.7-8.4 at studied energy).

  5. Potential ocular damage from microwave exposure during electrosurgery: dosimetric survey

    SciTech Connect

    Paz, J.D.; Milliken, R.; Ingram, W.T.; Frank, A.; Atkin, A.

    1987-07-01

    A dosimetric survey of microwave radiation emitted by electrosurgical units used in operating rooms indicated that surgeons expose themselves to levels that may be hazardous, and that ocular exposures are especially high: 20 cm from the active lead, electric field strength at the eye/forehead position was 9.0 X 10(6) V2/M2 for the monopolar unit; and magnetic field strength at this position reached a magnitude of 3.5 A2/M2. These electric and magnetic fields exceeded the TLVs of the American National Standards Institute. The authors concluded that the high levels of microwave radiation generated by electrosurgery devices should receive immediate attention to assess health effects associated with such exposures.

  6. Dosimetric Analysis of Respiratory-Gated Radiotherapy for Hepatocellular Carcinoma

    SciTech Connect

    Xi Mian; Zhang Li; Liu Mengzhong; Deng Xiaowu; Huang Xiaoyan; Liu Hui

    2011-07-01

    The purpose of this study was to define individualized internal target volume (ITV) for hepatocellular carcinoma (HCC) using 4D computed tomography (4DCT), and to determine the geometric and dosimetric benefits of respiratory gating. Gross tumor volumes (GTVs) were contoured on 10 respiratory phases of 4DCT images for 12 patients with HCC. Three treatment plans were prepared using different planning target volumes (PTVs): (1) PTV{sub 3D}, derived from a single helical clinical target volume (CTV) plus conventional margins; (2) PTV{sub 10phases}, derived from ITV{sub 10phases}, which encompassed all 10 CTVs plus an isotropic margin of 0.8 cm; (3) PTV{sub gating}, derived from ITV{sub gating}, which encompassed three CTVs within gating-window at end-expiration plus an isotropic margin of 0.8 cm. The PTV{sub 3D} was the largest volume for all patients. The ITV-based plans and gating plans spared more normal tissues than 3D plans, especially the liver. Without increasing normal tissue complication probability of the 3D plans, the ITV-based plans allowed for increasing the calculated dose from 50.8 Gy to 54.7 Gy on average, and the gating plans could further escalate the dose to 58.5 Gy. Compared with ITV-based plans, the dosimetric gains with gating plan strongly correlated with GTV mobility in the craniocaudal direction. The ITV-based plans can ensure target coverage with less irradiation of normal tissues compared with 3D plans. Respiratory-gated radiotherapy can further reduce the target volumes to spare more surrounding tissues and allow dose escalation, especially for patients with tumor mobility >1 cm.

  7. A revised dosimetric model of the head and brain

    SciTech Connect

    Bolch, W.E.; Poston, J.W. Sr.

    1995-05-01

    The use of PET and SPECT radiopharmaceuticals in brain imaging has greatly expanded over the past several years. Many of these agents localize within particular subregions of the brain, thus allowing for detailed physiologic and metabolic imaging. Dosimetric models to support these advances in nuclear medicine have been lacking. For example, the brain within the phantom of MIRD Pamphlet No. 5 Revised is modeled simply as a single ellipsoid of tissue with no differentiation of its internal structures. To address this need, the MIRD Committee established a Task Group in 1992 to construct a revised dosimetric model of the brain to include the following subregions: the cerebral cortex, the white matter, the cerebellum, the thalamus, the caudate nucleus, the lentiform nucleus (putamen and globus pallidus), the cerebral spinal fluid (within the subarachnoid space of the brain), the lateral ventricles, and the third ventricle. Estimates of both electron and photon absorbed fractions (AF) were subsequently calculated using the EGS4 radiation transport code. For most of the internal brain structures, electron AFs are shown to fall fellow unity for all regions within the energy range of {approximately}200 keV to 4 MeV. For example, AFs for the caudate nucleus as both a source and target region and estimated as 0.98, 0.84, 0.39 for 200-keV, 1-MeV, and 4-MeV electron sources, respectively. Corresponding AFs within the white matter as a source and target region are estimated as 1.0, 0.95, and 0.79 for these same electron energies. Revised S values were subsequently calculated for a variety of beta-particle and positron emitters used in brain imaging.

  8. SU-E-T-134: Dosimetric Implications From Organ Segmentation

    SciTech Connect

    Wu, Z; Turian, J; Chu, J

    2014-06-01

    Purpose: To evaluate the dosimetric implications resulting from organ segmentation performed by different clinical experts Methods: Twelve patients received SBRT treatment to thoracic region within the past year were selected for this study. Three physicians contoured a set of organs following RTOG guideline. DVHs of all contours were generated from the approved plans used for treatment, and were compared to those produced during planning. Most OARs were evaluated on their max dose, some, such as heart and chest wall, were also evaluated on metrics such as max dose to 4cc of volume, or 30Gy volume dose. Results: In general, there is a greater dosimetric difference between the RTOG contour sets and clinical contour sets than among the three RTOG contour sets themselves for each patient. For example, there was no difference in esophagus max dose between the RTOG contour sets for ten patients. However, they showed an average of 2.3% higher max dose than the clinical contour set, with a standard deviation of 6.6%. The proximal bronchial tree (PBT) showed a similar behavior. The average difference of PBT max dose for seven patients is 0% between the three RTOG contour sets, with standard deviation of 1%. They showed an average of 16.1% higher max dose than the clinical contour set, with a standard deviation of 126%. Conclusion: This study shows that using RTOG contouring standards improves segmentation consistency between different physicians; most of the contours examined showed less than 1% dose difference. When RTOG contour sets were compared to the clinical contour set, the differences are much more significant. Thus it is important to standardize contouring guidelines in radiation therapy treatment planning. This will reduce uncertainties in clinical outcome analysis and research studies.

  9. Dosimetric Comparison of Craniospinal Irradiation Using Different Tomotherapy Techniques.

    PubMed

    Zhang, X; Penagaricano, J; Han, E Y; Morrill, S; Hardee, M; Liang, X; Gupta, S K; Corry, P M; Ratanatharathom, V

    2015-08-01

    The objective of this study is to compare the new and conventional tomotherapy treatment techniques and to evaluate dosimetric differences between them. A dosimetric analysis was performed by comparing planning target volume (PTV) median dose, 95% of PTV dose coverage, Paddick conformity index (CI), homogeneity index (HI), whole-body integral dose, and OAR median doses. The beam on time (BOT) and the effect of different jaw sizes and pitch values was studied. The study results indicated that the PTV dose coverage for all the techniques was comparable. Treatment plans using dynamic jaw reduced OAR doses to structures located at the treatment field edge compared to fixed jaw plans. The HT-3DCRT plans resulted in higher OAR doses to kidney, liver, and lung compared to the other techniques, and TD-IMRT provided the best dose sparing to liver compared to other techniques. Whole-body integral dose differences were found to be insignificant among the techniques. BOT was found to be higher for fixed jaw treatment plan compared to dynamic jaw plan and comparable between all treatment techniques with 5-cm dynamic jaw. In studying effect of jaw size, better OAR sparing and HI were found for 2.5-cm jaw but at the expense of doubling of BOT as compared to 5-cm jaw. There was no significant improvement found in OAR sparing when the pitch value was increased. Increasing the pitch from 0.2 to 0.43, the CI was improved, HI improved only for 5-cm jaw size, and BOT decreased to approximately half of its original time. PMID:25398680

  10. Dosimetric comparison of two arc-based stereotactic body radiotherapy techniques for early-stage lung cancer

    SciTech Connect

    Liu, Huan Ye, Jingjing; Kim, John J.; Deng, Jun; Kaur, Monica S.; Chen, Zhe

    2015-04-01

    To compare the dosimetric and delivery characteristics of two arc-based stereotactic body radiotherapy (SBRT) techniques for early-stage lung cancer treatment. SBRT treatment plans for lung tumors of different sizes and locations were designed using a single-isocenter multisegment dynamic conformal arc technique (SiMs-arc) and a volumetric modulated arc therapy technique (RapidArc) for 5 representative patients treated previously with lung SBRT. The SiMs-arc plans were generated with the isocenter located in the geometric center of patient's axial plane (which allows for collision-free gantry rotation around the patient) and 6 contiguous 60° arc segments spanning from 1° to 359°. 2 RapidArc plans, one using the same arc geometry as the SiMs-arc and the other using typical partial arcs (210°) with the isocenter inside planning target volume (PTV), were generated for each corresponding SiMs-arc plan. All plans were generated using the Varian Eclipse treatment planning system (V10.0) and were normalized with PTV V{sub 100} to 95%. PTV coverage, dose to organs at risk, and total monitor units (MUs) were then compared and analyzed. For PTV coverage, the RapidArc plans generally produced higher PTV D{sub 99} (by 1.0% to 3.3%) and higher minimum dose (by 2.7% to 12.7%), better PTV conformality index (by 1% to 8%), and less volume of 50% dose outside 2 cm from PTV (by 0 to 20.8 cm{sup 3}) than the corresponding SiMs-arc plans. For normal tissues, no significant dose differences were observed for the lungs, trachea, chest wall, and heart; RapidArc using partial arcs produced lowest maximum dose to spinal cord. For dose delivery, the RapidArc plans typically required 50% to 90% more MUs than SiMs-arc plans to deliver the same prescribed dose. The additional intensity modulation afforded by variable gantry speed and dose rate and by overlapping arcs enabled RapidArc plans to produce dosimetrically improved plans for lung SBRT, but required more MUs (by a factor > 1.5) to

  11. Dosimetric feasibility study for an extracorporeal BNCT application on liver metastases at the TRIGA Mainz.

    PubMed

    Blaickner, M; Kratz, J V; Minouchehr, S; Otto, G; Schmidberger, H; Schütz, C; Vogtländer, L; Wortmann, B; Hampel, G

    2012-01-01

    This study investigates the dosimetric feasibility of Boron Neutron Capture Therapy (BNCT) of explanted livers in the thermal column of the research reactor in Mainz. The Monte Carlo code MCNP5 is used to calculate the biologically weighted dose for different ratios of the (10)B-concentration in tumour to normal liver tissue. The simulation results show that dosimetric goals are only partially met. To guarantee effective BNCT treatment the organ has to be better shielded from all gamma radiation. PMID:21872481

  12. Dosimetric impact of applicator displacement during high dose rate (HDR) Cobalt-60 brachytherapy for cervical cancer: A planning study

    NASA Astrophysics Data System (ADS)

    Yong, J. S.; Ung, N. M.; Jamalludin, Z.; Malik, R. A.; Wong, J. H. D.; Liew, Y. M.; Ng, K. H.

    2016-02-01

    We investigated the dosimetric impact of applicator displacement on dose specification during high dose rate (HDR) Cobalt-60 (Co-60) brachytherapy for cervical cancer through a planning study. Eighteen randomly selected HDR full insertion plans were restrospectively studied. The tandem and ovoids were virtually shifted translationally and rotationally in the x-, y- and z-axis directions on the treatment planning system. Doses to reference points and volumes of interest in the plans with shifted applicators were compared with the original plans. The impact of dose displacement on 2D (point-based) and 3D (volume-based) treatment planning techniques was also assessed. A ±2 mm translational y-axis applicator shift and ±4° rotational x-axis applicator shift resulted in dosimetric changes of more than 5% to organs at risk (OAR) reference points. Changes to the maximum doses to 2 cc of the organ (D2cc) in 3D planning were statistically significant and higher than the reference points in 2D planning for both the rectum and bladder (p<0.05). Rectal D2cc was observed to be the most sensitive to applicator displacement among all dose metrics. Applicator displacement that is greater than ±2 mm translational y-axis and ±4° rotational x-axis resulted in significant dose changes to the OAR. Thus, steps must be taken to minimize the possibility of applicator displacement during brachytherapy.

  13. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    PubMed Central

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Mitch, Michael G.; Rivard, Mark J.; Stump, Kurt E.; Thomadsen, Bruce R.; Venselaar, Jack L. M.

    2011-01-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie–European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used

  14. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    SciTech Connect

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Mitch, Michael G.; Rivard, Mark J.; Stump, Kurt E.; Thomadsen, Bruce R.; Venselaar, Jack L. M.

    2011-02-15

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as

  15. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: report of AAPM Task Group No. 138 and GEC-ESTRO.

    PubMed

    DeWerd, Larry A; Ibbott, Geoffrey S; Meigooni, Ali S; Mitch, Michael G; Rivard, Mark J; Stump, Kurt E; Thomadsen, Bruce R; Venselaar, Jack L M

    2011-02-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as

  16. Dosimetric feasibility of real-time MRI-guided proton therapy

    SciTech Connect

    Moteabbed, M. Schuemann, J.; Paganetti, H.

    2014-11-01

    Purpose: Magnetic resonance imaging (MRI) is a prime candidate for image-guided radiotherapy. This study was designed to assess the feasibility of real-time MRI-guided proton therapy by quantifying the dosimetric effects induced by the magnetic field in patients’ plans and identifying the associated clinical consequences. Methods: Monte Carlo dose calculation was performed for nine patients of various treatment sites (lung, liver, prostate, brain, skull-base, and spine) and tissue homogeneities, in the presence of 0.5 and 1.5 T magnetic fields. Dose volume histogram (DVH) parameters such as D{sub 95}, D{sub 5}, and V{sub 20} as well as equivalent uniform dose were compared for the target and organs at risk, before and after applying the magnetic field. The authors further assessed whether the plans affected by clinically relevant dose distortions could be corrected independent of the planning system. Results: By comparing the resulting dose distributions and analyzing the respective DVHs, it was determined that despite the observed lateral beam deflection, for magnetic fields of up to 0.5 T, neither was the target coverage jeopardized nor was the dose to the nearby organs increased in all cases except for prostate. However, for a 1.5 T magnetic field, the dose distortions were more pronounced and of clinical concern in all cases except for spine. In such circumstances, the target was severely underdosed, as indicated by a decrease in D{sub 95} of up to 41% of the prescribed dose compared to the nominal situation (no magnetic field). Sites such as liver and spine were less affected due to higher tissue homogeneity, typically smaller beam range, and the choice of beam directions. Simulations revealed that small modifications to certain plan parameters such as beam isocenter (up to 19 mm) and gantry angle (up to 10°) are sufficient to compensate for the magnetic field-induced dose disturbances. The authors’ observations indicate that the degree of required

  17. Dosimetric feasibility of real-time MRI-guided proton therapy

    PubMed Central

    Moteabbed, M.; Schuemann, J.; Paganetti, H.

    2014-01-01

    Purpose: Magnetic resonance imaging (MRI) is a prime candidate for image-guided radiotherapy. This study was designed to assess the feasibility of real-time MRI-guided proton therapy by quantifying the dosimetric effects induced by the magnetic field in patients’ plans and identifying the associated clinical consequences. Methods: Monte Carlo dose calculation was performed for nine patients of various treatment sites (lung, liver, prostate, brain, skull-base, and spine) and tissue homogeneities, in the presence of 0.5 and 1.5 T magnetic fields. Dose volume histogram (DVH) parameters such as D95, D5, and V20 as well as equivalent uniform dose were compared for the target and organs at risk, before and after applying the magnetic field. The authors further assessed whether the plans affected by clinically relevant dose distortions could be corrected independent of the planning system. Results: By comparing the resulting dose distributions and analyzing the respective DVHs, it was determined that despite the observed lateral beam deflection, for magnetic fields of up to 0.5 T, neither was the target coverage jeopardized nor was the dose to the nearby organs increased in all cases except for prostate. However, for a 1.5 T magnetic field, the dose distortions were more pronounced and of clinical concern in all cases except for spine. In such circumstances, the target was severely underdosed, as indicated by a decrease in D95 of up to 41% of the prescribed dose compared to the nominal situation (no magnetic field). Sites such as liver and spine were less affected due to higher tissue homogeneity, typically smaller beam range, and the choice of beam directions. Simulations revealed that small modifications to certain plan parameters such as beam isocenter (up to 19 mm) and gantry angle (up to 10°) are sufficient to compensate for the magnetic field-induced dose disturbances. The authors’ observations indicate that the degree of required corrections strongly depends

  18. Characterization and use of a 2D-array of ion chambers for brachytherapy dosimetric quality assurance

    SciTech Connect

    Yewondwossen, Mammo

    2012-10-01

    The two-dimensional (2D) ionization chamber array MatriXX Evolution is one of the 2D ionization chamber arrays developed by IBA Dosimetry (IBA Dosimetry, Germany) for megavoltage real-time absolute 2D dosimetry and verification of intensity-modulated radiation therapy (IMRT). The purpose of this study was to (1) evaluate the performance of ion chamber array for submegavoltage range brachytherapy beam dose verification and quality assurance (QA) and (2) use the end-to-end dosimetric evaluation that mimics a patient treatment procedure and confirm the primary source strength calibration agrees in both the treatment planning system (TPS) and treatment delivery console computers. The dose linearity and energy dependence of the 2D ion chamber array was studied using kilovoltage X-ray beams (100, 180 and 300 kVp). The detector calibration factor was determined using 300 kVp X-ray beams so that we can use the same calibration factor for dosimetric verification of high-dose-rate (HDR) brachytherapy. The phantom used for this measurement consists of multiple catheters, the IBA MatriXX detector, and water-equivalent slab of RW3 to provide full scattering conditions. The treatment planning system (TPS) (Oncentra brachy version 3.3, Nucletron BV, Veenendaal, the Netherlands) dose distribution was calculated on the computed tomography (CT) scan of this phantom. The measured and TPS calculated distributions were compared in IBA Dosimetry OmniPro-I'mRT software. The quality of agreement was quantified by the gamma ({gamma}) index (with 3% delta dose and distance criterion of 2 mm) for 9 sets of plans. Using a dedicated phantom capable of receiving 5 brachytherapy intralumenal catheters a QA procedure was developed for end-to-end dosimetric evaluation for routine QA checks. The 2D ion chamber array dose dependence was found to be linear for 100-300 kVp and the detector response (k{sub user}) showed strong energy dependence for 100-300 kVp energy range. For the Ir-192 brachytherapy

  19. Dosimetric estimates for clinical positron emission tomographic scanning after injection of ( sup 18 F)-6-fluorodopamine

    SciTech Connect

    Goldstein, D.S.; Chang, P.C.; Smith, C.B.; Herscovitch, P.; Austin, S.M.; Eisenhofer, G.; Kopin, I.J. )

    1991-01-01

    Positron emission tomographic (PET) scanning after systemic i.v. injection of fluorine-18-6-fluorodopamine (({sup 18}F)-6F-DA) is a method for visualizing and measuring regional sympathetic nervous system innervation and function. Based on results of preclinical studies of rats and dogs and on previous literature about the fate of injected tracer-labeled catecholamines, dosimetric estimates for clinical studies are presented here. After injection of 1 mCi of ({sup 18}F)-F-DA, the radiation dose would be highest to the wall of the urinary bladder (1.40 rem/mCi), due to accumulation of radioactive metabolites of ({sup 18}F)-F-DA in urine. Radioactivity also would accumulate in bile. Organs receiving the next highest dose would be the kidneys (0.9 rem/mCi) and small intestine (0.2 rem/mCi). The parenchymal radiation dose would be lowest in the brain, since there is an effective blood-brain barrier for circulating catecholamines. Radiation doses to all organs after administration of 1 mCi of ({sup 18}F)-F-DA to humans would be less than 3 rem and, therefore, within current FDA guidelines.

  20. Dosimetric verification of enhanced dynamic wedges by a 2D ion chamber array

    NASA Astrophysics Data System (ADS)

    Oh, Se An; Kim, Sung Kyu; Kang, Min Kyu; Yea, Ji Woon; Kim, Eng Chan

    2013-12-01

    Wedge filters are commonly used to achieve dose uniformity in the target volume in radiotherapy and can be categorized as physical wedges (PWs) and enhanced dynamic wedges (EDWs). The EDW generates PW-like dose profiles while moving the upper jaw in the Y directions with a varying dose rate in the treatment beams. Task Group 53 of the AAPM (American Association of Physicists in Medicine) recommended that the dynamic wedge be verified before implementation in the radiation treatment planning (RTP) system. The aim of this study was to use the I'mRT MatriXX to verify the dose profiles of the EDWs manufactured by Varian. We used Pencil Beam Convolution algorithms (eclipse 8.6) for the calculation and I'mRT MatriXX with Plastic Water® phantom MULTICube for dose measurements. The gamma indices of the calculations and the measurements for the EDWs were 84.84% and 86.54% in 2%/2 mm tolerance, and 99.47% and 99.64% in 3%/3 mm tolerance for wedge angles of 15°, 30°, 45° and 60°, respectively. The dose distributions differed between the calculations using the system and the measurements in the penumbra and the outer beam regions of the wedge fields. We confirmed that the dosimetric verifications of the EDW were acceptable when using the criterion for external beam dose calculations of Task Group 53.

  1. Dosimetric evaluations of the interplay effect in respiratory-gated intensity-modulated radiation therapy

    SciTech Connect

    Chen Hungcheng; Wu, Andrew; Brandner, Edward D.; Heron, Dwight E.; Huq, M. Saiful; Yue, Ning J.; Chen Wencheng

    2009-03-15

    The interplay between a mobile target and a dynamic multileaf collimator can compromise the accuracy of intensity-modulated radiation therapy (IMRT). Our goal in this study is to investigate the dosimetric effects caused by the respiratory motion during IMRT. A moving phantom was built to simulate the typical breathing motion. Different sizes of the gating windows were selected for gated deliveries. The residual motions during the beam-on period ranged from 0.5 to 3 cm. An IMRT plan with five treatment fields from different gantry angles were delivered to the moving phantom for three irradiation conditions: Stationary condition, moving with the use of gating system, and moving without the use of gating system. When the residual motion was 3 cm, the results showed significant differences in dose distributions between the stationary condition and the moving phantom without gating beam control. The overdosed or underdosed areas enclosed about 33% of the treatment area. In contrast, the dose distribution on the moving phantom with gating window set to 0.5 cm showed no significant differences from the stationary phantom. With the appropriate setting of the gating window, the deviation of dose from the respiratory motion can be minimized. It appeals that limiting the residual motion to less than 0.5 cm is critical for the treatments of mobile structures.

  2. Dosimetrical evaluation of Leksell Gamma Knife 4C radiosurgery unit

    NASA Astrophysics Data System (ADS)

    Sajeev, Thomas; Mustafa, Mohamed M.; Supe, Sanjay S.

    2011-01-01

    A number of experiments was performed using standard protocols, in order to evaluate the dosimetric accuracy of Leksell Gamma Knife 4C unit. Verification of the beam alignment has been performed for all collimators using solid plastic head phantom and Gafchromic™ type MD-55 films. The study showed a good agreement of Leksell Gammaplan calculated dose profiles with experimentally determined profiles in all three axes. Isocentric accuracy is verified using a specially machined cylindrical aluminium film holder tool made with very narrow geometric tolerances aligned between trunnions of 4 mm collimator. Considering all uncertainties in all three dimensions, the estimated accuracy of the unit was 0.1 mm. Dose rate at the centre point of the unit has been determined according to the IAEA, TRS-398 protocol, using Unidose-E (PTW-Freiburg, Germany) with a 0.125 cc ion chamber, over a period of 6 years. The study showed that the Leksell Gamma Knife 4C unit is excellent radiosurgical equipment with high accuracy and precision, which makes it possible to deliver larger doses of radiation, within the limits defined by national and international guidelines, applicable for stereotactic radiosurgery procedures.

  3. Optically stimulated luminescence: Searching for new dosimetric materials

    NASA Astrophysics Data System (ADS)

    Yoshimura, E. M.; Yukihara, E. G.

    2006-09-01

    Optically stimulated luminescence (OSL) is increasingly being used as a dosimetric technique in various fields such as medical, environmental and space dosimetry, and sediment and archaeological dating. Nevertheless few compounds are suitable as OSL materials. In this work, a survey was made of various insulators, searching for candidates for new OSL dosimeters. Natural and synthetic crystals and glasses from numerous sources are included. Luminescence was stimulated with blue LEDs (470 nm) and with IR laser (830 nm) provided by an automatic reader. Irradiation was performed with a 90Sr/ 90Y beta source, and the emitted light was measured with a photomultiplier tube, protected with suitable optical filters. Thermoluminescence (TL) of the samples was also measured, with the same equipment, to evaluate the thermal and optical stability of the defects related to OSL and TL. Among the various investigated materials, Al 2O 3:Cr, Mg, Fe, MgAl 2O 4 spinels, Mg 2SiO 4:Tb, and natural fluorite show potential as OSL dosimeters. Some materials, as barium aluminoborate glasses, although showing intense OSL signals, present a high fading at room temperature. In that situation the OSL signal is related to low temperature TL peaks that also fade at room temperature. None of the investigated materials was specially prepared to be used as an OSL dosimeter, which means that work can be done, mainly in the impurity nature and content, in order to improve OSL signals and to overcome some of the shortcomings that were noticed.

  4. A comprehensive approach to age-dependent dosimetric modeling

    SciTech Connect

    Leggett, R.W.; Cristy, M.; Eckerman, K.F.

    1986-01-01

    In the absence of age-specific biokinetic models, current retention models of the International Commission on Radiological Protection (ICRP) frequently are used as a point of departure for evaluation of exposures to the general population. These models were designed and intended for estimation of long-term integrated doses to the adult worker. Their format and empirical basis preclude incorporation of much valuable physiological information and physiologically reasonable assumptions that could be used in characterizing the age-specific behavior of radioelements in humans. In this paper we discuss a comprehensive approach to age-dependent dosimetric modeling in which consideration is given not only to changes with age in masses and relative geometries of body organs and tissues but also to best available physiological and radiobiological information relating to the age-specific biobehavior of radionuclides. This approach is useful in obtaining more accurate estimates of long-term dose commitments as a function of age at intake, but it may be particularly valuable in establishing more accurate estimates of dose rate as a function of age. Age-specific dose rates are needed for a proper analysis of the potential effects on estimates or risk of elevated dose rates per unit intake in certain stages of life, elevated response per unit dose received during some stages of life, and age-specific non-radiogenic competing risks.

  5. Dosimetric implications of age related glandular changes in screening mammography

    NASA Astrophysics Data System (ADS)

    Beckett, J. R.; Kotre, C. J.

    2000-03-01

    The UK National Health Service Breast Screening Programme is currently organized to routinely screen women between the ages of 50 and 64, with screening for older women available on request. The lower end of this age range closely matches the median age for the menopause (51 years), during which significant changes in the composition of the breast are known to occur. In order to quantify the dosimetric effect of these changes, radiographic factors and compressed breast thickness data for a cohort of 1258 women aged between 35 and 79 undergoing breast screening mammography have been used to derive estimates of breast glandularity and mean glandular dose (MGD), and examine their variation with age. The variation of mean radiographic exposure factors with age is also investigated. The presence of a significant number of age trial women within the cohort allowed an extended age range to be studied. Estimates of MGD including corrections for breast glandularity based on compressed breast thickness only, compressed breast thickness and age and for each individual woman are compared with the MGD based on the conventional assumption of a 50:50 adipose/glandular composition. It has been found that the use of the conventional 50:50 assumption leads to overestimates of MGD of up to 13% over the age range considered. By using compressed breast thickness to estimate breast glandularity, this error range can be reduced to 8%, whilst age and compressed breast thickness based glandularity estimates result in an error range of 1%.

  6. Dosimetric characteristics of a MOSFET dosimeter for clinical electron beams.

    PubMed

    Manigandan, D; Bharanidharan, G; Aruna, P; Devan, K; Elangovan, D; Patil, Vikram; Tamilarasan, R; Vasanthan, S; Ganesan, S

    2009-09-01

    The fundamental dosimetric characteristics of commercially available metal oxide semiconductor field effect transistor (MOSFET) detectors were studied for clinical electron beam irradiations. MOSFET showed excellent linearity against doses measured using an ion chamber in the dose range of 20-630cGy. MOSFET reproducibility is better at high doses compared to low doses. The output factors measured with the MOSFET were within +/-3% when compared with those measured with a parallel plate chamber. From 4 to 12MeV, MOSFETs showed a large angular dependence in the tilt directions and less in the axial directions. MOSFETs do not show any dose-rate dependence between 100 and 600MU/min. However, MOSFETs have shown under-response when the dose per pulse of the beam is decreased. No measurable effect in MOSFET response was observed in the temperature range of 23-40 degrees C. The energy dependence of a MOSFET dosimeter was within +/-3.0% for 6-18MeV electron beams and 5.5% for 4MeV ones. This study shows that MOSFET detectors are suitable for dosimetry of electron beams in the energy range of 4-18MeV. PMID:19128995

  7. Dosimetric effects on small-field beam-modeling for stereotactic body radiation therapy

    NASA Astrophysics Data System (ADS)

    Cho, Woong; Kim, Suzy; Kim, Jung-In; Wu, Hong-Gyun; Jung, Joo-Young; Kim, Min-Joo; Suh, Tae-Suk; Kim, Jin-Young; Kim, Jong Won

    2015-02-01

    The treatment planning of stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) requires high accuracy of dosimetric data for small radiation fields. The dosimetric effects on the beam-modeling process of a treatment planning system (TPS) were investigated using different measured small-field data sets. We performed small-field dosimetry with three detectors: a CC13 ion chamber, a CC01 ion chamber, and an edge detector. Percentage depth doses (PDDs) and dose profiles for field sizes given by 3 × 3 cm2, 2 × 2 cm2, and 1 × 1 cm2 were obtained for 6 MV and 15 MV photon beams. Each measured data set was used as data input for a TPS, in which a beam-modeling process was implemented using the collapsed cone convolution (CCC) algorithm for dose calculation. The measured data were used to generate six beam-models based on each combination of detector type and photon energy, which were then used to calculate the corresponding PDDs and dose profiles for various depths and field sizes. Root mean square differences (RMSDs) between the calculated and the measured doses were evaluated for the PDDs and the dose profiles. The RMSDs of PDDs beyond the maximum dose depth were within an accuracy of 0.2-0.6%, being clinically acceptable. The RMSDs of the dose profiles corresponding to the CC13, the CC01, and the edge detector were 2.80%, 1.49%, and 1.46% for a beam energy of 6 MV and 2.34%, 1.15%, and 1.44% for a beam energy of 15 MV, respectively. The calculated results for the CC13 ion chamber showed the most discrepancy compared to the measured data, due to the relatively large sensitive volume of this detector. However, the calculated dose profiles for the detectors were not significantly different from another. The physical algorithm used in the beam-modeling process did not seem to be sensitive to blurred data measured with detectors with large sensitive volumes. Each beam-model was used to clinically evaluate lung and lymphatic node SBRT plans

  8. An evaluation of a novel synthetic diamond probe for dosimetric applications

    NASA Astrophysics Data System (ADS)

    Ade, N.; Nam, T. L.

    2015-10-01

    A study is presented that characterises the dosimetric performances of two synthetic diamond sensors (HP1 and HP2) when either one or both detectors are subjected to clinical beams of various types under large as well as small-field conditions. Detector performances were evaluated using a prototype probe housing constructed of tissue-equivalent materials. The probe can accommodate diamond sensors of various sizes and is configured for radiation detection in different exposure orientations without having first to re-orient the sensor plate within its body. Also, the diamond sensor is aligned in the same configuration as its rectangular housing and the probe is designed to be compatible with commercially available electrometer systems. Dosimetric measurements were conducted using mammography X-rays (25-32 kVp) and megavoltage electron (6-21 MeV) and photon (60Co γ-ray, 6-18 MV X-ray) beams. Whereas HP1 was evaluated using all beam types under large-flied conditions and small-photon-beam fields down to 0.7×0.7 cm2, HP2 was evaluated using small-electron and photon-beam conditions down to 0.3×0.3 cm2 6 MV photon field. Using HP1 sensor, the synthetic diamond probe was found not to require daily pre-irradiation as long as it is properly shielded from ambient light and its response stabilised. Furthermore, the diamond probe exhibited linear response characteristics with absorbed dose and on exposure parameters to various beam types, negligible energy dependence and almost no variation in angular response. Exposing the sensor HP2 under a 0.4×0.4 cm2 6 MV photon radiation field, a sensitivity value of 197.3 nC Gy-1 mm-3 was established compared to a value of 136.1 nC Gy-1 mm-3 obtained with a small-field diode detector. Also, a figure of 5.5×103 for the SNR was established for the sensor in the same radiation field. Relative beam data measured with the diamond sensors were found to agree within 1-2% with data obtained with reference detectors. The presentation

  9. The dosimetric impact of dental implants on head-and-neck volumetric modulated arc therapy.

    PubMed

    Lin, Mu-Han; Li, Jinsheng; Price, Robert A; Wang, Lu; Lee, Chung-Chi; Ma, C-M

    2013-02-21

    This work aims to investigate the dosimetric impact of dental implants on volumetric modulated arc therapy (VMAT) for head-and-neck patients and to evaluate the effectiveness of using the material's electron-density ratio for the correction. An in-house Monte Carlo (MC) code was utilized for the dose calculation to account for the scattering and attenuation caused by the high-Z implant material. Three different dental implant materials were studied in this work: titanium, Degubond®4 and gold. The dose perturbations caused by the dental implant materials were first investigated in a water phantom with a 1 cm(3) insert. The per cent depth dose distributions of a 3 × 3 cm(2) photon field were compared with the insert material as water and the three selected dental implant materials. To evaluate the impact of the dental implant on VMAT patient dose calculation, four head-and-neck cases were selected. For each case, the VMAT plan was designed based on the artifact-corrected patient geometry using a treatment planning system (TPS) that was typically utilized for routine patient treatment. The plans were re-calculated using the MC code for five situations: uncorrected geometry, artifact-corrected geometry and artifact-corrected geometry with one of the three different implant materials. The isodose distributions and the dose-volume histograms were cross-compared with each other. To evaluate the effectiveness of using the material's electron-density ratio for dental implant correction, the implant region was set as water with the material's electron-density ratio and the calculated dose was compared with the MC simulation with the real material. The main effect of the dental implant was the severe attenuation in the downstream. The 1 cm(3) dental implant can lower the downstream dose by 10% (Ti) to 51% (Au) for a 3 × 3 cm(2) field. The TPS failed to account for the dose perturbation if the dental implant material was not precisely defined. For the VMAT

  10. Dosimetric characterization of a microDiamond detector in clinical scanned carbon ion beams

    SciTech Connect

    Marinelli, Marco; Prestopino, G. Verona, C.; Verona-Rinati, G.; Ciocca, M.; Mirandola, A.; Mairani, A.; Raffaele, L.; Magro, G.

    2015-04-15

    Purpose: To investigate for the first time the dosimetric properties of a new commercial synthetic diamond detector (PTW microDiamond) in high-energy scanned clinical carbon ion beams generated by a synchrotron at the CNAO facility. Methods: The detector response was evaluated in a water phantom with actively scanned carbon ion beams ranging from 115 to 380 MeV/u (30–250 mm Bragg peak depth in water). Homogeneous square fields of 3 × 3 and 6 × 6 cm{sup 2} were used. Short- and medium-term (2 months) detector response stability, dependence on beam energy as well as ion type (carbon ions and protons), linearity with dose, and directional and dose-rate dependence were investigated. The depth dose curve of a 280 MeV/u carbon ion beam, scanned over a 3 × 3 cm{sup 2} area, was measured with the microDiamond detector and compared to that measured using a PTW Advanced Markus ionization chamber, and also simulated using FLUKA Monte Carlo code. The detector response in two spread-out-Bragg-peaks (SOBPs), respectively, centered at 9 and 21 cm depths in water and calculated using the treatment planning system (TPS) used at CNAO, was measured. Results: A negligible drift of detector sensitivity within the experimental session was seen, indicating that no detector preirradiation was needed. Short-term response reproducibility around 1% (1 standard deviation) was found. Only 2% maximum variation of microDiamond sensitivity was observed among all the evaluated proton and carbon ion beam energies. The detector response showed a good linear behavior. Detector sensitivity was found to be dose-rate independent, with a variation below 1.3% in the evaluated dose-rate range. A very good agreement between measured and simulated Bragg curves with both microDiamond and Advanced Markus chamber was found, showing a negligible LET dependence of the tested detector. A depth dose curve was also measured by positioning the microDiamond with its main axis oriented orthogonally to the beam

  11. Evaluation of fluence-based dose delivery incorporating the spatial variation of dosimetric leaf gap (DLG).

    PubMed

    Kumaraswamy, Lalith K; Xu, Zhengzheng; Bailey, Daniel W; Schmitt, Jonathan D; Podgorsak, Matthew B

    2016-01-01

    The Eclipse treatment planning system uses a single dosimetric leaf gap (DLG) value to retract all multileaf collimator leaf positions during dose calculation to model the rounded leaf ends. This study evaluates the dosimetric impact of the 2D variation of DLG on clinical treatment plans based on their degree of fluence modulation. In-house software was developed to retrospectively apply the 2D variation of DLG to 61 clinically treated VMAT plans, as well as to several test plans. The level of modulation of the VMAT cases were determined by calculating their modulation complexity score (MCS). Dose measurements were done using the MapCHECK device at a depth of 5.0 cm for plans with and without the 2D DLG correction. Measurements were compared against predicted dose planes from the TPS using absolute 3%/3 mm and 2%/2 mm gamma criteria for test plans and for VMAT cases, respectively. The gamma pass rate for the 2 mm, 4 mm, and 6 mm sweep test plans increased by 23.2%, 28.7%, and 26.0%, respectively, when the measurements were corrected with 2D variation of DLG. The clinical anal VMAT cases, which had very high MLC modulation, showed the most improvement. The majority of the improvement occurred for doses created by the 1.0 cm width leaves for both the test plans and the VMAT cases. The gamma pass rates for the highly modulated head and neck (H&N) cases, moderately modulated prostate and esophageal cases, and minimally modulated brain cases improved only slightly when corrected with 2D variation of DLG. This is because these cases did not employ the 1.0 cm width leaves for dose calculation and delivery. These data suggest that, at the very least, the TPS plans with highly modulated fluences created by the 1.0 cm fields require 2D DLG correction. Incorporating the 2D variation of DLG for the highly modulated clinical treatment plans improves their planar dose gamma pass rates, especially for fields employing the outer 1.0 cm width MLC leaves. This is because there are

  12. The dosimetric impact of dental implants on head-and-neck volumetric modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Lin, Mu-Han; Li, Jinsheng; Price, Robert A., Jr.; Wang, Lu; Lee, Chung-Chi; Ma, C.-M.

    2013-02-01

    This work aims to investigate the dosimetric impact of dental implants on volumetric modulated arc therapy (VMAT) for head-and-neck patients and to evaluate the effectiveness of using the material's electron-density ratio for the correction. An in-house Monte Carlo (MC) code was utilized for the dose calculation to account for the scattering and attenuation caused by the high-Z implant material. Three different dental implant materials were studied in this work: titanium, Degubond®4 and gold. The dose perturbations caused by the dental implant materials were first investigated in a water phantom with a 1 cm3 insert. The per cent depth dose distributions of a 3 × 3 cm2 photon field were compared with the insert material as water and the three selected dental implant materials. To evaluate the impact of the dental implant on VMAT patient dose calculation, four head-and-neck cases were selected. For each case, the VMAT plan was designed based on the artifact-corrected patient geometry using a treatment planning system (TPS) that was typically utilized for routine patient treatment. The plans were re-calculated using the MC code for five situations: uncorrected geometry, artifact-corrected geometry and artifact-corrected geometry with one of the three different implant materials. The isodose distributions and the dose-volume histograms were cross-compared with each other. To evaluate the effectiveness of using the material's electron-density ratio for dental implant correction, the implant region was set as water with the material's electron-density ratio and the calculated dose was compared with the MC simulation with the real material. The main effect of the dental implant was the severe attenuation in the downstream. The 1 cm3 dental implant can lower the downstream dose by 10% (Ti) to 51% (Au) for a 3 × 3 cm2 field. The TPS failed to account for the dose perturbation if the dental implant material was not precisely defined. For the VMAT patient dose calculation

  13. Dosimetric properties of dysprosium doped lithium borate glass irradiated by 6 MV photons

    NASA Astrophysics Data System (ADS)

    Ab Rasid, A.; Wagiran, H.; Hashim, S.; Ibrahim, Z.; Ali, H.

    2015-07-01

    Undoped and dysprosium doped lithium borate glass system with empirical formula (70-x) B2O3-30 Li2O-(x) Dy2O3 (x=0.1, 0.3, 0.5, 0.7, 1.0 mol%) were prepared using the melt-quenching technique. The dosimetric measurements were performed by irradiating the samples to 6 MV photon beam using linear accelerator (LINAC) over a dose range of 0.5-5.0 Gy. The glass series of dysprosium doped lithium borate glass produced the best thermoluminescence (TL) glow curve with the highest intensity peak from sample with 1.0 mol% Dy2O3 concentration. Minimum detectable dose was detected at 2.24 mGy, good linearity of regression coefficient, high reproducibility and high sensitivity compared to the undoped glass are from 1.0 mol% dysprosium doped lithium borate glass. The results indicated that the series of dysprosium doped lithium glasses have a great potential to be considered as a thermoluminescence dosimetry (TLD).

  14. Topological detector: measuring continuous dosimetric quantities with few-element detector array

    NASA Astrophysics Data System (ADS)

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-01

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions.

  15. The Application of Elliptic Cylindrical Phantom in Brachytherapy Dosimetric Study of HDR 192Ir Source

    NASA Astrophysics Data System (ADS)

    Ahn, Woo Sang; Park, Sung Ho; Jung, Sang Hoon; Choi, Wonsik; Do Ahn, Seung; Shin, Seong Soo

    2014-06-01

    The purpose of this study is to determine the radial dose function of HDR 192Ir source based on Monte Carlo simulation using elliptic cylindrical phantom, similar to realistic shape of pelvis, in brachytherapy dosimetric study. The elliptic phantom size and shape was determined by analysis of dimensions of pelvis on CT images of 20 patients treated with brachytherapy for cervical cancer. The radial dose function obtained using the elliptic cylindrical water phantom was compared with radial dose functions for different spherical phantom sizes, including the Williamsion's data loaded into conventional planning system. The differences in the radial dose function for the different spherical water phantoms increase with radial distance, r, and the largest differences in the radial dose function appear for the smallest phantom size. The radial dose function of the elliptic cylindrical phantom significantly decreased with radial distance in the vertical direction due to different scatter condition in comparison with the Williamson's data. Considering doses to ICRU rectum and bladder points, doses to reference points can be underestimated up to 1-2% at the distance from 3 to 6 cm. The radial dose function in this study could be used as realistic data for calculating the brachytherapy dosimetry for cervical cancer.

  16. Helical Tomotherapy in Children and Adolescents: Dosimetric Comparisons, Opportunities and Issues

    PubMed Central

    Mascarin, Maurizio; Giugliano, Francesca Maria; Coassin, Elisa; Drigo, Annalisa; Chiovati, Paola; Dassie, Andrea; Franchin, Giovanni; Minatel, Emilio; Trovò, Mauro Gaetano

    2011-01-01

    Helical Tomotherapy (HT) is a highly conformal image-guided radiation technique, introduced into clinical routine in 2006 at the Centro di Riferimento Oncologico Aviano (Italy). With this new technology, intensity-modulated radiotherapy (IMRT) is delivered using a helicoidal method. Here we present our dosimetric experiences using HT in 100 children, adolescents and young adults treated from May 2006 to February 2011. The median age of the patients was 13 years (range 1–24). The most common treated site was the central nervous system (50; of these, 24 were craniospinal irradiations), followed by thorax (22), head and neck (10), abdomen and pelvis (11), and limbs (7). The use of HT was calculated in accordance to the target dose conformation, the target size and shape, the dose to critical organs adjacent to the target, simultaneous treatment of multiple targets, and re-irradiation. HT has demonstrated to improve target volume dose homogeneity and the sparing of critical structures, when compared to 3D Linac-based radiotherapy (RT). In standard cases this technique represented a comparable alternative to IMRT delivered with conventional linear accelerator. In certain cases (e.g., craniospinal and pleural treatments) only HT generated adequate treatment plans with good target volume coverage. However, the gain in target conformality should be balanced with the spread of low-doses to distant areas. This remains an open issue for the potential risk of secondary malignancies (SMNs) and longer follow-up is mandatory. PMID:24213120

  17. Topological detector: measuring continuous dosimetric quantities with few-element detector array.

    PubMed

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-21

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions. PMID:27452789

  18. Dosimetric consequences of pencil beam width variations in scanned beam particle therapy

    NASA Astrophysics Data System (ADS)

    Chanrion, M. A.; Ammazzalorso, F.; Wittig, A.; Engenhart-Cabillic, R.; Jelen, U.

    2013-06-01

    Scanned ion beam delivery enables the highest degree of target dose conformation attainable in external beam radiotherapy. Nominal pencil beam widths (spot sizes) are recorded during treatment planning system commissioning. Due to changes in the beam-line optics, the actual spot sizes may differ from these commissioning values, leading to differences between planned and delivered dose. The purpose of this study was to analyse the dosimetric consequences of spot size variations in particle therapy treatment plans. For 12 patients with skull base tumours and 12 patients with prostate carcinoma, scanned-beam carbon ion and proton treatment plans were prepared and recomputed simulating spot size changes of (1) ±10% to simulate the typical magnitude of fluctuations, (2) ±25% representing the worst-case scenario and (3) ±50% as a part of a risk analysis in case of fault conditions. The primary effect of the spot size variation was a dose deterioration affecting the target edge: loss of target coverage and broadening of the lateral penumbra (increased spot size) or overdosage and contraction of the lateral penumbra (reduced spot size). For changes ⩽25%, the resulting planning target volume mean 95%-isodose line coverage (CI-95%) deterioration was ranging from negligible to moderate. In some cases changes in the dose to adjoining critical structures were observed.

  19. Dosimetric impact of a CT metal artefact suppression algorithm for proton, electron and photon therapies

    NASA Astrophysics Data System (ADS)

    Wei, Jikun; Sandison, George A.; Hsi, Wen-Chien; Ringor, Michael; Lu, Xiaoyi

    2006-10-01

    Accurate dose calculation is essential to precision radiation treatment planning and this accuracy depends upon anatomic and tissue electron density information. Modern treatment planning inhomogeneity corrections use x-ray CT images and calibrated scales of tissue CT number to electron density to provide this information. The presence of metal in the volume scanned by an x-ray CT scanner causes metal induced image artefacts that influence CT numbers and thereby introduce errors in the radiation dose distribution calculated. This paper investigates the dosimetric improvement achieved by a previously proposed x-ray CT metal artefact suppression technique when the suppressed images of a patient with bilateral hip prostheses are used in commercial treatment planning systems for proton, electron or photon therapies. For all these beam types, this clinical image and treatment planning study reveals that the target may be severely underdosed if a metal artefact-contaminated image is used for dose calculations instead of the artefact suppressed one. Of the three beam types studied, the metal artefact suppression is most important for proton therapy dose calculations, intermediate for electron therapy and least important for x-ray therapy but still significant. The study of a water phantom having a metal rod simulating a hip prosthesis indicates that CT numbers generated after image processing for metal artefact suppression are accurate and thus dose calculations based on the metal artefact suppressed images will be of high fidelity.

  20. Verification of dosimetric accuracy on the TrueBeam STx: Rounded leaf effect of the high definition MLC

    SciTech Connect

    Kielar, Kayla N.; Mok, Ed; Hsu, Annie; Wang Lei; Luxton, Gary

    2012-10-15

    Purpose: The dosimetric leaf gap (DLG) in the Varian Eclipse treatment planning system is determined during commissioning and is used to model the effect of the rounded leaf-end of the multileaf collimator (MLC). This parameter attempts to model the physical difference between the radiation and light field and account for inherent leakage between leaf tips. With the increased use of single fraction high dose treatments requiring larger monitor units comes an enhanced concern in the accuracy of leakage calculations, as it accounts for much of the patient dose. This study serves to verify the dosimetric accuracy of the algorithm used to model the rounded leaf effect for the TrueBeam STx, and describes a methodology for determining best-practice parameter values, given the novel capabilities of the linear accelerator such as flattening filter free (FFF) treatments and a high definition MLC (HDMLC). Methods: During commissioning, the nominal MLC position was verified and the DLG parameter was determined using MLC-defined field sizes and moving gap tests, as is common in clinical testing. Treatment plans were created, and the DLG was optimized to achieve less than 1% difference between measured and calculated dose. The DLG value found was tested on treatment plans for all energies (6 MV, 10 MV, 15 MV, 6 MV FFF, 10 MV FFF) and modalities (3D conventional, IMRT, conformal arc, VMAT) available on the TrueBeam STx. Results: The DLG parameter found during the initial MLC testing did not match the leaf gap modeling parameter that provided the most accurate dose delivery in clinical treatment plans. Using the physical leaf gap size as the DLG for the HDMLC can lead to 5% differences in measured and calculated doses. Conclusions: Separate optimization of the DLG parameter using end-to-end tests must be performed to ensure dosimetric accuracy in the modeling of the rounded leaf ends for the Eclipse treatment planning system. The difference in leaf gap modeling versus physical

  1. A revised dosimetric model of the adult head and brain

    SciTech Connect

    Bouchet, L.G.; Bolch, W.E.; Weber, D.A.

    1996-06-01

    During the last decade, new radiopharmaceutical have been introduced for brain imaging. The marked differences of these tracers in tissue specificity within the brain and their increasing use for diagnostic studies support the need for a more anthropomorphic model of the human brain and head. Brain and head models developed in the past have been only simplistic representations of this anatomic region. For example, the brain within the phantom of MIRD Pamphlet No. 5 Revised is modeled simply as a single ellipsoid of tissue With no differentiation of its internal structures. To address this need, the MIRD Committee established a Task Group in 1992 to construct a more detailed brain model to include the cerebral cortex, the white matter, the cerebellum, the thalamus, the caudate nucleus, the lentiform nucleus, the cerebral spinal fluid, the lateral ventricles, and the third ventricle. This brain model has been included within a slightly modified version of the head model developed by Poston et al. in 1984. This model has been incorporated into the radiation transport code EGS4 so as to calculate photon and electron absorbed fractions in the energy range 10 keV to 4 MeV for each of thirteen sources in the brain. Furthermore, explicit positron transport have been considered, separating the contribution by the positron itself and its associated annihilations photons. No differences are found between the electron and positron absorbed fractions; however, for initial energies of positrons greater than {approximately}0.5 MeV, significant differences are found between absorbed fractions from explicit transport of annihilation photons and those from an assumed uniform distribution of 0.511-MeV photons. Subsequently, S values were calculated for a variety of beta-particle and positron emitters brain imaging agents. Moreover, pediatric head and brain dosimetric models are currently being developed based on this adult head model.

  2. Radioembolization of Hepatic Lesions from a Radiobiology and Dosimetric Perspective

    PubMed Central

    Cremonesi, Marta; Chiesa, Carlo; Strigari, Lidia; Ferrari, Mahila; Botta, Francesca; Guerriero, Francesco; De Cicco, Concetta; Bonomo, Guido; Orsi, Franco; Bodei, Lisa; Di Dia, Amalia; Grana, Chiara Maria; Orecchia, Roberto

    2014-01-01

    Radioembolization (RE) of liver cancer with 90Y-microspheres has been applied in the last two decades with notable responses and acceptable toxicity. Two types of microspheres are available, glass and resin, the main difference being the activity/sphere. Generally, administered activities are established by empirical methods and differ for the two types. Treatment planning based on dosimetry is a prerogative of few centers, but has notably gained interest, with evidence of predictive power of dosimetry on toxicity, lesion response, and overall survival (OS). Radiobiological correlations between absorbed doses and toxicity to organs at risk, and tumor response, have been obtained in many clinical studies. Dosimetry methods have evolved from the macroscopic approach at the organ level to voxel analysis, providing absorbed dose spatial distributions and dose–volume histograms (DVH). The well-known effects of the external beam radiation therapy (EBRT), such as the volume effect, underlying disease influence, cumulative damage in parallel organs, and different tolerability of re-treatment, have been observed also in RE, identifying in EBRT a foremost reference to compare with. The radiobiological models – normal tissue complication probability and tumor control probability – and/or the style (DVH concepts) used in EBRT are introduced in RE. Moreover, attention has been paid to the intrinsic different activity distribution of resin and glass spheres at the microscopic scale, with dosimetric and radiobiological consequences. Dedicated studies and mathematical models have developed this issue and explain some clinical evidences, e.g., the shift of dose to higher toxicity thresholds using glass as compared to resin spheres. This paper offers a comprehensive review of the literature incident to dosimetry and radiobiological issues in RE, with the aim to summarize the results and to identify the most useful methods and information that should accompany future studies

  3. Dosimetric Analysis of Radiation-induced Gastric Bleeding

    SciTech Connect

    Feng, Mary; Normolle, Daniel; Pan, Charlie C.; Dawson, Laura A.; Amarnath, Sudha; Ensminger, William D.; Lawrence, Theodore S.; Ten Haken, Randall K.

    2012-09-01

    Purpose: Radiation-induced gastric bleeding has been poorly understood. In this study, we described dosimetric predictors for gastric bleeding after fractionated radiation therapy. Methods and Materials: The records of 139 sequential patients treated with 3-dimensional conformal radiation therapy (3D-CRT) for intrahepatic malignancies were reviewed. Median follow-up was 7.4 months. The parameters of a Lyman normal tissue complication probability (NTCP) model for the occurrence of {>=}grade 3 gastric bleed, adjusted for cirrhosis, were fitted to the data. The principle of maximum likelihood was used to estimate parameters for NTCP models. Results: Sixteen of 116 evaluable patients (14%) developed gastric bleeds at a median time of 4.0 months (mean, 6.5 months; range, 2.1-28.3 months) following completion of RT. The median and mean maximum doses to the stomach were 61 and 63 Gy (range, 46-86 Gy), respectively, after biocorrection of each part of the 3D dose distributions to equivalent 2-Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis predicted gastric bleed. Best-fit Lyman NTCP model parameters were n=0.10 and m=0.21 and with TD{sub 50} (normal) = 56 Gy and TD{sub 50} (cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD{sub 50} value for the cirrhosis patients points out their greater sensitivity. Conclusions: This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation.

  4. Dosimetric Analysis of Radiation-Induced Gastric Bleeding

    PubMed Central

    Feng, Mary; Normolle, Daniel; Pan, Charlie C.; Dawson, Laura A.; Amarnath, Sudha; Ensminger, William D.; Lawrence, Theodore S.; Ten Haken, Randall K.

    2012-01-01

    Purpose Radiation-induced gastric bleeding has been poorly understood. In this study, we describe dosimetric predictors for gastric bleeding after fractionated radiotherapy and compare several predictive models. Materials & Methods The records of 139 sequential patients treated with 3-dimensional conformal radiotherapy (3D-CRT) for intrahepatic malignancies between January 1999 and April 2002 were reviewed. Median follow-up was 7.4 months. Logistic regression and Lyman normal tissue complication probability (NTCP) models for the occurrence of ≥ grade 3 gastric bleed were fit to the data. The principle of maximum likelihood was used to estimate parameters for all models. Results Sixteen of 116 evaluable patients (14%) developed gastric bleeds, at a median time of 4.0 months (mean 6.5 months, range 2.1–28.3 months) following completion of RT. The median and mean of the maximum doses to the stomach were 61 and 63 Gy (range 46 Gy–86 Gy), respectively, after bio-correction to equivalent 2 Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis was most predictive of gastric bleed (AUROC=0.92). Best fit Lyman NTCP model parameters were n =0.10, and m =0.21, with TD50(normal) =56 Gy and TD50(cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD50 value for the cirrhosis patients points out their greater sensitivity. Conclusion This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding, and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation. PMID:22541965

  5. In vivo real-time dosimetric verification in high dose rate prostate brachytherapy

    SciTech Connect

    Seymour, Erin L.; Downes, Simon J.; Fogarty, Gerald B.; Izard, Michael A.; Metcalfe, Peter

    2011-08-15

    Purpose: To evaluate the performance of a diode array in the routine verification of planned dose to points inside the rectum from prostate high dose rate (HDR) brachytherapy using a real-time planning system. Methods: A dosimetric study involving 28 patients was undertaken where measured doses received during treatment were compared to those calculated by the treatment planning system (TPS). After the ultrasound imaging required for treatment planning had been recorded, the ultrasound probe was replaced with a geometric replica that contained an 8 mm diameter cylindrical cavity in which a PTW diode array type 9112 was placed. The replica probe was then positioned inside the rectum with the individual diode positions determined using fluoroscopy. Dose was then recorded during the patients' treatment and compared to associated coordinates in the planning system. Results: Factors influencing diode response and experimental uncertainty were initially investigated to estimate the overall uncertainty involved in dose measurements, which was determined to be {+-}10%. Data was acquired for 28 patients' first fractions, 11 patients' second fractions, and 13 patients' third fractions with collection dependent upon circumstances. Deviations between the diode measurements and predicted values ranged from -42% to +35% with 71% of measurements experiencing less than a 10% deviation from the predicted values. If the {+-}10% measurement uncertainty was combined with a tolerated dose discrepancy of {+-}10% then over 95% of the diode results exhibited agreement with the calculated data to within {+-}20%. It must also be noted that when large dose discrepancies were apparent they did not necessarily occur for all five diodes in the one measurement. Conclusions: This technique provided a method that could be utilized to detect gross errors in dose delivery of a real-time prostate HDR plan. Limitations in the detection system used must be well understood if meaningful results are to

  6. Determination of mass attenuation coefficient of low-Z dosimetric materials

    NASA Astrophysics Data System (ADS)

    El-Khayatt, A. M.; Ali, A. M.; Singh, Vishwanath P.; Badiger, N. M.

    2014-12-01

    The mass attenuation coefficients of some low-Z dosimetric materials with potential applications in dosimetry, medical and radiation protection have been investigated using the Monte Carlo simulation code Monte Carlo N-Particle (MCNP). Appreciable variations are noted for the mass attenuation coefficient by changing the photon energy. The MCNP-simulated parameters are compared with the experimental data wherever possible and theoretical values through the WinXcom program. The simulated results obtained by MCNP generally agree well with the experiment and WinXcom predictions for various low-Z dosimetric and tissue substitute materials. In addition, the mass attenuation coefficients around the k-edges for low-Z dosimetric materials estimated from the MCNP code agree very well with WinXcom prediction. Finally, the results indicate that this simulation process can be followed to determine the interaction parameters of gamma rays in such low-Z materials for which there are no satisfactory experimental values available.

  7. Estimation of electromagnetic dosimetric values from non-ionizing radiofrequency fields in an indoor commercial airplane environment.

    PubMed

    Aguirre, Erik; Arpón, Javier; Azpilicueta, Leire; López, Peio; de Miguel, Silvia; Ramos, Victoria; Falcone, Francisco

    2014-12-01

    In this article, the impact of topology as well as morphology of a complex indoor environment such as a commercial aircraft in the estimation of dosimetric assessment is presented. By means of an in-house developed deterministic 3D ray-launching code, estimation of electric field amplitude as a function of position for the complete volume of a commercial passenger airplane is obtained. Estimation of electromagnetic field exposure in this environment is challenging, due to the complexity and size of the scenario, as well as to the large metallic content, giving rise to strong multipath components. By performing the calculation with a deterministic technique, the complete scenario can be considered with an optimized balance between accuracy and computational cost. The proposed method can aid in the assessment of electromagnetic dosimetry in the future deployment of embarked wireless systems in commercial aircraft. PMID:23915231

  8. Silicon strip detector for a novel 2D dosimetric method for radiotherapy treatment verification

    NASA Astrophysics Data System (ADS)

    Bocci, A.; Cortés-Giraldo, M. A.; Gallardo, M. I.; Espino, J. M.; Arráns, R.; Alvarez, M. A. G.; Abou-Haïdar, Z.; Quesada, J. M.; Pérez Vega-Leal, A.; Pérez Nieto, F. J.

    2012-05-01

    The aim of this work is to characterize a silicon strip detector and its associated data acquisition system, based on discrete electronics, to obtain in a near future absorbed dose maps in axial planes for complex radiotherapy treatments, using a novel technique. The experimental setup is based on two phantom prototypes: the first one is a polyethylene slab phantom used to characterize the detector in terms of linearity, percent depth dose, reproducibility, uniformity and penumbra. The second one is a cylindrical phantom, specifically designed and built to recreate conditions close to those normally found in clinical environments, for treatment planning assessment. This system has been used to study the dosimetric response of the detector, in the axial plane of the phantom, as a function of its angle with respect to the irradiation beam. A software has been developed to operate the rotation of this phantom and to acquire signals from the silicon strip detector. As an innovation, the detector was positioned inside the cylindrical phantom parallel to the beam axis. Irradiation experiments were carried out with a Siemens PRIMUS linac operating in the 6 MV photon mode at the Virgen Macarena Hospital. Monte Carlo simulations were performed using Geant4 toolkit and results were compared to Treatment Planning System (TPS) calculations for the absorbed dose-to-water case. Geant4 simulations were used to estimate the sensitivity of the detector in different experimental configurations, in relation to the absorbed dose in each strip. A final calibration of the detector in this clinical setup was obtained by comparing experimental data with TPS calculations.

  9. Dosimetric study of 2D ion chamber array matrix for the modern radiotherapy treatment verification.

    PubMed

    Saminathan, Sathiyan; Manickam, Ravikumar; Chandraraj, Varatharaj; Supe, Sanjay S

    2010-01-01

    Intensity-modulated radiotherapy treatment demands stringent quality assurance and accurate dose determination for delivery of highly conformal dose to the patients. Generally 3D dose distributions obtained from a treatment planning system have to be verified by dosimetric methods. Mainly, a comparison of two-dimensional calculated and measured data in several coplanar planes is performed. In principle, there are many possibilities to measure two-dimensional dose distributions such as films, flat-panel electronic portal imaging devices (EPID), ion chambers and ionization chamber arrays, and radiographic and radiochromic films. The flat-panel EPIDs show a good resolution and offer a possibility for real-time measurements: however to convert the signal into dose, a separate commercial algorithm is required. The 2D ion chamber array system offers the real-time measurements. In this study, dosimetric characteristics of 2D ion chamber array matrix were analyzed for verification of radiotherapy treatments. The dose linearity and dose rate effect of the I'matriXX device was studied using 6 MV, 18 MV photons and 12 MeV electrons. The output factor was estimated using I'matriXX device and compared with ion chamber measurements. The ion chamber array system was found to be linear in the dose range of 2-500 cGy and the response of the detector was found to be independent of dose rate between 100 MU/min to 600 MU/min. The estimated relative output factor with I'matriXX was found to match very well with the ion chamber measurements. To check the final dose delivered during IMRT planning, dose distribution patterns such as field-in-field, pyramidal, and chair tests were generated with the treatment planning system (TPS) and the same was executed in the accelerator and measured with the I'matriXX device. The dose distribution pattern measured by the matrix device for field-in-field, pyramidal, and chair test were found to be in good agreement with the calculated dose distribution

  10. Dosimetric measurements of Onyx embolization material for stereotactic radiosurgery

    SciTech Connect

    Roberts, Donald A.; Balter, James M.; Chaudhary, Neeraj; Gemmete, Joseph J.; Pandey, Aditya S.

    2012-11-15

    Purpose: Arteriovenous malformations are often treated with a combination of embolization and stereotactic radiosurgery. Concern has been expressed in the past regarding the dosimetric properties of materials used in embolization and the effects that the introduction of these materials into the brain may have on the quality of the radiosurgery plan. To quantify these effects, the authors have taken large volumes of Onyx 34 and Onyx 18 (ethylene-vinyl alcohol copolymer doped with tantalum) and measured the attenuation and interface effects of these embolization materials. Methods: The manufacturer provided large cured volumes ({approx}28 cc) of both Onyx materials. These samples were 8.5 cm in diameter with a nominal thickness of 5 mm. The samples were placed on a block tray above a stack of solid water with an Attix chamber at a depth of 5 cm within the stack. The Attix chamber was used to measure the attenuation. These measurements were made for both 6 and 16 MV beams. Placing the sample directly on the solid water stack and varying the thickness of solid water between the sample and the Attix chamber measured the interface effects. The computed tomography (CT) numbers for bulk material were measured in a phantom using a wide bore CT scanner. Results: The transmission through the Onyx materials relative to solid water was approximately 98% and 97% for 16 and 6 MV beams, respectively. The interface effect shows an enhancement of approximately 2% and 1% downstream for 16 and 6 MV beams. CT numbers of approximately 2600-3000 were measured for both materials, which corresponded to an apparent relative electron density (RED) {rho}{sub e}{sup w} to water of approximately 2.7-2.9 if calculated from the commissioning data of the CT scanner. Conclusions: We performed direct measurements of attenuation and interface effects of Onyx 34 and Onyx 18 embolization materials with large samples. The introduction of embolization materials affects the dose distribution of a MV

  11. Predicting Pneumonitis Risk: A Dosimetric Alternative to Mean Lung Dose

    SciTech Connect

    Tucker, Susan L.; Mohan, Radhe; Liengsawangwong, Raweewan; Martel, Mary K.; Liao Zhongxing

    2013-02-01

    Purpose: To determine whether the association between mean lung dose (MLD) and risk of severe (grade {>=}3) radiation pneumonitis (RP) depends on the dose distribution pattern to normal lung among patients receiving 3-dimensional conformal radiation therapy for non-small-cell lung cancer. Methods and Materials: Three cohorts treated with different beam arrangements were identified. One cohort (2-field boost [2FB]) received 2 parallel-opposed (anteroposterior-posteroanterior) fields per fraction initially, followed by a sequential boost delivered using 2 oblique beams. The other 2 cohorts received 3 or 4 straight fields (3FS and 4FS, respectively), ie, all fields were irradiated every day. The incidence of severe RP was plotted against MLD in each cohort, and data were analyzed using the Lyman-Kutcher-Burman (LKB) model. Results: The incidence of grade {>=}3 RP rose more steeply as a function of MLD in the 2FB cohort (N=120) than in the 4FS cohort (N=138), with an intermediate slope for the 3FS group (N=99). The estimated volume parameter from the LKB model was n=0.41 (95% confidence interval, 0.15-1.0) and led to a significant improvement in fit (P=.05) compared to a fit with volume parameter fixed at n=1 (the MLD model). Unlike the MLD model, the LKB model with n=0.41 provided a consistent description of the risk of severe RP in all three cohorts (2FB, 3FS, 4FS) simultaneously. Conclusions: When predicting risk of grade {>=}3 RP, the mean lung dose does not adequately take into account the effects of high doses. Instead, the effective dose, computed from the LKB model using volume parameter n=0.41, may provide a better dosimetric parameter for predicting RP risk. If confirmed, these findings support the conclusion that for the same MLD, high doses to small lung volumes ('a lot to a little') are worse than low doses to large volumes ('a little to a lot').

  12. Dosimetric accuracy of Kodak EDR2 film for IMRT verifications.

    PubMed

    Childress, Nathan L; Salehpour, Mohammad; Dong, Lei; Bloch, Charles; White, R Allen; Rosen, Isaac I

    2005-02-01

    Patient-specific intensity-modulated radiotherapy (IMRT) verifications require an accurate two-dimensional dosimeter that is not labor-intensive. We assessed the precision and reproducibility of film calibrations over time, measured the elemental composition of the film, measured the intermittency effect, and measured the dosimetric accuracy and reproducibility of calibrated Kodak EDR2 film for single-beam verifications in a solid water phantom and for full-plan verifications in a Rexolite phantom. Repeated measurements of the film sensitometric curve in a single experiment yielded overall uncertainties in dose of 2.1% local and 0.8% relative to 300 cGy. 547 film calibrations over an 18-month period, exposed to a range of doses from 0 to a maximum of 240 MU or 360 MU and using 6 MV or 18 MV energies, had optical density (OD) standard deviations that were 7%-15% of their average values. This indicates that daily film calibrations are essential when EDR2 film is used to obtain absolute dose results. An elemental analysis of EDR2 film revealed that it contains 60% as much silver and 20% as much bromine as Kodak XV2 film. EDR2 film also has an unusual 1.69:1 silver:halide molar ratio, compared with the XV2 film's 1.02:1 ratio, which may affect its chemical reactions. To test EDR2's intermittency effect, the OD generated by a single 300 MU exposure was compared to the ODs generated by exposing the film 1 MU, 2 MU, and 4 MU at a time to a total of 300 MU. An ion chamber recorded the relative dose of all intermittency measurements to account for machine output variations. Using small MU bursts to expose the film resulted in delivery times of 4 to 14 minutes and lowered the film's OD by approximately 2% for both 6 and 18 MV beams. This effect may result in EDR2 film underestimating absolute doses for patient verifications that require long delivery times. After using a calibration to convert EDR2 film's OD to dose values, film measurements agreed within 2% relative

  13. Dosimetric properties of improved GafChromic films for seven different digitizers.

    PubMed

    Devic, Slobodan; Seuntjens, Jan; Hegyi, Gyorgy; Podgorsak, Ervin B; Soares, Christopher G; Kirov, Assen S; Ali, Imad; Williamson, Jeffrey F; Elizondo, Angel

    2004-09-01

    Two recently introduced GafChromic film models, HS and XR-T, have been developed as more sensitive and uniform alternatives to GafChromic MD-55-2 film. The HS model has been specifically designed for measurement of absorbed dose in high-energy photon beams (above 1 MeV), while the XR-T model has been introduced for dose measurements of low energy (0.1 MeV) photons. The goal of this study is to compare the sensitometric curves and estimated dosimetric uncertainties associated with seven different GafChromic film dosimetry systems for the two new film models. The densitometers tested are: LKB Pharmacia UltroScan XL, Molecular Dynamics Personal Densitometer, Nuclear Associates Radiochromic Densitometer Model 37-443, Photoelectron Corporation CMR-604, Laser Pro 16, Vidar VXR-16, and AGFA Arcus II document scanner. Pieces of film were exposed to different doses in a dose range from 0.5 to 50 Gy using 6 MV photon beam. Functional forms for dose vs net optical density have been determined for each of the GafChromic film-dosimetry systems used in this comparison. Two sources of uncertainties in dose measurements, governed by the experimental measurement and calibration curve fit procedure, have been compared for the densitometers used. Among the densitometers tested, it is found that for the HS film type the uncertainty caused by the experimental measurement varies from 1% to 3% while the calibration fit uncertainty ranges from 2% to 4% for doses above 5 Gy. Corresponding uncertainties for XR-T film model are somewhat higher and range from 1% to 5% for experimental and from 2% to 7% for the fit uncertainty estimates. Notwithstanding the significant variations in sensitivity, the studied densitometers exhibit very similar precision for GafChromic film based dose measurements above 5 Gy. PMID:15487718

  14. EGSnrc Monte Carlo-aided dosimetric studies of the new BEBIG 60Co HDR brachytherapy source

    PubMed Central

    Akramuzzaman, Mir Md.; Zakaria, Golam Abu

    2013-01-01

    Purpose The purpose of this study is to obtain the dosimetric parameters of the new BEBIG 60Co brachytherapy source following by TG-43U1 recommendation with appropriate electron cutoff energy (0.521 MeV). Material and methods The new BEBIG 60Co brachytherapy source is used to calculate the TG-43U1 parameters. EGSnrc-based Monte Carlo simulation code has been used to calculate the radial dose functions and anisotropy functions. 2D dose rate table is obtained with Cartesian coordinate system for surrounding the source. Results The radial dose functions are calculated for the distance of 0.06 cm to 100 cm from the source center with different cutoff energies and compared. The anisotropy functions values are calculated with the range of 1° to 179°, and apart from 0.2 cm to 20 cm of radial distances. The along-away dose rate data are calculated for quality assurance purposes. The calculated values are compared with the consensus data set and previous published results. Conclusions The radial dose function values from 0.06 cm to 0.16 cm are low, and these values gradually increased up to 0.3 cm radial distance. The radial dose function values are compared with the values of consensus data set using EGSnrc code system, and it is in good agreement with the published data range. The data for < 0.1 cm is not available in consensus data set, and extrapolated value is included for 0 distances which is the same as the value of 0.1 cm. In this study, the obtained values are strictly fall-off to < 0.1 cm distances. Good agreement with the published data was observed, except the values less than 40° angle at 0.5 cm distance for anisotropy function values. PMID:24143150

  15. Dosimetric Comparison of Intensity-Modulated Stereotactic Radiotherapy With Other Stereotactic Techniques for Locally Recurrent Nasopharyngeal Carcinoma

    SciTech Connect

    Kung, Shiris Wai Sum; Wu, Vincent Wing Cheung; Kam, Michael Koon Ming; Leung, Sing Fai; Yu, Brian Kwok Hung; Ngai, Dennis Yuen Kan; Wong, Simon Chun Fai; Chan, Anthony Tak Cheung

    2011-01-01

    Purpose: Locally recurrent nasopharyngeal carcinoma (NPC) patients can be salvaged by reirradiation with a substantial degree of radiation-related complications. Stereotactic radiotherapy (SRT) is widely used in this regard because of its rapid dose falloff and high geometric precision. The aim of this study was to examine whether the newly developed intensity-modulated stereotactic radiotherapy (IMSRT) has any dosimetric advantages over three other stereotactic techniques, including circular arc (CARC), static conformal beam (SmMLC), and dynamic conformal arc (mARC), in treating locally recurrent NPC. Methods and Materials: Computed tomography images of 32 patients with locally recurrent NPC, previously treated with SRT, were retrieved from the stereotactic planning system for contouring and computing treatment plans. Treatment planning of each patient was performed for the four treatment techniques: CARC, SmMLC, mARC, and IMSRT. The conformity index (CI) and homogeneity index (HI) of the planning target volume (PTV) and doses to the organs at risk (OARs) and normal tissue were compared. Results: All four techniques delivered adequate doses to the PTV. IMSRT, SmMLC, and mARC delivered reasonably conformal and homogenous dose to the PTV (CI <1.47, HI <0.53), but not for CARC (p < 0.05). IMSRT presented with the smallest CI (1.37) and HI (0.40). Among the four techniques, IMSRT spared the greatest number of OARs, namely brainstem, temporal lobes, optic chiasm, and optic nerve, and had the smallest normal tissue volume in the low-dose region. Conclusion: Based on the dosimetric comparison, IMSRT was optimal for locally recurrent NPC by delivering a conformal and homogenous dose to the PTV while sparing OARs.

  16. SU-E-T-538: Lung SBRT Dosimetric Comparison of 3D Conformal and RapidArc Planning

    SciTech Connect

    Jiang, R; Zhan, L; Osei, E

    2015-06-15

    Purpose: Dose distributions of RapidArc Plan can be quite different from standard 3D conformal radiation therapy. SBRT plans can be optimized with high conformity or mimic the 3D conformal treatment planning with very high dose in the center of the tumor. This study quantifies the dosimetric differences among 3D conformal plan; flattened beam and FFF beam RapidArc Plans for lung SBRT. Methods: Five lung cancer patients treated with 3D non-coplanar SBRT were randomly selected. All the patients were CT scanned with 4DCT to determine the internal target volume. Abdominal compression was applied to minimize respiratory motion for SBRT patients. The prescription dose was 48 Gy in 4 fractions. The PTV coverage was optimized by two groups of objective function: one with high conformity, another mimicking 3D conformal dose distribution with high dose in the center of PTV. Optimization constraints were set to meet the criteria of the RTOG-0915 protocol. All VMAT plans were optimized with the RapidArc technique using four full arcs in Eclipse treatment planning system. The RapidArc SBRT plans with flattened 6MV beam and 6MV FFF beam were generated and dosimetric results were compared with the previous treated 3D non-coplanar plans. Results: All the RapidArc plans with flattened beam and FFF beam had similar results for the PTV and OARs. For the high conformity optimization group, The DVH of PTV exhibited a steep dose fall-off outside the PTV compared to the 3D non-coplanar plan. However, for the group mimicking the 3D conformal target dose distribution, although the PTV is very similar to the 3D conformal plan, the ITV coverage is better than 3D conformal plan. Conclusion: Due to excellent clinical experiences of 3D conformal SBRT treatment, the Rapid Arc optimization mimicking 3D conformal planning may be suggested for clinical use.

  17. Internal radiotherapy and dosimetric study for 111In/ 177Lu-pegylated liposomes conjugates in tumor-bearing mice

    NASA Astrophysics Data System (ADS)

    Wang, Hsin-Ell; Yu, Hung-Man; Lu, Yi-Ching; Heish, Ning-Ning; Tseng, Yun-Long; Huang, Kuang-Liang; Chuang, Kuo-Tang; Chen, Chin-Hsiung; Hwang, Jeng-Jong; Lin, Wuu-Jyh; Wang, Shyh-Jen; Ting, Gann; Whang-Peng, Jacqueline; Deng, Win-Ping

    2006-12-01

    In vivo characterization and dosimetric analysis has been performed to evaluate the potential of pegylated liposomes as carriers of radionuclides in tumor internal radiotherapy. MethodsThe DTPA/PEG-liposomes were synthesized with a medium size of 110 nm, conjugated with 111In/ 177Lu-(oxine) 3 to afford 111In/ 177Lu-liposome. The stability of 111In/ 177Lu-liposome in serum was investigated. The biodistribution, scintigraphic imaging and pharmacokinetics of 111In/ 177Lu-liposomes after intravenous(i.v.) injection into C-26 tumor-bearing BALB/cByJ mice were studied. Radiation dose was estimated by MIRD-III program. ResultsThe incorporation efficiency of 111In/ 177Lu into liposomes was 95%. After incubation at 37 °C for 72 h in serum, more than 83% of radioactivity was still retained in the intact 111In/ 177Lu-liposomes. The biodistribution of 111In-liposomes showed that the radioactivity in the blood decreased from 23.14±8.16%ID/g at 1 h to 0.02±0.00%ID/g at 72 h post-injection (p.i.), while reaching its maximum accumulation in tumors at 48 h p.i., with half-life in blood of 10.2 h. The results were supported by that of 177Lu-liposomes. Scintigraphic imaging with 111In-liposomes showed unambiguous tumor images at 48 h p.i. Dose estimation showed that the absorbed dose in tumor from 177Lu-liposomes was 5.74×10 -5 Gy/MBq. ConclusionsThis study provides an in vivo characterization and dosimetric evaluation for the use of liposome systems as carriers in targeted radionuclide therapy. The results suggest that adequate tumor targeting as well as dose delivered to tumors could be achieved by the use of radionuclide targeted liposomes.

  18. SU-D-BRE-03: Dosimetric Impact of In-Air Spot Size Variations for Commissioning a Room-Matched Beam Model for Pencil Beam Scanning Proton Therapy

    SciTech Connect

    Zhang, Y; Giebeler, A; Mascia, A; Piskulich, F; Perles, L; Lepage, R; Dong, L

    2014-06-01

    Purpose: To quantitatively evaluate dosimetric consequence of spot size variations and validate beam-matching criteria for commissioning a pencil beam model for multiple treatment rooms. Methods: A planning study was first conducted by simulating spot size variations to systematically evaluate dosimetric impact of spot size variations in selected cases, which was used to establish the in-air spot size tolerance for beam matching specifications. A beam model in treatment planning system was created using in-air spot profiles acquired in one treatment room. These spot profiles were also acquired from another treatment room for assessing the actual spot size variations between the two treatment rooms. We created twenty five test plans with targets of different sizes at different depths, and performed dose measurement along the entrance, proximal and distal target regions. The absolute doses at those locations were measured using ionization chambers at both treatment rooms, and were compared against the calculated doses by the beam model. Fifteen additional patient plans were also measured and included in our validation. Results: The beam model is relatively insensitive to spot size variations. With an average of less than 15% measured in-air spot size variations between two treatment rooms, the average dose difference was −0.15% with a standard deviation of 0.40% for 55 measurement points within target region; but the differences increased to 1.4%±1.1% in the entrance regions, which are more affected by in-air spot size variations. Overall, our single-room based beam model in the treatment planning system agreed with measurements in both rooms < 0.5% within the target region. For fifteen patient cases, the agreement was within 1%. Conclusion: We have demonstrated that dosimetrically equivalent machines can be established when in-air spot size variations are within 15% between the two treatment rooms.

  19. Dosimetric impact of motion in free-breathing and gated lung radiotherapy: A 4D Monte Carlo study of intrafraction and interfraction effects

    PubMed Central

    Seco, Joao; Sharp, Greg C.; Wu, Ziji; Gierga, David; Buettner, Florian; Paganetti, Harald

    2008-01-01

    The purpose of this study was to investigate if interfraction and intrafraction motion in free-breathing and gated lung IMRT can lead to systematic dose differences between 3DCT and 4DCT. Dosimetric effects were studied considering the breathing pattern of three patients monitored during the course of their treatment and an in-house developed 4D Monte Carlo framework. Imaging data were taken in free-breathing and in cine mode for both 3D and 4D acquisition. Treatment planning for IMRT delivery was done based on the free-breathing data with the corvus (North American Scientific, Chatsworth, CA) planning system. The dose distributions as a function of phase in the breathing cycle were combined using deformable image registration. The study focused on (a) assessing the accuracy of the corvus pencil beam algorithm with Monte Carlo dose calculation in the lung, (b) evaluating the dosimetric effect of motion on the individual breathing phases of the respiratory cycle, and (c) assessing intrafraction and interfraction motion effects during free-breathing or gated radiotherapy. The comparison between (a) the planning system and the Monte Carlo system shows that the pencil beam algorithm underestimates the dose in low-density regions, such as lung tissue, and overestimates the dose in high-density regions, such as bone, by 5% or more of the prescribed dose (corresponding to approximately 3–5 Gy for the cases considered). For the patients studied this could have a significant impact on the dose volume histograms for the target structures depending on the margin added to the clinical target volume (CTV) to produce either the planning target (PTV) or internal target volume (ITV). The dose differences between (b) phases in the breathing cycle and the free-breathing case were shown to be negligible for all phases except for the inhale phase, where an underdosage of the tumor by as much as 9.3 Gy relative to the free-breathing was observed. The large difference was due to

  20. The dosimetric impact of inversely optimized arc radiotherapy plan modulation for real-time dynamic MLC tracking delivery

    PubMed Central

    Falk, Marianne; Larsson, Tobias; Keall, Paul; Chul Cho, Byung; Aznar, Marianne; Korreman, Stine; Poulsen, Per; af Rosenschöld, Per Munck

    2012-01-01

    Purpose: Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced by using a leaf position constraint (LPC) that reduces the difference in the position of adjacent MLC leaves in the plan. The purpose of this study was to investigate the impact of the LPC on the quality of inversely optimized arc radiotherapy plans and the effect of the MLC motion pattern on the dosimetric accuracy of MLC tracking delivery. Specifically, the possibility of predicting the accuracy of MLC tracking delivery based on the plan modulation was investigated. Methods: Inversely optimized arc radiotherapy plans were created on CT-data of three lung cancer patients. For each case, five plans with a single 358° arc were generated with LPC priorities of 0 (no LPC), 0.25, 0.5, 0.75, and 1 (highest possible LPC), respectively. All the plans had a prescribed dose of 2 Gy × 30, used 6 MV, a maximum dose rate of 600 MU/min and a collimator angle of 45° or 315°. To quantify the plan modulation, an average adjacent leaf distance (ALD) was calculated by averaging the mean adjacent leaf distance for each control point. The linear relationship between the plan quality [i.e., the calculated dose distributions and the number of monitor units (MU)] and the LPC was investigated, and the linear regression coefficient as well as a two tailed confidence level of 95% was used in the evaluation. The effect of the plan modulation on the performance of MLC tracking was tested by delivering the plans to a cylindrical diode array phantom moving with sinusoidal motion in the superior–inferior direction with a peak-to-peak displacement of 2 cm and a cycle time of 6 s. The delivery was adjusted to the target motion using MLC tracking, guided in real-time by an infrared optical system. The

  1. The dosimetric impact of inversely optimized arc radiotherapy plan modulation for real-time dynamic MLC tracking delivery

    SciTech Connect

    Falk, Marianne; Larsson, Tobias; Keall, Paul; Chul Cho, Byung; Aznar, Marianne; Korreman, Stine; Poulsen, Per; Munck af Rosenschoeld, Per

    2012-03-15

    Purpose: Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced by using a leaf position constraint (LPC) that reduces the difference in the position of adjacent MLC leaves in the plan. The purpose of this study was to investigate the impact of the LPC on the quality of inversely optimized arc radiotherapy plans and the effect of the MLC motion pattern on the dosimetric accuracy of MLC tracking delivery. Specifically, the possibility of predicting the accuracy of MLC tracking delivery based on the plan modulation was investigated. Methods: Inversely optimized arc radiotherapy plans were created on CT-data of three lung cancer patients. For each case, five plans with a single 358 deg. arc were generated with LPC priorities of 0 (no LPC), 0.25, 0.5, 0.75, and 1 (highest possible LPC), respectively. All the plans had a prescribed dose of 2 Gy x 30, used 6 MV, a maximum dose rate of 600 MU/min and a collimator angle of 45 deg. or 315 deg. To quantify the plan modulation, an average adjacent leaf distance (ALD) was calculated by averaging the mean adjacent leaf distance for each control point. The linear relationship between the plan quality [i.e., the calculated dose distributions and the number of monitor units (MU)] and the LPC was investigated, and the linear regression coefficient as well as a two tailed confidence level of 95% was used in the evaluation. The effect of the plan modulation on the performance of MLC tracking was tested by delivering the plans to a cylindrical diode array phantom moving with sinusoidal motion in the superior-inferior direction with a peak-to-peak displacement of 2 cm and a cycle time of 6 s. The delivery was adjusted to the target motion using MLC tracking, guided in real-time by an infrared optical system

  2. Comparative dosimetric study of two strategies of intensity-modulated radiotherapy in nasopharyngeal cancer

    SciTech Connect

    Chen, S.-W.; Yang, S.-N.; Liang, J.-A.; Shiau, A.-C. . E-mail: joseph.shiau@msa.hinet.net; Lin, F.-J.

    2005-01-01

    This study compared the target volume coverage and normal tissues sparing of simultaneous integrated boost (SIB-IMRT, 1-phase) and sequential-IMRT (2-phase) for nasopharyngeal carcinoma (NPC). Fourteen consecutive patients with newly diagnosed primary NPC were enrolled in this study. The CT images were transferred to a commercial planning system for structural delineation. The gross tumor volume (GTV) included gross nasopharyngeal tumor and involved lymph nodes of more than 1-cm diameter. The clinical target volume (CTV) modeled two regions considered to represent different risks. CTV1 encompassed the GTV with 5-10-mm margin of adjacent tissues. CTV2 encompassed ipsilateral or contralateral elective nodal regions at risk of harboring microscopic tumor. A commercial IMRT treatment planning system (Eclipse Version 7.1) was used to provide treatment planning. Seven fixed-gantry (0{sup o}, 50{sup o}, 100{sup o}, 150{sup o}, 210{sup o}, 260{sup o}, 310{sup o}) angles were designated. The 14 patients were treated with sequential-IMRT, and treatment was then replanned with an SIB strategy to compare the dosimetric difference. For the sequential strategy, the dose delivered to CTV1/CTV2 in the first course was 54 Gy (1.8 Gy x 30 Fr); while CTV1 was boosted by an additional 16.2 Gy (1.8 Gy x 9 Fr) in the second course. For SIB-IMRT, the dose prescribed to CTV1 was 69.7 Gy (2.05 Gy x 34 Fr); 56.1 Gy was given to CTV2 (1.65 Gy x 34 Fr). A statistical analysis of the dose-volume-histogram of target volumes and critical organs was performed. Paired Student's t-test was used to compare the dosimetric differences between the two techniques. The mean dose to CTV1 was 101.7 {+-} 2.4% and 102.3 {+-} 3.1% of the prescribed dose for SIB-IMRT and sequential-IMRT, respectively. The mean CTV2 dose was 109.8 {+-} 4.7% of the prescribed dose for SIB-IMRT and 112.6 {+-} 6.0% of the prescribed dose for sequential-IMRT. The maximal dose to the spinal cord was 4489 {+-} 495 cGy and 3547

  3. Dosimetric comparison of Acuros XB, AAA, and XVMC in stereotactic body radiotherapy for lung cancer

    SciTech Connect

    Tsuruta, Yusuke; Nakata, Manabu; Higashimura, Kyoji; Nakamura, Mitsuhiro Matsuo, Yukinori; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro

    2014-08-15

    Purpose: To compare the dosimetric performance of Acuros XB (AXB), anisotropic analytical algorithm (AAA), and x-ray voxel Monte Carlo (XVMC) in heterogeneous phantoms and lung stereotactic body radiotherapy (SBRT) plans. Methods: Water- and lung-equivalent phantoms were combined to evaluate the percentage depth dose and dose profile. The radiation treatment machine Novalis (BrainLab AG, Feldkirchen, Germany) with an x-ray beam energy of 6 MV was used to calculate the doses in the composite phantom at a source-to-surface distance of 100 cm with a gantry angle of 0°. Subsequently, the clinical lung SBRT plans for the 26 consecutive patients were transferred from the iPlan (ver. 4.1; BrainLab AG) to the Eclipse treatment planning systems (ver. 11.0.3; Varian Medical Systems, Palo Alto, CA). The doses were then recalculated with AXB and AAA while maintaining the XVMC-calculated monitor units and beam arrangement. Then the dose-volumetric data obtained using the three different radiation dose calculation algorithms were compared. Results: The results from AXB and XVMC agreed with measurements within ±3.0% for the lung-equivalent phantom with a 6 × 6 cm{sup 2} field size, whereas AAA values were higher than measurements in the heterogeneous zone and near the boundary, with the greatest difference being 4.1%. AXB and XVMC agreed well with measurements in terms of the profile shape at the boundary of the heterogeneous zone. For the lung SBRT plans, AXB yielded lower values than XVMC in terms of the maximum doses of ITV and PTV; however, the differences were within ±3.0%. In addition to the dose-volumetric data, the dose distribution analysis showed that AXB yielded dose distribution calculations that were closer to those with XVMC than did AAA. Means ± standard deviation of the computation time was 221.6 ± 53.1 s (range, 124–358 s), 66.1 ± 16.0 s (range, 42–94 s), and 6.7 ± 1.1 s (range, 5–9 s) for XVMC, AXB, and AAA, respectively. Conclusions: In the

  4. Dosimetric characteristics of linear accelerator photon beams with small monitor unit settings.

    PubMed

    Kang, Sei-Kwon; Cheong, Kwang-Ho; Hwang, Taejin; Cho, Byung Chul; Kim, Su Ssan; Kim, Kyoung Ju; Oh, Do Hoon; Bae, Hoonsik; Suh, Tae-Suk

    2008-11-01

    Several studies on the effect of tumor cell killing by dose rate variation have implied that the use of a shorter treatment time is more favorable for intensity modulated radiation therapy (IMRT). Aiming at step-and-shoot IMRT with higher dose rates, the stabilities of beam output and profiles with small monitor unit (MU) settings were investigated for various dose rates. With the use of a Varian 21EX (Varian Medical Systems Inc., Palo Alto, CA), static and step-and-shoot IMRT beam output along with profiles were measured by use of an ion chamber and a two-dimensional diode array detector as a function of monitor units and dose rates. For a static case, as the MU approached 1, the beam output increased up to 2% for 300 MU/min and 4.5% for 600 MU/min, showing a larger overdose as the dose rate increased. Deterioration of the beam symmetry and flatness were also observed as the MU decreased to 1 monitor unit. For the step-and-shoot IMRT case, a large dosimetric error of more than 10% was also detected with the use of a small MU segment. However, no definite correlation with the dose rate was observed due to the combined beam start-up effects by the grid pulse and finite communication time between the machine console and multileaf collimator (MLC) controller. For step-and-shoot IMRT with higher dose rates, beam output and beam profile stability with small MU needs to be checked, and adequate MU limitation where segments are not allowed need to be reflected in the step-and-shoot IMRT planning. PMID:19070251

  5. Dosimetric verification of stereotactic radiosurgery/stereotactic radiotherapy dose distributions using Gafchromic EBT3

    SciTech Connect

    Cusumano, Davide; Fumagalli, Maria L.; Marchetti, Marcello; Fariselli, Laura; De Martin, Elena

    2015-10-01

    Aim of this study is to examine the feasibility of using the new Gafchromic EBT3 film in a high-dose stereotactic radiosurgery and radiotherapy quality assurance procedure. Owing to the reduced dimensions of the involved lesions, the feasibility of scanning plan verification films on the scanner plate area with the best uniformity rather than using a correction mask was evaluated. For this purpose, signal values dispersion and reproducibility of film scans were investigated. Uniformity was then quantified in the selected area and was found to be within 1.5% for doses up to 8 Gy. A high-dose threshold level for analyses using this procedure was established evaluating the sensitivity of the irradiated films. Sensitivity was found to be of the order of centiGray for doses up to 6.2 Gy and decreasing for higher doses. The obtained results were used to implement a procedure comparing dose distributions delivered with a CyberKnife system to planned ones. The procedure was validated through single beam irradiation on a Gafchromic film. The agreement between dose distributions was then evaluated for 13 patients (brain lesions, 5 Gy/die prescription isodose ~80%) using gamma analysis. Results obtained using Gamma test criteria of 5%/1 mm show a pass rate of 94.3%. Gamma frequency parameters calculation for EBT3 films showed to strongly depend on subtraction of unexposed film pixel values from irradiated ones. In the framework of the described dosimetric procedure, EBT3 films proved to be effective in the verification of high doses delivered to lesions with complex shapes and adjacent to organs at risk.

  6. Computed Tomography Appearance of Early Radiation Injury to the Lung: Correlation With Clinical and Dosimetric Factors

    SciTech Connect

    Jenkins, Peter; Welsh, Anne

    2011-09-01

    Purpose: To systematically assess the spectrum of radiologic changes in the lung after radiation therapy for non-small-cell lung cancer. Methods and Materials: We reviewed the cases of 146 patients treated with radical radiotherapy at our institution. All patients had computed tomography (CT) scans performed 3 months after completion of therapy. Radiographic appearances were categorized using a standard grading system. The association of these abnormalities with pretreatment factors and clinical radiation pneumonitis (RP) was investigated. Results: New intrapulmonary abnormalities were seen in 92 patients (63%). These were ground-glass opacity in 16 (11%), patchy consolidation in 19 (13%), and diffuse consolidation in 57 (39%). Twenty-five patients (17%) developed clinical symptoms of RP. Although 80% of the patients with RP had areas of consolidation seen on the posttreatment CT scan, the majority (74%) of patients with such radiographic changes were asymptomatic. For patients with lung infiltrates, the minimum isodose encompassing the volume of radiologic abnormality was usually {>=}27 Gy. Traditional dose-volume metrics, pulmonary function tests, and the coadministration of angiotensin converting enzyme inhibitors (ACE-I) were all strongly correlated with the presence of radiologic injury on univariate analysis (p {<=} 0.002). There was also an inverse correlation between prior smoking history and CT scan changes (p = 0.02). On multivariate analysis, dosimetric parameters and the use of ACE-I retained significance (p = 0.005). Conclusions: Our findings suggest that there is substantial interindividual variation in lung radiosensitivity. ACE-I prevented the radiologic changes seen after high-dose radiation therapy, and their role as radioprotectants warrants further investigation.

  7. Dosimetric comparison of IMRT rectal and anal canal plans generated using an anterior dose avoidance structure

    SciTech Connect

    Leicher, Brian; Day, Ellen; Colonias, Athanasios; Gayou, Olivier

    2014-10-01

    To describe a dosimetric method using an anterior dose avoidance structure (ADAS) during the treatment planning process for intensity-modulated radiation therapy (IMRT) for patients with anal canal and rectal carcinomas. A total of 20 patients were planned on the Elekta/CMS XiO treatment planning system, version 4.5.1 (Maryland Heights MO) with a superposition algorithm. For each patient, 2 plans were created: one employing an ADAS (ADAS plan) and the other replanned without an ADAS (non-ADAS plan). The ADAS was defined to occupy the volume between the inguinal nodes and primary target providing a single organ at risk that is completely outside of the target volume. Each plan used the same beam parameters and was analyzed by comparing target coverage, overall plan dose conformity using a conformity number (CN) equation, bowel dose-volume histograms, and the number of segments, daily treatment duration, and global maximum dose. The ADAS and non-ADAS plans were equivalent in target coverage, mean global maximum dose, and sparing of small bowel in low-dose regions (5, 10, 15, and 20 Gy). The mean difference between the CN value for the non-ADAS plans and ADAS plans was 0.04 ± 0.03 (p < 0.001). The mean difference in the number of segments was 15.7 ± 12.7 (p < 0.001) in favor of ADAS plans. The ADAS plan delivery time was shorter by 2.0 ± 1.5 minutes (p < 0.001) than the non-ADAS one. The ADAS has proven to be a powerful tool when planning rectal and anal canal IMRT cases with critical structures partially contained inside the target volume.

  8. Fractionated stereotactic radiotherapy: A method to evaluate geometric and dosimetric uncertainties using radiochromic films

    SciTech Connect

    Coscia, Gianluca; Vaccara, Elena; Corvisiero, Roberta; Cavazzani, Paolo; Ruggieri, Filippo Grillo; Taccini, Gianni

    2009-07-15

    In the authors' hospital, stereotactic radiotherapy treatments are performed with a Varian Clinac 600C equipped with a BrainLAB m3 micro-multileaf-collimator generally using the dynamic conformal arc technique. Patient immobilization during the treatment is achieved with a fixation mask supplied by BrainLAB, made with two reinforced thermoplastic sheets fitting the patient's head. With this work the authors propose a method to evaluate treatment geometric accuracy and, consequently, to determine the amount of the margin to keep in the CTV-PTV expansion during the treatment planning. The reproducibility of the isocenter position was tested by simulating a complete treatment on the anthropomorphic phantom Alderson Rando, inserting in between two phantom slices a high sensitivity Gafchromic EBT film, properly prepared and calibrated, and repeating several treatment sessions, each time removing the fixing mask and replacing the film inside the phantom. The comparison between the dose distributions measured on films and computed by TPS, after a precise image registration procedure performed by a commercial piece of software (FILMQA, 3cognition LLC (Division of ISP), Wayne, NJ), allowed the authors to measure the repositioning errors, obtaining about 0.5 mm in case of central spherical PTV and about 1.5 mm in case of peripheral irregular PTV. Moreover, an evaluation of the errors in the registration procedure was performed, giving negligible values with respect to the quantities to be measured. The above intrinsic two-dimensional estimate of treatment accuracy has to be increased for the error in the third dimension, but the 2 mm margin the authors generally use for the CTV-PTV expansion seems adequate anyway. Using the same EBT films, a dosimetric verification of the treatment planning system was done. Measured dose values are larger or smaller than the nominal ones depending on geometric irradiation conditions, but, in the authors' experimental conditions, always

  9. Fractionated stereotactic radiotherapy: a method to evaluate geometric and dosimetric uncertainties using radiochromic films.

    PubMed

    Coscia, Gianluca; Vaccara, Elena; Corvisiero, Roberta; Cavazzani, Paolo; Ruggieri, Filippo Grillo; Taccini, Gianni

    2009-07-01

    In the authors' hospital, stereotactic radiotherapy treatments are performed with a Varian Clinac 600C equipped with a BrainLAB m3 micro-multileaf-collimator generally using the dynamic conformal arc technique. Patient immobilization during the treatment is achieved with a fixation mask supplied by BrainLAB, made with two reinforced thermoplastic sheets fitting the patient's head. With this work the authors propose a method to evaluate treatment geometric accuracy and, consequently, to determine the amount of the margin to keep in the CTV-PTV expansion during the treatment planning. The reproducibility of the isocenter position was tested by simulating a complete treatment on the anthropomorphic phantom Alderson Rando, inserting in between two phantom slices a high sensitivity Gafchromic EBT film, properly prepared and calibrated, and repeating several treatment sessions, each time removing the fixing mask and replacing the film inside the phantom. The comparison between the dose distributions measured on films and computed by TPS, after a precise image registration procedure performed by a commercial piece of software (FILMQA, 3cognition LLC (Division of ISP), Wayne, NJ), allowed the authors to measure the repositioning errors, obtaining about 0.5 mm in case of central spherical PTV and about 1.5 mm in case of peripheral irregular PTV. Moreover, an evaluation of the errors in the registration procedure was performed, giving negligible values with respect to the quantities to be measured. The above intrinsic two-dimensional estimate of treatment accuracy has to be increased for the error in the third dimension, but the 2 mm margin the authors generally use for the CTV-PTV expansion seems adequate anyway. Using the same EBT films, a dosimetric verification of the treatment planning system was done. Measured dose values are larger or smaller than the nominal ones depending on geometric irradiation conditions, but, in the authors' experimental conditions, always

  10. Poster — Thur Eve — 58: Dosimetric validation of electronic compensation for radiotherapy treatment planning

    SciTech Connect

    Gräfe, James; Khan, Rao; Meyer, Tyler

    2014-08-15

    In this study we investigate the deliverability of dosimetric plans generated by the irregular surface compensator (ISCOMP) algorithm for 6 MV photon beams in Eclipse (Varian Medical System, CA). In contrast to physical tissue compensation, the electronic ISCOMP uses MLCs to dynamically modulate the fluence of a photon beam in order to deliver a uniform dose at a user defined plane in tissue. This method can be used to shield critical organs that are located within the treatment portal or improve dose uniformity by tissue compensation in inhomogeneous regions. Three site specific plans and a set of test fields were evaluated using the γ-metric of 3%/ 3 mm on Varian EPID, MapCHECK, and Gafchromic EBT3 film with a clinical tolerance of >95% passing rates. Point dose measurements with an NRCC calibrated ionization chamber were also performed to verify the absolute dose delivered. In all cases the MapCHECK measured plans met the gamma criteria. The mean passing rate for the six EBT3 film field measurements was 96.2%, with only two fields at 93.4 and 94.0% passing rates. The EPID plans passed for fields encompassing the central ∼10 × 10 cm{sup 2} region of the detector; however for larger fields and greater off-axis distances discrepancies were observed and attributed to the profile corrections and modeling of backscatter in the portal dose calculation. The magnitude of the average percentage difference for 21 ion chamber point dose measurements and 17 different fields was 1.4 ± 0.9%, and the maximum percentage difference was −3.3%. These measurements qualify the algorithm for routine clinical use subject to the same pre-treatment patient specific QA as IMRT.

  11. Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy

    SciTech Connect

    Wang, Jiazhou; Zhao, Kuaike; Peng, Jiayuan; Xie, Jiang; Chen, Junchao; Zhang, Zhen; Hu, Weigang; Jin, Xiance; Studenski, Matthew

    2015-02-15

    Purpose: To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient’s anatomic and dosimetric parameters for esophageal cancer patients. Methods: Eighty esophagus patients in the authors’ institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlap volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman’s rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. Results: With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. Conclusions: It is feasible to use patients’ anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.

  12. Dosimetric effects of endorectal balloons on intensity-modulated radiation therapy plans for prostate cancer

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Sung; Chung, Jin-Beom; Kim, In-Ah; Eom, Keun-Yong

    2013-10-01

    We used an endorectal balloon (ERB) for prostate immobilization during intensity-modulated radiotherapy (IMRT) for prostate cancer treatment. To investigate the dosimetric effects of ERB-filling materials, we changed the ERB Hounsfield unit (HU) from 0 to 1000 HU in 200-HU intervals to simulate the various ERB fillings; 0 HU simulated a water-filled ERB, and 1000 HU simulated the densest material-filled ERB. Dosimetric data (coverage, homogeneity, conformity, maximal dose, and typical volume dose) for the tumor and the organs at risk (OARs) were evaluated in prostate IMRT treatment plans with 6-MV and 15-MV beams. The tumor coverage appeared to differ by approximately 1%, except for the clinical target volume (CTV) V100% and the planning target volume (PTV) V100%. The largest difference for the various ERB fillings was observed in the PTV V100%. In spite of increasing HU, the prostate IMRT plans at both energies had relatively low dosimetric effects on the PTV and the CTV. However, the maximal and the typical volume doses (D25%, D30%, and D50%) to the rectal wall and the bladder increased with increasing HU. For an air-filled ERB, the maximal doses to the rectal wall and the monitor units were lower than the corresponding values for the water-filled and the densest material-filled ERBs. An air-filled ERB spared the rectal wall because of its dosimetric effect. Thus, we conclude that the use of an air-filled ERB provides a dosimetric benefit to the rectal wall without a loss of target coverage and is an effective option for prostate IMRT treatment.

  13. Study of the Phototransference in GR-200 Dosimetric Material and its Convenience for Dose Re-estimation

    SciTech Connect

    Baly, L.; Otazo, M. R.; Molina, D.; Pernas, R.

    2006-09-08

    A study of the phototransference of charges from deep to dosimetric traps in GR-200 material is presented and its convenience for dose re-estimation in the dose range between 2 and 100mSv is also analyzed. The recovering coefficient (RC) defined as the ratio between the phototransferred thermoluminescence (PTTL) and the original thermoluminescence (TL) of the dosimetric trap was used to evaluate the ratio of phototransferred charges from deep traps and the original charges in the dosimetric traps. The results show the convenience of this method for dose re-estimation for this material in the selected range of doses.

  14. Surface and superficial dose dosimetric verification for postmastectomy radiotherapy

    SciTech Connect

    Shiau, An-Cheng; Chiu, Min-Chi; Chen, Tung-Ho; Chiou, Jeng-Fong; Shueng, Pei-Wei; Chen, Shang-Wen; Chen, Wei-Li; Kuan, Wei-Peng

    2012-01-01

    In patients given postmastectomy radiotherapy (PMRT), the chest wall is a very thin layer of soft tissue with a low-density lung tissue behind. Chest wall treated in this situation with a high-energy photon beam presents a high dosimetric uncertainty region for both calculation and measurement. The purpose of this study was to measure and to evaluate the surface and superficial doses for patients requiring PMRT with different treatment techniques. An elliptic cylinder cork and superflab boluses were used to simulate the lung and the chest wall, respectively. Sets of computed tomography (CT) images with different chest wall thicknesses were acquired for the study phantom. Hypothetical clinical target volumes (CTVs) were outlined and modified to fit a margin of 1-3 mm, depending on the chest wall thickness, away from the surface for the sets of CT images. The planning target volume (PTV) was initially created by expanding an isotropic 3-mm margin from the CTV, and then a margin of 3 mm was shrunk from the phantom surface to avoid artifact-driven results in the beam-let intensity. Treatment techniques using a pair of tangential wedged fields (TWFs) and 4-field intensity-modulated radiation therapy (IMRT) were designed with a prescribed fraction dose (D{sub p}) of 180 cGy. Superficial dose profiles around the phantom circumference at depths of 0, 1, 2, 3, and 5 mm were obtained for each treatment technique using radiochromic external beam therapy (EBT) films. EBT film exhibits good characteristics for dose measurements in the buildup region. Underdoses at the median and lateral regions of the TWF plans were shown. The dose profiles at shallow depths for the TWF plans show a dose buildup about 3 mm at the median and lateral tangential incident regions with a surface dose of about 52% of D{sub p}. The dose was gradually increased toward the most obliquely tangential angle with a maximum dose of about 118% of D{sub p.} Dose profiles were more uniform in the PTV region for

  15. The investigation of prostatic calcifications using μ-PIXE analysis and their dosimetric effect in low dose rate brachytherapy treatments using Geant4

    NASA Astrophysics Data System (ADS)

    Pope, D. J.; Cutajar, D. L.; George, S. P.; Guatelli, S.; Bucci, J. A.; Enari, K. E.; Miller, S.; Siegele, R.; Rosenfeld, A. B.

    2015-06-01

    Low dose rate brachytherapy is a widely used modality for the treatment of prostate cancer. Most clinical treatment planning systems currently in use approximate all tissue to water, neglecting the existence of inhomogeneities, such as calcifications. The presence of prostatic calcifications may perturb the dose due to the higher photoelectric effect cross section in comparison to water. This study quantitatively evaluates the effect of prostatic calcifications on the dosimetric outcome of brachytherapy treatments by means of Monte Carlo simulations and its potential clinical consequences. Four pathological calcification samples were characterised with micro-particle induced x-ray emission (μ-PIXE) to determine their heavy elemental composition. Calcium, phosphorus and zinc were found to be the predominant heavy elements in the calcification composition. Four clinical patient brachytherapy treatments were modelled using Geant4 based Monte Carlo simulations, in terms of the distribution of brachytherapy seeds and calcifications in the prostate. Dose reductions were observed to be up to 30% locally to the calcification boundary, calcification size dependent. Single large calcifications and closely placed calculi caused local dose reductions of between 30-60%. Individual calculi smaller than 0.5 mm in diameter showed minimal dosimetric impact, however, the effects of small or diffuse calcifications within the prostatic tissue could not be determined using the methods employed in the study. The simulation study showed a varying reduction on common dosimetric parameters. D90 showed a reduction of 2-5%, regardless of calcification surface area and volume. The parameters V100, V150 and V200 were also reduced by as much as 3% and on average by 1%. These reductions were also found to relate to the surface area and volume of calcifications, which may have a significant dosimetric impact on brachytherapy treatment, however, such impacts depend strongly on specific factors

  16. A dosimetric analysis of volumetric-modulated arc radiotherapy with jaw width restriction vs 7 field intensity-modulated radiotherapy for definitive treatment of cervical cancer

    PubMed Central

    Huang, B; Fang, Z; Huang, Y; Lin, P

    2014-01-01

    Objective: Radiation therapy treatment planning was performed to compare the dosimetric difference between volumetric-modulated arc radiotherapy (RapidArc™ v. 10; Varian® Medical Systems, Palo Alto, CA) and 7-field intensity-modulated radiotherapy (7f-IMRT) in the definitive treatment of cervical cancer. Methods: 13 patients with cervical cancer were enrolled in this study. Planning target volume (PTV) 50 and PTV60 were prescribed at a dose of 50 and 60 Gy in 28 fractions, respectively. The dose to the PTV60 was delivered as a simultaneous integrated boost to the pelvic lymph nodes. Owing to the mechanical limitation of the multileaf collimator in which the maximum displacement was limited to 15 cm, two types of RapidArc with different jaw width restrictions (15 and 20–23 cm) were investigated to evaluate their dosimetric differences. The RapidArc plan type with dosimetric superiority was then compared against the 7f-IMRT on the target coverage, sparing of the organs at risk (OARs), monitor units, treatment time and delivery accuracy to determine whether RapidArc is beneficial for the treatment of cervical cancer. Results: The 15-cm jaw width restriction had better performance compared with the restrictions that were longer than 15 cm in the sparing of the OARs. The 15-cm RapidArc spared the OARs, that is, the bladder, rectum, small intestine, femoral heads and bones, and improved treatment efficiency compared with 7f-IMRT. Both techniques delivered a high quality-assurance passing rate (>90%) according to the Γ3mm,3% criterion. Conclusion: RapidArc with a 15-cm jaw width restriction spares the OARs and improves treatment efficiency in cervical cancer compared with 7f-IMRT. Advances in knowledge: This study describes the dosimetric superiority of RapidArc with a 15-cm jaw width restriction and explores the feasibility of using RapidArc for the definitive treatment of cervical cancer. PMID:24834477

  17. The investigation of prostatic calcifications using μ-PIXE analysis and their dosimetric effect in low dose rate brachytherapy treatments using Geant4.

    PubMed

    Pope, D J; Cutajar, D L; George, S P; Guatelli, S; Bucci, J A; Enari, K E; Miller, S; Siegele, R; Rosenfeld, A B

    2015-06-01

    Low dose rate brachytherapy is a widely used modality for the treatment of prostate cancer. Most clinical treatment planning systems currently in use approximate all tissue to water, neglecting the existence of inhomogeneities, such as calcifications. The presence of prostatic calcifications may perturb the dose due to the higher photoelectric effect cross section in comparison to water. This study quantitatively evaluates the effect of prostatic calcifications on the dosimetric outcome of brachytherapy treatments by means of Monte Carlo simulations and its potential clinical consequences.Four pathological calcification samples were characterised with micro-particle induced x-ray emission (μ-PIXE) to determine their heavy elemental composition. Calcium, phosphorus and zinc were found to be the predominant heavy elements in the calcification composition. Four clinical patient brachytherapy treatments were modelled using Geant4 based Monte Carlo simulations, in terms of the distribution of brachytherapy seeds and calcifications in the prostate. Dose reductions were observed to be up to 30% locally to the calcification boundary, calcification size dependent. Single large calcifications and closely placed calculi caused local dose reductions of between 30-60%. Individual calculi smaller than 0.5 mm in diameter showed minimal dosimetric impact, however, the effects of small or diffuse calcifications within the prostatic tissue could not be determined using the methods employed in the study. The simulation study showed a varying reduction on common dosimetric parameters. D90 showed a reduction of 2-5%, regardless of calcification surface area and volume. The parameters V100, V150 and V200 were also reduced by as much as 3% and on average by 1%. These reductions were also found to relate to the surface area and volume of calcifications, which may have a significant dosimetric impact on brachytherapy treatment, however, such impacts depend strongly on specific factors

  18. Energy and angular dependences of common types of personal dosemeters in the mirror of the First national intercomparison of individual dosimetric monitoring laboratories in Ukraine.

    PubMed

    Chumak, V; Deniachenko, N; Volosky, V

    2015-12-01

    In depth analysis of the results of the First National Intercomparison of individual dosimetry laboratories in Ukraine has revealed energy and angular responses of the most common types of personal dosemeters and dosi metric systems. Participating laboratories use 9 different types of dosimetric systems - automatic, semi automat ic and manual. If was found that energy dependences of the most common dosemeter types in Ukraine generally correspond to the literature data on respective TLD materials (LiF:Mg,Cu,P, LiF:Mg,TiandAl2O3:С), however, due to peculiarities of holders (filters) and dose algorithms, for some dosimetry systems the energy dependences can be improved (compensated). Angular dependences proved to be more pronounced: only two systems revealed weak dependence of response on the incident angle, for other systems at large angles (α=60°) dosemeters overestimate true dose values. PMID:26695907

  19. Dosimetric properties of a proton beamline dedicated to the treatment of ocular disease

    SciTech Connect

    Slopsema, R. L. Mamalui, M.; Yeung, D.; Malyapa, R.; Li, Z.; Zhao, T.

    2014-01-15

    Purpose: A commercial proton eyeline has been developed to treat ocular disease. Radiotherapy of intraocular lesions (e.g., uveal melanoma, age-related macular degeneration) requires sharp dose gradients to avoid critical structures like the macula and optic disc. A high dose rate is needed to limit patient gazing times during delivery of large fractional dose. Dose delivery needs to be accurate and predictable, not in the least because current treatment planning algorithms have limited dose modeling capabilities. The purpose of this paper is to determine the dosimetric properties of a new proton eyeline. These properties are compared to those of existing systems and evaluated in the context of the specific clinical requirements of ocular treatments. Methods: The eyeline is part of a high-energy, cyclotron-based proton therapy system. The energy at the entrance of the eyeline is 105 MeV. A range modulator (RM) wheel generates the spread-out Bragg peak, while a variable range shifter system adjusts the range and spreads the beam laterally. The range can be adjusted from 0.5 up to 3.4 g/cm{sup 2}; the modulation width can be varied in steps of 0.3 g/cm{sup 2} or less. Maximum field diameter is 2.5 cm. All fields can be delivered with a dose rate of 30 Gy/min or more. The eyeline is calibrated according to the IAEA TRS-398 protocol using a cylindrical ionization chamber. Depth dose distributions and dose/MU are measured with a parallel-plate ionization chamber; lateral profiles with radiochromic film. The dose/MU is modeled as a function of range, modulation width, and instantaneous MU rate with fit parameters determined per option (RM wheel). Results: The distal fall-off of the spread-out Bragg peak is 0.3 g/cm{sup 2}, larger than for most existing systems. The lateral penumbra varies between 0.9 and 1.4 mm, except for fully modulated fields that have a larger penumbra at skin. The source-to-axis distance is found to be 169 cm. The dose/MU shows a strong dependence

  20. A feasibility study of using couch-based real time dosimetric device in external beam radiotherapy

    SciTech Connect

    Prabhakar, Ramachandran; Cramb, Jim; Kron, Tomas

    2011-12-15

    Purpose: Measurement of actual dose delivered during radiotherapy treatment aids in checking the accuracy of dose delivered to the patient. In this study, a couch-based real time dosimetric device has been proposed to measure the exit or entrance dose to a patient during external beam radiotherapy. The utility and feasibility of such a device using a 2D array of diodes has been demonstrated. Methods: Two MAPCHECK devices: MAPCHECK (1175) and MAPCHECK 2 (both SunNuclear) were embedded in a foam block in the treatment couch of a Varian 21iX linear accelerator. The angular dependence of the detector response for both devices was studied before implementing the MAPCHECKs for experimental purposes. An Alderson Rando head phantom was scanned with the MAPCHECK and MAPCHECK 2 devices separately and four different treatment plans were generated with target volumes at three different positions simulating typical clinical situations. The analytical anisotropic algorithm (AAA) was used to compute the doses in an Eclipse treatment planning system (Varian Medical Systems). The Rando phantom with the MAPCHECK device was exposed in Clinac 21iX linear accelerator. The measured dose distribution was compared with the calculated dose distribution to check for the accuracy in dose delivery. Results: Measured and computed dose distribution were found to agree with more than 93% of pixels passing at 3% and 3 mm gamma criteria for all the treatment plans. The couch-based real time dosimetry system may also be applied for noncoplanar beams where electronic portal imaging device (EPID) is not practical to measure the dose. Other advantages include checking the beam stability during the patient treatment, performing routine morning quality assurance (QA) tests in the linear accelerator, and to perform pretreatment verification of intensity modulated radiation therapy (IMRT). One of the drawbacks of this system is that it cannot be used for measuring the dose at 90 deg. or 270 deg. gantry

  1. ADVANCES IN EXPERIMENTAL EXPOSURE METHODS AND DOSIMETRIC TECHNIQUES USED IN RADIO-FREQUENCY RADIATION BIOLOGICAL EFFECTS STUDIES

    EPA Science Inventory

    The various techniques and methodologies used for exposure and dosimetric assessment in radio-frequency (RF) biological effects studies are reviewed. Techniques are compared and the advantages and disadvantages of each are discussed. Significant progress has been made during the ...

  2. Dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer

    SciTech Connect

    Yang, Yun; Catalano, Suzanne; Kelsey, Chris R.; Yoo, David S.; Yin, Fang-Fang; Cai, Jing

    2014-04-01

    To quantitatively evaluate dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer. Overall, 11 lung SBRT patients (8 female and 3 male; mean age: 75.0 years) with medially located tumors were included. Treatment plans with simulated rotational offsets of 1°, 3°, and 5° in roll, yaw, and pitch were generated and compared with the original plans. Both clockwise and counterclockwise rotations were investigated. The following dosimetric metrics were quantitatively evaluated: planning target volume coverage (PTV V{sub 100%}), max PTV dose (PTV D{sub max}), percentage prescription dose to 0.35 cc of cord (cord D{sub 0.35} {sub cc}), percentage prescription dose to 0.35 cc and 5 cc of esophagus (esophagus D{sub 0.35} {sub cc} and D{sub 5} {sub cc}), and volume of the lungs receiving at least 20 Gy (lung V{sub 20}). Statistical significance was tested using Wilcoxon signed rank test at the significance level of 0.05. Overall, small differences were found in all dosimetric matrices at all rotational offsets: 95.6% of differences were < 1% or < 1 Gy. Of all rotational offsets, largest change in PTV V{sub 100%}, PTV D{sub max}, cord D{sub 0.35} {sub cc}, esophagus D{sub 0.35} {sub cc}, esophagus D{sub 5} {sub cc}, and lung V{sub 20} was − 8.36%, − 6.06%, 11.96%, 8.66%, 6.02%, and − 0.69%, respectively. No significant correlation was found between any dosimetric change and tumor-to-cord/esophagus distances (R{sup 2} range: 0 to 0.44). Larger dosimetric changes and intersubject variations were observed at larger rotational offsets. Small dosimetric differences were found owing to rotational offsets up to 5° in lung SBRT for medially located tumors. Larger intersubject variations were observed at larger rotational offsets.

  3. Dosimetric characterization of whole brain radiotherapy of pediatric patients using modulated proton beams.

    PubMed

    Jin, Hosang; Hsi, Wen; Yeung, Daniel; Li, Zuofeng; Mendenhall, Nancy P; Marcus, Robert B

    2011-01-01

    This study was designed to investigate dosimetric variations between proton plans with (PPW) and without (PPWO), a compensator for whole brain radiotherapy (WBRT). The retrospective study on PPW and PPWO in Eclipse and XiO systems and photon plans (XP) using controlled segments in Pinnacle system was performed on nine pediatric patients for craniospinal irradiations. DVHs and derived metrics, such as the homogeneity index (HI), the doses to 2% (D(2%)) and 5% (D(5%)) volumes, and mean dose (D(mean)) of the whole brain (i.e., PTV), and the organs at risk (OARs) such as lens and skull, were obtained. The PPW plans from both Eclipse and XiO systems uncovered the following advantages: (1) encompassing a cribriform plate area with the 100% isodose line was better than either PPWO or XP, according to calculated two-dimensional distributions of one patient; (2) the mean value of D(5%) for lens was reduced to 23.6% of D(P) from 54.1% for PPWO or 41.6% for XP; and (3) the mean value of D(mean) for skull was reduced to 94.8% of D(P) from either 98.4% for PPWO or 98.3% for XP. However, the PPW plans also exposed several disadvantages including: (1) the HI of PTV increased to 7.7 from 4.7 for PPWO or 3.7 for XP; (2) D(2%) to PTV increased to 108.8% of D(P) from 104.8% for PPWO or 105.1% for XP; and (3) D(5%) to the skull increased to 104.9% of D(P) from 101.6% for PPWO or 103.4% of for XP. One-half of the observed variations were caused by different penumbra on lateral profiles and distal fall-off depth doses of protons in Eclipse and XiO. Because the utilization on the sharp proton distal fall-off was limited for WBRT, the difference between PPW and PPWO or XP indicated no distinguishable improvement by using a compensator in proton plans. PMID:21587172

  4. Dosimetric characterization of a {sup 131}Cs brachytherapy source by thermoluminescence dosimetry in liquid water

    SciTech Connect

    Tailor, Ramesh; Ibbott, Geoffrey; Lampe, Stephanie; Bivens Warren, Whitney; Tolani, Naresh

    2008-12-15

    Dosimetry measurements of a {sup 131}Cs brachytherapy source have been performed in liquid water employing thermoluminescence dosimeters. A search of the literature reveals that this is the first time a complete set of dosimetric parameters for a brachytherapy ''seed'' source has been measured in liquid water. This method avoids the medium correction uncertainties introduced by the use of water-equivalent plastic phantoms. To assure confidence in the results, four different sources were employed for each parameter measured, and measurements were performed multiple times. The measured dosimetric parameters presented here are based on the AAPM Task Group 43 formalism. The dose-rate constant measured in liquid water was (1.063{+-}0.023) cGy h{sup -1} U{sup -1} and was based on the air-kerma strength standard for this source established by the National Institute of Standards and Technology. Measured values for the 2D anisotropy function and the radial dose function are presented.

  5. Dosimetric properties of high energy current (HEC) detector in keV x-ray beams

    NASA Astrophysics Data System (ADS)

    Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno

    2015-04-01

    We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications.

  6. SU-E-T-618: Dosimetric Comparison of Manual and Beam Angle Optimization of Gantry Angles in IMRT for Cervical Cancer

    SciTech Connect

    Lin, X; Sun, T; Liu, T; Zhang, G; Yin, Y

    2014-06-01

    Purpose: To evaluate the dosimetric characteristics of intensity-modulated radiotherapy (IMRT) treatment plan with beam angle optimization. Methods: Ten post-operation patients with cervical cancer were included in this analysis. Two IMRT plans using seven beams were designed in each patient. A standard coplanar equi-space beam angles were used in the first plan (plan 1), whereas the selection of beam angle was optimized by beam angle optimization algorithm in Varian Eclipse treatment planning system for the same number of beams in the second plan (plan 2). Two plans were designed for each patient with the same dose-volume constraints and prescription dose. All plans were normalized to the mean dose to PTV. The dose distribution in the target, the dose to the organs at risk and total MU were compared. Results: For conformity and homogeneity in PTV, no statistically differences were observed in the two plans. For the mean dose in bladder, plan 2 were significantly lower than plan 1(p<0.05). No statistically significant differences were observed between two plans for the mean doses in rectum, left and right femur heads. Compared with plan1, the average monitor units reduced 16% in plan 2. Conclusion: The IMRT plan based on beam angle optimization for cervical cancer could reduce the dose delivered to bladder and also reduce MU. Therefore there were some dosimetric advantages in the IMRT plan with beam angle optimization for cervical cancer.

  7. Overview on the dosimetric uncertainty analysis for photon-emitting brachytherapy sources, in the light of the AAPM Task Group No 138 and GEC-ESTRO report

    NASA Astrophysics Data System (ADS)

    DeWerd, Larry A.; Venselaar, Jack L. M.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Stump, Kurt E.; Thomadsen, Bruce R.; Rivard, Mark J.

    2012-10-01

    In 2011, the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO) published a report pertaining to uncertainties in brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization's Guide to the Expression of Uncertainty in Measurement and Technical Note 1297 by the National Institute of Standards and Technology are taken as reference standards for uncertainty formalism. Uncertainties involved in measurements or Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is given with uncertainties in each of the brachytherapy dosimetry parameters of the AAPM TG-43 dose-calculation formalism. For low-energy and high-energy brachytherapy sources of low dose-rate and high dose-rate, a combined dosimetric uncertainty <5% (k = 1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and manufacturers of brachytherapy sources and treatment planning systems. These recommendations reflect the guidance of the AAPM and GEC-ESTRO for their members, and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for conventional brachytherapy sources used in routine clinical treatments.

  8. Dosimetric Effects of Magnetic Resonance Imaging-assisted Radiotherapy Planning: Dose Optimization for Target Volumes at High Risk and Analytic Radiobiological Dose Evaluation.

    PubMed

    Park, Ji-Yeon; Suh, Tae Suk; Lee, Jeong-Woo; Ahn, Kook-Jin; Park, Hae-Jin; Choe, Bo-Young; Hong, Semie

    2015-10-01

    Based on the assumption that apparent diffusion coefficients (ADCs) define high-risk clinical target volume (aCTVHR) in high-grade glioma in a cellularity-dependent manner, the dosimetric effects of aCTVHR-targeted dose optimization were evaluated in two intensity-modulated radiation therapy (IMRT) plans. Diffusion-weighted magnetic resonance (MR) images and ADC maps were analyzed qualitatively and quantitatively to determine aCTVHR in a high-grade glioma with high cellularity. After confirming tumor malignancy using the average and minimum ADCs and ADC ratios, the aCTVHR with double- or triple-restricted water diffusion was defined on computed tomography images through image registration. Doses to the aCTVHR and CTV defined on T1-weighted MR images were optimized using a simultaneous integrated boost technique. The dosimetric benefits for CTVs and organs at risk (OARs) were compared using dose volume histograms and various biophysical indices in an ADC map-based IMRT (IMRTADC) plan and a conventional IMRT (IMRTconv) plan. The IMRTADC plan improved dose conformity up to 15 times, compared to the IMRTconv plan. It reduced the equivalent uniform doses in the visual system and brain stem by more than 10% and 16%, respectively. The ADC-based target differentiation and dose optimization may facilitate conformal dose distribution to the aCTVHR and OAR sparing in an IMRT plan. PMID:26425053

  9. Integral test phantom for dosimetric quality assurance of image guided and intensity modulated stereotactic radiotherapy

    SciTech Connect

    Letourneau, Daniel; Keller, Harald; Sharpe, Michael B.; Jaffray, David A.

    2007-05-15

    The objective of this work is to develop a dosimetric phantom quality assurance (QA) of linear accelerators capable of cone-beam CT (CBCT) image guided and intensity-modulated radiotherapy (IG-IMRT). This phantom is to be used in an integral test to quantify in real-time both the performance of the image guidance and the dose delivery systems in terms of dose localization. The prototype IG-IMRT QA phantom consisted of a cylindrical imaging phantom (CatPhan) combined with an array of 11 radiation diodes mounted on a 10 cm diameter disk, oriented perpendicular to the phantom axis. Basic diode response characterization was performed for 6 and 18 MV photons. The diode response was compared to planning system calculations in the open and penumbrae regions of simple and complex beam arrangements. The clinical use of the QA phantom was illustrated in an integral test of an IG-IMRT treatment designed for a clinical spinal radiosurgery case. The sensitivity of the phantom to multileaf collimator (MLC) calibration and setup errors in the clinical setting was assessed by introducing errors in the IMRT plan or by displacing the phantom. The diodes offered good response linearity and long-term reproducibility for both 6 and 18 MV. Axial dosimetry of coplanar beams (in a plane containing the beam axes) was made possible with the nearly isoplanatic response of the diodes over 360 deg. of gantry (usually within {+-}1%). For single beam geometry, errors in phantom placement as small as 0.5 mm could be accurately detected (in gradient {>=}1%/mm). In clinical setting, MLC systematic errors of 1 mm on a single MLC bank introduced in the IMRT plan were easily detectable with the QA phantom. The QA phantom demonstrated also sufficient sensitivity for the detection of setup errors as small as 1 mm for the IMRT delivery. These results demonstrated that the prototype can accurately and efficiently verify the entire IG-IMRT process. This tool, in conjunction with image guidance capabilities

  10. X-Ray Attenuation and Absorption for Materials of Dosimetric Interest

    National Institute of Standards and Technology Data Gateway

    SRD 126 X-Ray Attenuation and Absorption for Materials of Dosimetric Interest (Web, free access)   Tables and graphs of the photon mass attenuation coefficient and the mass energy-absorption coefficient are presented for all of the elements Z = 1 to 92, and for 48 compounds and mixtures of radiological interest. The tables cover energies of the photon (x-ray, gamma ray, bremsstrahlung) from 1 keV to 20 MeV.

  11. Investigating the dosimetric and tumor control consequences of prostate seed loss and migration

    SciTech Connect

    Knaup, Courtney; Mavroidis, Panayiotis; Esquivel, Carlos; Stathakis, Sotirios; Swanson, Gregory; Baltas, Dimos; Papanikolaou, Nikos

    2012-06-15

    Purpose: Low dose-rate brachytherapy is commonly used to treat prostate cancer. However, once implanted, the seeds are vulnerable to loss and movement. The goal of this work is to investigate the dosimetric and radiobiological effects of the types of seed loss and migration commonly seen in prostate brachytherapy. Methods: Five patients were used in this study. For each patient three treatment plans were created using Iodine-125, Palladium-103, and Cesium-131 seeds. The three seeds that were closest to the urethra were identified and modeled as the seeds lost through the urethra. The three seeds closest to the exterior of prostatic capsule were identified and modeled as those lost from the prostate periphery. The seed locations and organ contours were exported from Prowess and used by in-house software to perform the dosimetric and radiobiological evaluation. Seed loss was simulated by simultaneously removing 1, 2, or 3 seeds near the urethra 0, 2, or 4 days after the implant or removing seeds near the exterior of the prostate 14, 21, or 28 days after the implant. Results: Loss of one, two or three seeds through the urethra results in a D{sub 90} reduction of 2%, 5%, and 7% loss, respectively. Due to delayed loss of peripheral seeds, the dosimetric effects are less severe than for loss through the urethra. However, while the dose reduction is modest for multiple lost seeds, the reduction in tumor control probability was minimal. Conclusions: The goal of this work was to investigate the dosimetric and radiobiological effects of the types of seed loss and migration commonly seen in prostate brachytherapy. The results presented show that loss of multiple seeds can cause a substantial reduction of D{sub 90} coverage. However, for the patients in this study the dose reduction was not seen to reduce tumor control probability.

  12. Respiratory Organ Motion and Dosimetric Impact on Breast and Nodal Irradiation

    SciTech Connect

    Qi, X. Sharon; White, Julia; Rabinovitch, Rachel; Merrell, Kenneth; Sood, Amit; Bauer, Anderson; Wilson, J. Frank; Miften, Moyed; Li, X. Allen

    2010-10-01

    Purpose: To examine the respiratory motion for target and normal structures during whole breast and nodal irradiation and the resulting dosimetric impact. Methods and Materials: Four-dimensional CT data sets of 18 patients with early-stage breast cancer were analyzed retrospectively. A three-dimensional conformal dosimetric plan designed to irradiate the breast was generated on the basis of CT images at 20% respiratory phase (reference phase). The reference plans were copied to other respiratory phases at 0% (end of inspiration) and 50% (end of expiration) to simulate the effects of breathing motion on whole breast irradiation. Dose-volume histograms, equivalent uniform dose, and normal tissue complication probability were evaluated and compared. Results: Organ motion of up to 8.8 mm was observed during free breathing. A large lung centroid movement was typically associated with a large shift of other organs. The variation of planning target volume coverage during a free breathing cycle is generally within 1%-5% (17 of 18 patients) compared with the reference plan. However, up to 28% of V{sub 45} variation for the internal mammary nodes was observed. Interphase mean dose variations of 2.2%, 1.2%, and 1.4% were observed for planning target volume, ipsilateral lung, and heart, respectively. Dose variations for the axillary nodes and brachial plexus were minimal. Conclusions: The doses delivered to the target and normal structures are different from the planned dose based on the reference phase. During normal breathing, the dosimetric impact of respiratory motion is clinically insignificant with the exception of internal mammary nodes. However, noticeable degradation in dosimetric plan quality may be expected for the patients with large respiratory motion.

  13. Medical linear accelerator mounted mini-beam collimator: design, fabrication and dosimetric characterization.

    PubMed

    Cranmer-Sargison, G; Crewson, C; Davis, W M; Sidhu, N P; Kundapur, V

    2015-09-01

    The goal of this work was to design, build and experimentally characterize a linear accelerator mounted mini-beam collimator for use at a nominal 6 MV beam energy. Monte Carlo simulation was used in the design and dosimetric characterization of a compact mini-beam collimator assembly mounted to a medical linear accelerator. After fabrication, experimental mini-beam dose profiles and central axis relative output were measured and the results used to validate the simulation data. The simulation data was then used to establish traceability back to an established dosimetric code of practice. The Monte Carlo simulation work revealed that changes in collimator blade width have a greater influence on the valley-to-peak dose ratio than do changes in blade height. There was good agreement between the modeled and measured profile data, with the exception of small differences on either side of the central peak dose. These differences were found to be systematic across all depths and result from limitations associated with the collimator fabrication. Experimental mini-beam relative output and simulation data agreed to better than ± 2.0%, which is well within the level of uncertainty required for dosimetric traceability of non-standard field geometries. A mini-beam collimator has now been designed, built and experimentally characterized for use with a commercial linear accelerator operated at a nominal 6 MV beam energy. PMID:26305166

  14. Patient-specific dosimetric endpoints based treatment plan quality control in radiotherapy

    NASA Astrophysics Data System (ADS)

    Song, Ting; Staub, David; Chen, Mingli; Lu, Weiguo; Tian, Zhen; Jia, Xun; Li, Yongbao; Zhou, Linghong; Jiang, Steve B.; Gu, Xuejun

    2015-11-01

    In intensity modulated radiotherapy (IMRT), the optimal plan for each patient is specific due to unique patient anatomy. To achieve such a plan, patient-specific dosimetric goals reflecting each patient’s unique anatomy should be defined and adopted in the treatment planning procedure for plan quality control. This study is to develop such a personalized treatment plan quality control tool by predicting patient-specific dosimetric endpoints (DEs). The incorporation of patient specific DEs is realized by a multi-OAR geometry-dosimetry model, capable of predicting optimal DEs based on the individual patient’s geometry. The overall quality of a treatment plan is then judged with a numerical treatment plan quality indicator and characterized as optimal or suboptimal. Taking advantage of clinically available prostate volumetric modulated arc therapy (VMAT) treatment plans, we built and evaluated our proposed plan quality control tool. Using our developed tool, six of twenty evaluated plans were identified as sub-optimal plans. After plan re-optimization, these suboptimal plans achieved better OAR dose sparing without sacrificing the PTV coverage, and the dosimetric endpoints of the re-optimized plans agreed well with the model predicted values, which validate the predictability of the proposed tool. In conclusion, the developed tool is able to accurately predict optimally achievable DEs of multiple OARs, identify suboptimal plans, and guide plan optimization. It is a useful tool for achieving patient-specific treatment plan quality control.

  15. Rectal wall sparing by dosimetric effect of rectal balloon used during Intensity-Modulated Radiation Therapy (IMRT) for prostate cancer

    SciTech Connect

    Teh, Bin S.

    2005-03-31

    The use of an air-filled rectal balloon has been shown to decrease prostate motion during prostate radiotherapy. However, the perturbation of radiation dose near the air-tissue interfaces has raised clinical concerns of underdosing the prostate gland. The aim of this study was to investigate the dosimetric effects of an air-filled rectal balloon on the rectal wall/mucosa and prostate gland. Clinical rectal toxicity and dose-volume histogram (DVH) were also assessed to evaluate for any correlation. A film phantom was constructed to simulate the 4-cm diameter air cavity created by a rectal balloon. Kodak XV2 films were utilized to measure and compare dose distribution with and without air cavity. To study the effect in a typical clinical situation, the phantom was computed tomography (CT) scanned on a Siemens DR CT scanner for intensity-modulated radiation therapy (IMRT) treatment planning. A target object was drawn on the phantom CT images to simulate the treatment of prostate cancer. Because patients were treated in prone position, the air cavity was situated superiorly to the target. The treatment used a serial tomotherapy technique with the Multivane Intensity Modulating Collimator (MIMiC) in arc treatment mode. Rectal toxicity was assessed in 116 patients treated with IMRT to a mean dose of 76 Gy over 35 fractions (2.17-Gy fraction size). They were treated in the prone position, immobilized using a Vac-LokTM bag and carrier-box system. Rectal balloon inflated with 100 cc of air was used for prostate gland immobilization during daily treatment. Rectal toxicity was assessed using modifications of the Radiation Therapy Oncology Group (RTOG) and late effects Normal Tissue Task Force (LENT) scales systems. DVH of the rectum was also evaluated. From film dosimetry, there was a dose reduction at the distal air-tissue interface as much as 60% compared with the same geometry without the air cavity for 15-MV photon beam and 2 x 2-cm field size. The dose beyond the

  16. Dosimetric characterization and organ dose assessment in digital breast tomosynthesis: Measurements and Monte Carlo simulations using voxel phantoms

    SciTech Connect

    Baptista, Mariana Di Maria, Salvatore; Barros, Sílvia; Vaz, Pedro; Figueira, Catarina; Sarmento, Marta; Orvalho, Lurdes

    2015-07-15

    Purpose: Due to its capability to more accurately detect deep lesions inside the breast by removing the effect of overlying anatomy, digital breast tomosynthesis (DBT) has the potential to replace the standard mammography technique in clinical screening exams. However, the European Guidelines for DBT dosimetry are still a work in progress and there are little data available on organ doses other than to the breast. It is, therefore, of great importance to assess the dosimetric performance of DBT with respect to the one obtained with standard digital mammography (DM) systems. The aim of this work is twofold: (i) to study the dosimetric properties of a combined DBT/DM system (MAMMOMAT Inspiration Siemens{sup ®}) for a tungsten/rhodium (W/Rh) anode/filter combination and (ii) to evaluate organs doses during a DBT examination. Methods: For the first task, measurements were performed in manual and automatic exposure control (AEC) modes, using two homogeneous breast phantoms: a PMMA slab phantom and a 4 cm thick breast-shaped rigid phantom, with 50% of glandular tissue in its composition. Monte Carlo (MC) simulations were performed using Monte Carlo N-Particle eXtended v.2.7.0. A MC model was implemented to mimic DM and DBT acquisitions for a wide range of x-ray spectra (24 –34 kV). This was used to calculate mean glandular dose (MGD) and to compute series of backscatter factors (BSFs) that could be inserted into the DBT dosimetric formalism proposed by Dance et al. Regarding the second aim of the study, the implemented MC model of the clinical equipment, together with a female voxel phantom (“Laura”), was used to calculate organ doses considering a typical DBT acquisition. Results were compared with a standard two-view mammography craniocaudal (CC) acquisition. Results: Considering the AEC mode, the acquisition of a single CC view results in a MGD ranging from 0.53 ± 0.07 mGy to 2.41 ± 0.31 mGy in DM mode and from 0.77 ± 0.11 mGy to 2.28 ± 0.32 mGy in DBT mode

  17. Geometric and dosimetric accuracy of dynamic tumor-tracking conformal arc irradiation with a gimbaled x-ray head

    SciTech Connect

    Ono, Tomohiro; Miyabe, Yuki Yamada, Masahiro; Kaneko, Shuji; Monzen, Hajime; Mizowaki, Takashi; Hiraoka, Masahiro; Shiinoki, Takehiro; Sawada, Akira; Kokubo, Masaki

    2014-03-15

    Purpose: The Vero4DRT system has the capability for dynamic tumor-tracking (DTT) stereotactic irradiation using a unique gimbaled x-ray head. The purposes of this study were to develop DTT conformal arc irradiation and to estimate its geometric and dosimetric accuracy. Methods: The gimbaled x-ray head, supported on an O-ring gantry, was moved in the pan and tilt directions during O-ring gantry rotation. To evaluate the mechanical accuracy, the gimbaled x-ray head was moved during the gantry rotating according to input command signals without a target tracking, and a machine log analysis was performed. The difference between a command and a measured position was calculated as mechanical error. To evaluate beam-positioning accuracy, a moving phantom, which had a steel ball fixed at the center, was driven based on a sinusoidal wave (amplitude [A]: 20 mm, time period [T]: 4 s), a patient breathing motion with a regular pattern (A: 16 mm, average T: 4.5 s), and an irregular pattern (A: 7.2–23.0 mm, T: 2.3–10.0 s), and irradiated with DTT during gantry rotation. The beam-positioning error was evaluated as the difference between the centroid position of the irradiated field and the steel ball on images from an electronic portal imaging device. For dosimetric accuracy, dose distributions in static and moving targets were evaluated with DTT conformal arc irradiation. Results: The root mean squares (RMSs) of the mechanical error were up to 0.11 mm for pan motion and up to 0.14 mm for tilt motion. The RMSs of the beam-positioning error were within 0.23 mm for each pattern. The dose distribution in a moving phantom with tracking arc irradiation was in good agreement with that in static conditions. Conclusions: The gimbal positional accuracy was not degraded by gantry motion. As in the case of a fixed port, the Vero4DRT system showed adequate accuracy of DTT conformal arc irradiation.

  18. A real-time in vivo dosimetric verification method for high-dose rate intracavitary brachytherapy of nasopharyngeal carcinoma

    SciTech Connect

    Qi Zhenyu; Deng Xiaowu; Cao Xinping; Huang Shaomin; Lerch, Michael; Rosenfeld, Anatoly

    2012-11-15

    Purpose: A real-time in vivo dosimetric verification method using metal-oxide-semiconductor field effect transistor (MOSFET) dosimeters has been developed for patient dosimetry in high-dose rate (HDR) intracavitary brachytherapy of nasopharyngeal carcinoma (NPC). Methods: The necessary calibration and correction factors for MOSFET measurements in {sup 192}Iridium source were determined in a water phantom. With the detector placed inside a custom-made nasopharyngeal applicator, the actual dose delivered to the tumor was measured in vivo and compared to the calculated values using a commercial brachytherapy planning system. Results: Five MOSFETs were independently calibrated with the HDR source, yielding calibration factors of 0.48 {+-} 0.007 cGy/mV. The maximum sensitivity variation was no more than 7% in the clinically relevant distance range of 1-5 cm from the source. A total of 70 in vivo measurements in 11 NPC patients demonstrated good agreement with the treatment planning. The mean differences between the planned and the actually delivered dose within a single treatment fraction were -0.1%{+-} 3.8% and -0.1%{+-} 3.7%, respectively, for right and left side assessments. The maximum dose deviation was less than 8.5%. Conclusions: In vivo measurement using the real-time MOSFET dosimetry system is possible to evaluate the actual dose to the tumor received by the patient during a treatment fraction and thus can offer another line of security to detect and prevent large errors.

  19. A motion phantom study on helical tomotherapy: the dosimetric impacts of delivery technique and motion

    NASA Astrophysics Data System (ADS)

    Kanagaki, Brian; Read, Paul W.; Molloy, Janelle A.; Larner, James M.; Sheng, Ke

    2007-01-01

    Helical tomotherapy (HT) can potentially be used for lung cancer treatment including stereotactic radiosurgery because of its advanced image guidance and its ability to deliver highly conformal dose distributions. However, previous theoretical and simulation studies reported that the effect of respiratory motion on statically planned tomotherapy treatments may cause substantial differences between the calculated and actual delivered radiation isodose distribution, particularly when the treatment is hypofractionated. In order to determine the dosimetric effects of motion upon actual HT treatment delivery, phantom film dosimetry measurements were performed under static and moving conditions using a clinical HT treatment unit. The motion phantom system was constructed using a programmable motor, a base, a moving platform and a life size lung heterogeneity phantom with wood inserts representing lung tissue with a 3.0 cm diameter spherical tumour density equivalent insert. In order to determine the effects of different motion and tomotherapy delivery parameters, treatment plans were created using jaw sizes of 1.04 cm and 2.47 cm, with incremental gantry rotation periods between the minimum allowed (10 s) and the maximum allowed (60 s). The couch speed varied from 0.009 cm s-1 to 0.049 cm s-1, and delivered to a phantom under static and dynamic conditions with peak-to-peak motion amplitudes of 1.2 cm and 2 cm and periods of 3 and 5 s to simulate human respiratory motion of lung tumours. A cylindrical clinical target volume (CTV) was contoured to tightly enclose the tumour insert. 2.0 Gy was prescribed to 95% of the CTV. Two-dimensional dose was measured by a Kodak EDR2 film. Dynamic phantom doses were then quantitatively compared to static phantom doses in terms of axial dose profiles, cumulative dose volume histograms (DVH), percentage of CTV receiving the prescription dose and the minimum dose received by 95% of the CTV. The larger motion amplitude resulted in more

  20. Dosimetric analysis of the carousel setup for the exposure of rats at 1.62 GHz.

    PubMed

    Schönborn, Frank; Poković, Katja; Kuster, Niels

    2004-01-01

    The so-called carousel setup has been widely utilized for testing the hypotheses of adverse health effects on the central nervous system (CNS) due to mobile phone exposures in the frequency bands 800-900 MHz. The objectives of this article were to analyze the suitability of the setup for the upper mobile frequency range, i.e., 1.4-2 GHz, and to conduct a detailed experimental and numerical dosimetry for the setup at the IRIDIUM frequency band of 1.62 GHz. The setup consists of a plastic base on which ten rats, restrained in radially positioned tubes, are exposed to the electromagnetic field emanating from a sleeved dipole antenna at the center. Latest generation miniaturized dosimetric E field and temperature probes were used to measure the specific absorption rate (SAR) inside the brain of three rat cadavers of the Lewis strain and two rat cadavers of the Fisher 344 strain. A numerical analysis was conducted on the basis of three numerical rat phantoms with voxel sizes between 1.5 and 0.125 mm3 that are based on high resolution MRI scans of a 300 g male Wistar rat and a 370 g male Sprague-Dawley rat. The average of the assessed SAR values in the brain was 2.8 mW/g per W antenna input power for adult rats with masses between 220 and 350 g and 5.3 mW/g per W antenna input power for a juvenile rat with a mass of 95 g. The strong increase of the SAR in the brain with decreasing animal size was verified by simulations of the absorption in numerical phantoms scaled to sizes between 100 and 500 g with three different scaling methods. The study also demonstrated that current rat phantom models do not provide sufficient spatial resolution to perform absolute SAR assessment for the brain tissue. The variation of the SAR(brain)(av) due to changes in position was assessed to be in the range from +15% to -30%. A study on the dependence of the performance of the carousel setup on the frequency revealed that efficiency, defined as SAR(brain)(av) per W antenna input power, and

  1. Dosimetric characterization of GafChromic EBT film and its implication on film dosimetry quality assurance

    NASA Astrophysics Data System (ADS)

    Fuss, Martina; Sturtewagen, Eva; DeWagter, Carlos; Georg, Dietmar

    2007-07-01

    , presents a versatile system for high-precision dosimetry in two dimensions, provided that the intrinsic behaviour of the film reading device is taken into account. EBT film itself presents substantial improvements on formerly available models of radiographic and a radiochromic film and its dosimetric characteristics allow us to measure absorbed dose levels in a large variety of situations with a single calibration curve.

  2. Spatial Variation of Dosimetric Leaf Gap and Its Impact on Absolute Dose Delivery in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Kumaraswamy, Lalith

    During dose calculation, the Eclipse Treatment Planning system (TPS) retracts the MLC leaf positions by half of the dosimetric leaf gap (DLG) value (measured at central axis) for all leaf positions in a dynamic MLC plan to accurately model the rounded leaf ends. The aim of this study is to map the variation of DLG along the travel path of each MLC leaf pair and quantify how this variation impacts delivered dose. 6 MV DLG values were measured for all MLC leaf pairs in increments of 1.0 cm (from the line intersecting the CAX and perpendicular to MLC motion) to 13.0 cm off axis distance at depth of dose maximum. The measurements were performed on two Varian LINACs, both employing the Millennium 120-leaf MLC. The measurements were performed at several locations in the beam with both a Sun Nuclear MapCHECK device and a PTW pinpoint ion chamber. The measured DLGs for the middle 40 MLC leaf pairs (each 0.5 cm width) at positions along a line through the CAX and perpendicular to MLC leaf travel direction were very similar, varying maximally by only 0.2 mm. The outer 20 MLC leaf pairs (each 1.0 cm width) have much lower DLG values, about 0.3 to 0.5 mm lower than the central MLC leaf pair, at their respective central line position. Overall, the mean and the maximum variation between the 0.5 cm width leaves and the 1.0 cm width leaf pairs is 0.32 mm and 0.65 mm, respectively. The spatial variation in DLG is caused by the variation of intraleaf transmission through MLC leaves. Fluences centered on the CAX would not be affected since DLG does not vary; but any fluences residing significantly off-axis with narrow sweeping leaves may exhibit significant dose differences. This is due to the fact that there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value utilized by the TPS for dose calculation. Since there are large differences in DLG between the 0.5 cm width leaf pairs and 1.0 cm width leaf pairs, there is a need

  3. Spatial variation of dosimetric leaf gap and its impact on dose delivery

    SciTech Connect

    Kumaraswamy, Lalith K.; Schmitt, Jonathan D.; Bailey, Daniel W.; Xu, Zheng Zheng; Podgorsak, Matthew B.

    2014-11-01

    Purpose: During dose calculation, the Eclipse treatment planning system (TPS) retracts the multileaf collimator (MLC) leaf positions by half of the dosimetric leaf gap (DLG) value (measured at central axis) for all leaf positions in a dynamic MLC plan to accurately model the rounded leaf ends. The aim of this study is to map the variation of DLG along the travel path of each MLC leaf pair and quantify how this variation impacts delivered dose. Methods: 6 MV DLG values were measured for all MLC leaf pairs in increments of 1.0 cm (from the line intersecting the CAX and perpendicular to MLC motion) to 13.0 cm off axis distance at dmax. The measurements were performed on two Varian linear accelerators, both employing the Millennium 120-leaf MLCs. The measurements were performed at several locations in the beam with both a Sun Nuclear MapCHECK device and a PTW pinpoint ion chamber. Results: The measured DLGs for the middle 40 MLC leaf pairs (each 0.5 cm width) at positions along a line through the CAX and perpendicular to MLC leaf travel direction were very similar, varying maximally by only 0.2 mm. The outer 20 MLC leaf pairs (each 1.0 cm width) have much lower DLG values, about 0.3–0.5 mm lower than the central MLC leaf pair, at their respective central line position. Overall, the mean and the maximum variation between the 0.5 cm width leaves and the 1.0 cm width leaf pairs are 0.32 and 0.65 mm, respectively. Conclusions: The spatial variation in DLG is caused by the variation of intraleaf transmission through MLC leaves. Fluences centered on the CAX would not be affected since DLG does not vary; but any fluences residing significantly off axis with narrow sweeping leaves may exhibit significant dose differences. This is due to the fact that there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value utilized by the TPS for dose calculation. Since there are large differences in DLG between the 0.5 cm width

  4. Dosimetric Consequences of Interobserver Variability in Delineating the Organs at Risk in Gynecologic Interstitial Brachytherapy

    SciTech Connect

    Damato, Antonio L.; Bair, Ryan J.; Cormack, Robert A.; Kovacs, Arpad; Lee, Larissa J.; Lewis, John H.; Viswanathan, Akila N.

    2014-07-01

    Purpose: To investigate the dosimetric variability associated with interobserver organ-at-risk delineation differences on computed tomography in patients undergoing gynecologic interstitial brachytherapy. Methods and Materials: The rectum, bladder, and sigmoid of 14 patients treated with gynecologic interstitial brachytherapy were retrospectively contoured by 13 physicians. Geometric variability was calculated using κ statistics, conformity index (CI{sub gen}), and coefficient of variation (CV) of volumes contoured across physicians. Dosimetric variability of the single-fraction D{sub 0.1cc} and D{sub 2cc} was assessed through CV across physicians, and the standard deviation of the total EQD2 (equivalent dose in 2 Gy per fraction) brachytherapy dose (SD{sup TOT}) was calculated. Results: The population mean ± 1 standard deviation of κ, CI{sub gen}, and volume CV were, respectively: 0.77 ± 0.06, 0.70 ± 0.08, and 20% ± 6% for bladder; 0.74 ± 06, 0.67 ± 0.08, and 20% ± 5% for rectum; and 0.33 ± 0.20, 0.26 ± 0.17, and 82% ± 42% for sigmoid. Dosimetric variability was as follows: for bladder, CV = 31% ± 19% (SD{sup TOT} = 72 ± 64 Gy) for D{sub 0.1cc} and CV = 16% ± 10% (SD{sup TOT} = 9 ± 6 Gy) for D{sub 2cc}; for rectum, CV = 11% ± 5% (SD{sup TOT} = 16 ± 17 Gy) for D{sub 0.1cc} and CV = 7% ± 2% (SD{sup TOT} = 4 ± 3 Gy) for D{sub 2cc}; for sigmoid, CV = 39% ± 28% (SD{sup TOT} = 12 ± 18 Gy) for D{sub 0.1cc} and CV = 34% ± 19% (SD{sup TOT} = 4 ± 4 Gy) for D{sub 2cc.} Conclusions: Delineation of bladder and rectum by 13 physicians demonstrated substantial geometric agreement and resulted in good dosimetric agreement for all dose-volume histogram parameters except bladder D{sub 0.1cc.} Small delineation differences in high-dose regions by the posterior bladder wall may explain these results. The delineation of sigmoid showed fair geometric agreement. The higher dosimetric variability for sigmoid compared with rectum and bladder did not correlate with

  5. Dosimetric benefit of DMLC tracking for conventional and sub-volume boosted prostate intensity-modulated arc radiotherapy

    PubMed Central

    Pommer, Tobias; Falk, Marianne; Poulsen, Per R.; Keall, Paul J.; O’Brien, Ricky T.; Petersen, Peter Meidahl; Rosenschöld, Per Munck af

    2013-01-01

    This study investigated the dosimetric impact of uncompensated motion and motion compensation with dynamic multileaf collimator (DMLC) tracking for prostate intensity modulated arc therapy. Two treatment approaches were investigated; a conventional approach with a uniform radiation dose to the target volume and an intraprostatic lesion (IPL) boosted approach with an increased dose to a subvolume of the prostate. The impact on plan quality of optimizations with a leaf position constraint, which limited the distance between neighbouring adjacent MLC leaves, was also investigated. Deliveries were done with and without DMLC tracking on a linear acceleration with a high-resolution MLC. A cylindrical phantom containing two orthogonal diode arrays was used for dosimetry. A motion platform reproduced six patient-derived prostate motion traces, with the average displacement ranging from 1.0 to 8.9 mm during the first 75 seconds. A research DMLC tracking system was used for real-time motion compensation with optical monitoring for position input. The gamma index was used for evaluation, with measurements with a static phantom or the planned dose as reference, using 2% and 2 mm gamma criteria. The average pass rate with DMLC tracking was 99.9% (range 98.7–100%, measurement as reference), whereas the pass rate for untracked deliveries decreased distinctly as the average displacement increased, with an average pass rate of 61.3% (range 32.7–99.3%). Dose-volume histograms showed that DMLC tracking maintained the planned dose distributions in the presence of motion whereas traces with > 3 mm average displacement caused clear plan degradation for untracked deliveries. The dose to the rectum and bladder had an evident dependence on the motion direction and amplitude for untracked deliveries, and the dose to the rectum was slightly increased for IPL boosted plans compared to conventional plans for anterior motion with large amplitude. In conclusion, optimization using a leaf

  6. SU-E-J-228: MRI-Based Planning: Dosimetric Feasibility of Dose Painting for ADCDefined Intra-Prostatic Tumor

    SciTech Connect

    Chen, X; Dalah, E; Prior, P; Lawton, C; Li, X

    2015-06-15

    Purpose: Apparent diffusion coefficient (ADC) map may help to delineate the gross tumor volume (GTV) in prostate gland. Dose painting with external beam radiotherapy for GTV might increase the local tumor control. The purpose of this study is to explore the maximum boosting dose on GTV using VMAT without sacrificing sparing of organs at risk (OARs) in MRI based planning. Methods: VMAT plans for 5 prostate patients were generated following the commonly used dose volume (DV) criteria based on structures contoured on T2 weighted MRI with bulk electron density assignment using electron densities derived from ICRU46. GTV for each patient was manually delineated based on ADC maps and fused to T2-weighted image set for planning study. A research planning system with Monte Carlo dose engine (Monaco, Elekta) was used to generate the VMAT plans with boosting dose on GTV gradually increased from 85Gy to 100Gy. DV parameters, including V(boosting-dose) (volume covered by boosting dose) for GTV, V75.6Gy for PTV, V45Gy, V70Gy, V72Gy and D1cc (Maximum dose to 1cc volume) for rectum and bladder, were used to measure plan quality. Results: All cases achieve at least 99.0% coverage of V(boosting-dose) on GTV and 95% coverage of V75.6Gy to the PTV. All the DV criteria, V45Gy≤50% and V70Gy≤15% for bladder and rectum, D1cc ≤77Gy (Rectum) and ≤80Gy (Bladder), V72Gy≤5% (rectum and bladder) were maintained when boosting GTV to 95Gy for all cases studied. Except for two patients, all the criteria were also met when the boosting dose goes to 100Gy. Conclusion: It is dosimetrically feasible safe to boost the dose to at least 95Gy to ADC defined GTV in prostate cancer using MRI guided VMAT delivery. Conclusion: It is dosimetrically feasible safe to boost the dose to at least 95Gy to ADC defined GTV in prostate cancer using MRI guided VMAT delivery. This research is partially supported by Elekta Inc.

  7. SU-E-T-120: Dosimetric Characteristics Study of NanoDotâ,,¢ for In-Vivo Dosimetry

    SciTech Connect

    Hussain, A; Wasaye, A; Gohar, R; Rehman, L; Hussein, S

    2014-06-01

    Purpose: The purpose of the study was to analyze the dosimetric characteristics (energy dependence, reproducibility and dose linearity) of nanoDot™ optically stimulated luminescence dosimeters (OSLDs) and validate their potential use during in-vivo dosimetry, specifically TBI. The manufacturer stated accuracy is ±10% for standard nanoDot™. Methods: At AKUH, the InLight microStar OSL dosimetry system for patient in-vivo dosimetry is in use since 2012. Twenty-five standard nanoDot™ were used in the analysis. Sensitivity and reproducibility was tested in the first part with 6MV and 18 MV Varian x-ray beams. Each OSLD was irradiated to 100cGy dose at nominal SSD (100 cm). All the OSLDs were read 3 times for average reading. Dose linearity and calibration were also performed with same beams in common clinical dose range of 0 - 500 cGy. In addition, verification of TBI absolute dose at extended SSD (500cm) was also performed. Results: The reproducibility observed with the OSLD was better than the manufacturer stated limits. Measured doses vary less than ±2% in 19(76%) OSLDs, whereas less than ±3% in 6(24%) OSLDs. Their sensitivity was approximately 525 counts per cGy. Better agreement was observed between measurements, with a standard deviation of 1.8%. A linear dose response was observed with OSLDs for both 6 and 18MV beams in 0 - 500 cGy dose range. TBI measured doses at 500 cm SSD were also confirmed to be within ±0.5% and ±1.3% of the ion chamber measured doses for 6 and 18MV beams respectively. Conclusion: The dosimetric results demonstrate that nanoDot™ can be potentially used for in-vivo dosimetry verification in various clinical situations, with a high degree of accuracy and precision. In addition OSLDs exhibit better dose reproducibility with standard deviation of 1.8%. There was no significant difference in their response to 6 and 18MV beams. The dose response was also linear.

  8. Dosimetric benefit of DMLC tracking for conventional and sub-volume boosted prostate intensity-modulated arc radiotherapy

    NASA Astrophysics Data System (ADS)

    Pommer, Tobias; Falk, Marianne; Poulsen, Per R.; Keall, Paul J.; O'Brien, Ricky T.; Meidahl Petersen, Peter; Rosenschöld, Per Munck af

    2013-04-01

    This study investigated the dosimetric impact of uncompensated motion and motion compensation with dynamic multileaf collimator (DMLC) tracking for prostate intensity modulated arc therapy. Two treatment approaches were investigated; a conventional approach with a uniform radiation dose to the target volume and an intraprostatic lesion (IPL) boosted approach with an increased dose to a subvolume of the prostate. The impact on plan quality of optimizations with a leaf position constraint, which limited the distance between neighbouring adjacent MLC leaves, was also investigated. Deliveries were done with and without DMLC tracking on a linear acceleration with a high-resolution MLC. A cylindrical phantom containing two orthogonal diode arrays was used for dosimetry. A motion platform reproduced six patient-derived prostate motion traces, with the average displacement ranging from 1.0 to 8.9 mm during the first 75 s. A research DMLC tracking system was used for real-time motion compensation with optical monitoring for position input. The gamma index was used for evaluation, with measurements with a static phantom or the planned dose as reference, using 2% and 2 mm gamma criteria. The average pass rate with DMLC tracking was 99.9% (range 98.7-100%, measurement as reference), whereas the pass rate for untracked deliveries decreased distinctly as the average displacement increased, with an average pass rate of 61.3% (range 32.7-99.3%). Dose-volume histograms showed that DMLC tracking maintained the planned dose distributions in the presence of motion whereas traces with >3 mm average displacement caused clear plan degradation for untracked deliveries. The dose to the rectum and bladder had an evident dependence on the motion direction and amplitude for untracked deliveries, and the dose to the rectum was slightly increased for IPL boosted plans compared to conventional plans for anterior motion with large amplitude. In conclusion, optimization using a leaf position

  9. Dosimetric evaluation of 4 different treatment modalities for curative-intent stereotactic body radiation therapy for isolated thoracic spinal metastases.

    PubMed

    Yang, Jun; Ma, Lin; Wang, Xiao-Shen; Xu, Wei Xu; Cong, Xiao-Hu; Xu, Shou-Ping; Ju, Zhong-Jian; Du, Lei; Cai, Bo-Ning; Yang, Jack

    2016-01-01

    To investigate the dosimetric characteristics of 4 SBRT-capable dose delivery systems, CyberKnife (CK), Helical TomoTherapy (HT), Volumetric Modulated Arc Therapy (VMAT) by Varian RapidArc (RA), and segmental step-and-shoot intensity-modulated radiation therapy (IMRT) by Elekta, on isolated thoracic spinal lesions. CK, HT, RA, and IMRT planning were performed simultaneously for 10 randomly selected patients with 6 body types and 6 body + pedicle types with isolated thoracic lesions. The prescription was set with curative intent and dose of either 33Gy in 3 fractions (3F) or 40Gy in 5F to cover at least 90% of the planning target volume (PTV), correspondingly. Different dosimetric indices, beam-on time, and monitor units (MUs) were evaluated to compare the advantages/disadvantages of each delivery modality. In ensuring the dose-volume constraints for cord and esophagus of the premise, CK, HT, and RA all achieved a sharp conformity index (CI) and a small penumbra volume compared to IMRT. RA achieved a CI comparable to those from CK, HT, and IMRT. CK had a heterogeneous dose distribution in the target as its radiosurgical nature with less dose uniformity inside the target. CK had the longest beam-on time and the largest MUs, followed by HT and RA. IMRT presented the shortest beam-on time and the least MUs delivery. For the body-type lesions, CK, HT, and RA satisfied the target coverage criterion in 6 cases, but the criterion was satisfied in only 3 (50%) cases with the IMRT technique. For the body + pedicle-type lesions, HT satisfied the criterion of the target coverage of ≥90% in 4 of the 6 cases, and reached a target coverage of 89.0% in another case. However, the criterion of the target coverage of ≥90% was reached in 2 cases by CK and RA, and only in 1 case by IMRT. For curative-intent SBRT of isolated thoracic spinal lesions, RA is the first choice for the body-type lesions owing to its delivery efficiency (time); the second choice is CK or HT; HT is the

  10. Development of radiochromic film for spatially quantitative dosimetric analysis of indirect ionizing radiation fields

    NASA Astrophysics Data System (ADS)

    Brady, Samuel Loren

    sensors measured < 2% and < 7% deviation in pixel light intensities for 50 consecutive scans, respectively. Both scanner light sources were shown to be uniform in transmission and reflection scan modes along the center axis of light source translation. Additionally, RCFs demonstrated a larger dynamic range in pixel light intensities, and to be less sensitive to off axis light inhomogeneity, when scanned in landscape mode (long axis of film parallel with axis of light source translation). The EPSON 10000XL demonstrated slightly better light source/CCD temporal stability and provided a capacity to scan larger film formats at the center of the scanner in landscape mode. However, the EPSON V700 only measured an overall difference in accuracy and precision by 2%, and though smaller in size, at the time of this work, was one sixth the cost of the 10000XL. A scan protocol was developed to maximize RCF digitization accuracy and precision, and a calibration fitting function was developed for RCF absolute dosimetry. The fitting function demonstrated a superior goodness of fit for both RCF types over a large range of absorbed dose levels as compared to the currently accepted function found in literature. The RCF dosimetry system was applied to three novel areas from which a benefit could be derived for 2D or 3D dosimetric information. The first area was for a 3D dosimetry of a pendant breast in 3D-CT mammography. The novel method of developing a volumetric image of the breast from a CT acquisition technique was empirically measured for its dosimetry and compared to standard dual field digital mammography. The second area was dose reduction in CT for pediatric and adult scan protocols. In this application, novel methodologies were developed to measure 3D organ dosimetry and characterize a dose reduction scan protocol for pediatric and adult body habitus. The third area was in the field of small animal irradiation for radiobiology purposes and cancer patient treatment verification. In

  11. Correlation between gamma index passing rate and clinical dosimetric difference for pre-treatment 2D and 3D volumetric modulated arc therapy dosimetric verification

    PubMed Central

    Jin, X; Yan, H; Han, C; Zhou, Y; Yi, J

    2015-01-01

    Objective: To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). Methods: %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose–volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). Results: Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. Conclusions: There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. Advances in knowledge: Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time. PMID:25494412

  12. Dosimetric evaluation of the OneDose MOSFET for measuring kilovoltage imaging dose from image-guided radiotherapy procedures

    SciTech Connect

    Ding, George X.; Coffey, Charles W.

    2010-09-15

    Purpose: The purpose of this study is to investigate the feasibility of using a single-use dosimeter, OneDose MOSFET designed for in vivo patient dosimetry, for measuring the radiation dose from kilovoltage (kV) x rays resulting from image-guided procedures. Methods: The OneDose MOSFET dosimeters were precalibrated by the manufacturer using Co-60 beams. Their energy response and characteristics for kV x rays were investigated by using an ionization chamber, in which the air-kerma calibration factors were obtained from an Accredited Dosimetry Calibration Laboratory (ADCL). The dosimetric properties have been tested for typical kV beams used in image-guided radiation therapy (IGRT). Results: The direct dose reading from the OneDose system needs to be multiplied by a correction factor ranging from 0.30 to 0.35 for kilovoltage x rays ranging from 50 to 125 kVp, respectively. In addition to energy response, the OneDose dosimeter has up to a 20% reduced sensitivity for beams (70-125 kVp) incident from the back of the OneDose detector. Conclusions: The uncertainty in measuring dose resulting from a kilovoltage beam used in IGRT is approximately 20%; this uncertainty is mainly due to the sensitivity dependence of the incident beam direction relative to the OneDose detector. The ease of use may allow the dosimeter to be suitable for estimating the dose resulting from image-guided procedures.

  13. A standard Fricke dosimeter compared to an ionization chamber used for dosimetric characterization of 60Co photon beam

    NASA Astrophysics Data System (ADS)

    Moussous, Ouiza; Medjadj, Toufik

    2016-06-01

    The main objective of this study was to investigate the Fricke dosimeter water equivalent system for measurement of dosimetric parameters for photon beam. The parameters measured with the Fricke dosimeter were compared to those obtained with an ionization chamber. In this work characteristics for 60Co γ-rays of field sizes ranging from 5 × 5 cm2 to 20 × 20 cm2 are reported. The measurements were carried out in the secondary standard dosimetry laboratory using a collimated 60Co gamma source therapy unit. The 60Co beam output in terms of absorbed dose to water was obtained as per IAEA TRS 398 recommendations using cylindrical ionization chamber, whose ND,w has been supplied by the IAEA's reference laboratory. Specific quantities measured include: output factors, peak scatter factor, lateral beam profiles and percentage depth dose. The Fricke dosimeters were irradiated in a water phantom using the suitable poly (methyl methacrylate), PMMA stand. Our results demonstrate that Fricke dosimeter and ionization chamber agree with each other.

  14. Monte Carlo and experimental derivation of TG43 dosimetric parameters for CSM-type Cs-137 sources

    SciTech Connect

    Perez-Calatayud, J.; Granero, D.; Casal, E.; Ballester, F.; Puchades, V.

    2005-01-01

    In this study, complete dosimetric datasets for the CSM2 and CSM3 Cs-137 sources were obtained using the Monte Carlo GEANT4 code. The application of this calculation method was experimentally validated with thermoluminescent dosimetry (TLD). Functions and parameters following the TG43 formalism are presented: the dose rate constant, the radial dose functional, and the anisotropy function. In addition, to aid the quality control process on treatment planning systems, a two-dimensional (2D) rectangular dose rate table (the traditional along-away table), coherent with the TG43 dose calculation formalism, is given. The data given in this study complement existing information for both sources on the following aspects: (i) the source asymmetries were considered explicitly in the Monte Carlo calculations, (ii) TG43 data were derived directly from Monte Carlo calculations, (iii) the radial range of the different tables was increased as well as the angular resolution in the anisotropy function, including angles close to the longitudinal source axis. The CSM2 source TG-43 data of Liu et al. [Med. Phys. 31, 477-483 (2004)] are not consistent with the Williamson 2D along-away data [Int. J. Radiat. Oncol., Biol., Phys. 15, 227-237 (1988)] at distances closer than approximately 2 cm from the source. The data presented here for this source are consistent with this 2D along-away table, and are suitable for use in clinical practice.

  15. Monte Carlo and experimental derivation of TG43 dosimetric parameters for CSM-type Cs-137 sources.

    PubMed

    Pérez-Calatayud, J; Granero, D; Casal, E; Ballester, F; Puchades, V

    2005-01-01

    In this study, complete dosimetric datasets for the CSM2 and CSM3 Cs-137 sources were obtained using the Monte Carlo GEANT4 code. The application of this calculation method was experimentally validated with thermoluminescent dosimetry (TLD). Functions and parameters following the TG43 formalism are presented: the dose rate constant, the radial dose functional, and the anisotropy function. In addition, to aid the quality control process on treatment planning systems, a two-dimensional (2D) rectangular dose rate table (the traditional along-away table), coherent with the TG43 dose calculation formalism, is given. The data given in this study complement existing information for both sources on the following aspects: (i) the source asymmetries were considered explicitly in the Monte Carlo calculations, (ii) TG43 data were derived directly from Monte Carlo calculations, (iii) the radial range of the different tables was increased as well as the angular resolution in the anisotropy function, including angles close to the longitudinal source axis. The CSM2 source TG-43 data of Liu et al. [Med. Phys. 31, 477-483 (2004)] are not consistent with the Williamson 2D along-away data [Int. J. Radiat. Oncol., Biol., Phys. 15, 227-237 (1988)] at distances closer than approximately 2 cm from the source. The data presented here for this source are consistent with this 2D along-away table, and are suitable for use in clinical practice. PMID:15719951

  16. Dosimetric Comparison Between 3DCRT and IMRT Using Different Multileaf Collimators in the Treatment of Brain Tumors

    SciTech Connect

    Ding Meisong Newman, Francis M.S.; Chen Changhu; Stuhr, Kelly; Gaspar, Laurie E.

    2009-04-01

    We investigated the differences between 3-dimensional conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT), and the impact of collimator leaf-width on IMRT plans for the treatment of nonspherical brain tumors. Eight patients treated by 3DCRT with Novalis were selected. We developed 3 IMRT plans with different multileaf collimators (Novalis m3, Varian MLC-120, and Varian MLC-80) with the same treatment margins, number of beams, and gantry positions as in the 3DCRT treatment plans. Treatment planning utilized the BrainLAB treatment planning system. For each patient, the dose constraints and optimization parameters remained identical for all plans. The heterogeneity index, the percentage target coverage, critical structures, and normal tissue volumes receiving 50% of the prescription dose were calculated to compare the dosimetric difference. Equivalent uniform dose (EUD) and tumor control probability (TCP) were also introduced to evaluate the radiobiological effect for different plans. We found that IMRT significantly improved the target dose homogeneity compared to the 3DCRT. However, IMRT showed the same radiobiological effect as 3DCRT. For the brain tumors adjacent to (or partially overlapping with) critical structures, IMRT dramatically spared the volume of the critical structures to be irradiated. In IMRT plans, the smaller collimator leaf width could reduce the volume of critical structures irradiated to the 50% level for those partially overlapping with the brain tumors. For relatively large and spherical brain tumors, the smaller collimator leaf widths give no significant benefit.

  17. Dosimetric comparison between intra-cavitary breast brachytherapy techniques for accelerated partial breast irradiation and a novel stereotactic radiotherapy device for breast cancer: GammaPod™

    NASA Astrophysics Data System (ADS)

    Ödén, Jakob; Toma-Dasu, Iuliana; Yu, Cedric X.; Feigenberg, Steven J.; Regine, William F.; Mutaf, Yildirim D.

    2013-07-01

    The GammaPod™ device, manufactured by Xcision Medical Systems, is a novel stereotactic breast irradiation device. It consists of a hemispherical source carrier containing 36 Cobalt-60 sources, a tungsten collimator with two built-in collimation sizes, a dynamically controlled patient support table and a breast immobilization cup also functioning as the stereotactic frame for the patient. The dosimetric output of the GammaPod™ was modelled using a Monte Carlo based treatment planning system. For the comparison, three-dimensional (3D) models of commonly used intra-cavitary breast brachytherapy techniques utilizing single lumen and multi-lumen balloon as well as peripheral catheter multi-lumen implant devices were created and corresponding 3D dose calculations were performed using the American Association of Physicists in Medicine Task Group-43 formalism. Dose distributions for clinically relevant target volumes were optimized using dosimetric goals set forth in the National Surgical Adjuvant Breast and Bowel Project Protocol B-39. For clinical scenarios assuming similar target sizes and proximity to critical organs, dose coverage, dose fall-off profiles beyond the target and skin doses at given distances beyond the target were calculated for GammaPod™ and compared with the doses achievable by the brachytherapy techniques. The dosimetric goals within the protocol guidelines were fulfilled for all target sizes and irradiation techniques. For central targets, at small distances from the target edge (up to approximately 1 cm) the brachytherapy techniques generally have a steeper dose fall-off gradient compared to GammaPod™ and at longer distances (more than about 1 cm) the relation is generally observed to be opposite. For targets close to the skin, the relative skin doses were considerably lower for GammaPod™ than for any of the brachytherapy techniques. In conclusion, GammaPod™ allows adequate and more uniform dose coverage to centrally and peripherally

  18. Dosimetric comparison between intra-cavitary breast brachytherapy techniques for accelerated partial breast irradiation and a novel stereotactic radiotherapy device for breast cancer: GammaPod™.

    PubMed

    Ödén, Jakob; Toma-Dasu, Iuliana; Yu, Cedric X; Feigenberg, Steven J; Regine, William F; Mutaf, Yildirim D

    2013-07-01

    The GammaPod™ device, manufactured by Xcision Medical Systems, is a novel stereotactic breast irradiation device. It consists of a hemispherical source carrier containing 36 Cobalt-60 sources, a tungsten collimator with two built-in collimation sizes, a dynamically controlled patient support table and a breast immobilization cup also functioning as the stereotactic frame for the patient. The dosimetric output of the GammaPod™ was modelled using a Monte Carlo based treatment planning system. For the comparison, three-dimensional (3D) models of commonly used intra-cavitary breast brachytherapy techniques utilizing single lumen and multi-lumen balloon as well as peripheral catheter multi-lumen implant devices were created and corresponding 3D dose calculations were performed using the American Association of Physicists in Medicine Task Group-43 formalism. Dose distributions for clinically relevant target volumes were optimized using dosimetric goals set forth in the National Surgical Adjuvant Breast and Bowel Project Protocol B-39. For clinical scenarios assuming similar target sizes and proximity to critical organs, dose coverage, dose fall-off profiles beyond the target and skin doses at given distances beyond the target were calculated for GammaPod™ and compared with the doses achievable by the brachytherapy techniques. The dosimetric goals within the protocol guidelines were fulfilled for all target sizes and irradiation techniques. For central targets, at small distances from the target edge (up to approximately 1 cm) the brachytherapy techniques generally have a steeper dose fall-off gradient compared to GammaPod™ and at longer distances (more than about 1 cm) the relation is generally observed to be opposite. For targets close to the skin, the relative skin doses were considerably lower for GammaPod™ than for any of the brachytherapy techniques. In conclusion, GammaPod™ allows adequate and more uniform dose coverage to centrally and peripherally

  19. A computational method for estimating the dosimetric effect of intra-fraction motion on step-and-shoot IMRT and compensator plans.

    PubMed

    Waghorn, Ben J; Shah, Amish P; Ngwa, Wilfred; Meeks, Sanford L; Moore, Joseph A; Siebers, Jeffrey V; Langen, Katja M

    2010-07-21

    Intra-fraction organ motion during intensity-modulated radiation therapy (IMRT) treatment can cause differences between the planned and the delivered dose distribution. To investigate the extent of these dosimetric changes, a computational model was developed and validated. The computational method allows for calculation of the rigid motion perturbed three-dimensional dose distribution in the CT volume and therefore a dose volume histogram-based assessment of the dosimetric impact of intra-fraction motion on a rigidly moving body. The method was developed and validated for both step-and-shoot IMRT and solid compensator IMRT treatment plans. For each segment (or beam), fluence maps were exported from the treatment planning system. Fluence maps were shifted according to the target position deduced from a motion track. These shifted, motion-encoded fluence maps were then re-imported into the treatment planning system and were used to calculate the motion-encoded dose distribution. To validate the accuracy of the motion-encoded dose distribution the treatment plan was delivered to a moving cylindrical phantom using a programmed four-dimensional motion phantom. Extended dose response (EDR-2) film was used to measure a planar dose distribution for comparison with the calculated motion-encoded distribution using a gamma index analysis (3% dose difference, 3 mm distance-to-agreement). A series of motion tracks incorporating both inter-beam step-function shifts and continuous sinusoidal motion were tested. The method was shown to accurately predict the film's dose distribution for all of the tested motion tracks, both for the step-and-shoot IMRT and compensator plans. The average gamma analysis pass rate for the measured dose distribution with respect to the calculated motion-encoded distribution was 98.3 +/- 0.7%. For static delivery the average film-to-calculation pass rate was 98.7 +/- 0.2%. In summary, a computational technique has been developed to calculate the

  20. Dosimetric study of the 15 mm ROPES eye plaque.

    PubMed

    Granero, D; Pérez-Calatayud, J; Ballester, F; Casal, E; de Frutos, J M

    2004-12-01

    The main aim of this paper is to make a study of dose-rate distributions obtained around the 15 mm, radiation oncology physics and engineering services, Australia (ROPES) eye plaque loaded with 125I model 6711 radioactive seeds. In this study, we have carried out a comparison of the dose-rate distributions obtained by the algorithm used by the Plaque Simulator (PS) (BEBIG GmbH, Berlin, Germany) treatment planning system with those obtained by means of the Monte Carlo method for the ROPES eye plaque. A simple method to obtain the dose-rate distributions in a treatment planning system via the superposition of the dose-rate distributions of a seed placed in the eye plaque has been developed. The method uses eye plaque located in a simplified geometry of the head anatomy and distributions obtained by means of the Monte Carlo code GEANT4. The favorable results obtained in the development of this method suggest that it could be implemented on a treatment planning system to improve dose-rate calculations. We have also found that the dose-rate falls sharply along the eye and that outside the eye the dose-rate is very low. Furthermore, the lack of backscatter photons from the air located outside the eye-head phantom produces a dose reduction negligible for distances from the eye-plaque r<1 cm but reaches up to 20% near the air-eye interface. Results showed that the treatment planning system lacks accuracy around the border of the eye (in the sclera and the surrounding area) due to the simplicity of the algorithm used. The BEBIG treatment planning system uses a global attenuation factor that takes into account the effect of the eye plaque seed carrier and the lack of backscatter photons caused by the metallic cover, which in the case of a ROPES eye plaque has a default value of T= 1 (no correction). In the present study, a global attenuation factor T=0.96 and an air-interface correction factor which improve on treatment planning system calculations were obtained. PMID

  1. Dosimetric study of the 15 mm ROPES eye plaque

    SciTech Connect

    Granero, D.; Perez-Calatayud, J.; Ballester, F.; Casal, E.; Frutos, J.M. de

    2004-12-01

    The main aim of this paper is to make a study of dose-rate distributions obtained around the 15 mm, radiation oncology physics and engineering services, Australia (ROPES) eye plaque loaded with {sup 125}I model 6711 radioactive seeds. In this study, we have carried out a comparison of the dose-rate distributions obtained by the algorithm used by the Plaque Simulator (PS) (BEBIG GmbH, Berlin, Germany) treatment planning system with those obtained by means of the Monte Carlo method for the ROPES eye plaque. A simple method to obtain the dose-rate distributions in a treatment planning system via the superposition of the dose-rate distributions of a seed placed in the eye plaque has been developed. The method uses eye plaque located in a simplified geometry of the head anatomy and distributions obtained by means of the Monte Carlo code GEANT4. The favorable results obtained in the development of this method suggest that it could be implemented on a treatment planning system to improve dose-rate calculations. We have also found that the dose-rate falls sharply along the eye and that outside the eye the dose-rate is very low. Furthermore, the lack of backscatter photons from the air located outside the eye-head phantom produces a dose reduction negligible for distances from the eye-plaque r<1 cm but reaches up to 20% near the air-eye interface. Results showed that the treatment planning system lacks accuracy around the border of the eye (in the sclera and the surrounding area) due to the simplicity of the algorithm used. The BEBIG treatment planning system uses a global attenuation factor that takes into account the effect of the eye plaque seed carrier and the lack of backscatter photons caused by the metallic cover, which in the case of a ROPES eye plaque has a default value of T=1 (no correction). In the present study, a global attenuation factor T=0.96 and an air-interface correction factor which improve on treatment planning system calculations were obtained.

  2. Dosimetric comparison of four target alignment methods for prostate cancer radiotherapy

    SciTech Connect

    O'Daniel, Jennifer C.; Dong Lei . E-mail: ldong@mdanderson.org; Zhang Lifei; Crevoisier, Renaud de; Wang He; Lee, Andrew K.; Cheung, Rex; Tucker, Susan L.; Kudchadker, Rajat J.; Bonnen, Mark D.; Cox, James D.; Mohan, Radhe; Kuban, Deborah A.

    2006-11-01

    Purpose: The aim of this study was to compare the dosimetric consequences of 4 treatment delivery techniques for prostate cancer patients treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: During an 8-week course of radiotherapy, 10 patients underwent computed tomography (CT) scans 3 times per week (243 total) before daily treatment with a CT-linear accelerator. Treatment delivery was simulated by realigning a fixed-margin treatment plan on each CT scan and calculating doses. The alignment methods were those based on the following: skin marks, bony registration, ultrasonography (United States), and in-room CT. For the last two methods, prostate was the alignment target. The dosimetric effects of these alignment methods on the prostate, seminal vesicles, rectum, and bladder were compared. The average daily minimum dose to 0.1 cm{sup 3} was used as the metric for target coverage. Results: Skin and bone alignments provided acceptable prostate coverage for only 70% of patients, US alignment for 90%, and CT alignment for 100%. CT-based alignment of the prostate provided seminal vesicle (SV) coverage of {>=}69 Gy for all patients; US and bone alignments provided SV coverage of {>=}60 Gy. This SV coverage may be acceptable for early-stage cancer (equivalent SV dose = 55.8 Gy at 1.8 Gy per fraction), but unacceptable for late-stage cancer (SV dose = 75.6 Gy). At 75.6 Gy, the acceptable rate for SV coverage was 40% for skin and bone alignments, 70% for US, and 80% for CT. Conclusions: Direct target alignment methods (US and CT) provided better target coverage. CT-guided alignment provided the best and most consistent dosimetric coverage. A larger planning target volume margin is needed for SV coverage when the alignment target is the prostate.

  3. Dosimetric optimization of a conical breast brachytherapy applicator for improved skin dose sparing

    SciTech Connect

    Yang Yun; Rivard, Mark J.

    2010-11-15

    Purpose: Both the AccuBoost D-shaped and round applicators have been dosimetrically characterized and clinically used to treat patients with breast cancer. While the round applicators provide conformal dose coverage, under certain clinical circumstances the breast skin dose may be higher than preferred. The purpose of this study was to modify the round applicators to minimize skin dose while not substantially affecting dose uniformity within the target volume and reducing the treatment time. Methods: In order to irradiate the intended volume while sparing critical structures such as the skin, the current round applicator design has been augmented through the addition of an internal truncated cone (i.e., frustum) shield. Monte Carlo methods and clinical constraints were used to design the optimal cone applicator. With the cone applicator now defined as the entire assembly including the surrounding tungsten-alloy shell holding the HDR {sup 192}Ir source catheter, the applicator height was reduced to diminish the treatment time while minimizing skin dose. Monte Carlo simulation results were validated using both radiochromic film and ionization chamber measurements based on established techniques. Results: The optimal cone applicators diminished the maximum skin dose by 15%-32% (based on the applicator diameter and breast separation) with the tumor dose reduced by less than 3% for a constant exposure time. Furthermore, reduction in applicator height diminished the treatment time by up to 30%. Radiochromic film and ionization chamber dosimetric results in phantom agreed with Monte Carlo simulation results typically within 3%. Larger differences were outside the treatment volume in low dose regions or associated with differences between the measurement and Monte Carlo simulation environments. Conclusions: A new radiotherapy treatment device was developed and dosimetrically characterized. This set of applicators significantly reduces the skin dose and treatment time while

  4. SU-E-T-123: Dosimetric Comparison Between Portrait and Landscape Orientations in Radiochromic Film Dosimetry

    SciTech Connect

    Kakinohana, Y; Toita, T; Kasuya, G; Ariga, T; Heianna, J; Murayama, S

    2014-06-01

    Purpose: To compare the dosimetric properties of radiochromic films with different orientation. Methods: A sheet of EBT3 film was cut into eight pieces with the following sizes: 15×15 cm2 (one piece), 5x15 cm{sup 2} (two) and 4×5 cm{sup 2} (five). A set of two EBT3 sheets was used at each dose level. Two sets were used changing the delivered doses (1 and 2 Gy). The 5×15 cm{sup 2} pieces were rotated by 90 degrees in relation to each other, such that one had landscape orientation and the other had portrait orientation. All 5×15 cm2 pieces were irradiated with their long side aligned with the x-axis of the radiation field. The 15×15 cm{sup 2} pieces were irradiated rotated at 90 degrees to each other. Five pieces, (a total of ten from two sheets) were used to obtain a calibration curve. The irradiated films were scanned using an Epson ES-2200 scanner and were analyzed using ImageJ software. In this study, no correction was applied for the nonuniform scanner signal that is evident in the direction of the scanner lamp. Each film piece was scanned both in portrait and landscape orientations. Dosimetric comparisons of the beam profiles were made in terms of the film orientations (portrait and landscape) and scanner bed directions (perpendicular and parallel to the scanner movement). Results: In general, portrait orientation exhibited higher noise than landscape and was adversely affected to a great extent by the nonuniformity in the direction of the scanner lamp. A significant difference in the measured field widths between the perpendicular and parallel directions was found for both orientations. Conclusion: Without correction for the nonuniform scanner signal in the direction of the scanner lamp, a landscape orientation is preferable. A more detailed investigation is planned to evaluate quantitatively the effect of orientation on the dosimetric properties of a film.

  5. Craniospinal Irradiation Techniques: A Dosimetric Comparison of Proton Beams With Standard and Advanced Photon Radiotherapy

    SciTech Connect

    Yoon, Myonggeun; Shin, Dong Ho; Kim, Jinsung; Kim, Jong Won; Kim, Dae Woong; Park, Sung Yong; Lee, Se Byeong; Kim, Joo Young; Park, Hyeon-Jin; Park, Byung Kiu; Shin, Sang Hoon

    2011-11-01

    Purpose: To evaluate the dosimetric benefits of advanced radiotherapy techniques for craniospinal irradiation in cancer in children. Methods and Materials: Craniospinal irradiation (CSI) using three-dimensional conformal radiotherapy (3D-CRT), tomotherapy (TOMO), and proton beam treatment (PBT) in the scattering mode was planned for each of 10 patients at our institution. Dosimetric benefits and organ-specific radiation-induced cancer risks were based on comparisons of dose-volume histograms (DVHs) and on the application of organ equivalent doses (OEDs), respectively. Results: When we analyzed the organ-at-risk volumes that received 30%, 60%, and 90% of the prescribed dose (PD), we found that PBT was superior to TOMO and 3D-CRT. On average, the doses delivered by PBT to the esophagus, stomach, liver, lung, pancreas, and kidney were 19.4 Gy, 0.6 Gy, 0.3 Gy, 2.5 Gy, 0.2 Gy, and 2.2 Gy for the PD of 36 Gy, respectively, which were significantly lower than the doses delivered by TOMO (22.9 Gy, 4.5 Gy, 6.1 Gy, 4.0 Gy, 13.3 Gy, and 4.9 Gy, respectively) and 3D-CRT (34.6 Gy, 3.6 Gy, 8.0 Gy, 4.6 Gy, 22.9 Gy, and 4.3 Gy, respectively). Although the average doses delivered by PBT to the chest and abdomen were significantly lower than those of 3D-CRT or TOMO, these differences were reduced in the head-and-neck region. OED calculations showed that the risk of secondary cancers in organs such as the stomach, lungs, thyroid, and pancreas was much higher when 3D-CRT or TOMO was used than when PBT was used. Conclusions: Compared with photon techniques, PBT showed improvements in most dosimetric parameters for CSI patients, with lower OEDs to organs at risk.

  6. Dosimetric comparison of volumetric modulated arc therapy with robotic stereotactic radiation therapy in hepatocellular carcinoma

    PubMed Central

    Paik, Eun Kyung; Choi, Chul Won; Jang, Won Il; Lee, Sung Hyun; Choi, Sang Hyoun; Kim, Kum Bae; Lee, Dong Han

    2015-01-01

    Purpose To compare volumetric modulated arc therapy of RapidArc with robotic stereotactic body radiation therapy (SBRT) of CyberKnife in the planning and delivery of SBRT for hepatocellular carcinoma (HCC) treatment by analyzing dosimetric parameters. Materials and Methods Two radiation treatment plans were generated for 29 HCC patients, one using Eclipse for the RapidArc plan and the other using Multiplan for the CyberKnife plan. The prescription dose was 60 Gy in 3 fractions. The dosimetric parameters of planning target volume (PTV) coverage and normal tissue sparing in the RapidArc and the CyberKnife plans were analyzed. Results The conformity index was 1.05 ± 0.02 for the CyberKnife plan, and 1.13 ± 0.10 for the RapidArc plan. The homogeneity index was 1.23 ± 0.01 for the CyberKnife plan, and 1.10 ± 0.03 for the RapidArc plan. For the normal liver, there were significant differences between the two plans in the low-dose regions of V1 and V3. The normalized volumes of V60 for the normal liver in the RapidArc plan were drastically increased when the mean dose of the PTVs in RapidArc plan is equivalent to the mean dose of the PTVs in the CyberKnife plan. Conclusion CyberKnife plans show greater dose conformity, especially in small-sized tumors, while RapidArc plans show good dosimetric distribution of low dose sparing in the normal liver and body. PMID:26484307

  7. Evaluation of a Proposed Biodegradable 188Re Source for Brachytherapy Application: A Review of Dosimetric Parameters.

    PubMed

    Khorshidi, Abdollah; Ahmadinejad, Marjan; Hamed Hosseini, S

    2015-07-01

    This study aimed to evaluate dosimetric characteristics based on Monte Carlo (MC) simulations for a proposed beta emitter bioglass 188Re seed for internal radiotherapy applications. The bioactive glass seed has been developed using the sol-gel technique. The simulations were performed for the seed using MC radiation transport code to investigate the dosimetric factors recommended by the AAPM Task Group 60 (TG-60). Dose distributions due to the beta and photon radiation were predicted at different radial distances surrounding the source. The dose rate in water at the reference point was calculated to be 7.43 ± 0.5 cGy/h/μCi. The dosimetric factors consisting of the reference point dose rate, D(r0,θ0), the radial dose function, g(r), the 2-dimensional anisotropy function, F(r,θ), the 1-dimensional anisotropy function, φan(r), and the R90 quantity were estimated and compared with several available beta-emitting sources. The element 188Re incorporated in bioactive glasses produced by the sol-gel technique provides a suitable solution for producing new materials for seed implants applied to brachytherapy applications in prostate and liver cancers treatment. Dose distribution of 188Re seed was greater isotropic than other commercially attainable encapsulated seeds, since it has no end weld to attenuate radiation. The beta radiation-emitting 188Re source provides high doses of local radiation to the tumor tissue and the short range of the beta particles limit damage to the adjacent normal tissue. PMID:26181543

  8. Monte Carlo dosimetric study of best industries and Alpha Omega Ir-192 brachytherapy seeds.

    PubMed

    Ballester, F; Granero, D; Pérez-Calatayud, J; Casal, E; Puchades, V

    2004-12-01

    Ir-192 seeds are widely used in the USA for low dose rate interstitial brachytherapy. There are two commercially available models: those manufactured by Best Industries filtered with stainless steel, and those manufactured by Alpha-Omega seeds filtered with Pt. Newly developed 3D correction algorithms for brachytherapy are based on dosimetry data obtained on unbounded phantom size, allowing corrections for heterogeneities and actual tissue boundaries. Published dosimetric datasets for both seeds have been obtained under bounded conditions. The aim of the present study is to obtain dosimetric datasets for these seeds under full scatter conditions. The Monte Carlo GEANT4 code has been used to estimate air-kerma strength and dose rate in water around the Ir-192 seeds. Functions and parameters following the TG43 formalism are obtained and presented in tabular forms: the dose rate constant, the radial dose function, and the anisotropy function. Tables for the anisotropy factor have been obtained in order to apply punctual approximation. Differences between dose rate distributions for both seeds show that specific dataset must be used for each type of seed in clinical dosimetry. The data in the present study improve on published data in the following aspects: (i) dosimetric data were obtained under full scatter conditions, which affect dose values at distances greater than 4-5 cm from the source; (ii) the dose rate tables are given at greater distances from the source; and (iii) the spatial resolution in high dose gradient areas, such as those near the longitudinal source axis, has been improved. PMID:15651612

  9. Monte Carlo dosimetric study of Best Industries and Alpha Omega Ir-192 brachytherapy seeds

    SciTech Connect

    Ballester, F.; Granero, D.; Perez-Calatayud, J.; Casal, E.; Puchades, V.

    2004-12-01

    Ir-192 seeds are widely used in the USA for low dose rate interstitial brachytherapy. There are two commercially available models: those manufactured by Best Industries filtered with stainless steel, and those manufactured by Alpha-Omega seeds filtered with Pt. Newly developed 3D correction algorithms for brachytherapy are based on dosimetry data obtained on unbounded phantom size, allowing corrections for heterogeneities and actual tissue boundaries. Published dosimetric datasets for both seeds have been obtained under bounded conditions. The aim of the present study is to obtain dosimetric datasets for these seeds under full scatter conditions. The Monte Carlo GEANT4 code has been used to estimate air-kerma strength and dose rate in water around the Ir-192 seeds. Functions and parameters following the TG43 formalism are obtained and presented in tabular forms: the dose rate constant, the radial dose function, and the anisotropy function. Tables for the anisotropy factor have been obtained in order to apply punctual approximation. Differences between dose rate distributions for both seeds show that specific dataset must be used for each type of seed in clinical dosimetry. The data in the present study improve on published data in the following aspects: (i) dosimetric data were obtained under full scatter conditions, which affect dose values at distances greater than 4-5 cm from the source; (ii) the dose rate tables are given at greater distances from the source; and (iii) the spatial resolution in high dose gradient areas, such as those near the longitudinal source axis, has been improved.

  10. Dosimetric Evaluation of Automatic Segmentation for Adaptive IMRT for Head-and-Neck Cancer

    SciTech Connect

    Tsuji, Stuart Y.; Hwang, Andrew; Weinberg, Vivian; Yom, Sue S.; Quivey, Jeanne M.; Xia Ping

    2010-07-01

    Purpose: Adaptive planning to accommodate anatomic changes during treatment requires repeat segmentation. This study uses dosimetric endpoints to assess automatically deformed contours. Methods and Materials: Sixteen patients with head-and-neck cancer had adaptive plans because of anatomic change during radiotherapy. Contours from the initial planning computed tomography (CT) were deformed to the mid-treatment CT using an intensity-based free-form registration algorithm then compared with the manually drawn contours for the same CT using the Dice similarity coefficient and an overlap index. The automatic contours were used to create new adaptive plans. The original and automatic adaptive plans were compared based on dosimetric outcomes of the manual contours and on plan conformality. Results: Volumes from the manual and automatic segmentation were similar; only the gross tumor volume (GTV) was significantly different. Automatic plans achieved lower mean coverage for the GTV: V95: 98.6 {+-} 1.9% vs. 89.9 {+-} 10.1% (p = 0.004) and clinical target volume: V95: 98.4 {+-} 0.8% vs. 89.8 {+-} 6.2% (p < 0.001) and a higher mean maximum dose to 1 cm{sup 3} of the spinal cord 39.9 {+-} 3.7 Gy vs. 42.8 {+-} 5.4 Gy (p = 0.034), but no difference for the remaining structures. Conclusions: Automatic segmentation is not robust enough to substitute for physician-drawn volumes, particularly for the GTV. However, it generates normal structure contours of sufficient accuracy when assessed by dosimetric end points.

  11. The automated/computerized TLD-personnel monitoring system in Austria

    NASA Astrophysics Data System (ADS)

    Duftschmid, K. E.

    1980-09-01

    The paper discusses the layout and operation details of the automated TLD system used in Austria for several years to monitor some 13000 radiation workers per month. Dosimetric properties, handling and computer software are described.

  12. Measurement of dosimetric parameters for the Alpha-Omega high-dose-rate Iridium-192 source

    SciTech Connect

    Muller-Runkel, R. . E-mail: renate.muller@ssfhs.org

    2005-09-30

    Thermoluminescent (TLD) measurements of dose-rate constant, anisotropy function, and radial dose function are reported for the Alpha-Omega high dose rate (HDR) Iridium-192 ({sup 192}Ir) source, which has been available since 1998 for use in the MicroSelectron HDR afterloader manufactured by the Nucletron Corporation. Measurement results are compared with published or available Monte Carlo calculations for both sources. They are found in good agreement, and, within experimental accuracy, no difference is seen in the dosimetric parameters of both sources.

  13. EPR dosimetric properties of 2-methylalanine pellet for radiation processing application

    NASA Astrophysics Data System (ADS)

    Soliman, Y. S.; Ali, Laila I.; Moustafa, H.; Tadros, Soad M.

    2014-09-01

    The dosimetric characteristics of γ-radiation induced free radicals in 2-methylalanine (2MA) pellet dosimeter are investigated using electron paramagnetic resonance (EPR) in the high-dose range of 1-100 kGy. The EPR spectrum of γ-irradiated 2MA exhibits an isotropic EPR signal with seven lines. The dosimeter response is humidity independent in the range of 33-76% relative humidity. The manufactured dosimeter is typically adipose tissue equivalent in the energy level of 0.1-15 MeV. The overall uncertainty (2σ) of the dosimeter is less than 6.9%.

  14. Study of dosimetric water equivalency of PRESAGE® for megavoltage and kilovoltage x-ray beams

    NASA Astrophysics Data System (ADS)

    Gorjiara, Tina; Hill, Robin; Kim, Jung-Ha; Kuncic, Zdenka; Adamovics, John; Baldock, Clive

    2010-11-01

    PRESAGE is a dosimeter that is suitable for 3D dosimetry. To be used as an ideal dosimeter, however, it should present radiologically water equivalent properties. In this work, we have investigated the radiological properties of three different PRESAGE® formulations. The radiological water equivalence was assessed by comparing the photon cross sections and radiation dosimetry properties of the three different PRESAGE® formulations with the corresponding values for water. Relative depth doses were calculated using Monte Carlo methods for 75, 125, 180 and 280 kVp and 6 MV x-ray beams. Based on the results of this study, the PRESAGE® formulations with lower halogen content are more dosimetrically water equivalent.

  15. Permanent prostate brachytherapy: Dosimetric results and analysis of a learning curve with a dynamic dose-feedback technique

    SciTech Connect

    Acher, Peter . E-mail: peter.acher@gstt.nhs.uk; Popert, Rick; Nichol, Janette; Potters, Louis; Morris, Stephen; Beaney, Ronald

    2006-07-01

    Purpose: A permanent prostate brachytherapy (PPB) program utilizing intraoperative inverse-planned dynamic dose-feedback was initiated without prior firsthand experience of alternative techniques. The purpose of this study is to assess the dosimetric learning curve associated with this approach. Methods and Materials: A total of 77 patients underwent PPB implants as monotherapy for localized prostate cancer to a prescription dose of 145 Gy with loose 125I seeds between December 2003 and June 2004. Intraoperative and postoperative dosimetric values, total implanted radioactivity, and operating room (OR) times were compared by sequential case number for all cases. Results: The median intraoperative dosimetric values were: D90 (the minimum dose to 90% of the prostate) = 170 Gy (range, 135-203 Gy), V100 (the volume of the prostate that receives 100% of the prescription dose) = 96% (range, 86-100), V150 = 66% (range, 34-86). Median postoperative dosimetric values were as follows: D90 = 168 Gy (range, 132-197 Gy), V100 = 95% (range, 86-99), V150 = 74% (range, 51-84). Median implanted activity was 0.79 mCi per cubic centimeter of prostate (range, 0.541-1.13). There was no significant correlation by case number on any postoperative dosimetric parameter studied. Door-to-door OR time was reduced from median 138 to 97.5 min per case at the end of the series with a correlation coefficient of -0.76 for the initial 28 cases. Conclusion: Satisfactory dosimetric parameters can be achieved from the outset without a learning curve effect in an appropriately trained environment. The learning curve for dynamic dose-feedback PPB in a clinic naive to other techniques is apparent in terms of OR time.

  16. Dosimetric characterization of a dedicated breast computed tomography clinical prototype

    SciTech Connect

    Sechopoulos, Ioannis; Feng, Steve Si Jia; D'Orsi, Carl J.

    2010-08-15

    Purpose: To investigate the glandular dose magnitudes and characteristics resulting from image acquisition using a dedicated breast computed tomography (BCT) clinical prototype imaging system. Methods: The x-ray spectrum and output characteristics of a BCT clinical prototype (Koning Corporation, West Henrietta, NY) were determined using empirical measurements, breast phantoms, and an established spectrum model. The geometry of the BCT system was replicated in a Monte Carlo-based computer simulation using the GEANT4 toolkit and was validated by comparing the simulated results for exposure distribution in a standard 16 cm CT head phantom with those empirically determined using a 10 cm CT pencil ionization chamber and dosimeter. The computer simulation was further validated by replicating the results of a previous BCT dosimetry study. Upon validation, the computer simulation was modified to include breasts of varying sizes and homogeneous compositions spanning those encountered clinically, and the normalized mean glandular dose resulting from BCT was determined. Using the system's measured exposure output determined automatically for breasts of different size and density, the mean glandular dose for these breasts was computed and compared to the glandular dose resulting from mammography. Finally, additional Monte Carlo simulations were performed to study how the glandular dose values vary within the breast tissue during acquisition with both this BCT prototype and a typical craniocaudal (CC) mammographic acquisition. Results: This BCT prototype uses an x-ray spectrum with a first half-value layer of 1.39 mm Al and a mean x-ray energy of 30.3 keV. The normalized mean glandular dose for breasts of varying size and composition during BCT acquisition with this system ranges from 0.278 to 0.582 mGy/mGy air kerma with the reference air kerma measured in air at the center of rotation. Using the measured exposure outputs for the tube currents automatically selected by the

  17. GAMMA AND X-RAY DOSIMETER AND DOSIMETRIC METHOD

    DOEpatents

    Taplin, G.V.; Douglas, C.H.; Sigoloff, S.C.

    1958-08-19

    An improvement in colorimetric gamma and x-ray dosimeter systems and a self-contained. hand carried dostmeter of the afore-mentioned type ts described. A novel point of the invention ltes in the addition of specific quantities of certain normalizing agents to the two phase chlorinated hydro-carbon-aqueous dyc colortmetric dosimeter to eliminate the after reaction and thereby extend the utility of such systein. The structure of the two phase colorimetric dosimeter tubes and the carrying case for the tubes of the portable dosimeter are unique features.

  18. SU-D-17A-01: Geometric and Dosimetric Evaluation of a 4D-CBCT Reconstruction Technique Using Prior Knowledge

    SciTech Connect

    Zhang, Y; Yin, F; Ren, L

    2014-06-01

    .1%/120.8%/103.6% and 57.6%/118.6%/101.8%,respectively. Conclusion: The MM-FD method provides superior reconstruction accuracy both geometrically and dosimetrically, which can potentially be used for 4D target localization, dose tracking and adaptive radiation therapy. This research is supported by grant from Varian Medical Systems.

  19. Cardiac dosimetric evaluation of deep inspiration breath-hold level variances using computed tomography scans generated from deformable image registration displacement vectors.

    PubMed

    Harry, Taylor; Rahn, Doug; Semenov, Denis; Gu, Xuejun; Yashar, Catheryn; Einck, John; Jiang, Steve; Cerviño, Laura

    2016-01-01

    There is a reduction in cardiac dose for left-sided breast radiotherapy during treatment with deep inspiration breath-hold (DIBH) when compared with treatment with free breathing (FB). Various levels of DIBH may occur for different treatment fractions. Dosimetric effects due to this and other motions are a major component of uncertainty in radiotherapy in this setting. Recent developments in deformable registration techniques allow displacement vectors between various temporal and spatial patient representations to be digitally quantified. We propose a method to evaluate the dosimetric effect to the heart from variable reproducibility of DIBH by using deformable registration to create new anatomical computed tomography (CT) scans. From deformable registration, 3-dimensional deformation vectors are generated with FB and DIBH. The obtained deformation vectors are scaled to 75%, 90%, and 110% and are applied to the reference image to create new CT scans at these inspirational levels. The scans are then imported into the treatment planning system and dose calculations are performed. The average mean dose to the heart was 2.5Gy (0.7 to 9.6Gy) at FB, 1.2Gy (0.6 to 3.8Gy, p < 0.001) at 75% inspiration, 1.1Gy (0.6 to 3.1Gy, p = 0.004) at 90% inspiration, 1.0Gy (0.6 to 3.0Gy) at 100% inspiration or DIBH, and 1.0Gy (0.6 to 2.8Gy, p = 0.019) at 110% inspiration. The average mean dose to the left anterior descending artery (LAD) was 19.9Gy (2.4 to 46.4Gy), 8.6Gy (2.0 to 43.8Gy, p < 0.001), 7.2Gy (1.9 to 40.1Gy, p = 0.035), 6.5Gy (1.8 to 34.7Gy), and 5.3Gy (1.5 to 31.5Gy, p < 0.001), correspondingly. This novel method enables numerous anatomical situations to be mimicked and quantifies the dosimetric effect they have on a treatment plan. PMID:26206154

  20. Simulational study of a dosimetric comparison between a Gamma Knife treatment plan and an intensity-modulated radiotherapy plan for skull base tumors

    PubMed Central

    Nakazawa, Hisato; Mori, Yoshimasa; Komori, Masataka; Tsugawa, Takahiko; Shibamoto, Yuta; Kobayashi, Tatsuya; Hashizume, Chisa; Uchiyama, Yukio; Hagiwara, Masahiro

    2014-01-01

    Fractionated stereotactic radiotherapy (SRT) is performed with a linear accelerator-based system such as Novalis. Recently, Gamma Knife Perfexion (PFX) featured the Extend system with relocatable fixation devices available for SRT. In this study, the dosimetric results of these two modalities were compared from the viewpoint of conformity, heterogeneity and gradient in target covering. A total of 14 patients with skull base tumors were treated with Novalis intensity-modulated (IM)-SRT. Treatment was planned on an iPlan workstation. Five- to seven-beam IM-SRT was performed in 14–18 fractions with a fraction dose of 2.5 or 3 Gy. With these patients' data, additional treatment planning was simulated using a GammaPlan workstation for PFX-SRT. Reference CT images with planning structure contour sets on iPlan, including the planning target volume (PTV, 1.1–102.2 ml) and organs at risk, were exported to GammaPlan in DICOM-RT format. Dosimetric results for Novalis IM-SRT and PFX-SRT were evaluated in the same prescription doses. The isocenter number of PFX was between 12 and 50 at the isodose contour of 50–60%. The PTV coverage was 95–99% for Novalis and 94–98% for PFX. The conformity index (CI) was 1.11–1.61 and 1.04–1.15, the homogeneity index (HI) was 1.1–3.62 and 2.3–3.25, and the gradient index (GI) was 3.72–7.97 and 2.54–3.39 for Novalis and PFX, respectively. PTV coverage by Novalis and PFX was almost equivalent. PFX was superior in CI and GI, and Novalis was better in HI. Better conformality would be achieved by PFX, when the homogeneity inside tumors is less important. PMID:24351459

  1. Dosimetric properties and stability of thermoluminescent foils made from LiF:Mg,Cu,P or CaSO4:Dy during long-term use

    NASA Astrophysics Data System (ADS)

    Kłosowski, M.; Liszka, M.; Kopeć, R.; Bilski, P.; Kędzierska, D.

    2014-11-01

    A few dosimetric systems based on thermoluminescence [TL] foils were developed in recent years (Nariyama et al. 2006, Radiat. Prot. Dosim. 120, 213-218; Olko et al. 2006 Radiat. Prot. Dosim. 118, 213-218) (Czopyk et al. 2008, Radiat. Meas., 43, 977-980; Kłosowski et al. 2010, Radiat. Meas., 45, 719-721; Kopeć et al. 2013, Radiat.Meas., 56, 380-383). Major application of these systems is mapping of 2D dose distribution for medical treatment plan verification, similarly to photochromic or radiochromic films. The advantage of TL foils compared to other films is their re-usability. In this work we present dosimetric properties as dose linearity and fadding of the foils made from LiF:Mg,Cu,P or CaSO4:Dy phosphors and high temperature polymers. Both types of the foils have good linearity in the range 1-20 Gy for LiF:Mg,Cu,P and 0.1-2 Gy for CaSO4:Dy. Their long term fading does not exceed 3.7% and 9% respectively. We additionally investigated effects of sensitivity loss and emission spectra for both types of the foils. One shortcoming of TL foils is that every heat process may have negative influence on their properties, causing changes of their sensitivity. Register signal of the foils after 15 readouts may be reduced by 16% of the initial. We consider that the main reason of these changes is oxidation of organic contamination on the surface and degradation of a polymer which is one of the components of the foils. Effect of sensitivity decreasing may be slowed down by proper use and cleaning detectors by solvent.

  2. Dosimetric characterization of the iBEAM evo carbon fiber couch for radiotherapy

    SciTech Connect

    Smith, David W.; Christophides, Damianos; Dean, Christopher; Naisbit, Mitchell; Mason, Joshua; Morgan, Andrew

    2010-07-15

    Purpose: This study characterizes the dosimetric properties of the iBEAM evo carbon fiber couch manufactured by Medical Intelligence and examines the accuracy of the CMS XiO and Nucletron Oncentra Masterplan (OMP) treatment planning systems for calculating beam attenuation due to the presence of the couch. Methods: To assess the homogeneity of the couch, it was CT scanned at isocentric height and a number of signal intensity profiles were generated and analyzed. To simplify experimental procedures, surface dose and central axis depth dose measurements were performed in a solid water slab phantom using Gafchromic film for 6 and 10 MV photon beams at gantry angles of 0 deg. (normal incidence), 30 deg., and 60 deg. with an inverted iBEAM couch placed on top of the phantom. Attenuation measurements were performed in a cylindrical solid water phantom with an ionization chamber positioned at the isocenter. Measurements were taken for gantry angles from 0 deg. to 90 deg. in 10 deg. increments for both 6 and 10 MV photon beams. This setup was replicated in the XiO and OMP treatment planning systems. Dose was calculated using the pencil beam, collapsed cone, convolution, and superposition algorithms. Results: The CT scan of the couch showed that it was uniformly constructed. Surface dose increased by (510{+-}30)% for a 6 MV beam and (600{+-}20)% for a 10 MV beam passing through the couch at normal incidence. Obliquely incident beams resulted in a higher surface dose compared to normally incident beams for both open fields and fields with the couch present. Depth dose curves showed that the presence of the couch resulted in an increase in dose in the build up region. For 6 and 10 MV beams incident at 60 deg., nearly all skin sparing was lost. Attenuation measurements derived using the ionization chamber varied from 2.7% (0 deg.) to a maximum of 4.6% (50 deg.) for a 6 MV beam and from 1.9% (0 deg.) to a maximum of 4.0% (50 deg.) for a 10 MV beam. The pencil beam and

  3. ISS Radiation Measurements using the Dosimetric Mapping Experiment

    NASA Astrophysics Data System (ADS)

    Reitz, G.; Beaujean, R.; Dachev, T.; Deme, S.; Luszik-Bhadra, M.; Heinrich, W.; Olko, P.; Scherkenbach, M.

    The experiment SDosimetric MappingT was flown as part of the Human Research Facility (HRF), NASASs first science payload on the ISS. The experiment consists of five nuclear track detector packages (NTDPs) (thermoluminescence dosimeters (TLD) and plastic nuclear track detectors), two DOSimetry TELescopes (DOSTEL) using two passive implanted planar silicon detectors per instrument, four Mobile Dosimetry Units (MDUs) using one passive implanted planar silicon detector per unit with an Control and Interface Unit (CIU) and an onboard TLD system consisting of a small weight TLD Reader and twelve TLD-bulbs, which have been reused after each mea- surement. Detectors are spread over the whole US-Lab. Data were transferred during the mission via the HRF Laptop to the ground. Dose rates of the ionizing part of the radiation field measured with TLD-bulbs at different locations vary between 123μGy/d and 226 μG/d. The dose rate received by the active devices fits excellent to the TLD measurements and is significantly lower compared to measurements on the STS missions to MIR. The measurements on the ISS yielded a mean dose equivalent of 504 μSv/day applying a radiation quality factor of 2.6 based on the recommendations of ICRP Report No. 60 and determined from the measured LET spectra of the DOSTEL instrument. The mean dose rate was with 194 μGy/d significantly lower compared to DOSTEL measurements on the STS missions. DOSTEL measurements were also obtained during the Solar Particle Event (SPE) on April 15, 2001. The presentation includes beside first results, some data on calibration work and an intercomparison between the different detector systems.

  4. Geometric accuracy in radiation therapy: Dosimetric, imaging and economic considerations

    NASA Astrophysics Data System (ADS)

    Ploquin, Nicolas P.

    In 2007 in Canada, 159,900 men and women will be diagnosed with cancer. Radiation Therapy (RT) is the treatment of cancer by irradiating malignant tissue with ionizing radiation and it is used on up to 50% of all cancers. The objective of radiation therapy is to deliver a lethal dose of radiation to the tumour while sparing the surrounding healthy tissues and organs at risks (OARs). Thus, the accuracy with which the radiation therapy process must be carried out is critical. The presence of setup errors and uncertainties throughout the RT process impacts the dose received by the tumour and OARs and can compromise the outcome for the patient. This thesis focuses on the study of the limiting geometrical accuracy imposed by factors present in radiation therapy process (such as setup errors and uncertainties or the spatial resolution of the imaging systems that we use) and its consequences for the patient. The consequences are quantified through the use of a physical outcome surrogate, the Equivalent Uniform Dose (EUD), which numerically describes the dose distribution received by the target and normal structures surrounding it. A cost-outcome analysis is presented in which the incremental cost of radiation therapy is directly related to the patients outcome (using the EUD) for using various imaging modalities and correction protocols in Image Guided Adaptive Radiation Therapy (IGART).

  5. The Dosimetric Impact of Prostate Rotations During Electromagnetically Guided External-Beam Radiation Therapy

    SciTech Connect

    Amro, Hanan; Hamstra, Daniel A.; Mcshan, Daniel L.; Sandler, Howard; Vineberg, Karen; Hadley, Scott; Litzenberg, Dale

    2013-01-01

    Purpose: To study the impact of daily rotations and translations of the prostate on dosimetric coverage during radiation therapy (RT). Methods and Materials: Real-time tracking data for 26 patients were obtained during RT. Intensity modulated radiation therapy plans meeting RTOG 0126 dosimetric criteria were created with 0-, 2-, 3-, and 5-mm planning target volume (PTV) margins. Daily translations and rotations were used to reconstruct prostate delivered dose from the planned dose. D{sub 95} and V{sub 79} were computed from the delivered dose to evaluate target coverage and the adequacy of PTV margins. Prostate equivalent rotation is a new metric introduced in this study to quantify prostate rotations by accounting for prostate shape and length of rotational lever arm. Results: Large variations in prostate delivered dose were seen among patients. Adequate target coverage was met in 39%, 65%, and 84% of the patients for plans with 2-, 3-, and 5-mm PTV margins, respectively. Although no correlations between prostate delivered dose and daily rotations were seen, the data showed a clear correlation with prostate equivalent rotation. Conclusions: Prostate rotations during RT could cause significant underdosing even if daily translations were managed. These rotations should be managed with rotational tolerances based on prostate equivalent rotations.

  6. Role of intracanalicular volumetric and dosimetric parameters on hearing preservation after vestibular schwannoma radiosurgery

    SciTech Connect

    Massager, Nicolas . E-mail: nmassage@ulb.ac.be; Nissim, Ouzi; Delbrouck, Carine; Devriendt, Daniel; David, Philippe; Desmedt, Francoise; Wikler, David; Hassid, Sergio; Brotchi, Jacques; Levivier, Marc

    2006-04-01

    Purpose: To analyze the relationship between hearing preservation after gamma knife radiosurgery (GKR) for vestibular schwannoma (VS) and some volumetric and dosimetric parameters of the intracanalicular components of VS. Methods and Materials: This study included 82 patients with a VS treated by GKR; all patients had no NF2 disease, a Gardner-Robertson hearing class 1-4 before treatment, a marginal dose of 12 Gy, and a radiologic and audiologic follow-up {>=}1 year post-GKR. The volume of both the entire tumor and the intracanalicular part of the tumor and the mean and integrated dose of these two volumes were correlated to the auditory outcomes of patients. Results: At last hearing follow-up, 52 patients had no hearing worsening, and 30 patients had an increase of {>=}1 class on Gardner-Robertson classification. We found that hearing preservation after GKR is significantly correlated with the intracanalicular tumor volume, as well as with the integrated dose delivered to the intracanalicular tumor volume. Conclusions: Some volumetric and dosimetric parameters of the intracanalicular part of the tumor influence hearing preservation after GKR of VS. Consequently, we advise the direct treatment of patients with preserved functional hearing and a VS including a small intracanalicular volume.

  7. A Combined Tissue Kinetics and Dosimetric Model of Respiratory Tissue Exposed to Radiation

    SciTech Connect

    John R. Ford

    2005-11-01

    Existing dosimetric models of the radiation response of tissues are essentially static. Consideration of changes in the cell populations over time has not been addressed realistically. For a single acute dose this is not a concern, but for modeling chronic exposures or fractionated acute exposures, the natural turnover and progression of cells could have a significant impact on a variety of endpoints. This proposal addresses the shortcomings of current methods by combining current dose-based calculation techniques with information on the cell turnover for a model tissue. The proposed model will examine effects at the single-cell level for an exposure of a section of human bronchiole. The cell model will be combined with Monte Carlo calculations of doses to cells and cell nuclei due to varying dose-rates of different radiation qualities. Predictions from the model of effects on survival, apoptosis rates, and changes in the number of cycling and differentiating cells will be tested experimentally. The availability of dynamic dosimetric models of tissues at the single-cell level will be useful for analysis of low-level radiation exposures and in the development of new radiotherapy protocols.

  8. Dosimetric validation of the MCNPX Monte Carlo simulation for radiobiologic studies of megavoltage grid radiotherapy

    SciTech Connect

    Zhang Hualin . E-mail: zhang.568@osu.edu; Johnson, Ellis L.; Zwicker, Robert D.

    2006-12-01

    Purpose: To validate the MCNPX Monte Carlo simulation for radiobiologic studies of megavoltage grid radiotherapy. Methods and Materials: EDR2 films, a scanning water phantom with microionization chamber and MCNPX Monte Carlo code, were used to study the dosimetric characteristics of a commercially available megavoltage grid therapy collimator. The measured dose profiles, ratios between maximum and minimum doses at 1.5 cm depth, and percentage depth dose curve were compared with those obtained in the simulations. The simulated two-dimensional dose profile and the linear-quadratic formalism of cell survival were used to calculate survival statistics of tumor and normal cells for the treatment of melanoma with a list of doses of the fractionated grid therapy. Results: A good agreement between the simulated and measured dose data was found. The therapeutic ratio based on normal cell survival has been defined and calculated for treating both the acute and late responding melanoma tumors. The grid therapy in this study was found to be advantageous for treating the acutely responding tumors, but not for late responding tumors. Conclusions: Monte Carlo technique was demonstrated to be able to provide the dosimetric characteristics for grid therapy. The therapeutic ratio was dependent not only on the single {alpha}/{beta} value, but also on the individual {alpha} and {beta} values. Acutely responding tumors and radiosensitive normal tissues are more suitable for using the grid therapy.

  9. Synthesis and characterization of CaF{sub 2}:Dy nanophosphor for dosimetric application

    SciTech Connect

    Bhadane, Mahesh S.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D.; Patil, B. J.; Kulkarni, M. S.; Bhatt, B. C.

    2015-06-24

    In this work, nanoparticles (NPs) of dysprosium doped calcium fluoride (CaF{sub 2}:Dy) 1 mol % has been prepared using simple chemical co-precipitation method and its thermoluminescence (TL) dosimetric properties were studied. The synthesized nanoparticle sample was characterized by X-ray diffraction (XRD) and the particle size of face centered cubic phase NPs was found around 30 nm. The shape, morphology and size were also observed by scanning electron microscopy (SEM). From gamma irradiated CaF{sub 2}:Dy TL curves, it was observed that the total areas of all the glow peak intensities are dramatically changed with increase in annealing temperature. Further, TL glow curve of the CaF{sub 2}:Dy at 183 °C annealed at 400 °C, showed very sharp linear response in the dose range from 1 Gy to 750 Gy. This linear response of CaF{sub 2}:Dy nanophosphor as a function of gamma dose is very useful from radiation dosimetric point of view.

  10. Basics of particle therapy II biologic and dosimetric aspects of clinical hadron therapy.

    PubMed

    Rong, Yi; Welsh, James

    2010-12-01

    Besides photons and electrons, high-energy particles like protons, neutrons, ⁴He ions or heavier ions (C, Ne, etc) have been finding increasing applications in the treatment of radioresistant tumors and tumors located near critical structures. The main difference between photons and hadrons is their different biologic effect and depth-dose distribution. Generally speaking, protons are superior in dosimetric aspects whereas neutrons have advantages in biologic effectiveness because of the high linear energy transfer. In 1946 Robert Wilson first published the physical advantages in dose distribution of ion particles for cancer therapy. Since that time hadronic radiotherapy has been intensively studied in physics laboratories worldwide and clinical application have gradually come to fruition. Hadron therapy was made possible by the advances in accelerator technology, which increases the particles' energy high enough to place them at any depth within the patient's body. As a follow-up to the previous article Introduction to Hadrons, this review discusses certain biologic and dosimetric aspects of using protons, neutrons, and heavy charged particles for radiation therapy. PMID:20395789

  11. A Dosimetric Comparison of Proton and Intensity-Modulated Photon Radiotherapy for Pediatric Parameningeal Rhabdomyosarcomas

    SciTech Connect

    Kozak, Kevin R.; Adams, Judith; Krejcarek, Stephanie J.; Tarbell, Nancy J.; Yock, Torunn I.

    2009-05-01

    Purpose: We compared tumor and normal tissue dosimetry of proton radiation therapy with intensity-modulated radiation therapy (IMRT) for pediatric parameningeal rhabdomyosarcomas (PRMS). Methods and Materials: To quantify dosimetric differences between contemporary proton and photon treatment for pediatric PRMS, proton beam plans were compared with IMRT plans. Ten patients treated with proton radiation therapy at Massachusetts General Hospital had IMRT plans generated. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Proton and IMRT plans provided acceptable and comparable target volume coverage, with at least 99% of the CTV receiving 95% of the prescribed dose in all cases. Improved dose conformality provided by proton therapy resulted in significant sparing of all examined normal tissues except for ipsilateral cochlea and mastoid; ipsilateral parotid gland sparing was of borderline statistical significance (p = 0.05). More profound sparing of contralateral structures by protons resulted in greater dose asymmetry between ipsilateral and contralateral retina, optic nerves, cochlea, and mastoids; dose asymmetry between ipsilateral and contralateral parotids was of borderline statistical significance (p = 0.05). Conclusions: For pediatric PRMS, superior normal tissue sparing is achieved with proton radiation therapy compared with IMRT. Because of enhanced conformality, proton plans also demonstrate greater normal tissue dose distribution asymmetry. Longitudinal studies assessing the impact of proton radiotherapy and IMRT on normal tissue function and growth symmetry are necessary to define the clinical consequences of these differences.

  12. Thermoluminescent dosimetric properties of CaF2:Tm produced by combustion synthesis

    NASA Astrophysics Data System (ADS)

    de Vasconcelos, D. A. A.; Barros, V. S. M.; Khoury, H. J.; Asfora, V. K.; Oliveira, R. A. P.

    2016-04-01

    Calcium Fluoride is one of the oldest known thermoluminescent materials and is considered to be one of the most sensitive. This work presents the dosimetric properties results of CaF2:Tm produced by combustion synthesis. The X-ray diffraction confirmed that CaF2 was successfully produced. TL emission spectra, obtained using a Hammamatsu optical spectrometer, have the same lines of commercial CaF2:Tm, although transitions 3P0→3F4 (455 nm) and 1G4→3H6 (482 nm) are shown to be proportionally more intense. The deconvolution technique was employed and seven glow peaks were found similar to the commercial CaF2:Tm. A linear dose response curve was obtained for the range 0.1 mGy to 100 Gy, with the onset of a supralinear behavior at 50 Gy up to 100 Gy. The minimum measurable dose for gamma was around 100 μGy for a 6.0 mm diameter by 1.0 mm in thickness pellet. No significant fading was observed in 60 days of storage, within experimental uncertainties, showing that the main dosimetric peak is stable.

  13. Dosimetric properties of high energy current (HEC) detector in keV x-ray beams.

    PubMed

    Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno

    2015-04-01

    We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications. PMID:25789488

  14. Dosimetric analysis of isocentrically shielded volumetric modulated arc therapy for locally recurrent nasopharyngeal cancer

    PubMed Central

    Lu, Jia-Yang; Huang, Bao-Tian; Xing, Lei; Chang, Daniel T.; Peng, Xun; Xie, Liang-Xi; Lin, Zhi-Xiong; Li, Mei

    2016-01-01

    This study aimed to investigate the dosimetric characteristics of an isocentrically shielded RapidArc (IS-RA) technique for treatment of locally recurrent nasopharyngeal cancer (lrNPC). In IS-RA, the isocenter was placed at the center of the pre-irradiated brainstem (BS)/spinal cord (SC) and the jaws were set to shield the BS/SC while ensuring the target coverage during the whole gantry rotation. For fifteen patients, the IS-RA plans were compared with the conventional RapidArc (C-RA) regarding target coverage, organ-at-risk (OAR) sparing and monitor units (MUs). The relationship between the dose reduction of BS/SC and some geometric parameters including the angle extended by the target with respect to the axis of BS/SC (Ang_BSSC), the minimum distance between the target and BS/SC (Dist_Min) and the target volume were evaluated. The IS-RA reduced the BS/SC doses by approximately 1–4 Gy on average over the C-RA, with more MUs. The IS-RA demonstrated similar target coverage and sparing of other OARs except for slightly improved sparing of optic structures. More dose reduction in the isocentric region was observed in the cases with larger Ang_BSSC or smaller Dist_Min. Our results indicated that the IS-RA significantly improves the sparing of BS/SC without compromising dosimetric requirements of other involved structures for lrNPC. PMID:27173670

  15. Poster — Thur Eve — 74: Distributed, asynchronous, reactive dosimetric and outcomes analysis using DICOMautomaton

    SciTech Connect

    Clark, Haley; Wu, Jonn; Moiseenko, Vitali; Thomas, Steven

    2014-08-15

    Many have speculated about the future of computational technology in clinical radiation oncology. It has been advocated that the next generation of computational infrastructure will improve on the current generation by incorporating richer aspects of automation, more heavily and seamlessly featuring distributed and parallel computation, and providing more flexibility toward aggregate data analysis. In this report we describe how a recently created — but currently existing — analysis framework (DICOMautomaton) incorporates these aspects. DICOMautomaton supports a variety of use cases but is especially suited for dosimetric outcomes correlation analysis, investigation and comparison of radiotherapy treatment efficacy, and dose-volume computation. We describe: how it overcomes computational bottlenecks by distributing workload across a network of machines; how modern, asynchronous computational techniques are used to reduce blocking and avoid unnecessary computation; and how issues of out-of-date data are addressed using reactive programming techniques and data dependency chains. We describe internal architecture of the software and give a detailed demonstration of how DICOMautomaton could be used to search for correlations between dosimetric and outcomes data.

  16. Revision of the ICRP dosimetric model for the human respiratory tract

    SciTech Connect

    Bair, W.J.

    1990-12-01

    Although the dosimetric model of the respiratory tract used in ICRP Publication 30 had not been shown to be seriously deficient for the purpose of calculating Annual Limits on Intake (ALIs) for workers, the availability of new information led the ICRP in 1984 to create a special Task Group to review the dosimetric model of the respiratory tract and, if justified, propose revisions or a new model. The Task Group directed its efforts toward improving the model used in Publication 30 rather than developing a completely new model. The objective was a model that would facilitate calculation of biologically meaningful doses; be consistent with morphological, physiological, and radiobiological characteristics of the respiratory tract; incorporate current knowledge; meet all radiation protection needs; be user friendly by not being unnecessarily sophisticated; be adaptable to development of computer software for calculation of relevant radiation doses from knowledge of a few readily measured exposure parameters; be equally useful for assessment purposes as for calculating ALIs; be applicable to all members of the world population; and consider the influence of smoking, air pollutants, and diseases of the inhalation, deposition, and clearance of radioactive particles from the respiratory tract. The model provides for calculation of a committed dose equivalent for each region, adjusted for the relative cancer sensitivity of that region, and for the summing of these to yield a committed dose equivalent for the entire respiratory tract. 3 figs.

  17. A simulation study of irregular respiratory motion and its dosimetric impact on lung tumors

    NASA Astrophysics Data System (ADS)

    Mutaf, Y. D.; Scicutella, C. J.; Michalski, D.; Fallon, K.; Brandner, E. D.; Bednarz, G.; Huq, M. S.

    2011-02-01

    This study is aimed at providing a dosimetric evaluation of the irregular motion of lung tumors due to variations in patients' respiration. Twenty-three lung cancer patients are retrospectively enrolled in this study. The motion of the patient clinical target volume is simulated and two types of irregularities are defined: characteristic and uncharacteristic motions. Characteristic irregularities are representative of random fluctuations in the observed target motion. Uncharacteristic irregular motion is classified as systematic errors in determination of the target motion during the planning session. Respiratory traces from measurement of patient abdominal motion are also used for the target motion simulations. Characteristic irregular motion was observed to cause minimal changes in target dosimetry with the largest effect of 2.5% ± 0.9% (1σ) reduction in the minimum target dose (Dmin) observed for targets that move 2 cm on average and exhibiting 50% amplitude variations within a session. However, uncharacteristic irregular motion introduced more drastic changes in the clinical target volume (CTV) dose; 4.1% ± 1.7% reduction for 1 cm motion and 9.6% ± 1.7% drop for 2 cm. In simulations with patients' abdominal motion, corresponding changes in target dosimetry were observed to be negligible (<0.1%). Only uncharacteristic irregular motion was identified as a clinically significant source of dosimetric uncertainty.

  18. Dosimetric evaluation of a MOSFET detector for clinical application in photon therapy.

    PubMed

    Kohno, Ryosuke; Hirano, Eriko; Nishio, Teiji; Miyagishi, Tomoko; Goka, Tomonori; Kawashima, Mitsuhiko; Ogino, Takashi

    2008-01-01

    Dosimetric characteristics of a metal oxide-silicon semiconductor field effect transistor (MOSFET) detector are studied with megavoltage photon beams for patient dose verification. The major advantages of this detector are its size, which makes it a point dosimeter, and its ease of use. In order to use the MOSFET detector for dose verification of intensity-modulated radiation therapy (IMRT) and in-vivo dosimetry for radiation therapy, we need to evaluate the dosimetric properties of the MOSFET detector. Therefore, we investigated the reproducibility, dose-rate effect, accumulated-dose effect, angular dependence, and accuracy in tissue-maximum ratio measurements. Then, as it takes about 20 min in actual IMRT for the patient, we evaluated fading effect of MOSFET response. When the MOSFETs were read-out 20 min after irradiation, we observed a fading effect of 0.9% with 0.9% standard error of the mean. Further, we applied the MOSFET to the measurement of small field total scatter factor. The MOSFET for dose measurements of small field sizes was better than the reference pinpoint chamber with vertical direction. In conclusion, we assessed the accuracy, reliability, and usefulness of the MOSFET detector in clinical applications such as pinpoint absolute dosimetry for small fields. PMID:20821164

  19. Dosimetric review of cardiac implantable electronic device patients receiving radiotherapy.

    PubMed

    Prisciandaro, Joann I; Makkar, Akash; Fox, Colleen J; Hayman, James A; Horwood, Laura; Pelosi, Frank; Moran, Jean M

    2015-01-01

    A formal communication process was established and evaluated for the management of patients with cardiac implantable electronic devices (CIEDs) receiving radiation therapy (RT). Methods to estimate dose to the CIED were evaluated for their appropriateness in the management of these patients. A retrospective, institutional review board (IRB) approved study of 69 patients with CIEDs treated with RT between 2005 and 2011 was performed. The treatment sites, techniques, and the estimated doses to the CIEDs were analyzed and compared to estimates from published peripheral dose (PD) data and three treatment planning systems(TPSs) - UMPlan, Eclipse's AAA and Acuros algorithms. When measurements were indicated, radiation doses to the CIEDs ranged from 0.01-5.06 Gy. Total peripheral dose estimates based on publications differed from TLD measurements by an average of 0.94 Gy (0.05-4.49 Gy) and 0.51 Gy (0-2.74 Gy) for CIEDs within 2.5 cm and between 2.5 and 10 cm of the treatment field edge, respectively. Total peripheral dose estimates based on three TPSs differed from measurements by an average of 0.69 Gy (0.02-3.72 Gy) for CIEDs within 2.5 cm of the field edge. Of the 69 patients evaluated in this study, only two with defibrillators experienced a partial reset of their device during treatment. Based on this study, few CIED-related events were observed during RT. The only noted correlation with treatment parameters for these two events was beam energy, as both patients were treated with high-energy photon beams (16 MV). Differences in estimated and measured CIED doses were observed when using published PD data and TPS calculations. As such, we continue to follow conservative guidelines and measure CIED doses when the device is within 10 cm of the field or the estimated dose is greater than 2 Gy for pacemakers or 1 Gy for defibrillators. PMID:25679176

  20. Treatment planning and dosimetric comparison study on two different volumetric modulated arc therapy delivery techniques

    PubMed Central

    Kumar, S.A. Syam; Holla, Raghavendra; Sukumar, Prabakar; Padmanaban, Sriram; Vivekanandan, Nagarajan

    2012-01-01

    Aim To compare and evaluate the performance of two different volumetric modulated arc therapy delivery techniques. Background Volumetric modulated arc therapy is a novel technique that has recently been made available for clinical use. Planning and dosimetric comparison study was done for Elekta VMAT and Varian RapidArc for different treatment sites. Materials and methods Ten patients were selected for the planning comparison study. This includes 2 head and neck, 2 oesophagus, 1 bladder, 3 cervix and 2 rectum cases. Total dose of 50 Gy was given for all the plans. All plans were done for RapidArc using Eclipse and for Elekta VMAT with Monaco treatment planning system. All plans were generated with 6 MV X-rays for both RapidArc and Elekta VMAT. Plans were evaluated based on the ability to meet the dose volume histogram, dose homogeneity index, radiation conformity index, estimated radiation delivery time, integral dose and monitor units needed to deliver the prescribed dose. Results RapidArc plans achieved the best conformity (CI95% = 1.08 ± 0.07) while Elekta VMAT plans were slightly inferior (CI95% = 1.10 ± 0.05). The in-homogeneity in the PTV was highest with Elekta VMAT with HI equal to 0.12 ± 0.02 Gy when compared to RapidArc with 0.08 ± 0.03. Significant changes were observed between the RapidArc and Elekta VMAT plans in terms of the healthy tissue mean dose and integral dose. Elekta VMAT plans show a reduction in the healthy tissue mean dose (6.92 ± 2.90) Gy when compared to RapidArc (7.83 ± 3.31) Gy. The integral dose is found to be inferior with Elekta VMAT (11.50 ± 6.49) × 104 Gy cm3 when compared to RapidArc (13.11 ± 7.52) × 104 Gy cm3. Both Varian RapidArc and Elekta VMAT respected the planning objective for all organs at risk. Gamma analysis result for the pre-treatment quality assurance shows good agreement between the planned and delivered fluence for 3 mm DTA, 3% DD for all the evaluated points inside the

  1. Dosimetric advantages of IMRT simultaneous integrated boost for high-risk prostate cancer

    SciTech Connect

    Li, X. Allen . E-mail: ali@radonc.mcw.edu; Wang, Jian Z.; Jursinic, Paul A.; Lawton, Colleen A.; Wang Dian

    2005-03-15

    Purpose: A sequential two-phase process, initial and boost irradiation, is the common practice for the radiotherapy management of high-risk prostate cancer. In this work, we explore the feasibility of using intensity modulated radiation therapy (IMRT) simultaneous integrated boost (SIB), a single-phase process, to simultaneously deliver high dose to the prostate and lower dose to the pelvic nodes. In addition, we introduce the concept of voxel-equivalent dose for the comparison of treatment plans. Methods and materials: The SIB is designed to deliver the same dose (e.g., 45 Gy, 25 x 1.8 Gy) as the conventional method to the pelvic nodes and to deliver higher doses to prostate in the same 25 fractions (i.e., hypofractionation). The equivalent uniform dose (EUD) was used to determine suitable SIB fractionations that deliver the biologically equivalent doses to prostate. For tumor, the EUD was estimated based on the linear quadratic (LQ) model. The most recent LQ parameters derived from clinical data for prostate cancer were used. The sensitivity of LQ parameters was evaluated. The EUD for normal tissue was computed based on the widely used Lyman model. To be able to consider biologic effectiveness spatially (e.g., voxel by voxel), we propose a new concept, termed the voxel-equivalent dose (VED). The calculation of VED was similar to that for EUD, except that it was done within a voxel. To demonstrate dosimetric feasibility and advantages of the proposed IMRT SIB, we have performed a retrospective planning study on selected patient cases using commercial IMRT and three-dimensional (3D) planning systems. Four treatment scenarios were considered: (1) the conventional 3D plan for initial whole-pelvic irradiation and subsequent conventional 3D boost plan for prostate gland (2) the conventional 3D plan for initial whole-pelvic irradiation and subsequent IMRT boost plan for prostate (3) IMRT plan for initial whole-pelvic irradiation and subsequent IMRT boost plan for

  2. Simultaneous integrated intensity-modulated radiotherapy boost for locally advanced gynecological cancer: Radiobiological and dosimetric considerations

    SciTech Connect

    Guerrero, Mariana; Li, X. Allen . E-mail: ali@radonc.mcw.edu; Ma Lijun; Linder, Jeanette; Deyoung, Chad; Erickson, Beth

    2005-07-01

    Purpose: Whole-pelvis irradiation (WPI) followed by a boost to the tumor site is the standard of practice for the radiotherapeutic management of locally advanced gynecologic cancers. The boost is frequently administered by use of brachytherapy or, occasionally, external-beam radiotherapy (EBRT) when brachytherapy does not provide sufficient coverage because of the size of the tumor or the geometry of the patient. In this work, we propose using an intensity-modulated radiotherapy (IMRT) simultaneous integrated boost (SIB), which is a single-phase process, to replace the conventional two-phase process involving WPI plus a boost. Radiobiological modeling is used to design appropriate regimens for the IMRT SIB. To demonstrate feasibility, a dosimetric study is carried out on an example patient. Methods and Materials: The standard linear-quadratic (LQ) model is used to calculate the biologically effective dose (BED) and equivalent uniform dose (EUD). A series of regimens that are biologically equivalent to those conventional two-phase treatments is calculated for the proposed SIB. A commercial inverse planning system (Corvus) was used to generate IMRT SIB plans for a sample patient case that used the newly designed fractionations. The dose-volume histogram (DVH) and EUD of both the target and normal structures for conventional treatments and the SIB are compared. A sparing factor was introduced to characterize the sparing of normal structures. Results: Fractionation regimes that are equivalent to the conventional treatments and are suitable for the IMRT SIB are deduced. For example, a SIB plan with 25 x 3.1 Gy (77.5 Gy) to a tumor is equivalent to a conventional treatment of EBRT of 45 Gy to the whole pelvis in 25 fractions plus a high-dose rate (HDR) brachytherapy boost with 30 Gy in 5 fractions. The normal tissue BED is found to be lower for the SIB plan than for the whole-pelvis plus HDR scheme when a sparing factor for the critical structures is considered. This

  3. Dosimetric impact of image artifact from a wide-bore CT scanner in radiotherapy treatment planning

    SciTech Connect

    Wu, Vincent; Podgorsak, Matthew B.; Tran, Tuan-Anh; Malhotra, Harish K.; Wang, Iris Z.

    2011-07-15

    Purpose: Traditional computed tomography (CT) units provide a maximum scan field-of-view (sFOV) diameter of 50 cm and a limited bore size, which cannot accommodate a large patient habitus or an extended simulation setup in radiation therapy (RT). Wide-bore CT scanners with increased bore size were developed to address these needs. Some scanners have the capacity to reconstruct the CT images at an extended FOV (eFOV), through data interpolation or extrapolation, using projection data acquired with a conventional sFOV. Objects that extend past the sFOV for eFOV reconstruction may generate image artifacts resulting from truncated projection data; this may distort CT numbers and structure contours in the region beyond the sFOV. The purpose of this study was to evaluate the dosimetric impact of image artifacts from eFOV reconstruction with a wide-bore CT scanner in radiotherapy (RT) treatment planning. Methods: Testing phantoms (i.e., a mini CT phantom with equivalent tissue inserts, a set of CT normal phantoms and anthropomorphic phantoms of the thorax and the pelvis) were used to evaluate eFOV artifacts. Reference baseline images of these phantoms were acquired with the phantom centrally positioned within the sFOV. For comparison, the phantoms were then shifted laterally and scanned partially outside the sFOV, but still within the eFOV. Treatment plans were generated for the thoracic and pelvic anthropomorphic phantoms utilizing the Eclipse treatment planning system (TPS) to study the potential effects of eFOV artifacts on dose calculations. All dose calculations of baseline and test treatment plans were carried out using the same MU. Results: Results show that both body contour and CT numbers are altered by image artifacts in eFOV reconstruction. CT number distortions of up to -356 HU for bone tissue and up to 323 HU for lung tissue were observed in the mini CT phantom. Results from the large body normal phantom, which is close to a clinical patient size, show

  4. Prostate brachytherapy postimplant dosimetry: Seed orientation and the impact of dosimetric anisotropy in stranded implants

    SciTech Connect

    Chng, Nicholas; Spadinger, Ingrid; Rasoda, Rosey; Morris, W. James; Salcudean, Septimiu

    2012-02-15

    Purpose: In postimplant dosimetry for prostate brachytherapy, dose is commonly calculated using the TG-43 1D formalism, because seed orientations are difficult to determine from CT images, the current standard for the procedure. However, the orientation of stranded seeds soon after implantation is predictable, as these seeds tend to maintain their relative spacing, and orient themselves along the implant trajectory. The aim of this study was to develop a method for determining seed orientations from reconstructed strand trajectories, and to use this information to investigate the dosimetric impact of applying the TG-43 2D formalism to clinical postimplant analysis. Methods: Using in-house software, the preplan to postimplant seed correspondence was determined for a cohort of 30 patients during routine day-0 CT-based postimplant dosimetry. All patients were implanted with stranded-seed trains. Spline curves were fit to each set of seeds composing a strand, with the requirement that the distance along the spline between seeds be equal to the seed spacing within the strand. The orientations of the seeds were estimated by the tangents to the spline at each seed centroid. Dose distributions were then determined using the 1D and 2D TG-43 formalisms. These were compared using the TG-137 recommended dose metrics for the prostate, prostatic urethra, and rectum. Results: Seven hundred and sixty one strands were analyzed in total. Defining the z-axis to be cranial-positive and the x-axis to be left-lateral positive in the CT coordinate system, the average seed had an inclination of 21 deg. {+-} 10 deg. and an azimuth of -81 deg. {+-} 57 deg. These values correspond to the average strand rising anteriorly from apex to base, approximately parallel to the midsagittal plane. Clinically minor but statistically significant differences in dose metrics were noted. Compared to the 2D calculation, the 1D calculation underestimated prostate V100 by 1.1% and D90 by 2.3 Gy, while

  5. Dosimetric evaluation of planning target volume margin reduction for prostate cancer via image-guided intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Hwang, Taejin; Kang, Sei-Kwon; Cheong, Kwang-Ho; Park, Soah; Yoon, Jai-Woong; Han, Taejin; Kim, Haeyoung; Lee, Meyeon; Kim, Kyoung-Joo; Bae, Hoonsik; Suh, Tae-Suk

    2015-07-01

    The aim of this study was to quantitatively estimate the dosimetric benefits of the image-guided radiation therapy (IGRT) system for the prostate intensity-modulated radiation therapy (IMRT) delivery. The cases of eleven patients who underwent IMRT for prostate cancer without a prostatectomy at our institution between October 2012 and April 2014 were retrospectively analyzed. For every patient, clinical target volume (CTV) to planning target volume (PTV) margins were uniformly used: 3 mm, 5 mm, 7 mm, 10 mm, 12 mm, and 15 mm. For each margin size, the IMRT plans were independently optimized by one medical physicist using Pinnalce3 (ver. 8.0.d, Philips Medical System, Madison, WI) in order to maintain the plan quality. The maximum geometrical margin (MGM) for every CT image set, defined as the smallest margin encompassing the rectum at least at one slice, was between 13 mm and 26 mm. The percentage rectum overlapping PTV (%V ROV ), the rectal normal tissue complication probability (NTCP) and the mean rectal dose (%RD mean ) increased in proportion to the increase of PTV margin. However the bladder NTCP remained around zero to some extent regardless of the increase of PTV margin while the percentage bladder overlapping PTV (%V BOV ) and the mean bladder dose (%BD mean ) increased in proportion to the increase of PTV margin. Without relatively large rectum or small bladder, the increase observed for rectal NTCP, %RDmean and %BD mean per 1-mm PTV margin size were 1.84%, 2.44% and 2.90%, respectively. Unlike the behavior of the rectum or the bladder, the maximum dose on each femoral head had little effect on PTV margin. This quantitative study of the PTV margin reduction supported that IG-IMRT has enhanced the clinical effects over prostate cancer with the reduction of normal organ complications under the similar level of PTV control.

  6. Sci—Thur AM: YIS - 01: Dosimetric Analysis of Respiratory Induced Cardiac Intrafraction Motion in Left-sided Breast Cancer Radiotherapy

    SciTech Connect

    El-Sherif, O; Xhaferllari, I; Patrick, J; Yu, E; Gaede, S

    2014-08-15

    Introduction: Long-term cardiac side effects in left-sided breast cancer patients (BREL) after post-operative radiotherapy has become one of the most debated issues in radiation oncology. Through breathing-adapted radiotherapy the volume of the heart exposed to radiation can be significantly reduced by delivering the radiation only at the end of inspiration phase of the respiratory cycle, this is referred to as inspiration gating (IG). The purpose of this study is to quantify the potential reduction in cardiac exposure during IG compared to conventional BREL radiotherapy and to assess the dosimetric impact of cardiac motion due to natural breathing. Methods: 24 BREL patients treated with tangential parallel opposed photon beams were included in this study. All patients received a standard fast helical planning CT (FH-CT) and a 4D-CT. Treatment plans were created on the FH-CT using a clinical treatment planning system. The original treatment plan was then superimposed onto the end of inspiration CT and all 10 phases of the 4D-CT to quantify the dosimetric impact of respiratory motion and IG through 4D dose accumulation. Results: Through IG the mean dose to the heart, left ventricle, and left anterior descending artery (LAD) can be reduced in comparison to the clinical standard BREL treatment by as much as 8.39%, 10.11%, and 13.71% respectively (p < 0.05). Conclusion: Failure to account for respiratory motion can lead to under or overestimation in the calculated DVH for the heart, and it's sub-structures. IG can reduce cardiac exposure especially to the LAD during BREL radiotherapy.

  7. Treatment plan comparison of linac step and shoot, tomotherapy, rapidarc, and proton therapy for prostate cancer by using the dosimetrical and the biological indices

    NASA Astrophysics Data System (ADS)

    Lee, Suk; Cao, Yuan Jie; Chang, Kyung Hwan; Shim, Jang Bo; Kim, Kwang Hyeon; Lee, Nam Kwon; Park, Young Je; Kim, Chul Yong; Cho, Sam Ju; Lee, Sang Hoon; Min, Chul Kee; Kim, Woo Chul; Cho, Kwang Hwan; Huh, Hyun Do; Lim, Sangwook; Shin, Dongho

    2015-07-01

    The purpose of this study was to use various dosimetrical indices to determine the best intensitymodulated radiation therapy (IMRT) modality - for treating patients with prostate cancer. Ten patients with prostate cancer were included in this study. IMRT plans were designed to include different modalities, including the linac step and shoot, tomotherapy, RapidArc, and proton systems. Various dosimetrical indices, like the prescription isodose to target volume (PITV) ratio, conformity index (CI), homogeneity index (HI), target coverage index (TCI), modified dose homogeneity index (MHI), conformation number (CN), critical organ scoring index (COSI), and quality factor (QF), were determined to compare the different treatment plans. Biological indices, such as the generalized equivalent uniform dose (gEUD) based the tumor control probability (TCP), and the normal tissue complication probability (NTCP), were also calculated and used to compare the treatment plans. The RapidArc plan attained better PTV coverage, as evidenced by its superior PITV, CI, TCI, MHI, and CN values. Regarding organ at risks (OARs), proton therapy exhibited superior dose sparing for the rectum and the bowel in low dose volumes, whereas the tomotherapy and RapidArc plans achieved better dose sparing in high dose volumes. The QF scores showed no significant difference among these plans (p = 0.701). The average TCPs for prostate tumors in the RapidArc, linac and proton plans were higher than the average TCP for Tomotherapy (98.79%, 98.76%, and 98.75% vs. 98.70%, respectively). Regarding the rectum NTCP, RapidArc showed the most favorable result (0.09%) whereas linac resulted in the best bladder NTCP (0.08%).

  8. Dosimetric considerations and early clinical experience of accelerated partial breast irradiation using multi-lumen applicators in the setting of breast augmentation

    PubMed Central

    Akhtari, Mani; Pino, Ramiro; Scarboro, Sarah B.; Bass, Barbara L.; Miltenburg, Darlene M.; Butler, E. Brian

    2015-01-01

    Purpose Accelerated partial breast irradiation (APBI) is an accepted treatment option in breast-conserving therapy for early stage breast cancer. However, data regarding outcomes of patients treated with multi-lumen catheter systems who have existing breast implants is limited. The purpose of this study was to report treatment parameters, outcomes, and possible dosimetric correlation with cosmetic outcome for this population of patients at our institution. Material and methods We report the treatment and outcome of seven consecutive patients with existing breast implants and early stage breast cancer who were treated between 2009 and 2013 using APBI following lumpectomy. All patients were treated twice per day for five days to a total dose of 34 Gy using a high-dose-rate 192Ir source. Cosmetic outcomes were evaluated using the Harvard breast cosmesis scale, and late toxicities were reported using the Radiation Therapy Oncology Group (RTOG) late radiation morbidity schema. Results After a mean follow-up of 32 months, all patients have remained cancer free. Six out of seven patients had an excellent or good cosmetic outcome. There were no grade 3 or 4 late toxicities. The average total breast implant volume was 279.3 cc, received an average mean dose of 12.1 Gy, and a maximum dose of 234.1 Gy. The average percentage of breast implant volume receiving 50%, 75%, 100%, 150%, and 200% of the prescribed dose was 15.6%, 7.03%, 4.6%, 1.58%, and 0.46%, respectively. Absolute volume of breast implants receiving more than 50% of prescribed dose correlated with worse cosmetic outcomes. Conclusions Accelerated partial breast irradiation using a multi-lumen applicator in patients with existing breast implants can safely be performed with promising early clinical results. The presence of the implant did not compromise the ability to achieve dosimetric criteria; however, dose to the implant and the irradiated implant volume may be related with worse cosmetic outcomes. PMID:26816499

  9. SU-E-J-58: Dosimetric Verification of Metal Artifact Effects: Comparison of Dose Distributions Affected by Patient Teeth and Implants

    SciTech Connect

    Lee, M; Kang, S; Lee, S; Suh, T; Lee, J; Park, J; Park, H; Lee, B

    2014-06-01

    Purpose: Implant-supported dentures seem particularly appropriate for the predicament of becoming edentulous and cancer patients are no exceptions. As the number of people having dental implants increased in different ages, critical dosimetric verification of metal artifact effects are required for the more accurate head and neck radiation therapy. The purpose of this study is to verify the theoretical analysis of the metal(streak and dark) artifact, and to evaluate dosimetric effect which cause by dental implants in CT images of patients with the patient teeth and implants inserted humanoid phantom. Methods: The phantom comprises cylinder which is shaped to simulate the anatomical structures of a human head and neck. Through applying various clinical cases, made phantom which is closely allied to human. Developed phantom can verify two classes: (i)closed mouth (ii)opened mouth. RapidArc plans of 4 cases were created in the Eclipse planning system. Total dose of 2000 cGy in 10 fractions is prescribed to the whole planning target volume (PTV) using 6MV photon beams. Acuros XB (AXB) advanced dose calculation algorithm, Analytical Anisotropic Algorithm (AAA) and progressive resolution optimizer were used in dose optimization and calculation. Results: In closed and opened mouth phantom, because dark artifacts formed extensively around the metal implants, dose variation was relatively higher than that of streak artifacts. As the PTV was delineated on the dark regions or large streak artifact regions, maximum 7.8% dose error and average 3.2% difference was observed. The averaged minimum dose to the PTV predicted by AAA was about 5.6% higher and OARs doses are also 5.2% higher compared to AXB. Conclusion: The results of this study showed that AXB dose calculation involving high-density materials is more accurate than AAA calculation, and AXB was superior to AAA in dose predictions beyond dark artifact/air cavity portion when compared against the measurements.

  10. SU-E-T-424: Dosimetric Verification of Modulated Electron Radiation Therapy Delivered Using An Electron Specific Multileaf Collimator for Treatment of Scalp Cases

    SciTech Connect

    Eldib, A; Jin, L; Martin, J; Li, J; Chibani, O; Galloway, T; Ma, C; Mora, G

    2014-06-01

    Purpose: Modulated electron radiotherapy (MERT) has the potential to achieve better treatment outcome for shallow tumors such as those of breast and scalp. In a separate study with scalp lesions, MERT was compared to volumetric modulated arc therapy. Our results showed a reduction in the dose reaching the brain with MERT. However dose calculation accuracy and delivery efficiency challenges remain. Thus in the current study we proceed to add more cases to demonstrate MERT beneficial outcome and its delivery accuracy using an electron specific multileaf collimator (eMLC). Methods: We have used the MCBEAM code for treatment head simulation and for generating phase space files to be used as radiation source input for our Monte Carlo based treatment planning system (MC TPS). MCPLAN code is used for calculation of patient specific dose deposition coefficient and for final MERT plan dose calculation. An in-house developed optimization code is used for the optimization process. MERT plans were generated for real patients and head and neck phantom. Film was used for dosimetric verification. The film was cut following the contour of the curved phantom surface and then sealed with black masking tape. In the measurement, the sealed film packet was sandwiched between two adjacent slabs of the head and neck phantom. The measured 2D dose distribution was then compared with calculations. Results: The eMLC allows effective treatment of scalps with multi-lesions spreading around the patient head, which was usually difficult to plan or very time consuming with conventional applicators. MERT continues to show better reduction in the brain dose. The dosimetric measurements showed slight discrepancy, which was attributed to the film setup. Conclusion: MERT can improve treatment plan quality for patients with scalp cancers. Our in-house MC TPS is capable of performing treatment planning and accurate dose calculation for MERT using the eMLC.

  11. Experimental measurements and Monte Carlo simulations for dosimetric evaluations of intrafraction motion for gated and ungated intensity modulated arc therapy deliveries

    NASA Astrophysics Data System (ADS)

    Oliver, Mike; Gladwish, Adam; Staruch, Robert; Craig, Jeff; Gaede, Stewart; Chen, Jeff; Wong, Eugene

    2008-11-01

    Respiratory gated radiation therapy allows for a smaller margin expansion for the planning target volume (PTV) to account for respiratory induced motion and is emerging as a common method to treat lung and liver tumors. We investigated the dosimetric effect of free motion and gated delivery for intensity modulated arc therapy (IMAT) with experimental measurements and Monte Carlo simulations. The impact of PTV margin and duty cycle for gated delivery is studied with Monte Carlo simulations. A motion phantom is used for this study. Two sets of contours were drawn on the mid-inspiration CT scan of this motion phantom. For each set of contours, an IMAT plan to be delivered with constant dose rate was created. The plans were generated on a CT scan of the phantom in the static condition with 3 mm PTV margin and applied to the motion phantom under four conditions: static, full superior-inferior (SI) motion (A = 1 cm, T = 4 s) and gating conditions (25% and 50% duty cycles) with full SI motion. A 6 by 15 cm piece of radiographic film was placed in the sagittal plane of the phantom and then irradiated under all measurement conditions. Film calibration was performed with a step-wedge method to convert optical density to dose. Gated IMAT delivery was first validated in 2D by comparing static film with that from gating and full motion. A previously verified simulation tool for IMRT that takes the log files from the multileaf collimator (MLC) controller and the gating system were adapted to simulate the delivered IMAT treatment for full 3D dosimetric analysis. The IMAT simulations were validated against the 2D film measurements. The resultant IMAT simulations were evaluated with dose criteria, dose-volume histograms and 3D gamma analysis. We validated gated IMAT deliveries when we compared the static film with the one from gating using 25% duty cycle using 2D gamma analysis. Within experimental and setup uncertainties, film measurements agreed with their corresponding simulated

  12. Dosimetric effects of multileaf collimator leaf width on intensity-modulated radiotherapy for head and neck cancer

    SciTech Connect

    Hong, Chae-Seon; Ju, Sang Gyu Kim, Minkyu; Kim, Jin Man; Han, Youngyih; Ahn, Yong Chan; Choi, Doo Ho; Park, Hee Chul; Kim, Jung-in; Nam, Heerim; Suh, Tae-Suk

    2014-02-15

    Purpose: The authors evaluated the effects of multileaf collimator (MLC) leaf width (2.5 vs. 5 mm) on dosimetric parameters and delivery efficiencies of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) for head and neck (H and N) cancers. Methods: The authors employed two types of mock phantoms: large-sized head and neck (LH and N) and small-sized C-shape (C-shape) phantoms. Step-and-shoot IMRT (S and S-IMRT) and VMAT treatment plans were designed with 2.5- and 5.0-mm MLC for both C-shape and LH and N phantoms. Their dosimetric characteristics were compared in terms of the conformity index (CI) and homogeneity index (HI) for the planning target volume (PTV), the dose to organs at risk (OARs), and the dose-spillage volume. To analyze the effects of the field and arc numbers, 9-field IMRT (9F-IMRT) and 13-field IMRT (13F-IMRT) plans were established for S and S-IMRT. For VMAT, single arc (VMAT{sub 1}) and double arc (VMAT{sub 2}) plans were established. For all plans, dosimetric verification was performed using the phantom to examine the relationship between dosimetric errors and the two leaf widths. Delivery efficiency of the two MLCs was compared in terms of beam delivery times, monitor units (MUs) per fraction, and the number of segments for each plan. Results: 2.5-mm MLC showed better dosimetric characteristics in S and S-IMRT and VMAT for C-shape, providing better CI for PTV and lower spinal cord dose and high and intermediate dose-spillage volume as compared with the 5-mm MLC (p < 0.05). However, no significant dosimetric benefits were provided by the 2.5-mm MLC for LH and N (p > 0.05). Further, beam delivery efficiency was not observed to be significantly associated with leaf width for either C-shape or LH and N. However, MUs per fraction were significantly reduced for the 2.5-mm MLC for the LH and N. In dosimetric error analysis, absolute dose evaluations had errors of less than 3%, while the Gamma passing rate was

  13. Feasibility Study of Glass Dosimeter for In Vivo Measurement: Dosimetric Characterization and Clinical Application in Proton Beams

    SciTech Connect

    Rah, Jeong-Eun; Oh, Do Hoon; Kim, Jong Won; Kim, Dae-Hyun; Suh, Tae-Suk; Ji, Young Hoon; Shin, Dongho; Lee, Se Byeong; Kim, Dae Yong; Park, Sung Yong

    2012-10-01

    Purpose: To evaluate the suitability of the GD-301 glass dosimeter for in vivo dose verification in proton therapy. Methods and Materials: The glass dosimeter was analyzed for its dosimetrics characteristic in proton beam. Dosimeters were calibrated in a water phantom using a stairlike holder specially designed for this study. To determine the accuracy of the glass dosimeter in proton dose measurements, we compared the glass dosimeter and thermoluminescent dosimeter (TLD) dose measurements using a cylindrical phantom. We investigated the feasibility of the glass dosimeter for the measurement of dose distributions near the superficial region for proton therapy plans with a varying separation between the target volume and the surface of 6 patients. Results and Discussion: Uniformity was within 1.5%. The dose-response has good linearity. Dose-rate, fading, and energy dependence were found to be within 3%. The beam profile measured using the glass dosimeter was in good agreement with the profile obtained from the ionization chamber. Depth-dose distributions in nonmodulated and modulated proton beams obtained with the glass dosimeter were estimated to be within 3%, which was lower than those with the ionization chamber. In the phantom study, the difference of isocenter dose between the delivery dose calculated by the treatment planning system and that measured by the glass dosimeter was within 5%. With in vivo dosimetry, the calculated surface doses overestimated measurements by 4%-16% using glass dosimeter and TLD. Conclusion: It is recommended that bolus be added for these clinical cases. We also believe that the glass dosimeter has considerable potential for use with in vivo patient proton dosimetry.

  14. Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences

    NASA Astrophysics Data System (ADS)

    Li, Haisen S.; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S.; Chetty, Indrin J.

    2014-01-01

    The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.

  15. SU-E-P-14: Dosimetric Effects of Magnetic Field in MRI-Guided Radiation Therapy Delivery for Breast Cancer

    SciTech Connect

    Chen, G; Currey, A; Li, X

    2015-06-15

    Purpose: MRI-guided radiation therapy (RT) delivery would be beneficial for breast irradiation. The electron return effect due to the presence of a transverse magnetic field (TMF) may cause dosimetric issues on dose on skin and at the lung-tissue interface. The purpose of this study is to investigate these issues. Methods: IMRT plans with tangential beams and VMAT plans with 200 degree arcs to cover ipsilateral breast were generated for 10 randomly selected breast cancer cases using a research planning system (Monaco, Elekta) utilizing Monte Carlo dose calculation with or without a TMF of 1.5 T. Plans were optimized to deliver uniform dose to the whole breast with an exclusion of 5 mm tissue under the skin (PTV-EVAL). All four plans for each patient were re-scaled to have the same PTV-EVAL volume to receive the same prescription dose. The skin is defined as the first 5 mm of ipsilateral-breast tissue, plus extensions in the surrounding region. Results: The presence of 1.5 T TMF resulted in (1)increased skin dose, with the mean and maximum skin dose increase of 5% and 9%, respectively; (2) similar dose homogeneity within the PTV-EVAL; (3) the slightly improved (3%) dose homogeneity in the whole breast; (4) Averages of 9 and 16% increases in V5 and V20, respectively, for ipsilateral lung; and (5) increased the mean heart dose by 34%. VMAT plans don’t improve whole breast dose uniformity as compared that to the tangential plans. Conclusion: The presence of transverse magnetic field in MRI-guided RT delivery for whole breast irradiation can Result in slightly improved dose homogeneity in the whole breast, increased dose to the ipsilateral lung, heart, and skin. Plan optimization with additional specific dose volume constraints may eliminate/reduce these dose increases. This work is partially supported by Elekta Inc.

  16. Poster — Thur Eve — 76: Dosimetric Comparison of Pinnacle and iPlan Algorithms with an Anthropomorphic Lung Phantom

    SciTech Connect

    Lopez, P.; Tambasco, M.; LaFontaine, R.; Burns, L.

    2014-08-15

    Our goal is to compare the dosimetric accuracy of the Pinnacle-3 9.2 Collapsed Cone Convolution Superposition (CCCS) and the iPlan 4.1 Monte Carlo (MC) and Pencil Beam (PB) algorithms in an anthropomorphic lung phantom using measurement as the gold standard. Ion chamber measurements were taken for 6, 10, and 18 MV beams in a CIRS E2E SBRT Anthropomorphic Lung Phantom, which mimics lung, spine, ribs, and tissue. The plan implemented six beams with a 5×5 cm{sup 2} field size, delivering a total dose of 48 Gy. Data from the planning systems were computed at the treatment isocenter in the left lung, and two off-axis points, the spinal cord and the right lung. The measurements were taken using a pinpoint chamber. The best results between data from the algorithms and our measurements occur at the treatment isocenter. For the 6, 10, and 18 MV beams, iPlan 4.1 MC software performs the best with 0.3%, 0.2%, and 4.2% absolute percent difference from measurement, respectively. Differences between our measurements and algorithm data are much greater for the off-axis points. The best agreement seen for the right lung and spinal cord is 11.4% absolute percent difference with 6 MV iPlan 4.1 PB and 18 MV iPlan 4.1 MC, respectively. As energy increases absolute percent difference from measured data increases up to 54.8% for the 18 MV CCCS algorithm. This study suggests that iPlan 4.1 MC computes peripheral dose and target dose in the lung more accurately than the iPlan 4.1 PB and Pinnicale CCCS algorithms.

  17. Linear Accelerator-Based Intensity-Modulated Total Marrow Irradiation Technique for Treatment of Hematologic Malignancies: A Dosimetric Feasibility Study

    SciTech Connect

    Yeginer, Mete; Roeske, John C.; Radosevich, James A.; Aydogan, Bulent

    2011-03-15

    Purpose: To investigate the dosimetric feasibility of linear accelerator-based intensity-modulated total marrow irradiation (IM-TMI) in patients with hematologic malignancies. Methods and Materials: Linear accelerator-based IM-TMI treatment planning was performed for 9 patients using the Eclipse treatment planning system. The planning target volume (PTV) consisted of all the bones in the body from the head to the mid-femur, except for the forearms and hands. Organs at risk (OAR) to be spared included the lungs, heart, liver, kidneys, brain, eyes, oral cavity, and bowel and were contoured by a physician on the axial computed tomography images. The three-isocenter technique previously developed by our group was used for treatment planning. We developed and used a common dose-volume objective method to reduce the planning time and planner subjectivity in the treatment planning process. Results: A 95% PTV coverage with the 99% of the prescribed dose of 12 Gy was achieved for all nine patients. The average dose reduction in OAR ranged from 19% for the lungs to 68% for the lenses. The common dose-volume objective method decreased the planning time by an average of 35% and reduced the inter- and intra- planner subjectivity. Conclusion: The results from the present study suggest that the linear accelerator-based IM-TMI technique is clinically feasible. We have demonstrated that linear accelerator-based IM-TMI plans with good PTV coverage and improved OAR sparing can be obtained within a clinically reasonable time using the common dose-volume objective method proposed in the present study.

  18. SU-E-T-446: Evaluation of the Dosimetric Properties of a Diode Detector to Proton Radiosurgery

    SciTech Connect

    Teran, A; McAuley, G; Slater, J M; Slater, J D; Wroe, A

    2014-06-01

    Purpose: To test the PTW PR60020 proton dosimetry diode in radiation fields relevant to proton radiosurgery applications and evaluate its suitability as a high resolution, real time dosimetry device. Methods: Data was collected using our standard nominal radiosurgery energies of 126 MeV and 155 MeV through a single stage scattering system, corresponding to a range of 9.7 and 15 cm in water respectively. Various beam modulations were tested as part of this study. Depth dose and beam profile measurements were completed with the PTW PR60020 dosimetry diode with comparative measurements using a PTW Markus ionization chamber and EBT2 Gafchromic film. Monte Carlo simulations were also completed for comparison. Results: The single 1 mm{sup 2} by 20 μm thick sensitive volume allowed for high spatial resolution measurements while maintaining sufficient sensitive volume to ensure that measurements could be completed without excessive beam delivery. Depth dose profiles exhibited negligible LET dependence which typically impacts film and other solid state dosimetry devices, while beam ranges measured with the PTW diode were within 1 mm of ion chamber data. In an edge on arrangement beam profiles were also measured within 0.5 mm full-width at half-maximum at various depths as compared to film and simulation data. Conclusion: The PTW PR60020 proved to be a very useful radiation metrology apparatus for proton radiosurgery applications. Its waterproof and rugged construction allowed for easy deployment in phantoms or water tanks that are commonly used in proton radiosurgery QA. Dosimetrically, the diode exhibited negligible LET dependence as a function of depth, while in edge on arrangement to the incident proton beam it facilitated the measurement of beam profiles with a spatial resolution comparable to both Monte Carlo and film measurements. This project was sponsored in part by funding from the Department of Defense (DOD# W81XWH-BAA-10-1)

  19. Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning

    SciTech Connect

    Yoo, Sua . E-mail: sua.yoo@duke.edu; Yin, F.-F.

    2006-12-01

    Purpose: Cone-beam computed tomography (CBCT) images are currently used for positioning verification. However, it is yet unknown whether CBCT could be used in dose calculation for replanning in adaptive radiation therapy. This study investigates the dosimetric feasibility of CBCT-based treatment planning. Methods and Materials: Hounsfield unit (HU) values and profiles of Catphan, homogeneous/inhomogeneous phantoms, and various tissue regions of patients in CBCT images were compared to those in CT. The dosimetric consequence of the HU variation was investigated by comparing CBCT-based treatment plans to conventional CT-based plans for both phantoms and patients. Results: The maximum HU difference between CBCT and CT of Catphan was 34 HU in the Teflon. The differences in other materials were less than 10 HU. The profiles for the homogeneous phantoms in CBCT displayed reduced HU values up to 150 HU in the peripheral regions compared to those in CT. The scatter and artifacts in CBCT became severe surrounding inhomogeneous tissues with reduced HU values up to 200 HU. The MU/cGy differences were less than 1% for most phantom cases. The isodose distributions between CBCT-based and CT-based plans agreed very well. However, the discrepancy was larger when CBCT was scanned without a bowtie filter than with bowtie filter. Also, up to 3% dosimetric error was observed in the plans for the inhomogeneous phantom. In the patient studies, the discrepancies of isodose lines between CT-based and CBCT-based plans, both 3D and IMRT, were less than 2 mm. Again, larger discrepancy occurred for the lung cancer patients. Conclusion: This study demonstrated the feasibility of CBCT-based treatment planning. CBCT-based treatment plans were dosimetrically comparable to CT-based treatment plans. Dosimetric data in the inhomogeneous tissue regions should be carefully validated.

  20. TU-C-17A-10: Patient Features Based Dosimetric Pareto Front Prediction In Esophagus Cancer Radiotherapy

    SciTech Connect

    Wang, J; Zhao, K; Peng, J; Hu, W; Jin, X

    2014-06-15

    Purpose: The purpose of this study is to study the feasibility of the dosimetric pareto front (PF) prediction based on patient anatomic and dosimetric parameters for esophagus cancer patients. Methods: Sixty esophagus patients in our institution were enrolled in this study. A total 2920 IMRT plans were created to generated PF for each patient. On average, each patient had 48 plans. The anatomic and dosimetric features were extracted from those plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose and PTV homogeneous index (PTVHI) were recorded for each plan. The principal component analysis (PCA) was used to extract overlap volume histogram (OVH) features between PTV and other critical organs. The full dataset was separated into two parts include the training dataset and the validation dataset. The prediction outcomes were the MHD and MLD for the current study. The spearman rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The PF was fit by the the stepwise multiple regression method. The cross-validation method was used to evaluation the model. Results: The mean prediction error of the MHD was 465 cGy with 100 repetitions. The most correlated factors were the first principal components of the OVH between heart and PTV, and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 195 cGy. The most correlated factors were the first principal components of the OVH between lung and PTV, and the overlap between lung and PTV in Z-axis. Conclusion: It is feasible to use patients anatomic and dosimetric features to generate a predicted PF. Additional samples and further studies were required to get a better prediction model.

  1. Dosimetric evaluation of a three-phase adaptive radiotherapy for nasopharyngeal carcinoma using helical tomotherapy

    SciTech Connect

    Fung, Winky Wing Ki; Wu, Vincent Wing Cheung; Teo, Peter Man Lung

    2012-04-01

    Adaptive radiotherapy (ART) has been introduced to correct the radiation-induced anatomic changes in head and neck cases during a treatment course. This study evaluated the potential dosimetric benefits of applying a 3-phase adaptive radiotherapy protocol in nasopharyngeal carcinoma (NPC) patients compared with the nonadaptive single-phase treatment protocol. Ten NPC patients previously treated with this 3-phase radiation protocol using Hi-Art Tomotherapy were recruited. Two new plans, PII-ART and PIII-ART, were generated based on the up-to-date computed tomography (CT) images and contours and were used for treatment in phase two (PII; after 25th fraction) and phase three (PIII; after 35th fraction), respectively. To simulate the situation of no replanning, 2 hybrid plans denoted as PII-NART and PIII-NART were generated using the original contours pasted on the PII- and PIII-CT sets by CT-CT fusion. Dosimetric comparisons were made between the NART plans and the corresponding ART plans. In both PII- and PIII-NART plans, the doses to 95% of all the target volumes (D{sub 95}) were increased with better dose uniformity, whereas the organs at risk (OARs) received higher doses compared with the corresponding ART plans. Without replanning, the total dose to 1% of brainstem and spinal cord (D{sub 1}) significantly increased 7.87 {+-} 7.26% and 10.69 {+-} 6.72%, respectively (P = 0.011 and 0.001, respectively), in which 3 patients would have these structures overdosed when compared with those with two replannings. The total maximum doses to the optic chiasm and pituitary gland and the mean doses to the left and right parotid glands were increased by 10.50 {+-} 10.51%, 8.59 {+-} 6.10%, 3.03 {+-} 4.48%, and 2.24 {+-} 3.11%, respectively (P = 0.014, 0.003, 0.053, and 0.046, respectively). The 3-phase radiotherapy protocol showed improved dosimetric results to the critical structures while keeping satisfactory target dose coverage, which demonstrated the advantages of ART in

  2. Incorporating breath holding and image guidance in the adjuvant gastric cancer radiotherapy: a dosimetric study

    PubMed Central

    2012-01-01

    Background The respiratory related target motion and setup error will lead to a large margin in the gastric radiotherapy. The purpose of this study is to investigate the dosimetric benefit and the possibility of incorporating the breath-hold (BH) technique with online image-guided radiotherapy in the adjuvant gastric cancer radiotherapy. Methods Setup errors and target motions of 22 post-operative gastric cancer patients with surgical clips were analyzed. Clips movement was recorded using the digital fluoroscopics and the probability distribution functions (pdf) of the target motions were created for both the free breathing (FB) and BH treatment. For dosimetric comparisons, two intensity-modulated radiotherapy (IMRT) treatment plans, i.e. the free breathing treatment plan (IMRTFB) and the image-guided BH treatment plan (IMRTIGBH) using the same beam parameters were performed among 6 randomly selected patients. Different margins for FB and BH plans were derived. The plan dose map was convoluted with various pdfs of the setup errors and the target motions. Target coverage and dose to organs at risk were compared and the dose-escalation probability was assessed. Results The mean setup errors were 1.2 mm in the superior-inferior (SI), 0.0 mm in the left-right (LR), and 1.4 mm in the anterior-posterior (AP) directions. The mean target motion for the free breathing (vs. BH) was 11.1 mm (vs. 2.2 mm), 1.9 mm (vs. 1.1 mm), and 5.5 mm (vs. 1.7 mm) in the SI, LR, and AP direction, respectively. The target coverage was comparable for all the original plans. IMRTIGBH showed lower dose to the liver compared with IMRTFB (p = 0.01) but no significant difference in the kidneys. Convolved IMRTIGBH showed better sparing in kidneys (p < 0.01) and similar in liver (p = 0.08). Conclusions Combining BH technique with online image guided IMRT can minimize the organ motion and improve the setup accuracy. The dosimetric comparison showed the dose could be

  3. Dosimetric properties of an amorphous silicon EPID for verification of modulated electron radiotherapy

    SciTech Connect

    Chatelain, Cecile; Vetterli, Daniel; Henzen, Dominik; Favre, Pascal; Fix, Michael K.; Manser, Peter; Morf, Daniel; Scheib, Stefan

    2013-06-15

    Purpose: To investigate the dosimetric properties of an electronic portal imaging device (EPID) for electron beam detection and to evaluate its potential for quality assurance (QA) of modulated electron radiotherapy (MERT). Methods: A commercially available EPID was used to detect electron beams shaped by a photon multileaf collimator (MLC) at a source-surface distance of 70 cm. The fundamental dosimetric properties such as reproducibility, dose linearity, field size response, energy response, and saturation were investigated for electron beams. A new method to acquire the flood-field for the EPID calibration was tested. For validation purpose, profiles of open fields and various MLC fields (square and irregular) were measured with a diode in water and compared to the EPID measurements. Finally, in order to use the EPID for QA of MERT delivery, a method was developed to reconstruct EPID two-dimensional (2D) dose distributions in a water-equivalent depth of 1.5 cm. Comparisons were performed with film measurement for static and dynamic monoenergy fields as well as for multienergy fields composed by several segments of different electron energies. Results: The advantageous EPID dosimetric properties already known for photons as reproducibility, linearity with dose, and dose rate were found to be identical for electron detection. The flood-field calibration method was proven to be effective and the EPID was capable to accurately reproduce the dose measured in water at 1.0 cm depth for 6 MeV, 1.3 cm for 9 MeV, and 1.5 cm for 12, 15, and 18 MeV. The deviations between the output factors measured with EPID and in water at these depths were within {+-}1.2% for all the energies with a mean deviation of 0.1%. The average gamma pass rate (criteria: 1.5%, 1.5 mm) for profile comparison between EPID and measurements in water was better than 99% for all the energies considered in this study. When comparing the reconstructed EPID 2D dose distributions at 1.5 cm depth to film

  4. Dosimetric Evaluation of Different Intensity-Modulated Radiotherapy Techniques for Breast Cancer After Conservative Surgery.

    PubMed

    Zhang, Fuli; Wang, Yadi; Xu, Weidong; Jiang, Huayong; Liu, Qingzhi; Gao, Junmao; Yao, Bo; Hou, Jun; He, Heliang

    2015-10-01

    Intensity-modulated radiotherapy (IMRT) potentially leads to a more favorite dose distribution compared to 3-dimensional or conventional tangential radiotherapy (RT) for breast cancer after conservative surgery or mastectomy. The aim of this study was to compare dosimetric parameters of the planning target volume (PTV) and organs at risk (OARs) among helical tomotherapy (HT), inverse-planned IMRT (IP-IMRT), and forward-planned field in field (FP-FIF) IMRT techniques after breast-conserving surgery. Computed tomography scans from 20 patients (12 left sided and 8 right sided) previously treated with T1N0 carcinoma were selected for this dosimetric planning study. We designed HT, IP-IMRT, and FP-FIF plans for each patient. Plans were compared according to dose-volume histogram analysis in terms of PTV homogeneity and conformity indices (HI and CI) as well as OARs dose and volume parameters. Both HI and CI of the PTV showed statistically significant difference among IP-IMRT, FP-FIF, and HT with those of HT were best (P < .05). Compared to FP-FIF, IP-IMRT showed smaller exposed volumes of ipsilateral lung, heart, contralateral lung, and breast, while HT indicated smaller exposed volumes of ipsilateral lung but larger exposed volumes of contralateral lung and breast as well as heart. In addition, HT demonstrated an increase in exposed volume of ipsilateral lung (except for fraction of lung volume receiving >30 Gy and 20 Gy), heart, contralateral lung, and breast compared with IP-IMRT. For breast cancer radiotherapy (RT) after conservative surgery, HT provides better dose homogeneity and conformity of PTV compared to IP-IMRT and FP-FIF techniques, especially for patients with supraclavicular lymph nodes involved. Meanwhile, HT decreases the OAR volumes receiving higher doses with an increase in the volumes receiving low doses, which is known to lead to an increased rate of radiation-induced secondary malignancies. Hence, composite factors including dosimetric advantage

  5. Dosimetric verification of surface and superficial doses for head and neck IMRT with different PTV shrinkage margins

    SciTech Connect

    Shiau, An-Cheng; Lai, Pei-Ling; Liang, Ji-An; and others

    2011-03-15

    Purpose: Dosimetric uncertainty in the surface and superficial regions is still a major concern for radiation therapy and becomes more important when using the inverse planning algorithm for IMRT. The purpose of this study was to measure dose distributions and to evaluate the calculation accuracy in the superficial region for different planning target volume (PTV) shrinkage methods for head and neck IMRT plans. Methods: A spherical polystyrene phantom 160 mm in diameter (ball phantom) was used to simulate the shape of the head. Strips of superflab bolus with thicknesses of 3.5 and 7.0 mm were spread on the surface of the ball phantom. Three sets of CT images were acquired for the ball phantom without and with the bolus. The hypothetical clinical target volume (CTV) and critical structures (spinal cord and parotid glands) were outlined on each set of CT images. The PTVs were initially created by expanding an isotropic 3 mm margin from the CTV and then margins of 0, 3, and 5 mm were shrunk from the phantom surface for dosimetric analysis. Seven-field IMRT plans with a prescribed dose of 180 cGy and same dose constraints were designed using an Eclipse treatment planning system. Superficial doses at depths of 0, 3.5, and 7.0 mm and at seven beam axis positions (gantry angles of 0 deg., 30 deg., 60 deg., 80 deg., 330 deg., 300 deg., and 280 deg.) were measured for each PTV shrinkage margin using 0.1 mm ultrathin thermoluminescent dosimeters. For each plan, the measured doses were compared to the calculated doses. Results: The PTV without shrinkage had the highest intensity and the steepest dose gradient in the superficial region. The mean measured doses for different positions at depths of 0, 3.5, and 7.0 mm were 106{+-}18, 185{+-}16, and 188{+-}12 cGy, respectively. For a PTV with 3 mm shrinkage, the mean measured doses were 94{+-}13, 183{+-}8, and 191{+-}8 cGy. For a PTV with 5 mm shrinkage, the mean measured doses were 86{+-}11, 173{+-}8, and 187{+-}5 cGy. The

  6. Dosimetric influences of rotational setup errors on head and neck carcinoma intensity-modulated radiation therapy treatments

    SciTech Connect

    Fu, Weihua; Yang, Yong; Yue, Ning J.; Heron, Dwight E.; Saiful Huq, M.

    2013-07-01

    The purpose of this work is to investigate the dosimetric influence of the residual rotational setup errors on head and neck carcinoma (HNC) intensity-modulated radiation therapy (IMRT) with routine 3 translational setup corrections and the adequacy of this routine correction. A total of 66 kV cone beam computed tomography (CBCT) image sets were acquired on the first day of treatment and weekly thereafter for 10 patients with HNC and were registered with the corresponding planning CT images, using 2 3-dimensional (3D) rigid registration methods. Method 1 determines the translational setup errors only, and method 2 determines 6-degree (6D) setup errors, i.e., both rotational and translational setup errors. The 6D setup errors determined by method 2 were simulated in the treatment planning system and were then corrected using the corresponding translational data determined by method 1. For each patient, dose distributions for 6 to 7 fractions with various setup uncertainties were generated, and a plan sum was created to determine the total dose distribution through an entire course and was compared with the original treatment plan. The average rotational setup errors were 0.7°± 1.0°, 0.1°±1.9°, and 0.3°±0.7° around left-right (LR), anterior-posterior (AP), and superior-inferior (SI) axes, respectively. With translational corrections determined by method 1 alone, the dose deviation could be large from fraction to fraction. For a certain fraction, the decrease in prescription dose coverage (V{sub p}) and the dose that covers 95% of target volume (D{sub 95}) could be up to 15.8% and 13.2% for planning target volume (PTV), and the decrease in V{sub p} and the dose that covers 98% of target volume (D{sub 98}) could be up to 9.8% and 5.5% for the clinical target volume (CTV). However, for the entire treatment course, for PTV, the plan sum showed that the average V{sub p} was decreased by 4.2% and D{sub 95} was decreased by 1.2 Gy for the first phase of IMRT with a

  7. Verification of the agreement of two dosimetric methods with radioiodine therapy in hyperthyroid patients

    SciTech Connect

    Canzi, Cristina; Zito, Felicia; Voltini, Franco; Reschini, Eugenio; Gerundini, Paolo

    2006-08-15

    The aim of this study was to verify the capability of an MIRD formula-based dosimetric method to predict radioiodine kinetics (fraction of administered iodine transferred to the thyroid, U{sub 0}, and effective clearance rate, {lambda}{sub eff}) and absorbed dose after oral therapeutic {sup 131}I administration. The method is based on {sup 123}I intravenous administration and five subsequent gamma camera measured uptake values determined separately on different structures within the thyroid. Another dosimetric method based on only the {sup 123}I 24-h uptake and a fixed {lambda}{sub eff} value was also considered. Eighty-nine hyperthyroid patients (10 with Graves' disease and 79 with autonomously functioning nodules) were studied and 132 thyroidal structures were evaluated. The mean time interval between dosimetry and therapy was 20{+-}10d. Uptake values were measured at 2, 4, 24, 48, and 120 h during dosimetry and at 2, 4, 24, 48, 96, and 168 h during therapy. The value 0.125d{sup -1} was chosen in the fixed-{lambda}{sub eff} method. The planned doses to the target ranged from 120 to 250 Gy depending on the type and severity of hyperthyroidism. The following significant correlations between therapeutic and dosimetric parameters were found: U{sub 0}ther=0.88U{sub 0}dos (r=0.97,p<0.01), {lambda}{sub eff}ther=1.01{lambda}{sub eff}dos (r=0.85,p<0.01), and D{sub estimated}=0.85D{sub planned} (r=0.88,p<0.01). The percent difference between U{sub 0}ther and U{sub 0}dos ranged from -44 to 32% and between {lambda}{sub eff}ther and {lambda}{sub eff}dos from -32 to 48%. U{sub 0}ther was lower than U{sub 0}dos in 74% of cases: this can be explained by the self-stunning effect of {sup 131}I therapeutic activity that produced a dose of about 20 Gy with a maximum dose rate of 0.6 Gy/h over the initial 24-48 h. The differences, {delta}D, between the estimated and the planned doses ranged from -42% (-87 Gy) to 32% (59 Gy); in 73% of cases the difference was within {+-}35 Gy

  8. Growth of silver doped Li2B4O7 single crystals for dosimetric application

    NASA Astrophysics Data System (ADS)

    Patra, G. D.; Singh, S. G.; Singh, A. K.; Desai, D. G.; Tiwari, B.; Sen, S.; Gadkari, S. C.

    2013-02-01

    High quality lithium tetraborate; Li2B4O7 (LTB) single crystals with varying concentrations of Ag have been grown using the Czochralski technique. Optimized growth parameters enabled us to grow crystals that were transparent, colorless, crack-free, and core-free. The grown LTB:Ag crystals were characterized using UV-VIS-NIR transmission, photoluminescence (PL) and thermoluminescence (TL) measurements. The transmission of about 85 % in the range from 200 nm to 1100 nm revealed a good optical quality of the grown crystals. The TL glow peak of LTB:Ag single crystals at 160°C with an emission at 270 nm is found useful for the dosimetric applications. The dose response is found to be linear in the range from 100 mGy to 50 Gy.

  9. The ESR dosimetric features of strontium sulfate and temperature effects on radiation-induced signals

    NASA Astrophysics Data System (ADS)

    Acar, Ali Osman; Polat, Mustafa; Aydin, Talat; Aydaş, Canan

    2016-06-01

    In the present work, the ESR dosimetric potential of strontium sulfate has been investigated in the radiation dose range of 1-100 Gy. It does not exhibit any ESR signal before irradiation. However, irradiation produced three intensive resonance signals (A, B and C) which increase linearly in the studied dose range. Variable temperature study showed that all ESR signals were found to decrease significantly at temperatures higher than 340 K. Kinetic studies performed at high temperatures showed that at least two distinct radical species with the activation energy values of 42.8±3.6 and 88.2±5.8 kJ/mol, respectively, contributed to the ESR signal B.

  10. Dosimetric and clinical experience in eye proton treatment at INFN-LNS

    SciTech Connect

    Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.; Lojacono, P.; Mongelli, V.; Patti, I. V.; Pittera, S.; Russo, G.; Valastro, L. M.; Lo Nigro, S.; Ott, J.; Reibaldi, A.; Privitera, G.; Raffaele, L.; Salamone, V.; Spatola, C.; Sabini, M. G.

    2009-05-04

    After six years of activity 155 patients have been treated inside the CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) facility. CATANA is the first and unique proton therapy facility in which the 62 MeV proton beams, accelerated by a Superconducting Cyclotron, are used for the radio-therapeutic treatments of choroidal and iris melanomas. Inside CATANA new absolute and relative dosimetric techniques have been developed in order to achieve the best results in terms of treatment precision and dose release accuracy. The follow-up results for 42 patients demonstrated the efficacy of high energy protons in the radiotherapeutic field and encouraged us in our activity in the battle against cancer.

  11. Investigation of pulsed IMRT and VMAT for re-irradiation treatments: dosimetric and delivery feasibilities.

    PubMed

    Lin, Mu-Han; Price, Robert A; Li, Jinsheng; Kang, Shengwei; Li, Jie; Ma, C-M

    2013-11-21

    Many tumor cells demonstrate hyperradiosensitivity at doses below ~50 cGy. Together with the increased normal tissue repair under low dose rate, the pulsed low dose rate radiotherapy (PLDR), which separates a daily fractional dose of 200 cGy into 10 pulses with 3 min interval between pulses (~20 cGy/pulse and effective dose rate 6.7 cGy min−1), potentially reduces late normal tissue toxicity while still providing significant tumor control for re-irradiation treatments. This work investigates the dosimetric and technical feasibilities of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based PLDR treatments using Varian Linacs. Twenty one cases (12 real re-irradiation cases) including treatment sites of pancreas, prostate, pelvis, lung, head-and-neck, and breast were recruited for this study. The lowest machine operation dose rate (100 MU min−1) was employed in the plan delivery. Ten-field step-and-shoot IMRT and dual-arc VMAT plans were generated using the Eclipse TPS with routine planning strategies. The dual-arc plans were delivered five times to achieve a 200 cGy daily dose (~20 cGy arc−1). The resulting plan quality was evaluated according to the heterogeneity and conformity indexes (HI and CI) of the planning target volume (PTV). The dosimetric feasibility of retaining the hyperradiosensitivity for PLDR was assessed based on the minimum and maximum dose in the target volume from each pulse. The delivery accuracy of VMAT and IMRT at the 100 MU min−1 machine operation dose rate was verified using a 2D diode array and ion chamber measurements. The delivery reproducibility was further investigated by analyzing the Dynalog files of repeated deliveries. A comparable plan quality was achieved by the IMRT (CI 1.10–1.38; HI 1.04–1.10) and the VMAT (CI 1.08–1.26; HI 1.05–1.10) techniques. The minimum/maximum PTV dose per pulse is 7.9 ± 5.1 cGy/33.7 ± 6.9 cGy for the IMRT and 12.3 ± 4.1 cGy/29.2 ± 4.7 cGy for the

  12. Dosimetric investigation of the solar erythemal UV radiation protection provided by beards and moustaches.

    PubMed

    Parisi, A V; Turnbull, D J; Downs, N; Smith, D

    2012-07-01

    A dosimetric technique has been employed to establish the amount of erythemal ultraviolet radiation (UVR) protection provided by facial hair considering the influence of solar zenith angle (SZA) and beard-moustache length. The facial hair reduced the exposure ratios (ERs) to approximately one-third of those to the sites with no hair. The variation in the ERs over the different sites was reduced compared with the cases with no beard. The ultraviolet protection factor (UPF) provided by the facial hair ranged from 2 to 21. The UPF decreases with increasing SZA. The minimum UPF was in the 53-62° range. The longer hair provides a higher UPF at the smaller SZA, but the difference between the protection provided by the longer hair compared with the shorter hair reduces with increasing SZA. Protection from UVR is provided by the facial hair; however, it is not very high, particularly at the higher SZA. PMID:22090417

  13. Investigation of pulsed IMRT and VMAT for re-irradiation treatments: dosimetric and delivery feasibilities

    NASA Astrophysics Data System (ADS)

    Lin, Mu-Han; Price, Robert A., Jr.; Li, Jinsheng; Kang, Shengwei; Li, Jie; Ma, C.-M.

    2013-11-01

    Many tumor cells demonstrate hyperradiosensitivity at doses below ˜50 cGy. Together with the increased normal tissue repair under low dose rate, the pulsed low dose rate radiotherapy (PLDR), which separates a daily fractional dose of 200 cGy into 10 pulses with 3 min interval between pulses (˜20 cGy/pulse and effective dose rate 6.7 cGy min-1), potentially reduces late normal tissue toxicity while still providing significant tumor control for re-irradiation treatments. This work investigates the dosimetric and technical feasibilities of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based PLDR treatments using Varian Linacs. Twenty one cases (12 real re-irradiation cases) including treatment sites of pancreas, prostate, pelvis, lung, head-and-neck, and breast were recruited for this study. The lowest machine operation dose rate (100 MU min-1) was employed in the plan delivery. Ten-field step-and-shoot IMRT and dual-arc VMAT plans were generated using the Eclipse TPS with routine planning strategies. The dual-arc plans were delivered five times to achieve a 200 cGy daily dose (˜20 cGy arc-1). The resulting plan quality was evaluated according to the heterogeneity and conformity indexes (HI and CI) of the planning target volume (PTV). The dosimetric feasibility of retaining the hyperradiosensitivity for PLDR was assessed based on the minimum and maximum dose in the target volume from each pulse. The delivery accuracy of VMAT and IMRT at the 100 MU min-1 machine operation dose rate was verified using a 2D diode array and ion chamber measurements. The delivery reproducibility was further investigated by analyzing the Dynalog files of repeated deliveries. A comparable plan quality was achieved by the IMRT (CI 1.10-1.38 HI 1.04-1.10) and the VMAT (CI 1.08-1.26 HI 1.05-1.10) techniques. The minimum/maximum PTV dose per pulse is 7.9 ± 5.1 cGy/33.7 ± 6.9 cGy for the IMRT and 12.3 ± 4.1 cGy/29.2 ± 4.7 cGy for the VMAT. Six out of

  14. The role of deep centers in formation of dosimetric properties of wide-gap materials

    NASA Astrophysics Data System (ADS)

    Nikiforov, S. V.; Kortov, V. S.

    2014-11-01

    The direct and indirect methods of experimental detection of deep traps in wide-gap insulators are described. The experimentally observed effects of influence of deep traps with different nature on luminescent and dosimetric properties of materials are analyzed. It is established that the most wide-spread and well-studied effects are the sensitization and superlinearity of dose response. They are interpreted in terms of the kinetic model of competitive electron traps. Taking into account the temperature dependence of capture probability by deep traps in this model allows one to explain some new effects associated with luminescence thermal quenching. The luminescence model of Al2O3:C single crystal is described. In this model the temperature dependence of competitive interaction between the main and deep traps is caused by thermal ionization of excited states of F-centers.

  15. Intensity-modulated radiotherapy in high-grade gliomas: Clinical and dosimetric results

    SciTech Connect

    Narayana, Ashwatha . E-mail: narayana@mskcc.org; Yamada, Josh; Berry, Sean; Shah, Priti B.S.; Hunt, Margie; Gutin, Philip H.; Leibel, Steven A.

    2006-03-01

    Purpose: To report preliminary clinical and dosimetric data from intensity-modulated radiotherapy (IMRT) for malignant gliomas. Methods and Materials: Fifty-eight consecutive high-grade gliomas were treated between January 2001 and December 2003 with dynamic multileaf collimator IMRT, planned with the inverse approach. A dose of 59.4-60 Gy at 1.8-2.0 Gy per fraction was delivered. A total of three to five noncoplanar beams were used to cover at least 95% of the target volume with the prescription isodose line. Glioblastoma accounted for 70% of the cases, and anaplastic oligodendroglioma histology (pure or mixed) was seen in 15% of the cases. Surgery consisted of biopsy only in 26% of the patients, and 80% received adjuvant chemotherapy. Results: With a median follow-up of 24 months, 85% of the patients have relapsed. The median progression-free survival time for anaplastic astrocytoma and glioblastoma histology was 5.6 and 2.5 months, respectively. The overall survival time for anaplastic glioma and glioblastoma was 36 and 9 months, respectively. Ninety-six percent of the recurrences were local. No Grade IV/V late neurologic toxicities were noted. A comparative dosimetric analysis revealed that regardless of tumor location, IMRT did not significantly improve target coverage compared with three-dimensional planning. However, IMRT resulted in a decreased maximum dose to the spinal cord, optic nerves, and eye by 16%, 7%, and 15%, respectively, owing to its improved dose conformality. The mean brainstem dose also decreased by 7%. Intensity-modulated radiotherapy delivered with a limited number of beams did not result in an increased dose to the normal brain. Conclusions: It is unlikely that IMRT will improve local control in high-grade gliomas without further dose escalation compared with conventional radiotherapy. However, it might result in decreased late toxicities associated with radiotherapy.

  16. Neovascular Glaucoma After Stereotactic Radiotherapy for Juxtapapillary Choroidal Melanoma: Histopathologic and Dosimetric Findings

    SciTech Connect

    Fernandes, Bruno F.; Weisbrod, Daniel; Yuecel, Yeni H.; Follwell, Matthew; Krema, Hatem; Heydarian, Mostafa; Xu Wei; Payne, David; McGowan, Hugh; Simpson, Ernest R.; Laperriere, Normand; Sahgal, Arjun

    2011-06-01

    Purpose: Enucleation after stereotactic radiotherapy (SRT) for juxtapapillary choroidal melanoma may be required because of tumor progression (TP) or the development of intractable radiation-induced neovascular glaucoma (NVG). We compare pathologic changes and dosimetric findings in those eyes enucleated secondary to NVG as opposed to TP to better understand potential mechanisms. Methods and Materials: Patients with juxtapapillary choroidal melanoma treated with SRT (70 Gy in 5 fractions, alternate days over a total of 10 days) at the Princess Margaret Hospital, Toronto, Ontario, Canada, who underwent enucleation between 1998 and 2006 were selected. We correlated dosimetric data based on the patient's original SRT treatment plan with histopathologic findings in the retina, optic nerve head, and anterior chamber. A dedicated ocular pathologist reviewed each case in a blinded fashion. Results: Ten eyes in ten patients were enucleated after SRT. Six were enucleated secondary to NVG and four secondary to because of TP. Aggressive tumor features such as invasion of the sclera and epithelioid cell type were observed predominantly in the TP group. Retinal damage was more predominant in the NVG group, as were findings of radiation-related retinal vascular changes of fibrinoid necrosis and hyalinization. No conclusive radiation-related effects were found in the anterior chamber. The maximum point dose and dose to 0.1 cc were lower for the anterior chamber as compared with the dose to the tumor, retina, and optic nerve head. The mean 0.1-cc doses to the retina were 69.4 Gy and 73.5 Gy and to the anterior chamber were 4.9 Gy and 17.3 Gy for the NVG group and tumor progression group, respectively. Conclusions: Our findings suggest that NVG is due to radiation damage to the posterior chamber of the eye rather than primary radiation damage to the anterior segment.

  17. Evaluation of Specific Absorption Rate as a Dosimetric Quantity for Electromagnetic Fields Bioeffects

    PubMed Central

    Panagopoulos, Dimitris J.; Johansson, Olle; Carlo, George L.

    2013-01-01

    Purpose To evaluate SAR as a dosimetric quantity for EMF bioeffects, and identify ways for increasing the precision in EMF dosimetry and bioactivity assessment. Methods We discuss the interaction of man-made electromagnetic waves with biological matter and calculate the energy transferred to a single free ion within a cell. We analyze the physics and biology of SAR and evaluate the methods of its estimation. We discuss the experimentally observed non-linearity between electromagnetic exposure and biological effect. Results We find that: a) The energy absorbed by living matter during exposure to environmentally accounted EMFs is normally well below the thermal level. b) All existing methods for SAR estimation, especially those based upon tissue conductivity and internal electric field, have serious deficiencies. c) The only method to estimate SAR without large error is by measuring temperature increases within biological tissue, which normally are negligible for environmental EMF intensities, and thus cannot be measured. Conclusions SAR actually refers to thermal effects, while the vast majority of the recorded biological effects from man-made non-ionizing environmental radiation are non-thermal. Even if SAR could be accurately estimated for a whole tissue, organ, or body, the biological/health effect is determined by tiny amounts of energy/power absorbed by specific biomolecules, which cannot be calculated. Moreover, it depends upon field parameters not taken into account in SAR calculation. Thus, SAR should not be used as the primary dosimetric quantity, but used only as a complementary measure, always reporting the estimating method and the corresponding error. Radiation/field intensity along with additional physical parameters (such as frequency, modulation etc) which can be directly and in any case more accurately measured on the surface of biological tissues, should constitute the primary measure for EMF exposures, in spite of similar uncertainty to predict

  18. Dosimetric Feasibility of Hypofractionated Proton Radiotherapy for Neoadjuvant Pancreatic Cancer Treatment

    SciTech Connect

    Kozak, Kevin R.; Kachnic, Lisa A.; Adams, Judith C; Crowley, Elizabeth M.; Alexander, Brian M.; Mamon, Harvey J.; Ryan, David P.; DeLaney, Thomas F.; Hong, Theodore S. . E-mail: tshong1@partners.org

    2007-08-01

    Purpose: To evaluate tumor and normal tissue dosimetry of a 5 cobalt gray equivalent (CGE) x 5 fraction proton radiotherapy schedule, before initiating a clinical trial of neoadjuvant, short-course proton radiotherapy for pancreatic adenocarcinoma. Methods and Materials: The first 9 pancreatic cancer patients treated with neoadjuvant intensity-modulated radiotherapy (1.8 Gy x 28) at the Massachusetts General Hospital had treatment plans generated using a 5 CGE x 5 fraction proton regimen. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Hypofractionated proton and conventionally fractionated intensity-modulated radiotherapy plans both provided acceptable target volume coverage and dose homogeneity. Improved dose conformality provided by the hypofractionated proton regimen resulted in significant sparing of kidneys, liver, and small bowel, evidenced by significant reductions in the mean doses, expressed as percentage prescribed dose, to these structures. Kidney and liver sparing was most evident in low-dose regions ({<=}20% prescribed dose for both kidneys and {<=}60% prescribed dose for liver). Improvements in small-bowel dosimetry were observed in high- and low-dose regions. Mean stomach and duodenum doses, expressed as percentage prescribed dose, were similar for the two techniques. Conclusions: A proton radiotherapy schedule consisting of 5 fractions of 5 CGE as part of neoadjuvant therapy for adenocarcinoma of the pancreas seems dosimetrically feasible, providing excellent target volume coverage, dose homogeneity, and normal tissue sparing. Hypofractionated proton radiotherapy in this setting merits Phase I clinical trial investigation.

  19. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    SciTech Connect

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel; Masson-Côté, Laurence; Guillot, Mathieu

    2015-05-15

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brain were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife.

  20. Correlation of Clinical and Dosimetric Factors With Adverse Pulmonary Outcomes in Children After Lung Irradiation

    SciTech Connect

    Venkatramani, Rajkumar; Kamath, Sunil; Wong, Kenneth; Malvar, Jemily; Sposto, Richard; Goodarzian, Fariba; Freyer, David R.; Keens, Thomas G.; and others

    2013-08-01

    Purpose: To identify the incidence and the risk factors for pulmonary toxicity in children treated for cancer with contemporary lung irradiation. Methods and Materials: We analyzed clinical features, radiographic findings, pulmonary function tests, and dosimetric parameters of children receiving irradiation to the lung fields over a 10-year period. Results: We identified 109 patients (75 male patients). The median age at irradiation was 13.8 years (range, 0.04-20.9 years). The median follow-up period was 3.4 years. The median prescribed radiation dose was 21 Gy (range, 0.4-64.8 Gy). Pulmonary toxic chemotherapy included bleomycin in 58.7% of patients and cyclophosphamide in 83.5%. The following pulmonary outcomes were identified and the 5-year cumulative incidence after irradiation was determined: pneumonitis, 6%; chronic cough, 10%; pneumonia, 35%; dyspnea, 11%; supplemental oxygen requirement, 2%; radiographic interstitial lung disease, 40%; and chest wall deformity, 12%. One patient died of progressive respiratory failure. Post-irradiation pulmonary function tests available from 44 patients showed evidence of obstructive lung disease (25%), restrictive disease (11%), hyperinflation (32%), and abnormal diffusion capacity (12%). Thoracic surgery, bleomycin, age, mean lung irradiation dose (MLD), maximum lung dose, prescribed dose, and dosimetric parameters between V{sub 22} (volume of lung exposed to a radiation dose ≥22 Gy) and V{sub 30} (volume of lung exposed to a radiation dose ≥30 Gy) were significant for the development of adverse pulmonary outcomes on univariate analysis. MLD, maximum lung dose, and V{sub dose} (percentage of volume of lung receiving the threshold dose or greater) were highly correlated. On multivariate analysis, MLD was the sole significant predictor of adverse pulmonary outcome (P=.01). Conclusions: Significant pulmonary dysfunction occurs in children receiving lung irradiation by contemporary techniques. MLD rather than prescribed

  1. Dosimetric accuracy of proton therapy for chordoma patients with titanium implants

    PubMed Central

    Verburg, Joost M.; Seco, Joao

    2013-01-01

    Purpose: To investigate dosimetric errors in proton therapy treatment planning due to titanium implants, and to determine how these affect postoperative passively scattered proton therapy for chordoma patients with orthopedic hardware. Methods: The presence of titanium hardware near the tumor may affect the dosimetric accuracy of proton therapy. Artifacts in the computed tomography (CT) scan can cause errors in the proton stopping powers used for dose calculation, which are derived from CT numbers. Also, clinical dose calculation algorithms may not accurately simulate proton beam transport through the implants, which have very different properties as compared to human tissue. The authors first evaluated the impact of these two main issues. Dose errors introduced by metal artifacts were studied using phantoms with and without titanium inserts, and patient scans on which a metal artifact reduction method was applied. Pencil-beam dose calculations were compared to models of nuclear interactions in titanium and Monte Carlo simulations. Then, to assess the overall impact on treatment plans for chordoma, the authors compared the original clinical treatment plans to recalculated dose distributions employing both metal artifact reduction and Monte Carlo methods. Results: Dose recalculations of clinical proton fields showed that metal artifacts cause range errors up to 6 mm distal to regions affected by CT artifacts. Monte Carlo simulations revealed dose differences >10% in the high-dose area, and range differences up to 10 mm. Since these errors are mostly local in nature, the large number of fields limits the impact on target coverage in the chordoma treatment plans to a small decrease of dose homogeneity. Conclusions: In the presence of titanium implants, CT metal artifacts and the approximations of pencil-beam dose calculations cause considerable errors in proton dose calculation. The spatial distribution of the errors however limits the overall impact on passively

  2. Design, manufacture, and evaluation of an anthropomorphic pelvic phantom purpose-built for radiotherapy dosimetric intercomparison

    SciTech Connect

    Harrison, K. M.; Ebert, M. A.; Kron, T.; Howlett, S. J.; Cornes, D.; Hamilton, C. S.; Denham, J. W.

    2011-10-15

    Purpose: An anthropomorphic pelvic phantom was designed and constructed to meet specific criteria for multicenter radiotherapy dosimetric intercomparison. Methods: Three dimensional external and organ outlines were generated from a computed tomography image set of a male pelvis, forming the basis of design for an anatomically realistic phantom. Clinically relevant points of interest were selected throughout the dataset where point-dose values could be measured with thermoluminescence dosimeters and a small-volume ionization chamber. Following testing, three materials were selected and the phantom was manufactured using modern prototyping techniques into five separate coronal slices. Time lines and resource requirements for the phantom design and manufacture were recorded. The ability of the phantom to mimic the entire treatment chain was tested. Results: The phantom CT images indicated that organ densities and geometries were comparable to those of the original patient. The phantom proved simple to load for dosimetry and rapid to assemble. Due to heat release during manufacture, small air gaps and density heterogeneities were present throughout the phantom. The overall cost for production of the prototype phantom was comparable to other commercial anthropomorphic phantoms. The phantom was shown to be suitable for use as a ''patient'' to mimic the entire treatment chain for typical external beam radiotherapy for prostate and rectal cancer. Conclusions: The phantom constructed for the present study incorporates all characteristics necessary for accurate Level III intercomparison studies. Following use in an extensive Level III dosimetric comparison over a large time scale and geographic area, the phantom retained mechanical stability and did not show signs of radiation-induced degradation.

  3. Predicting Nonauditory Adverse Radiation Effects Following Radiosurgery for Vestibular Schwannoma: A Volume and Dosimetric Analysis

    SciTech Connect

    Hayhurst, Caroline; Monsalves, Eric; Bernstein, Mark; Gentili, Fred; Heydarian, Mostafa; Tsao, May; Schwartz, Michael; Prooijen, Monique van; Millar, Barbara-Ann; Menard, Cynthia; Kulkarni, Abhaya V.; Laperriere, Norm; Zadeh, Gelareh

    2012-04-01

    Purpose: To define clinical and dosimetric predictors of nonauditory adverse radiation effects after radiosurgery for vestibular schwannoma treated with a 12 Gy prescription dose. Methods: We retrospectively reviewed our experience of vestibular schwannoma patients treated between September 2005 and December 2009. Two hundred patients were treated at a 12 Gy prescription dose; 80 had complete clinical and radiological follow-up for at least 24 months (median, 28.5 months). All treatment plans were reviewed for target volume and dosimetry characteristics; gradient index; homogeneity index, defined as the maximum dose in the treatment volume divided by the prescription dose; conformity index; brainstem; and trigeminal nerve dose. All adverse radiation effects (ARE) were recorded. Because the intent of our study was to focus on the nonauditory adverse effects, hearing outcome was not evaluated in this study. Results: Twenty-seven (33.8%) patients developed ARE, 5 (6%) developed hydrocephalus, 10 (12.5%) reported new ataxia, 17 (21%) developed trigeminal dysfunction, 3 (3.75%) had facial weakness, and 1 patient developed hemifacial spasm. The development of edema within the pons was significantly associated with ARE (p = 0.001). On multivariate analysis, only target volume is a significant predictor of ARE (p = 0.001). There is a target volume threshold of 5 cm3, above which ARE are more likely. The treatment plan dosimetric characteristics are not associated with ARE, although the maximum dose to the 5th nerve is a significant predictor of trigeminal dysfunction, with a threshold of 9 Gy. The overall 2-year tumor control rate was 96%. Conclusions: Target volume is the most important predictor of adverse radiation effects, and we identified the significant treatment volume threshold to be 5 cm3. We also established through our series that the maximum tolerable dose to the 5th nerve is 9 Gy.

  4. SU-C-213-06: Dosimetric Verification of 3D Printed Electron Bolus

    SciTech Connect

    Rasmussen, K; Corbett, M; Pelletier, C; Huang, Z; Feng, Y; Jung, J

    2015-06-15

    Purpose: To determine the dosimetric effect of 3D printed bolus in an anthropomorphic phantom. Methods: Conformable bolus material was generated for an anthropomorphic phantom from a DICOM volume. The bolus generated was a uniform expansion of 5mm applied to the nose region of the phantom, as this is a difficult area to uniformly apply bolus clinically. A Printrbot metal 3D Printer using PLA plastic generated the bolus. A 9MeV anterior beam with a 5cm cone was used to deliver dose to the nose of the phantom. TLD measurements were compared to predicted values at the phantom surface. Film planes were analyzed for the printed bolus, a standard 5mm bolus sheet placed on the phantom, and the phantom with no bolus applied to determine depth and dose distributions. Results: TLDs measured within 2.5% of predicted value for the 3D bolus. Film demonstrated a more uniform dose distribution in the nostril region for the 3d printed bolus than the standard bolus. This difference is caused by the air gap created around the nostrils by the standard bolus, creating a secondary build-up region. Both demonstrated a 50% central axis dose shift of 5mm relative to the no bolus film. HU for the bolus calculated the PLA electron density to be ∼1.1g/cc. Physical density was measured to be 1.3g/cc overall. Conclusion: 3D printed PLA bolus demonstrates improved dosimetric performance to standard bolus for electron beams with complex phantom geometry.

  5. Dosimetric Effects of Air Pockets Around High-Dose Rate Brachytherapy Vaginal Cylinders

    SciTech Connect

    Richardson, Susan; Palaniswaamy, Geethpriya; Grigsby, Perry W.

    2010-09-01

    Purpose: Most physicians use a single-channel vaginal cylinder for postoperative endometrial cancer brachytherapy. Recent published data have identified air pockets between the vaginal cylinders and the vaginal mucosa. The purpose of this research was to evaluate the incidence, size, and dosimetric effects of these air pockets. Methods and Materials: 25 patients receiving postoperative vaginal cuff brachytherapy with a high-dose rate vaginal cylinders were enrolled in this prospective data collection study. Patients were treated with 6 fractions of 200 to 400 cGy per fraction prescribed at 5 mm depth. Computed tomography simulation for brachytherapy treatment planning was performed for each fraction. The quantity, volume, and dosimetric impact of the air pockets surrounding the cylinder were quantified. Results: In 25 patients, a total of 90 air pockets were present in 150 procedures (60%). Five patients had no air pockets present during any of their treatments. The average number of air pockets per patient was 3.6, with the average total air pocket volume being 0.34 cm{sup 3} (range, 0.01-1.32 cm{sup 3}). The average dose reduction to the vaginal mucosa at the air pocket was 27% (range, 9-58%). Ten patients had no air pockets on their first fraction but air pockets occurred in subsequent fractions. Conclusion: Air pockets between high-dose rate vaginal cylinder applicators and the vaginal mucosa are present in the majority of fractions of therapy, and their presence varies from patient to patient and fraction to fraction. The existence of air pockets results in reduced radiation dose to the vaginal mucosa.

  6. Bolus-dependent dosimetric effect of positioning errors for tangential scalp radiotherapy with helical tomotherapy

    SciTech Connect

    Lobb, Eric

    2014-04-01

    The dosimetric effect of errors in patient position is studied on-phantom as a function of simulated bolus thickness to assess the need for bolus utilization in scalp radiotherapy with tomotherapy. A treatment plan is generated on a cylindrical phantom, mimicking a radiotherapy technique for the scalp utilizing primarily tangential beamlets. A planning target volume with embedded scalplike clinical target volumes (CTVs) is planned to a uniform dose of 200 cGy. Translational errors in phantom position are introduced in 1-mm increments and dose is recomputed from the original sinogram. For each error the maximum dose, minimum dose, clinical target dose homogeneity index (HI), and dose-volume histogram (DVH) are presented for simulated bolus thicknesses from 0 to 10 mm. Baseline HI values for all bolus thicknesses were in the 5.5 to 7.0 range, increasing to a maximum of 18.0 to 30.5 for the largest positioning errors when 0 to 2 mm of bolus is used. Utilizing 5 mm of bolus resulted in a maximum HI value of 9.5 for the largest positioning errors. Using 0 to 2 mm of bolus resulted in minimum and maximum dose values of 85% to 94% and 118% to 125% of the prescription dose, respectively. When using 5 mm of bolus these values were 98.5% and 109.5%. DVHs showed minimal changes in CTV dose coverage when using 5 mm of bolus, even for the largest positioning errors. CTV dose homogeneity becomes increasingly sensitive to errors in patient position as bolus thickness decreases when treating the scalp with primarily tangential beamlets. Performing a radial expansion of the scalp CTV into 5 mm of bolus material minimizes dosimetric sensitivity to errors in patient position as large as 5 mm and is therefore recommended.

  7. Clinical and dosimetric factors of radiation-induced esophageal injury: Radiation-induced esophageal toxicity

    PubMed Central

    Qiao, Wen-Bo; Zhao, Yan-Hui; Zhao, Yan-Bin; Wang, Rui-Zhi

    2005-01-01

    AIM: To analyze the clinical and dosimetric predictive factors for radiation-induced esophageal injury in patients with non-small-cell lung cancer (NSCLC) during three-dimensional conformal radiotherapy (3D-CRT). METHODS: We retrospectively analyzed 208 consecutive patients (146 men and 62 women) with NSCLC treated with 3D-CRT. The median age of the patients was 64 years (range 35-87 years). The clinical and treatment parameters including gender, age, performance status, sequential chemotherapy, concurrent chemotherapy, presence of carinal or subcarinal lymph nodes, pretreatment weight loss, mean dose to the entire esophagus, maximal point dose to the esophagus, and percentage of volume of esophagus receiving >55 Gy were studied. Clinical and dosimetric factors for radiation-induced acute and late grade 3-5 esophageal injury were analyzed according to Radiation Therapy Oncology Group (RTOG) criteria. RESULTS: Twenty-five (12%) of the two hundred and eight patients developed acute or late grade 3-5 esophageal injury. Among them, nine patients had both acute and late grade 3-5 esophageal injury, two died of late esophageal perforation. Concurrent chemotherapy and maximal point dose to the esophagus ≥60 Gy were significantly associated with the risk of grade 3-5 esophageal injury. Fifty-four (26%) of the two hundred and eight patients received concurrent chemotherapy. Among them, 25 (46%) developed grade 3-5 esophageal injury (P = 0.0001<0.01). However, no grade 3-5 esophageal injury occurred in patients who received a maximal point dose to the esophagus <60 Gy (P = 0.0001<0.01). CONCLUSION: Concurrent chemotherapy and the maximal esophageal point dose ≥60 Gy are significantly associated with the risk of grade 3-5 esophageal injury in patients with NSCLC treated with 3D-CRT. PMID:15849822

  8. Clinical and dosimetric experience with MammoSite-based brachytherapy under the RTOG 0413 protocol.

    PubMed

    Wojcicka, Jadwiga B; Lasher, Donette E; Malcom, Ronald; Fortier, Gregory

    2007-01-01

    MammoSite balloon brachytherapy is a relatively new technique for partial breast irradiation. The present paper focuses on the treatment planning, dosimetry, and quality assurance aspects of that treatment, based on the Radiation Therapy Oncology Group 0413 randomized prospective trial (RTOG 0413) protocol. We investigate the usefulness of evaluating implants for treatment appropriateness according to the full set of RTOG criteria as compared with the manufacturer's guidelines. We describe our methods to improve MammoSite balloon implants that would otherwise not comply with the protocol. The initially acquired computed tomography (CT) images are evaluated for tissue conformance, balloon surface-to-skin distance, and balloon symmetry. If the implant fails to meet the foregoing criteria, corrective action such as delay in the CT scan, balloon manipulation, or fluid volume adjustment is taken, and the patient is re-scanned. If the corrective action appears to be successful, three dimensional treatment planning and dose-volume histogram analysis is performed to evaluate the geometric and dosimetric parameters with regard to the RTOG 0413 protocol. The evaluated parameters include, volume ratio of the lumpectomy cavity to the ipsilateral breast, target volume coverage, tissue-balloon conformance, balloon symmetry, minimal balloon surface-to-skin distance, maximum skin dose, and normal breast tissue dose-volume parameters V150 and V200. Among our implants, 21.7% did not initially meet the RTOG 0413 acceptance criteria. Asymmetry and poor conformance values reduce the target volume coverage, and so an implant with moderate conformance and asymmetry can be within the manufacturer's guidelines, but still not meet the RTOG criteria. Our intervention corrected all but one of the implants that failed to meet the criteria. Manipulating the cavity and adjusting the balloon volume may salvage an implant and meet the strict geometric and dosimetric criteria imposed by the RTOG

  9. Monte Carlo investigation of the dosimetric effect of the Autoscan ultrasound probe for guidance in radiotherapy

    NASA Astrophysics Data System (ADS)

    Martyn, Michael; O'Shea, Tuathan; Harris, Emma; Bamber, Jeffrey; Gilroy, Stephen; Foley, Mark J.

    2016-04-01

    The aim of this study was to quantify the dosimetric effect of the Autoscan™ ultrasound probe, which is a 3D transperineal probe used for real-time tissue tracking during the delivery of radiotherapy. CT images of an anthropomorphic phantom, with and without the probe placed in contact with its surface, were obtained (0.75 mm slice width, 140 kVp). CT datasets were used for relative dose calculation in Monte Carlo simulations of a 7-field plan delivered to the phantom. The Monte Carlo software packages BEAMnrc and DOSXYZnrc were used for this purpose. A number of simulations, which varied the distance of the radiation field edge from the probe face (0 mm to 5 mm), were performed. Perineal surface doses as a function of distance from the radiation field edge, with and without the probe in place, were compared. The presence of the probe was found to result in an increase in perineal surface dose, relative to the maximum dose. The maximum increase in surface dose was 18.15%, at a probe face to field edge distance of 0 mm. However increases in surface dose fall-off rapidly as this distance increases, agreeing within Monte Carlo simulation uncertainty at distances >= 5 mm. Using data from three patient volunteers, a typical probe face to field edge distance was calculated to be ≍20 mm. Our results therefore indicate that the presence of the probe is unlikely to adversely affect a typical patient treatment, since the dosimetric effect of the probe is minimal at these distances.

  10. Development of radiochromic film for spatially quantitative dosimetric analysis of indirect ionizing radiation fields

    NASA Astrophysics Data System (ADS)

    Brady, Samuel Loren

    sensors measured < 2% and < 7% deviation in pixel light intensities for 50 consecutive scans, respectively. Both scanner light sources were shown to be uniform in transmission and reflection scan modes along the center axis of light source translation. Additionally, RCFs demonstrated a larger dynamic range in pixel light intensities, and to be less sensitive to off axis light inhomogeneity, when scanned in landscape mode (long axis of film parallel with axis of light source translation). The EPSON 10000XL demonstrated slightly better light source/CCD temporal stability and provided a capacity to scan larger film formats at the center of the scanner in landscape mode. However, the EPSON V700 only measured an overall difference in accuracy and precision by 2%, and though smaller in size, at the time of this work, was one sixth the cost of the 10000XL. A scan protocol was developed to maximize RCF digitization accuracy and precision, and a calibration fitting function was developed for RCF absolute dosimetry. The fitting function demonstrated a superior goodness of fit for both RCF types over a large range of absorbed dose levels as compared to the currently accepted function found in literature. The RCF dosimetry system was applied to three novel areas from which a benefit could be derived for 2D or 3D dosimetric information. The first area was for a 3D dosimetry of a pendant breast in 3D-CT mammography. The novel method of developing a volumetric image of the breast from a CT acquisition technique was empirically measured for its dosimetry and compared to standard dual field digital mammography. The second area was dose reduction in CT for pediatric and adult scan protocols. In this application, novel methodologies were developed to measure 3D organ dosimetry and characterize a dose reduction scan protocol for pediatric and adult body habitus. The third area was in the field of small animal irradiation for radiobiology purposes and cancer patient treatment verification. In

  11. SU-E-T-122: Dosimetric Comparison Between Cone, HDMLC and MicroMLC for the Treatment of Trigeminal Neuralgia

    SciTech Connect

    Vacca, N; Caussa, L; Filipuzzi, M; Garrigo, E; Venencia, C

    2014-06-01

    Purpose: The purpose of this work was to evaluate the dosimetric characteristics of three collimation systems, 5mm circular cone (Brainlab) and square fields of 5mm with HDMLC (Varian) and microMLC Moduleaf, Siemens) for trigeminal neuralgia treatment. Methods: A TPS Iplan v4.5 BrainLAB was used to do treatment plans for each collimations system in a square solid water phantom with isocenter at 5cm depth. Single field and treatment plan including 11 arcs with fix field and 100° gantry range was made for each collimation systems. EBT3 films were positioned at isocenter in a coronal plane to measured dose distribution for all geometries. Films were digitized with a Vidar DosimetryPro Red scanner with a resolution of 89dpi and RIT113v6.1 software was used for analysis. Penumbra region (80%–20%), FWHM and dose percentage at 5mm and 10mm from CAX were determined. All profiles were normalized at CAX. Results: For single beam the penumbra (FWHM) was 1.5mm (5.3mm) for the cone, 1.9mm (5.5mm) for HDMLC and 1.8mm (5.4mm) for the microMLC. Dose percentage at 5mm was 6.9% for cone, 12.5% for HDMLC and 8.7% for the microMLC. For treatment plan the penumbra (FWHM) was 2.58mm (5.47mm) for the cone, 2.8mm (5.84mm) for HDMLC and 2.58mm (6.09mm) for the microMLC. Dose perecentage at 5mm was 13.1% for cone, 16.1% for HDMLC, 15.2% for the microMLC. Conclusion: The cone has a dose falloff larger than the microMLC and HDMLC, by its reduced penumbra, this translates into better protection of surrounding healthy tissue, however, the microMLC and HDMLC have similar accuracy to cone.

  12. Development and evaluation of an end-to-end test for head and neck IMRT with a novel multiple-dosimetric modality phantom.

    PubMed

    Zakjevskii, Viatcheslav V; Knill, Cory S; Rakowski, Joseph T; Snyder, Michael G

    2016-01-01

    A comprehensive end-to-end test for head and neck IMRT treatments was developed using a custom phantom designed to utilize multiple dosimetry devices. Initial end-to-end test and custom H&N phantom were designed to yield maximum informa-tion in anatomical regions significant to H&N plans with respect to: (i) geometric accuracy, (ii) dosimetric accuracy, and (iii) treatment reproducibility. The phantom was designed in collaboration with Integrated Medical Technologies. The phantom was imaged on a CT simulator and the CT was reconstructed with 1 mm slice thick-ness and imported into Varian's Eclipse treatment planning system. OARs and the PTV were contoured with the aid of Smart Segmentation. A clinical template was used to create an eight-field IMRT plan and dose was calculated with heterogeneity correction on. Plans were delivered with a TrueBeam equipped with a high definition MLC. Preliminary end-to-end results were measured using film, ion chambers, and optically stimulated luminescent dosimeters (OSLDs). Ion chamber dose measure-ments were compared to the treatment planning system. Films were analyzed with FilmQA Pro using composite gamma index. OSLDs were read with a MicroStar reader using a custom calibration curve. Final phantom design incorporated two axial and one coronal film planes with 18 OSLD locations adjacent to those planes as well as four locations for IMRT ionization chambers below inferior film plane. The end-to-end test was consistently reproducible, resulting in average gamma pass rate greater than 99% using 3%/3 mm analysis criteria, and average OSLD and ion chamber measurements within 1% of planned dose. After initial calibration of OSLD and film systems, the end-to-end test provides next-day results, allowing for integration in routine clinical QA. Preliminary trials have demonstrated that our end-to-end is a reproducible QA tool that enables the ongoing evaluation of dosimetric and geometric accuracy of clinical head and neck treatments

  13. Dosimetric prerequisites for routine clinical use of photon emitting brachytherapy sources with average energy higher than 50 kev

    SciTech Connect

    Li Zuofeng; Das, Rupak K.; De Werd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Perez-Calatayud, Jose; Rivard, Mark J.; Sloboda, Ronald S.; Williamson, Jeffrey F.

    2007-01-15

    This paper presents the recommendations of the American Association of Physicists in Medicine (AAPM) and the European Society for Therapeutic Radiology and Oncology (ESTRO) on the dosimetric parameters to be characterized, and dosimetric studies to be performed to obtain them, for brachytherapy sources with average energy higher than 50 keV that are intended for routine clinical use. In addition, this document makes recommendations on procedures to be used to maintain vendor source strength calibration accuracy. These recommendations reflect the guidance of the AAPM and the ESTRO for its members, and may also be used as guidance to vendors and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments.

  14. Estimation of a cosmonaut's radiation hazard during long-term space missions on the basis of a generalized dosimetric function.

    PubMed

    Shafirkin, A V; Petrov, V M

    2002-01-01

    This paper presents a new concept of radiation hazard assessment for spacecraft crew members during long term space missions on the basis of a generalized dosimetric function. This new dosimetric function enables a complicated nature of space radiation exposure to be reduced to the conditions of a standard irradiation. It can be obtained on the basis of mean-tissue equivalent dose values calculated for each space radiation source and transmission coefficients describing the influence of the complex spatial and temporal distribution of the absorbed dose in the cosmonaut's body on the radiobiological effects. The combination of cosmic ionizing radiation with other non-radiation nature factors in flight can also be accounted for. In terms of the generalized dose, it is possible to assess the nature and extent of lowering a crew working capacity, as well as radiation risk, both during a flight and post flight period. PMID:12539776

  15. The work of the ICRP dose calculational task group: Issues in implementation of the ICRP dosimetric methodology

    SciTech Connect

    Eckerman, K.F.

    1999-01-01

    Committee 2 of the International Commission on Radiological Protection (ICRP) has had efforts underway to provide the radiation protection community with age-dependent dose coefficients, i.e.g, the dose per unit intake. The Task Group on Dose Calculations, chaired by the author, is responsible for the computation of these coefficients. The Task Group, formed in 1974 to produce ICRP Publication 30, is now international in its membership and its work load has been distributed among the institutions represented on the task group. This paper discusses: (1) recent advances in biokinetic modeling; (2) the recent changes in the dosimetric methodology; (3) the novel computational problems with some of the ICRP quantities; and (4) quality assurance issues which the Task Group has encountered. Potential future developments of the dosimetric framework which might strengthen the relationships with the emerging understanding of radiation risk will also be discussed.

  16. [Metrological and operating characteristics of thermoluminescent and photographic film dosimeters for the centralized individual dosimetric monitoring of medical personnel].

    PubMed

    Kalmykov, L Z; Gorelik, G I; Stadnik, L L; Romanova, I N; Kovalevskaia, L N

    1989-07-01

    Characteristics of a TLD thermoluminescent kit with LiF detectors of TLD and DTG-4 types (diameters 3.5 and 5 mm) and TLD-400 were compared with those of a kit of IFKU-1 individual photographic film badges. Individual thermoluminescent dosimeters record a total dose of occupational and background irradiation, and film badges--a dose of occupational irradiation only. It should be taken into account in radiation-hygienic interpretation of individual dosimetric control readings. PMID:2761377

  17. Sensitivity of postplanning target and OAR coverage estimates to dosimetric margin distribution sampling parameters

    SciTech Connect

    Xu Huijun; Gordon, J. James; Siebers, Jeffrey V.

    2011-02-15

    Purpose: A dosimetric margin (DM) is the margin in a specified direction between a structure and a specified isodose surface, corresponding to a prescription or tolerance dose. The dosimetric margin distribution (DMD) is the distribution of DMs over all directions. Given a geometric uncertainty model, representing inter- or intrafraction setup uncertainties or internal organ motion, the DMD can be used to calculate coverage Q, which is the probability that a realized target or organ-at-risk (OAR) dose metric D{sub v} exceeds the corresponding prescription or tolerance dose. Postplanning coverage evaluation quantifies the percentage of uncertainties for which target and OAR structures meet their intended dose constraints. The goal of the present work is to evaluate coverage probabilities for 28 prostate treatment plans to determine DMD sampling parameters that ensure adequate accuracy for postplanning coverage estimates. Methods: Normally distributed interfraction setup uncertainties were applied to 28 plans for localized prostate cancer, with prescribed dose of 79.2 Gy and 10 mm clinical target volume to planning target volume (CTV-to-PTV) margins. Using angular or isotropic sampling techniques, dosimetric margins were determined for the CTV, bladder and rectum, assuming shift invariance of the dose distribution. For angular sampling, DMDs were sampled at fixed angular intervals {omega} (e.g., {omega}=1 deg., 2 deg., 5 deg., 10 deg., 20 deg.). Isotropic samples were uniformly distributed on the unit sphere resulting in variable angular increments, but were calculated for the same number of sampling directions as angular DMDs, and accordingly characterized by the effective angular increment {omega}{sub eff}. In each direction, the DM was calculated by moving the structure in radial steps of size {delta}(=0.1,0.2,0.5,1 mm) until the specified isodose was crossed. Coverage estimation accuracy {Delta}Q was quantified as a function of the sampling parameters {omega} or

  18. Dosimetric feasibility of intensity modulated proton therapy in a transverse magnetic field of 1.5 T.

    PubMed

    Hartman, J; Kontaxis, C; Bol, G H; Frank, S J; Lagendijk, J J W; van Vulpen, M; Raaymakers, B W

    2015-08-01

    Proton therapy promises higher dose conformality in comparison with regular radiotherapy techniques. Also, image guidance has an increasing role in radiotherapy and MRI is a prime candidate for this imaging. Therefore, in this paper the dosimetric feasibility of Intensity Modulated Proton Therapy (IMPT) in a magnetic field of 1.5 T and the effect on the generated dose distributions compared to those at 0 T is evaluated, using the Monte Carlo software TOol for PArticle Simulation (TOPAS). For three different anatomic sites IMPT plans are generated. It is shown that the generation of an IMPT plan in a magnetic field is feasible, the impact of the magnetic field is small, and the resulting dose distributions are equivalent for 0 T and 1.5 T. Also, the framework of Monte Carlo simulation combined with an inverse optimization method can be used to generate IMPT plans. These plans can be used in future dosimetric comparisons with e.g. IMRT and conventional IMPT. Finally, this study shows that IMPT in a 1.5 T magnetic field is dosimetrically feasible. PMID:26182957

  19. Dosimetric feasibility of intensity modulated proton therapy in a transverse magnetic field of 1.5 T

    NASA Astrophysics Data System (ADS)

    Hartman, J.; Kontaxis, C.; Bol, G. H.; Frank, S. J.; Lagendijk, J. J. W.; van Vulpen, M.; Raaymakers, B. W.

    2015-08-01

    Proton therapy promises higher dose conformality in comparison with regular radiotherapy techniques. Also, image guidance has an increasing role in radiotherapy and MRI is a prime candidate for this imaging. Therefore, in this paper the dosimetric feasibility of Intensity Modulated Proton Therapy (IMPT) in a magnetic field of 1.5 T and the effect on the generated dose distributions compared to those at 0 T is evaluated, using the Monte Carlo software TOol for PArticle Simulation (TOPAS). For three different anatomic sites IMPT plans are generated. It is shown that the generation of an IMPT plan in a magnetic field is feasible, the impact of the magnetic field is small, and the resulting dose distributions are equivalent for 0 T and 1.5 T. Also, the framework of Monte Carlo simulation combined with an inverse optimization method can be used to generate IMPT plans. These plans can be used in future dosimetric comparisons with e.g. IMRT and conventional IMPT. Finally, this study shows that IMPT in a 1.5 T magnetic field is dosimetrically feasible.

  20. Matched-pair analysis and dosimetric variations of two types of software for interstitial permanent brachytherapy for prostate cancer.

    PubMed

    Ishiyama, Hiromichi; Nakamura, Ryuji; Satoh, Takefumi; Tanji, Susumu; Teh, Bin S; Uemae, Mineko; Baba, Shiro; Hayakawa, Kazushige

    2012-01-01

    The purpose of this study was to determine whether identical dosimetric results could be achieved using different planning software for permanent interstitial brachytherapy for prostate cancer. Data from 492 patients treated with brachytherapy were used for matched-pair analysis. Interplant and Variseed were used as software for ultrasound-based treatment planning. Institution, neoadjuvant hormonal therapy, prostate volume, and source strength were used for factors to match the 2 groups. The study population comprised of 126 patients with treatment planning using Interplant software and 127 matched patients using Variseed software. Dosimetric results were compared between the 2 groups. The Variseed group showed significantly higher values for dose covering 90% of prostate volume (pD90), prostate volume covered by 150% of prescription dose (pV150), and dose covering 30% of the urethra (uD30) compared with the Interplant group. Our results showed that use of different software could lead to different dosimetric results, which might affect the clinical outcomes. PMID:21937217

  1. Dosimetric Significance of the ICRP's Updated Guidance and Models, 1989-2003, and Implications for U.S. Federal Guidance

    SciTech Connect

    Leggett, R.W.

    2003-09-10

    Over the past two decades the U.S. Environmental Protection Agency (EPA) has issued a series of Federal guidance documents for the purpose of providing the Federal and State agencies with technical information to assist their implementation of radiation protection programs. Currently recommended dose conversion factors, annual limits on intake, and derived air concentrations for intake of radionuclides are tabulated in Federal Guidance Report No. 11 (FGR 11), published in 1988. The tabulations in FGR 11 were based on dosimetric quantities and biokinetic and dosimetric models of the International Commission on Radiological Protection (ICRP) developed for application to occupational exposures. Since the publication of FGR 11 the ICRP has revised some of its dosimetric quantities and its models for workers and has also developed age-specific models and dose conversion factors for intake of radionuclides by members of the public. This report examines the extent of the changes in the inhalation and ingestion dose coefficients of FGR 11 implied by the updated recommendations of the ICRP, both for workers and members of the public.

  2. Dosimetric comparison of volumetric modulated arc therapy and intensity-modulated radiation therapy for pancreatic malignancies

    SciTech Connect

    Ali, Arif N.; Dhabaan, Anees H.; Jarrio, Christie S.; Siddiqi, Arsalan K.; Landry, Jerome C.

    2012-10-01

    Volumetric-modulated arc therapy (VMAT) has been previously evaluated for several tumor sites and has been shown to provide significant dosimetric and delivery benefits when compared with intensity-modulated radiation therapy (IMRT). To date, there have been no published full reports on the benefits of VMAT use in pancreatic patients compared with IMRT. Ten patients with pancreatic malignancies treated with either IMRT or VMAT were retrospectively identified. Both a double-arc VMAT and a 7-field IMRT plan were generated for each of the 10 patients using the same defined tumor volumes, organs at risk (OAR) volumes, dose, fractionation, and optimization constraints. The planning tumor volume (PTV) maximum dose (55.8 Gy vs. 54.4 Gy), PTV mean dose (53.9 Gy vs. 52.1 Gy), and conformality index (1.11 vs. 0.99) were statistically similar between the IMRT and VMAT plans, respectively. The VMAT plans had a statistically significant reduction in monitor units compared with the IMRT plans (1109 vs. 498, p < 0.001). In addition, the doses to the liver, small bowel, and spinal cord were comparable between the IMRT and VMAT plans. However, the VMAT plans demonstrated a statistically significant reduction in the mean left kidney V{sub 25} (9.4 Gy vs. 2.3 Gy, p = 0.018), mean right kidney V{sub 15} (53.4 Gy vs. 45.9 Gy, p = 0.035), V{sub 20} (32.2 Gy vs. 25.5 Gy, p = 0.016), and V{sub 25} (21.7 Gy vs. 14.9 Gy, p = 0.001). VMAT was investigated in patients with pancreatic malignancies and compared with the current standard of IMRT. VMAT was found to have similar or improved dosimetric parameters for all endpoints considered. Specifically, VMAT provided reduced monitor units and improved bilateral kidney normal tissue dose. The clinical relevance of these benefits in the context of pancreatic cancer patients, however, is currently unclear and requires further investigation.

  3. Dosimetric characteristics of four PTW microDiamond detectors in high-energy proton beams

    NASA Astrophysics Data System (ADS)

    Marsolat, F.; De Marzi, L.; Patriarca, A.; Nauraye, C.; Moignier, C.; Pomorski, M.; Moignau, F.; Heinrich, S.; Tromson, D.; Mazal, A.

    2016-09-01

    Small diamond detectors are useful for the dosimetry of high-energy proton beams. However, linear energy transfer (LET) dependence has been observed in the literature with such solid state detectors. A novel synthetic diamond detector has recently become commercially available from the manufacturer PTW-Freiburg (PTW microDiamond type 60019). This study was designed to thoroughly characterize four microDiamond detectors in clinical proton beams, in order to investigate their response and their reproducibility in high LET regions. Very good dosimetric characteristics were observed for two of them, with good stability of their response (deviation less than 0.4% after a pre-irradiation dose of approximately 12 Gy), good repeatability (coefficient of variation of 0.06%) and a sensitivity of approximately 0.85 nC Gy‑1. A negligible dose rate dependence was also observed for these two microDiamonds with a deviation of the sensitivity less than 0.7% with respect to the one measured at the reference dose rate of 2.17 Gy min‑1, in the investigated dose rate range from 1.01 Gy min‑1 to 5.52 Gy min‑1. Lateral dose profile measurements showed the high spatial resolution of the microDiamond oriented with its stem perpendicular to the beam axis and with its small sensitive thickness of about 1 μm in the scanning profile direction. Finally, no significant LET dependence was found with these two diamond dosimeters in comparison to a reference ionization chamber (model IBA PPC05). These good results were in accordance to the literature. However, this study showed also a non reproducibility between the devices in terms of stability, sensitivity and LET dependence, since the two other microDiamonds characterized in this work showed different dosimetric characteristics making them not suitable for proton beam dosimetry with a maximum difference of the peak-to-plateau ratio of 6.7% relative to the reference ionization chamber in a clinical 138 MeV proton beam.

  4. Quantitative dosimetric assessment for effect of gold nanoparticles as contrast media on radiotherapy planning

    NASA Astrophysics Data System (ADS)

    Tu, Shu-Ju; Yang, Pei-Ying; Hong, Ji-Hong; Lo, Ching-Jung

    2013-07-01

    In CT planning for radiation therapy, patients may be asked to have a medical procedure of contrast agent (CA) administration as required by their physicians. CA media improve quality of CT images and assist radiation oncologists in delineation of the target or organs with accuracy. However, dosimetric discrepancy may occur between scenarios in which CA media are present in CT planning and absent in treatment delivery. In recent preclinical experiments of small animals, gold nanoparticles (AuNPs) have been identified as an excellent contrast material of x-ray imaging. In this work, we quantitatively evaluate the effect of AuNPs to be used as a potential material of contrast enhancement in radiotherapy planning with an analytical phantom and clinical case. Conray 60, an iodine-based product for contrast enhancement in clinical uses, is included as a comparison. Other additional variables such as different concentrations of CA media, radiation delivery techniques and dose calculation algorithms are included. We consider 1-field AP, 4-field box, 7-field intensity modulated radiation therapy (IMRT) and a recent technique of volumetric modulated arc therapy (VMAT). CA media of AuNPs (Conray 60) with concentrations of 10%, 20%, 30%, 40% and 50% containing 28.2, 56.4, 84.6, 112.8 and 141.0 mg of gold (iodine) per mL were prepared prior to CT scanning. A virtual phantom with a target where nanoparticle media are loaded and clinical case of gastric lymphoma in which the Conray 60 media were given to the patient prior to the CT planning are included for the study. Compared to Conray 60 media with concentration of 10%/50%, Hounsfield units for AuNP media of 10%/50% are 322/1608 higher due to the fact that atomic number of Au (Z=79) is larger than I (Z=53). In consequence, dosimetric discrepancy of AuNPs is magnified between presence and absence of contrast media. It was found in the phantom study that percent dose differences between presence and absence of CA media may be

  5. SU-E-J-165: Dosimetric Impact of Liver Rotations in Stereotactic Body Radiation Therapy

    SciTech Connect

    Pinnaduwage, D; Paulsson, A; Sudhyadhom, A; Chen, J; Chang, A; Anwar, M; Gottschalk, A; Yom, S S.; Descovich, M

    2015-06-15

    Purpose: Often in liver stereotactic body radiotherapy a single fiducial is implanted near the tumor for image-guided treatment delivery. In such cases, rotational corrections are calculated based on the spine. This study quantifies rotational differences between the spine and liver, and investigates the corresponding dosimetric impact. Methods: Seven patients with 3 intrahepatic fiducials and 4DCT scans were identified. The planning CT was separately co-registered with 4 phases of the 4DCT (0%, 50%, 100% inhale and 50% exhale) by 1) rigid registration of the spine, and 2) point-based registration of the 3 fiducials. Rotation vectors were calculated for each registration. Translational differences in fiducial positions between the 2 registrations methods were investigated. Dosimetric impact due to liver rotations and deformations was assessed using critical structures delineated on the 4DCT phases. For dose comparisons, a single fiducial was translationally aligned following spine alignment to represent what is typically done in the clinic. Results: On average, differences between spine and liver rotations during the 0%, 50%, 100% inhale, and 50% exhale phases were 3.23°, 3.27°, 2.26° and 3.11° (pitch), 3.00°, 2.24°, 3.12° and 1.73° (roll), and 1.57°, 1.98°, 2.09° and 1.36° (yaw), respectively. The maximum difference in rotations was 12°, with differences of >3° seen in 14/28 (pitch), 10/28 (roll), and 6/28 (yaw) cases. Average fiducial displacements of 2.73 (craniocaudal), 1.04 (lateral) and 1.82 mm (vertical) were seen. Evaluating percent dose differences for 5 patients at the peaks of the respiratory cycle, the maximum dose to the duodenum, stomach, bowel and esophagus differed on average by 11.4%, 5.3%, 11.2% and 49.1% between the 2 registration methods. Conclusion: Lack of accounting for liver rotation during treatment might Result in clinically significant dose differences to critical structures. Both rotational and translational deviations

  6. SU-E-T-613: Dosimetric Consequences of Systematic MLC Leaf Positioning Errors

    SciTech Connect

    Kathuria, K; Siebers, J

    2014-06-01

    Purpose: The purpose of this study is to determine the dosimetric consequences of systematic MLC leaf positioning errors for clinical IMRT patient plans so as to establish detection tolerances for quality assurance programs. Materials and Methods: Dosimetric consequences were simulated by extracting mlc delivery instructions from the TPS, altering the file by the specified error, reloading the delivery instructions into the TPS, recomputing dose, and extracting dose-volume metrics for one head-andneck and one prostate patient. Machine error was simulated by offsetting MLC leaves in Pinnacle in a systematic way. Three different algorithms were followed for these systematic offsets, and are as follows: a systematic sequential one-leaf offset (one leaf offset in one segment per beam), a systematic uniform one-leaf offset (same one leaf offset per segment per beam) and a systematic offset of a given number of leaves picked uniformly at random from a given number of segments (5 out of 10 total). Dose to the PTV and normal tissue was simulated. Results: A systematic 5 mm offset of 1 leaf for all delivery segments of all beams resulted in a maximum PTV D98 deviation of 1%. Results showed very low dose error in all reasonably possible machine configurations, rare or otherwise, which could be simulated. Very low error in dose to PTV and OARs was shown in all possible cases of one leaf per beam per segment being offset (<1%), or that of only one leaf per beam being offset (<.2%). The errors resulting from a high number of adjacent leaves (maximum of 5 out of 60 total leaf-pairs) being simultaneously offset in many (5) of the control points (total 10–18 in all beams) per beam, in both the PTV and the OARs analyzed, were similarly low (<2–3%). Conclusions: The above results show that patient shifts and anatomical changes are the main source of errors in dose delivered, not machine delivery. These two sources of error are “visually complementary” and uncorrelated

  7. Palliative radiotherapy for thoracic spine metastases: Dosimetric advantage of three-dimensional conformal plans

    PubMed Central

    YEO, SEUNG-GU

    2015-01-01

    The aim of the present study was to investigate the dosimetric advantages of three-dimensional conformal radiation therapy (3DCRT) for thoracic spine metastases and compare it with conventional two-dimensional (2D) plans. Radiation therapy (RT) planning data of 10 patients with mid-to-low thoracic spine metastases were analyzed. Computed tomography simulation was performed and the planning target volume (PTV), heart, esophagus, lung and spinal cord were contoured. The 3DCRT plan comprised one posteroanterior (PA) field and two posterior oblique fields. The 2D plans used a single PA field or opposed anteroposterior (AP)/PA fields. The prescription dose of radiation was 30 Gy in 10 fractions. All comparisons of the maximum or mean doses to the organs at risk or the PTV, between two of the three RT plans, demonstrated statistically significant differences (P<0.05), with the exception of the mean esophageal doses between the single PA vs. AP/PA (P=0.285) plans. The mean heart doses were 15.0±3.1 Gy in single PA, 17.3±4.3 Gy in AP/PA and 8.5±1.7 Gy using 3DCRT. The median reduction rates using 3DCRT were 38.9% compared with single PA (range, 29.4–58.5%) or 47.5% relative to AP/PA (range, 34.5–67.1%). The mean esophageal doses were 17.9±2.3 Gy in single PA, 18.2±2.2 Gy in AP/PA and 15.3±1.9 Gy in 3DCRT. The median reduction rate using 3DCRT was 12.8% compared with single PA or 15.6% relative to AP/PA. Compared with the single PA or AP/PA 2D plan, 3DCRT reduced the median dose by 13.7 or 1.9% of the maximum spinal cord dose, respectively, and 14.7 or 2.9% of the maximum PTV dose, respectively. The mean lung doses were 2.7±0.7 Gy in single PA, 2.6±0.7 Gy in AP/PA and 5.1±1.0 Gy in 3DCRT. In conclusion, 3DCRT for mid-to-low thoracic spine metastases demonstrated significant dosimetric advantages by reducing the unnecessary irradiation of critical organs, particularly the heart, and by achieving a homogeneous target dose. PMID:26171058

  8. Dosimetric Predictors of Radiation-induced Acute Nausea and Vomiting in IMRT for Nasopharyngeal Cancer

    SciTech Connect

    Lee, Victor H.F.; Ng, Sherry C.Y.; Leung, T.W.; Au, Gordon K.H.; Kwong, Dora L.W.

    2012-09-01

    Purpose: We wanted to investigate dosimetric parameters that would predict radiation-induced acute nausea and vomiting in intensity-modulated radiation therapy (IMRT) for undifferentiated carcinoma of the nasopharynx (NPC). Methods and Materials: Forty-nine consecutive patients with newly diagnosed NPC were treated with IMRT alone in this prospective study. Patients receiving any form of chemotherapy were excluded. The dorsal vagal complex (DVC) as well as the left and right vestibules (VB-L and VB-R, respectively) were contoured on planning computed tomography images. A structure combining both the VB-L and the VB-R, named VB-T, was also generated. All structures were labeled organs at risk (OAR). A 3-mm three-dimensional margin was added to these structures and labeled DVC+3 mm, VB-L+3 mm, VB-R+3 mm, and VB-T+3 mm to account for physiological body motion and setup error. No weightings were given to these structures during optimization in treatment planning. Dosimetric parameters were recorded from dose-volume histograms. Statistical analysis of parameters' association with nausea and vomiting was performed using univariate and multivariate logistic regression. Results: Six patients (12.2%) reported Grade 1 nausea, and 8 patients (16.3%) reported Grade 2 nausea. Also, 4 patients (8.2%) complained of Grade 1 vomiting, and 4 patients (8.2%) experienced Grade 2 vomiting. No patients developed protracted nausea and vomiting after completion of IMRT. For radiation-induced acute nausea, V40 (percentage volume receiving at least 40Gy) to the VB-T and V40>=80% to the VB-T were predictors, using univariate analysis. On multivariate analysis, V40>=80% to the VB-T was the only predictor. There were no predictors of radiation-induced acute vomiting, as the number of events was too small for analysis. Conclusions: This is the first study demonstrating that a V40 to the VB-T is predictive of radiation-induced acute nausea. The vestibules should be labeled as sensitive OARs, and

  9. Cranio Spinal Irradiation of Medulloblastoma Using High Precision Techniques - A Dosimetric Comparison.

    PubMed

    Pichandi, A; Ganesh, K M; Jerrin, A; Balaji, K; Sridhar, P S; Surega, A

    2015-08-01

    Radiotherapy planning, delivery and junction dose verification remain exigent for Cranio Spinal Irradiation (CSI) in medulloblastoma patients. This study aims to evaluate high precision techniques such as Intensity Modulated Radiation Therapy (IMRT), Rapid Arc Therapy (RA) with and without flattening filter (FF) on the basis of dosimetric analysis. Five patients treated with jagged junction Intensity Modulated RadioTherapy (IMRT) using dynamic Multi Leaf Collimators (MLC) were randomly selected for this retrospective study. IMRT, Rapid Arc (RA) plans were simulated in the same CT data set with and without flattening filter. Total dose prescribed was 28.80 Gy in 16 fractions. An evaluation criterion of 98% of PTV receiving 100% of the prescription dose was followed in all plans. Twenty treatment plans with 260 Dose Volume Histograms (DVHs) was created. Dosimetric parameters such as Dmax, Dmin, Dmean, V95%, V107%, CI for PTV and Dmax, Dmean, V80%, V50%, V30%, V10% for Organs At Risk (OAR) were extracted from DVHs. Treatment delivery efficiency was also evaluated for total Beam On Time (BOT). FFF Rapid Arc therapy : 6F_RA) resulted in conformal doses throughout the cranio spinal axis. FF and FFF dynamic IMRT had minimal V107%, 1.23% and 2.88% compared to 49.15 and 66.36 of rapid arc therapy (with and without FF). 6F_IMRT resulted in lesser mean doses to eyes, liver, lungs and kidneys. Heart mean dose was less (3.08 Gy) with 6X_IMRT. Thyroid and esophagus doses could be reduced to about 41.2% and 10% respectively with 6F_RA. The BOT for the treatment techniques were 3.43 min (6X_IMRT), 1.59 min (6F_IMRT), 5min (6X_RA), 4.5 min (6F_RA). Removal of flattening filter in IMRT could improve dose coverage along the caniospinal axis and normal tissue sparing. A reduction of 46.3% BOT could increase treatment efficiency of 6F_IMRT compared to 6X_IMRT. CSI could be simpler since junction doses can be evaded in IMRT and RA techniques. PMID:26269611

  10. Effect of endorectal balloon positioning errors on target deformation and dosimetric quality during prostate SBRT

    NASA Astrophysics Data System (ADS)

    Jones, Bernard L.; Gan, Gregory; Kavanagh, Brian; Miften, Moyed

    2013-11-01

    An inflatable endorectal balloon (ERB) is often used during stereotactic body radiation therapy (SBRT) for treatment of prostate cancer in order to reduce both intrafraction motion of the target and risk of rectal toxicity. However, the ERB can exert significant force on the prostate, and this work assessed the impact of ERB position errors on deformation of the prostate and treatment dose metrics. Seventy-one cone-beam computed tomography (CBCT) image datasets of nine patients with clinical stage T1cN0M0 prostate cancer were studied. An ERB (Flexi-Cuff, EZ-EM, Westbury, NY) inflated with 60 cm3 of air was used during simulation and treatment, and daily kilovoltage (kV) CBCT imaging was performed to localize the prostate. The shape of the ERB in each CBCT was analyzed to determine errors in position, size, and shape. A deformable registration algorithm was used to track the dose received by (and deformation of) the prostate, and dosimetric values such as D95, PTV coverage, and Dice coefficient for the prostate were calculated. The average balloon position error was 0.5 cm in the inferior direction, with errors ranging from 2 cm inferiorly to 1 cm superiorly. The prostate was deformed primarily in the AP direction, and tilted primarily in the anterior-posterior/superior-inferior plane. A significant correlation was seen between errors in depth of ERB insertion (DOI) and mean voxel-wise deformation, prostate tilt, Dice coefficient, and planning-to-treatment prostate inter-surface distance (p < 0.001). Dosimetrically, DOI is negatively correlated with prostate D95 and PTV coverage (p < 0.001). For the model of ERB studied, error in ERB position can cause deformations in the prostate that negatively affect treatment, and this additional aspect of setup error should be considered when ERBs are used for prostate SBRT. Before treatment, the ERB position should be verified, and the ERB should be adjusted if the error is observed to exceed tolerable values.

  11. TG-43 U1 based dosimetric characterization of model 67-6520 Cs-137 brachytherapy source

    SciTech Connect

    Meigooni, Ali S.; Wright, Clarissa; Koona, Rafiq A.; Awan, Shahid B.; Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo

    2009-10-15

    Purpose: Brachytherapy treatment has been a cornerstone for management of various cancer sites, particularly for the treatment of gynecological malignancies. In low dose rate brachytherapy treatments, {sup 137}Cs sources have been used for several decades. A new {sup 137}Cs source design has been introduced (model 67-6520, source B3-561) by Isotope Products Laboratories (IPL) for clinical application. The goal of the present work is to implement the TG-43 U1 protocol in the characterization of the aforementioned {sup 137}Cs source. Methods: The dosimetric characteristics of the IPL {sup 137}Cs source are measured using LiF thermoluminescent dosimeters in a Solid Water phantom material and calculated using Monte Carlo simulations with the GEANT4 code in Solid Water and liquid water. The dose rate constant, radial dose function, and two-dimensional anisotropy function of this source model were obtained following the TG-43 U1 recommendations. In addition, the primary and scatter dose separation (PSS) formalism that could be used in convolution/superposition methods to calculate dose distributions around brachytherapy sources in heterogeneous media was studied. Results: The measured and calculated dose rate constants of the IPL {sup 137}Cs source in Solid Water were found to be 0.930({+-}7.3%) and 0.928({+-}2.6%) cGy h{sup -1} U{sup -1}, respectively. The agreement between these two methods was within our experimental uncertainties. The Monte Carlo calculated value in liquid water of the dose rate constant was {Lambda}=0.948({+-}2.6%) cGy h{sup -1} U{sup -1}. Similarly, the agreement between measured and calculated radial dose functions and the anisotropy functions was found to be within {+-}5%. In addition, the tabulated data that are required to characterize the source using the PSS formalism were derived. Conclusions: In this article the complete dosimetry of the newly designed {sup 137}Cs IPL source following the AAPM TG-43 U1 dosimetric protocol and the PSS

  12. Does prior transurethral resection of prostate compromise brachytherapy quality: A dosimetric analysis

    SciTech Connect

    Cesaretti, Jamie A. . E-mail: Jamie.Cesaretti@msnyuhealth.org; Stone, Nelson N.; Stock, Richard G.

    2004-10-01

    Purpose: To evaluate, in a retrospective review, prostate brachytherapy dosimetry outcomes relative to the transurethral resection of the prostate (TURP) cavity size to address the theoretical concern that an intraprostatic cavity may hinder adequate radioactive source placement. Methods and materials: A total of 73 patients who underwent prostate brachytherapy as part of their treatment of localized prostate cancer had a history of a prior TURP. Of these 73 patients, 37 underwent {sup 125}I implantation, 19 {sup 103}Pd implantation, and 17 partial {sup 103}Pd implantation. The dose was calculated using the dose to 90% of the prostate gland (D{sub 90}) from the 1-month post-implant dosimetric analysis. The doses were normalized relative to 100% of the prescription dose. Archived transrectal ultrasound images were used to determine the maximal length and width of the visible residual TURP cavities. The prolate spheroid or symmetric egg shape was used to calculate each residual cavity volume. The derived volume of the TURP cavity was divided by the measured ultrasound volume of the prostate at brachytherapy, creating a percentage of volume measurement for each prostate. All p values, unless otherwise specified, were generated by comparing patients without a visible TURP defect with the subgroups of patients with a visible defect using the Student t test. Results: A visible residual TURP defect was noted on the operative transrectal ultrasound images of 55 (75%) of the 73 patients with a history of TURP before brachytherapy. The 18 patients without a visible TURP defect had a median D{sub 90} of 96% and were used for subsequent statistical comparison. Thirty-six patients with a TURP defect <10% of the entire prostate volume had a median D{sub 90} of 109% (p = 0.02). Thirteen patients with a TURP defect between 10% and 20% of the prostate volume had a median D{sub 90} of 112% (p = 0.03). Six patients with a TURP defect >20% of the prostate volume had a D{sub 90} of 89

  13. Dosimetric Comparison Between 3-Dimensional Conformal and Robotic SBRT Treatment Plans for Accelerated Partial Breast Radiotherapy.

    PubMed

    Goggin, L M; Descovich, M; McGuinness, C; Shiao, S; Pouliot, J; Park, C

    2016-06-01

    Accelerated partial breast irradiation is an attractive alternative to conventional whole breast radiotherapy for selected patients. Recently, CyberKnife has emerged as a possible alternative to conventional techniques for accelerated partial breast irradiation. In this retrospective study, we present a dosimetric comparison between 3-dimensional conformal radiotherapy plans and CyberKnife plans using circular (Iris) and multi-leaf collimators. Nine patients who had undergone breast-conserving surgery followed by whole breast radiation were included in this retrospective study. The CyberKnife planning target volume (PTV) was defined as the lumpectomy cavity + 10 mm + 2 mm with prescription dose of 30 Gy in 5 fractions. Two sets of 3-dimensional conformal radiotherapy plans were created, one used the same definitions as described for CyberKnife and the second used the RTOG-0413 definition of the PTV: lumpectomy cavity + 15 mm + 10 mm with prescription dose of 38.5 Gy in 10 fractions. Using both PTV definitions allowed us to compare the dose delivery capabilities of each technology and to evaluate the advantage of CyberKnife tracking. For the dosimetric comparison using the same PTV margins, CyberKnife and 3-dimensional plans resulted in similar tumor coverage and dose to critical structures, with the exception of the lung V5%, which was significantly smaller for 3-dimensional conformal radiotherapy, 6.2% when compared to 39.4% for CyberKnife-Iris and 17.9% for CyberKnife-multi-leaf collimator. When the inability of 3-dimensional conformal radiotherapy to track motion is considered, the result increased to 25.6%. Both CyberKnife-Iris and CyberKnife-multi-leaf collimator plans demonstrated significantly lower average ipsilateral breast V50% (25.5% and 24.2%, respectively) than 3-dimensional conformal radiotherapy (56.2%). The CyberKnife plans were more conformal but less homogeneous than the 3-dimensional conformal radiotherapy plans. Approximately 50% shorter

  14. Predictive dosimetric parameters for gastrointestinal toxicity with hypofractioned radiotherapy in pancreatic adenocarcinoma

    PubMed Central

    Liu, Xian; Ren, Gang; Li, Liqin; Xia, Tingyi

    2016-01-01

    To better guide the development and optimization of radiotherapy planning, to reduce the incidence of radiation reactions, and to improve the quality of life of the patients with pancreatic cancer using radiotherapy, we conducted this study to explore the dosimetric parameters that predict the risk of gastrointestinal (GI) toxicity with hypofractioned radiotherapy for pancreatic cancer. Between January 2014 and January 2015, the medical records of 68 patients with pancreatic cancer who underwent helical tomotherapy at the Air Force General Hospital were analyzed. The doses delivered to the planning target volume, clinical target volume, and gross tumor volume–internal gross tumor volume of the primary pancreatic lesions were 50, 60, and 70–80 Gy in 15–20 fractions, respectively. GI toxicity was scored according to version 4.0 of the National Cancer Institute Common Terminology Criteria for Adverse Events. The stomach and duodenum were contoured separately to determine the dose–volume histogram parameters. Univariate and multivariate analyses were adopted to identify clinical and physical risk factors associated with GI toxicity. The median follow-up was 9 months (range: 4–16 months). Eighteen patients had grade II acute GI toxicity, one patient had grade III acute GI toxicity, 17 patients had grade II late GI toxicity, and one patient had grade III late GI toxicity. On univariate analysis, the volume, the average dose Dmean, the maximum dose to 1, 3, 5, and 10 cm3 of the stomach and duodenum (D1, D3, D5, and D10), and the relative volumes receiving 5–40 Gy (V5–V40), and the absolute volumes receiving 5–45 Gy (aV5–aV45) of the duodenum were significantly associated with grade II or higher GI toxicity (P<0.05). On multivariate analysis, aV45 of the duodenum was an independent predictor for grade II or higher GI toxicity (P=0.031). The receiver operating characteristic analysis also showed that an aV45 of 0.5 cm3 was the optimal threshold to predict

  15. Dosimetric characteristics of four PTW microDiamond detectors in high-energy proton beams.

    PubMed

    Marsolat, F; De Marzi, L; Patriarca, A; Nauraye, C; Moignier, C; Pomorski, M; Moignau, F; Heinrich, S; Tromson, D; Mazal, A

    2016-09-01

    Small diamond detectors are useful for the dosimetry of high-energy proton beams. However, linear energy transfer (LET) dependence has been observed in the literature with such solid state detectors. A novel synthetic diamond detector has recently become commercially available from the manufacturer PTW-Freiburg (PTW microDiamond type 60019). This study was designed to thoroughly characterize four microDiamond detectors in clinical proton beams, in order to investigate their response and their reproducibility in high LET regions. Very good dosimetric characteristics were observed for two of them, with good stability of their response (deviation less than 0.4% after a pre-irradiation dose of approximately 12 Gy), good repeatability (coefficient of variation of 0.06%) and a sensitivity of approximately 0.85 nC Gy(-1). A negligible dose rate dependence was also observed for these two microDiamonds with a deviation of the sensitivity less than 0.7% with respect to the one measured at the reference dose rate of 2.17 Gy min(-1), in the investigated dose rate range from 1.01 Gy min(-1) to 5.52 Gy min(-1). Lateral dose profile measurements showed the high spatial resolution of the microDiamond oriented with its stem perpendicular to the beam axis and with its small sensitive thickness of about 1 μm in the scanning profile direction. Finally, no significant LET dependence was found with these two diamond dosimeters in comparison to a reference ionization chamber (model IBA PPC05). These good results were in accordance to the literature. However, this study showed also a non reproducibility between the devices in terms of stability, sensitivity and LET dependence, since the two other microDiamonds characterized in this work showed different dosimetric characteristics making them not suitable for proton beam dosimetry with a maximum difference of the peak-to-plateau ratio of 6.7% relative to the reference ionization chamber in a clinical 138 MeV proton beam. PMID:27499356

  16. Dosimetric effect due to the motion during deep inspiration breath hold for left-sided breast cancer radiotherapy.

    PubMed

    Tang, Xiaoli; Cullip, Tim; Dooley, John; Zagar, Timothy; Jones, Ellen; Chang, Sha; Zhu, Xiaofeng; Lian, Jun; Marks, Lawrence

    2015-01-01

    Deep inspiration breath-hold (DIBH) radiotherapy for left-sided breast cancer can reduce cardiac exposure and internal motion. We modified our in-house treatment planning system (TPS) to retrospectively analyze breath-hold motion log files to calculate the dosimetric effect of the motion during breath hold. Thirty left-sided supine DIBH breast patients treated using AlignRT were studied. Breath-hold motion was recorded — three translational and three rotational displacements of the treatment surface — the Real Time Deltas (RTD). The corresponding delivered dose was estimated using the beam-on portions of the RTDs. Each motion was used to calculate dose, and the final estimated dose was the equally weighted average of the multiple resultant doses. Ten of thirty patients had internal mammary nodes (IMN) purposefully included in the tangential fields, and we evaluated the percentage of IMN covered by 40 Gy. The planned and delivered heart mean dose, lungs V20 (volume of the lungs receiving > 20 Gy), percentage of IMN covered by 40 Gy, and IMN mean dose were compared. The averaged mean and standard deviation of the beam-on portions of the absolute RTDs were 0.81 ± 1.29 mm, 0.68 ± 0.85mm, 0.76 ± 0.85 mm, 0.96° ± 0.49°, 0.93° ± 0.43°, and 1.03° ± 0.50°, for vertical, longitudinal, lateral, yaw, roll, and pitch, respectively. The averaged planned and delivered mean heart dose were 99 and 101 cGy. Lungs V20 were 6.59% and 6.74%. IMN 40 Gy coverage was 83% and 77%, and mean IMN dose was 4642 and 4518 cGy. The averaged mean motion during DIBH was smaller than 1 mm and 1°, which reflects the relative reproducibility of the patient breath hold. On average, the mean heart dose and lungs V20 were reasonably close to what have been planned. IMN 40 Gy coverage might be modestly reduced for certain cases. PMID:26219001

  17. Is smaller better? Comparison of 3-mm and 5-mm leaf size for stereotactic radiosurgery: A dosimetric study

    SciTech Connect

    Chern, Shyh-shi . E-mail: Richard.Chern@hci.utah.edu; Leavitt, Dennis D.; Jensen, Randy L.; Shrieve, Dennis C.

    2006-11-15

    Purpose: To perform a dosimetric comparison of a minimal 3-mm leaf width multileaf collimator (MLC) and a minimal 5-mm MLC in dynamic conformal arc stereotactic radiosurgery for treatment of intracranial lesions. Methods and Materials: The treatment plans of 23 patients previously treated for intracranial lesions in our institution were redone using the BrainSCAN, version 5.3, stereotactic radiosurgery treatment planning system (BrainLAB). For each case, two dynamic conformal arc plans were generated: one using a minimal 3-mm micro-MLC (BrainLAB, Novalis) and one using a minimal 5-mm MLC (Varian Millennium). All arc parameters were the same in each of the two plans, except for the collimator angle settings. The collimator angle settings were optimized for each arc in each plan. A peritumoral rind structure (1 cm) was created to evaluate normal tissue sparing immediately adjacent to the target volume. Conformity indexes (CIs) were calculated for each plan. The dependence of normal tissue sparing and target conformity on target volume (TV) was determined. Results: The TV was 0.14-36.32 cm{sup 3} (median, 5.90). The CI was 1.22-2.60 (median, 1.51) for the 3-mm micro-MLC and 1.23-2.69 (median, 1.60) for the 5-mm MLC. Despite this small difference, it was a statistically significant increase (p < 0.0001) for the 5-mm MLC compared with the 3-mm micro-MLC. Improved normal tissue sparing was demonstrated using the 3-mm micro-MLC compared with the 5-mm MLC by examining the peritumoral rind volumes (PRVs) receiving 50% (PRV{sub 5}), 80% (PRV{sub 8}), and 90% (PRV{sub 9}) of the prescription dose. The reduction in the PRV{sub 5}, PRV{sub 8}, and PRV{sub 9} for the 3-mm micro-MLC compared with the 5-mm MLC was 13.5%, 12.9%, and 11.5%, respectively. The CI decreased with a larger TV, as did the difference in the CIs between the 3-mm micro-MLC and 5-mm MLC. A reduction in the PRV increased with larger TVs. Conclusion: The 3-mm micro-MLC provided better target conformity and

  18. On using the dosimetric leaf gap to model the rounded leaf ends in VMAT/RapidArc plans.

    PubMed

    Szpala, Stanislaw; Cao, Fred; Kohli, Kirpal

    2014-01-01

    Partial transmission through rounded leaf ends of Varian multileaf collimators (MLC) is accounted for with a parameter called the dosimetric leaf gap (DLG). Verification of the value of the DLG is needed when the dose delivery is accompanied by gantry rotation in VMAT plans. We compared the doses measured with GAFCHROMIC film and an ionization chamber to treatment planning system (TPS) calculations to identify the optimum values of the DLG in clinical plans of the whole brain with metastases transferred to a phantom. We noticed the absence of a single value of the DLG that properly models all VMAT plans in our cohort (the optimum DLG varied between 0.93 ± 0.15 mm and 2.2 ± 0.2 mm). The former value is considerably different from the optimum DLG in sliding window plans (about 2.0 mm) that approximate IMRT plans. We further found that a single-value DLG model cannot accurately reproduce the measured dose profile even of a uniform static slit at a fixed gantry, which is the simplest MLC-delimited field. The calculation overestimates the measurement in the proximal penumbra, while it underestimates in the distal penumbra. This prompted us to expand the DLG parameter from a plan-specific number to a mathematical concept of the DLG being a function of the distance in the beam's eye view (BEV) between the dose point and the leaf ends. Such function compensates for the difference between the penumbras in a beam delimited with a rounded leaf MLC and delimited with solid jaws. Utilization of this concept allowed us generating a pair of step-and-shoot MLC plans for which we could qualitatively predict the value of the DLG providing best match to ionization chamber measurements. The plan for which the leafs stayed predominantly at positions requiring low values of the DLG (as seen in the profiles of 1D slits) yielded the combined DLG of 1.1 ± 0.2 mm, while the plan with leafs staying at positions requiring larger values of the DLG yielded the DLG 2.4 ± 0.2 mm. Considering

  19. SU-E-T-137: Dosimetric Validation for Pinnacle, Acuros, AAA, and Brainlab Algorithms with Induced Inhomogenieties

    SciTech Connect

    Lopez, P; Tambasco, M; LaFontaine, R; Burns, L

    2014-06-01

    Purpose: To compare the dosimetric accuracy of the Eclipse 11.0 Acuros XB and Anisotropic Analytical Algorithm (AAA), Pinnacle-3 9.2 Collapsed Cone Convolution, and the iPlan 4.1 Monte Carlo (MC) and Pencil Beam (PB) algorithms using measurement as the gold standard. Methods: Ion chamber and diode measurements were taken for 6, 10, and 18 MV beams in a phantom made up of slab densities corresponding to solid water, lung, and bone. The phantom was setup at source-to-surface distance of 100 cm, and the field sizes were 3.0 × 3.0, 5.0 × 5.0, and 10.0 × 10.0 cm2. Data from the planning systems were computed along the central axis of the beam. The measurements were taken using a pinpoint chamber and edge diode for interface regions. Results: The best agreement between data from the algorithms and our measurements occurs away from the slab interfaces. For the 6 MV beam, iPlan 4.1 MC software performs the best with 1.7% absolute average percent difference from measurement. For the 10 MV beam, iPlan 4.1 PB performs the best with 2.7% absolute average percent difference from measurement. For the 18 MV beam, Acuros performs the best with 2.0% absolute average percent difference from measurement. It is interesting to note that the steepest drop in dose occurred the at lung heterogeneity-solid water interface of the18 MV, 3.0 × 3.0 cm2 field size setup. In this situation, Acuros and AAA performed best with an average percent difference within −1.1% of measurement, followed by iPlan 4.1 MC, which was within 4.9%. Conclusion: This study shows that all of the algorithms perform reasonably well in computing dose in a heterogeneous slab phantom. Moreover, Acuros and AAA perform particularly well at the lung-solid water interfaces for higher energy beams and small field sizes.

  20. High spatial resolution dosimetric response maps for radiotherapy ionization chambers measured using kilovoltage synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Butler, D. J.; Stevenson, A. W.; Wright, T. E.; Harty, P. D.; Lehmann, J.; Livingstone, J.; Crosbie, J. C.

    2015-11-01

    Small circular beams of synchrotron radiation (0.1 mm and 0.4 mm in diameter) were used to irradiate ionization chambers of the types commonly used in radiotherapy. By scanning the chamber through the beam and measuring the ionization current, a spatial map of the dosimetric response of the chamber was recorded. The technique is able to distinguish contributions to the large-field ionization current from the chamber walls, central electrode and chamber stem. Scans were recorded for the NE 2571 Farmer chamber, the PTW 30013, IBA FC65-G Farmer-type chambers, the NE 2611A and IBA CC13 thimble chambers, the PTW 31006 and 31014 pinpoint chambers, the PTW Roos and Advanced Markus plane-parallel chambers, and the PTW 23342 thin-window soft x-ray chamber. In all cases, large contributions to the response arise from areas where the incident beam grazes the cavity surfaces. Quantitative as well as qualitative information about the relative chamber response was extracted from the maps, including the relative contribution of the central electrode. Line scans using monochromatic beams show the effect of the photon energy on the chamber response. For Farmer-type chambers, a simple Monte Carlo model was in good agreement with the measured response.

  1. Calibration of laser tomography as a new optical diagnostic tool applied to dosimetric polymer gels

    NASA Astrophysics Data System (ADS)

    Alwan, R.; Guermeur, F.; Bailly, Y.; Simonin, L.; Svoboda, J.; Makovicka, L.; Martin, E.

    2008-03-01

    Numerous medical applications, as radiotherapy for example, require accurate and reproducible three-dimensional dose measurements with high spatial resolution. A solution of great interest and which has been exploited for many years is the use of dosimetric gels based on different physico-chemical principles, as Fricke's gels or polymer gels. Fricke's gels take advantage of the oxidation of ferrous ions in ferric while polymer gels are the result of the synthesis of polyacrylamide hydrogel from monomer and cross-linking agent. Fricke's gels have particular limitations not encountered with polymer gel dosimeters: the time delay between irradiation and measurement must be reduced in order to limit the diffusion of ferric ions which may remove the spatial dose information. That's why, during the past decade, many compositions of polymer gels have been studied (PAG, MAGIC, …), elaborated and even commercialized (BANG gels). However the gel composition remains of great interest regarding its physical properties. In this work, the authors propose a new optical diagnostic tool more flexible and less expensive in comparison with existing techniques like magnetic resonance imaging (MRI) and Optical-CT. This technique is based on light scattering behaviour occurring in an irradiated polymer gel (note that light scattering in Fricke's gels is very feeble, the latter being essentially absorbant).

  2. Cellular uptake of {sup 212}BiOCl by Ehrlich ascites cells: A dosimetric analysis

    SciTech Connect

    Roeske, J.C.; Whitlock, J.L.; Harper, P.V.; Rotmensch, J.; Stinchcomb, T.G.; Schwartz, J.L.; Hines, J.J.

    1999-01-01

    Bi-212 is an alpha-emitting radionuclide being investigated as a therapeutic agent in the intraperitoneal treatment of micrometastatic ovarian carcinoma. In evaluating a new therapeutic modality, cell-survival studies are often used as a means of quantifying the biological effects of radiation. In this analysis, Ehrlich ascites cells were irradiated under conditions similar to therapy in various concentrations of Bi-212. Immediately following irradiation, a cell survival assay was performed in which cells were plated and colonies were counted after 10--14 days. Both a macrodosimetric and a microdosimetric approach were used in analyzing these data. These models used as input the fraction of activity within the cell and in solution, the distribution of cell sizes, and the variation of LET along individual alpha-particle tracks. The results indicate that the energy deposited within the nucleus varies significantly among individual cells. There is a small fraction of cell nuclei which receive no hits, while the remaining cells receive energy depositions which can differ significantly from the mean value. These dosimetric parameters are correlated with measured cell survival and will be a useful predictor of outcome for therapeutic doses.

  3. SU-E-T-237: Monte Carlo Dosimetric Characterization of the Mobetron Mobile Linac

    SciTech Connect

    Garcia, F; Granero, D; Vijande, J; Ballester, F; Perez-Calatayud, J

    2014-06-01

    Purpose: The aim of this work is to characterize dosimetrically a clinical intraoperative electron beam accelerator, Mobetron (IntraOp Medical, Inc.) in clinical use in our Hospital. Once this first step is completed our purpose is to evaluate shielding requirements for such a device by preparing adequate phase space files. Methods: It is known that electron beam simulation parameters required for state-of-the-art Monte Carlo codes to obtain a good match with measured data, like the mean energy or the FWHM, may not be code-independent due to the different set of process simulated and formalisms involved. Then, to cross-check our results against any issue in the simulation we have compared experimental data (PDD and profiles for electrons in the range 4 to 12 MeV) with simulations performed independently using both Penelope2011 and Geant4 codes. To do so, the geometry and materials of the head of the accelerator have been fully characterized following information provided by the manufacturer. Results: Both simulations agree with experimental data within experimental uncertainties (±1 mm displacement), although small variations (less than 10%) in the mean energy and FWHM are required to match measured values depending on the code used. Conclusion: Independent Monte Carlo simulations were used to obtain an excellent match to measured electron dose distributions. This opens the road to use such data for evaluating shielding requirements which is the main objective of this project.

  4. Dosimetric effect on pediatric conformal treatment plans using dynamic jaw with Tomotherapy HDA

    SciTech Connect

    Han, Eun Young; Kim, Dong-Wook; Zhang, Xin; Penagaricano, Jose; Liang, Xiaoying; Hardee, Matthew; Morrill, Steve; Ratanatharathorn, Vaneerat

    2015-10-01

    It is important to minimize the radiation dose delivered to healthy tissues in pediatric cancer treatment because of the risk of secondary malignancies. Tomotherapy HDA provides a dynamic jaw (DJ) delivery mode that creates a sharper penumbra at the craniocaudal ends of a target in addition to a fixed jaw (FJ) delivery mode. The purpose of this study was to evaluate its dosimetric effect on the pediatric cancer cases. We included 6 pediatric cases in this study. The dose profiles and plan statistics—target dose conformity, uniformity, organ-at-risk (OAR) mean dose, beam-on time, and integral dose—were compared for each case. Consequently, the target dose coverage and uniformity were similar for different jaw settings. The OAR dose sparing depended on its relative location to the target and disease sites. For example, in the head and neck cancer cases, the brain stem dose using DJ 2.5 was reduced by more than two-fold (2.4 Gy vs. 6.3 Gy) than that obtained with FJ 2.5. The integral dose with DJ 2.5 decreased by more than 9% compared with that with FJ 2.5. Thus, using dynamic jaw in pediatric cases could be critical to reduce a probability of a secondary malignancy.

  5. Calculated dosimetric parameters of the IoGold 125I source model 3631-A.

    PubMed

    Wierzbicki, J G; Rivard, M J; Waid, D S; Arterbery, V E

    1998-11-01

    Basic dosimetric parameters as recommended by the AAPM Task Group No. 43 (TG-43) have been determined for recently available IoGold 125I brachytherapy seeds. Monte Carlo methods (MCNP) were used in the calculation of these parameters in water, and results compared with soon to be published experimental parameters also for 125I IoGold seeds as well with parameters for model 6702 and 6711 125I seeds. These parameters were the radial dose function, anisotropy factor and constant, and the dose rate constant. Using MCNP, values for the radial dose function at 0.5, 2.0, and 5.0 cm were 1.053, 0.877, and 0.443, respectively. The anisotropy factor was 0.975, 0.946, 0.945, and 0.952 at 0.5, 1.0, 2.0, and 5.0 cm, respectively, with an anisotropy constant of 0.95. The IoGold dose rate constant was determined by excluding the low energy titanium characteristic x rays produced in the IoGold titanium capsule. Using this post TG-43 revised NIST air kerma methodology, the IoGold dose rate constant was 0.96 cGy h-1 U-1. These calculatively determined parameters for IoGold seeds were compared with those determined experimentally for IoGold seeds, and also compared with parameters determined for model 6702 and 6711 seeds as presented in TG-43. PMID:9829245

  6. Evaluation of the deformation and corresponding dosimetric implications in prostate cancer treatment

    PubMed Central

    Glide-Hurst, Carri; Nurushev, Teamour; Xing, Lei; Kim, Jinkoo; Zhong, Hualiang; Liu, Dezhi; Liu, Manju; Burmeister, Jay; Movsas, Benjamin; Chetty, Indrin J

    2013-01-01

    The cone-beam computed tomography (CBCT) imaging modality is an integral component of image-guided adaptive radiation therapy (IGART), which uses patient-specific dynamic/temporal information for potential treatment plan modification. In this study, an offline process for the integral component IGART framework has been implemented that consists of deformable image registration (DIR) and its validation, dose reconstruction, dose accumulation and dose verification. This study compares the differences between planned and estimated delivered doses under an IGART framework of five patients undergoing prostate cancer radiation therapy. The dose calculation accuracy on CBCT was verified by measurements made in a Rando pelvic phantom. The accuracy of DIR on patient image sets was evaluated in three ways: landmark matching with fiducial markers, visual image evaluation and unbalanced energy (UE); UE has been previously demonstrated to be a feasible method for the validation of DIR accuracy at a voxel level. The dose calculated on each CBCT image set was reconstructed and accumulated over all fractions to reflect the ‘actual dose’ delivered to the patient. The deformably accumulated (delivered) plans were then compared to the original (static) plans to evaluate tumor and normal tissue dose discrepancies. The results support the utility of adaptive planning, which can be used to fully elucidate the dosimetric impact based on the simulated delivered dose to achieve the desired tumor control and normal tissue sparing, which may be of particular importance in the context of hypofractionated radiotherapy regimens. PMID:22863976

  7. Dosimetric Evaluation of a Simple Planning Technique for Improving Intensity-Modulated Radiotherapy for Nasopharyngeal Cancer

    PubMed Central

    Xie, Wen-Jia; Xie, Liang-Xi

    2015-01-01

    Purpose To evaluate the dosimetric outcomes of a simple planning technique for improving intensity-modulated radiotherapy (IMRT) for nasopharyngeal cancer (NPC). Methods For 39 NPC cases, generally acceptable original plans were generated and were improved by the two planning techniques, respectively: (1) a basal-dose-compensation (BDC) technique, in which the treatment plans were re-optimized based on the original plans; (2) a local-dose-control (LDC) technique, in which the original plans were re-optimized with constraints for hot and cold spots. The BDC, original, and LDC plans were then compared regarding homogeneity index (HI) and conformity index (CI) of planning target volumes (PTVs), organ-at-risk (OAR) sparing and monitor units (MUs) per fraction. The whole planning times were also compared between the BDC and LDC plans. Results The BDC plans had superior HIs / CIs, by 13-24% / 3-243%, respectively, over the original plans. Compared to the LDC plans, the BDC plans provided better HIs only for PTVnx (the PTV of nasopharyngeal primary tumor) by 11% and better CIs for all PTVs by 2-134%. The BDC technique spared most OARs, by 1-9%. The average MUs of the BDC, original, and LDC plans were 2149, 2068 and 2179, respectively. The average whole planning times were 48 and 69 minutes for the BDC and LDC plans, respectively. Conclusions For the IMRT of nasopharyngeal cancer, the BDC planning technique can improve target dose homogeneity, conformity and OAR sparing, with better planning efficiency. PMID:26132167

  8. High spatial resolution dosimetric response maps for radiotherapy ionization chambers measured using kilovoltage synchrotron radiation.

    PubMed

    Butler, D J; Stevenson, A W; Wright, T E; Harty, P D; Lehmann, J; Livingstone, J; Crosbie, J C

    2015-11-21

    Small circular beams of synchrotron radiation (0.1 mm and 0.4 mm in diameter) were used to irradiate ionization chambers of the types commonly used in radiotherapy. By scanning the chamber through the beam and measuring the ionization current, a spatial map of the dosimetric response of the chamber was recorded. The technique is able to distinguish contributions to the large-field ionization current from the chamber walls, central electrode and chamber stem. Scans were recorded for the NE 2571 Farmer chamber, the PTW 30013, IBA FC65-G Farmer-type chambers, the NE 2611A and IBA CC13 thimble chambers, the PTW 31006 and 31014 pinpoint chambers, the PTW Roos and Advanced Markus plane-parallel chambers, and the PTW 23342 thin-window soft x-ray chamber. In all cases, large contributions to the response arise from areas where the incident beam grazes the cavity surfaces. Quantitative as well as qualitative information about the relative chamber response was extracted from the maps, including the relative contribution of the central electrode. Line scans using monochromatic beams show the effect of the photon energy on the chamber response. For Farmer-type chambers, a simple Monte Carlo model was in good agreement with the measured response. PMID:26510214

  9. Optimization of Internal Margin to Account for Dosimetric Effects of Respiratory Motion

    SciTech Connect

    Mutaf, Yildirim D. Brinkmann, Debra H.

    2008-04-01

    Purpose: Use of internal margins to account for respiratory motion of the target volumes is a common strategy in radiotherapy of mobile tumors. Although efficient for tumor coverage, this expansion also risks increased toxicity to nearby healthy organs and therefore requires a careful selection of appropriate margins. In this study, we demonstrate an optimization of the internal margin used to account for respiration motion. Methods and Materials: Three-dimensional conformal treatment plans for phantom spherical target volumes as well as clinical treatment plans of 11 patients were evaluated retrospectively for optimum internal margin selection. A software-based simulation of respiration motion was performed for all cases. Moreover, the interplay with treatment setup uncertainties and corresponding margins was investigated in the phantom study. Results: Optimum internal margins in both phantom and patient studies were found to be substantially smaller than the actual target displacement due to respiration. The optimal internal margin was also observed to be approximately independent of the setup margins. Furthermore, no statistically significant dependence on target size and shape was observed in the group of 11 patients. Conclusions: These findings present significant implications for treatment planning of mobile targets, such as tumors found in the lung and upper abdomen. We conclude that the full motion amplitude for the internal margin is overly conservative, and optimization of the internal margin provides improved sparing of nearby organs at risk without sacrificing dosimetric coverage for the target.

  10. Technical and dosimetric aspects of the total skin electron beam technique implemented at Heidelberg University Hospital

    PubMed Central

    Hensley, Frank W.; Major, Gerald; Edel, Carolin; Hauswald, Henrik; Bischof, Marc

    2013-01-01

    Aim To give a technical description and present the dosimetric proporties of the total skin electron beam technique implemented at Heidelberg University Hospital. Background Techniques used for total skin electron beam irradiation were developed as early as in the 1960s to 1980s and have, since then, hardly changed. However, new measurements of the established methods allow deeper insight into the dose distributions and reasons for possible deviations from uniform dose. Materials and methods The TSEI technique applied at Heidelberg University Hospital since 1992 consists of irradiating the patient with a superposition of two beams of low energy electrons at gantry angles of 72° and 108° while he is rotating in a standing position on a turntable at 370 cm distance from the accelerator. The energy of the electron beam is degraded to 3.9 MeV by passing through an attenuator of 6 mm of Perspex. A recent re-measurement of the dose distribution is presented using modern dosimetry tools like a linear array of ionization chambers in combination with established methods like thermoluminescent detectors and film dosimetry. Results The measurements show a strong dependence of dose uniformity on details of the setup like gantry angles. Conclusions Dose uniformity of −4/+8% to the majority of the patient's skin can be achieved, however, for the described rotational technique overdoses up to more than 20% in small regions seem unavoidable. PMID:24936332

  11. Dosimetric characterization of the irradiation cavity for accelerator-based in vivo neutron activation analysis.

    PubMed

    Byun, S H; Pejović-Milić, A; McMaster, S; Matysiak, W; Aslam; Liu, Z; Watters, L M; Prestwich, W V; McNeill, F E; Chettle, D R

    2007-03-21

    A neutron irradiation cavity for in vivo activation analysis has been characterized to estimate its dosimetric specifications. The cavity is defined to confine irradiation to the hand and modifies the neutron spectrum produced by a low energy accelerator neutron source to optimize activation per dose. Neutron and gamma-ray dose rates were measured with the microdosimetric technique using a tissue-equivalent proportional counter at the hand irradiation site and inside the hand access hole. For the outside of the cavity, a spherical neutron dose equivalent meter and a Farmer dosemeter were employed instead due to the low intensity of the radiation field. The maximum dose equivalent rate at the outside of the cavity was 2.94 microSv/100 microA min, which is lower by a factor of 1/2260 than the dose rate at the hand irradiation position. The local dose contributions from a hand, an arm and the rest of a body to the effective dose rate were estimated to be 1.73, 0.782 and 2.94 microSv/100 microA min, respectively. For the standard irradiation protocol of the in vivo hand activation, 300 microA min, an effective dose of 16.3 microSv would be delivered. PMID:17455391

  12. Relative TL and OSL efficiency to protons of various dosimetric materials.

    PubMed

    Sądel, M; Bilski, P; Swakoń, J

    2014-10-01

    Thermoluminescence (TL) and optically stimulated luminescence (OSL) are the well-known phenomena used for passive methods of dose measurements. TL and OSL detectors are frequently used in the dosimetry of cosmic radiation in space and of particle radiotherapy beams. However, the relative TL/OSL efficiency, which is defined as a ratio of the emitted light intensity per unit dose for a given radiation type, to the same quantity for the reference gamma radiation is not constant and depends on radiation type and energy. In the present work several types of TL and OSL dosimetric materials, including lithium fluoride (LiF), aluminium oxide, beryllium oxide and lithium aluminate, were tested with protons. The measurements were realised exploiting the 60-MeV proton beam of the AIC-144 cyclotron in the Proton Eye Radiotherapy Facility at Institute of Nuclear Physics (IFJ PAN). The influence of proton energy on the relative efficiency and other TL/OSL characteristics of the studied detector types was presented. PMID:24036656

  13. Effect of radiation on solid paracetamol: ESR identification and dosimetric features of gamma-irradiated paracetamol

    NASA Astrophysics Data System (ADS)

    Polat, M.; Korkmaz, M.

    2006-01-01

    In the present work, electron spin resonance (ESR) identification of gamma-irradiated paracetamol and its potential use as a normal and/or accidental dosimetric material were investigated in the dose range of 2.5-25 kGy. Both unirradiated paracetamol and mechanically ground vermidon samples exhibited a weak single resonance line at g = 2.0049 +/- 0.0006 and had Delta H-pp = 0.6 +/- 0.02 mT. Gamma irradiation produced an increase in signal intensity with a small hyperfine splitting in both paracetamol and vermidon and many weak resonance lines on both sides of a central line in the case of vermidon. Dose-response curves associated with central line of paracetamol and vermidon were found to follow polynomial and linear function, respectively. Simulation calculations based on the room temperature ESR intensity data of the paracetamol sample irradiated at 10 kGy were performed to determine the structure and spectral parameters of the radiation-induced radical species involved in the formation of the experimental ESR spectrum of paracetamol.

  14. On the physical, spectral, and dosimetric characteristics of a new {sup 125}I brachytherapy source

    SciTech Connect

    Pirchio, Rosana; Galiano, Eduardo; Saravi, Margarita; Banchik, David; Munoz, Carlos

    2007-07-15

    A new {sup 125}I source under the name Braquibac{sup TM} has been developed in Argentina for interstitial brachytherapy applications. The aim of this work is to study the new seed's design and to calculate its dosimetric parameters. Radiographic and destructive tests were carried out on inactive seeds to determine the physical characteristics of the source. Values of g(r), {lambda}, F(r,{theta}), and {phi}{sub an}(r), were obtained in water and air by simulation using the MCNP5 Monte Carlo code according to the methodology recommended in TG-43 and updated in TG-43U1. The dose rate constant was determined to be 0.937{+-}0.004 cGy h{sup -1} U{sup -1} (overall statistical uncertainty {+-}2.7%). S{sub k} per unity activity was calculated to be 0.671{+-}0.003 cGy cm{sup 2} h{sup -1} mCi{sup -1} by simulation of the seed in dry air using point detectors. Spectroscopic studies for both the new and the Amersham model 6711 seed were performed using an HPGe planar detector. The emission spectra of both seeds proved to be very similar. The anisotropy of the total photon intensity in air was measured in planes containing the seed's short and long axes using the HPGe detector. The minimum photon intensity for the new seed was 31.14{+-}3.10% of the transverse intensity.

  15. Dosimetric shield evaluation with tungsten sheet in 4, 6, and 9MeV electron beams.

    PubMed

    Fujimoto, Takahiro; Monzen, Hajime; Nakata, Manabu; Okada, Takashi; Yano, Shinsuke; Takakura, Toru; Kuwahara, Junichi; Sasaki, Makoto; Higashimura, Kyoji; Hiraoka, Masahiro

    2014-11-01

    In electron radiotherapy, shielding material is required to attenuate beam and scatter. A newly introduced shielding material, tungsten functional paper (TFP), has been anticipated to become a very useful device that is lead-free, light, flexible, and easily processed, containing very fine tungsten powder at as much as 80% by weight. The purpose of this study was to investigate the dosimetric changes due to TFP shielding for electron beams. TFP (thickness 0-15mm) was placed on water or a water-equivalent phantom. Percentage depth ionization and transmission were measured for 4, 6, and 9MeV electron beams. Off-center ratio was also measured using film dosimetry at depth of dose maximum under similar conditions. Then, beam profiles and transmission with two shielding materials, TFP and lead, were evaluated. Reductions of 95% by using TFP at 0.5cm depth occurred at 4, 9, and 15mm with 4, 6, and 9MeV electron beams, respectively. It is found that the dose tend to increase at the field edge shaped with TFP, which might be influenced by the thickness. TFP has several unique features and is very promising as a useful tool for radiation protection for electron beams, among others. PMID:24953537

  16. Dosimetric and clinical advantages of deep inspiration breath-hold (DIBH) during radiotherapy of breast cancer

    PubMed Central

    2013-01-01

    Background To investigate the potential dosimetric and clinical benefits of Deep Inspiration Breath-Hold (DIBH) technique during radiotherapy of breast cancer compared with Free Breathing (FB). Methods Eight left-sided breast cancer patients underwent a supervised breath hold during treatment. For each patient, two CT scans were acquired with and without breath hold, and virtual simulation was performed for conventional tangential fields, utilizing 6 or 15 MV photon fields. The resulting dose–volume histograms were calculated, and the volumes of heart/lung irradiated to given doses were assessed. The left anterior descending coronary artery (LAD) mean and maximum doses were calculated, together with tumour control probability (TCP) and normal tissue complication probabilities (NTCP) for lung and heart. Results For all patients a reduction of at least 16% in lung mean dose and at least 20% in irradiated pulmonary volumes was observed when DIBH was applied. Heart and LAD maximum doses were decreased by more than 78% with DIBH. The NTCP values for pneumonitis and long term cardiac mortality were also reduced by about 11% with DIBH. The NTCP values for pericarditis were zero for both DIBH and FB. Conclusion Delivering radiation in DIBH conditions the dose to the surrounding normal structures could be reduced, in particular heart, LAD and lung, due to increased distance between target and heart, and to reduced lung density. PMID:24423396

  17. Monte Carlo calculations and experimental measurements of dosimetric parameters of the IRA-103Pd brachytherapy source.

    PubMed

    Sadeghi, Mahdi; Raisali, Gholamreza; Hosseini, S Hamed; Shavar, Arzhang

    2008-04-01

    This article presents a brachytherapy source having 103Pd adsorbed onto a cylindrical silver rod that has been developed by the Agricultural, Medical, and Industrial Research School for permanent implant applications. Dosimetric characteristics (radial dose function, anisotropy function, and anisotropy factor) of this source were experimentally and theoretically determined in terms of the updated AAPM Task group 43 (TG-43U1) recommendations. Monte Carlo simulations were used to calculate the dose rate constant. Measurements were performed using TLD-GR200A circular chip dosimeters using standard methods employing thermoluminescent dosimeters in a Perspex phantom. Precision machined bores in the phantom located the dosimeters and the source in a reproducible fixed geometry, providing for transverse-axis and angular dose profiles over a range of distances from 0.5 to 5 cm. The Monte Carlo N-particle (MCNP) code, version 4C simulation techniques have been used to evaluate the dose-rate distributions around this model 103Pd source in water and Perspex phantoms. The Monte Carlo calculated dose rate constant of the IRA-103Pd source in water was found to be 0.678 cGy h(-1) U(-1) with an approximate uncertainty of +/-0.1%. The anisotropy function, F(r, theta), and the radial dose function, g(r), of the IRA- 103Pd source were also measured in a Perspex phantom and calculated in both Perspex and liquid water phantoms. PMID:18491522

  18. SU-E-J-32: Dosimetric Evaluation Based On Pre-Treatment Cone Beam CT for Spine Stereotactic Body Radiotherapy: Does Region of Interest Focus Matter?

    SciTech Connect

    Magnelli, A; Xia, P

    2015-06-15

    Purpose: Spine stereotactic body radiotherapy requires very conformal dose distributions and precise delivery. Prior to treatment, a KV cone-beam CT (KV-CBCT) is registered to the planning CT to provide image-guided positional corrections, which depend on selection of the region of interest (ROI) because of imperfect patient positioning and anatomical deformation. Our objective is to determine the dosimetric impact of ROI selections. Methods: Twelve patients were selected for this study with the treatment regions varied from C-spine to T-spine. For each patient, the KV-CBCT was registered to the planning CT three times using distinct ROIs: one encompassing the entire patient, a large ROI containing large bony anatomy, and a small target-focused ROI. Each registered CBCT volume, saved as an aligned dataset, was then sent to the planning system. The treated plan was applied to each dataset and dose was recalculated. The tumor dose coverage (percentage of target volume receiving prescription dose), maximum point dose to 0.03 cc of the spinal cord, and dose to 10% of the spinal cord volume (V10) for each alignment were compared to the original plan. Results: The average magnitude of tumor coverage deviation was 3.9%±5.8% with external contour, 1.5%±1.1% with large ROI, 1.3%±1.1% with small ROI. Spinal cord V10 deviation from plan was 6.6%±6.6% with external contour, 3.5%±3.1% with large ROI, and 1.2%±1.0% with small ROI. Spinal cord max point dose deviation from plan was: 12.2%±13.3% with external contour, 8.5%±8.4% with large ROI, and 3.7%±2.8% with small ROI. Conclusion: A small ROI focused on the target results in the smallest deviation from planned dose to target and cord although rotations at large distances from the targets were observed. It is recommended that image fusion during CBCT focus narrowly on the target volume to minimize dosimetric error. Improvement in patient setups may further reduce residual errors.

  19. Volumetric modulated arc planning for lung stereotactic body radiotherapy using conventional and unflattened photon beams: a dosimetric comparison with 3D technique

    PubMed Central

    2011-01-01

    Purpose Frequently, three-dimensional (3D) conformal beams are used in lung cancer stereotactic body radiotherapy (SBRT). Recently, volumetric modulated arc therapy (VMAT) was introduced as a new treatment modality. VMAT techniques shorten delivery time, reducing the possibility of intrafraction target motion. However dose distributions can be quite different from standard 3D therapy. This study quantifies those differences, with focus on VMAT plans using unflattened photon beams. Methods A total of 15 lung cancer patients previously treated with 3D or VMAT SBRT were randomly selected. For each patient, non-coplanar 3D, coplanar and non-coplanar VMAT and flattening filter free VMAT (FFF-VMAT) plans were generated to meet the same objectives with 50 Gy covering 95% of the PTV. Two dynamic arcs were used in each VMAT plan. The couch was set at ± 5° to the 0° straight position for the two non-coplanar arcs. Pinnacle version 9.0 (Philips Radiation Oncology, Fitchburg WI) treatment planning system with VMAT capabilities was used. We analyzed the conformity index (CI), which is the ratio of the total volume receiving at least the prescription dose to the target volume receiving at least the prescription dose; the conformity number (CN) which is the ratio of the target coverage to CI; and the gradient index (GI) which is the ratio of the volume of 50% of the prescription isodose to the volume of the prescription isodose; as well as the V20, V5, and mean lung dose (MLD). Paired non-parametric analysis of variance tests with post-tests were performed to examine the statistical significance of the differences of the dosimetric indices. Results Dosimetric indices CI, CN and MLD all show statistically significant improvement for all studied VMAT techniques compared with 3D plans (p < 0.05). V5 and V20 show statistically significant improvement for the FFF-VMAT plans compared with 3D (p < 0.001). GI is improved for the FFF-VMAT and the non-coplanar VMAT plans (p < 0.01 and p

  20. The dosimetric impact of daily setup error on target volumes and surrounding normal tissue in the treatment of prostate cancer with intensity-modulated radiation therapy

    SciTech Connect

    Algan, Ozer; Jamgade, Ambarish; Ali, Imad; Christie, Alana; Thompson, J. Spencer; Thompson, David; Ahmad, Salahuddin; Herman, Terence

    2012-01-01

    The purpose of this study was to evaluate the impact of daily setup error and interfraction organ motion on the overall dosimetric radiation treatment plans. Twelve patients undergoing definitive intensity-modulated radiation therapy (IMRT) treatments for prostate cancer were evaluated in this institutional review board-approved study. Each patient had fiducial markers placed into the prostate gland before treatment planning computed tomography scan. IMRT plans were generated using the Eclipse treatment planning system. Each patient was treated to a dose of 8100 cGy given in 45 fractions. In this study, we retrospectively created a plan for each treatment day that had a shift available. To calculate the dose, the patient would have received under this plan, we mathematically 'negated' the shift by moving the isocenter in the exact opposite direction of the shift. The individualized daily plans were combined to generate an overall plan sum. The dose distributions from these plans were compared with the treatment plans that were used to treat the patients. Three-hundred ninety daily shifts were negated and their corresponding plans evaluated. The mean isocenter shift based on the location of the fiducial markers was 3.3 {+-} 6.5 mm to the right, 1.6 {+-} 5.1 mm posteriorly, and 1.0 {+-} 5.0 mm along the caudal direction. The mean D95 doses for the prostate gland when setup error was corrected and uncorrected were 8228 and 7844 cGy (p < 0.002), respectively, and for the planning target volume (PTV8100) was 8089 and 7303 cGy (p < 0.001), respectively. The mean V95 values when patient setup was corrected and uncorrected were 99.9% and 87.3%, respectively, for the PTV8100 volume (p < 0.0001). At an individual patient level, the difference in the D95 value for the prostate volume could be >1200 cGy and for the PTV8100 could approach almost 2000 cGy when comparing corrected against uncorrected plans. There was no statistically significant difference in the D35 parameter

  1. Dosimetric Comparison of Combined Intensity-Modulated Radiotherapy (IMRT) and Proton Therapy Versus IMRT Alone for Pelvic and Para-Aortic Radiotherapy in Gynecologic Malignancies

    SciTech Connect

    Berman Milby, Abigail; Both, Stefan; Ingram, Mark; Lin, Lilie L.

    2012-03-01

    Purpose: To perform a dosimetric comparison of intensity-modulated radiotherapy (IMRT), passive scattering proton therapy (PSPT), and intensity-modulated proton therapy (IMPT) to the para-aortic (PA) nodal region in women with locally advanced gynecologic malignancies. Methods and Materials: The CT treatment planning scans of 10 consecutive patients treated with IMRT to the pelvis and PA nodes were identified. The clinical target volume was defined by the primary tumor for patients with cervical cancer and by the vagina and paravaginal tissues for patients with endometrial cancer, in addition to the regional lymph nodes. The IMRT, PSPT, and IMPT plans were generated using the Eclipse Treatment Planning System and were analyzed for various dosimetric endpoints. Two groups of treatment plans including proton radiotherapy were created: IMRT to pelvic nodes with PSPT to PA nodes (PSPT/IMRT), and IMRT to pelvic nodes with IMPT to PA nodes (IMPT/IMRT). The IMRT and proton RT plans were optimized to deliver 50.4 Gy or Gy (relative biologic effectiveness [RBE)), respectively. Dose-volume histograms were analyzed for all of the organs at risk. The paired t test was used for all statistical comparison. Results: The small-bowel V{sub 20}, V{sub 30}, V{sub 35}, andV{sub 40} were reduced in PSPT/IMRT by 11%, 18%, 27%, and 43%, respectively (p < 0.01). Treatment with IMPT/IMRT demonstrated a 32% decrease in the small-bowel V{sub 20}. Treatment with PSPT/IMRT showed statistically significant reductions in the body V{sub 5-20}; IMPT/IMRT showed reductions in the body V{sub 5-15}. The dose received by half of both kidneys was reduced by PSPT/IMRT and by IMPT/IMRT. All plans maintained excellent coverage of the planning target volume. Conclusions: Compared with IMRT alone, PSPT/IMRT and IMPT/IMRT had a statistically significant decrease in dose to the small and large bowel and kidneys, while maintaining excellent planning target volume coverage. Further studies should be done to

  2. Determination of dosimetric leaf gap using amorphous silicon electronic portal imaging device and its influence on intensity modulated radiotherapy dose delivery

    PubMed Central

    Balasingh, S. Timothy Peace; Singh, I. Rabi Raja; Rafic, K. Mohamathu; Babu, S. Ebenezer Suman; Ravindran, B. Paul

    2015-01-01

    As complex treatment techniques such as intensity modulated radiotherapy (IMRT) entail the modeling of rounded leaf-end transmission in the treatment planning system, it is important to accurately determine the dosimetric leaf gap (DLG) value for a precise calculation of dose. The advancements in the application of the electronic portal imaging device (EPID) in quality assurance (QA) and dosimetry have facilitated the determination of DLG in this study. The DLG measurements were performed using both the ionization chamber (DLGion) and EPID (DLGEPID) for sweeping gap fields of different widths. The DLGion values were found to be 1.133 mm and 1.120 mm for perpendicular and parallel orientations of the 0.125 cm3 ionization chamber, while the corresponding DLGEPID values were 0.843 mm and 0.819 mm, respectively. It was found that the DLG was independent of volume and orientation of the ionization chamber, depth, source to surface distance (SSD), and the rate of dose delivery. Since the patient-specific QA tests showed comparable results between the IMRT plans based on the DLGEPID and DLGion, it is concluded that the EPID can be a suitable alternative in the determination of DLG. PMID:26500398

  3. SU-E-P-58: Dosimetric Study of Conventional Intensity-Modulated Radiotherapy and Knowledge-Based Radiation Therapy for Postoperation of Cervix Cancer

    SciTech Connect

    Ma, C; Yin, Y

    2015-06-15

    Purpose: To compare the dosimetric difference of the target volume and organs at risk(OARs) between conventional intensity-modulated radiotherapy(C-IMRT) and knowledge-based radiation therapy (KBRT) plans for cervix cancer. Methods: 39 patients with cervical cancer after surgery were randomly selected, 20 patient plans were used to create the model, the other 19 cases used for comparative evaluation. All plans were designed in Eclipse system. The prescription dose was 30.6Gy, 17 fractions, OARs dose satisfied to the clinical requirement. A paired t test was used to evaluate the differences of dose-volume histograms (DVH). Results: Comparaed to C-IMRT plan, the KBRT plan target can achieve the similar target dose coverage, D98,D95,D2,HI and CI had no difference (P≥0.05). The dose of rectum, bladder and femoral heads had no significant differences(P≥0.05). The time was used to design treatment plan was significant reduced. Conclusion: This study shows that postoperative radiotherapy of cervical KBRT plans can achieve the similar target and OARs dose, but the shorter designing time.

  4. A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: A multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking

    PubMed Central

    Colvill, Emma; Booth, Jeremy; Nill, Simeon; Fast, Martin; Bedford, James; Oelfke, Uwe; Nakamura, Mitsuhiro; Poulsen, Per; Worm, Esben; Hansen, Rune; Ravkilde, Thomas; Scherman Rydhög, Jonas; Pommer, Tobias; Munck af Rosenschold, Per; Lang, Stephanie; Guckenberger, Matthias; Groh, Christian; Herrmann, Christian; Verellen, Dirk; Poels, Kenneth; Wang, Lei; Hadsell, Michael; Sothmann, Thilo; Blanck, Oliver; Keall, Paul

    2016-01-01

    Purpose A study of real-time adaptive radiotherapy systems was performed to test the hypothesis that, across delivery systems and institutions, the dosimetric accuracy is improved with adaptive treatments over non-adaptive radiotherapy in the presence of patient-measured tumor motion. Methods and materials Ten institutions with robotic(2), gimbaled(2), MLC(4) or couch tracking(2) used common materials including CT and structure sets, motion traces and planning protocols to create a lung and a prostate plan. For each motion trace, the plan was delivered twice to a moving dosimeter; with and without real-time adaptation. Each measurement was compared to a static measurement and the percentage of failed points for γ-tests recorded. Results For all lung traces all measurement sets show improved dose accuracy with a mean 2%/2 mm γ-fail rate of 1.6% with adaptation and 15.2% without adaptation (p < 0.001). For all prostate the mean 2%/2 mm γ-fail rate was 1.4% with adaptation and 17.3% without adaptation (p < 0.001). The difference between the four systems was small with an average 2%/2 mm γ-fail rate of <3% for all systems with adaptation for lung and prostate. Conclusions The investigated systems all accounted for realistic tumor motion accurately and performed to a similar high standard, with real-time adaptation significantly outperforming non-adaptive delivery methods. PMID:27016171

  5. Dosimetric impact of intrafraction motion for compensator-based proton therapy of lung cancer

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Sandison, George A.; Farr, Jonathan B.; Chien Hsi, Wen; Li, X. Allen

    2008-06-01

    Compensator-based proton therapy of lung cancer using an un-gated treatment while allowing the patient to breathe freely requires a compensator design that ensures tumor coverage throughout respiration. Our investigation had two purposes: one is to investigate the dosimetric impact when a composite compensator correction is applied, or is not, and the other one is to evaluate the significance of using different respiratory phases as the reference computed tomography (CT) for treatment planning dose calculations. A 4D-CT-based phantom study and a real patient treatment planning study were performed. A 3D MIP dataset generated over all phases of the acquired 4D-CT scans was adopted to design the field-specific composite aperture and compensator. In the phantom study, the MIP-based compensator design plan named plan D was compared to the other three plans, in which average intensity projection (AIP) images in conjunction with the composite target volume contour copied from the MIP images were used. Relative electron densities within the target envelope were assigned either to original values from the AIP image dataset (plan A) or to predetermined values, 0.8 (plan B) and 0.9 (plan C). In the patient study, the dosimetric impact of a compensator design based on the MIP images (plan ITVMIP) was compared to designs based on end-of-inhale (EOI) (plan ITVEOI) and middle-of-exhale (MOE) CT images (plan ITVMOE). The dose distributions were recalculated for each phase. Throughout the ten phases, it shows that DGTVmin changed slightly from 86% to 89% (SD = 0.9%) of prescribed dose (PD) in the MIP plan, while varying greatly from 10% to 79% (SD = 26.7%) in plan A, 17% to 73% (SD = 22.5%) in plan B and 53% to 73% (SD = 6.8%) in plan C. The same trend was observed for DGTVmean and V95 with less amplitude. In the MIP-based plan ITVMIP, DGTVmean was almost identically equal to 95% in each phase (SD = 0.5%). The patient study verified that the MIP approach increased the minimum

  6. Dosimetric characteristics of the novel 2D ionization chamber array OCTAVIUS Detector 1500

    SciTech Connect

    Stelljes, T. S. Looe, H. K.; Chofor, N.; Poppe, B.; Harmeyer, A.; Reuter, J.; Harder, D.

    2015-04-15

    Purpose: The dosimetric properties of the OCTAVIUS Detector 1500 (OD1500) ionization chamber array (PTW-Freiburg, Freiburg, Germany) have been investigated. A comparative study was carried out with the OCTAVIUS Detector 729 and OCTAVIUS Detector 1000 SRS arrays. Methods: The OD1500 array is an air vented ionization chamber array with 1405 detectors in a 27 × 27 cm{sup 2} measurement area arranged in a checkerboard pattern with a chamber-to-chamber distance of 10 mm in each row. A sampling step width of 5 mm can be achieved by merging two measurements shifted by 5 mm, thus fulfilling the Nyquist theorem for intensity modulated dose distributions. The stability, linearity, and dose per pulse dependence were investigated using a Semiflex 31013 chamber (PTW-Freiburg, Freiburg, Germany) as a reference detector. The effective depth of measurement was determined by measuring TPR curves with the array and a Roos chamber type 31004 (PTW-Freiburg, Freiburg, Germany). Comparative output factor measurements were performed with the array, the Semiflex 31010 ionization chamber and the Diode 60012 (both PTW-Freiburg, Freiburg, Germany). The energy dependence of the OD1500 was measured by comparing the array’s readings to those of a Semiflex 31010 ionization chamber for varying mean photon energies at the depth of measurement, applying to the Semiflex chamber readings the correction factor k{sub NR} for nonreference conditions. The Gaussian lateral dose response function of a single array detector was determined by searching the convolution kernel suitable to convert the slit beam profiles measured with a Diode 60012 into those measured with the array’s central chamber. An intensity modulated dose distribution measured with the array was verified by comparing a OD1500 measurement to TPS calculations and film measurements. Results: The stability and interchamber sensitivity variation of the OD1500 array were within ±0.2% and ±0.58%, respectively. Dose linearity was within 1

  7. Dosimetric Evaluation of Metal Artefact Reduction using Metal Artefact Reduction (MAR) Algorithm and Dual-energy Computed Tomography (CT) Method

    NASA Astrophysics Data System (ADS)

    Laguda, Edcer Jerecho

    Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient's medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method. Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three

  8. Consequences of the spectral response of an a-Si EPID and implications for dosimetric calibration

    SciTech Connect

    Kirkby, C.; Sloboda, R.

    2005-08-15

    One of the attractive features of amorphous silicon electronic portal imaging devices (a-Si EPIDs) as dosimetric tools is that for open fields they are known to exhibit a generally linear relation between pixel value and incident energy fluence as measured by an ion chamber. It has also been established that a-Si EPIDs incorporating high atomic number phosphors such as Gd{sub 2}O{sub 2}S:Tb exhibit a disproportionately large response to low-energy (<1 MeV) photons. The present work examines the consequences of this hypersensitivity in a commercially available EPID, the Varian aS500, with respect to energy fluence calibration in a 6 MV radiotherapy beam. EPIDs may be deployed in situations where the spectrum of the incident beam is modified by passing through a compensator or through a patient or phantom. By examining the specific case of a beam hardened by passage through compensator material, we show that the discrepancy between open and attenuated beam calibration curves can be as high as 8%. A Monte Carlo study using a comprehensive model of the aS500 shows that this difference can be explained by spectral changes, and further suggests that it can be reduced by the addition of an external copper plate. We consider configurations with the plate placed directly on top of the EPID cassette and 15 cm above the cassette, supported by Styrofoam. In order to reduce the maximum discrepancy to <4%, it was found that a copper thickness of {approx}0.7 cm was required in the elevated configuration. Improvement was minimal with the copper in the contact configuration. Adding 0.7 cm of copper in the elevated configuration reduced the contrast-to-noise ratio by 19% and the modulation transfer for a given spatial frequency by 30%.

  9. Dosimetric evaluation of simultaneous integrated boost during stereotactic body radiation therapy for pancreatic cancer

    SciTech Connect

    Yang, Wensha; Reznik, Robert; Fraass, Benedick A.; Nissen, Nicholas; Hendifar, Andrew; Wachsman, Ashley; Sandler, Howard; Tuli, Richard

    2015-04-01

    Stereotactic body radiation therapy (SBRT) provides a promising way to treat locally advanced pancreatic cancer and borderline resectable pancreatic cancer. A simultaneous integrated boost (SIB) to the region of vessel abutment or encasement during SBRT has the potential to downstage otherwise likely positive surgical margins. Despite the potential benefit of using SIB-SBRT, the ability to boost is limited by the local geometry of the organs at risk (OARs), such as stomach, duodenum, and bowel (SDB), relative to tumor. In this study, we have retrospectively replanned 20 patients with 25 Gy prescribed to the planning target volume (PTV) and 33~80 Gy to the boost target volume (BTV) using an SIB technique for all patients. The number of plans and patients able to satisfy a set of clinically established constraints is analyzed. The ability to boost vessels (within the gross target volume [GTV]) is shown to correlate with the overlap volume (OLV), defined to be the overlap between the GTV + a 1(OLV1)- or 2(OLV2)-cm margin with the union of SDB. Integral dose, boost dose contrast (BDC), biologically effective BDC, tumor control probability for BTV, and normal tissue complication probabilities are used to analyze the dosimetric results. More than 65% of the cases can deliver a boost to 40 Gy while satisfying all OAR constraints. An OLV2 of 100 cm{sup 3} is identified as the cutoff volume: for cases with OLV2 larger than 100 cm{sup 3}, it is very unlikely the case could achieve 25 Gy to the PTV while successfully meeting all the OAR constraints.

  10. NOTE: Practical and dosimetric implications of a new type of packaging for radiographic film

    NASA Astrophysics Data System (ADS)

    Gillis, S.; DeWagter, C.

    2005-04-01

    Recently, Kodak introduced new light-tight packages (vacuum packaging, aluminium layer under black polyethylene and different paper) for their oncology films (EDR-2, X-Omat V and PPL-2). In order to avoid additional uncertainty and to ensure transferability of previously published results, we assessed in this study the effect of the old and new packages on the dosimetric response of EDR-2 radiographic film. Therefore, sensitometric measurements were performed for different film assemblies (new envelope + new paper, old envelope + old paper, new envelope without paper and old envelope without paper). In addition, to assess possible effects of the package on the film depth dose response, packaged films were irradiated in parallel geometry, and central depth dose curves were retrieved. For the perpendicular geometry, on the other hand, the effect of the package was assessed at large depth for a high intensity-modulated inverse-pyramid beam. The results of the sensitometric measurements reveal no difference between the packages. However, the white colour of the paper in both the packages induces a dose-dependent increase in optical density (0 0.12) of the film. The depth dose curves show better reproducibility for the new package and the new paper improves the accuracy of film dosimetry, but despite the company's effort to evacuate the air out of the new envelope, it remains necessary to clamp the films in the phantom for the parallel irradiation geometry. At 5 cm depth, the films irradiated in parallel geometry show an under-response of 3 5% compared to films irradiated perpendicularly. Finally, even at locations of large photon scatter, no filtration effect from the aluminium layer incorporated in the new envelope has been observed for perpendicular irradiation geometry.

  11. Dosimetric Advantages of Midventilation Compared With Internal Target Volume for Radiation Therapy of Pancreatic Cancer

    SciTech Connect

    Lens, Eelco Horst, Astrid van der; Versteijne, Eva; Tienhoven, Geertjan van; Bel, Arjan

    2015-07-01

    Purpose: The midventilation (midV) approach can be used to take respiratory-induced pancreatic tumor motion into account during radiation therapy. In this study, the dosimetric consequences for organs at risk and tumor coverage of using a midV approach compared with using an internal target volume (ITV) were investigated. Methods and Materials: For each of the 18 patients, 2 treatment plans (25 × 2.0 Gy) were created, 1 using an ITV and 1 using a midV approach. The midV dose distribution was blurred using the respiratory-induced motion from 4-dimensional computed tomography. The resulting planning target volume (PTV) coverage for this blurred dose distribution was analyzed; PTV coverage was required to be at least V{sub 95%} >98%. In addition, the change in PTV size and the changes in V{sub 10Gy}, V{sub 20Gy}, V{sub 30Gy}, V{sub 40Gy}, D{sub mean} and D{sub 2cc} for the stomach and for the duodenum were analyzed; differences were tested for significance using the Wilcoxon signed-rank test. Results: Using a midV approach resulted in sufficient target coverage. A highly significant PTV size reduction of 13.9% (P<.001) was observed. Also, all dose parameters for the stomach and duodenum, except the D{sub 2cc} of the duodenum, improved significantly (P≤.002). Conclusions: By using the midV approach to account for respiratory-induced tumor motion, a significant PTV reduction and significant dose reductions to the stomach and to the duodenum can be achieved when irradiating pancreatic tumors.

  12. Postoperative radiotherapy following mastectomy for patients with left-sided breast cancer: A comparative dosimetric study

    SciTech Connect

    Wang, Jiahao; Li, Xiadong; Deng, Qinghua; Xia, Bing; Wu, Shixiu; Liu, Jian; Ma, Shenglin

    2015-10-01

    The purposes of this article were to compare the biophysical dosimetry for postmastectomy left-sided breast cancer using 4 different radiotherapy (RT) techniques. In total, 30 patients with left-sided breast cancer were randomly selected for this treatment planning study. They were planned using 4 RT techniques, including the following: (1) 3-dimensional conventional tangential fields (TFs), (2) tangential intensity-modulated therapy (T-IMRT), (3) 4 fields IMRT (4F-IMRT), and (4) single arc volumetric-modulated arc therapy (S-VMAT). The planning target volume (PTV) dose was prescribed 50 Gy, the comparison of target dose distribution, conformity index, homogeneity index, dose to organs at risk (OARs), tumor control probability (TCP), normal tissue complication probability (NTCP), and number of monitor units (MUs) between 4 plans were investigated for their biophysical dosimetric difference. The target conformity and homogeneity of S-VMAT were better than the other 3 kinds of plans, but increased the volume of OARs receiving low dose (V{sub 5}). TCP of PTV and NTCP of the left lung showed no statistically significant difference in 4 plans. 4F-IMRT plan was superior in terms of target coverage and protection of OARs and demonstrated significant advantages in decreasing the NTCP of heart by 0.07, 0.03, and 0.05 compared with TFs, T-IMRT, and S-VMAT plan. Compared with other 3 plans, TFs reduced the average number of MUs. Of the 4 techniques studied, this analysis supports 4F-IMRT as the most appropriate balance of target coverage and normal tissue sparing.

  13. A dosimetric comparison of whole-lung treatment techniques in the pediatric population.

    PubMed

    Bosarge, Christina L; Ewing, Marvene M; DesRosiers, Colleen M; Buchsbaum, Jeffrey C

    2016-01-01

    To demonstrate the dosimetric advantages and disadvantages of standard anteroposterior-posteroanterior (S-AP/PAAAA), inverse-planned AP/PA (IP-AP/PA) and volumetry-modulated arc (VMAT) radiotherapies in the treatment of children undergoing whole-lung irradiation. Each technique was evaluated by means of target coverage and normal tissue sparing, including data regarding low doses. A historical approach with and without tissue heterogeneity corrections is also demonstrated. Computed tomography (CT) scans of 10 children scanned from the neck to the reproductive organs were used. For each scan, 6 plans were created: (1) S-AP/PAAAA using the anisotropic analytical algorithm (AAA), (2) IP-AP/PA, (3) VMAT, (4) S-AP/PANONE without heterogeneity corrections, (5) S-AP/PAPB using the Pencil-Beam algorithm and enforcing monitor units from technique 4, and (6) S-AP/PAAAA[FM] using AAA and forcing fixed monitor units. The first 3 plans compare modern methods and were evaluated based on target coverage and normal tissue sparing. Body maximum and lower body doses (50% and 30%) were also analyzed. Plans 4 to 6 provide a historic view on the progression of heterogeneity algorithms and elucidate what was actually delivered in the past. Averages of each comparison parameter were calculated for all techniques. The S-AP/PAAAA technique resulted in superior target coverage but had the highest maximum dose to every normal tissue structure. The IP-AP/PA technique provided the lowest dose to the esophagus, stomach, and lower body doses. VMAT excelled at body maximum dose and maximum doses to the heart, spine, and spleen, but resulted in the highest dose in the 30% body range. It was, however, superior to the S-AP/PAAAA approach in the 50% range. Each approach has strengths and weaknesses thus associated. Techniques may be selected on a case-by-case basis and by physician preference of target coverage vs normal tissue sparing. PMID:26778010

  14. Stereotactic body radiation therapy for liver tumours using flattening filter free beam: dosimetric and technical considerations

    PubMed Central

    2012-01-01

    Purpose To report the initial institute experience in terms of dosimetric and technical aspects in stereotactic body radiation therapy (SBRT) delivered using flattening filter free (FFF) beam in patients with liver lesions. Methods and Materials From October 2010 to September 2011, 55 consecutive patients with 73 primary or metastatic hepatic lesions were treated with SBRT on TrueBeam using FFF beam and RapidArc technique. Clinical target volume (CTV) was defined on multi-phase CT scans, PET/CT, MRI, and 4D-CT. Dose prescription was 75 Gy in 3 fractions to planning target volume (PTV). Constraints for organs at risk were: 700 cc of liver free from the 15 Gy isodose, Dmax < 21 Gy for stomach and duodenum, Dmax < 30 Gy for heart, D0.1 cc < 18 Gy for spinal cord, V15 Gy < 35% for kidneys. The dose was downscaled in cases of not full achievement of dose constraints. Daily cone beam CT (CBCT) was performed. Results Forty-three patients with a single lesion, nine with two lesions and three with three lesions were treated with this protocol. Target and organs at risk objectives were met for all patients. Mean delivery time was 2.8 ± 1.0 min. Pre-treatment plan verification resulted in a Gamma Agreement Index of 98.6 ± 0.8%. Mean on-line co-registration shift of the daily CBCT to the simulation CT were: -0.08, 0.05 and -0.02 cm with standard deviations of 0.33, 0.39 and 0.55 cm in, vertical, longitudinal and lateral directions respectively. Conclusions SBRT for liver targets delivered by means of FFF resulted to be feasible with short beam on time. PMID:22296849

  15. Evaluation of the dosimetric parameters for 125I brachytherapy determined in prostate medium using CT images.

    PubMed

    Hanada, Takashi; Yorozu, Atsunori; Ohashi, Toshio; Shigematsu, Naoyuki; Maruyama, Koichi

    2010-01-01

    In the present study, the prostate medium determined from the CT images of 149 patients was developed. The dosimetric parameters such as Λ, g(L)(r) and F(r, θ) used in TG-43U1-based calculation for an iodine-125 ((125)I) brachytherapy-source were examined using Monte Carlo code Geant4. Clinical dosimetry parameters such as the D(90) were evaluated among a subgroup of 50 randomly selected patients who had been treated with permanent brachytherapy between January 2008 and December 2008 at the Tokyo Medical Center. The results show a slight difference in the dose rate constant Λ (within 1.0%). The radial dose function g(L)(r) exhibits a prominent difference in the region over 3 cm, and this difference is maintained within 2.9% in the region close to the source. The calculated values of F(r, θ) for the prostate medium were similar to values for water (within 1%), except in the longitudinal axis. A comparison of D(90) values shows a systematic dose overestimation of 2.8 ± 0.7 Gy in water, where the distribution of the differences can be seen with a spread of 1.8 ± 0.3% compared to that in prostate medium. It was concluded that the introduction of any kind of tissue correction for the TG-43U1-based calculation was not necessary to allow for the differences in elemental compositions and densities between water and prostate medium. PACS number: 87.00.00; 87.55.dk; 87.55.K-; 87.56.B-. PMID:20921822

  16. Dosimetric perturbations of a lead shield for surface and interstitial high-dose-rate brachytherapy.

    PubMed

    Candela-Juan, Cristian; Granero, Domingo; Vijande, Javier; Ballester, Facundo; Perez-Calatayud, Jose; Rivard, Mark J

    2014-06-01

    In surface and interstitial high-dose-rate brachytherapy with either (60)Co, (192)Ir, or (169)Yb sources, some radiosensitive organs near the surface may be exposed to high absorbed doses. This may be reduced by covering the implants with a lead shield on the body surface, which results in dosimetric perturbations. Monte Carlo simulations in Geant4 were performed for the three radionuclides placed at a single dwell position. Four different shield thicknesses (0, 3, 6, and 10 mm) and three different source depths (0, 5, and 10 mm) in water were considered, with the lead shield placed at the phantom surface. Backscatter dose enhancement and transmission data were obtained for the lead shields. Results were corrected to account for a realistic clinical case with multiple dwell positions. The range of the high backscatter dose enhancement in water is 3 mm for (60)Co and 1 mm for both (192)Ir and (169)Yb. Transmission data for (60)Co and (192)Ir are smaller than those reported by Papagiannis et al (2008 Med. Phys. 35 4898-4906) for brachytherapy facility shielding; for (169)Yb, the difference is negligible. In conclusion, the backscatter overdose produced by the lead shield can be avoided by just adding a few millimetres of bolus. Transmission data provided in this work as a function of lead thickness can be used to estimate healthy organ equivalent dose saving. Use of a lead shield is justified. PMID:24705066

  17. SU-F-BRD-11: Prediction of Dosimetric Endpoints From Patient Geometry Using Neural Nets

    SciTech Connect

    O'Connell, D; Chow, P; Agazaryan, N; Jani, S; Low, D; Lamb, J

    2014-06-15

    Purpose: The previously-published overlap volume histogram (OVH) technique lends itself naturally to prediction of the dose received by a given volume of tissue (e.g. D90) in intensity-modulated radiotherapy (IMRT) treatment plans. Here we extend the OVH technique using artificial neural networks in order to predict the volume of tissue receiving a given dose (e.g. V90) in both prostate IMRT and conventional breast radiotherapy. Methods: Twenty-nine prostate treatment plans and forty-three breast treatment plans were analyzed. The spatial relationships between the prostate and rectum and between the breast and ipsilateral lung were characterized using OVHs. The OVH is a cumulative histogram representing the fractional volume of the risk organ overlapped by a series of isotropic expansions of the planning target volume (PTV). Seven cases were identified as outliers and replanned. OVH points were used as inputs to a one hidden layer feed forward artificial neural network with quality parameters of the corresponding plan, such as the rectum V50, as targets. A 3-fold cross-validation was used to estimate the prediction error. Results: The root mean square (RMS) error between the predicted rectum V50s and the planned values was 2.3, which was 35% of the standard deviation of V50 for the twenty-nine plans. The RMS error of prediction of V20 of the ipsilateral lung in breast cases was 3.9, which was 90% of the standard deviation of the V20 values in the breast plan database. Conclusion: This study demonstrates that artificial neural nets can be used to extend the OVH technique to predict dosimetric endpoints taking the form of a volume receiving a given dose, rather than the minimum dose received by a given volume. Prediction of ipsilateral lung dose in breast radiotherapy using the OVH technique remains a work in progress.

  18. Radioiodine therapy in patients with hyperthyroid disorder: standard versus dosimetric activity application.

    PubMed

    Reinartz, P; Zimny, M; Schaefer, W; Mueller, B; Buell, U; Sabri, O

    2003-12-01

    Due to its high success rate and non-invasive character, an increasing demand for radioiodine therapy can be seen. This study was conducted to determine whether standardized 131I activities can be used to facilitate management of patients with hyperthyroid disorder or whether a pre-therapeutic radioiodine test is advisable to determine an adequate therapeutic activity. The therapeutic uptake of 218 patients with benign thyroid disorders were determined and compared with 24 h and 48 h test uptake measurements as well as with calculated standard uptake values. Since there is a linear relationship between iodine uptake and delivered radiation dose, the effect of the different therapeutic approaches on the latter parameter was analysed. Special care was taken to assess possible differences between the various thyroid disorders. A mean deviation between pre-therapeutic test uptake and actual therapeutic uptake of 14.7% was observed in contrast to one of 29.1% when using disease specific standard values per millilitre of thyroid tissue. Furthermore, the proportion of patients with large deviations of more than 40% increased drastically when using standard uptake values (with radioiodine test, 4.1%; with standard values, 18.8%). In conclusion, the dosimetric approach with a pre-therapeutic radioiodine test proved to be the most accurate therapeutic procedure. Both the 24 h and 48 h test uptake measurements gave analogous results and yielded a correlation coefficient of 0.91 when compared with the therapeutic uptake. While it may be tempting to use standard activities to facilitate patient management, the findings of this study confirm that, for precise therapy planning, a pre-therapeutic radioiodine test is advised. Since no significant difference could be found between the 24 h and 48 h test uptake values, an early measurement 24 h after administration of the test activity is recommended. PMID:14627852

  19. Dosimetric characterization and optimization of a customized Stanford total skin electron irradiation (TSEI) technique.

    PubMed

    Luĉić, Felipe; Sánchez-Nieto, Beatriz; Caprile, Paola; Zelada, Gabriel; Goset, Karen

    2013-01-01

    Total skin electron irradiation (TSEI) has been used as a treatment for mycosis fungoides. Our center has implemented a modified Stanford technique with six pairs of 6 MeV adjacent electron beams, incident perpendicularly on the patient who remains lying on a translational platform, at 200 cm from the source. The purpose of this study is to perform a dosimetric characterization of this technique and to investigate its optimization in terms of energy characteristics, extension, and uniformity of the treatment field. In order to improve the homogeneity of the distribution, a custom-made polyester filter of variable thickness and a uniform PMMA degrader plate were used. It was found that the characteristics of a 9 MeV beam with an 8 mm thick degrader were similar to those of the 6 MeV beam without filter, but with an increased surface dose. The combination of the degrader and the polyester filter improved the uniformity of the distribution along the dual field (180cm long), increasing the dose at the borders of field by 43%. The optimum angles for the pair of beams were ± 27°. This configuration avoided displacement of the patient, and reduced the treatment time and the positioning problems related to the abutting superior and inferior fields. Dose distributions in the transversal plane were measured for the six incidences of the Stanford technique with film dosimetry in an anthropomorphic pelvic phantom. This was performed for the optimized treatment and compared with the previously implemented technique. The comparison showed an increased superficial dose and improved uniformity of the 85% isodose curve coverage for the optimized technique. PMID:24036877

  20. Dosimetric evaluation of sucrose and granulated cane sugar in the therapeutic dose range

    SciTech Connect

    Davidson, Melanie T. M.; Jordan, Kevin J.

    2009-04-15

    Granulated cane sugar has been used as a dosimetric material to report dose in high dose accidental irradiations. The purpose of this study was to assess whether clinical dosimetry is also plausible with such a commonly available material. The behavior of cane sugar was explored with respect to therapeutically relevant radiation quantities (dose, dose rate) and qualities (energy, radiation type) as well as under different temperature conditions. The stability of the signal postirradiation was also measured. Absorbed dose was measured by spectrophotometric readout of a ferrous ammonium sulfate xylenol orange (FX)-sugar solution in 10 cm path length cells. A visible color change was produced as a function of dose when the irradiated sugar samples were dissolved in FX solution (10% dilution by mass). A comparison of the optical absorbance spectra and dose response of cane sugar with analytical grade sucrose was done to establish a benchmark standard from which subsequent dosimetry measurements can be validated. The response of the sugar dosimeter read at 590 nm was found to be linear over the dose range of 100-2000 cGy, independent of energy (6-18 MV) and of the average dose rate (100-500 cGy/min). The readout of sugar samples irradiated with mixed photon and electron fields was also shown to be independent of radiation type (photons and electrons). Sugar temperature (20-40 degree sign C) during irradiation did not affect dose estimates, making it a promising dosimeter for in vivo dosimetry, particularly in cases where the dosimeter must remain in contact with the patient for an extended period of time. Sugar can be used as an integrating dosimeter, since it exhibits no fractionation effects. Granulated cane sugar is cost effective, safe, soft tissue equivalent, and can be used under various experimental conditions, making it a suitable dosimeter for some radiotherapy applications.

  1. Photon buildup factors in some dosimetric materials for heterogeneous radiation sources.

    PubMed

    Kurudirek, Murat

    2014-03-01

    Effective photon energy absorption (EABF(eff)) and exposure buildup factors (EBF(eff)) have been calculated based on the effective energy concept, for some dosimetric materials such as water, polymethyl methacrylate (PMMA), polystyrene, solid water (WT1), RW3 (Goettingen Water 3), and ABS (acrylonitrile butadiene styrene), for MV X-rays and (60)Co gamma rays. Firstly, the equivalent atomic numbers (Z(eq)) of the given materials have been determined using the effective photon energies (E eff). Then, the five-parameter geometric progression (G-P) fitting approximation has been used to calculate both EABF(eff) and EBF(eff) values. Since the G-P fitting parameters are not available for the E eff values of the given materials, a linear interpolation in which a function of the logarithm of the variable is used has been performed, in order to calculate the parameters in each E eff, which will be further used for the determination of EABF(eff) and EBF(eff). In the present paper, water equivalence properties of the given materials are also discussed based on the effective buildup factors. In this study, special emphasis is placed on the calculation of EABF(eff) and EBF(eff) values of different materials for photons that are not monoenergetic but heterogeneous in energy, to obtain an initial and prior knowledge of the probable energy and buildup of photons at locations of interest, i.e., to understand whether the real absorbed dose occurs at the surface or somewhere inside the medium of interest. PMID:24287785

  2. Dosimetric Effect of Online Image-Guided Anatomical Interventions for Postprostatectomy Cancer Patients

    SciTech Connect

    Diot, Quentin; Olsen, Christine; Kavanagh, Brian; Raben, David; Miften, Moyed

    2011-02-01

    Purpose: To assess daily variations in delivered doses in postprostatectomy patients, using kilovoltage cone-beam CT (CBCT) datasets acquired before and after interventions to correct for observed distortions in volume/shape of rectum and bladder. Methods and Materials: Seventeen consecutive patients treated with intensity-modulated radiotherapy to the prostate bed were studied. For patients with large anatomical variations, quantified by either a rectal wall displacement of >5 mm or bladder volume change of >50% on the CBCT compared with the planning CT, an intervention was performed to adjust the rectum and/or bladder filling. Cumulative doses over the pre- and post-intervention fractions were calculated by tracking the position of the planning CT voxels on different CBCTs using a deformable surface-mapping algorithm. Dose and displacements vectors were projected on two-dimensional maps, the minimal dose received by the highest 95% of the planing target volume (PTV D95) and the highest 10% of the rectum volume (D10) as well as the bladder volume receiving >2 Gy (V2) were evaluated. Results: Of 544 fractions, 96 required intervention. Median (range) number of interventions per patient was 5 (2-12). Compared with the planning values, the mean (SD) pre- vs. postintervention value for PTV D95 was -2% (2%) vs. -1% (2%) (p < 0.12), for rectum D10 was -1% (4%) vs. +1% (4%) (p < 0.24), and for bladder V2 was +6% vs. +20% (p < 0.84). Conclusions: Interventions to reduce treatment volume deformations due to bladder and rectum fillings are not necessary when patients receive daily accurate CBCT localization, and the frequency of those potential interventions is low. However, for hypofractionated treatments, the relative frequency can significantly increase, and interventions can become more dosimetrically beneficial.

  3. Development and Dosimetric Characterization of a Tissue Substitute (Bolus) For Use in Linear Accelerator Electron Radiotherapy

    NASA Astrophysics Data System (ADS)

    Estrada Trujillo, Jorge; Villaseñor Navarro, Luis Felipe; Mitsoura, Eleni

    2003-09-01

    We propose the design of a new custom made material, to be used as a tissue substitute in external beam electron radiotherapy, based on cotton fabric and beeswax. Due to its inexpensive, easy preparation, constant thickness, flexibility, uniform density and physical properties similar to those of soft tissue, this bolus will insure personalized optimal dose build up and dose distribution in irregular treatment regions. Materials and Methods: We used commercial Campeche beeswax and 100% cotton fabric to prepare the bolus. Beeswax's physical characteristics were determined by thermal and density analysis. Its chemical properties are to be determined by electronic microcopy. We performed quality control tests and calibration of the Varian 2100C linear accelerator. The tissue equivalence of the material is established for a range of electron energies (6, 9, 12, 16, 20 MeV) using a water equivalent solid phantom (PTW; Freiburg, Germany) and a plane parallel ionization chamber (PTW) associated to a PTW electrometer. Results: Beeswax's absolute density was found to be 0.9181g/ml at 21°C, with a melting point of 45°C. For the bolus elaboration, the cotton fabric was soaked in liquid beeswax and thin sheets of approximately 1 mm were obtained. These presented high flexibility, physical stability (color, texture, thickness) and homogeneity. Determination of this dosimetric characteristics and equivalent thickness are still in process. Discussion and conclusions: Our preliminary results suggest that the tissue substitute is easily made, inexpensive to produce, molds well to the treatment area and its positioning is easy and reproducible over the course of the treatment. So we consider that it's a good alternative to the commercial bolus.

  4. Postoperative radiotherapy following mastectomy for patients with left-sided breast cancer: A comparative dosimetric study.

    PubMed

    Wang, Jiahao; Li, Xiadong; Deng, Qinghua; Xia, Bing; Wu, Shixiu; Liu, Jian; Ma, Shenglin

    2015-01-01

    The purposes of this article were to compare the biophysical dosimetry for postmastectomy left-sided breast cancer using 4 different radiotherapy (RT) techniques. In total, 30 patients with left-sided breast cancer were randomly selected for this treatment planning study. They were planned using 4 RT techniques, including the following: (1) 3-dimensional conventional tangential fields (TFs), (2) tangential intensity-modulated therapy (T-IMRT), (3) 4 fields IMRT (4F-IMRT), and (4) single arc volumetric-modulated arc therapy (S-VMAT). The planning target volume (PTV) dose was prescribed 50Gy, the comparison of target dose distribution, conformity index, homogeneity index, dose to organs at risk (OARs), tumor control probability (TCP), normal tissue complication probability (NTCP), and number of monitor units (MUs) between 4 plans were investigated for their biophysical dosimetric difference. The target conformity and homogeneity of S-VMAT were better than the other 3 kinds of plans, but increased the volume of OARs receiving low dose (V5). TCP of PTV and NTCP of the left lung showed no statistically significant difference in 4 plans. 4F-IMRT plan was superior in terms of target coverage and protection of OARs and demonstrated significant advantages in decreasing the NTCP of heart by 0.07, 0.03, and 0.05 compared with TFs, T-IMRT, and S-VMAT plan. Compared with other 3 plans, TFs reduced the average number of MUs. Of the 4 techniques studied, this analysis supports 4F-IMRT as the most appropriate balance of target coverage and normal tissue sparing. PMID:25534167

  5. Dosimetric and toxicity comparison between prone and supine position IMRT for endometrial cancer

    SciTech Connect

    Beriwal, Sushil . E-mail: beriwals@upmc.edu; Jain, Sheena K.; Heron, Dwight E.; De Andrade, Regiane S.; Lin, Chyonghiou J.; Kim, Hayeon

    2007-02-01

    Purpose: To determine the dosimetric and toxicity differences between prone and supine position intensity-modulate radiotherapy in endometrial cancer patients treated with adjuvant radiotherapy. Methods: Forty-seven c