Science.gov

Sample records for multi-gamma emitters 166mho

  1. Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor)

    1992-01-01

    This invention relates to a small particle selective emitter for converting thermal energy into narrow band radiation with high efficiency. The small particle selective emitter is used in combination with a photovoltaic array to provide a thermal to electrical energy conversion device. An energy conversion apparatus of this type is called a thermo-photovoltaic device. In the first embodiment, small diameter particles of a rare earth oxide are suspended in an inert gas enclosed between concentric cylinders. The rare earth oxides are used because they have the desired property of large emittance in a narrow wavelength band and small emittance outside the band. However, it should be emphasized that it is the smallness of the particles that enhances the radiation property. The small particle selective emitter is surrounded by a photovoltaic array. In an alternate embodiment, the small particle gas mixture is circulated through a thermal energy source. This thermal energy source can be a nuclear reactor, solar receiver, or combustor of a fossil fuel.

  2. Asymmetrical field emitter

    DOEpatents

    Fleming, J.G.; Smith, B.K.

    1995-10-10

    A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.

  3. Emittance Theory for Thin Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  4. Multi-gamma-source CT imaging system: a feasibility study with the Poisson noise

    NASA Astrophysics Data System (ADS)

    Wi, Sunhee; Cho, Seungryong

    2016-03-01

    This study was performed to test the feasibility of multi-gamma-source CT imaging system. Gamma-source CT employs radioisotopes that emit monochromatic energy gamma-rays. The advantages of gamma-source CT include its immunity to beam hardening artifacts, its capacity of quantitative CT imaging, and its higher performance in low contrast imaging compared to the conventional x-ray CT. Radioisotope should be shielded by use of a pin-hole collimator so as to make a fine focal spot. Due to its low gamma-ray flux in general, the reconstructed image from a single gamma-source CT would suffer from high noise in data. To address this problem, we proposed a multi-gamma source CT imaging system and developed an iterative image reconstruction algorithm accordingly in this work. Conventional imaging model assumes a single linear imaging system typically represented by Mf = g. In a multi-gamma-source CT system however, the inversion problem is not any more based on a single linear system since one cannot separate a detector pixel value into multiple ones that are corresponding to each rays from the sources. Instead, the imaging model can be constructed by a set of linear system models each of which assumes an estimated measurement g. Based on this model, the proposed algorithm has a weighting step which distributes each projection data into multiple estimated measurements. We used two gamma sources at various positions and with varying intensities in this numerical study to demonstrate its feasibility. Therefore, the measured projection data(g) is separated into each estimated projection data(g1, g2) in this study. The proposed imaging protocol is believed to contribute to both medical and industrial applications.

  5. Emittance Theory for Cylindrical Fiber Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1998-01-01

    A fibrous rare earth selective emitter is approximated as an infinitely long, cylinder. The spectral emittance, e(sub x), is obtained L- by solving the radiative transfer equations with appropriate boundary conditions and uniform temperature. For optical depth, K(sub R), where alpha(sub lambda), is the extinction coefficient and R is the cylinder radius, greater than 1 the spectral emittance depths, K(sub R) alpha(sub lambda)R, is nearly at its maximum value. There is an optimum cylinder radius, R(sub opt) for maximum emitter efficiency, n(sub E). Values for R(sub opt) are strongly dependent on the number of emission bands of the material. The optimum radius decreases slowly with increasing emitter temperature, while the maximum efficiency and useful radiated power increase rapidly with increasing, temperature.

  6. Emittance Theory for Cylindrical Fiber Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1998-01-01

    A fibrous rare earth selective emitter is approximated as an infinitely long cylinder. The spectral emittance, epsilon(lambda), is obtained by solving the radiative transfer equations with appropriate boundary conditions and uniform temperature. For optical depths, Kappa(R) = alpha(lambda)R, where alpha(lambda) is the extinction coefficient and R is the cylinder radius, greater than 1 the spectral emittance is nearly at its maximum value. There is an optimum cylinder radius, R(opt), for maximum emitter efficiency, eta(E). Values for R(opt) are strongly dependent on the number of emission bands of the material. The optimum radius decreases slowly with increasing emitter temperature, while the maximum efficiency and useful radiated power increase rapidly with increasing temperature.

  7. Floating emitter solar cell

    NASA Technical Reports Server (NTRS)

    Chih, Sah (Inventor); Cheng, Li-Jen (Inventor)

    1987-01-01

    A front surface contact floating emitter solar cell transistor is provided in a semiconductor body (n-type), in which floating emitter sections (p-type) are diffused or implanted in the front surface. Between the emitter sections, a further section is diffused or implanted in the front surface, but isolated from the floating emitter sections, for use either as a base contact to the n-type semiconductor body, in which case the section is doped n+, or as a collector for the adjacent emitter sections.

  8. Photonically Engineered Incandescent Emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2005-03-22

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  9. Photonically engineered incandescent emitter

    DOEpatents

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-08-26

    A photonically engineered incandescence is disclosed. The emitter materials and photonic crystal structure can be chosen to modify or suppress thermal radiation above a cutoff wavelength, causing the emitter to selectively emit in the visible and near-infrared portions of the spectrum. An efficient incandescent lamp is enabled thereby. A method for fabricating a three-dimensional photonic crystal of a structural material, suitable for the incandescent emitter, is also disclosed.

  10. Diamond fiber field emitters

    DOEpatents

    Blanchet-Fincher, Graciela B.; Coates, Don M.; Devlin, David J.; Eaton, David F.; Silzars, Aris K.; Valone, Steven M.

    1996-01-01

    A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

  11. Pulsed hybrid field emitter

    DOEpatents

    Sampayan, Stephen E.

    1998-01-01

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.

  12. Pulsed hybrid field emitter

    DOEpatents

    Sampayan, S.E.

    1998-03-03

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.

  13. Portable emittance measurement device

    SciTech Connect

    Liakin, D.; Seleznev, D.; Orlov, A.; Kuibeda, R.; Kropachev, G.; Kulevoy, T.; Yakushin, P.

    2010-02-15

    In Institute for Theoretical and Experimental Physics (ITEP) the portable emittance measurements device is developed. It provides emittance measurements both with ''pepper-pot'' and ''two slits'' methods. Depending on the method of measurements, either slits or pepper-pot mask with scintillator are mounted on the two activators and are installed in two standard Balzer's cross chamber with CF-100 flanges. To match the angle resolution for measured beam, the length of the stainless steel pipe between two crosses changes is adjusted. The description of the device and results of emittance measurements at the ITEP ion source test bench are presented.

  14. The emittance concept

    NASA Astrophysics Data System (ADS)

    Lawson, J. D.

    1992-04-01

    An informal descriptive account is first given of the emittance concept and its underlying physical basis. This is followed by a discussion of the connection between emittance and entropy, and a number of questions relating to problems of current interest concerning such topics as emittance growth and equipartition between different degrees of freedom are raised. Although no new results are obtained, it is hoped that the discussion may be helpful in the search for new insights. The paper differs from that presented at the conference, and contains ideas which arose in discussion with T. P. Wangler at Los Alamos after the conference.

  15. DIAMOND SECONDARY EMITTER

    SciTech Connect

    BEN-ZVI, I.; RAO, T.; BURRILL, A.; CHANG, X.; GRIMES, J.; RANK, J.; SEGALOV, Z.; SMEDLEY, J.

    2005-10-09

    We present the design and experimental progress on the diamond secondary emitter as an electron source for high average power injectors. The design criteria for average currents up to 1 A and charge up to 20 nC are established. Secondary Electron Yield (SEY) exceeding 200 in transmission mode and 50 in emission mode have been measured. Preliminary results on the design and fabrication of the self contained capsule with primary electron source and secondary electron emitter will also be presented.

  16. Cancer from internal emitters

    SciTech Connect

    Boecker, B.B.; Griffith, W.C. Jr.

    1995-10-01

    Irradiation from internal emitters, or internally deposited radionuclides, is an important component of radiation exposures encountered in the workplace, home, or general environment. Long-term studies of human populations exposed to various internal emitters by different routes of exposure are producing critical information for the protection of workers and members of the general public. The purpose of this report is to examine recent developments and discuss their potential importance for understanding lifetime cancer risks from internal emitters. The major populations of persons being studied for lifetime health effects from internally deposited radionuclides are well known: Lung cancer in underground miners who inhaled Rn progeny, liver cancer from persons injected with the Th-containing radiographic contrast medium Thorotrast, bone cancer from occupational or medical intakes of {sup 226}Ra or medical injections of {sup 224}Ra, and thyroid cancer from exposures to iodine radionuclides in the environment or for medical purposes.

  17. RFI emitter location techniques

    NASA Technical Reports Server (NTRS)

    Rao, B. L. J.

    1973-01-01

    The possibility is discussed of using Doppler techniques for determining the location of ground based emitters causing radio frequency interference with low orbiting satellites. An error analysis indicates that it is possible to find the emitter location within an error range of 2 n.mi. The parameters which determine the required satellite receiver characteristic are discussed briefly along with the non-real time signal processing which may by used in obtaining the Doppler curve. Finally, the required characteristics of the satellite antenna are analyzed.

  18. FACET Emittance Growth

    SciTech Connect

    Frederico, J; Hogan, M.J.; Nosochkov, Y.; Litos, M.D.; Raubenheimer, T.; /SLAC

    2011-04-05

    FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration. The FACET beamline consists of a chicane and final focus system to compress the 23 GeV, 3.2 nC electron bunches to {approx}20 {micro}m long and {approx}10 {micro}m wide. Simulations of the FACET beamline indicate the short-duration and large, 1.5% rms energy spread beams may suffer a factor of four emittance growth from a combination of chromaticity, incoherent synchrotron radiation (ISR), and coherent synchrotron radiation (CSR). Emittance growth is directly correlated to head erosion in plasma wakefield acceleration and is a limiting factor in single stage performance. Studies of the geometric, CSR, and ISR components are presented. Numerical calculation of the rms emittance can be overwhelmed by long tails in the simulated phase space distributions; more useful definitions of emittance are given. A complete simulation of the beamline is presented as well, which agrees with design specifications.

  19. Effect of Temperature Gradient on Thick Film Selective Emitter Emittance

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Good, Brian S.; Clark, Eric B.; Chen, Zheng

    1997-01-01

    A temperature gradient across a thick (greater than or equal to .1 mm) film selective emitter will produce a significant reduction in the spectral emittance from the no temperature gradient case. Thick film selective emitters of rare earth doped host materials such as yttrium-aluminum-garnet (YAG) are examples where temperature gradient effects are important. In this paper a model is developed for the spectral emittance assuming a linear temperature gradient across the film. Results of the model indicate that temperature gradients will result in reductions the order of 20% or more in the spectral emittance.

  20. Rare Earth Garnet Selective Emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  1. Nonintercepting emittance monitor

    SciTech Connect

    Miller, R.H.; Clendenin, J.E.; James, M.B.; Sheppard, J.C.

    1983-08-01

    A nonintercepting emittance monitor is a helpful device for measuring and improving particle beams in accelerators and storage rings as it allows continuous monitoring of the beam's distribution in phase space, and perhaps closed loop computer control of the distributions. Stripline position monitors are being investigated for use as nonintercepting emittance monitors for a beam focused by a FODO array in the first 100 meters of our linear accelerator. The technique described here uses the signal from the four stripline probes of a single position monitor to measure the quadrupole mode of the wall current in the beam pipe. This current is a function of the quadrupole moment of the beam, sigma/sup 2//sub x/ - sigma/sup 2//sub y/. In general, six independent measurements of the quadrupole moment are necessary to determine the beam emittance. This technique is dependent on the characteristically large variations of sigma/sup 2//sub x/ - sigma/sup 2//sub y/ in a FODO array. It will not work in a focusing system where the beam is round at each focusing element.

  2. Rare earth garnet selective emitter

    SciTech Connect

    Lowe, R.A.; Chubb, D.L.; Farmer, S.C.; Good, B.S.

    1994-09-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon{sub {lambda}}) approximately equal to 0.74, ((4)l{sub 15/2}) - ((4)l{sub 13/2}), for Er-YAG and epsilon{sub {lambda}} approximately equal to 0.65, ((5)l{sub 7})-((5)l{sub 8}) for (Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper the authors present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon{sub {lambda}} measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  3. Rare earth garnet selective emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approximately equal to 0.74, ((4)l(sub 15/2)) - ( (4)l(sub13/2)), for Er-YAG and epsilon(sub lambda) approximately equal to 0.65, ((5)l(sub 7))-((5)l(sub 8)) for Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  4. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    DOEpatents

    Wang, Daojing; Yang, Peidong; Kim, Woong; Fan, Rong

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  5. Amorphous-diamond electron emitter

    DOEpatents

    Falabella, Steven

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  6. EMITTANCE COMPENSATION FOR MAGNETIZED BEAMS

    SciTech Connect

    KEWISCH,J.; CHANG, X.

    2007-06-25

    Emittance compensation is a well established technique for minimizing the emittance of an electron beam from a RF photo-cathode gun. Longitudinal slices of a bunch have a small emittance, but due to the longitudinal charge distribution of the bunch and time dependent RF fields they are not focused in the same way, so that the direction of their phase ellipses diverges in phase space and the projected emittance is much larger. Emittance compensation reverses the divergence. At the location where the slopes of the phase ellipses coincide the beam is accelerated, so that the space charge forces are reduced. A recipe for emittance compensation is given in. For magnetized beams (where the angular momentum is non-zero) such emittance compensation is not sufficient because variations in the slice radius lead to variations in the angular speed and therefore to an increase of emittance in the rotating game. We describe a method and tools for a compensation that includes the beam magnetization.

  7. Emittance growth in intense beams

    SciTech Connect

    Wangler, T.P.; Mills, R.S.; Crandall, K.R.

    1987-03-01

    Recent progress in the study of high-current, low-emittance, charged-particle beams may have a significant influence in the design of future linear accelerators and beam-transport systems for higher brightness applications. Three space-charge-induced rms-emittance-growth mechanisms are now well established: (1) charge-density redistribution, (2) kinetic-energy exchange toward equipartitioning, and (3) coherent instabilities driven by periodic focusing systems. We report the results from a numerical simulation study of emittance in a high-current radio-frequency quadrupole (RFQ) linear accelerator, and present a new semiempirical equation for the observed emittance growth, which agrees well with the emittance growth predicted from numerical simulation codes.

  8. Highly directional thermal emitter

    DOEpatents

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  9. Emittance and Phase Space Exchange

    SciTech Connect

    Xiang, Dao; Chao, Alex; /SLAC

    2011-08-19

    Alternative chicane-type beam lines are proposed for exact emittance exchange between horizontal phase space (x; x{prime}) and longitudinal phase space (z; {delta}). Methods to achieve exact phase space exchanges, i.e. mapping x to z, x{prime} to {delta}, z to x and {delta} to x{prime} are suggested. Methods to mitigate the thick-lens effect of the transverse cavity on emittance exchange are discussed. Some applications of the phase space exchanger and the feasibility of an emittance exchange experiment with the proposed chicane-type beam line at SLAC are discussed.

  10. Beam emittance measurements in RHIC

    SciTech Connect

    Zelenski,A.; Bazilevsky, A.; Bunce, G.; Gill, R.; Huang, H.; Makdisi, Y.; Morozov, B.; Nemesure, S.; Russo, t.; Steski, D.; Sivertz, M.

    2009-05-04

    The RHIC proton polarimeters can operate in scanning mode, giving polarization profiles and transverse beam intensity profile (beam emittance) measurements. The polarimeters function as wire scanners, providing a very good signal/noise ratio and high counting rate. This allows accurate bunch-by-bunch emittance measurements during fast target sweeps (<1 s) through the beam. Very thin carbon strip targets make these measurements practically non-destructive. Bunch by bunch emittance measurements are a powerful tool for machine set-up; in RHIC, individual proton beam transverse emittances can only be measured by CNI polarimeter scans. We discuss the consistency of these measurements with Ionization Profile Monitors (IPMs) and vernier scan luminosity measurements. Absolute accuracy limitations and cross-calibration of different techniques are also discussed.

  11. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  12. Diamondoid monolayers as electron emitters

    DOEpatents

    Yang, Wanli; Fabbri, Jason D.; Melosh, Nicholas A.; Hussain, Zahid; Shen, Zhi-Xun

    2013-10-29

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  13. Visible Spectrum Incandescent Selective Emitter

    SciTech Connect

    Sonsight Inc.

    2004-04-30

    The purpose of the work performed was to demonstrate the feasibility of a novel bi-layer selective emitter. Selective emitters are incandescent radiant bodies with emissivities that are substantially larger in a selected part of the radiation spectrum, thereby significantly shifting their radiated spectral distribution from that of a blackbody radiating at the same temperature. The major research objectives involved answering the following questions: (1) What maximum VIS/NIR radiant power and emissivity ratios can be attained at 2650 K? (2) What is the observed emitter body life and how does its performance vary with time? (3) What are the design tradeoffs for a dual heating approach in which both an internally mounted heating coil and electrical resistance self-heating are used? (4) What are the quantitative improvements to be had from utilizing a bi-layer emitter body with a low emissivity inner layer and a partially transmissive outer layer? Two approaches to obtaining selective emissivity were investigated. The first was to utilize large optical scattering within an emitter material with a spectral optical absorption that is much greater within the visible spectrum than that within the NIR. With this approach, an optically thick emitter can radiate almost as if optically thin because essentially, scattering limits the distance below the surface from which significant amounts of internally generated radiation can emerge. The performance of thin emitters was also investigated (for optically thin emitters, spectral emissivity is proportional to spectral absorptivity). These emitters were fabricated from thin mono-layer emitter rods as well as from bi-layer rods with a thin emitter layer mounted on a substrate core. With an initially estimated energy efficiency of almost three times that of standard incandescent bulbs, a number of energy, economic and environmental benefits such as less energy use and cost, reduced CO{sub 2} emissions, and no mercury contamination

  14. Thermionic converter emitter support arrangement

    DOEpatents

    Allen, Daniel T.

    1990-01-01

    A support is provided for use in a thermionic converter to support an end an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially at its temperatures changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housng, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  15. Thermionic converter emitter support arrangement

    DOEpatents

    Allen, Daniel T.

    1990-01-01

    A support is provided for use in a therminonic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housing, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  16. Combustion powered thermophotovoltaic emitter system

    SciTech Connect

    McHenry, R.S.

    1995-07-01

    The US Naval Academy (USNA) has recently completed an engineering design project for a high temperature thermophotovoltaic (TPV) photon emitter. The final apparatus was to be portable, completely self contained, and was to incorporate cycle efficiency optimization such as exhaust stream recuperation. Through computer modeling and prototype experimentation, a methane fueled emitter system was designed from structural ceramic materials to fulfill the high temperature requirements necessary for high system efficiency. This paper outlines the engineering design process, discusses obstacles and solutions encountered, and presents the final design.

  17. Emittance concept and growth mechanisms

    SciTech Connect

    Wangler, T.P.

    1996-05-01

    The authors present an introduction to the subjects of emittance and space-charge effects in charged-particle beams. This is followed by a discussion of three important topics that are at the frontier of this field. The first is a simple model, describing space-charge-induced emittance growth, which yields scaling formulas and some physical explanations for some of the surprising results. The second is a discussion of beam halo, an introduction to the particle-core model, and a brief summary of its results. The third topic is an introduction to the hypothesis of equipartitioning for collisionless particle beams.

  18. Emittance concept and growth mechanisms

    SciTech Connect

    Wangler, T.P.

    1996-06-01

    We present an introduction to the subjects of emittance and space-charge effects in charged-particle beams. This is followed by a discussion of three important topics that are at the frontier of this field. The first is a simple model, describing space-charge-induced emittance growth, which yields scaling formulas and some physical explanations for some of the surprising results. The second is a discussion of beam halo, an introduction to the particle-core model, and a brief summary of its results. The third topic is an introduction to the hypothesis of equipartitioning for collisionless particle beams. {copyright} {ital 1996 American Institute of Physics.}

  19. Ultra Low Emittance Light Sources

    SciTech Connect

    Bengtsson,J.

    2008-06-23

    This paper outlines the special issues for reaching sub-nm emittance in a storage ring. Effects of damping wigglers, intra-beam scattering and lifetime issues, dynamic aperture optimization, control of optics, and their interrelations are covered in some detail. The unique choices for the NSLS-II are given as one example.

  20. Shielding in ungated field emitter arrays

    NASA Astrophysics Data System (ADS)

    Harris, J. R.; Jensen, K. L.; Shiffler, D. A.; Petillo, J. J.

    2015-05-01

    Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can be used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 102-104 are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.

  1. Shielding in ungated field emitter arrays

    SciTech Connect

    Harris, J. R.; Jensen, K. L.; Shiffler, D. A.; Petillo, J. J.

    2015-05-18

    Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can be used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.

  2. Alpha particle emitters in medicine

    SciTech Connect

    Fisher, D.R.

    1989-09-01

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 ({sup 211}At) and natural bismuth-212 ({sup 212}Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 ({sup 223}Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs.

  3. Combustion powered thermophotovoltaic emitter system

    SciTech Connect

    McHenry, R.S.; Harper, M.J.; Lindler, K.W.

    1995-12-31

    The United States Naval Academy, under interagency agreement with the Department of Energy (DOE), has recently completed an engineering design project for a high temperature thermophotovoltaic (TPV) photon emitter. The design was constrained by the physical geometry and photovoltaic cell type of the DOE TPV generator so that a cylindrical emitter at 1,756 K (2,700 F) was dictated. The final apparatus was to be portable, completely self contained, and was to incorporate cycle efficiency optimization such as exhaust stream recuperation. Through computer modeling and prototype experimentation, a methane fueled emitter system was designed from structural ceramic materials to fulfill the DOE requirements. This paper outlines the engineering design process, discusses obstacles and solutions encountered, and presents the final design. The concept of thermophotovoltaic energy conversion dates to the 1960s and has been the subject of broad research effort. This is a direct energy conversion process that converts thermal energy into electricity with only photonic coupling. The process offers high theoretical efficiency, versatile application as a primary or secondary power cycle, and a number of operational advantages resulting from the lack of a working substance or moving parts.

  4. Emittance measurements of RCG coated Shuttle tiles

    NASA Technical Reports Server (NTRS)

    Bouslog, Stanley A.; Cunnington, George R., Jr.

    1992-01-01

    The spectral and total normal emittance of the Reaction Cured Glass (RCG) coating used on Shuttle tiles has been measured for surface temperatures of 300 to 1905 K. These measurements were made on two virgin and two flown Shuttle tile samples. Room temperature directional emittance data were also obtained and used to determine the total hemispherical emittance of RCG as a function of temperature. The data obtained from this calculation indicate that the total hemispherical emittance decreases from a room temperature value of 0.83 to a value of 0.76 at 1905 K. The flown Shuttle tiles exhibited a change in the spectral distribution of emittance compared to that of the virgin tile, but no significant trends in the total emittance from a virgin to a flown tile could be established.

  5. Emittance growth from radiation fluctuations

    SciTech Connect

    Sands, M.

    1985-12-01

    As an electron bunch travels through a transport system, fluctuations in the energy loss of individual electrons cause the size of the bunch to grow. A calculation is given of the quantum-induced growth of the emittance of a beam in one transverse coordinate, making the following approximations: (1) that the transport system is linear; (2) that there is no coupling between the two transverse motions; and (3) that the radiation effects can be described by their values on the central design trajectory. This last assumption means that systems are considered in which the quantum effects from bending magnets are much larger than from the focusing lenses.

  6. Emittance Growth in the NLCTA First Chicane

    SciTech Connect

    Sun, Yipeng; Adolphsen, Chris; /SLAC

    2011-08-19

    In this paper, the emittance growth in the NLCTA (Next Linear Collider Test Accelerator) first chicane region is evaluated by simulation studies. It is demonstrated that the higher order fields of the chicane dipole magnet and the dipole corrector magnet (which is attached on the quadrupoles) are the main contributions for the emittance growth, especially for the case with a large initial emittance ({gamma}{epsilon}{sub 0} = 5 {micro}m for instance). These simulation results agree with the experimental observations.

  7. Directional emittance corrections for thermal infrared imaging

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Wright, Robert E., Jr.; Puram, Chith K.; Alderfer, David W.

    1992-01-01

    A simple measurement technique for measuring the variation of directional emittance of surfaces at various temperatures using commercially available radiometric IR imaging systems was developed and tested. This technique provided the integrated value of directional emittance over the spectral bandwidth of the IR imaging system. The directional emittance of flat black lacquer and red stycast, an epoxy resin, measured using this technique were in good agreement with the predictions of the electromagnetic theory. The data were also in good agreement with directional emittance data inferred from directional reflectance measurements made on a spectrophotometer.

  8. Hybrid emitter all back contact solar cell

    DOEpatents

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  9. Muon Cooling—emittance exchange

    NASA Astrophysics Data System (ADS)

    Parsa, Zohreh

    2001-05-01

    Muon Cooling is the key factor in building of a Muon collider, (to a less degree) Muon storage ring, and a Neutrino Factory. Muon colliders potential to provide a probe for fundamental particle physics is very interesting, but may take a considerable time to realize, as much more work and study is needed. Utilizing high intensity Muon sources-Neutrino Factories, and other intermediate steps are very important and will greatly expand our abilities and confidence in the credibility of high energy muon colliders. To obtain the needed collider luminosity, the phase-space volume must be greatly reduced within the muon life time. The Ionization cooling is the preferred method used to compress the phase space and reduce the emittance to obtain high luminosity muon beams. We note that, the ionization losses results not only in damping, but also heating. The use of alternating solenoid lattices has been proposed, where the emittance are large. We present an overview of the cooling and discuss formalism, solenoid magnets and some beam dynamics.

  10. Thermophotovoltaic Generators Using Selective Metallic Emitters

    NASA Technical Reports Server (NTRS)

    Fraas, Lewis M.; Samaras, John E.; Avery, James E.; Ewell, Richard

    1995-01-01

    In the literature to date on thermophotovoltaic (TPV) generators, two types of infrared emitter's have been emphasized : gray body emitters and rare earth oxide selective emitters. The gray body emitter is defined as an emitter with a spectral emissivity independent of wavelength whereas the rare earth oxide selective emitter is idealized as a delta function emitter with a high emissivity at a select wavelength and a near zero emissivity at all other wavelengths. Silicon carbide is an example of a gray body emitter and ER-YAG is an example of a selective emitter. The Welsbach mantle in a common lantern is another example of an oxide selective emitter. Herein, we describe an alternative type of selective emitter, a selective metallic emitter. These metallic emitters are characterized by a spectral emissivity curve wherein the emissivity monotonically increases with shorter infrared wavelengths as is shown. The metal of curve "A", tungsten, typifies this class of selective metallic emitter's. In a thermophotovoltaic generator, a photovoltaic cell typically converts infrared radiation to electricity out to some cut-off wavelength. For example, Gallium Antimonide (GaSb) TPV cells respond out to 1.7 microns. The problem with gray body emitters is that they emit at all wavelengths. Therefore, a large fraction of the energy emitted will be outside of the response band of the TPV cell. The argument for the selective emitter is that, ideally, all the emitted energy can be in the cells response band. Unfortunately, rare earth oxide emitters are not ideal. In order to suppress the emissivity toward zero away from the select wavelength, the use of thin fiber's is necessary. This leads to a fragile emitter typical of a lantern mantle. Even given a thin ER-YAG emitter, the measured emissivity at the select wavelength of 1.5 microns has been reported to be 0.6 while the off wavelength background emissivity falls to only 0.2 at 5 microns. This gives a selectivity ratio of only 3

  11. Selective Emitter Pumped Rare Earth Laser

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Patton, Martin O. (Inventor)

    2001-01-01

    A selective emitter pumped rare earth laser provides an additional type of laser for use in many laser applications. Rare earth doped lasers exist which are pumped with flashtubes or laser diodes. The invention uses a rare earth emitter to transform thermal energy input to a spectral band matching the absorption band of a rare earth in the laser in order to produce lasing.

  12. High-emittance coatings on metal substrates

    NASA Technical Reports Server (NTRS)

    Emanuelson, R. C.; Luoma, W. L.; Walek, W. J.

    1968-01-01

    High-emittance coatings of iron, calcium, and zirconium titanates thermally sprayed on stainless steel, columbium-1 percent zirconium, and beryllium substrates promote and control radiative heat transfer from the metal substrates. Adherence, compatibility and emittance stability at elevated temperature and high vacuum were evaluated.

  13. Bright Single Photon Emitter in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Lienhard, Benjamin; Schroeder, Tim; Mouradian, Sara; Dolde, Florian; Trong Tran, Toan; Aharonovich, Igor; Englund, Dirk

    Efficient, on-demand, and robust single photon emitters are of central importance to many areas of quantum information processing. Over the past 10 years, color centers in solids have emerged as excellent single photon emitters. Color centers in diamond are among the most intensively studied single photon emitters, but recently silicon carbide (SiC) has also been demonstrated to be an excellent host material. In contrast to diamond, SiC is a technologically important material that is widely used in optoelectronics, high power electronics, and microelectromechanical systems. It is commercially available in sizes up to 6 inches and processes for device engineering are well developed. We report on a visible-spectrum single photon emitter in 4H-SiC. The emitter is photostable at both room and low temperatures, and it enables 2 million photons/second from unpatterned bulk SiC. We observe two classes of orthogonally polarized emitters, each of which has parallel absorption and emission dipole orientations. Low temperature measurements reveal a narrow zero phonon line with linewidth < 0.1 nm that accounts for more than 30% of the total photoluminescence spectrum. To our knowledge, this SiC color emitter is the brightest stable room-temperature single photon emitter ever observed.

  14. Microfabricated Thermal Switches for Emittance Control

    NASA Astrophysics Data System (ADS)

    Beasley, Matthew A.; Firebaugh, Samara L.; Edwards, Richard L.; Keeney, Allen C.; Osiander, Robert

    2004-02-01

    The trend to smaller satellites with limited resources in weight and power requires a new approach to thermal control to replace heaters with emittance-controlled radiators. There are a number of approaches to variable emittance radiators such as variable emittance coatings or louvers. This paper describes an actively controlled radiator based on a micro electromechanical (MEMS) thermal switch. The switch operates by electrostatically switching a high emittance membrane in and out of contact with the substrate. The radiator is covered with an array of large numbers of these switches, which allows an almost digital control of the apparent emittance of the radiator. The thermal and electromechanical design of the MEMS device is discussed. A proof-of-concept design has been fabricated and tested that uses a gold membrane suspended on polymer posts. In the open position, actuation voltages range from 8 to 25 volts; this was consistent with our electromechanical model for the devices.

  15. Negative Ion Beam Extraction and Emittance

    SciTech Connect

    Holmes, Andrew J. T.

    2007-08-10

    The use of magnetic fields to both aid the production of negative ions and suppress the co-extracted electrons causes the emittance and hence the divergence of the negative ion beam to increase significantly due to the plasma non-uniformity from jxB drift. This drift distorts the beam-plasma meniscus and experimental results of the beam emittance are presented, which show that non-uniformity causes the square of the emittance to be proportional to the 2/3 power of the extracted current density. This can cause the divergence of the negative ion beam to be significantly larger than its positive ion counterpart. By comparing results from positive and negative ion beam emittances from the same source, it is also possible to draw conclusions about their vulnerability to magnetic effects. Finally emittances of caesiated and un-caesiated negative ion beams are compared to show how the surface and volume modes of production interact.

  16. Directional emittance surface measurement system and process

    NASA Technical Reports Server (NTRS)

    Puram, Chith K. (Inventor); Daryabeigi, Kamran (Inventor); Wright, Robert (Inventor); Alderfer, David W. (Inventor)

    1994-01-01

    Apparatus and process for measuring the variation of directional emittance of surfaces at various temperatures using a radiometric infrared imaging system. A surface test sample is coated onto a copper target plate provided with selective heating within the desired incremental temperature range to be tested and positioned onto a precision rotator to present selected inclination angles of the sample relative to the fixed positioned and optically aligned infrared imager. A thermal insulator holder maintains the target plate on the precision rotator. A screen display of the temperature obtained by the infrared imager, and inclination readings are provided with computer calculations of directional emittance being performed automatically according to equations provided to convert selected incremental target temperatures and inclination angles to relative target directional emittance values. The directional emittance of flat black lacquer and an epoxy resin measurements obtained are in agreement with the predictions of the electromagnetic theory and with directional emittance data inferred from directional reflectance measurements made on a spectrophotometer.

  17. Carbon Nanotubes as Thermionic Emitters

    NASA Astrophysics Data System (ADS)

    Loutfy, R. O.; Samandi, M.; Moravsky, A.; Strange, S.

    2004-02-01

    Thermionic converters are an interesting option for lightweight and long-life power generators due to a number of compelling advantages, including all solid construction, no moving parts, and waste heat rejection at high temperature. An experimental set up has been built that allows the screening of thermionic coatings and new nanomaterials from room temperature to 2000 K in high vacuum and at gap sizes as small as 1 μm. A new class of very high temperature compatible materials, carbon nanotubes, has been investigated for their performance as cathodes. Seven different types of carbon nanotubes have been screened as thermionic emitter cathodes and compared to tungsten and nitrogen doped diamond. It has been found that some carbon nanotubes combine excellent temperature stability with good thermal emission performance. Yet, other carbon nanotubes exhibited exceptional combined thermal and field enhanced emission performance.

  18. Si infrared pixelless photonic emitter

    NASA Astrophysics Data System (ADS)

    Malyutenko, V. K.; Bogatyrenko, V. V.; Malyutenko, O. Y.; Chyrchyk, S. V.

    2005-09-01

    We report on basic principle and technology of Si high-temperature (T>300K) IR emitter based on all optical down conversion concept. The approach is based on the possibility to modulate semiconductor thermal emission power in the spectral range of intra-band electron transitions through shorter wavelength (inter-band transitions) optical pumping (light down conversion process). Device emission bands are matched to transparency windows in atmosphere (3-5 μm and 8-12 μm) by adjusting thin film coat parameters. The carrier lifetime is responsible for the device time response whereas its maximum power emitted (mW-range) activates with temperature increase. One of the major advantages of devices employing optical "read in" technology is that they are free of contacts and junctions, thus making them ideal for operation at high temperatures.

  19. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1987-05-22

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  20. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt

    1990-01-01

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  1. Positron emitter labeled enzyme inhibitors

    SciTech Connect

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-04-03

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  2. Low Emittance Electron Beam Studies

    SciTech Connect

    Tikhoplav, Rodion

    2006-04-01

    We have studied the properties of a low emittance electron beam produced by laser pulses incident onto an rf gun photocathode. The experiments were carried out at the A0 photoinjector at Fermilab. Such beam studies are necessary for fixing the design of new Linear Colliders as well as for the development of Free Electron Lasers. An overview of the A0 photoinjector is given in Chapter 1. In Chapter 2 we describe the A0 photoinjector laser system. A stable laser system is imperative for reliable photoinjector operation. After the recent upgrade, we have been able to reach a new level of stability in the pulse-to-pulse fluctuations of the pulse amplitude, and of the temporal and transverse profiles. In Chapter 3 we present a study of transverse emittance versus the shape of the photo-cathode drive-laser pulse. For that purpose a special temporal profile laser shaping device called a pulse-stacker was developed. In Chapter 4 we discuss longitudinal beam dynamics studies using a two macro-particle bunch; this technique is helpful in analyzing pulse compression in the magnetic chicane, as well as velocity bunching effects in the rf-gun and the 9-cell accelerating cavity. In Chapter 5 we introduce a proposal for laser acceleration of electrons. We have developed a laser functioning on the TEM*{sub 01} mode, a mode with a longitudinal electric field component which is suitable for such a process. Using this technique at energies above 40 MeV, one would be able to observe laser-based acceleration.

  3. Multinozzle Emitter Arrays for Nanoelectrospray Mass Spectrometry

    SciTech Connect

    Mao, Pan; Wang, Hung-Ta; Yang, Peidong; Wang, Daojing

    2011-06-16

    Mass spectrometry (MS) is the enabling technology for proteomics and metabolomics. However, dramatic improvements in both sensitivity and throughput are still required to achieve routine MS-based single cell proteomics and metabolomics. Here, we report the silicon-based monolithic multinozzle emitter array (MEA), and demonstrate its proof-of-principle applications in high-sensitivity and high-throughput nanoelectrospray mass spectrometry. Our MEA consists of 96 identical 10-nozzle emitters in a circular array on a 3-inch silicon chip. The geometry and configuration of the emitters, the dimension and number of the nozzles, and the micropillar arrays embedded in the main channel, can be systematically and precisely controlled during the microfabrication process. Combining electrostatic simulation and experimental testing, we demonstrated that sharpened-end geometry at the stem of the individual multinozzle emitter significantly enhanced the electric fields at its protruding nozzle tips, enabling sequential nanoelectrospray for the high-density emitter array. We showed that electrospray current of the multinozzle emitter at a given total flow rate was approximately proportional to the square root of the number of its spraying-nozzles, suggesting the capability of high MS sensitivity for multinozzle emitters. Using a conventional Z-spray mass spectrometer, we demonstrated reproducible MS detection of peptides and proteins for serial MEA emitters, achieving sensitivity and stability comparable to the commercial capillary emitters. Our robust silicon-based MEA chip opens up the possibility of a fully-integrated microfluidic system for ultrahigh-sensitivity and ultrahigh-throughput proteomics and metabolomics.

  4. Micro-emitter heating by rf current

    NASA Astrophysics Data System (ADS)

    Volkov, V.; Petrov, V. M.

    2016-05-01

    One factor limiting the accelerating gradients in radiofrequency (rf) cavities are field emission currents emitted by micro-emitters. The value of emitter heating power plays a key role in theories of an rf cavity processing allowing to enhance the accelerating gradient. In this paper, the emitter heating by rf current is studied. This heating mechanism associates with a large heating power (by several orders of magnitude higher than the power of field emission current) and demonstrates explicit dependence on the frequency of the electromagnetic rf field (scales with the square of the rf field frequency).

  5. Performance comparisons of low emittance lattices

    SciTech Connect

    Delahaye, J.P.; Zisman, M.S.

    1987-05-01

    In this paper, the results of a performance analysis of several low emittance electron storage ring lattices provided by various members of the Lattice Working Group are presented. Altogether, four lattices were investigated. There are two different functions being considered for the low beam emittance rings discussed here. The first is to serve as a Damping Ring (DR), i.e., to provide the emittance damping required for a high energy linear collider. The second is to provide beams for a short wavelength Free Electron Laser (FEL), which is envisioned to operate in the wavelength region near 40 A.

  6. Thermophotovoltaic emitter material selection and design

    SciTech Connect

    Saxton, P.C.; Moran, A.L.; Harper, M.J.; Lindler, K.W.

    1997-07-01

    Thermophotovoltaics (TPV) is a potentially attractive direct energy conversion technology. It reduces the need for complex machinery with moving parts and maintenance. TPV generators can be run from a variety of heat sources including waste heat for smaller scale operations. The US Naval Academy`s goal was to build a small experimental thermophotovoltaic generator powered by combustion gases from a General Electric T-58 helicopter gas turbine. The design of the generator imposes material limitations that directly affect emitter and structural materials selection. This paper details emitter material goals and requirements, and the methods used to select suitable candidate emitter materials for further testing.

  7. Reliability of fiber optic emitters

    NASA Astrophysics Data System (ADS)

    Twu, B.; Kung, H.

    1982-08-01

    Over the past few years a number of fiber optic links were introduced by an American company. Various transmitter-fiber-receiver combinations were studied to satisfy different link performance and reliability requirements. Light emitting diodes (LEDs) were generally used in the transmitter mode. Attention is given to the characteristics of four types of LED's which had been developed, GaAsP LEDs were made from epi-layers grown by vapor phase epitaxy on GaAs substrate. The composition of GaAs and GaP was adjusted to achieve light emission at the desired wavelength. The p-n junction was formed by diffusing zinc into n type epi-layers. GaAlAs LEDs were made from epi-layers grown by liquid phase epitaxy on GaAs substrate. Long term reliability of four LEDs was evaluated. GaAsP diodes showed gradual degradation as a whole. GaAlAs emitters showed insignificant gradual degradation, but they exhibited dark line or dark spot related catastrophic degradation.

  8. Emitters of N-photon bundles

    PubMed Central

    Muñoz, C. Sánchez; del Valle, E.; Tudela, A. González; Müller, K.; Lichtmannecker, S.; Kaniber, M.; Tejedor, C.; Finley, J.J.; Laussy, F.P.

    2014-01-01

    Controlling the ouput of a light emitter is one of the basic tasks of photonics, with landmarks such as the laser and single-photon sources. The development of quantum applications makes it increasingly important to diversify the available quantum sources. Here, we propose a cavity QED scheme to realize emitters that release their energy in groups, or “bundles” of N photons, for integer N. Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state of the art samples. The emission can be tuned with system parameters so that the device behaves as a laser or as a N-photon gun. The theoretical formalism to characterize such emitters is developed, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications. PMID:25013456

  9. Intrinsic emittance reduction in transmission mode photocathodes

    NASA Astrophysics Data System (ADS)

    Lee, Hyeri; Cultrera, Luca; Bazarov, Ivan

    2016-03-01

    High quantum efficiency (QE) and low emittance electron beams provided by multi-alkali photocathodes make them of great interest for next generation high brightness photoinjectors. Spicer's three-step model well describes the photoemission process; however, some photocathode characteristics such as their thickness have not yet been completely exploited to further improve the brightness of the generated electron beams. In this work, we report on the emittance and QE of a multi-alkali photocathode grown onto a glass substrate operated in transmission and reflection modes at different photon energies. We observed a 20% reduction in the intrinsic emittance from the reflection to the transmission mode operation. This observation can be explained by inelastic electron-phonon scattering during electrons' transit towards the cathode surface. Due to this effect, we predict that thicker photocathode layers will further reduce the intrinsic emittance of electron beams generated by photocathodes operated in transmission mode.

  10. Emitters of N-photon bundles.

    PubMed

    Muñoz, C Sánchez; Del Valle, E; Tudela, A González; Müller, K; Lichtmannecker, S; Kaniber, M; Tejedor, C; Finley, J J; Laussy, F P

    2014-07-01

    Controlling the ouput of a light emitter is one of the basic tasks of photonics, with landmarks such as the laser and single-photon sources. The development of quantum applications makes it increasingly important to diversify the available quantum sources. Here, we propose a cavity QED scheme to realize emitters that release their energy in groups, or "bundles" of N photons, for integer N. Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state of the art samples. The emission can be tuned with system parameters so that the device behaves as a laser or as a N-photon gun. The theoretical formalism to characterize such emitters is developed, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications. PMID:25013456

  11. Alpha-emitters for medical therapy workshop

    SciTech Connect

    Feinendegen, L.E.; McClure, J.J.

    1996-12-31

    A workshop on ``Alpha-Emitters for Medical Therapy`` was held May 30-31, 1996 in Denver Colorado to identify research goals and potential clinical needs for applying alpha-particle emitters and to provide DOE with sufficient information for future planning. The workshop was attended by 36 participants representing radiooncology, nuclear medicine, immunotherapy, radiobiology, molecular biology, biochemistry, radiopharmaceutical chemistry, dosimetry, and physics. This report provides a summary of the key points and recommendations arrived at during the conference.

  12. Coaxial inverted geometry transistor having buried emitter

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Cress, S. B.; Dunn, W. R. (Inventor)

    1973-01-01

    The invention relates to an inverted geometry transistor wherein the emitter is buried within the substrate. The transistor can be fabricated as a part of a monolithic integrated circuit and is particularly suited for use in applications where it is desired to employ low actuating voltages. The transistor may employ the same doping levels in the collector and emitter, so these connections can be reversed.

  13. A low-emittance lattice for SPEAR

    NASA Astrophysics Data System (ADS)

    Safranek, J.; Wiedemann, H.

    1992-08-01

    The design and implementation of a low emittance lattice for the SPEAR storage ring including measurements of the performance of the lattice are presented [J. Safranek, Ph.D. thesis, Stanford University, 1991]. The low emittance lattice is designed to optimize the performance of SPEAR as a synchrotron radiation source while keeping SPEAR hardware changes at a minimum. The horizontal emittance of the electron beam in the low emittance lattice is reduced by a factor of 4 from the previous lattice. This reduces the typical horizontal source size and divergence of the photon beams by a factor of 2 each and increases the photon beam brightness. At 3 GeV the horizontal emittance is 129π nm rad, which makes the low emittance lattice the lowest emittance, running synchrotron radiation source in the world in the 1.5 to 4.0 GeV energy range for the emittance scaled to 3 GeV. The measured vertical emittance was reduced to half that typically seen at SPEAR in the past. The brightness of the photon beams was further increased by reducing βy at the insertion devices to 1.1 m and reducing the energy dispersion at the insertion devices by more than a factor of 2 on average. The horizontal dispersion at the rf cavities was reduced by a factor of nearly 4 which gives much less problems with synchrobetatron resonances. The dynamic and physical apertures of the lattice are large, giving long beam lifetimes and easy injection of electrons. The measurements of the linear optics and intensity dependent phenomena gave reasonable agreement with the design. The overall performance of the machine was very good. Injection rates of 10 to 20 mA/min and larger were achieved routinely, and 100 mA total current was stored. Repeated ramping of stored beam from the injection energy of 2.3 GeV to the running energy of 3.0 GeV was achieved with very little beam loss. This low emittance configuration is expected to be the operating configuration for SPEAR starting in January 1992.

  14. ETAII 6 MEV PEPPERPOT EMITTANCE MEASUREMENT

    SciTech Connect

    Paul, A C; Richardson, R; Weir, J

    2004-10-18

    We measured the beam emittance at the ETAII accelerator using a pepper-pot diagnostic at nominal parameters of 6 MeV and 2000 Amperes. During the coarse of these experiments, a ''new tune'' was introduced which significantly improved the beam quality. The source of a background pedestal was investigated and eliminated. The measured ''new tune'' emittance is {var_epsilon}= 8.05 {plus_minus} 0. 53 cm - mr or a normalized emittance of {var_epsilon}{sub n} = 943 {plus_minus} 63 mm - mr In 1990 the ETAII programmatic emphasis was on free electron lasers and the paramount parameter was whole beam brightness. The published brightness for ETAII after its first major rebuild was J = 1 - 3 x 10{sup 8} A/(m - rad){sup 2} at a current and energy of 1000-1400 Amperes and 2.5 MeV. The average normalized emittance derived from table 2 of that report is 864 mm-mr corresponding to a real emittance of 14.8 cm-mr.

  15. Variable emittance behavior of smart radiative coating

    NASA Astrophysics Data System (ADS)

    Guo, Li; Fan, Desong; Li, Qiang

    2016-02-01

    Smart radiative coating on yttria stabilized zirconia (YSZ) substrate was prepared by the sol-gel La{}1-xSr x MnO3 (x = 0.125, 0.175 and 0.2) nanoparticles and the binder composed of terpineol and ethyl cellulose. The crystallized structure, grain size, chemical compositions, magnetization and the surface morphology were characterized. The thermal radiative properties of coating in the infrared range was evaluated from infrared reflectance spectra at various temperatures. A single perovskite structure is detected in sol-gel nanoparticles with size 200 nm. Magnetization measurement reveals that room temperature phase transition samples can be obtained by appropriate Sr substitution. The influence of surface conditions and sintering temperature on the emittance of coating was observed. For rough coatings with root-mean-square roughness 640 nm (x = 0.125) and 800 nm (x = 0.175) , its emittance increment is 0.24 and 0.26 in in the temperature range of 173-373 K. Increasing sintering temperature to 1673 K, coating emittance variation improves to 0.3 and 0.302 respectively. After mechanical polishing treatment, the emittance increment of coatings are enhanced to 0.31 and 0.3, respectively. The results suggested that the emittance variation can be enhanced by reducing surface roughness and increasing sintering temperature of coating.

  16. Integrated photonic crystal selective emitter for thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiguang; Yehia, Omar; Bermel, Peter

    2016-01-01

    Converting blackbody thermal radiation to electricity via thermophotovoltaics (TPV) is inherently inefficient. Photon recycling using cold-side filters offers potentially improved performance but requires extremely close spacing between the thermal emitter and the receiver, namely a high view factor. Here, we propose an alternative approach for thermal energy conversion, the use of an integrated photonic crystal selective emitter (IPSE), which combines two-dimensional photonic crystal selective emitters and filters into a single device. Finite difference time domain and current transport simulations show that IPSEs can significantly suppress sub-bandgap photons. This increases heat-to-electricity conversion for photonic crystal based emitters from 35.2 up to 41.8% at 1573 K for a GaSb photovoltaic (PV) diode with matched bandgaps of 0.7 eV. The physical basis of this enhancement is a shift from a perturbative to a nonperturbative regime, which maximized photon recycling. Furthermore, combining IPSEs with nonconductive optical waveguides eliminates a key difficulty associated with TPV: the need for precise alignment between the hot selective emitter and cool PV diode. The physical effects of both the IPSE and waveguide can be quantified in terms of an extension of the concept of an effective view factor.

  17. Quantitative deconvolution of human thermal infrared emittance.

    PubMed

    Arthur, D T J; Khan, M M

    2013-01-01

    The bioheat transfer models conventionally employed in etiology of human thermal infrared (TIR) emittance rely upon two assumptions; universal graybody emissivity and significant transmission of heat from subsurface tissue layers. In this work, a series of clinical and laboratory experiments were designed and carried out to conclusively evaluate the validity of the two assumptions. Results obtained from the objective analyses of TIR images of human facial and tibial regions demonstrated significant variations in spectral thermophysical properties at different anatomic locations on human body. The limited validity of the two assumptions signifies need for quantitative deconvolution of human TIR emittance in clinical, psychophysiological and critical applications. A novel approach to joint inversion of the bioheat transfer model is also introduced, levering the deterministic temperature-dependency of proton resonance frequency in low-lipid human soft tissue for characterizing the relationship between subsurface 3D tissue temperature profiles and corresponding TIR emittance. PMID:23086533

  18. Head erosion with emittance growth in PWFA

    SciTech Connect

    Li, S. Z.; Adli, E.; England, R. J.; Frederico, J.; Gessner, S. J.; Hogan, M. J.; Litos, M. D.; Walz, D. R.; Muggli, P.; An, W.; Clayton, C. E.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W.; Vafaei, N.

    2012-12-21

    Head erosion is one of the limiting factors in plasma wakefield acceleration (PWFA). We present a study of head erosion with emittance growth in field-ionized plasma from the PWFA experiments performed at the FACET user facility at SLAC. At FACET, a 20.3 GeV bunch with 1.8 Multiplication-Sign 10{sup 10} electrons is optimized in beam transverse size and combined with a high density lithium plasma for beam-driven plasma wakefield acceleration experiments. A target foil is inserted upstream of the plasma source to increase the bunch emittance through multiple scattering. Its effect on beamplasma interaction is observed with an energy spectrometer after a vertical bend magnet. Results from the first experiments show that increasing the emittance has suppressed vapor field-ionization and plasma wakefields excitation. Plans for the future are presented.

  19. Optimized aperiodic highly directional narrowband infrared emitters

    NASA Astrophysics Data System (ADS)

    Granier, Christopher H.; Afzal, Francis O.; Min, Changjun; Dowling, Jonathan P.; Veronis, Georgios

    2014-09-01

    Bulk thermal emittance sources possess incoherent, isotropic, and broadband radiation spectra that vary from material to material. However, these radiation spectra can be drastically altered by modifying the geometry of the structures. In particular, several approaches have been proposed to achieve narrowband, highly directional thermal emittance based on photonic crystals, gratings, textured metal surfaces, metamaterials, and shock waves propagating through a crystal. Here we present optimized aperiodic structures for use as narrowband, highly directional thermal infrared emitters for both TE and TM polarizations. One-dimensional layered structures without texturing are preferable to more complex two- and three-dimensional structures because of the relative ease and low cost of fabrication. These aperiodic multilayer structures designed with alternating layers of silicon and silica on top of a semi-infinite tungsten substrate exhibit extremely high emittance peaked around the wavelength at which the structures are optimized. Structures were designed by a genetic optimization algorithm coupled to a transfer matrix code which computed thermal emittance. First, we investigate the properties of the genetic-algorithm optimized aperiodic structures and compare them to a previously proposed resonant cavity design. Second, we investigate a structure optimized to operate at the Wien wavelength corresponding to a near-maximum operating temperature for the materials used in the aperiodic structure. Finally, we present a structure that exhibits nearly monochromatic and highly directional emittance for both TE and TM polarizations at the frequency of one of the molecular resonances of carbon monoxide (CO); hence, the design is suitable for a detector of CO via absorption spectroscopy.

  20. Automated emittance measurements in the SLC

    SciTech Connect

    Ross, M.C.; Phinney, N.; Quickfall, G.; Shoaee, H.; Sheppard, J.C.

    1987-03-01

    The emittance of the SLC beam is determined from measurements of the beam width on a profile monitor as a quadrupole field is varied. An automated system has been developed to allow this to be done rapidly and accurately. The image on a fluorescent screen profile monitor (resolution about 20 ..mu..m) is read out through an electronic interface and digitized by a transient recorder. A high level software package has been developed to set up the hardware for the measurements, acquire data, fit the beam width, and calculate the emittance.

  1. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1994-01-01

    A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

  2. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1994-05-31

    A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

  3. Technology for producing carbon field emitters

    SciTech Connect

    Khatapova, R.M.; Demskaya, L.L.; Romanova, V.K.

    1985-12-01

    This paper describes methods for producing field emitters from carbon filaments. Coating of Ni and two-layer coatings of Ni-Mo with a thickness of 10-40 um are applied to the carbon filaments by electrochemical deposition so that they can be spot welded to a metal holder. A technology for attaching carbon filaments with a refractory adhesive composition is also described. Field emitters with point radius of curvature of 0.2-0.4 um are made from three types of carbon filament.

  4. Determination and error analysis of emittance and spectral emittance measurements by remote sensing

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Kumar, R.

    1977-01-01

    The author has identified the following significant results. From the theory of remote sensing of surface temperatures, an equation of the upper bound of absolute error of emittance was determined. It showed that the absolute error decreased with an increase in contact temperature, whereas, it increased with an increase in environmental integrated radiant flux density. Change in emittance had little effect on the absolute error. A plot of the difference between temperature and band radiance temperature vs. emittance was provided for the wavelength intervals: 4.5 to 5.5 microns, 8 to 13.5 microns, and 10.2 to 12.5 microns.

  5. Emittance and lifetime measurement with damping wigglers.

    PubMed

    Wang, G M; Shaftan, T; Cheng, W X; Guo, W; Ilinsky, P; Li, Y; Podobedov, B; Willeke, F

    2016-03-01

    National Synchrotron Light Source II (NSLS-II) is a new third-generation storage ring light source at Brookhaven National Laboratory. The storage ring design calls for small horizontal emittance (<1 nm-rad) and diffraction-limited vertical emittance at 12 keV (8 pm-rad). Achieving low value of the beam size will enable novel user experiments with nm-range spatial and meV-energy resolution. The high-brightness NSLS-II lattice has been realized by implementing 30-cell double bend achromatic cells producing the horizontal emittance of 2 nm rad and then halving it further by using several Damping Wigglers (DWs). This paper is focused on characterization of the DW effects in the storage ring performance, namely, on reduction of the beam emittance, and corresponding changes in the energy spread and beam lifetime. The relevant beam parameters have been measured by the X-ray pinhole camera, beam position monitors, beam filling pattern monitor, and current transformers. In this paper, we compare the measured results of the beam performance with analytic estimates for the complement of the 3 DWs installed at the NSLS-II. PMID:27036766

  6. Beam emittance from ARPES for photoinjectors

    NASA Astrophysics Data System (ADS)

    Harkay, Katherine; Spentzouris, Linda; Nemeth, Karoly; Droubay, Timothy; Chambers, Scott; Joly, Alan; Hess, Wayne

    2014-03-01

    A commonly-used beam emittance measurement for photoinjector sources involves accelerating a low-charge beam to a few megavolts in an electron gun, then using a pepper-pot emittance diagnostic to image the transverse charge distribution. The emission distribution at the cathode surface could in principle be deduced through simulations, but cannot be measured directly with this method. In the quest to develop ultra-bright photoinjectors, it would be advantageous to be able to measure the emission distribution directly, and use this as a screening process to characterize different photocathode candidates. Angle-resolved photoemission sepctroscopy (ARPES), used widely in surface science, has been proposed [H. Padmore (private communication)] as a method to measure the photocathode intrinsic emittance. A promising novel photocathode, a thin layer of MgO on Ag was recently fabricated and ARPES measurements were carried out [T.C. Droubay et al., PRL (in press)]. The analysis of these data and resulting emittance will be presented. Implications for its use in simulations and design of future photoinjectors will also be presented. This work was supported by the U.S. DOE Office of Science (DE-AC02-06CH11357) and the National Science Foundation (No. PHY-0969989). The measurements were carried out at the EMSL user facility at PNNL.

  7. Light modulated switches and radio frequency emitters

    DOEpatents

    Wilson, Mahlon T.; Tallerico, Paul J.

    1982-01-01

    The disclosure relates to a light modulated electron beam driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  8. Light modulated electron beam driven radiofrequency emitter

    DOEpatents

    Wilson, M.T.; Tallerico, P.J.

    1979-10-10

    The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  9. Emittance growth from electron beam modulation

    SciTech Connect

    Blaskiewicz, M.

    2009-12-01

    In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.

  10. Emittance and lifetime measurement with damping wigglers

    NASA Astrophysics Data System (ADS)

    Wang, G. M.; Shaftan, T.; Cheng, W. X.; Guo, W.; Ilinsky, P.; Li, Y.; Podobedov, B.; Willeke, F.

    2016-03-01

    National Synchrotron Light Source II (NSLS-II) is a new third-generation storage ring light source at Brookhaven National Laboratory. The storage ring design calls for small horizontal emittance (<1 nm-rad) and diffraction-limited vertical emittance at 12 keV (8 pm-rad). Achieving low value of the beam size will enable novel user experiments with nm-range spatial and meV-energy resolution. The high-brightness NSLS-II lattice has been realized by implementing 30-cell double bend achromatic cells producing the horizontal emittance of 2 nm rad and then halving it further by using several Damping Wigglers (DWs). This paper is focused on characterization of the DW effects in the storage ring performance, namely, on reduction of the beam emittance, and corresponding changes in the energy spread and beam lifetime. The relevant beam parameters have been measured by the X-ray pinhole camera, beam position monitors, beam filling pattern monitor, and current transformers. In this paper, we compare the measured results of the beam performance with analytic estimates for the complement of the 3 DWs installed at the NSLS-II.

  11. Aluminum oxide film thickness and emittance

    SciTech Connect

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55{degrees}C) moderator for about a year. The average moderator temperature was assumed to be 30{degrees}C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 {mu}m {plus minus} 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 {mu}m {plus minus} 11%. Total hemispherical emittance is predicted to be 0.69 at 96{degrees}C, decreasing to 0.45 at 600{degrees}C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values.

  12. Emitters of N-photon bundles

    NASA Astrophysics Data System (ADS)

    Muñoz, C. Sánchez; Del Valle, E.; Tudela, A. González; Müller, K.; Lichtmannecker, S.; Kaniber, M.; Tejedor, C.; Finley, J. J.; Laussy, F. P.

    2014-07-01

    Controlling the output of a light emitter is one of the basic tasks in photonics, with landmarks such as the development of the laser and single-photon sources. The ever growing range of quantum applications is making it increasingly important to diversify the available quantum sources. Here, we propose a cavity quantum electrodynamics scheme to realize emitters that release their energy in groups (or `bundles') of N photons (where N is an integer). Close to 100% of two-photon emission and 90% of three-photon emission is shown to be within reach of state-of-the-art samples. The emission can be tuned with the system parameters so that the device behaves as a laser or as an N-photon gun. Here, we develop the theoretical formalism to characterize such emitters, with the bundle statistics arising as an extension of the fundamental correlation functions of quantum optics. These emitters will be useful for quantum information processing and for medical applications.

  13. Emittance growth from space-charge forces

    SciTech Connect

    Wangler, T.P.

    1991-01-01

    Space-charge-induced emittance growth has become a topic of much recent interest for designing the low-velocity sections of high- intensity, high-brightness accelerators and beam-transport channels. In this paper we review the properties of the space-charge force, and discuss the concepts of matching, space-charge and emittance-dominated beams, and equilibrium beams and their characteristics. This is followed by a survey of some of the work over the past 25 years to identify the mechanisms of this emittance growth in both ion and electron accelerators. We summarize the overall results in terms of four distinct mechanisms whose characteristics we describe. Finally, we show numerical simulation results for the evolution of initial rms-mismatched laminar beams. The examples show that for space-charge dominated beams, the nonlinear space-charge forces produce a highly choatic filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. In the examples we have studied the halo contains only a few percent of the particles, but contributes about half of the emittance growth. 39 refs., 2 figs., 1 tab.

  14. THz imaging system with the IJJ emitter

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Manabu; Minami, Hidetoshi; Sawamura, Masashi; Delfanazari, Kaveh; Yamamoto, Takashi; Kashiwagi, Takanari; Kadowaki, Kazuo

    2011-03-01

    The intrinsic Josephson junction (IJJ) emitter consisted of thousands of IJJs uniformly stacked in single crystalline high-Tc superconductor Bi 2 Sr 2 CaCu 2 O8 + δ (Bi-2212) [L. Ozyuzer et al., Science 318, (2007) 1291.] is expected to be a novel source of the continuous terahertz electromagnetic waves (THz-waves). The maximum emission power of tens of microwatts recently obtained with the mesa structure of IJJs seems to be sufficient to make use of the IJJ emitter for some practical applications such as THz imaging. According to the cavity resonance condition, we can control the radiation frequency by changing the geometrical size of the mesa. In this study, we develop the THz imaging system with IJJ emitter. In the presentation, we will show some transparent images of standard specimens obtained by the raster scanning method. Also, we will mention some problems to be solved for the future applications of the IJJ emitter. CREST-JST, WPI-MANA, Strategic Initiative A (University of Tsukuba).

  15. Aluminum oxide film thickness and emittance

    SciTech Connect

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55{degrees}C) moderator for about a year. The average moderator temperature was assumed to be 30{degrees}C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 {mu}m {plus_minus} 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 {mu}m {plus_minus} 11%. Total hemispherical emittance is predicted to be 0.69 at 96{degrees}C, decreasing to 0.45 at 600{degrees}C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values.

  16. Emittance Characteristics of High-Brightness H- Ion Sources

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Stockli, M. P.; Keller, R.; Thomae, R. W.; Thomason, J.; Sherman, J.; Alessi, J.

    2002-11-01

    A survey of emittance characteristics from high-brightness, H- ion sources has been undertaken. Representative examples of each important type of H- source for accelerator application are investigated: A magnetron surface plasma source (BNL) a multi-cusp-surface-conversion source (LANL) a Penning source (RAL-ISIS) and a multi-cusp-volume source (LBNL). Presently, comparisons between published emittance values from different ion sources are difficult largely because of different definitions used in reported emittances and the use of different data reduction techniques in analyzing data. Although seldom discussed in the literature, rms-emittance values often depend strongly on the method employed to separate real beam from background. In this work, the problem of data reduction along with software developed for emittance analysis is discussed. Raw emittance data, obtained from the above laboratories, is analyzed using a single technique and normalized rms and 90% area-emittance values are determined along with characteristic emittance versus beam fraction curves.

  17. Innovative Field Emitters for High-Voltage Electronic Devices

    NASA Astrophysics Data System (ADS)

    Sominski, G. G.; Sezonov, V. E.; Taradaev, E. P.; Tumareva, T. A.; Zadiranov, Yu. M.; Kornishin, S. Yu.; Stepanova, A. N.

    2015-12-01

    We describe multitip field emitters with protective coatings, which were developed in Peter the Great St. Petersburg Polytechnic University. The coatings ensure long-term operation of the emitters under high currents and technical vacuum. Innovative multi-layer emitters composed of contacting nanolayers of materials with different work functions are presented as well. The possibility by using the developed emitters in high-voltage electronic devices is demonstrated.

  18. What is so super about super-emitters? Characterizing methane high emitters from natural gas infrastructure

    NASA Astrophysics Data System (ADS)

    Zavala Araiza, D.; Lyon, D. R.; Alvarez, R.; Harriss, R. C.; Palacios, V.; Hamburg, S.

    2015-12-01

    Methane emissions across the natural gas supply chain are dominated at any one time by a few high-emitters (super-emitters or fat-tail of the distribution), often underrepresented in published datasets used to construct emission inventories. Characterization of high-emitters is essential for improving emission estimates based on atmospheric data (top-down) and emission inventories (bottom-up). The population of high-emitters (e.g. 10-20% of sites that account for 80-90% of the emissions) is temporally and spatially dynamic. As a consequence, it is challenging to design sampling methods and construct estimates that accurately represent their frequency and magnitude of emissions. We present new methods to derive facility-specific emission distribution functions that explicitly integrate the influence of the relatively rare super-emitters. These methods were applied in the Barnett Shale region to construct a custom emission inventory that is then compared to top-down emission estimates for the region. We offer a methodological framework relevant to the design of future sampling campaigns, in which these high-emitters are seamlessly incorporated to representative emissions distributions. This framework can be applied to heterogeneous oil and gas production regions across geographies to obtain accurate regional emission estimates. Additionally, we characterize emissions relative to the fraction of a facility's total methane throughput; an effective metric to identify sites with excess emissions resulting from avoidable operating conditions, such as malfunctioning equipment (defined here as functional super-emitters). This work suggests that identifying functional super-emitters and correcting their avoidable operating conditions would result in significant emission reductions. However, due to their spatiotemporal dynamic behavior, achieving and maintaining uniformly low emissions across the entire population of sites will require mitigation steps (e.g. leak detection

  19. Thermal emittance from ionization-induced trapping in plasma accelerators

    NASA Astrophysics Data System (ADS)

    Schroeder, C. B.; Vay, J.-L.; Esarey, E.; Bulanov, S. S.; Benedetti, C.; Yu, L.-L.; Chen, M.; Geddes, C. G. R.; Leemans, W. P.

    2014-10-01

    The minimum obtainable transverse emittance (thermal emittance) of electron beams generated and trapped in plasma-based accelerators using laser ionization injection is examined. The initial transverse phase space distribution following ionization and passage through the laser is derived, and expressions for the normalized transverse beam emittance, both along and orthogonal to the laser polarization, are presented. Results are compared to particle-in-cell simulations. Ultralow emittance beams can be generated using laser ionization injection into plasma accelerators, and examples are presented showing normalized emittances on the order of tens of nm.

  20. DEVELOPMENT OF EMITTANCE ANALYSIS SOFTWARE FOR ION BEAM CHARACTERIZATION

    SciTech Connect

    Padilla, M. J.; Liu, Y.

    2007-01-01

    Transverse beam emittance is a crucial property of charged particle beams that describes their angular and spatial spread. It is a fi gure of merit frequently used to determine the quality of ion beams, the compatibility of an ion beam with a given beam transport system, and the ability to suppress neighboring isotopes at on-line mass separator facilities. Generally a high quality beam is characterized by a small emittance. In order to determine and improve the quality of ion beams used at the Holifi eld Radioactive Ion beam Facility (HRIBF) for nuclear physics and nuclear astrophysics research, the emittances of the ion beams are measured at the off-line Ion Source Test Facilities. In this project, emittance analysis software was developed to perform various data processing tasks for noise reduction, to evaluate root-mean-square emittance, Twiss parameters, and area emittance of different beam fractions. The software also provides 2D and 3D graphical views of the emittance data, beam profi les, emittance contours, and RMS. Noise exclusion is essential for accurate determination of beam emittance values. A Self-Consistent, Unbiased Elliptical Exclusion (SCUBEEx) method is employed. Numerical data analysis techniques such as interpolation and nonlinear fi tting are also incorporated into the software. The software will provide a simplifi ed, fast tool for comprehensive emittance analysis. The main functions of the software package have been completed. In preliminary tests with experimental emittance data, the analysis results using the software were shown to be accurate.

  1. FIrpic: archetypal blue phosphorescent emitter for electroluminescence.

    PubMed

    Baranoff, Etienne; Curchod, Basile F E

    2015-05-14

    FIrpic is the most investigated bis-cyclometallated iridium complex in particular in the context of organic light emitting diodes (OLEDs) because of its attractive sky-blue emission, high emission efficiency, and suitable energy levels. In this Perspective we review the synthesis, structural characterisations, and key properties of this emitter. We also survey the theoretical studies and summarise a series of selected monochromatic electroluminescent devices using FIrpic as the emitting dopant. Finally we highlight important shortcomings of FIrpic as an emitter for OLEDs. Despite the large body of work dedicated to this material, it is manifest that the understanding of photophysical and electrochemical processes are only broadly understood mainly because of the different environment in which these properties are measured, i.e., isolated molecules in solvent vs. device. PMID:25388935

  2. Ghost signals in Allison emittance scanners

    SciTech Connect

    Stockli, Martin P.; Leitner, M.; Moehs, D.P.; Keller, R.; Welton, R.F.; /SNS Project, Oak Ridge /Tennessee U.

    2004-12-01

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%.

  3. Ghost Signals In Allison Emittance Scanners

    SciTech Connect

    Stockli, Martin P.; Leitner, M.; Keller, R.; Moehs, D.P.; Welton, R. F.

    2005-03-15

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%.

  4. Using television cameras to measure emittance

    SciTech Connect

    Ross, M.

    1984-09-25

    Since the luminosity in a linear collider depends on the horizontal and vertical emittance (epsilon/sub x/, epsilon/sub y/) as 1/..sqrt..(epsilon/sub x/epsilon/sub y/) a possible method for improving the performance would be to decrease one or both of these numbers. Once this has been done in a damping ring for example, great care must be taken to avoid effective emittance growth in the remainder of the collider. Therefore an effort should be made to measure epsilon, (x and y), as accurately as possible, both during machine development and operationally. One technique used for measuring epsilon is to insert a luminescent screen in the path of the beam and measure the size of the spot of light made as the beam passes with a television camera and some associated electronics. This has advantages over sampling type techniques (such as wire scanners) because it provides full pulse to pulse two-dimensional information.

  5. Reverse Emittance Exchange for Muon Colliders

    SciTech Connect

    V. Ivanov, A. Afanasev, C.M. Ankenbrandt, R.P. Johnson, G.M. Wang, S.A. Bogacz, Y.S. Derbenev

    2009-05-01

    Muon collider luminosity depends on the number of muons in the storage ring and on the transverse size of the beams in collision. Ionization cooling as it is currently envisioned will not cool the beam sizes sufficiently well to provide adequate luminosity without large muon intensities. Six-dimensional cooling schemes will reduce the longitudinal emittance of a muon beam so that smaller high frequency RF cavities can be used for later stages of cooling and for acceleration. However, the bunch length at collision energy is then shorter than needed to match the interaction region beta function. New ideas to shrink transverse beam dimensions by lengthening each bunch will help achieve high luminosity in muon colliders. Analytic expressions for the reverse emittance exchange mechanism were derived, including a new resonant method of beam focusing.

  6. Emittance measurements on the LBL ECR source

    SciTech Connect

    Clark, D.J.

    1987-11-01

    Measurements of radial emittance and the upper limit of energy spread have been made using a scanning Faraday cup after a waist, on beams of oxygen, argon and krypton. The general features are that the divergence seen at the scanning cup shows a central core and tails on each side. The un-normalized emittance of the beam core decreases with increasing Q/A in a way that is not explained by simple assumptions about the plasma or extraction system. Data from an experimental 1 mm diameter extraction aperture indicates that plasma density is about the same as over the standard aperture, but that the plasma energy spread is reduced to an upper limit of .2 to .4 V, and beam brightness is up by a factor of 10 for medium charge states. 9 refs., 10 figs., 1 tab.

  7. Front contact solar cell with formed emitter

    DOEpatents

    Cousins, Peter John

    2014-11-04

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  8. Front contact solar cell with formed emitter

    DOEpatents

    Cousins, Peter John

    2012-07-17

    A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

  9. Nanocomposite plasmonic fluorescence emitters with core/shell configurations.

    SciTech Connect

    Brener, Igal; Luk, Ting Shan; Miao, Xiaoyu

    2010-06-01

    This paper is focused on the optical properties of nanocomposite plasmonic emitters with core/shell configurations, where a fluorescence emitter is located inside a metal nanoshell. Systematic theoretical investigations are presented for the influence of material type, core radius, shell thickness, and excitation wavelength on the internal optical intensity, radiative quantum yield, and fluorescence enhancement of the nanocomposite emitter. It is our conclusion that: (i) an optimal ratio between the core radius and shell thickness is required to maximize the absorption rate of fluorescence emitters, and (ii) a large core radius is desired to minimize the non-radiative damping and avoid significant quantum yield degradation of light emitters. Several experimental approaches to synthesize these nanocomposite emitters are also discussed. Furthermore, our theoretical results are successfully used to explain several reported experimental observations and should prove useful for designing ultra-bright core/shell nanocomposite emitters.

  10. An ultracold low emittance electron source

    NASA Astrophysics Data System (ADS)

    Xia, G.; Harvey, M.; Murray, A. J.; Bellan, L.; Bertsche, W.; Appleby, R. B.; Mete, O.; Chattopadhyay, S.

    2014-06-01

    Ultracold atom-based electron sources have recently been proposed as an alternative to the conventional photo-injectors or thermionic electron guns widely used in modern particle accelerators. The advantages of ultracold atom-based electron sources lie in the fact that the electrons extracted from the plasma (created from near threshold photo-ionization of ultracold atoms) have a very low temperature, i.e. down to tens of Kelvin. Extraction of these electrons has the potential for producing very low emittance electron bunches. These features are crucial for the next generation of particle accelerators, including free electron lasers, plasma-based accelerators and future linear colliders. The source also has many potential direct applications, including ultrafast electron diffraction (UED) and electron microscopy, due to its intrinsically high coherence. In this paper, the basic mechanism of ultracold electron beam production is discussed and our new research facility for an ultracold, low emittance electron source is introduced. This source is based on a novel alternating current Magneto-Optical Trap (the AC-MOT). Detailed simulations for a proposed extraction system have shown that for a 1 pC bunch charge, a beam emittance of 0.35 mm mrad is obtainable, with a bunch length of 3 mm and energy spread 1%.

  11. Low-Energy Emittance Studies with the new Allison Emittance Scanner

    SciTech Connect

    Stockli, Martin P; Blokland, Willem; Gorlov, Timofey V; Han, Baoxi; Long, Cary D; Pennisi, Terry R; Assadi, Saeed

    2010-01-01

    The new SNS Allison emittance scanner measures emittances of 65 kV ion beams over a range of +/- 116 mrad. Its versatile control system allows for time-dependent emittance measurements using an external trigger to synchronize with pulsed ion beam systems. After an adjustable initial delay, the system acquires an array of equally-delayed beam current measurements, each averaged over a certain time span, where all three time parameters are user selectable. The zero offset of the beam current measurements is determined by averaging a fraction of 1 ms shortly before the start of the ion beam pulse. This paper discusses the optimization of the angular range. In addition it presents the first results and reports an unresolved artefact. Data are presented on the time evolution of emittance ellipses during 0.8 ms long H- beam pulses emerging from the SNS test LEBT, which is important for loss considerations in the SNS accelerator. Additional data explore the emittance growth observed with increasing beam current and/or increasing RF-power.

  12. Emissivity Tuned Emitter for RTPV Power Sources

    SciTech Connect

    Carl M. Stoots; Robert C. O'Brien; Troy M. Howe

    2012-03-01

    Every mission launched by NASA to the outer planets has produced unexpected results. The Voyager I and II, Galileo, and Cassini missions produced images and collected scientific data that totally revolutionized our understanding of the solar system and the formation of the planetary systems. These missions were enabled by the use of nuclear power. Because of the distances from the Sun, electrical power was produced using the radioactive decay of a plutonium isotope. Radioisotopic Thermoelectric Generators (RTGs) used in the past and currently used Multi-Mission RTGs (MMRTGs) provide power for space missions. Unfortunately, RTGs rely on thermocouples to convert heat to electricity and are inherently inefficient ({approx} 3-7% thermal to electric efficiency). A Radioisotope Thermal Photovoltaic (RTPV) power source has the potential to reduce the specific mass of the onboard power supply by increasing the efficiency of thermal to electric conversion. In an RTPV, a radioisotope heats an emitter, which emits light to a photovoltaic (PV) cell, which converts the light into electricity. Developing an emitter tuned to the desired wavelength of the photovoltaic is a key part in increasing overall performance. Researchers at the NASA Glenn Research Center (GRC) have built a Thermal Photovoltaic (TPV) system, that utilizes a simulated General Purpose Heat Source (GPHS) from a MMRTG to heat a tantalum emitter. The GPHS is a block of graphite roughly 10 cm by 10 cm by 5 cm. A fully loaded GPHS produces 250 w of thermal power and weighs 1.6 kgs. The GRC system relies on the GPHS unit radiating at 1200 K to a tantalum emitter that, in turn, radiates light to a GaInAs photo-voltaic cell. The GRC claims system efficiency of conversion of 15%. The specific mass is around 167 kg/kWe. A RTPV power source that utilized a ceramic or ceramic-metal (cermet) matrix would allow for the combination of the heat source, canister, and emitter into one compact unit, and allow variation in size

  13. Polyaniline: a conductive polymer coating for durable nanospray emitters

    PubMed

    Maziarz; Lorenz; White; Wood

    2000-07-01

    Despite the tremendous sensitivity and lower sample requirements for nanospray vs. conventional electrospray, metallized nanospray emitters have suffered from one of two problems: low mechanical stability (leading to emitter failure) or lengthy, tedious production methods. Here, we describe a simple alternative to metallized tips using polyaniline (PANI), a synthetic polymer well known for its high conductivity, anticorrosion properties, antistatic properties, and mechanical stability. A simple method for coating borosilicate emitters (1.2 mm o.d.) pulled to fine tapers (4 +/- 1 microm) with water-soluble and xylene-soluble dispersions of conductive polyaniline (which allows for electrical contact at the emitter outlet) is described. The polyaniline-coated emitters show high durability and are resistant to electrical discharge, likely because of the thick (yet optically transparent) coatings; a single emitter can be used over a period of days for multiple samples with no visible indication of the destruction of the polyaniline coating. The optical transparency of the coating also allows the user to visualize the sample plug loaded into the emitter. Examples of nanospray using coatings of the water-soluble and xylene-soluble polyaniline dispersions are given. A comparison of PANI-coated and gold-coated nanospray emitters to conventional electrospray ionization (ESI) show that PANI-coated emitters provide similar enhanced sensitivity that gold-coated emitters exhibit vs. conventional ESI. PMID:10883822

  14. Wavelength locking of single emitters and multi-emitter modules: simulation and experiments

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Rappaport, Noam; Peleg, Ophir; Berk, Yuri; Dahan, Nir; Klumel, Genady; Baskin, Ilya; Levy, Moshe

    2016-03-01

    Wavelength-stabilized high-brightness single emitters are commonly used in fiber-coupled laser diode modules for pumping Yb-doped lasers at 976 nm, and Nd-doped ones at 808 nm. We investigate the spectral behavior of single emitters under wavelength-selective feedback from a volume Bragg (or hologram) grating (VBG) in a multi-emitter module. By integrating a full VBG model as a multi-layer thin film structure with commercial raytracing software, we simulated wavelength locking conditions as a function of beam divergence and angular alignment tolerances. Good correlation between the simulated VBG feedback strength and experimentally measured locking ranges, in both VBG misalignment angle and laser temperature, is demonstrated. The challenges of assembling multi-emitter modules based on beam-stacked optical architectures are specifically addressed, where the wavelength locking conditions must be achieved simultaneously with high fiber coupling efficiency for each emitter in the module. It is shown that angular misorientation between fast and slow-axis collimating optics can have a dramatic effect on the spectral and power performance of the module. We report the development of our NEON-S wavelength-stabilized fiber laser pump module, which uses a VBG to provide wavelength-selective optical feedback in the collimated portion of the beam. Powered by our purpose-developed high-brightness single emitters, the module delivers 47 W output at 11 A from an 0.15 NA fiber and a 0.3 nm linewidth at 976 nm. Preliminary wavelength-locking results at 808 nm are also presented.

  15. High brightness fiber laser pump sources based on single emitters and multiple single emitters

    NASA Astrophysics Data System (ADS)

    Scheller, Torsten; Wagner, Lars; Wolf, Jürgen; Bonati, Guido; Dörfel, Falk; Gabler, Thomas

    2008-02-01

    Driven by the potential of the fiber laser market, the development of high brightness pump sources has been pushed during the last years. The main approaches to reach the targets of this market had been the direct coupling of single emitters (SE) on the one hand and the beam shaping of bars and stacks on the other hand, which often causes higher cost per watt. Meanwhile the power of single emitters with 100μm emitter size for direct coupling increased dramatically, which also pushed a new generation of wide stripe emitters or multi emitters (ME) of up to 1000μm emitter size respectively "minibars" with apertures of 3 to 5mm. The advantage of this emitter type compared to traditional bars is it's scalability to power levels of 40W to 60W combined with a small aperture which gives advantages when coupling into a fiber. We show concepts using this multiple single emitters for fiber coupled systems of 25W up to 40W out of a 100μm fiber NA 0.22 with a reasonable optical efficiency. Taking into account a further efficiency optimization and an increase in power of these devices in the near future, the EUR/W ratio pushed by the fiber laser manufacturer will further decrease. Results will be shown as well for higher power pump sources. Additional state of the art tapered fiber bundles for photonic crystal fibers are used to combine 7 (19) pump sources to output powers of 100W (370W) out of a 130μm (250μm) fiber NA 0.6 with nominal 20W per port. Improving those TFB's in the near future and utilizing 40W per pump leg, an output power of even 750W out of 250μm fiber NA 0.6 will be possible. Combined Counter- and Co-Propagated pumping of the fiber will then lead to the first 1kW fiber laser oscillator.

  16. Graphite-coated nanoelectrospray emitter for mass spectrometry.

    PubMed

    Smith, Douglas R; Wood, Troy D

    2003-12-15

    A new, more rapid method for coating nanoelectrospray emitters with graphite is to use a vacuum deposition chamber and a graphite carbon electrode. This method allows for mass production of nanoelectrospray emitters in a short period of time. The emitters are laser-pulled borosilicate glass micropipets and have tapers of around 4 microm i.d. The conductive coating applied to the emitter is only 20-30 nm thick, allowing for optical transparency with the borosilicate emitters. The conductive coating is stable for a number of hours at the high voltages used for nanoelectrospray ionization and is durable in both positive and negative ion modes-even during electrical discharge. This stability will make it possible to couple these emitters with online separations such as capillary liquid chromatography or capillary electrophoresis. PMID:14670065

  17. Rare Earth Doped Yttrium Aluminum Garnet (YAG) Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie T.; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study presents a spectral emittance model for films and cylinders of rare earth doped yttrium aluminum garnets. Good agreement between experimental and theoretical film spectral emittances was found for erbium and holmium aluminum garnets. Spectral emittances of films are sensitive to temperature differences across the film. For operating conditions of interest, the film emitter experiences a linear temperature variation whereas the cylinder emitter has a more advantageous uniform temperature. Emitter efficiency is also a sensitive function of temperature. For holminum aluminum garnet film the efficiency is 0.35 at 1446K but only 0.27 at 1270 K.

  18. The Quantum Efficiency and Thermal Emittance of Metal Photocathodes

    SciTech Connect

    Dowell, David H.; Schmerge, John F.; /SLAC

    2009-03-04

    Modern electron beams have demonstrated the brilliance needed to drive free electron lasers at x-ray wavelengths, with the principle improvements occurring since the invention of the photocathode gun. The state-of-the-art normalized emittance electron beams are now becoming limited by the thermal emittance of the cathode. In both DC and RF photocathode guns, details of the cathode emission physics strongly influence the quantum efficiency and the thermal emittance. Therefore improving cathode performance is essential to increasing the brightness of beams. It is especially important to understand the fundamentals of cathode quantum efficiency and thermal emittance. This paper investigates the relationship between the quantum efficiency and the thermal emittance of metal cathodes using the Fermi-Dirac model for the electron distribution. We derive the thermal emittance and its relationship to the quantum efficiency, and compare our results to those of others.

  19. Infrared spectral normal emittance/emissivity comparison

    NASA Astrophysics Data System (ADS)

    Hanssen, L.; Wilthan, B.; Filtz, J.-R.; Hameury, J.; Girard, F.; Battuello, M.; Ishii, J.; Hollandt, J.; Monte, C.

    2016-01-01

    The National Measurement Institutes (NMIs) of the United States, Germany, France, Italy and Japan, have joined in an inter-laboratory comparison of their infrared spectral emittance scales. This action is part of a series of supplementary inter-laboratory comparisons (including thermal conductivity and thermal diffusivity) sponsored by the Consultative Committee on Thermometry (CCT) Task Group on Thermophysical Quantities (TG-ThQ). The objective of this collaborative work is to strengthen the major operative National Measurement Institutes' infrared spectral emittance scales and consequently the consistency of radiative properties measurements carried out worldwide. The comparison has been performed over a spectral range of 2 μm to 14 μm, and a temperature range from 23 °C to 800 °C. Artefacts included in the comparison are potential standards: oxidized Inconel, boron nitride, and silicon carbide. The measurement instrumentation and techniques used for emittance scales are unique for each NMI, including the temperature ranges covered as well as the artefact sizes required. For example, all three common types of spectral instruments are represented: dispersive grating monochromator, Fourier transform and filter-based spectrometers. More than 2000 data points (combinations of material, wavelength and temperature) were compared. Ninety-eight percent (98%) of the data points were in agreement, with differences to weighted mean values less than the expanded uncertainties calculated from the individual NMI uncertainties and uncertainties related to the comparison process. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  20. Atmospheric corrections for TIMS estimated emittance

    NASA Technical Reports Server (NTRS)

    Warner, T. A.; Levandowski, D. W.

    1992-01-01

    The estimated temperature of the average of 500 lines of Thermal Infrared Multispectral Scanner (TIMS) data of the Pacific Ocean, from flight line 94, collected on 30 Sep. 1988, at 1931 GMT is shown. With no atmospheric corrections, estimated temperature decreases away from nadir (the center of the scan line). A LOWTRAN modeled correction, using local radiosonde data and instrument scan angle information, results in reversed limb darkening effects for most bands, and does not adequately correct all bands to the same temperature. The atmosphere tends to re-radiate energy at the wavelengths at which it most absorbs, and thus the overall difference between corrected and uncorrected temperatures is approximately 40 C, despite the average LOWTRAN calculated transmittance of only 60 percent between 8.1 and 11.6 microns. An alternative approach to atmospheric correction is a black body normalization. This is done by calculating a normalization factor for each pixel position and wavelength, which when applied results in a single calculated temperature, as would be expected for a gray body with near uniform emittance. The black body adjustment is based on the atmospheric conditions over the sea. The ground elevation profile along the remaining 3520 scan lines (approximately 10 km) of flight line 94, up the slopes of Kilauea, determined from aircraft pressure and laser altimeter data is shown. This flight line includes a large amount of vegetation that is clearly discernible on the radiance image, being much cooler than the surrounding rocks. For each of the 3520 scan lines, pixels were classified as vegetation or 'other'. A moving average of 51 lines was applied to the composite vegetation emittance for each scan line, to reduce noise. Assuming vegetation to be like water, and to act as gray body with an emittance of 0.986 across the spectrum, it is shown that that the LOWTRAN induced artifacts are severe, and other than for the 0.9.9 micron channel, not significantly

  1. Multi-channel polarized thermal emitter

    DOEpatents

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

    2013-07-16

    A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

  2. Decay Studies of Proton Emitter: 151Lu

    NASA Astrophysics Data System (ADS)

    Wang, F.; Sun, B.; Zhu, L.; Liu, Z.

    An experiment aiming to search for new isomers in the region of proton emitter 151Lu was done in the Accelerator Laboratory of the University of Jyväskylä (JYFL). Rich information on 151Lu and 151mLu has been obtained from our data analysis. In this work, we revisit the level scheme of 151Lu by using the proton-tagging technique and measure the half-lives of 151Lu and 151mLu are 82.8±0.7 ms and 15.4±0.8 μs, respectively.

  3. High efficiency quasi-monochromatic infrared emitter

    NASA Astrophysics Data System (ADS)

    Brucoli, Giovanni; Bouchon, Patrick; Haïdar, Riad; Besbes, Mondher; Benisty, Henri; Greffet, Jean-Jacques

    2014-02-01

    Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

  4. High efficiency quasi-monochromatic infrared emitter

    SciTech Connect

    Brucoli, Giovanni; Besbes, Mondher; Benisty, Henri Greffet, Jean-Jacques; Bouchon, Patrick; Haïdar, Riad

    2014-02-24

    Incandescent radiation sources are widely used as mid-infrared emitters owing to the lack of alternative for compact and low cost sources. A drawback of miniature hot systems such as membranes is their low efficiency, e.g., for battery powered systems. For targeted narrow-band applications such as gas spectroscopy, the efficiency is even lower. In this paper, we introduce design rules valid for very generic membranes demonstrating that their energy efficiency for use as incandescent infrared sources can be increased by two orders of magnitude.

  5. Thermal emittance measurements of a cesium potassium antimonide photocathode

    NASA Astrophysics Data System (ADS)

    Bazarov, Ivan; Cultrera, Luca; Bartnik, Adam; Dunham, Bruce; Karkare, Siddharth; Li, Yulin; Liu, Xianghong; Maxson, Jared; Roussel, William

    2011-05-01

    Thermal emittance measurements of a CsK2Sb photocathode at several laser wavelengths are presented. The emittance is obtained with a solenoid scan technique using a high voltage dc photoemission gun. The thermal emittance is 0.56±0.03 mm mrad/mm(rms) at 532 nm wavelength. The results are compared with a simple photoemission model and found to be in a good agreement.

  6. Taming the blackbody with infrared metamaterials as selective thermal emitters.

    PubMed

    Liu, Xianliang; Tyler, Talmage; Starr, Tatiana; Starr, Anthony F; Jokerst, Nan Marie; Padilla, Willie J

    2011-07-22

    In this Letter we demonstrate, for the first time, selective thermal emitters based on metamaterial perfect absorbers. We experimentally realize a narrow band midinfrared (MIR) thermal emitter. Multiple metamaterial sublattices further permit construction of a dual-band MIR emitter. By performing both emissivity and absorptivity measurements, we find that emissivity and absorptivity agree very well as predicted by Kirchhoff's law of thermal radiation. Our results directly demonstrate the great flexibility of metamaterials for tailoring blackbody emission. PMID:21867022

  7. Active spacecraft potential control: An ion emitter experiment. [Cluster mission

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Goldstein, R.; Hamelin, M.; Maehlum, B. N.; Troim, J.; Olsen, R. C.; Pedersen, A.; Grard, R. J. L.; Schmidt, R.; Rudenauer, F.

    1988-01-01

    The cluster spacecraft are instrumented with ion emitters for charge neutralization. The emitters produce indium ions at 6 keV. The ion current is adjusted in a feedback loop with instruments measuring the spacecraft potential. The system is based on the evaporation of indium in the apex field of a needle. The design of the active spacecraft potential control instruments, and the ion emitters is presented.

  8. Measurement of emittance of metal interface in molten salt

    SciTech Connect

    Araki, N.; Makino, A.; Nakamura, Y.

    1995-11-01

    A new technique for measuring the total normal emittance of a metal in a semi-transparent liquid has been proposed and this technique has been applied to measure the emittance of stainless steel (SUS304), nickel, and gold in molten potassium nitrate KNO{sub 3}. These emittance data are indispensable to analyzing the radiative heat transfer between a metal and a semitransparent liquid, such as a molten salt.

  9. Injection of large transverse emittance EBIS beams in booster

    SciTech Connect

    Gardner, C.

    2011-10-10

    During the commissioning of EBIS beams in Booster in November 2010 and in April, May and June 2011, it was found that the transverse emittances of the EBIS beams just upstream of Booster were much larger than expected. Beam emittances of 11{pi} mm milliradians had been expected, but numbers 3 to 4 times larger were measured. Here and throughout this note the beam emittance, {pi}{epsilon}{sub 0}, is taken to be the area of the smallest ellipse that contains 95% of the beam. We call this smallest ellipse the beam ellipse. If the beam distribution is gaussian, the rms emittance of the distribution is very nearly one sixth the area of the beam ellipse. The normalized rms emittance is the rms emittance times the relativistic factor {beta}{gamma} = 0.06564. This amounts to 0.12{pi} mm milliradians for the 11{pi} mm milliradian beam ellipse. In [1] we modeled the injection and turn-by-turn evolution of an 11{pi} mm milliradian beam ellipse in the horizontal plane in Booster. It was shown that with the present injection system, up to 4 turns of this beam could be injected and stored in Booster without loss. In the present note we extend this analysis to the injection of larger emittance beams. We consider only the emittance in the horizontal plane. Emittance in the vertical plane and the effects of dispersion are treated in [2].

  10. Analysis of Slice Transverse Emittance Evolution ina Photocathode RF Gun

    SciTech Connect

    Huang, Z.; Ding, Y.; Qiang, J.; /LBL, Berkeley

    2007-10-17

    The slice transverse emittance of an electron beam is of critical significance for an x-ray FEL. In a photocathode RF gun, the slice transverse emittance is not only determined by the emission process, but also influenced strongly by the non-linear space charge effect. In this paper, we study the slice transverse emittance evolution in a photocathode RF gun using a simple model that includes effects of RF acceleration, focusing, and space charge force. The results are compared with IMPACT-T space charge simulations and may be used to understand the development of the slice emittance in an RF gun.

  11. Muon Emittance Exchange with a Potato Slicer

    SciTech Connect

    Summers, D. J.; Hart, T. L.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S. J.; Perera, L. P.; Neuffer, D. V.

    2015-04-15

    We propose a novel scheme for final muon ionization cooling with quadrupole doublets followed by emittance exchange in vacuum to achieve the small beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low beta region occupied by a dense, low Z absorber. After final cooling, normalized transverse, longitudinal, and angular momentum emittances of 0.100, 2.5, and 0.200 mm-rad are exchanged into 0.025, 70, and 0.0 mm-rad. A skew quadrupole triplet transforms a round muon bunch with modest angular momentum into a flat bunch with no angular momentum. Thin electrostatic septa efficiently slice the flat bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 µs, one quarter of a synchrotron oscillation period. A linear long wavelength RF bucket gives each bunch a different energy causing the bunches to drift in the ring until they merge into one bunch and can be captured in a short wavelength RF bucket with a 13% muon decay loss and a packing fraction as high as 87 %.

  12. Emittance measurements from the LLUMC proton accelerator

    NASA Astrophysics Data System (ADS)

    Coutrakon, G.; Gillespie, G. H.; Hubbard, J.; Sanders, E.

    2005-12-01

    A new method of calculating beam emittances at the extraction point of a particle accelerator is presented. The technique uses the optimization programs NPSOL and MINOS developed at Stanford University in order to determine the initial values of beam size, divergence and correlation parameters (i.e. beam sigma matrix, σij) that best fit measured beam parameters. These σij elements are then used to compute the Twiss parameters α, β, and the phase space area, ε, of the beam at the extraction point. Beam size measurements in X and Y throughout the transport line were input to the optimizer along with the magnetic elements of bends, quads, and drifts. The σij parameters were optimized at the accelerator's extraction point by finding the best agreement between these measured beam sizes and those predicted by TRANSPORT. This expands upon a previous study in which a "trial and error" technique was used instead of the optimizer software, and which yielded similar results. The Particle Beam Optics Laboratory (PBO Lab™) program used for this paper integrates particle beam optics and other codes into a single intuitive graphically-based computing environment. This new software provides a seamless interface between the NPSOL and MINOS optimizer and TRANSPORT calculations. The results of these emittance searches are presented here for the eight clinical energies between 70 and 250 MeV currently being used at LLUMC.

  13. Barium depletion in hollow cathode emitters

    NASA Astrophysics Data System (ADS)

    Polk, James E.; Mikellides, Ioannis G.; Capece, Angela M.; Katz, Ira

    2016-01-01

    Dispenser hollow cathodes rely on a consumable supply of Ba released by BaO-CaO-Al2O3 source material in the pores of a tungsten matrix to maintain a low work function surface. The examination of cathode emitters from long duration tests shows deposits of tungsten at the downstream end that appear to block the flow of Ba from the interior. In addition, a numerical model of Ba transport in the cathode plasma indicates that the Ba partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant Ba-producing reaction, and it was postulated previously that this would suppress Ba loss in the upstream part of the emitter. New measurements of the Ba depletion depth from a cathode insert operated for 8200 h reveal that Ba loss is confined to a narrow region near the downstream end, confirming this hypothesis. The Ba transport model was modified to predict the depletion depth with time. A comparison of the calculated and measured depletion depths gives excellent qualitative agreement, and quantitative agreement was obtained assuming an insert temperature 70 °C lower than measured beginning-of-life values.

  14. Large-area lanthanum hexaboride electron emitter

    SciTech Connect

    Goebel, D.M.; Hirooka, Y.; Sketchley, T.A.

    1985-09-01

    A large-area cathode assembly which is capable of continuous, high-current electron emission is described. The cathode utilizes an indirectly heated lanthanum hexaboride (LaB/sub 6/) disk as the thermionic electron emitter. The LaB/sub 6/ cathode emits over 600 A of electrons at an average of 20 A/cm/sup 2/ continuously with no observable lifetime limits to date after about 400 h of operation in a plasma discharge. Proper clasping of the LaB/sub 6/ disk is required to avoid impurity production from chemical reactions with the holder and to provide adequate support if the disk fractures during rapid thermal cycling. Modification of the LaB/sub 6/ surface composition due to preferential sputtering of boron by hydrogen and argon ions in the plasma discharge has been observed. The surface appearance is consistent with the formation of LaB/sub 4/ as a result of boron depletion. The electron emission capability of the cathode is not significantly altered by the surface change. This surface modification by preferential sputtering is not observed in hollow cathodes where the ion energy from the cathode sheath voltage is typically less than 50 V. The electron emission by the cathode has not been affected by exposure to both air and water during operation. Utilizing thick disks of this intermediate temperature cathode material results in reliable, high-current, long-lifetime electron emitter assemblies.

  15. Group-III Nitride Field Emitters

    NASA Technical Reports Server (NTRS)

    Bensaoula, Abdelhak; Berishev, Igor

    2008-01-01

    Field-emission devices (cold cathodes) having low electron affinities can be fabricated through lattice-mismatched epitaxial growth of nitrides of elements from group III of the periodic table. Field emission of electrons from solid surfaces is typically utilized in vacuum microelectronic devices, including some display devices. The present field-emission devices and the method of fabricating them were developed to satisfy needs to reduce the cost of fabricating field emitters, make them compatible with established techniques for deposition of and on silicon, and enable monolithic integration of field emitters with silicon-based driving circuitry. In fabricating a device of this type, one deposits a nitride of one or more group-III elements on a substrate of (111) silicon or other suitable material. One example of a suitable deposition process is chemical vapor deposition in a reactor that contains plasma generated by use of electron cyclotron resonance. Under properly chosen growth conditions, the large mismatch between the crystal lattices of the substrate and the nitride causes strains to accumulate in the growing nitride film, such that the associated stresses cause the film to crack. The cracks lie in planes parallel to the direction of growth, so that the growing nitride film becomes divided into microscopic growing single-crystal columns. The outer ends of the fully-grown columns can serve as field-emission tips. By virtue of their chemical compositions and crystalline structures, the columns have low work functions and high electrical conductivities, both of which are desirable for field emission of electrons. From examination of transmission electron micrographs of a prototype device, the average column width was determined to be about 100 nm and the sharpness of the tips was determined to be characterized by a dimension somewhat less than 100 nm. The areal density of the columns was found to about 5 x 10(exp 9)/sq cm . about 4 to 5 orders of magnitude

  16. Compact Rare Earth Emitter Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this

  17. Spectral beam combining of multi-single emitters

    NASA Astrophysics Data System (ADS)

    Wang, Baohua; Guo, Weirong; Guo, Zhijie; Xu, Dan; Zhu, Jing; Zhang, Qiang; Yang, Thomas; Chen, Xiaohua

    2016-03-01

    Spectral beam combination expands the output power while keeps the beam quality of the combined beam almost the same as that of a single emitter. Spectral beam combination has been successfully achieved for high power fiber lasers, diode laser arrays and diode laser stacks. We have recently achieved the spectral beam combination of multiple single emitter diode lasers. Spatial beam combination and beam transformation are employed before beams from 25 single emitter diode lasers can be spectrally combined. An average output power about 220W, a spectral bandwidth less than 9 nm (95% energy), a beam quality similar to that of a single emitter and electro-optical conversion efficiency over 46% are achieved. In this paper, Rigorous Coupled Wave analysis is used to numerically evaluate the influence of emitter width, emitter pitch and focal length of transform lens on diffraction efficiency of the grating and spectral bandwidth. To assess the chance of catastrophic optical mirror damage (COMD), the optical power in the internal cavity of a free running emitter and the optical power in the grating external cavity of a wavelength locked emitter are theoretically analyzed. Advantages and disadvantages of spectral beam combination are concluded.

  18. Emittance formula for slits and pepper-pot measurement

    SciTech Connect

    Zhang, M.

    1996-10-01

    In this note, a rigid formula for slits and pepper-pot emittance measurement is derived. The derivation is based on the one- dimensional slit measurement setup. A mathematical generalization of the slit emittance formula to the pepper-pot measurement is discussed.

  19. Sharpening of field emitter tips using high-energy ions

    DOEpatents

    Musket, Ronald G.

    1999-11-30

    A process for sharpening arrays of field emitter tips of field emission cathodes, such as found in field-emission, flat-panel video displays. The process uses sputtering by high-energy (more than 30 keV) ions incident along or near the longitudinal axis of the field emitter to sharpen the emitter with a taper from the tip or top of the emitter down to the shank of the emitter. The process is particularly applicable to sharpening tips of emitters having cylindrical or similar (e.g., pyramidal) symmetry. The process will sharpen tips down to radii of less than 12 nm with an included angle of about 20 degrees. Because the ions are incident along or near the longitudinal axis of each emitter, the tips of gated arrays can be sharpened by high-energy ion beams rastered over the arrays using standard ion implantation equipment. While the process is particularly applicable for sharpening of arrays of field emitters in field-emission flat-panel displays, it can be effectively utilized in the fabrication of other vacuum microelectronic devices that rely on field emission of electrons.

  20. Thermionic scanner pinpoints work function of emitter surfaces

    NASA Technical Reports Server (NTRS)

    Rasor, N. S.

    1966-01-01

    In the electron tube testing, a thermionic scanner makes accurate spatial resolution measurements of the metallic surface work functions of emitters. The scanner determines the emitter function and its local departures from the mean value on a point-by-point basis for display on an oscilloscope.

  1. Geolocation of multiple emitters in the presence of clutter

    NASA Astrophysics Data System (ADS)

    Sathyan, Thuraiappah; Kirubarajan, Thiagalingam; Sinha, Abhijit

    2004-08-01

    In geolocating by time difference of arrival (TDOA), an array of sensors at known locations receive the signal from an emitter whose location is to be estimated. Signals received at two sensors are used to obtain the TDOA measurement. A number of algorithms are available to solve the set of nonlinear TDOA equations whose solution is the emitter location. An implicit assumption in these algorithms is that all the measurements obtained are from a single emitter. In practice, however, one has to deal with measurement origin uncertainty, which is a result of either multiple emitters being present in the region of interest, or clutter returns. In this paper, a method to determine the location of multiple emitters in a cluttered environment is presented. Several unmanned aerial vehicles (UAVs) are assumed as receivers of the electromagnetic emission from the emitter. Emissions received by different UAVs are used to obtain the TDOAs. Using a constrained optimization procedure, measurement-to-emitter associations are determined. Then, the resulting nonlinear equations are solved to find the emitter locations. An Interacting Multiple Model (IMM) estimator is used to track the located sources and to obtain their motion parameters.

  2. Emittance of positron beams produced in intense laser plasma interaction

    SciTech Connect

    Chen Hui; Hazi, A.; Link, A.; Anderson, S.; Gronberg, J.; Izumi, N.; Tommasini, R.; Wilks, S.; Sheppard, J. C.; Meyerhofer, D. D.; Baldis, H. A.; Marley, E.; Park, J.; Williams, G. J.; Fedosejev, R.; Kerr, S.

    2013-01-15

    The first measurement of the emittance of intense laser-produced positron beams has been made. The emittance values were derived through measurements of positron beam divergence and source size for different peak positron energies under various laser conditions. For one of these laser conditions, we used a one dimensional pepper-pot technique to refine the emittance value. The laser-produced positrons have a geometric emittance between 100 and 500 mm{center_dot}mrad, comparable to the positron sources used at existing accelerators. With 10{sup 10}-10{sup 12} positrons per bunch, this low emittance beam, which is quasi-monoenergetic in the energy range of 5-20 MeV, may be useful as an alternative positron source for future accelerators.

  3. Transit time and charge storage measurements in heavily doped emitters

    NASA Technical Reports Server (NTRS)

    Neugroschel, A.; Park, J. S.; Hwang, B. Y.

    1986-01-01

    A first direct measurement of the minority-carrier transit time in a transparent heavily doped emitter layer is reported. The value was obtained by a high-frequency conductance method recently developed and used for low-doped Si. The transit time coupled with the steady-state current enables the determination of the quasi-static charge stored in the emitter and the quasi-static emitter capacitance. Using a transport model, from the measured transit time, the value for the minority-carrier diffusion coefficient and mobility is estimated. The measurements were done using a heavily doped emitter of the Si p(+)-n-p bipolar transistor. The new result indicates that the position-averaged minority-carrier diffusion coefficients may be much smaller than the corresponding majority-carrier values for emitters having a concentration ranging from about 3 x 10 to the 19th per cu cm to 10 to the 20th per cu cm.

  4. GTF Transverse and Longitudinal Emittance Data Analysis Technique

    SciTech Connect

    Not Available

    2010-12-07

    The SSRL Gun Test Facility (GTF) was built to develop a high brightness electron injector for the LCLS and has been operational since 1996. Measurements at the GTF include quadrupole scan transverse emittance measurements and linac phase scan longitudinal emittance measurements. Typically the beam size is measured on a screen as a function of a quadrupole current or linac phase and the beam matrix is then fit to the measured data. Often the emittance which is the final result of the measurement is the only number reported. However, the method used to reduce the data to the final emittance value can have a significant effect on the result. This paper describes in painful detail the methods used to analyze the transverse and longitudinal emittance data collected at the GTF.

  5. New Generation of Clusterable In-FEEP Emitters

    NASA Astrophysics Data System (ADS)

    Genovese, A.; Tajmar, M.; Buldrini, N.; Spitaler, T.; Hense, K.

    2004-10-01

    Based on the lessons learned during the GOCE Microthruster Program, ARC Seibersdorf research is now developing a new generation of clusterable In- FEEP emitters, which shall enable an operation with a single PCU with drastically reduced costs and complexity, and shall operate each single emitter within the cluster at a low and thus safe thrust level. A cluster of these new emitters will allow thrust levels higher than 100 μN and increased total impulse capability. This paper presents an overview of the lessons learned during the GOCE activity, their implementation on the design of the new emitters, preliminary results which include a 1500h endurance test of the single emitters, as well as a characterization of a first cluster prototype.

  6. Vacuum Rabi spectra of a single quantum emitter.

    PubMed

    Ota, Yasutomo; Ohta, Ryuichi; Kumagai, Naoto; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2015-04-10

    We report the observation of the vacuum Rabi splitting of a single quantum emitter by measuring its direct spontaneous emission into free space. We use a semiconductor quantum dot inside a photonic crystal nanocavity, in conjunction with an appropriate cavity design and filtering with a polarizer and an aperture, enabling the extraction of the inherently weak emitter's signal. The emitter's vacuum Rabi spectra exhibit clear differences from those measured by detecting the cavity photon leakage. Moreover, we observe an asymmetric vacuum Rabi spectrum induced by interference between the emitter and cavity detection channels. Our observations lay the groundwork for accessing various cavity quantum electrodynamics phenomena that manifest themselves only in the emitter's direct spontaneous emission. PMID:25910123

  7. Radiative Performance of Rare Earth Garnet Thin Film Selective Emitters

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Good, Brian S.

    1994-01-01

    In this paper we present the first emitter efficiency results for the thin film 40 percent Er-1.5 percent Ho YAG (Yttrium Aluminum Garnet, Y3Al5O12) and 25 percent Ho YAG selective emitter at 1500 K with a platinum substrate. Spectral emittance and emissive power measurements were made (1.2 less than lambda less than 3.2 microns). Emitter efficiency and power density are significantly improved with the addition of multiple rare earth dopants. Predicted efficiency results are presented for an optimized (equal power density in the Er, (4)I(sub 15/2)-(4)I(sub 13/2) at 1.5 microns, and Ho, (5)I(sub 7)-(5)I(sub 8) at 2.0 micron emission bands) Er-Ho YAG thin film selective emitter.

  8. Plasma treatment for producing electron emitters

    DOEpatents

    Coates, Don Mayo; Walter, Kevin Carl

    2001-01-01

    Plasma treatment for producing carbonaceous field emission electron emitters is disclosed. A plasma of ions is generated in a closed chamber and used to surround the exposed surface of a carbonaceous material. A voltage is applied to an electrode that is in contact with the carbonaceous material. This voltage has a negative potential relative to a second electrode in the chamber and serves to accelerate the ions toward the carbonaceous material and provide an ion energy sufficient to etch the exposed surface of the carbonaceous material but not sufficient to result in the implantation of the ions within the carbonaceous material. Preferably, the ions used are those of an inert gas or an inert gas with a small amount of added nitrogen.

  9. Determination and error analysis of emittance and spectral emittance measurements by remote sensing. [of leaves, soil and plant canopies

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1977-01-01

    Theoretical and experimental determinations of the emittance of soils and leaves are reviewed, and an error analysis of emittance and spectral emittance measurements is developed as an aid to remote sensing applications. In particular, an equation for the upper bound of the absolute error in an emittance determination is derived. The absolute error is found to decrease with an increase in contact temperature and to increase with an increase in environmental integrated radiant flux density. The difference between temperature and band radiance temperature is plotted as a function of emittance for the wavelength intervals 4.5 to 5.5 microns, 8 to 13.5 microns and 10.2 to 12.5 microns.

  10. Physical electrostatics of small field emitter arrays/clusters

    NASA Astrophysics Data System (ADS)

    Forbes, Richard G.

    2016-08-01

    This paper aims to improve qualitative understanding of electrostatic influences on apex field enhancement factors (AFEFs) for small field emitter arrays/clusters. Using the "floating sphere at emitter-plate potential" (FSEPP) model, it re-examines the electrostatics and mathematics of three simple systems of identical post-like emitters. For the isolated emitter, various approaches are noted. An adequate approximation is to consider only the effects of sphere charges and (for significantly separated emitters) image charges. For the 2-emitter system, formulas are found for charge-transfer ("charge-blunting") effects and neighbor-field effects, for widely spaced and for "sufficiently closely spaced" emitters. Mutual charge-blunting is always the dominant effect, with a related (negative) fractional AFEF-change δtwo. For sufficiently small emitter spacing c, |δtwo| varies approximately as 1/c; for large spacing, |δtwo| decreases as 1/c3. In a 3-emitter equispaced linear array, differential charge-blunting and differential neighbor-field effects occur, but differential charge-blunting effects are dominant, and cause the "exposed" outer emitters to have higher AFEF (γ0) than the central emitter (γ1). Formulas are found for the exposure ratio Ξ = γ0/γ1, for large and for sufficiently small separations. The FSEPP model for an isolated emitter has accuracy around 30%. Line-charge models (LCMs) are an alternative, but an apparent difficulty with recent LCM implementations is identified. Better descriptions of array electrostatics may involve developing good fitting equations for AFEFs derived from accurate numerical solution of Laplace's equation, perhaps with equation form(s) guided qualitatively by FSEPP-model results. In existing fitting formulas, the AFEF-reduction decreases exponentially as c increases, which is different from the FSEPP-model formulas. This discrepancy needs to be investigated, using systematic Laplace-based simulations and appropriate results

  11. Effect of thin emitter set-back layer on GaAs delta-doped emitter bipolar junction transistor

    NASA Astrophysics Data System (ADS)

    Lew, K. L.; Yoon, S. F.

    2005-05-01

    GaAs delta-doped emitter bipolar junction transistors (δ-BJT) with different emitter set-back layer thicknesses of 10to50nm were fabricated to study the emitter set-back layer thickness effect on device dc performance. We found that the current gain decreases following decrease in the emitter set-back layer thickness. A detailed analysis was performed to explain this phenomenon, which is believed to be caused by reduction of the effective barrier height in the δ-BJT. This is due to change in the electric-field distribution in the delta-doped structure caused by the built-in potential of the base-emitter (B-E ) junction. Considering the recombination and barrier height reduction effects, the thickness of the emitter set-back layer should be designed according to the B-E junction depletion width with a tolerance of ±5nm. The dc performance of a δ-BJT designed based on this criteria is compared to that of a Al0.25Ga0.75As /GaAs heterojunction bipolar transistor (HBT). Both devices employed base doping of 2×1019cm-3 and base-to-emitter doping ratio of 40. Large emitter area (AE≈1.6×10-5cm-2) and small emitter area (AE≈1.35×10-6cm-2) device current gains of 40 and 20, respectively, were obtained in both types of transistors passivated by (NH4)2S treatment. The measured current gain of the GaAs δ-BJT is the highest reported for a homojunction device with such high base-to-emitter doping ratio normally used in HBT devices.

  12. Experimental results of a single emittance compensation solenoidal magnet

    SciTech Connect

    Palmer, D.T.; Miller, R.H.; Wang, X.J.; Ben-Zvi, I.; Skaritka, J.

    1997-07-01

    A new iron dominated single emittance compensation solenoidal magnet was designed to be integrated with the BNL/SLAC/UCLA 1.6 cell S-Band Photocathode rf Gun. This emittance compensated photoinjector is now in operation at the Brookhaven Accelerator Test Facility. It has produced a 0.329 {+-} 0.012 pC, {tau}{sub 95%} = 10.9 psec electron bunches with a normalized rms transverse emittance of {epsilon}{sub n,rms} = 1.17 {+-} 0.16 {pi} mm mrad. POISSON field maps were used with PARMELA to optimize the emittance compensation solenoidal magnet design. Magnetic field measurements show that at the cathode plane B{sub z} {le} 10 G for a peak magnetic field of B{sub z,max} = 3 kG. Which is in agreement with POISSON simulation. A single emittance compensation solenoidal magnet will produces an initial angular momentum of the electron bunch that manifests itself in a initial magnetic emittance term that cannot be eliminated. This magnetic emittance {epsilon}{sub n,rms}{sup mag} scales as 0.010 {pi} mm mrad/G as the cathode, which is in agreement with PARMELA simulations. Experimental beam dynamics results are presented that shows relative angular rotation and spot size as a function of cathode magnetic field. These results are compared to theory.

  13. Low-emittance tuning at CesrTA

    NASA Astrophysics Data System (ADS)

    Shanks, James

    The International Linear Collider (ILC) is a proposed 500GeV center-of-mass electron/positron collider. In order to meet luminosity requirements, low-emittance beams must be provided at the start of the two 15-km main linacs. These low-emittance beams will be provided by damping rings, whose optics must be well-corrected in order to minimize dilution of the vertical emittance. In 2008 the Cornell Electron/Positron Storage Ring (CESR)was reconfigured from an electron/positron collider to the CESR Test Accelerator (CesrTA), to serve as a testbed for the ILC damping rings. One of the primary research objectives of the CesrTA project is to explore beam-based optics correction techniques for application at the ILC damping rings. The geometric vertical emittance target for CesrTA is < 10 pm at 2.085 GeV. This dissertation discusses the tuning methods used at CesrTA to achieve low-emittance conditions. Simulationsmodeling the effects ofmagnetmisalignments, systematic and random multipoles, BPM errors, and emittance correction algorithm have been developed, and suggest the residual vertical emittance measured at the conclusion of the tuning procedure is dominated by sources unaffected by optics correction. The same characterization methods leading to this diagnosis have been applied to the proposed International Linear Collider (ILC) damping rings to evaluate misalignment and multipole tolerances. Dynamic aperture studies for the ILC damping rings are discussed.

  14. Emittance and beam size distortion due to linear coupling

    SciTech Connect

    Parzen, G.

    1993-01-01

    At injection, the presence of linear coupling may result in an increased beam emittance and in increased beam dimensions. Results for the emittance in the presence of linear coupling will be found. These results for the emittance distortion show that the harmonics of the skew quadrupole field close to [nu][sub x] + [nu][sub y] are the important harmonics. Results will be found for the important driving terms for the emittance distortion. It will be shown that if these driving terms are corrected, then the total emittance is unchanged, [var epsilon][sub x] + [var epsilon][sub y] = [var epsilon][sub 1] + [var epsilon][sub 2]. Also, the increase in the beam dimensions will be limited to a factor which is less than 1.414. If the correction is good enough, see below for details, one can achieve [var epsilon][sub 1] = [var epsilon][sub x], [var epsilon][sub 2] = [var epsilon] where [var epsilon][sub 1], [var epsilon][sub 2] are the emittances in the presence of coupling, and the beam dimensions are unchanged. Global correction of the emittance and beam size distortion appears possible.

  15. Emittance and beam size distortion due to linear coupling

    SciTech Connect

    Parzen, G.

    1993-06-01

    At injection, the presence of linear coupling may result in an increased beam emittance and in increased beam dimensions. Results for the emittance in the presence of linear coupling will be found. These results for the emittance distortion show that the harmonics of the skew quadrupole field close to {nu}{sub x} + {nu}{sub y} are the important harmonics. Results will be found for the important driving terms for the emittance distortion. It will be shown that if these driving terms are corrected, then the total emittance is unchanged, {var_epsilon}{sub x} + {var_epsilon}{sub y} = {var_epsilon}{sub 1} + {var_epsilon}{sub 2}. Also, the increase in the beam dimensions will be limited to a factor which is less than 1.414. If the correction is good enough, see below for details, one can achieve {var_epsilon}{sub 1} = {var_epsilon}{sub x}, {var_epsilon}{sub 2} = {var_epsilon} where {var_epsilon}{sub 1}, {var_epsilon}{sub 2} are the emittances in the presence of coupling, and the beam dimensions are unchanged. Global correction of the emittance and beam size distortion appears possible.

  16. Improved Rare-Earth Emitter Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  17. Red surface emitters: powerful and fast

    NASA Astrophysics Data System (ADS)

    Schweizer, Heinz; Ballmann, Tabitha; Butendeich, Rainer; Rossbach, Robert; Raabe, Bernd; Jetter, Michael; Scholz, Ferdinand

    2003-12-01

    Vertical cavity surface emitting lasers (VCSEL) in the GaInP/AlGaInP material system have experienced a rapid development in their short history. In general lasers from that material system are suitable for a huge number of applications beginning with TV lasers and high power lasers for edge emitters, continuing with optical data storage, medical applications as well as data communication in cars, air planes, offices and between computers as application field for VCSELs. Especially automotive applications show the highest requirements on a laser with respect to operation temperature and power. In this talk we draw out the problems of the material system AlGaInP and its implications for laser applications. We discuss the epitaxial and technological solutions to overcome at least a part of these inherent problems. We will discuss the possible power that we can expect from VCSELs emitting in the range between 650 nm to 670 nm. We got from our lasers 5 mW, CW @ RT, 670nm and 2.5mW, CW@RT, 650 nm. We emphasize the role of doping, Bragg mirror grading, suitable detuning of cavity mode and gain, and optimisation of the contact layer and control of the oxide aperture in the VCSEL structure to get improved operation characteristics at higher temperatures. From the analysis of high frequency measurements, we could evaluate modulation bandwidths between 4 GHz and 10 GHz. The application of polyimide as a dielectric isolation material shows the potential to obtain modulation bandwidths beyond 10 GHz. For the intrinsic modulation bandwidth we get a value of 25 GHz, which is near the value edge emitters show. A more detailed discussion on photon lifetimes and carrier transport times will be given in the talk. Red light emitting VCSELS driven with short current pulses showed laser emission up to + 160°C case temperature. Thus, a CW operation up to +120°C can be expected after further improvement of power generation (decrease of series resistance) and heat spreading (optimized

  18. Direct Observation of Ultralow Vertical Emittance using a Vertical Undulator

    SciTech Connect

    Wootton, Kent

    2015-09-17

    In recent work, the first quantitative measurements of electron beam vertical emittance using a vertical undulator were presented, with particular emphasis given to ultralow vertical emittances [K. P. Wootton, et al., Phys. Rev. ST Accel. Beams, 17, 112802 (2014)]. Using this apparatus, a geometric vertical emittance of 0.9 #6;± 0.3 pm rad has been observed. A critical analysis is given of measurement approaches that were attempted, with particular emphasis on systematic and statistical uncertainties. The method used is explained, compared to other techniques and the applicability of these results to other scenarios discussed.

  19. Multiple double-metal bias-free terahertz emitters

    NASA Astrophysics Data System (ADS)

    McBryde, D.; Gow, P.; Berry, S. A.; Barnes, M. E.; Aghajani, A.; Apostolopoulos, V.

    2014-05-01

    We demonstrate multiplexed terahertz emitters that exhibits 2 THz bandwidth that do not require an external bias. The emitters operate under uniform illumination eliminating the need for a micro-lens array and are fabricated with periodic Au and Pb structures on GaAs. Terahertz emission originates from the lateral photo-Dember effect and from the different Schottky barrier heights of the chosen metal pair. We characterize the emitters and determine that most terahertz emission at 300 K is due to band-bending due to the Schottky barrier of the metal.

  20. Thermal limit to the intrinsic emittance from metal photocathodes

    SciTech Connect

    Feng, Jun Nasiatka, J.; Wan, Weishi; Karkare, Siddharth; Padmore, Howard A.; Smedley, John

    2015-09-28

    Measurements of the intrinsic emittance and transverse momentum distributions obtained from a metal (antimony thin film) photocathode near and below the photoemission threshold are presented. Measurements show that the intrinsic emittance is limited by the lattice temperature of the cathode as the incident photon energy approaches the photoemission threshold. A theoretical model to calculate the transverse momentum distributions near this photoemission threshold is presented. An excellent match between the experimental measurements and the theoretical calculations is demonstrated. These measurements are relevant to low emittance electron sources for Free Electron Lasers and Ultrafast Electron Diffraction experiments.

  1. New Low Emittance Lattice for the Super-B Accelerator

    SciTech Connect

    Biagini, M.E.; Boscolo, M.; Raimondi, P.; Tomassini, S.; Zobov, M.; Seeman, J.; Sullivan, M.; Wienands, U.; Wittmer, W.; Bettoni, S.; Paoloni, E.; Bogomyagkov, A.; Koop, I.; Levichev, E.; Nikitin, S.; Piminov, P.; Shatilov, D.; /Novosibirsk, IYF

    2011-10-21

    New low emittance lattices have been designed for the asymmetric SuperB accelerator, aiming at a luminosity of 10{sup 36} cm{sup -2} s{sup -1}. Main optics features are two alternating arc cells with different horizontal phase advance, decreasing beam emittance and allowing at the same time for easy chromaticity correction in the arcs. Emittance can be further reduced by a factor of two for luminosity upgrade. Spin rotation schemes for the e{sup -} beam have been studied to provide longitudinal polarization at the IP, and implementation into the lattice is in progress.

  2. Method and apparatus for multispray emitter for mass spectrometry

    DOEpatents

    Smith, Richard D.; Tang, Keqi; Lin, Yuehe

    2004-12-14

    A method and apparatus that utilizes two or more emitters simultaneously to form an electrospray of a sample that is then directed into a mass spectrometer, thereby increasing the total ion current introduced into an electrospray ionization mass spectrometer, given a liquid flow rate of a sample. The method and apparatus are most conveniently constructed as an array of spray emitters fabricated on a single chip, however, the present invention encompasses any apparatus wherein two or more emitters are simultaneously utilized to form an electrospray of a sample that is then directed into a mass spectrometer.

  3. Measurement of ultralow vertical emittance using a calibrated vertical undulator

    NASA Astrophysics Data System (ADS)

    Wootton, K. P.; Boland, M. J.; Rassool, R. P.

    2014-11-01

    Very few experimental techniques are useful for the direct observation of ultralow vertical emittance in electron storage rings. In this work, quantitative measurements of ultralow (pm rad) electron beam vertical emittance using a vertical undulator are presented. An undulator radiation model was developed using the measured magnetic field of the APPLE-II type undulator. Using calibrated experimental apparatus, a geometric vertical emittance of ɛy=0.9 ±0.3 pm rad has been observed. These measurements could also inform modeling of the angular distribution of undulator radiation at high harmonics, for proposed diffraction-limited storage ring light sources.

  4. A resonance-free nano-film airborne ultrasound emitter

    NASA Astrophysics Data System (ADS)

    Daschewski, Maxim; Harrer, Andrea; Prager, Jens; Kreutzbruck, Marc; Beck, Uwe; Lange, Thorid; Weise, Matthias

    2013-01-01

    In this contribution we present a novel thermo-acoustic approach for the generation of broad band airborne ultrasound and investigate the applicability of resonance-free thermo-acoustic emitters for very short high pressure airborne ultrasound pulses. We report on measurements of thermo-acoustic emitter consisting of a 30 nm thin metallic film on a usual soda-lime glass substrate, generating sound pressure values of more than 140 dB at 60 mm distance from the transducer and compare the results with conventional piezoelectric airborne ultrasound transducers. Our experimental investigations show that such thermo-acoustic devices can be used as broad band emitters using pulse excitation.

  5. Remote detection of single emitters via optical waveguides

    NASA Astrophysics Data System (ADS)

    Then, Patrick; Razinskas, Gary; Feichtner, Thorsten; Haas, Philippe; Wild, Andreas; Bellini, Nicola; Osellame, Roberto; Cerullo, Giulio; Hecht, Bert

    2014-05-01

    The integration of lab-on-a-chip technologies with single-molecule detection techniques may enable new applications in analytical chemistry, biotechnology, and medicine. We describe a method based on the reciprocity theorem of electromagnetic theory to determine and optimize the detection efficiency of photons emitted by single quantum emitters through truncated dielectric waveguides of arbitrary shape positioned in their proximity. We demonstrate experimentally that detection of single quantum emitters via such waveguides is possible, confirming the predicted behavior of the detection efficiency. Our findings blaze the trail towards efficient lensless single-emitter detection compatible with large-scale optofluidic integration.

  6. Longitudinal emittance in high-current ion accelerators

    SciTech Connect

    Wangler, T.P.; Bhatia, T.S.; Neuschaefer, G.H.; Pabst, M.

    1989-01-01

    The control of longitudinal emittance in an ion linear accelerator is important for minimizing both chromatic aberrations and beam halo. The root-mean-square (rms) longitudinal emittance grouth can result from either the nonlinear rf focusing fields or the nonlinear space-charge fields. We will present conclusions based on numerical beam-dynamics studies for both the radio-frequency quadrupole (RFQ), and the drift-tube linac (DTL). We will discuss the scaling of longitudinal emittance produced during the adiabatic bunching in an RFQ and will show the benefits of ramped DTL accelerating field designs to maintain high longitudinal focusing strength with increasing particle energy. 15 refs., 8 figs.

  7. Emittance Adapter for a Diffraction Limited Synchrotron Radiation Source

    SciTech Connect

    Chao, Alexander Wu; Raimondi, Pantaleo; /Frascati

    2012-03-01

    We investigate the possibility of reaching very small horizontal and vertical emittances inside an undulator in a storage ring, by means of a local exchange of the apparent horizontal and vertical emittances, performed with a combination of skew quadrupoles and one solenoid in a dedicated insertion line in the storage ring. The insertion leaves the ring parameters and its optical properties unaffected. This scheme could greatly relax the emittance requirements for a diffraction limited synchrotron light source. The lattice derivation and design is described.

  8. Observation of Picometer Vertical Emittance with a Vertical Undulator

    NASA Astrophysics Data System (ADS)

    Wootton, K. P.; Boland, M. J.; Dowd, R.; Tan, Y.-R. E.; Cowie, B. C. C.; Papaphilippou, Y.; Taylor, G. N.; Rassool, R. P.

    2012-11-01

    Using a vertical undulator, picometer vertical electron beam emittances have been observed at the Australian Synchrotron storage ring. An APPLE-II type undulator was phased to produce a horizontal magnetic field, which creates a synchrotron radiation field that is very sensitive to the vertical electron beam emittance. The measured ratios of undulator spectral peak heights are evaluated by fitting to simulations of the apparatus. With this apparatus immediately available at most existing electron and positron storage rings, we find this to be an appropriate and novel vertical emittance diagnostic.

  9. Longitudinal emittance growth due to nonlinear space charge effect

    NASA Astrophysics Data System (ADS)

    Lau, Y. Y.; Yu, Simon S.; Barnard, John J.; Seidl, Peter A.

    2012-03-01

    Emittance posts limits on the key requirements of final pulse length and spot size on target in heavy ion fusion drivers. In this paper, we show studies on the effect of nonlinear space charge on longitudinal emittance growth in the drift compression section. We perform simulations, using the 3D PIC code WARP, for a high current beam under conditions of bends and longitudinal compression. The linear growth rate for longitudinal emittance turns out to depend only on the peak line charge density, and is independent of pulse length, velocity tilt, and/or the pipe and beam size. This surprisingly simple result is confirmed by simulations and analytic calculations.

  10. Molecular breast imaging with gamma emitters.

    PubMed

    Schillaci, O; Spanu, A; Danieli, R; Madeddu, G

    2013-12-01

    Following a diagnosis of breast cancer (BC), the early detection of local recurrence is important to define appropriate therapeutic strategies and increase the chances of a cure. In fact, despite major progress in surgical treatment, radiotherapy, and chemotherapy protocols, tumor recurrence is still a major problem. Moreover, the diagnosis of recurrence with conventional imaging methods can be difficult as a result of the presence of scar tissue. Molecular breast imaging (MBI) with gamma-ray emitting radiotracers may be very useful in this clinical setting, because it is not affected by the post-therapy morphologic changes. This review summarises the applications of 99mTc-sestamibi and 99mTc-tetrofosmin, the two most employed gamma emitter radiopharmaceuticals for MBI, in the diagnosis of local disease recurrence in patients with BC. The main limitation of MBI using conventional gamma-cameras is the low sensitivity for small BCs. The recent development of hybrid single photon emission computed tomography/computed tomography devices and especially of high-resolution specific breast cameras can improve the detection rate of sub-centimetric malignant lesions. Nevertheless, probably only the large availability of dedicated cameras will allow the clinical acceptance of MBI as useful complementary diagnostic technique in BC recurrence. The possible role of MBI with specific cameras in monitoring the local response of BC to neoadjuvant chemotherapy is also briefly discussed. PMID:24322791

  11. Vertical Arc for ILC Low Emittance Transport

    SciTech Connect

    Tenenbaum, P.; Woodley, M.; /SLAC

    2005-06-07

    The design and parameters of a vertical arc for the ILC Low Emittance Transport (LET) are reviewed. A 1 TeV CM ILC which relies upon 30 MV/m accelerating cavities with a packing fraction of 65% will require almost 48 km of main linac, which suggests that the total site length including BDS and bunch compressors will be on the order of 53 km. If built in a laser-straight tunnel with the low-energy ends near the surface, and assuming a perfectly spherical ''cue ball'' planetary surface with radius 6370 km, the collider halls will necessarily be 55 meters below grade, as shown in the top plot of Figure 1. Such depths would demand extensive use of deep tunneling, which would potentially drive up the cost and difficulty of ILC construction. An alternate solution is to use discrete vertical arcs at a few locations to allow a ''piecewise straight'' construction in which the depth of the tunnel below grade does not vary by more than a few meters. This approach is shown schematically in the bottom plot of Figure 1. In this Note we consider the issues for a design with one such vertical arc at the 250 GeV/c point (ie, midway down the linac for 1 TeV CM), and a second arc at the entrance to the BDS (ie, the entire BDS lies in one plane, with vertical arcs at each end).

  12. Measurement of Emittance of Beam in the Debuncher During Stacking

    SciTech Connect

    Halling, Mike

    1991-12-11

    The emittance of antiprotons in the debuncher was measured using two methods during normal stacking conditions. With 2.3 seconds of cooling the vertical emittance was found to be 3.6 {pi} mm-mr using scraper D:TJ308, and 2.9 {pi} mm-mr using the profile on SEM806. With 6.9 seconds of cooling time time the measured horizontal emittance was 2.1 {pi} mm-mr using D:RJ306 v.s. 1.9 {pi} mm-mr using SEM806; but with 2.3 seconds of cooling the measured emittance in the debuncher was larger than in the DTOA line, 4.5 {pi} mm-mr v.s. 2.8 {pi} mm-mr. This suggests that some beam is being scraped on a horizontal aperture restriction someplace in the extraction process.

  13. FXR LIA Optimization - Time-resolved OTR Emittance Measurement

    SciTech Connect

    Jacob, J; Ong, M; Wargo, P; LeSage, G

    2005-07-21

    The Flash X-Ray Radiography (FXR) facility at Lawrence Livermore National Laboratory utilizes a high current, long pulse linear induction accelerator to produce high doses of x-ray radiation. Accurate characterization of the transverse beam emittance is required in order to facilitate accelerator modeling and tuning efforts and, ultimately, to optimize the final focus spot size, yielding higher resolution radiographs. In addition to conventional magnet scan, pepper-pot, and multiple screen techniques, optical transition radiation (OTR) has been proven as a useful emittance measurement diagnostic and is particularly well suited to the FXR accelerator. We shall discuss the time-resolved emittance characterization of an induction linac electron beam using OTR, and we will present our experimental apparatus and analysis software. We shall also develop the theoretical background of beam emittance and transition radiation.

  14. Non-blinking single-photon emitters in silica

    DOE PAGESBeta

    Rabouw, Freddy T.; Cogan, Nicole M. B.; Berends, Anne C.; Stam, Ward van der; Vanmaekelbergh, Daniel; Koenderink, A. Femius; Krauss, Todd D.; Donega, Celso de Mello

    2016-02-19

    Samples for single-emitter spectroscopy are usually prepared by spin-coating a dilute solution of emitters on a microscope cover slip of silicate based glass (such as quartz). Here, we show that both borosilicate glass and quartz contain intrinsic defect colour centres that fluoresce when excited at 532 nm. In a microscope image the defect emission is indistinguishable from spin-coated emitters. The emission spectrum is characterised by multiple peaks with the main peak between 2.05 and 2.20 eV, most likely due to coupling to a silica vibration with an energy that varies between 160 and 180 meV. The defects are single-photon emitters,more » do not blink, and have photoluminescence lifetimes of a few nanoseconds. Furthermore, photoluminescence from such defects may previously have been misinterpreted as originating from single nanocrystal quantum dots.« less

  15. What future for quantum dot-based light emitters?

    NASA Astrophysics Data System (ADS)

    Nurmikko, Arto

    2015-12-01

    Synthesis of semiconductor colloidal quantum dots by low-cost, solution-based methods has produced an abundance of basic science. Can these materials be transformed to high-performance light emitters to disrupt established photonics technologies, particularly semiconductor lasers?

  16. Non-blinking single-photon emitters in silica.

    PubMed

    Rabouw, Freddy T; Cogan, Nicole M B; Berends, Anne C; Stam, Ward van der; Vanmaekelbergh, Daniel; Koenderink, A Femius; Krauss, Todd D; Donega, Celso de Mello

    2016-01-01

    Samples for single-emitter spectroscopy are usually prepared by spin-coating a dilute solution of emitters on a microscope cover slip of silicate based glass (such as quartz). Here, we show that both borosilicate glass and quartz contain intrinsic defect colour centres that fluoresce when excited at 532 nm. In a microscope image the defect emission is indistinguishable from spin-coated emitters. The emission spectrum is characterised by multiple peaks with the main peak between 2.05 and 2.20 eV, most likely due to coupling to a silica vibration with an energy that varies between 160 and 180 meV. The defects are single-photon emitters, do not blink, and have photoluminescence lifetimes of a few nanoseconds. Photoluminescence from such defects may previously have been misinterpreted as originating from single nanocrystal quantum dots. PMID:26892489

  17. Rare Earth Doped High Temperature Ceramic Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study develops a spectral emittance model for films of rare earth containing materials. Although there are several possible rare earth doped high temperature materials, this study was confined to rare earth aluminum garnets. Good agreement between experimental and theoretical spectral emittances was found for erbium, thulium and erbium-holmium aluminum garnets. Spectral emittances of these films are sensitive to temperature differences across the film. Emitter efficiency is also a sensitive function of temperature. For thulium aluminum garnet the efficiency is 0.38 at 1700 K but only 0.19 at 1262 K.

  18. Absolute beam emittance measurements at RHIC using ionization profile monitors

    SciTech Connect

    Minty, M.; Connolly, R; Liu, C.; Summers, T.; Tepikian, S.

    2014-08-15

    In the past, comparisons between emittance measurements obtained using ionization profile monitors, Vernier scans (using as input the measured rates from the zero degree counters, or ZDCs), the polarimeters and the Schottky detectors evidenced significant variations of up to 100%. In this report we present studies of the RHIC ionization profile monitors (IPMs). After identifying and correcting for two systematic instrumental errors in the beam size measurements, we present experimental results showing that the remaining dominant error in beam emittance measurements at RHIC using the IPMs was imprecise knowledge of the local beta functions. After removal of the systematic errors and implementation of measured beta functions, precise emittance measurements result. Also, consistency between the emittances measured by the IPMs and those derived from the ZDCs was demonstrated.

  19. CSR-induced emittance growth in achromats: Linear formalism revisited

    NASA Astrophysics Data System (ADS)

    Venturini, M.

    2015-09-01

    We review the R-matrix formalism used to describe Coherent Synchrotron Radiation (CSR)-induced projected emittance growth in electron beam transport lines and establish the connection with a description in terms of the dispersion-invariant function.

  20. Non-blinking single-photon emitters in silica

    PubMed Central

    Rabouw, Freddy T.; Cogan, Nicole M. B.; Berends, Anne C.; Stam, Ward van der; Vanmaekelbergh, Daniel; Koenderink, A. Femius; Krauss, Todd D.; Donega, Celso de Mello

    2016-01-01

    Samples for single-emitter spectroscopy are usually prepared by spin-coating a dilute solution of emitters on a microscope cover slip of silicate based glass (such as quartz). Here, we show that both borosilicate glass and quartz contain intrinsic defect colour centres that fluoresce when excited at 532 nm. In a microscope image the defect emission is indistinguishable from spin-coated emitters. The emission spectrum is characterised by multiple peaks with the main peak between 2.05 and 2.20 eV, most likely due to coupling to a silica vibration with an energy that varies between 160 and 180 meV. The defects are single-photon emitters, do not blink, and have photoluminescence lifetimes of a few nanoseconds. Photoluminescence from such defects may previously have been misinterpreted as originating from single nanocrystal quantum dots. PMID:26892489

  1. Non-blinking single-photon emitters in silica

    NASA Astrophysics Data System (ADS)

    Rabouw, Freddy T.; Cogan, Nicole M. B.; Berends, Anne C.; Stam, Ward Van Der; Vanmaekelbergh, Daniel; Koenderink, A. Femius; Krauss, Todd D.; Donega, Celso De Mello

    2016-02-01

    Samples for single-emitter spectroscopy are usually prepared by spin-coating a dilute solution of emitters on a microscope cover slip of silicate based glass (such as quartz). Here, we show that both borosilicate glass and quartz contain intrinsic defect colour centres that fluoresce when excited at 532 nm. In a microscope image the defect emission is indistinguishable from spin-coated emitters. The emission spectrum is characterised by multiple peaks with the main peak between 2.05 and 2.20 eV, most likely due to coupling to a silica vibration with an energy that varies between 160 and 180 meV. The defects are single-photon emitters, do not blink, and have photoluminescence lifetimes of a few nanoseconds. Photoluminescence from such defects may previously have been misinterpreted as originating from single nanocrystal quantum dots.

  2. Field emitter based extractor gauges and residual gas analyzers

    SciTech Connect

    Changkun Dong; G. Rao Myneni

    1999-04-01

    Attempts at using the Spindt-type molybdenum field emitter arrays in the extractor gauges and a residual gas analyzer are presented in this article. The sensitivity of the fuel emitter gauge is as high as 11 Torr{sup -1}. The departure from linearity of the pressure versus ion current measurements did not exceed 10% over the pressure range of 10{sup -10} - 10{sup -6} Torr. Stable sensitivities for nitrogen, helium, and hydrogen were achieved below 10{sup -7} Torr with the field emitter residual gas analyzer. The slightly reduced emission current and sensitivity, after long-term operation, are of concern and need to be addressed. Residual gas spectra indicate that when using field emitters, the electron stimulated desorption ions (O{sup +}, F{sup +}, and Cl{sup +}) are reduced as compared to those made using a hot filament source.

  3. Single-knob beam line for transverse emittance partitioning

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Kester, O. K.; Groening, L.; Leibrock, H.; Maier, M.; Rottländer, P.

    2013-04-01

    Flat beams feature unequal emittances in the horizontal and vertical phase space. Such beams were created successfully in electron machines by applying effective stand-alone solenoid fringe fields in the electron gun. Extension of this method to ion beams was proposed conceptually. The present paper is on the decoupling capabilities of an ion beam emittance transfer line. The proposed beam line provides a single-knob tool to partition the horizontal and vertical rms emittances, while keeping the product of the two emittances constant as well as the transverse rms Twiss parameters (αx,y and βx,y) in both planes. It is shown that this single knob is the solenoid field strength.

  4. Optimization of Metamaterial Selective Emitters for Use in Thermophotovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Pfiester, Nicole A.

    The increasing costs of fossil fuels, both financial and environmental, has motivated many to look into sustainable energy sources. Thermophotovoltaics (TPVs), specialized photovoltaic cells focused on the infrared range, offer an opportunity to achieve both primary energy capture, similar to traditional photovoltaics, as well as secondary energy capture in the form of waste heat. However, to become a feasible energy source, TPV systems must become more efficient. One way to do this is through the development of selective emitters tailored to the bandgap of the TPV diode in question. This thesis proposes the use of metamaterial emitters as an engineerable, highly selective emitter that can withstand the temperatures required to collect waste heat. Metamaterial devices made of platinum and a dielectric such as alumina or silicon nitride were initially designed and tested as perfect absorbers. High temperature robustness testing demonstrates the device's ability to withstand the rigors of operating as a selective emitter.

  5. Localization of Narrowband Single Photon Emitters in Nanodiamonds.

    PubMed

    Bray, Kerem; Sandstrom, Russell; Elbadawi, Christopher; Fischer, Martin; Schreck, Matthias; Shimoni, Olga; Lobo, Charlene; Toth, Milos; Aharonovich, Igor

    2016-03-23

    Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bioimaging. However, current understanding of the origin of these emitters is extremely limited. In this work, we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. In particular, we show that nanocrystals with defects such as twin boundaries and secondary nucleation sites exhibit narrowband emission that is absent from pristine individual nanocrystals grown under the same conditions. Critically, we prove that the narrowband emission lines vanish when extended defects are removed deterministically using highly localized electron beam induced etching. Our results enhance the current understanding of single photon emitters in diamond and are directly relevant to fabrication of novel quantum optics devices and sensors. PMID:26937848

  6. Field energy and RMS emittance in intense particle beams

    SciTech Connect

    Wangler, T.P.; Crandall, K.R.; Mills, R.S.; Reiser, M.

    1986-04-25

    An equation is presented for continuous beam with azimuthal symmetry and continuous linear focusing; the equation expresses a relationship between the rate of change for squared rms emittance and the rate of change for a quantity we call the nonlinear field energy. The nonlinear field energy depends on the shape of the charge distribution and corresponds to the residual field energy possessed by beams with nonuniform charge distributions. The equation can be integrated for the case of an rms matched beam to yield a formula for space-charge-induced emittance growth that we have tested numerically for a variety of initial distributions. The results provide a framework for discussing the scaling of rms emittance growth and an explanation for the well-established lower limit on output emittance.

  7. Halo Formation And Emittance Growth of Positron Beams in Plasmas

    SciTech Connect

    Muggli, P.; Blue, B.E.; Clayton, C.E.; Decker, F.J.; Hogan, M.J.; Huang, C.; Joshi, C.; Katsouleas, Thomas C.; Lu, W.; Mori, W.B.; O'Connell, C.L.; Siemann, R.H.; Walz, D.; Zhou, M.; /UCLA

    2011-10-25

    An ultrarelativistic 28.5 GeV, 700-{micro}m-long positron bunch is focused near the entrance of a 1.4-m-long plasma with a density n{sub e} between {approx}10{sup 13} and {approx}5 x 10{sup 14} cm{sup -3}. Partial neutralization of the bunch space charge by the mobile plasma electrons results in a reduction in transverse size by a factor of {approx}3 in the high emittance plane of the beam {approx}1 m downstream from the plasma exit. As n{sub e} increases, the formation of a beam halo containing {approx}40% of the total charge is observed, indicating that the plasma focusing force is nonlinear. Numerical simulations confirm these observations. The bunch with an incoming transverse size ratio of {approx}3 and emittance ratio of {approx}5 suffers emittance growth and exits the plasma with approximately equal sizes and emittances.

  8. Simulation studies of emittance growth in RMS mismatched beams

    SciTech Connect

    Cucchetti, A.; Wangler, T. ); Reiser, M. )

    1991-01-01

    As shown in a separate paper, a charged-particle beam, whose rms size is not matched when injected into a transport channel or accelerator, has excess energy compared with that of a matched beam. If nonlinear space-charge forces are present and the mismatched beam transforms to a matched equilibrium state, rms-emittance growth will occur. The theory yields formulas for the possible rms-emittance growth, but not for the time it takes to achieve this growth. In this paper we present the results of systematic simulation studies for a mismatched 2-D round beam in an ideal transport channel with continuous linear focusing. Emittance growth rates obtained from the simulations for different amounts of mismatch and initial charge will be presented and the emittance growth will be compared with the theory. 6 refs., 7 figs.

  9. The emittance of space radiator materials measured at elevated temperatures

    SciTech Connect

    Mirtich, M.J.; DiFilippo, F.; Barry, J.; Kussmaul, M.

    1994-09-01

    The spectral emittances of textured space radiator materials between 1.7 and 14.7 {mu}m have been evaluated at room temperature and elevated temperature (630{degrees}C) in air. Heating in air caused a permanent increase in spectral emittance for all materials tested: HCl/ion beam textured 304 stainless steel, untextured Ti (6 percent Al, 4 percent V), and sandblasted Ti (6 percent Al, 4 percent V). Changes in the surface chemistry and/or surface morphology of these materials were also observed. Elevated temperature spectral emittance was measured in an argon atmosphere and compared to the measurements in air. Similarity between the room temperature and elevated temperature spectral emittance measurements was also investigated, and limited agreement was found.

  10. Spectroscopic research on infrared emittance of coal ash deposits

    SciTech Connect

    Saljnikov, Aleksandar; Komatina, Mirko; Gojak, Milan; Vucicevic, Biljana; Goricanec, Darko; Stevanovic, Zoran

    2009-11-15

    This paper deals with thermal radiation characteristics of ash deposits on a pulverized coal combustion boiler of an electric power plant. Normal emittance spectra in the near to medium infrared (2.5-25 {mu}m) region and total normal emittances were measured on four kinds of ground ash deposits. Measurements were conducted in the 570-1460 K temperature range which is common for boiler furnaces, by both heating and cooling the ash samples, with the aim to study the effect of their thermal history. Dependence of emittance on wavelength, temperature and chemical composition was studied, too. Samples were tested for transparency (opacity) to verify the accuracy of results. It was determined that the thicknesses used for the ash powders are opaque for infrared radiation for thicknesses in the order of a millimeter. Tests have shown that spectral emittance increases with an increase of wavelength with a characteristic pattern common for all samples. Spectral normal emittance increases strongly with temperature at shorter wavelengths and remains high and unchanged at longer ones. Emittance spectra are not very sensitive to chemical composition of ashes especially beyond {lambda} {approx} 5 {mu}m. With an increase of temperature, total emittance of the powdered sample decreases to a minimum value around 1200 K. Further temperature rise induces an increase of total emittance due to sintering in the ash. On cooling, the emittance increases monotonically following the hysteresis. Quantitative directions for evaluating thermal radiation characteristics of ash deposits for the merits of the safety design of boiler furnaces were proposed. That comprises correlating the experimentally obtained emittance spectra with curves of simple analytical form, i.e., a continuous function of minimum emittance vs. wavelength. The proposed method can be extended to other specimens from the same furnace and used to determine correlations for thermal calculation of old and design of new furnaces

  11. Nanostructure TEM analysis of diamond cold cathode field emitters

    SciTech Connect

    Wade, Travis S.; Ghosh, Nikkon; Wittig, James Edward; Kang, Weng; Allard Jr, Lawrence Frederick; Unocic, Kinga A; Davidson, James; Tolk, Norman H.

    2012-01-01

    Diamond cold cathode devices have demonstrated significant potential as electron field emitters. Ultra-sharp diamond pyramidal tips (~5nm tip radius) have been fabricated and show improvement in emission when compared to conventional field emitters. However, the emission mechanisms in these complex diamond nanostructures are not well understood. Transmission electron microscopy performed in this study provides new insight into tip structure and composition with implications for field emission and diamond growth.

  12. Final report for Frequency selective surfaces for rugged thermophotovoltaic emitters

    SciTech Connect

    Daly, James

    2001-04-05

    Ion Optics created an array of regularly spaced holes in a thin conductive surface film on a dielectric substrate. When heated, this pattern behaved as a selective emitter, with more than 50% of total radiation in a well-defined peak with a center frequency determined by geometrical spacing. Peak wavelength did not alter with change in temperature, and materials easily survived 10 hours at 1000 C in air. The selective emitter will increase efficiency of thermophotovoltaic power converters.

  13. Internal emitter limits for iodine, radium and radon daughters

    SciTech Connect

    Schlenker, R.A.

    1984-08-15

    This paper identifies some of the issues which arise in the consideration of the derivation of new limits on exposure to internal emitters. Basic and secondary radiation protection limits are discussed. Terms are defined and applied to the limitation of risk from stochastic effects. Non-stochastic data for specific internal emitters (/sup 131/I and the radium isotopes) are presented. Emphasis is placed on the quantitative aspects of the limit setting problem. 65 references, 2 figures, 12 tables.

  14. Study of ultra-low emittance design for SPEAR3

    SciTech Connect

    Wang, M. -H.; Huang, X.; Safranek, J.; /SLAC

    2015-09-17

    Since its 2003 construction, the SPEAR3 synchrotron light source at SLAC has continuously improved its performance by raising beam current, top-off injection, and smaller emittance. This makes SPEAR3 one of the most productive light sources in the world. Now, to further enhance the performance of SPEAR3, we are looking into the possibility of converting SPEAR3 to an ultra-low emittance storage ring within its site constraint.

  15. A low cost, portable instrument for measuring emittance

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.

    1977-01-01

    A low cost, portable instrument has been developed with which emittance can be measured by comparison to a standard. A reflector collects infra-red radiation from a heated sample onto a low mass, black detector and the temperature rise of the black detector is measured with a thermocouple and meter. Graphical examples are presented for determination of emittance from measurements made on a sample at any known temperature.

  16. A low cost, portable instrument for measuring emittance

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.

    1977-01-01

    A low cost, portable instrument was developed with which emittance can be measured by comparison to a standard. A reflector collects infrared radiation from a heated sample onto a low mass, black detector and the temperature rise of the black detector is measured with a thermocouple and meter. Graphical examples are presented for determination of emittance from measurements made on a sample at any known temperature.

  17. Analysis of emittance growth in the Fermilab Booster

    SciTech Connect

    Ng, K.Y.; Huang, X.; Lee, S.Y.; /Indiana U.

    2006-05-01

    Multi-particle simulations are performed to study emittance growth in the Fermilab Booster. Analysis shows that the source of vertical emittance growth comes mostly from random errors in skew quadrupoles in the presence of a strong transverse space-charge force. [1] Random errors in dipole rolls and the Montague resonance do contribute but to lesser extent. The effect of random errors in the quadrupoles is small because the betatron envelope tunes are reasonably far away from the half-integer stopband.

  18. A comparison of infrared-emittance measurements and measurement techniques.

    PubMed

    Millard, J P; Streed, E R

    1969-07-01

    Values of directional and hemispherical emittance of twelve coatings were needed in support of a spacecraft experiment. Laboratory measurements were made by two calorimetric and four reflectance techniques and with two portable devices designed for field or laboratory operation. The measurement results are compared, primarily on the basis of hemispherical emittance values deduced from each; and the limitations and uncertainties of each technique are summarized. PMID:20072458

  19. Validated Analytical Model of a Pressure Compensation Drip Irrigation Emitter

    NASA Astrophysics Data System (ADS)

    Shamshery, Pulkit; Wang, Ruo-Qian; Taylor, Katherine; Tran, Davis; Winter, Amos

    2015-11-01

    This work is focused on analytically characterizing the behavior of pressure-compensating drip emitters in order to design low-cost, low-power irrigation solutions appropriate for off-grid communities in developing countries. There are 2.5 billion small acreage farmers worldwide who rely solely on their land for sustenance. Drip, compared to flood, irrigation leads to up to 70% reduction in water consumption while increasing yields by 90% - important in countries like India which are quickly running out of water. To design a low-power drip system, there is a need to decrease the pumping pressure requirement at the emitters, as pumping power is the product of pressure and flow rate. To efficiently design such an emitter, the relationship between the fluid-structure interactions that occur in an emitter need to be understood. In this study, a 2D analytical model that captures the behavior of a common drip emitter was developed and validated through experiments. The effects of independently changing the channel depth, channel width, channel length and land height on the performance were studied. The model and the key parametric insights presented have the potential to be optimized in order to guide the design of low-pressure, clog-resistant, pressure-compensating emitters.

  20. Electromagnetic compatibility of implantable neurostimulators to RFID emitters

    PubMed Central

    2011-01-01

    Background The objective of this study is to investigate electromagnetic compatibility (EMC) of implantable neurostimulators with the emissions from radio frequency identification (RFID) emitters. Methods Six active implantable neurostimulators with lead systems were tested for susceptibility to electromagnetic fields generated by 22 RFID emitters. These medical devices have been approved for marketing in the U.S. for a number of intended uses that include: epilepsy, depression, incontinence, Parkinsonian tremor and pain relief. Each RFID emitter had one of the following carrier frequencies: 125 kHz, 134 kHz, 13.56 MHz, 433 MHz, 915 MHz and 2.45 GHz Results The test results showed the output of one of the implantable neurostimulators was inhibited by 134 kHz RFID emitter at separation distances of 10 cm or less. The output of the same implantable neurostimulator was also inhibited by another 134 kHz RFID emitter at separation distances of 10 cm or less and also showed inconsistent pulsing rate at a separation distance of 15 cm. Both effects occurred during and lasted through out the duration of the exposure. Conclusions The clinical significance of the effects was assessed by a clinician at the U.S. Food and Drug Administration. The effects were determined to be clinically significant only if they occurred for extended period of time. There were no observed effects from the other 5 implantable neurostimulators or during exposures from other RFID emitters. PMID:21658266

  1. Near-ideal emittance exchange at the Fermilab Photoinjector

    SciTech Connect

    Johnson, A.S.; Ruan, J.; Edwards, H.; Lumpkin, A.H.; Santucci, J.; Thurman-Keup, R.; /Fermilab

    2011-03-01

    The A0 Photoinjector at Fermilab is presently home to an emittance exchange (EEX) experiment. The emittance exchange beamline consists of a 3.9 GHz normal conducting deflecting mode cavity flanked by two doglegs. Electron bunches with charges of 250 pC and energy of 14.3 MeV are routinely sent through the exchanger. Here we present results of a 1:1 transverse and longitudinal emittance exchange. The advent of synchrotron radiation light sources and free electron lasers (FEL) has been a boon to a wide range of disciplines, resulting in a constantly increasing demand for brighter sources and better resolution. This demand translates to requirements on the properties of the underlying electron beams which produce the light. In particular, one is driven to find ways to precisely manipulate the phase space volume of the beam to optimize it for the desired application. Motivated by the FEL requirement for a small transverse emittance, Cornacchia and Emma developed a transverse/longitudinal emittance exchange concept using a deflecting mode rf cavity located in the dispersive section of a magnetic chicane. This method however, contained residual couplings between the two dimensions, leading Kim to propose a modified version which removed that coupling and resulted in a complete exchange. In this configuration, the deflecting mode cavity is placed between two magnetic doglegs thereby removing the afore-mentioned coupling term. We have used this beamline with upgraded diagnostics to measure a near-ideal 1:1 emittance exchange.

  2. Decoupling Intensity Radiated by the Emitter in Distance Estimation from Camera to IR Emitter

    PubMed Central

    Cano-García, Angel E.; Galilea, José Luis Lázaro; Fernández, Pedro; Infante, Arturo Luis; Pompa-Chacón, Yamilet; Vázquez, Carlos Andrés Luna

    2013-01-01

    Various models using radiometric approach have been proposed to solve the problem of estimating the distance between a camera and an infrared emitter diode (IRED). They depend directly on the radiant intensity of the emitter, set by the IRED bias current. As is known, this current presents a drift with temperature, which will be transferred to the distance estimation method. This paper proposes an alternative approach to remove temperature drift in the distance estimation method by eliminating the dependence on radiant intensity. The main aim was to use the relative accumulated energy together with other defined models, such as the zeroth-frequency component of the FFT of the IRED image and the standard deviation of pixel gray level intensities in the region of interest containing the IRED image. By using the abovementioned models, an expression free of IRED radiant intensity was obtained. Furthermore, the final model permitted simultaneous estimation of the distance between the IRED and the camera and the IRED orientation angle. The alternative presented in this paper gave a 3% maximum relative error over a range of distances up to 3 m. PMID:23727954

  3. Silicon Carbide Emitter Turn-Off Thyristor

    DOE PAGESBeta

    Wang, Jun; Wang, Gangyao; Li, Jun; Huang, Alex Q.; Melcher, Jerry; Atcitty, Stan

    2008-01-01

    A novel MOS-conmore » trolled SiC thyristor device, the SiC emitter turn-off thyristor (ETO) is a promising technology for future high-voltage switching applications because it integrates the excellent current conduction capability of a SiC thyristor with a simple MOS-control interface. Through unity-gain turn-off, the SiC ETO also achieves excellent Safe Operation Area (SOA) and faster switching speeds than silicon ETOs. The world's first 4.5-kV SiC ETO prototype shows a forward voltage drop of 4.26 V at 26.5  A / cm 2 current density at room and elevated temperatures. Tested in an inductive circuit with a 2.5 kV DC link voltage and a 9.56-A load current, the SiC ETO shows a fast turn-off time of 1.63 microseconds and a low 9.88 mJ turn-off energy. The low switching loss indicates that the SiC ETO could operate at about 4 kHz if 100  W / cm 2 conduction and the 100  W / cm 2 turn-off losses can be removed by the thermal management system. This frequency capability is about 4 times higher than 4.5-kV-class silicon power devices. The preliminary demonstration shows that the SiC ETO is a promising candidate for high-frequency, high-voltage power conversion applications, and additional developments to optimize the device for higher voltage (>5 kV) and higher frequency (10 kHz) are needed.« less

  4. Novalike cataclysmic variables are significant radio emitters

    NASA Astrophysics Data System (ADS)

    Coppejans, Deanne L.; Körding, Elmar G.; Miller-Jones, James C. A.; Rupen, Michael P.; Knigge, Christian; Sivakoff, Gregory R.; Groot, Paul J.

    2015-08-01

    Radio emission from non-magnetic cataclysmic variables (CVs, accreting white dwarfs) could allow detailed studies of outflows and possibly accretion flows in these nearby, numerous and non-relativistic compact accretors. Up to now, however, very few CVs have been detected in the radio. We have conducted a Very Large Array pilot survey of four close and optically bright novalike CVs at 6 GHz, detecting three, and thereby doubling the number of radio detections of these systems. TT Ari, RW Sex and the old nova V603 Aql were detected in both of the epochs, while V1084 Her was not detected (to a 3σ upper limit of 7.8 μ {Jy} {beam}^{-1}). These observations clearly show that the sensitivity of previous surveys was typically too low to detect these objects and that non-magnetic CVs can indeed be significant radio emitters. The three detected sources show a range of properties, including flaring and variability on both short (˜200 s) and longer term (days) time-scales, as well as circular polarization levels of up to 100 per cent. The spectral indices range from steep to inverted; TT Ari shows a spectral turnover at ˜6.5 GHz, while the spectral index of V603 Aql flattened from α = 0.54 ± 0.05 to 0.16 ± 0.08 (Fν ∝ να) in the week between observations. This range of properties suggests that more than one emission process can be responsible for the radio emission in non-magnetic CVs. In this sample we find that individual systems are consistent with optically thick synchrotron emission, gyrosynchrotron emission or cyclotron maser emission.

  5. Barium Depletion in Hollow Cathode Emitters

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2009-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  6. Nanostructure-Induced Distortion in Single-Emitter Microscopy.

    PubMed

    Lim, Kangmook; Ropp, Chad; Barik, Sabyasachi; Fourkas, John; Shapiro, Benjamin; Waks, Edo

    2016-09-14

    Single-emitter microscopy has emerged as a promising method of imaging nanostructures with nanoscale resolution. This technique uses the centroid position of an emitter's far-field radiation pattern to infer its position to a precision that is far below the diffraction limit. However, nanostructures composed of high-dielectric materials such as noble metals can distort the far-field radiation pattern. Previous work has shown that these distortions can significantly degrade the imaging of the local density of states in metallic nanowires using polarization-resolved imaging. But unlike nanowires, nanoparticles do not have a well-defined axis of symmetry, which makes polarization-resolved imaging difficult to apply. Nanoparticles also exhibit a more complex range of distortions, because in addition to introducing a high dielectric surface, they also act as efficient scatterers. Thus, the distortion effects of nanoparticles in single-emitter microscopy remains poorly understood. Here we demonstrate that metallic nanoparticles can significantly distort the accuracy of single-emitter imaging at distances exceeding 300 nm. We use a single quantum dot to probe both the magnitude and the direction of the metallic nanoparticle-induced imaging distortion and show that the diffraction spot of the quantum dot can shift by more than 35 nm. The centroid position of the emitter generally shifts away from the nanoparticle position, which is in contradiction to the conventional wisdom that the nanoparticle is a scattering object that will pull in the diffraction spot of the emitter toward its center. These results suggest that dielectric distortion of the emission pattern dominates over scattering. We also show that by monitoring the distortion of the quantum dot diffraction spot we can obtain high-resolution spatial images of the nanoparticle, providing a new method for performing highly precise, subdiffraction spatial imaging. These results provide a better understanding of the

  7. Joint Lyman α emitters - quasars reionization constraints

    NASA Astrophysics Data System (ADS)

    Baek, S.; Ferrara, A.; Semelin, B.

    2012-06-01

    We present a novel method to investigate c reionization, using joint spectral information on high-redshift Lyman α emitters (LAEs) and quasi-stellar objects (QSOs). Although LAEs have been proposed as reionization probes, their use is hampered by the fact their Lyα line is damped not only by intergalactic H I but also internally by dust. Our method allows us to overcome such degeneracy. First, we carefully calibrate a reionization simulation with QSO absorption line experiments. Then we identify LAEs (? and equivalent width >20 Å) in two simulation boxes at z= 5.7 and 6.6 and we build synthetic images/spectra of a prototypical LAE. The surface brightness maps show the presence of a scattering halo extending up to 150 kpc from the galaxye. For each LAE we then select a small box of (10 h-1 Mpc)3 around it and derive the optical depth τ along three viewing axes. At redshift 5.7, we find that the Lyα transmissivity ?, almost independent of the halo mass. This constancy arises from the conspiracy of two effects: (i) the intrinsic Lyα line width and (ii) the infall peculiar velocity. At higher redshift, z= 6.6, where ? the transmissivity is instead largely set by the local H I abundance and ? consequently increases with halo mass, Mh, from 0.15 to 0.3. Although outflows are present, they are efficiently pressure confined by infall in a small region around the LAE; hence they only marginally affect transmissivity. Finally, we cast line of sight originating from background QSOs passing through foreground LAEs at different impact parameters, and compute the quasar transmissivity (?). At small impact parameters, d < 1 cMpc, a positive correlation between ? and Mh is found at z= 5.7, which tends to become less pronounced (i.e. flatter) at larger distances. Quantitatively, a roughly 10× increase (from 5 × 10-3 to 6 × 10-2) of ? is observed in the range log Mh= (10.4-11.6). This correlation becomes even stronger at z= 6.6. By cross-correlating ? and ?, we can obtain a

  8. Process for making a cesiated diamond film field emitter and field emitter formed therefrom

    DOEpatents

    Anderson, David F.; Kwan, Simon W.

    1999-01-01

    A process for making a cesiated diamond film comprises (a) depositing a quantity of cesium iodide on the diamond film in a vacuum of between about 10.sup.-4 Torr and about 10.sup.-7 Torr, (b) increasing the vacuum to at least about 10.sup.-8 Torr, and (c) imposing an electron beam upon the diamond film, said electron beam having an energy sufficient to dissociate said cesium iodide and to incorporate cesium into interstices of the diamond film. The cesiated diamond film prepared according to the process has an operating voltage that is reduced by a factor of at least approximately 2.5 relative to conventional, non-cesiated diamond film field emitters.

  9. Process for making a cesiated diamond film field emitter and field emitter formed therefrom

    DOEpatents

    Anderson, D.F.; Kwan, S.W.

    1999-03-30

    A process for making a cesiated diamond film comprises (a) depositing a quantity of cesium iodide on the diamond film in a vacuum of between about 10{sup {minus}4} Torr and about 10{sup {minus}7} Torr, (b) increasing the vacuum to at least about 10{sup {minus}8} Torr, and (c) imposing an electron beam upon the diamond film, said electron beam having an energy sufficient to dissociate said cesium iodide and to incorporate cesium into interstices of the diamond film. The cesiated diamond film prepared according to the process has an operating voltage that is reduced by a factor of at least approximately 2.5 relative to conventional, non-cesiated diamond film field emitters. 2 figs.

  10. Transverse emittance dilution due to coupler kicks in linear accelerators

    NASA Astrophysics Data System (ADS)

    Buckley, Brandon; Hoffstaetter, Georg H.

    2007-11-01

    One of the main concerns in the design of low emittance linear accelerators (linacs) is the preservation of beam emittance. Here we discuss one possible source of emittance dilution, the coupler kick, due to transverse electromagnetic fields in the accelerating cavities of the linac caused by the power coupler geometry. In addition to emittance growth, the coupler kick also produces orbit distortions. It is common wisdom that emittance growth from coupler kicks can be strongly reduced by using two couplers per cavity mounted opposite each other or by having the couplers of successive cavities alternate from above to below the beam pipe so as to cancel each individual kick. While this is correct, including two couplers per cavity or alternating the coupler location requires large technical changes and increased cost for superconducting cryomodules where cryogenic pipes are arranged parallel to a string of several cavities. We therefore analyze consequences of alternate coupler placements. We show here that alternating the coupler location from above to below compensates the emittance growth as well as the orbit distortions. For sufficiently large Q values, alternating the coupler location from before to after the cavity leads to a cancellation of the orbit distortion but not of the emittance growth, whereas alternating the coupler location from before and above to behind and below the cavity cancels the emittance growth but not the orbit distortion. We show that cancellations hold for sufficiently large Q values. These compensations hold even when each cavity is individually detuned, e.g., by microphonics. Another effective method for reducing coupler kicks that is studied is the optimization of the phase of the coupler kick so as to minimize the effects on emittance from each coupler. This technique is independent of the coupler geometry but relies on operating on crest. A final technique studied is symmetrization of the cavity geometry in the coupler region with

  11. Study of Lower Emittance Lattices for SPEAR3

    SciTech Connect

    Huang, Xiaobiao; Nosochkov, Yuri; Safranek, James A.; Wang, Lanfa; /SLAC

    2011-11-08

    We study paths to significantly reduce the emittance of the SPEAR3 storage ring. Lattice possibilities are explored with the GLASS technique. New lattices are designed and optimized for practical dynamic aperture and beam lifetime. Various techniques are employed to optimize the nonlinear dynamics, including the Elegant-based genetic algorithm. Experimental studies are also carried out on the ring to validate the lattice design. The SPEAR3 storage ring is a third generation light source which has a racetrack layout with a circumference of 234.1 m. The requirement to maintain the photon beamline positions put a significant constraint on the lattice design. Consequently the emittance of SPEAR3 is not on par with some of the recently-built third generation light sources. The present operational lattice has an emittance of 10 nm. For the photon beam brightness of SSRL to remain competitive among the new or upgraded ring-based light sources, it is necessary to significantly reduce the emittance of SPEAR3. In this paper we report our ongoing effort to develop a lower emittance solution for SSRL. We first show the potential of the SPEAR3 lattice with results of the standard cell study using the GLASS technique. This is followed by a discussion of the design strategy for full-ring linear lattices. Several lattice options are compared. We then show the methods and results for dynamic aperture optimization. Experiments were also conducted on the SPEAR3 ring to implement the lattice and to measure the key lattice parameters.

  12. Preservation of low slice emittance in bunch compressors

    NASA Astrophysics Data System (ADS)

    Bettoni, S.; Aiba, M.; Beutner, B.; Pedrozzi, M.; Prat, E.; Reiche, S.; Schietinger, T.

    2016-03-01

    Minimizing the dilution of the electron beam emittance is crucial for the performance of accelerators, in particular for free electron laser facilities, where the length of the machine and the efficiency of the lasing process depend on it. Measurements performed at the SwissFEL Injector Test Facility revealed an increase in slice emittance after compressing the bunch even for moderate compression factors. The phenomenon was experimentally studied by characterizing the dependence of the effect on beam and machine parameters relevant for the bunch compression. The reproduction of these measurements in simulation required the use of a 3D beam dynamics model along the bunch compressor that includes coherent synchrotron radiation. Our investigations identified transverse effects, such as coherent synchrotron radiation and transverse space charge as the sources of the observed emittance dilution, excluding other effects, such as chromatic effects on single slices or spurious dispersion. We also present studies, both experimental and simulation based, on the effect of the optics mismatch of the slices on the variation of the slice emittance along the bunch. After a corresponding reoptimization of the beam optics in the test facility we reached slice emittances below 200 nm for the central slices along the longitudinal dimension with a moderate increase up to 300 nm in the head and tail for a compression factor of 7.5 and a bunch charge of 200 pC, equivalent to a final current of 150 A, at about 230 MeV energy.

  13. Study of Abnormal Vertical Emittance Growth in ATF Extraction Line

    SciTech Connect

    Alabau, M.; Faus-Golfe, A.; Alabau, M.; Bambade, P.; Brossard, J.; Le Meur, G.; Rimbault, C.; Touze, F.; Angal-Kalinin, D.; Jones, J.K.; Appleby, R.; Scarfe, A.; Kuroda, S.; White, G.R.; Woodley, M.; Zimmermann, F.; /CERN

    2011-11-04

    Since several years, the vertical beam emittance measured in the Extraction Line (EXT) of the Accelerator Test Facility (ATF) at KEK, that will transport the electron beam from the ATF Damping Ring (DR) to the future ATF2 Final Focus beam line, is significantly larger than the emittance measured in the DR itself, and there are indications that it grows rapidly with increasing beam intensity. This longstanding problem has motivated studies of possible sources of this anomalous emittance growth. One possible contribution is non-linear magnetic fields in the extraction region experimented by the beam while passing off-axis through magnets of the DR during the extraction process. In this paper, simulations of the emittance growth are presented and compared to observations. These simulations include the effects of predicted non-linear field errors in the shared DR magnets and orbit displacements from the reference orbit in the extraction region. Results of recent measurements using closed orbit bumps to probe the relation between the extraction trajectory and the anomalous emittance growth are also presented.

  14. Analytical solution for irradiance due to inhomogeneous Lambertian polygonal emitters.

    PubMed

    Chen, Min; Arvo, James

    2003-05-01

    We present an analytic solution for the irradiance at a point due to a polygonal Lambertian emitter with radiant exitance that varies with position according to a polynomial of arbitrary degree. This is a basic problem that arises naturally in radiative transfer and more specifically in global illumination, a subfield of computer graphics. Our solution is closed form except for a single nonalgebraic special function known as the Clausen integral. We begin by deriving several useful formulas for high-order tensor analogs of irradiance, which are natural generalizations of the radiation pressure tensor. We apply the resulting tensor formulas to linearly varying emitters, obtaining a solution that exhibits the general structure of higher-degree cases, including the dependence on the Clausen integral. We then generalize to higher-degree polynomials with a recurrence formula that combines solutions for lower-degree polynomials; the result is a generalization of Lambert's formula for homogeneous diffuse emitters, a well-known formula with many applications in radiative transfer and computer graphics. Similar techniques have been used previously to derive closed-form solutions for the irradiance due to homogeneous polygonal emitters with directionally varying radiance. The present work extends this previous result to include inhomogeneous emitters, which proves to be significantly more challenging to solve in closed form. We verify our theoretical results with numerical approximations and briefly discuss their potential applications. PMID:12747427

  15. Fully tuneable, Purcell-enhanced solid-state quantum emitters

    SciTech Connect

    Petruzzella, M. Xia, T.; Pagliano, F.; Birindelli, S.; Zobenica, Z.; Fiore, A.; Midolo, L.; Li, L. H.; Linfield, E. H.

    2015-10-05

    We report the full energy control over a semiconductor cavity-emitter system, consisting of single Stark-tunable quantum dots embedded in mechanically reconfigurable photonic crystal membranes. A reversible wavelength tuning of the emitter over 7.5 nm as well as an 8.5 nm mode shift are realized on the same device. Harnessing these two electrical tuning mechanisms, a single exciton transition is brought on resonance with the cavity mode at several wavelengths, demonstrating a ten-fold enhancement of its spontaneous emission. These results open the way to bring several cavity-enhanced emitters mutually into resonance and therefore represent a key step towards scalable quantum photonic circuits featuring multiple sources of indistinguishable single photons.

  16. Emittance growth in the DARHT Axis-II Downstream Transport

    SciTech Connect

    Ekdahl, Jr., Carl August; Schulze, Martin E.

    2015-04-14

    Using a particle-in-cell (PIC) code, we investigated the possibilities for emittance growth through the quadrupole magnets of the system used to transport the high-current electron beam from an induction accelerator to the bremsstrahlung converter target used for flash radiography. We found that even highly mismatched beams exhibited little emittance growth (< 6%), which we attribute to softening of their initial hard edge current distributions. We also used this PIC code to evaluate the accuracy of emittance measurements using a solenoid focal scan following the quadrupole magnets. If the beam is round after the solenoids, the simulations indicate that the measurement is highly accurate, but it is substantially inaccurate for elliptical beams

  17. Low Emittance Tuning Studies for SuperB

    SciTech Connect

    Liuzzo, Simone; Biagini, Maria; Raimondi, Pantaleo; Donald, Martin; /SLAC

    2012-07-06

    SuperB[1] is an international project for an asymmetric 2 rings collider at the B mesons cm energy to be built in the Rome area in Italy. The two rings will have very small beam sizes at the Interaction Point and very small emittances, similar to the Linear Collider Damping Rings ones. In particular, the ultra low vertical emittances, 7 pm in the LER and 4 pm in the HER, need a careful study of the misalignment errors effects on the machine performances. Studies on the closed orbit, vertical dispersion and coupling corrections have been carried out in order to specify the maximum allowed errors and to provide a procedure for emittance tuning. A new tool which combines MADX and Matlab routines has been developed, allowing for both corrections and tuning. Results of these studies are presented.

  18. Study of narrowband single photon emitters in polycrystalline diamond films

    SciTech Connect

    Sandstrom, Russell G.; Shimoni, Olga; Martin, Aiden A.; Aharonovich, Igor

    2014-11-03

    Quantum information processing and integrated nanophotonics require robust generation of single photon emitters on demand. In this work, we demonstrate that diamond films grown on a silicon substrate by microwave plasma chemical vapor deposition can host bright, narrowband single photon emitters in the visible—near infra-red spectral range. The emitters possess fast lifetime (∼several ns), absolute photostability, and exhibit full polarization at excitation and emission. Pulsed and continuous laser excitations confirm their quantum behaviour at room temperature, while low temperature spectroscopy is performed to investigate inhomogeneous broadening. Our results advance the knowledge of solid state single photon sources and open pathways for their practical implementation in quantum communication and quantum information processing.

  19. Intrinsic Emittance Reduction of an Electron Beam from Metal Photocathodes

    SciTech Connect

    Hauri, C. P.; Ganter, R.; Le Pimpec, F.; Trisorio, A.; Ruchert, C.; Braun, H. H.

    2010-06-11

    Electron beams in modern linear accelerators are now becoming limited in brightness by the intrinsic emittance of the photocathode electron source. Therefore it becomes important for large scale facilities such as free electron lasers to reduce this fundamental limit. In this Letter we present measurements of the intrinsic emittance for different laser wavelength (from 261 to 282 nm) and for different photocathode materials such as Mo, Nb, Al, Cu. Values as low as 0.41{+-}0.03 mm{center_dot}mrad/mm laser spot size (rms) were measured for a copper photocathode illuminated with a 282 nm laser wavelength. The key element for emittance reduction is a uv laser system which allows adjustment of the laser photon energy to match the effective work function of the cathode material and to emit photoelectrons with a lower initial kinetic energy. The quantum efficiency over the explored wavelength range varies by less than a factor of 3.

  20. Longitudinal emittance measurements in the Fermilab Recycler Ring

    SciTech Connect

    C. M. Bhat; John P. Marriner

    2003-06-10

    The Recycler Ring (RR) is a new 8Gev antiproton storage ring at Fermilab. Presently, this machine is being commissioned using protons from the Booster. It uses barrier buckets for stacking, un-stacking and storing the beam. At any given time, the RR is capable of storing proton or antiproton beams in multiple segments azimuthally. These segments of the beam may have widely differing longitudinal emittance and beam intensities and bunch lengths. It is highly essential to be able to measure the longitudinal emittance and keep track of the longitudinal dynamics at various stages of the operation of the RR. In this paper, the authors discuss a few methods of longitudinal emittance measurements in barrier buckets and discuss their merits and demerits

  1. HIGH RESOLUTION EMITTANCE MEASUREMENTS AT SNS FRONT END

    SciTech Connect

    Aleksandrov, Alexander V; Zhukov, Alexander P

    2013-01-01

    The Spallation Neutron Source (SNS) linac accelerates an H- beam from 2.5MeV up to 1GeV. Recently the emittance scanner in the MEBT (2.5 MeV) was upgraded. In addition to the slit - harp measurement, we now can use a slit installed on the same actuator as the harp. In combination with a faraday cup located downstream in DTL part of the linac, it represents a classical slit-slit emittance measurement device. While a slit slit scan takes much longer, it is immune to harp related problems such as wire cross talk, and thus looks promising for accurate halo measurements. Time resolution of the new device seems to be sufficient to estimate the amount of beam in the chopper gap (the scanner is downstream of the chopper), and probably to measure its emittance. This paper describes the initial measurements with the new device and some model validation data.

  2. Spring structure for a thermionic converter emitter support arrangement

    DOEpatents

    Allen, D.T.

    1992-03-17

    A support is provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a larger metal main support at the rear end that is attached to the housing, and with a ceramic layer between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer captured between the Belleville springs. 7 figs.

  3. Spring structure for a thermionic converter emitter support arrangement

    DOEpatents

    Allen, Daniel T.

    1992-01-01

    A support is provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end (34) is supported by a spring structure (44) that includes a pair of Belleville springs, and the spring structure is supported by a support structure (42) fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element (74) at the front end, a larger metal main support (76) at the rear end that is attached to the housing, and with a ceramic layer (80) between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer (120) captured between the Belleville springs.

  4. SiC IR emitter design for thermophotovoltaic generators

    NASA Astrophysics Data System (ADS)

    Fraas, Lewis M.; Ferguson, Luke; McCoy, Larry G.; Pernisz, Udo C.

    1996-02-01

    An improved ceramic spine disc burner/emitter for use in a thermophotovoltaic (TPV) generator is described. A columnar infrared (IR) emitter consisting of a stack of silicon carbide (SiC) spine discs provides for both high conductance for the combustion gases and efficient heat transfer from the hot combustion gases to the emitter. Herein, we describe the design, fabrication, and testing of this SiC burner as well as the characterization of the IR spectrum it emits. We note that when the SiC column is surrounded with fused silica heat shields, these heat shields suppress the emitted power beyond 4 microns. Thus, a TPV generator using GaSb photovoltaic cells covered by simple dielectric filters can convert over 30% of the emitted IR radiation to DC electric power.

  5. Laser Assisted Emittance Transfer for Storage Ring Lasing

    SciTech Connect

    Xiang, Dao; /SLAC

    2011-06-01

    In modern storage rings the transverse emittance of electron beams can be comparable to that from state-of-art photoinjectors, but the intrinsic low peak current and large energy spread pre-cludes the possibility of realizing short-wavelength high-gain free electron lasers (FELs) in storage rings. In this note I propose a technique to significantly increase beam peak current without greatly increasing beam energy spread, which is achieved by transferring part of the longitudinal emittance to transverse plane. It is shown that by properly repartitioning the emittance in 6-D phase space, the beam from a large storage ring may be used to drive a single-pass high-gain FEL in soft x-ray wavelength range.

  6. High-efficiency photonic crystal narrowband thermal emitters

    NASA Astrophysics Data System (ADS)

    Farfan, G. B.; Su, M. F.; Reda Taha, M. M.; El-Kady, I.

    2010-02-01

    Photonic crystals (PhC) are artificial structures fabricated with a periodicity in the dielectric function. This periodic electromagnetic potential results in creation of energy bandgaps where photon propagation is prohibited. PhC structures have promising use in thermal applications if optimized to operate at specific thermal emission spectrum. Here, novel utilization of optimized PhC's in thermal applications is presented. We demonstrate through numerical simulation the modification of the thermal emission spectrum by a metallic photonic crystal (PhC) to create high-efficiency multispectral thermal emitters. These emitters funnel radiation from a broad emission spectrum associated with a Plancklike distribution into a prescribed narrow emission band. A detailed quantitative evaluation of the spectral and power efficiencies of a PhC thermal emitter and its portability across infrared (IR) spectral bands are provided. We show an optimized tungsten PhC with a predominant narrow-band emission profile with an emitter efficiency that is more than double that of an ideal blackbody and ~65-75% more power-efficiency across the IR spectrum. We also report on using optimal three-dimensional Lincoln log photonic crystal (LL-PhC) emitters for thermophotovoltaic (TPV) generation as opposed to using a passive filtering approach to truncate the broadband thermal source emission to match the bandgap of a photovoltaic (PV) cell. The emitter performance is optimized for the 1-2μm PV band using different PhC materials, specifically copper, silver and gold. The use of the proposed PhC in TPV devices can produce significant energy savings not reported before. The optimal design of the PhC geometry is obtained by implementing a variety of optimization methods integrated with artificial intelligence (AI) algorithms.

  7. Thermal emittance and response time of a cesium antimonide photocathode

    NASA Astrophysics Data System (ADS)

    Cultrera, Luca; Bazarov, Ivan; Bartnik, Adam; Dunham, Bruce; Karkare, Siddharth; Merluzzi, Richard; Nichols, Matthew

    2011-10-01

    Measurements of the intrinsic emittance and response time of a Cs3Sb photocathode are presented. The emittance is obtained with a solenoid scan technique using a high voltage dc photoemission gun. Photoemission response time is evaluated using a RF deflecting cavity synchronized to a picosecond laser pulse train. We find that Cs3Sb has both small mean transverse energy, 160 ± 10 meV at 532 nm laser wavelength, and a prompt response time (below the resolution of our measurement) making it a suitable material for high brightness electron photoinjectors.

  8. Distributed proximity sensor system having embedded light emitters and detectors

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan (Inventor)

    1990-01-01

    A distributed proximity sensor system is provided with multiple photosensitive devices and light emitters embedded on the surface of a robot hand or other moving member in a geometric pattern. By distributing sensors and emitters capable of detecting distances and angles to points on the surface of an object from known points in the geometric pattern, information is obtained for achieving noncontacting shape and distance perception, i.e., for automatic determination of the object's shape, direction and distance, as well as the orientation of the object relative to the robot hand or other moving member.

  9. LOW EMITTANCE ELECTRON BEAMS FOR THE RHIC ELECTRON COOLER

    SciTech Connect

    KEWISCH,J.; CHANG, X.

    2007-06-25

    An electron cooler, based on an Energy Recovery Linac (ERL) is under development for the Relativistic Heavy Ion Collider (RMIC) at Brookhaven National Laboratory. This will be the first electron cooler operating at high energy with bunched beams. In order to achieve sufficient cooling of the ion beams the electron have to have a charge of 5 nC and a normalized emittance less than 4 {mu}. This paper presents the progress in optimizing the injector and the emittance improvements from shaping the charge distribution in the bunch.

  10. Beam emittance reduction during operation of Indus-2

    NASA Astrophysics Data System (ADS)

    Fakhri, Ali Akbar; Kant, Pradeep; Ghodke, A. D.; Singh, Gurnam

    2015-11-01

    Indus-2 storage ring is a 2.5 GeV third generation synchrotron radiation source. This source was commissioned using a moderate optics. Beam injection was accomplished using an off momentum electron beam to avoid difficulties faced in storage of beam at 550 MeV. The injection procedure and relevant beam dynamical studies are discussed. The switch over from the moderate optics to low emittance optics is done at 2.5 GeV after storing the electron beam. The procedure evolved to reduce the beam emittance and its implementation during the operation is discussed.

  11. Pyrometric method for measuring emittances at high temperatures

    NASA Astrophysics Data System (ADS)

    Ballestrín, J.; Rodríguez, J.; Carra, M. E.; Cañadas, I.; Roldan, M. I.; Barbero, J.; Marzo, A.

    2016-05-01

    In this work an alternative method for emittance determination based on pyrometric measurements is presented. The measurement procedure has been applied to AISI 310S steel samples in the Plataforma Solar de Almería vertical axis solar furnace SF5. The experimental results show that emittance increases with increasing temperature and decreases with increasing wavelength. This behaviour is in agreement with experimental results obtained by other authors. Analysis of tests has revealed a good repeatability (1%) and accuracy (< 2%) of this measurement procedure.

  12. Experimental Demonstration of Emittance Compensation with Velocity Bunching

    SciTech Connect

    Ferrario, M.; Alesini, D.; Bellaveglia, M.; Boni, R.; Boscolo, M.; Castellano, M.; Chiadroni, E.; Cultrera, L.; Di Pirro, G.; Ficcadenti, L.; Filippetto, D.; Fusco, V.; Gallo, A.; Gatti, G.; Marrelli, C.; Migliorati, M.; Mostacci, A.; Pace, E.; Palumbo, L.; Spataro, B.

    2010-02-05

    In this Letter we report the first experiments aimed at the simultaneous demonstration of the emittance compensation process and velocity bunching in a high brightness electron source, the SPARC photoinjector in INFN-LNF. While a maximum compression ratio up to a factor 14 has been observed, in a particular case of interest a compression factor of 3, yielding a slice current of 120 A with less than 2 {mu}m slice emittance, has been measured. This technique may be crucial in achieving high brightness beams in photoinjectors aiming at optimized performance of short wavelength single-pass free electron lasers or other advanced applications in laser-plasma accelerators.

  13. Nonintrusive emittance measurement of 1 GeV H- beam

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Aleksandrov, A.; Long, C.; Menshov, A.; Pogge, J.; Webster, A.; Zhukov, A.

    2012-05-01

    A laser wire based transverse phase space measurement system has been developed at the Spallation Neutron Source (SNS). The system enables a direct measurement of the transverse emittance in both directions on a 1 GeV hydrogen ion (H-) beam at the high energy beam transport (HEBT) beam line. The measurement is non-destructive and has been conducted on a neutron production H- beam. This paper describes the design, implementation, and measurement performance of the system. The experience on the installation and commissioning of the laser emittance measurement system will also be discussed.

  14. Beam emittance reduction during operation of Indus-2

    SciTech Connect

    Fakhri, Ali Akbar Kant, Pradeep; Ghodke, A. D.; Singh, Gurnam

    2015-11-15

    Indus-2 storage ring is a 2.5 GeV third generation synchrotron radiation source. This source was commissioned using a moderate optics. Beam injection was accomplished using an off momentum electron beam to avoid difficulties faced in storage of beam at 550 MeV. The injection procedure and relevant beam dynamical studies are discussed. The switch over from the moderate optics to low emittance optics is done at 2.5 GeV after storing the electron beam. The procedure evolved to reduce the beam emittance and its implementation during the operation is discussed.

  15. Field Emitter Magnetic Sensor with Steered Focused Electron Beam

    NASA Astrophysics Data System (ADS)

    Nicolaescu, Dan; Filip, Valeriu; Itoh, Junji

    2001-04-01

    A novel field emission magnetic sensor is proposed and its operation is theoretically analyzed. The sensor comprises a dual-gate wedge field emitter with a split gate having the double role of focusing and steering the electron beam. The electron beam deflection due to the Lorentz force is compensated by appropriate potentials applied to this electrode. The modeling results have been obtained using the Simion 3D 7.0 software package. The device has high sensitivity and its operation is not influenced by fluctuations in the emission current. Arrangements of mutually normal wedge emitters can be used for two-dimensional magnetic field sensing.

  16. Excellent oxidation endurance of boron nitride nanotube field electron emitters

    SciTech Connect

    Song, Yenan; Song, Yoon-Ho; Milne, William I.; Jin Lee, Cheol

    2014-04-21

    Boron nitride nanotubes (BNNTs) are considered as a promising cold electron emission material owing to their negative electron affinity. BNNT field emitters show excellent oxidation endurance after high temperature thermal annealing of 600 °C in air ambient. There is no damage to the BNNTs after thermal annealing at a temperature of 600 °C and also no degradation of field emission properties. The thermally annealed BNNTs exhibit a high maximum emission current density of 8.39 mA/cm{sup 2} and show very robust emission stability. The BNNTs can be a promising emitter material for field emission devices under harsh oxygen environments.

  17. [Characterization of the organic crystal DAST as a THz emitter].

    PubMed

    Li, Kun; Li, Chun; Hu, Zhang-gui; Wang, Li; Zhang, Jie

    2006-10-01

    Using THz time-domain spectroscopy, the home-grown organic crystal DAST and widely used high-efficient ZnTe were characterized as THz emitters. Bolometer was also used to measure the absolute energy of THz radiation from DAST and ZnTe. The refractive index and absorption coefficient of DAST were measured too. It is concluded that the home-grown DAST is a kind of high-efficiency THz material, and could become a good THz emitter and detector after the improvement in growing process. PMID:17205718

  18. Measured emittance versus store time in the SLC damping ring

    SciTech Connect

    Decker, F.J.; Emma, P.; Krejcik, P.; Limberg, T.; Minty, M.; Moshammer, H.; Raubenheimer, T.; Ross, M.; Seeman, J.T.; Siemann, R.; Spence, W.; Spencer, J.; Woodley, M.

    1992-03-01

    Emittance studies at the SLC North Damping Ring led to precise measurements of the damping time using three independent methods. These measurements were done at three different locations: (1) in the ring using a fast gated video camera which allows the acquisition of the image of the synchrotron light from a single turn, (2) using the extracted beam and a single wire scanner in the ring-to-linac transport line, and (3) in the linac using four wire scanners. In addition the extracted beam emittance was studied as a function of various parameters. A significant dependence on the tune was observed.

  19. Spectrum of classes of point emitters of electromagnetic wave fields.

    PubMed

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices. PMID:27607498

  20. Mirrorless lasing from light emitters in percolating clusters

    NASA Astrophysics Data System (ADS)

    Burlak, Gennadiy; Rubo, Y. G.

    2015-07-01

    We describe the lasing effect in the three-dimensional percolation system, where the percolating cluster is filled by active media composed by light emitters excited noncoherently. We show that, due to the presence of a topologically nontrivial photonic structure, the stimulated emission is modified with respect to both conventional and random lasers. The time dynamics and spectra of the lasing output are studied numerically with finite-difference time-domain approach. The Fermat principle and Monte Carlo approach are applied to characterize the optimal optical path and interconnection between the radiating emitters. The spatial structure of the laser mode is found by a long-time FDTD simulation.

  1. Beam emittance reduction during operation of Indus-2.

    PubMed

    Fakhri, Ali Akbar; Kant, Pradeep; Ghodke, A D; Singh, Gurnam

    2015-11-01

    Indus-2 storage ring is a 2.5 GeV third generation synchrotron radiation source. This source was commissioned using a moderate optics. Beam injection was accomplished using an off momentum electron beam to avoid difficulties faced in storage of beam at 550 MeV. The injection procedure and relevant beam dynamical studies are discussed. The switch over from the moderate optics to low emittance optics is done at 2.5 GeV after storing the electron beam. The procedure evolved to reduce the beam emittance and its implementation during the operation is discussed. PMID:26628127

  2. Uncorrelated Energy Spread and Longitudinal Emittance of a Photoinjector Beam

    SciTech Connect

    Huang, Z; Dowell, D.; Emma, P.; Limborg-Deprey, C.; Stupakov, G.; Wu, J.; /SLAC

    2005-05-25

    Longitudinal phase space properties of a photoinjector beam are important in many areas of high-brightness beam applications such as bunch compression, transverse-to-longitudinal emittance exchange, and high-gain free-electron lasers. In this paper, we discuss both the rf and the space charge contributions to the uncorrelated energy spread of the beam generated from a laser-driven rf gun. We compare analytical expressions for the uncorrelated energy spread and the longitudinal emittance with numerical simulations and recent experimental results.

  3. Emittance Measurements at the Langley Chemical Physics Laboratory

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.

    1960-01-01

    Total hemispherical emittance measurements are made routinely for materials which may be heated by electrical resistance methods over the temperature range of 600 degrees to 2,000 F by using a black-body reference method. This employs a conical black body and a thermopile detector with a calcium fluoride lens. Emittance is obtained by measuring the radiant flux from the specimen strip and comparing it with the flux from an equal area of the black-body cone at the same temperature. The temperature measurements are made by use of thermocouples. It is planned to extend the temperature range of this type of measurement to temperatures above 2,000 F. Another technique has been investigated for measuring emittance of materials not amenable to electrical heating or thermocouple attachment. This method uses a black-body-cavity furnace similar to that used in reference 5 to measure emittance of transparent materials such as glass. The method employs a heated black-body cavity in which the semicircular specimen is allowed to come to the equilibrium temperature of the cavity and then is rotated in front of a water-cooled viewing port where a sensitive thermistor detector alternately views the specimen surface and the black-body cavity. The ratio of the two readings gives the specimen emittance directly, for the temperature of the black body. The detector output is recorded on a fast Brown self-balancing potentiometer. The furnace is provided with a water-cooled blackened shutter which may be inserted behind the specimen to eliminate any transmitted black-body radiation if the specimen is transparent. This apparatus is capable of measuring total normal emittance over the temperature range of 1,000 degrees to 2,000 F. Preliminary data for boron nitride specimens of two thicknesses are shown where total normal emittance is plotted against temperature for two experimental conditions: (1) black-body radiation incident on the back of the specimen and (2) no black-body radiation

  4. Emittance control and RF bunch compression in the NSRRC photoinjector

    NASA Astrophysics Data System (ADS)

    Lau, W. K.; Hung, S. B.; Lee, A. P.; Chou, C. S.; Huang, N. Y.

    2011-05-01

    The high-brightness photoinjector being constructed at the National Synchrotron Radiation Research Center is for testing new accelerator and light-source concepts. It is the so-called split photoinjector configuration in which a short solenoid magnet is used for emittance compensation. The UV-drive laser pulses are also shaped to produce uniform cylindrical bunches for further reduction of beam emittance. However, limited by the available power from our microwave power system, the nominal accelerating gradient in the S-band booster linac is set at 18 MV/m. A simulation study with PARMELA shows that the linac operating at this gradient fails to freeze the electron beam emittance at low value. A background solenoid magnetic field is applied for beam emittance control in the linac during acceleration. A satisfactory result that meets our preliminary goal has been achieved with the solenoid magnetic field strength at 0.1 T. RF bunch compression as a means to achieve the required beam brightness for high-gain free-electron laser experiments is also examined. The reduction of bunch length to a few hundred femtoseconds can be obtained.

  5. Low emittance, semi-transparent coating for cryogenic window applications

    NASA Astrophysics Data System (ADS)

    Heaney, James B.; Nowak, Maria; Quijada, Manuel; Threat, Felix; Stock, Joseph

    2009-08-01

    A warm window surface with a relatively high (>50%) surface emittance can add significant undesired heat loading into a cryogenic test chamber. However, a front surface coating that consists of a very thin adherent layer of evaporated Cr that is overcoated with about 7nm of evaporated Au has been demonstrated to reduce the inherently high emittance of a glass or sapphire window surface down to about 14%, while maintaining a visible transmittance in excess of 55%. The coating possesses reasonably good adhesion and cleaning durability when deposited onto glass or sapphire substrates and has survived multiple temperature cycles between 316K and 20K. The addition of a single layer anti-reflection coating, such as reactively evaporated SiOx, to the otherwise uncoated exterior surface of a cryogenic window produced a further increase in visible wavelength transmittance without altering window emittance. This paper will present measured reflectance, transmittance, and emittance data for the Cr + Au window surface coating relevant to a cryogenic window application.

  6. Silicon photonic crystal thermal emitter at near-infrared wavelengths

    PubMed Central

    O’Regan, Bryan J.; Wang, Yue; Krauss, Thomas F.

    2015-01-01

    Controlling thermal emission with resonant photonic nanostructures has recently attracted much attention. Most of the work has concentrated on the mid-infrared wavelength range and/or was based on metallic nanostructures. Here, we demonstrate the experimental operation of a resonant thermal emitter operating in the near-infrared (≈1.5 μm) wavelength range. The emitter is based on a doped silicon photonic crystal consisting of a two dimensional square array of holes and using silicon-on-insulator technology with a device-layer thickness of 220 nm. The device is resistively heated by passing current through the photonic crystal membrane. At a temperature of ≈1100 K, we observe relatively sharp emission peaks with a Q factor around 18. A support structure system is implemented in order to achieve a large area suspended photonic crystal thermal emitter and electrical injection. The device demonstrates that weak absorption together with photonic resonances can be used as a wavelength-selection mechanism for thermal emitters, both for the enhancement and the suppression of emission. PMID:26293111

  7. Limits to Electron Beam Emittance from Stochastic Coulomb Interactions

    SciTech Connect

    Coleman-Smith, Christopher; Padmore, Howard A.; Wan, Weishi

    2008-08-22

    Dense electron beams can now be generated on an ultrafast timescale using laser driven photo-cathodes and these are used for a range of applications from ultrafast electron defraction to free electron lasers. Here we determine a lower bound to the emittance of an electron beam limited by fundamental stochastic Coulomb interactions.

  8. Using an Emittance Exchanger as a Bunch Compressor

    SciTech Connect

    Carlsten, Bruce E.; Bishofberger, Kip A.; Duffy, Leanne D.; Russell, Steven J.; Yampolsky, Nikolai A.

    2011-01-01

    An Emittance EXchanger (EEX), like a chicane, can be used for bunch compression. However, it offers a unique characteristic: the R56 term in an EEX vanishes, which decouples the final longitudinal position from the particles' energies, thereby suppressing the microbunch instability and providing a great deal of flexibility in tailoring the final particle longitudinal phase space

  9. Achieving ultra-high temperatures with a resistive emitter array

    NASA Astrophysics Data System (ADS)

    Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott

    2016-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.

  10. Silicon photonic crystal thermal emitter at near-infrared wavelengths.

    PubMed

    O'Regan, Bryan J; Wang, Yue; Krauss, Thomas F

    2015-01-01

    Controlling thermal emission with resonant photonic nanostructures has recently attracted much attention. Most of the work has concentrated on the mid-infrared wavelength range and/or was based on metallic nanostructures. Here, we demonstrate the experimental operation of a resonant thermal emitter operating in the near-infrared (≈1.5 μm) wavelength range. The emitter is based on a doped silicon photonic crystal consisting of a two dimensional square array of holes and using silicon-on-insulator technology with a device-layer thickness of 220 nm. The device is resistively heated by passing current through the photonic crystal membrane. At a temperature of ≈1100 K, we observe relatively sharp emission peaks with a Q factor around 18. A support structure system is implemented in order to achieve a large area suspended photonic crystal thermal emitter and electrical injection. The device demonstrates that weak absorption together with photonic resonances can be used as a wavelength-selection mechanism for thermal emitters, both for the enhancement and the suppression of emission. PMID:26293111

  11. Improved Photoresist Coating for Making CNT Field Emitters

    NASA Technical Reports Server (NTRS)

    Toda, Risaku; Manohara, Harish

    2009-01-01

    An improved photoresist-coating technique has been developed for use in the fabrication of carbon-nanotube- (CNT) based field emitters is described. The improved photoresist coating technique overcomes what, heretofore, has been a major difficulty in the fabrication process.

  12. Low emittance injector design for free electron lasers

    NASA Astrophysics Data System (ADS)

    Bettoni, S.; Pedrozzi, M.; Reiche, S.

    2015-12-01

    Several parameters determine the performance of free electron lasers: the slice and the projected emittance, the slice energy spread, and the peak current are the most crucial ones. The peak current is essentially obtained by magnetic compression stages along the machine or occasionally assisted by velocity bunching at low energy. The minimum emittance and the alignment of the slices along the bunch are mainly determined in the low energy part of the accelerator (injector). Variations at the per-mille level of several parameters in this section of the machine strongly influence these quantities with highly nonlinear dynamic. We developed a numerical tool to perform the optimization of the injector. We applied this code to optimize the SwissFEL injector, assuming different gun designs, initial bunch lengths and intrinsic emittances. We obtained an emittance along the bunch of 0.14 mm mrad and around 0.08 mm mrad for the maximum and the minimum SwissFEL charges (200 and 10 pC, respectively). We applied the same tool to a running injector, where we automatized the optimization of the machine.

  13. Measuring the emittance of the DARHT-II electron beam

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl; Bartsch, Richard; Custer, Dan; Ridlon, Rae; Rose, Evan; Eylon, Shmuel; Broste, William; Johnson, Jefferey

    2001-10-01

    The DARHT-II linear induction accelerator (LIA) is being built for radiography of large-scale, explosively-driven hydrodynamics experiments. When fully operational, DARHT-II will have an electron beam current of 2-kA and a beam energy of 18 MeV. The two-microsecond beam pulse will be chopped into four short pulses for time resolution of hydrodynamic motion. A small radiographic spot size is a requirement for DARHT-II. The DARHT-II LIA design emphasizes low beam emittance to reduce the spot size. Measuring the emittance of a high-power, 2-micro-sec beam presents special challenges, and we will discuss two different approaches. In the first technique a fast solenoid is employed to focus the beam onto an imaging screen in 120 ns to prevent overheating of the screen and consequent beam disruption by evolved gas/plasma/ions. The fast-focus coil must produce a 1 kG field over an effective length of 50 cm. The design and testing of this coil and its pulsed-power driver will be presented. The second technique uses non-invasive diamagnetic loop measurements, from which the beam radius can be inferred, at several locations. A beam envelope code is then used to find the most likely emittance that fits the data. In this presentation these methods are compared with respect to expected uncertainties, and the resulting accuracy of emittance determination.

  14. High emittance surfaces for high temperature space radiator applications

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Hotes, Deborah

    1990-01-01

    Surface modification techniques are evaluated for emittance enhancement of radiator surfaces. These techniques include acid etching, heat treating, abrasion, sputter texturing, electrochemical texturing, arc texturing, and atomic oxygen beam texturing. Candidate radiator surface materials under consideration include Nb-1 pct Zr, Cu, Ti, Ti-6 pct Al-4 pct V, 304 stainless steel, Al6061-T6, Mo, W, and Ta.

  15. Transverse beam emittance measurement using quadrupole variation at KIRAMS-430

    NASA Astrophysics Data System (ADS)

    An, Dong Hyun; Hahn, Garam; Park, Chawon

    2015-02-01

    In order to produce a 430 MeV/u carbon ion (12 C 6+) beam for medical therapy, the Korea Institute of Radiological & Medical Sciences (KIRAMS) has carried out the development of a superconducting isochronous cyclotron, the KIRAMS-430. At the extraction of the cyclotron, an Energy Selection System (ESS) is located to modulate the fixed beam energy and to drive the ion beam through High Energy Beam Transport (HEBT) into the treatment room. The beam emittance at the ion beamline is to be measured to provide information on designing a beam with high quality. The well-known quadrupole variation method was used to determine the feasibility of measuring the transverse beam emittance. The beam size measured at the beam profile monitor (BPM) is to be utilized and the transformation of beam by transfer matrix is to be applied being taken under various transport condition of varying quadrupole magnetic strength. Two different methods where beam optics are based on the linear matrix formalism and particle tracking with a 3-D magnetic field distribution obtained by using OPERA3D TOSCA, are applied to transport the beam. The fittings for the transformation parameters are used to estimate the transverse emittance and the twiss parameters at the entrance of the quadrupole in the ESS. Including several systematic studies, we conclude that within the uncertainty the estimated emittances are consistent with the ones calculated by using Monte Carlo simulations.

  16. A Study of Emittance Measurement at the ILC

    SciTech Connect

    Blair, G.A.; Agapov, I.V.; Carter, J.; Deacon, L.; Angal-Kalinin, D.A.K.; Jenner, L.J.; Ross, M.C.; Seryi, A.; Woodley, M.; /SLAC

    2007-04-16

    The measurement of the International Linear Collider (ILC) emittance in the ILC beam delivery system (BDS) is simulated. Estimates of statistical and machine-related errors are discussed and the implications for related diagnostics R&D are inferred. A simulation of the extraction of the laser-wire Compton signal is also presented.

  17. Selective-emitter crystalline silicon solar cells using phosphorus paste

    NASA Astrophysics Data System (ADS)

    Jeong, Kyung Taek; Kang, Min Gu; Song, Hee-eun

    2014-11-01

    Selective-emitter structures have been studied to improve the conversion efficiency of crystalline silicon solar cells. However, such structures require additional complicated processes and incur extra cost. In this work, we used phosphorus paste (P-paste) to form a heavily-doped region beneath the grid and POCl3 to create a shallow emitter area. This method should be convenient to use in the solar-cell industry because it requires only additional P paste printing, compared to the case of homogeneous solar cells. Diffusion parameters including the temperature, diffusion time, and ambient gases were optimized. We observed that the spreading of the P paste was affected by the pyramidal size of the textured wafer due to the low viscosity of the P paste. The pyramidal height of the textured silicon surface was optimized at 3 μm to counterbalance the surface reflectance and the spreading of the P paste. The short-circuit current density of the completed selective emitter solar cell was increased, and an improvement of blue response in the internal quantum efficiency was seen while contact properties such as the fill factor deteriorated due to the spreading of the P paste and the thin emitter on top of the pyramid of the textured silicon surface. Double printing of the P paste was applied to solve this contact problem; a fill factor improvement of 2.4% was obtained.

  18. High-absorptance high-emittance anodic coating

    NASA Technical Reports Server (NTRS)

    Le, Huong Giang (Inventor); Chesterfield, John L. (Inventor)

    1999-01-01

    A colored anodic coating for use on surfaces of substrates, e.g. aluminum substrates in which it is desirable to maintain a high solar absorptance (.alpha.) and a high infrared emittance (.epsilon.), particularly in low earth orbit space environments. This anodic coating is preferably a dark colored coating, and even more preferably a black coating. This coating allows a touch temperature within an acceptable design range to preclude burning of an astronaut in case of contact, but also allows a solar radiation absorption in an amount such that an .alpha./.epsilon. ratio of unity is achieved. The coating of the invention comprises a first layer in the form of an acid anodized colored anodic layer for achieving a high solar absorptance and a second or high emittance layer in the form of a clear acid anodized layer for achieving a high emittance. The entire coating is quite thin, e.g. 1-2 mils and is quite stable in a hostile space environment of the type encountered in a low earth orbit. The coating is obtained by first creating the high emittance clear anodized coating on the metal surface followed by anodizing using a colored anodizing process.

  19. High-absorptance high-emittance anodic coating

    NASA Technical Reports Server (NTRS)

    Le, Huong Giang (Inventor); Chesterfield, John L. (Inventor)

    1998-01-01

    A colored anodic coating for use on surfaces of substrates, e.g. aluminum substrates in which it is desirable to maintain a high solar absorptance (a) and a high infrared emittance (e), particularly in low earth orbit space environments. This anodic coating is preferably a dark colored coating, and even more preferably a black coating. This coating allows a touch temperature within an acceptable design range to preclude burning of an astronaut in case of contact, but also allows a solar radiation absorption in an amount such that an a/e ratio of unity is achieved. The coating of the invention comprises a first layer in the form of an acid anodized colored anodic layer for achieving a high solar absorptance and a second or high emittance layer in the form of a clear acid anodized layer for achieving a high emittance. The entire coating is quite thin, e.g. 1-2 mils and is quite stable in a hostile space environment of the type encountered in a low earth orbit. The coating is obtained by first creating the high emittance clear anodized coating on the metal surface followed by anodizing using a colored anodizing process.

  20. The effects of emitter-tied field plates on lateral PNP ionizing radiation response

    SciTech Connect

    Barnaby, H.J.; Schrimpf, R.D.; Cirba, C.R.; Pease, R.L.; Fleetwood, D.M.; Kosier, S.L.

    1998-03-01

    Radiation response comparisons of lateral PNP bipolar technologies reveal that device hardening may be achieved by extending the emitter contact over the active base. The emitter-tied field plate suppresses recombination of carriers with interface traps.

  1. A novel inexpensive device for the electrochemical generation of metallic emitters for field desorption.

    PubMed

    Rechsteiner, C E; Mathis, D E; Bursey, M M; Buck, R P

    1977-02-01

    Details for the construction of a novel, inexpensive device for the electrochemical generation of metallic emitters for field desorption mass spectrometry are described. Use of the device for the generation of cobalt and nickel emitters is demonstrated. PMID:836944

  2. Emitter/absorber interface of CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Song, Tao; Kanevce, Ana; Sites, James R.

    2016-06-01

    The performance of CdTe solar cells can be very sensitive to the emitter/absorber interface, especially for high-efficiency cells with high bulk lifetime. Performance losses from acceptor-type interface defects can be significant when interface defect states are located near mid-gap energies. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e., defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV ≤ ΔEC ≤ 0.3 eV) can help maintain good cell efficiency in spite of high interface defect density, much like with Cu(In,Ga)Se2 (CIGS) cells. The basic principle is that positive ΔEC, often referred to as a "spike," creates an absorber inversion and hence a large hole barrier adjacent to the interface. As a result, the electron-hole recombination is suppressed due to an insufficient hole supply at the interface. A large spike (ΔEC ≥ 0.4 eV), however, can impede electron transport and lead to a reduction of photocurrent and fill-factor. In contrast to the spike, a "cliff" (ΔEC < 0 eV) allows high hole concentration in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. Another way to mitigate performance losses due to interface defects is to use a thin and highly doped emitter, which can invert the absorber and form a large hole barrier at the interface. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. The ΔEC of other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ΔEC. These materials are predicted to yield higher voltages and would therefore be

  3. Beam Loss and Longitudinal Emittance Growth in SIS

    SciTech Connect

    Kirk, M.; Hofmann, I.; Boine-Frankenheim, O.; Spiller, P.; Huelsmann, P.; Franchetti, G.; Damerau, H.; Koenig, H. Guenter; Klingbeil, H.; Kumm, M.; Moritz, P.; Schuett, P.; Redelbach, A.

    2005-06-08

    Beam losses of several percent occur regularly in SIS. The onset occurs during the RF capture of the beam. Previous studies have revealed that the losses can come from the RF bucket at the start of acceleration being over filled due to the longitudinal bucket acceptance being too small, or due to the mismatch between the mean energy from the UNILAC and synchronous energy of the SIS. The beam losses as measured by a DC beam transformer however show in addition to the sharp initial drop, for the above reasons, a much slower decay in the beam intensity. The speculated cause comes from the incoherent transverse tune shift of the bunched beam, which forces particles into transverse resonant conditions. The longitudinal emittance growth is also another important issue for SIS. Past measurements from Schottky-noise pick-ups have shown a factor of 3-5 increase in the longitudinal emittance depending on the extraction energy; a large factor when compared against expectations from theory. These factors were calculated from the ratio between the normalized relative momentum spread of the DC beam before RF capture and after debunching. In this present work, tomographical techniques have been used to reconstruct the phasespace from a series of bunch profile measurements from a Beam Position Monitor (BPM). Therefore one can find the rate of growth in the longitudinal emittance from a series of high resolution BPM measurements along the RF ramp. Furthermore the initial phasespace density matrix from these reconstructions has been used to generate the initial population of macroparticles for the ESME longitudinal dynamics Particle-In-Cell code, thereby enabling a comparison between the longitudinal emittance growth of the beam under ideal conditions and that of the experiment. The longitudinal emittance growth (rms) during the acceleration ({approx}540ms) was approximately 20%, and that during the RF capture was estimated to have an upper limit of about 40%. Later measurements

  4. Nonlocal effects: relevance for the spontaneous emission rates of quantum emitters coupled to plasmonic structures.

    PubMed

    Filter, Robert; Bösel, Christoph; Toscano, Giuseppe; Lederer, Falk; Rockstuhl, Carsten

    2014-11-01

    The spontaneous emission rate of dipole emitters close to plasmonic dimers are theoretically studied within a nonlocal hydrodynamic model. A nonlocal model has to be used since quantum emitters in the immediate environment of a metallic nanoparticle probe its electronic structure. Compared to local calculations, the emission rate is significantly reduced. The influence is mostly pronounced if the emitter is located close to sharp edges. We suggest to use quantum emitters to test nonlocal effects in experimentally feasible configurations. PMID:25361293

  5. Emittance studies of the SNS external-antenna H- ion source

    SciTech Connect

    Han, Baoxi; Stockli, Martin P; Welton, Robert F; Pennisi, Terry R; Murray Jr, S N; Santana, Manuel; Long, Cary D

    2010-01-01

    A new Allison-type emittance scanner has been built to characterize the ion sources and low energy beam transport systems at SNS. In this work, the emittance characteristics of the H- beam produced with the external-antenna RF-driven ion source and transported through the 2-lens electrostatic LEBT are studied. The beam emittance dependence on beam intensity, extraction parameters, and the evolution of the emittance and twiss parameters over beam pulse duration are presented.

  6. Experimentally minimized beam emittance from an L-band photoinjector

    NASA Astrophysics Data System (ADS)

    Krasilnikov, M.; Stephan, F.; Asova, G.; Grabosch, H.-J.; Groß, M.; Hakobyan, L.; Isaev, I.; Ivanisenko, Y.; Jachmann, L.; Khojoyan, M.; Klemz, G.; Köhler, W.; Mahgoub, M.; Malyutin, D.; Nozdrin, M.; Oppelt, A.; Otevrel, M.; Petrosyan, B.; Rimjaem, S.; Shapovalov, A.; Vashchenko, G.; Weidinger, S.; Wenndorff, R.; Flöttmann, K.; Hoffmann, M.; Lederer, S.; Schlarb, H.; Schreiber, S.; Templin, I.; Will, I.; Paramonov, V.; Richter, D.

    2012-10-01

    High brightness electron sources for linac based free-electron lasers (FELs) are being developed at the Photo Injector Test facility at DESY, Zeuthen site (PITZ). Production of electron bunches with extremely small transverse emittance is the focus of the PITZ scientific program. The photoinjector optimization in 2008-2009 for a bunch charge of 1, 0.5, 0.25, and 0.1 nC resulted in measured emittance values which are beyond the requirements of the European XFEL [S. Rimjaem , Nucl. Instrum. Methods Phys. Res., Sect. A 671, 62 (2012)NIMAER0168-900210.1016/j.nima.2011.12.101]. Several essential modifications were commissioned in 2010-2011 at PITZ, resulting in further improvement of the photoinjector performance. Significant improvement of the rf gun phase stability is a major contribution in the reduction of the measured transverse emittance. The old TESLA prototype booster was replaced by a new cut disk structure cavity. This allows acceleration of the electron beam to higher energies and supports much higher flexibility for stable booster operation as well as for longer rf pulses which is of vital importance especially for the emittance optimization of low charge bunches. The transverse phase space of the electron beam was optimized at PITZ for bunch charges in the range between 0.02 and 2 nC, where the quality of the beam measurements was preserved by utilizing long pulse train operation. The experimental optimization yielded worldwide unprecedented low normalized emittance beams in the whole charge range studied.

  7. Low Emittance Guns for the ILC Polarized Electron Beam

    SciTech Connect

    Clendenin, J.E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R.E.; Maruyama, T.; Miller, R.H.; Wang, J.W.; Zhou, F.; /SLAC

    2006-12-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of {ge}200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while {ge}500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns.

  8. Low Emittance Guns for the ILC Polarized Electron Beam

    SciTech Connect

    Clendenin, J. E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R. E.; Maruyama, T.; Miller, R. H.; Wang, J. W.; Zhou, F.

    2007-06-13

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of {>=}200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while {>=}500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns.

  9. Vertical beam emittance correction with independent component analysis measurement method

    NASA Astrophysics Data System (ADS)

    Wang, Fei

    The storage ring performance is determined by the vertical beam size, that is by the vertical emittance, which is determined by two factors: the vertical dispersion generated in the bending magnets, and the coupling of the oscillations in the vertical and horizontal plane. In this dissertation, a detailed study of the main source of the vertical emittance and effective correction methods are presented. Simulations show that the vertical emittance is dominated by the contribution due to photon emission with non-zero vertical dispersion in bending magnets. An effective method to make vertical dispersion correction is to analysis the harmonics of the vertical dispersion and to eliminate the largest components of the stopband integral with harmonics near the vertical betatron tune. A stopband correction scheme is being implemented in which the excitation of skew-quadrupole correctors is determined from measurements of the resonance strengths (stopband widths) of major resonances. This method can correct the vertical dispersion function and the coupling strength simultaneously without identifying the source of errors. Studies show the coupling strength and the vertical dispersion can be controlled individually in the quadruple-bend achromatic low emittance lattice. Resulting improvement in machine performance is that the equilibrium vertical emittance is reduced by the factor of 7. Effective correction depends on precise beam measurements. Independent component analysis for BPM turn-by-turn data has shown the potential to be a useful tool for diagnostics and optics verification. The effectiveness of employing the independent component analysis (ICA) method to measure the vertical dispersion function is studied. This method for extracting the beta function and phase advance for the beam position monitors is presented. The accuracy of optical functions thus calculated is affected by different factors in a different manner. The most influent factors on the accuracy are

  10. Spacecraft charging control by thermal, field emission with lanthanum-hexaboride emitters

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1978-01-01

    Thermal, field emitters of lanthanum (or perhaps cerium) hexaboride (LaB6) with temperature variability up to about 1500K are suggested for spacecraft charging control. Such emitters operate at much lower voltages with considerably more control and add plasma-diagnostic versatility. These gains should outweigh the additional complexity of providing heat for the LaB6 thermal, field emitter.

  11. Using antennas separated in flight direction to avoid effect of emitter clock drift in geolocation

    DOEpatents

    Ormesher, Richard C.; Bickel, Douglas L

    2012-10-23

    The location of a land-based radio frequency (RF) emitter is determined from an airborne platform. RF signaling is received from the RF emitter via first and second antennas. In response to the received RF signaling, signal samples for both antennas are produced and processed to determine the location of the RF emitter.

  12. Self-regulation of discharge in non-compensating subsurface drip irrigation emitters

    NASA Astrophysics Data System (ADS)

    Gil-Rodríguez, María; Rodríguez-Sinobas, Leonor; Sánchez, Raúl; Juana, Luis; Castañón, Guillermo

    2014-05-01

    While studying emitter discharge variability of subsurface drip irrigation (SDI) in the laboratory, the authors found out a possible self-regulation effect of non-compensating emitter discharge. This is due to the interaction between effects of emitter discharge and soil pressure. As known, under certain circumstances, a positive pressure hs develops at the discharge point of a buried emitter. The hydraulic gradient between the emitter interior and the soil would then decrease compared to the situation where the emitter is on the surface. Thus, the discharge reduces, following: q=k·(h_0-h_s)x, where q is the emitter flow rate, h0 is the working pressure head, and k and x are the emitter coefficient and exponent, respectively. The soil pressure would act as a regulator. The emitters with a greater flow rate in surface irrigation would generate a higher pressure in the soil. Therefore, the subsurface irrigation discharge would be reduced to a greater extent than in emitters with a lower flow rate. Consequently, the flow emitter variability would be smaller in buried emitters than in surface ones. The above interaction would not be observed in compensating emitters, even for the same or greater soil pressure variability. Their elastomers keep the flow rate constant within a compensation range, provided that the hydraulic gradient between the emitter interior and the soil pressure is higher than the lower limit of this range. To confirm this hypothesis, simulations were performed for both uniform and heterogeneous soils reproducing the laboratory conditions (working pressure head and emitter discharge). When the soil has a high heterogeneity, the self-regulation effect was very small as compared to the variability caused by the soil. Nevertheless, the authors consider that this effect is worth to be studied. The objective of the paper is to perform new simulations in order to determine under which circumstances self-regulation would be significant and find thresholds

  13. Measurements and simulations of emittance growth of an H - beam from an LBL volume source

    NASA Astrophysics Data System (ADS)

    Gammel, G.; Ng, Y.; Debiak, T.; Kuehne, F.

    1991-05-01

    Measurements of emittance and emittance growth in an H - beam extracted from an LBL volume source will be presented. Effects of introducing cesium into the arc chamber will be shown. Some differences are noted depending on whether cesium is actively entering the chamber, or whether the source is running on residual Cs. Also, the effect of beam perveance will be shown. At a fixed location, the dependence of emittance on perveance is similar to the dependence of beam width on perveance, as if emittance is proportional to beam divergence. This data will be compared with WOLF simulations of emittance growth at different currents, with a non-uniform initial current density distribution.

  14. High-current lanthanum-hexaboride electron emitter for a quasi-stationary arc plasma generator

    SciTech Connect

    Davydenko, V. I. Ivanov, A. A. Shul’zhenko, G. I.

    2015-11-15

    A high-current electron emitter on the basis of lanthanum hexaboride is developed for quasi-stationary arc plasma generators of ion sources. The emitter consists of a set of LaB{sub 6} washers interleaved with washers made of thermally extended graphite. The emitter is heated by the current flowing through the graphite washers. The thermal regime of emitter operation during plasma generation is considered. The emitter has been successfully used in the ion sources of the diagnostic injectors of fast hydrogen atomic beams.

  15. Experimental Study of Coherent Synchrotron Radiation in the Emittance Exchange Line at the A0-Photoinjector

    NASA Astrophysics Data System (ADS)

    Thangaraj, Jayakar C. T.; Thurman-Keup, R.; Johnson, A.; Lumpkin, A. H.; Edwards, H.; Ruan, J.; Santucci, J.; Sun, Y. E.; Church, M.; Piot, P.

    2010-11-01

    Next generation accelerators will require a high current, low emittance beam with a low energy spread. Such accelerators will employ advanced beam conditioning systems such as emittance exchangers to manipulate high brightness beams. One of the goals of the Fermilab A0 photoinjector is to investigate the transverse to longitudinal emittance exchange principle. Coherent synchrotron radiation could limit high current operation of the emittance exchanger. In this paper, we report on the preliminary experimental and simulation study of the coherent synchroton radiation (CSR) in the emittance exchange line at the A0 photoinjector.

  16. Coupling of individual quantum emitters to channel plasmons

    PubMed Central

    Bermúdez-Ureña, Esteban; Gonzalez-Ballestero, Carlos; Geiselmann, Michael; Marty, Renaud; Radko, Ilya P.; Holmgaard, Tobias; Alaverdyan, Yury; Moreno, Esteban; García-Vidal, Francisco J.; Bozhevolnyi, Sergey I.; Quidant, Romain

    2015-01-01

    Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems. PMID:26249363

  17. Coupling of individual quantum emitters to channel plasmons.

    PubMed

    Bermúdez-Ureña, Esteban; Gonzalez-Ballestero, Carlos; Geiselmann, Michael; Marty, Renaud; Radko, Ilya P; Holmgaard, Tobias; Alaverdyan, Yury; Moreno, Esteban; García-Vidal, Francisco J; Bozhevolnyi, Sergey I; Quidant, Romain

    2015-01-01

    Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems. PMID:26249363

  18. Selective protected state preparation of coupled dissipative quantum emitters

    PubMed Central

    Plankensteiner, D.; Ostermann, L.; Ritsch, H.; Genes, C.

    2015-01-01

    Inherent binary or collective interactions in ensembles of quantum emitters induce a spread in the energy and lifetime of their eigenstates. While this typically causes fast decay and dephasing, in many cases certain special entangled collective states with minimal decay can be found, which possess ideal properties for spectroscopy, precision measurements or information storage. We show that for a specific choice of laser frequency, power and geometry or a suitable configuration of control fields one can efficiently prepare these states. We demonstrate this by studying preparation schemes for strongly subradiant entangled states of a chain of dipole-dipole coupled emitters. The prepared state fidelity and its entanglement depth is further improved via spatial excitation phase engineering or tailored magnetic fields. PMID:26549501

  19. Multipolar radiation of quantum emitters with nanowire optical antennas

    PubMed Central

    Curto, Alberto G.; Taminiau, Tim H.; Volpe, Giorgio; Kreuzer, Mark P.; Quidant, Romain; van Hulst, Niek F.

    2013-01-01

    Multipolar transitions other than electric dipoles are generally too weak to be observed at optical frequencies in single quantum emitters. For example, fluorescent molecules and quantum dots have dimensions much smaller than the wavelength of light and therefore emit predominantly as electric dipoles. Here we demonstrate controlled emission of a quantum dot into multipolar radiation through selective coupling to a linear nanowire antenna. The antenna resonance tailors the interaction of the quantum dot with light, effectively creating a hybrid nanoscale source beyond the simple Hertz dipole. Our findings establish a basis for the controlled driving of fundamental modes in nanoantennas and metamaterials, for the understanding of the coupling of quantum emitters to nanophotonic devices such as waveguides and nanolasers, and for the development of innovative quantum nano-optics components with properties not found in nature. PMID:23612291

  20. Developments of fast emittance monitors for ion sources at RCNP

    NASA Astrophysics Data System (ADS)

    Yorita, T.; Hatanaka, K.; Fukuda, M.; Shimada, K.; Yasuda, Y.; Saito, T.; Tamura, H.; Kamakura, K.

    2016-02-01

    Recently, several developments of low energy beam transport line and its beam diagnostic systems have been performed to improve the injection efficiency of ion beam to azimuthally varying field cyclotron at Research Center for Nuclear Physics, Osaka University. One of those is the fast emittance monitor which can measure within several seconds for the efficient beam development and a Pepper-Pot Emittance Monitor (PPEM) has been developed. The PPEM consists of pepper-pot mask, multichannel plate, fluorescent screen, mirror, and CCD camera. The CCD image is taken via IEEE1394b to a personal computer and analyzed immediately and frequently, and then real time measurement with about 2 Hz has been achieved.

  1. Measurement of ultra low transverse emittance at REGAE

    NASA Astrophysics Data System (ADS)

    Hachmann, M.; Flöttmann, K.

    2016-09-01

    The linear accelerator REGAE at DESY produces short and low charged electron bunches, on the one hand to resolve the excitation transitions of atoms temporally by pump-probe electron diffraction experiments and on the other hand to investigate principal mechanisms of laser plasma acceleration. For both cases a high quality electron beam is required which can be identified with a small beam emittance. A standard magnet scan is used for the emittance measurement which is in case of a low charged bunch most sensitive to the beam size determination (RMS or 2nd central moment of a distribution). Therefore the diagnostic and a routine to calculate proper central moments of an arbitrary distribution will be introduced and discussed.

  2. First observation of the exchange of transverse and longitudinal emittances

    SciTech Connect

    Ruan, J.; Johnson, A.S.; Lumpkin, A.H.; Thurman-Keup, R.; Edwards, H.; Fliller, R.P.; Koeth, T.; Sun, Y.-E; /Fermilab

    2011-02-01

    An experimental program to demonstrate a novel phase space manipulation in which the horizontal and longitudinal emittances of a particle beam are exchanged has been completed at the Fermilab A0 Photoinjector. A new beamline, consisting of a TM{sub 110} deflecting mode cavity flanked by two horizontally dispersive doglegs has been installed. We report on the first direct observation of transverse and longitudinal emittance exchange: {l_brace}{var_epsilon}{sub x}{sup n}, {var_epsilon}{sub y}{sup n}, {var_epsilon}{sub z}{sup n}{r_brace} = {l_brace} 2.9 {+-} 0.1, 2.4 {+-} 0.1, 13.1 {+-} 1.3{r_brace} {yields} {l_brace}11.3 {+-} 1.1, 2.9 {+-} 0.5, 3.1 {+-} 0.3{r_brace} mm-mrad.

  3. High efficiency rare-earth emitter for thermophotovoltaic applications

    NASA Astrophysics Data System (ADS)

    Sakr, E. S.; Zhou, Z.; Bermel, P.

    2014-09-01

    In this work, we propose a rare-earth-based ceramic thermal emitter design that can boost thermophotovoltaic (TPV) efficiencies significantly without cold-side filters at a temperature of 1573 K (1300 °C). The proposed emitter enhances a naturally occurring rare earth transition using quality-factor matching, with a quarter-wave stack as a highly reflective back mirror, while suppressing parasitic losses via exponential chirping of a multilayer reflector transmitting only at short wavelengths. This allows the emissivity to approach the blackbody limit for wavelengths overlapping with the absorption peak of the rare-earth material, while effectively reducing the losses associated with undesirable long-wavelength emission. We obtain TPV efficiencies of 34% using this layered design, which only requires modest index contrast, making it particularly amenable to fabrication via a wide variety of techniques, including sputtering, spin-coating, and plasma-enhanced chemical vapor deposition.

  4. Emittance preservation during bunch compression with a magnetized beam

    NASA Astrophysics Data System (ADS)

    Stratakis, Diktys

    2016-03-01

    The deleterious effects of coherent synchrotron radiation (CSR) on the phase-space and energy spread of high-energy beams in accelerator light sources can significantly constrain the machine design and performance. In this paper, we present a simple method to preserve the beam emittance by means of using magnetized beams that exhibit a large aspect ratio on their transverse dimensions. The concept is based in combining a finite solenoid field where the beam is generated with a special optics adapter. Numerical simulations of this new type of beam source show that the induced phase-space density growth from CSR can be notably suppressed to less than 1% for any bunch charge. This work elucidates the key parameters that are needed for emittance preservation, such as the required field and aspect ratio for a given bunch charge.

  5. Photosensitivity of p-type black Si field emitter arrays

    NASA Astrophysics Data System (ADS)

    Mingels, S.; Porshyn, V.; Prommesberger, C.; Langer, C.; Schreiner, R.; Lützenkirchen-Hecht, D.; Müller, G.

    2016-04-01

    We have investigated the properties of black Si field emitter arrays under strong electric fields and laser illumination. A low onset field of 1.8 MV/m for an emission current of 1 nA was obtained. A pronounced saturation region of the dark and photo-enhanced current was observed, which provided a short-term stability of 0.1% at 0.4 μA and 0.7% at 1.0 μA, respectively. As maximum value for the photosensitivity, an on-off current switching ratio of 43 reaching about 13 μA was achieved at a laser power of 15 mW. Electron spectra in the dark and under laser illumination are presented, showing a current and light-sensitive voltage drop across the emitters as well as hints for hot electron emission.

  6. High brightness symmetric emittance rf photoinjector preliminary design report

    SciTech Connect

    Colby, E.R.; Ostiguy, J.F.; Rosenzweig, J.B.

    1994-08-01

    A preliminary design for a high bunch charge (8 nC), low emittance (< 20 mm-mr) radiofrequency electron photoinjector matched to the requirements of the Tesla Test Facility is presented. A 1.5 cell iris coupled {pi}mode structure with high average accelerating gradient is chosen for its high shunt impedance, simplicity, and ability to accommodate an externally mounted solenoid for simultaneous beam divergence control and emittance compensation. Beam optics are optimized for an overall injector consisting of the electron gun followed by one linac capture section, a dipole chicane for magnetic bunch compression to achieve a bunch length corresponding to {sigma}{sub z} = 1 mm. Electrical and beam dynamical aspects of the photoinjector design are presented. A description of the proposed experimental program is included.

  7. High efficiency rare-earth emitter for thermophotovoltaic applications

    SciTech Connect

    Sakr, E. S.; Zhou, Z.; Bermel, P.

    2014-09-15

    In this work, we propose a rare-earth-based ceramic thermal emitter design that can boost thermophotovoltaic (TPV) efficiencies significantly without cold-side filters at a temperature of 1573 K (1300 °C). The proposed emitter enhances a naturally occurring rare earth transition using quality-factor matching, with a quarter-wave stack as a highly reflective back mirror, while suppressing parasitic losses via exponential chirping of a multilayer reflector transmitting only at short wavelengths. This allows the emissivity to approach the blackbody limit for wavelengths overlapping with the absorption peak of the rare-earth material, while effectively reducing the losses associated with undesirable long-wavelength emission. We obtain TPV efficiencies of 34% using this layered design, which only requires modest index contrast, making it particularly amenable to fabrication via a wide variety of techniques, including sputtering, spin-coating, and plasma-enhanced chemical vapor deposition.

  8. Research on Transitional Flow Characteristics of Labyrinthchannel Emitter

    NASA Astrophysics Data System (ADS)

    Zhao, Wanhua; Zhang, Jun; Tang, Yiping; Wei, Zhengying; Lu, Bingheng

    A physical model for flow characteristics analysis of labyrinth-channel emitter is reconstructed by Reverse Engineering from an injection molded part, and both laminar flow and turbulence models are adopted to simulate the flow state under the condition of low Reynolds numbers. According to the distribution of separation and reattachment points, the onset of transition from laminar to turbulent flow in labyrinth channels occurs at a range of Re=250~300. Furthermore, a visualization system of the flow field inside the labyrinth experiments. The experiment of tracing particles verifies the calculated flow field distribution, and another experiment using dyeing liquor showed the critical Reynolds number characterizing the transition, which is reasonably consistent with numerical simulation results. The critical Reynolds number obtained shows the fact that the flow inside this emitter is turbulent under the pressures of 40~150 kPa.

  9. Selective protected state preparation of coupled dissipative quantum emitters.

    PubMed

    Plankensteiner, D; Ostermann, L; Ritsch, H; Genes, C

    2015-01-01

    Inherent binary or collective interactions in ensembles of quantum emitters induce a spread in the energy and lifetime of their eigenstates. While this typically causes fast decay and dephasing, in many cases certain special entangled collective states with minimal decay can be found, which possess ideal properties for spectroscopy, precision measurements or information storage. We show that for a specific choice of laser frequency, power and geometry or a suitable configuration of control fields one can efficiently prepare these states. We demonstrate this by studying preparation schemes for strongly subradiant entangled states of a chain of dipole-dipole coupled emitters. The prepared state fidelity and its entanglement depth is further improved via spatial excitation phase engineering or tailored magnetic fields. PMID:26549501

  10. Oxidation and emittance of superalloys in heat shield applications

    NASA Technical Reports Server (NTRS)

    Wiedemann, K. E.; Clark, R. K.; Unnam, J.

    1986-01-01

    Recently developed superalloys that form alumina coatings have a high potential for heat shield applications for advanced aerospace vehicles at temperatures above 1095C. Both INCOLOY alloy MA 956 (of the Inco Alloys International, Inc.), an iron-base oxide-dispersion-strengthened alloy, and CABOT alloy No. 214 (of the Cabot Corporation), an alumina-forming nickel-chromium alloy, have good oxidation resistance and good elevated temperature strength. The oxidation resistance of both alloys has been attributed to the formation of a thin alumina layer (alpha-Al2O3) at the surface. Emittance and oxidation data were obtained for simulated Space Shuttle reentry conditions using a hypersonic arc-heated wind tunnel. The surface oxides and substrate alloys were characterized using X-ray diffraction and scanning and transmission electron microscopy with an energy-dispersive X-ray analysis unit. The mass loss and emittance characteristics of the two alloys are discussed.

  11. Modal Coupling of Single Photon Emitters Within Nanofiber Waveguides.

    PubMed

    Gaio, Michele; Moffa, Maria; Castro-Lopez, Marta; Pisignano, Dario; Camposeo, Andrea; Sapienza, Riccardo

    2016-06-28

    Nanoscale generation of individual photons in confined geometries is an exciting research field aiming at exploiting localized electromagnetic fields for light manipulation. One of the outstanding challenges of photonic systems combining emitters with nanostructured media is the selective channelling of photons emitted by embedded sources into specific optical modes and their transport at distant locations in integrated systems. Here, we show that soft-matter nanofibers, electrospun with embedded emitters, combine subwavelength field localization and large broadband near-field coupling with low propagation losses. By momentum spectroscopy, we quantify the modal coupling efficiency identifying the regime of single-mode coupling. These nanofibers do not rely on resonant interactions, making them ideal for room-temperature operation, and offer a scalable platform for future quantum information technology. PMID:27203403

  12. Emittance preservation during bunch compression with a magnetized beam

    SciTech Connect

    Stratakis, Diktys

    2015-09-02

    The deleterious effects of coherent synchrotron radiation (CSR) on the phase-space and energy spread of high-energy beams in accelerator light sources can significantly constrain the machine design and performance. In this paper, we present a simple method to preserve the beam emittance by means of using magnetized beams that exhibit a large aspect ratio on their transverse dimensions. The concept is based on combining a finite solenoid field where the beam is generated together with a special optics adapter. Numerical simulations of this new type of beam source show that the induced phase-space density growth can be notably suppressed to less than 1% for any bunch charge. This work elucidates the key parameters that are needed for emittance preservation, such as the required field and aspect ratio for a given bunch charge.

  13. Electron Cloud at Low Emittance in CesrTA

    SciTech Connect

    Palmer, Mark; Alexander, James; Billing, Michael; Calvey, Joseph; Conolly, Christopher; Crittenden, James; Dobbins, John; Dugan, Gerald; Eggert, Nicholas; Fontes, Ernest; Forster, Michael; Gallagher, Richard; Gray, Steven; Greenwald, Shlomo; Hartill, Donald; Hopkins, Walter; Kreinick, David; Kreis, Benjamin; Leong, Zhidong; Li, Yulin; Liu, Xianghong; /more authors..

    2012-07-06

    The Cornell Electron Storage Ring (CESR) has been reconfigured as a test accelerator (CesrTA) for a program of electron cloud (EC) research at ultra low emittance. The instrumentation in the ring has been upgraded with local diagnostics for measurement of cloud density and with improved beam diagnostics for the characterization of both the low emittance performance and the beam dynamics of high intensity bunch trains interacting with the cloud. A range of EC mitigation methods have been deployed and tested and their effectiveness is discussed. Measurements of the electron cloud's effect on the beam under a range of conditions are discussed along with the simulations being used to quantitatively understand these results.

  14. Extended Emitter Target Tracking Using GM-PHD Filter

    PubMed Central

    Zhu, Youqing; Zhou, Shilin; Gao, Gui; Zou, Huanxin; Lei, Lin

    2014-01-01

    If equipped with several radar emitters, a target will produce more than one measurement per time step and is denoted as an extended target. However, due to the requirement of all possible measurement set partitions, the exact probability hypothesis density filter for extended target tracking is computationally intractable. To reduce the computational burden, a fast partitioning algorithm based on hierarchy clustering is proposed in this paper. It combines the two most similar cells to obtain new partitions step by step. The pseudo-likelihoods in the Gaussian-mixture probability hypothesis density filter can then be computed iteratively. Furthermore, considering the additional measurement information from the emitter target, the signal feature is also used in partitioning the measurement set to improve the tracking performance. The simulation results show that the proposed method can perform better with lower computational complexity in scenarios with different clutter densities. PMID:25490206

  15. Refractory absorber/emitter using monolayer of ceramic microparticles

    NASA Astrophysics Data System (ADS)

    Dyachenko, P. N.; do Rosário, J. J.; Leib, E. W.; Petrov, A. Y.; Störmer, M.; Weller, H.; Vossmeyer, T.; Schneider, G. A.; Eich, M.

    2016-04-01

    We present a self-assembled refractory absorber/emitter without the necessity to structure the metallic surface itself, still retaining the feature of tailored optical properties for visible light emission and thermophotovoltaic (TPV) applications. We have demonstrated theoretically and experimentally that monolayers of zirconium dioxide (ZrO2) microparticles on a tungsten layer can be used as large area, efficient and thermally stable selective absorbers/emitters. The band edge of the absorption is based on critically coupled microsphere resonances. It can be tuned from visible to near-infrared range by varying the diameter of the microparticles. We demonstrated the optical functionality of the structure after annealing up to temperatures of 1000°C under vacuum conditions. In particular it opens up the route towards high efficiency TPV systems with emission matched to the photovoltaic cell.

  16. Directional couplers with integrated carbon nanotube incandescent light emitters.

    PubMed

    Fechner, Randy G; Pyatkov, Felix; Khasminskaya, Svetlana; Flavel, Benjamin S; Krupke, Ralph; Pernice, Wolfram H P

    2016-01-25

    We combine on-chip single-walled carbon nanotubes (SWNTs) emitters with directional coupling devices as fundamental building blocks for carbon photonic systems. These devices are essential for studying the emission properties of SWNTs in the few photon regime for future applications in on-chip quantum photonics. The combination of SWNTs with on-chip beam splitters herein provides the basis for correlation measurements as necessary for nanoscale source characterization. The employed fabrication methods are fully scalable and thus allow for implementing a multitude of functional and active circuits in a single fabrication run. Our metallic SWNT emitters are broadband and cover both visible and near-infrared wavelengths, thus holding promise for emerging hybrid optoelectronic devices with fast reconfiguration times. PMID:26832479

  17. Coupling of individual quantum emitters to channel plasmons

    NASA Astrophysics Data System (ADS)

    Bermúdez-Ureña, Esteban; Gonzalez-Ballestero, Carlos; Geiselmann, Michael; Marty, Renaud; Radko, Ilya P.; Holmgaard, Tobias; Alaverdyan, Yury; Moreno, Esteban; García-Vidal, Francisco J.; Bozhevolnyi, Sergey I.; Quidant, Romain

    2015-08-01

    Efficient light-matter interaction lies at the heart of many emerging technologies that seek on-chip integration of solid-state photonic systems. Plasmonic waveguides, which guide the radiation in the form of strongly confined surface plasmon-polariton modes, represent a promising solution to manipulate single photons in coplanar architectures with unprecedented small footprints. Here we demonstrate coupling of the emission from a single quantum emitter to the channel plasmon polaritons supported by a V-groove plasmonic waveguide. Extensive theoretical simulations enable us to determine the position and orientation of the quantum emitter for optimum coupling. Concomitantly with these predictions, we demonstrate experimentally that 42% of a single nitrogen-vacancy centre emission efficiently couples into the supported modes of the V-groove. This work paves the way towards practical realization of efficient and long distance transfer of energy for integrated solid-state quantum systems.

  18. Emittance Measurements of the SSRL Gun Test Facility

    SciTech Connect

    Hernandez, Michael; Clendenin, James; Fisher, Alan; Miller, Roger; Palmer, Dennis; Park, Sam; Schmerge, John; Weaver, Jim; Wiedemann, Helmut; Winick, Herman; Yeremian, Dian; Meyerhofer, David; Reis, David; /Rochester U.

    2011-09-01

    A photocathode RF gun test stand is under construction in the injector vault of the Stanford Synchrotron Radiation Laboratory at SLAC. The goal of this facility is to produce an electron beam with a normalized emittance of 1-3[mm-mr], a longitudinal bunch duration of the order of 10[ps] FWHM and approximately 1[nC] of charge per bunch. The beam will be generated from a laser driven copper photocathode RF gun developed in collaboration with BNL, LBL and UCLA. The 3-5[MeV] beam from the gun will be accelerated using a SLAC three meter S-band accelerator section. The emittance of the electron beam will be measured through the use of quadrupole scans with phosphor screens and also a wire scanner. The details of the experimental setup will be discussed, and first measurements will be presented and compared with results from PARMELA simulations.

  19. Modal Coupling of Single Photon Emitters Within Nanofiber Waveguides

    PubMed Central

    2016-01-01

    Nanoscale generation of individual photons in confined geometries is an exciting research field aiming at exploiting localized electromagnetic fields for light manipulation. One of the outstanding challenges of photonic systems combining emitters with nanostructured media is the selective channelling of photons emitted by embedded sources into specific optical modes and their transport at distant locations in integrated systems. Here, we show that soft-matter nanofibers, electrospun with embedded emitters, combine subwavelength field localization and large broadband near-field coupling with low propagation losses. By momentum spectroscopy, we quantify the modal coupling efficiency identifying the regime of single-mode coupling. These nanofibers do not rely on resonant interactions, making them ideal for room-temperature operation, and offer a scalable platform for future quantum information technology. PMID:27203403

  20. Generalized emittance measurements in a beam transport line

    SciTech Connect

    Skelly, J.; Gardner, C.; Luccio, A.; Kponou, A.; Reece, K.

    1991-01-01

    Motivated by the need to commission 3 beam transport lines for the new AGS Booster project, we have developed a generalized emittance-measurement program; beam line specifics are entirely resident in data tables, not in program code. For instrumentation, the program requires one or more multi-wire profile monitors; one or multiple profiles are acquired from each monitor, corresponding to one or multiple tunes of the transport line. Emittances and Twiss parameters are calculated using generalized algorithms. The required matix descriptions of the beam optics are constructed by an on-line general beam modeling program. Design of the program, its algorithms, and initial experience with it will be described. 4 refs., 2 figs., 1 tab.

  1. Effect of beam emittance on self-modulation of long beams in plasma wakefield accelerators

    SciTech Connect

    Lotov, K. V.

    2015-12-15

    The initial beam emittance determines the maximum wakefield amplitude that can be reached as a result of beam self-modulation in the plasma. The wakefield excited by the fully self-modulated beam decreases linearly with the increase in the beam emittance. There is a value of initial emittance beyond which the self-modulation does not develop even if the instability is initiated by a strong seed perturbation. The emittance scale at which the wakefield is suppressed by a factor of two with respect to the zero-emittance case (the so called critical emittance) is determined by inability of the excited wave to confine beam particles radially and is related to beam and plasma parameters by a simple formula. The effect of beam emittance can be observed in several discussed self-modulation experiments.

  2. Emittance Measurements Relevant to a 250 W(sub t) Class RTPV Generator for Space Exploration

    NASA Technical Reports Server (NTRS)

    Wolford, Dave; Chubb, Donald; Clark, Eric; Pal, Anna Maria; Scheiman, Dave; Colon, Jack

    2009-01-01

    A proposed 250 Wt Radioisotope Thermophotovoltaic (RTPV) power system for utilization in lunar exploration and the subsequent exploration of Mars is described. Details of emitter selection are outlined for use in a maintenance free power supply that is productive over a 14-year mission life. Thorough knowledge of a material s spectral emittance is essential for accurate modeling of the RTPV system. While sometimes treated as a surface effect, emittance involves radiation from within a material. This creates a complex thermal gradient which is a combination of conductive and radiative heat transfer mechanisms. Emittance data available in the literature is a valuable resource but it is particular to the test sample s physical characteristics and the test environment. Considerations for making spectral emittance measurements relevant to RTPV development are discussed. Measured spectral emittance data of refractory emitter materials is given. Planned measurement system modifications to improve relevance to the current project are presented.

  3. Emittance growth from charge density changes in high-current beams

    SciTech Connect

    Wangler, T.P.; Crandall, K.R.; Mills, R.S.

    1986-01-21

    We use the relation between field energy and rms emittance, together with the property of charge-density homogenization for intense nonuniform beams in linear focusing systems, to derive equations for emittance growth and minimum final emittance. We discuss three problems in which this charge redistribution mechnism is isolated: the 1-D continuous sheet beam, the 2-D continuous round beam, and the 3-D spherical bunch. For each of the three problems, we identify and compare scaling parameters tha determine the emittance growth and minimum final emittance as a function of beam current, emittance, and external focusing strength. Numerical simulations are used to test the equations, to show that the charge redistribution mechanism results in very rapid emittance growth, and to study the detailed time evolution of the beams.

  4. Short-lived positron emitter labeled radiotracers - present status

    SciTech Connect

    Fowler, J.S.; Wolf, A.P.

    1982-01-01

    The preparation of labelled compounds is important for the application of positron emission transaxial tomography (PETT) in biomedical sciences. This paper describes problems and progress in the synthesis of short-lived positron emitter (/sup 11/C, /sup 18/F, /sup 13/N) labelled tracers for PETT. Synthesis of labelled sugars, amino acids, and neurotransmitter receptors (pimozide and spiroperidol tagged with /sup 11/C) is discussed in particular. (DLC)

  5. Resonant microcavity light emitters for onboard exhaust emissions IR sensor

    NASA Astrophysics Data System (ADS)

    Levy, Francois; Picard, Emmanuel; Rothmann, Johan; Mottin, Eric; Hadji, Emmanuel; Duhr, Joel

    2005-02-01

    A sensor based on selective optical absorption allows monitoring of hazardous engine exhaust emissions such as gaseous hydrocarbons and carbon monoxide. The IR components presented here offer the potential to develop a compact, fast and selective sensor reaching the technical and cost requirements for on-board automotive applications. Optical gas monitoring requires light sources above 3&mum since most of the gas species have their fundamental absorption peaks between 3 and 6 &mum. We report here on resonant microcavity light sources emitting at room temperature between 3 and 5&mum. The emitter combines a CdxHg1-xTe light emitting heterostructure and two dielectric multilayered mirrors. It is optically pumped by a commercial III-V laser diode. The principle of the resonant microcavity emitter allows tailoring of the emission wavelength and the line width to fit the absorption band of a specific gas, ensuring a very good selectivity between species. Moreover, this kind of emitter allows fast modulation enabling high detectivity and short response time. We report performances of light sources in the range 3-5&mum allowing the detection of hydrocarbons and carbon monoxide. Association of emitters peaking at different characteristic wavelengths with a single broad band detector allows designing of an optical sensor for several gas species. Sensitivity and time response issues have been characterized: detection of less than 50ppm of CH4 on a 15cm path has been demonstrated on synthetic gas; analysis of exhaust gases from a vehicle has allowed cylinder to cylinder resolution. This optical sensor offers the potential of various on-board automotive applications.

  6. Analysis of kicker noise induced beam emittance growth

    SciTech Connect

    Zhang W.; Sandberg, J.; Ahrens, L.; Blacker, I.M.; Brennan, M.; Blaskiewicz, M.; Fischer, W.; Hahn, H.; Huang, H.; Kling, N.; Lafky, M.; Marr, G.; Mernick, K.; Mi, J.; Minty, M.; Naylor, C.; Roser, T.; Shrey, T.; van Kuik, B.; Zelenski, A.

    2012-05-20

    Over the last few years, physicists have occasionally observed the presence of noise acting on the RHIC beams leading to emittance growth at high beam energies. While the noise was sporadic in the past, it became persistent during the Run-11 setup period. An investigation diagnosed the source as originating from the RHIC dump kicker system. Once identified the issue was quickly resolved. We report in this paper the investigation result, circuit analysis, measured and simulated waveforms, solutions, and future plans.

  7. Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

    NASA Technical Reports Server (NTRS)

    Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee

    2012-01-01

    NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.

  8. T-Shaped Emitter Metal Structures for HBTs

    NASA Technical Reports Server (NTRS)

    Fung, King Man; Samoska, Lorene; Velebir, James; Muller, Richard; Echternach, Pierre; Siegel, Peter; Smith, Peter; Martin, Suzanne; Malik, Roger; Rodwell, Mark; Urteaga, Miguel; Paidi, Vamsi; Griffith, Zack

    2006-01-01

    Metal emitter structures in a class of developmental InP-based high-speed heterojunction bipolar transistors (HBTs) have been redesigned to have T-shaped cross sections. T-cross-section metal features have been widely used in Schottky diodes and high-electron-mobility transistors, but not in HBTs. As explained, the purpose served by the present T cross-sectional shapes is to increase fabrication yields beyond those achievable with the prior cross-sectional shapes.

  9. Nonlocality from N>2 independent single-photon emitters

    SciTech Connect

    Thiel, C.; Wiegner, R.; Zanthier, J. von; Agarwal, G. S.

    2010-09-15

    We demonstrate that intensity correlations of second order in the fluorescence light of N>2 single-photon emitters may violate locality while the visibility of the signal remains below 1/{radical}(2){approx_equal}71%. For this, we derive a homogeneous Bell-Wigner-type inequality, which can be applied to a broad class of experimental setups. We trace the violation of this inequality back to path entanglement created by the process of detection.

  10. Cancer therapy with alpha-emitters labeled peptides.

    PubMed

    Dadachova, Ekaterina

    2010-05-01

    Actively targeted alpha-particles offer specific tumor cell killing action with less collateral damage to surrounding normal tissues than beta-emitters. During the last decade, radiolabeled peptides that bind to different receptors on the tumors have been investigated as potential therapeutic agents both in the preclinical and clinical settings. Advantages of radiolabeled peptides over antibodies include relatively straightforward chemical synthesis, versatility, easier radiolabeling, rapid clearance from the circulation, faster penetration and more uniform distribution into tissues, and less immunogenicity. Rapid internalization of the radiolabeled peptides with equally rapid re-expression of the cell surface target is a highly desirable property that enhances the total delivery of these radionuclides into malignant sites. Peptides, such as octreotide, alpha-melanocyte-stimulating hormone analogues, arginine-glycine-aspartic acid-containing peptides, bombesin derivatives, and others may all be feasible for use with alpha-emitters. The on-going preclinical work has primarily concentrated on octreotide and octreotate analogues labeled with Bismuth-213 and Astatine-211. In addition, alpha-melanocyte-stimulating hormone analogue has been labeled with Lead-212/Bismuth-212 in vivo generator and demonstrated the encouraging therapeutic efficacy in treatment of experimental melanoma. Obstacles that continue to obstruct widespread acceptance of alpha-emitter-labeled peptides are primarily the supply of these radionuclides and concerns about potential kidney toxicity. New sources and methods for production of these medically valuable radionuclides and better understanding of mechanisms related to the peptide renal uptake and clearance should speed up the introduction of alpha-emitter-labeled peptides into the clinic. PMID:20350629

  11. Emittance growth from merging arrays of round beamlets

    SciTech Connect

    Anderson, O.A.

    1995-08-01

    The cost of an induction linac for Heavy Ion Fusion (HIF) may be reduced if the number of channels in the main accelerator is reduced. There have been proposals to do this by merging beamlets (perhaps in groups of four) after a suitable degree of preacceleration. In the process of merging, space charge forces cause transverse acceleration, filling in the gaps and rapidly increasing the emittance. The maximum change in mean-square emittance is proportional to the excess electrostatic energy (free energy) in the array when the merging begins. In some designs, it may be desirable to reduce the emittance growth below that produced by a basic 2x2 array. For this, a general understanding is helpful. Therefore, we investigate three factors affecting the normalized free energy U{sub n} of an array of charged interacting beamlets: (1) the number of beamlets N in the array; (2) the ratio {eta} of beamlet diameter to beamlet spacing; and (3) the shape of the array. For circular arrays, we obtain an analytic expression showing that U{sub n}{approximately}NE{sup -1} in the large-N limit, i.e., the emittance growth can be made arbitrarily small. We show that this is not true for square or rectangular arrays, which have larger free energy with a lower limit determined by the non-circular format. Free energy in square arrays can be reduced by omitting comer beamlets; in the case of a 5 x 5 array, the reduction factor is as large as 3.3.

  12. Photophysics of chromium-related diamond single-photon emitters

    SciTech Connect

    Aharonovich, I.; Castelletto, S.; Simpson, D. A.; Greentree, A. D.; Prawer, S.

    2010-04-15

    A detailed study of the photophysical properties of several chromium-related color centers produced within chemical vapor deposition diamond is presented. These emitters show narrow luminescence lines in the range of 740-770 nm. Single-photon emission was verified with continuous and pulsed excitation with detected emission rates at saturation in the range of (2-3) x 10{sup 6} counts/s, while direct lifetime measurements reveal excited state lifetimes for the distinct centers ranging 1-14 ns. In addition, a number of quantum emitters demonstrate two-level behavior with no bunching present in the second-order correlation function. The three-level systems revealed typically photoluminescence lines with width half-maximum of {approx}4 nm while the two-level emitters have full width half-maximum of {approx}10 nm at room temperature. In addition, the quantum efficiency of the two-level system was measured to be four times higher than that of the three-level system.

  13. Variable Emittance Electrochromic Devices for Satellite Thermal Control

    NASA Astrophysics Data System (ADS)

    Demiryont, Hulya; Shannon, Kenneth C.

    2007-01-01

    An all-solid-state electrochromic device (ECD) was designed for electronic variable emissivity (VE) control. In this paper, a low weight (5g/m2) electrochromic thermal control device, the EclipseVEECD™, is detailed as a viable thermal control system for spacecraft outer surface temperatures. Discussion includes the technology's performance, satellite applications, and preparations for space based testing. This EclipseVEECD™ system comprises substrate/mirror electrode/active element/IR transparent electrode layers. This system tunes and modulates reflection/emittance from 5 μm to 15 μm region. Average reflectance/emittance modulation of the system from the 400 K to 250 K region is about 75%, while at room temperature (9.5 micron) reflectance/emittance is around 90%. Activation voltage of the EclipseVEECD™ is around ±1 Volt. The EclipseVEECD™ can be used as a smart thermal modulator for the thermal control of satellites and spacecraft by monitoring and adjusting the amount of energy emitted from the outer surfaces. The functionality of the EclipseVEECD™ was successfully demonstrated in vacuum using a multi-purpose heat dissipation/absorption test module, the EclipseHEAT™. The EclipseHEAT™ has been successfully flight checked and integrated onto the United States Naval Alchemy MidSTAR satellite, scheduled to launch December 2006.

  14. Transverse emittance studies of an induction accelerator of heavy ions

    SciTech Connect

    Garvey, T.; Eylon, S.; Fessenden, T.J.; Hahn, K.; Henestroza, E.

    1991-04-01

    Current amplification of heavy ion beams is an integral feature of the induction linac approach to heavy ion fusion. As part of the Heavy Ion Fusion Accelerator Research program at LBL we have been studying the evolution of the transverse emittance of ion beams while they are undergoing current amplification, achieved by longitudinal bunch compression and acceleration. Experiments are conducted on MBE-4, a four beam Cs{sup +} induction linac. The space-charge dominated beams of MBE-4 are focused by electrostatic quadrupoles while they are accelerated from nominally 200 keV up to {approximately} 1 MeV by 24 accelerating gaps. Initially the beams have currents of typically 4 mA to 10 mA per beam. Early experimental results showed a growth of the normalized emittance by a factor of 2 while the beam current was amplified by up to 9 times its initial value. We will discuss the results of recent experiments in which a mild bunch length compression rate, more typical of that required by a fusion driver, has shown that the normalized emittance can be maintained at its injection value (0.03 mm-mr) during acceleration. 4 refs., 4 figs., 1 tab.

  15. Emittance Growth in Intense Non-Circular Beams

    NASA Astrophysics Data System (ADS)

    Anderson, O. A.

    1997-05-01

    The electrostatic energy of intense beams in linear uniform focusing channels is minimized when the initial beam configuration is both uniform and round.(In the case of quadrupole focusing, this means round on the average.) Deviations from either uniformity or roundness produce free energy and emittance growth. Over the past 25 years, the consequences of beam nonuniformity have been thoroughly investigated for the case of round beams. Recently, there has been interest in more complex beam configurations such as those that occur in Heavy Ion Fusion (HIF) combiners or splitters. We discuss free energy and emittance growth for a variety of cases: (a) square beams, (b) hexagonal beams, (c) beams bounded by a quadrant or sextant of a circle, (d) rectangular beams, (e) elliptical beams, (f) pairs of beamlets, and (g) arrays of many beamlets. Cases (a) and (b) are approximations for large arrays of beamlets as proposed for HIF combiners or for negative-ion sources. Beam splitting, suggested for a particular HIF final focus scheme, leads to (c). The large emittance growth in cases (d)-(f), calculated by a new method,(O.A. Anderson, Proceedings of EPAC 96 conference.) illustrates the importance of maintaining symmetry. Practical examples are given for several cases.

  16. Biologic data, models, and dosimetric methods for internal emitters

    SciTech Connect

    Weber, D.A.

    1990-01-01

    The absorbed radiation dose from internal emitters has been and will remain a pivotal factor in assessing risk and therapeutic utility in selecting radiopharmaceuticals for diagnosis and treatment. Although direct measurements of absorbed dose and dose distributions in vivo have been and will continue to be made in limited situations, the measurement of the biodistribution and clearance of radiopharmaceuticals in human subjects and the use of this data is likely to remain the primary means to approach the calculation and estimation of absorbed dose from internal emitters over the next decade. Since several approximations are used in these schema to calculate dose, attention must be given to inspecting and improving the application of this dosimetric method as better techniques are developed to assay body activity and as more experience is gained in applying these schema to calculating absorbed dose. Discussion of the need for considering small scale dosimetry to calculate absorbed dose at the cellular level will be presented in this paper. Other topics include dose estimates for internal emitters, biologic data mathematical models and dosimetric methods employed. 44 refs.

  17. Science and applications of low-emittance electron beams

    SciTech Connect

    van Bibber, K

    2000-08-20

    The capability of making very low-emittance electron beams of temporally short, high charge bunches has opened up exciting new possibilities in basic and applied science. Two notable applications are high energy electron-positron linear colliders for particle physics, and fourth-generation light sources consisting of linac-driven Free-Electron Lasers (FEL), both of which represent significant programmatic potential for the Laboratory in the future. The technologies contributing to low-emittance electron beams and their applications, namely precision fabrication, ultra-short pulse lasers, and RF photocathode injectors, are all areas of Lab expertise, and the work carried out under this LDRD project further expanded our core-competency in advanced concept accelerators. Furthermore, high energy accelerators have become a cornerstone of the SBSS program, as illustrated by the recent development of proton radiography as a prime technology candidate for the Advanced Hydrotest Facility (AHF), which enhanced the significance of this project all the more. This was a one-year project to both advance the technology of, and participate in the science enabled by very low-emittance electron beams. The work centered around the two themes above, namely electron-positron linear colliders, and the new fourth-generation light sources. This work built upon previous LDRD investments, and was intended to emphasize accelerator physics experiments.

  18. Deterministic photon-emitter coupling in chiral photonic circuits

    NASA Astrophysics Data System (ADS)

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  19. Gas ionization sensors with carbon nanotube/nickel field emitters.

    PubMed

    Huang, Bohr-Ran; Lin, Tzu-Ching; Yang, Ying-Kan; Tzeng, Shien-Der

    2011-12-01

    Gas ionization sensors based on the field emission properties of the carbon nanotube/nickel (CNT/Ni) field emitters were first developed in this work. It is found that the breakdown electric field (E(b)) slightly decreases from 2.2 V/microm to 1.9 V/microm as the pressure of H2 gas increases from 0.5 Torr to 100 Torr. On the contrary, E(b) obviously increases from 2.9 V/microm to 6.5 V/microm as O2 gas pressure increases from 0.5 Torr to 100 Torr. This may be explained by the depression of the electron emission that caused by the adsorption of the O2 gas on the CNT emitters. The Raman spectra of the CNT/Ni emitters also show that more defects were generated on the CNTs after O2 gas sensing. The Joule heating effect under high current density as performing H2 sensing was also observed. These effects may contribute the pressure dependence on the breakdown electric field of the CNT/Ni gas ionization sensors. PMID:22409010

  20. GaN and ZnO Light Emitters

    NASA Astrophysics Data System (ADS)

    Ha, J.-S.

    In the recent several decades, there are huge concerns in solid-state light emitters based on semiconductor compound materials, which emit light of ultraviolet to red light. Light-emitting diode (LED) fabrication technology for this application is now relatively mature. Currently, the lifetime of blue or green light-emitter are apparently determined mostly by light-induced degradation of a packaging unit encapsulating the LED. New renaissance is taking place in research societies and industries of LEDs because of the straight possibilities and needs for LED-based solid-state lighting in human life instead of the conventional ones employing incandescent, halogen, fluorescent lightings etc. Among various semiconductor compounds applicable to LEDs, GaN and ZnO are regarded as promising materials for solid-state lighting because ultraviolet- or blue-light emitters, which are applicable to white-light LEDs, based on these materials are possible. In this chapter, current technologies and researches on GaN- and ZnO-based LEDs are described. A special emphasis is given to the efficiency of the LEDs in the review of the GaN-based LEDs, while current status technologies in LED applications of ZnO-based materials have been reviewed.

  1. Deterministic photon-emitter coupling in chiral photonic circuits.

    PubMed

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light. PMID:26214251

  2. Next generation 8xx nm laser bars and single emitters

    NASA Astrophysics Data System (ADS)

    Strauss, Uwe; Müller, Martin; Swietlik, Tomasz; Fehse, Robin; Lauer, Christian; Grönninger, Günther; König, Harald; Keidler, Markus; Fillardet, Thierry; Kohl, Andreas; Stoiber, Michael; Scholl, Iris; Biesenbach, Jens; Baeumler, Martina; Konstanzer, Helmer

    2011-03-01

    Semiconductor lasers with emission in the range 790 - 880 nm are in use for a variety of application resulting in different laser designs to fulfill requirements in output power, operation temperature and lifetimes. The output power is limited by self heating and catastrophic optical mirror damage at the laser facet (COMD). Now we present data on bars fabricated with our new facet technology, which enables us to double the maximum facet load. We present q-cw laser bar with 80% fill factor with increased power level to 350W in long term operation at 200μs and 100Hz. The COMD limit of the bar is as high as 680W. Using Quantel's optimized packaging stacks with 11 bars of 5mm widths are tested at up to 120A resulting over 66% power conversion efficiency at 1600W output power. Laser bars for continuous wave operation like 50% fill factor bars had an COMD limit of approx. 250W with conventional facet technology, the value is equivalent to 10W per 200μm emitter (conditions: 200μs). The new facet technology pushes the facet stability to 24W/emitter. The new process and an improved design enable us to shift continuous wave operation at 808nm from 100W to 150W/bar with lifetimes of several thousand hours at 30°C using DILAS mounting technology. Higher power is possible depending on lifetime requirements. The power conversion efficiency of the improved devices is as high as 62% at 200W cw. The next limitation of 8xxnm lasers is high temperature operation: Values of 60-80°C are common for consumer applications of single emitters. Therefore Osram developed a new epitaxial design which reduced the generation of bulk defects. The corresponding Osram single emitters operate at junction temperatures up to 95°C, a value which corresponds to 80°C heat sink temperature for lasers soldered on C-mount or 65°C case temperature for lasers mounted in TO can. Current densities of the single emitter broad area lasers are as high as 1.4kA/cm2 at 850nm emission wavelength.

  3. Cool and warm hybrid white organic light-emitting diode with blue delayed fluorescent emitter both as blue emitter and triplet host

    PubMed Central

    Cho, Yong Joo; Yook, Kyoung Soo; Lee, Jun Yeob

    2015-01-01

    A hybrid white organic light-emitting diode (WOLED) with an external quantum efficiency above 20% was developed using a new blue thermally activated delayed fluorescent material, 4,6-di(9H-carbazol-9-yl)isophthalonitrile (DCzIPN), both as a blue emitter and a host for a yellow phosphorescent emitter. DCzIPN showed high quantum efficiency of 16.4% as a blue emitter and 24.9% as a host for a yellow phosphorescent emitter. The hybrid WOLEDs with the DCzIPN host based yellow emitting layer sandwiched between DCzIPN emitter based blue emitting layers exhibited high external quantum efficiency of 22.9% with a warm white color coordinate of (0.39, 0.43) and quantum efficiency of 21.0% with a cool white color coordinate of (0.31, 0.33) by managing the thickness of the yellow emitting layer. PMID:25598436

  4. Cool and warm hybrid white organic light-emitting diode with blue delayed fluorescent emitter both as blue emitter and triplet host

    NASA Astrophysics Data System (ADS)

    Cho, Yong Joo; Yook, Kyoung Soo; Lee, Jun Yeob

    2015-01-01

    A hybrid white organic light-emitting diode (WOLED) with an external quantum efficiency above 20% was developed using a new blue thermally activated delayed fluorescent material, 4,6-di(9H-carbazol-9-yl)isophthalonitrile (DCzIPN), both as a blue emitter and a host for a yellow phosphorescent emitter. DCzIPN showed high quantum efficiency of 16.4% as a blue emitter and 24.9% as a host for a yellow phosphorescent emitter. The hybrid WOLEDs with the DCzIPN host based yellow emitting layer sandwiched between DCzIPN emitter based blue emitting layers exhibited high external quantum efficiency of 22.9% with a warm white color coordinate of (0.39, 0.43) and quantum efficiency of 21.0% with a cool white color coordinate of (0.31, 0.33) by managing the thickness of the yellow emitting layer.

  5. Emission Testing Results of Thermally Stable, Metamaterial, Selective-Emitters for Thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Levinson, Katherine; Naka, Norihito; Pfiester, Nicole; Licht, Abigail; Vandervelde, Tom

    2015-03-01

    In thermophotovoltaics, the energy from a heated emitter is converted to electricity by a photovoltaic diode. A selective emitter can be used to emit a narrow band of wavelengths tailored to the bandgap of the photovoltaic diode. This spectral shaping improves the conversion efficiency of the diode and reduces undesirable diode heating. In our research, we study selective emitters based on metamaterials composed of repeating nanoscale structures. The emission characteristics of these materials vary based on the compositional structure, allowing the emitted spectrum to be tunable. Simulations were performed with CST Microwave Studio to design emitters with peak wavelengths ranging from 1-10 microns. The structures were then fabricated using physical vapor deposition and electron beam lithography on a sapphire substrate. Emitter materials studied include gold, platinum, and iridium. Here we report on the emission spectra of the selective emitters and the post-heating structural integrity.

  6. Analytical performance characteristics of nanoelectrospray emitters as a function of conductive coating.

    PubMed

    Smith, Douglas R; Moy, Marie A; Dolan, Anthony R; Wood, Troy D

    2006-04-01

    As miniaturization of electrospray continues to become more prevalent in the mass spectrometry arsenal, numerous types of conductive coatings have been developed with miniaturized electrospray emitters. Different conductive coatings have different properties that may lead to differences in analytical performance. This paper investigates and compares the analytical properties of a series of applied conductive coatings for low-flow electrospray ionization developed in this laboratory vs. commercially-available types. Evaporated graphite is thoroughly compared with commercially available polyaniline (PANI) coated emitters and metal coated emitters. Each set of emitters was investigated to determine various performance characteristics, including susceptibility to electrical discharge in both positive and negative ionization modes, as well as emitter reproducibility and generation of a standard curve to determine each emitter coating's limit of detection and limit of quantitation. Furthermore, evaporated graphite and polyaniline coated fused silica capillaries were investigated to determine which coating is more stable over long-term analyses and during electrical discharge. PMID:16568172

  7. Role of the optical pulse repetition rate in the efficiency of terahertz emitters

    NASA Astrophysics Data System (ADS)

    Reklaitis, Antanas

    2016-07-01

    Excitation of n-GaAs and p-InAs terahertz emitters by the series of optical pulses is studied by ensemble Monte Carlo simulations. It is found that the spatial separation of photoexcited electrons and holes dramatically reduces the recombination intensity in n-GaAs emitter, the operation of which is based on the surface field effect. The spatial separation of carriers does not affect the recombination intensity in p-InAs emitter, the operation of which is based on the photo-Dember effect. Therefore, the recovery time of equilibrium state after optical pulse in n-GaAs emitter significantly exceeds the corresponding recovery time in p-InAs emitter. This fact leads to a substantial reduction of photocurrent amplitude in n-GaAs emitter excited by the optical pulse series at high repetition rate.

  8. Radial arrays of nano-electrospray ionization emitters and methods of forming electrosprays

    DOEpatents

    Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2010-10-19

    Electrospray ionization emitter arrays, as well as methods for forming electrosprays, are described. The arrays are characterized by a radial configuration of three or more nano-electrospray ionization emitters without an extractor electrode. The methods are characterized by distributing fluid flow of the liquid sample among three or more nano-electrospray ionization emitters, forming an electrospray at outlets of the emitters without utilizing an extractor electrode, and directing the electrosprays into an entrance to a mass spectrometry device. Each of the nano-electrospray ionization emitters can have a discrete channel for fluid flow. The nano-electrospray ionization emitters are circularly arranged such that each is shielded substantially equally from an electrospray-inducing electric field.

  9. Effective hybrid graphene/carbon nanotubes field emitters by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Koh, Angel T. T.; Chen, Ting; Pan, Likun; Sun, Zhuo; Chua, Daniel H. C.

    2013-05-01

    Hybrid graphene and carbon nanotube (CNT) field emitters were fabricated with electrophoretic deposition (EPD). The combination of both materials was used to improve the turn-on field for pure carbon nanotubes emitters and the reliability of pure graphene emitters deposited by the same method. The CNT was envisioned to hold down the graphene flakes, like a safety belt or Velcro, at high voltages to prevent an early short circuit at relatively low voltages. These hybrid emitters were studied for their field emission performance in relation to the EPD deposition duration. It was observed that the emitters performed better when the EPD duration was increased due to the increase in the amount and density of graphene flakes. Possible reasons for the improvement of field emission performance were suggested. The roles of graphene and CNT in these hybrid emitters were also discussed.

  10. 4D Emittance Measurements Using Multiple Wire and Waist Scan Methods in the ATF Extraction Line

    SciTech Connect

    Rimbault, C.; Bambade, P.; Brossard, J.; Alabau, M.; Kuroda, S.; Scarfe, A.; Woodley, M.; /SLAC

    2011-11-02

    Emittance measurements performed in the diagnostic section of the Accelerator Test Facility (ATF) extraction line since 1998 led to vertical emittances three times larger than the expected ones, with a strong dependence on intensity. An experimental program is pursued to investigate potential sources of emittance growth and find possible remedies. This requires efficient and reliable emittance measurement techniques. In the past, several phase-space reconstruction methods developed at SLAC and KEK have been used to estimate the vertical emittance, based on multiple location beam size measurements and dedicated quadrupole scans. These methods have been shown to be very sensitive to measurement errors and other fluctuations in the beam conditions. In this context new emittance measurements have been performed revisiting these methods and newly developed ones with a systematic approach to compare and characterise their performance in the ATF extraction line.

  11. Intrinsic emittance reduction of copper cathodes by laser wavelength tuning in an rf photoinjector

    NASA Astrophysics Data System (ADS)

    Divall, Marta Csatari; Prat, Eduard; Bettoni, Simona; Vicario, Carlo; Trisorio, Alexandre; Schietinger, Thomas; Hauri, Christoph P.

    2015-03-01

    With the improvement of acceleration techniques, the intrinsic emittance of the cathode has a strong impact on the final brightness of a free electron laser. The systematic studies presented in this paper demonstrate for the first time in a radiofrequency photocathode gun a reduction of the intrinsic emittance when tuning the laser photon energies close to the effective work function of copper. The intrinsic emittance was determined by measuring the core slice emittance as a function of the laser beam size at laser wavelengths between 260 and 275 nm. The results are consistent with the measured effective work function of the cathode. Slice emittance values normalized to the laser beam size reached values down to 500 nm /mm , close to that expected from theory. A 20% reduction of the intrinsic emittance was observed over the spectral range of the laser.

  12. Arrays of Bundles of Carbon Nanotubes as Field Emitters

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Bronkowski, Michael

    2007-01-01

    Experiments have shown that with suitable choices of critical dimensions, planar arrays of bundles of carbon nanotubes (see figure) can serve as high-current-density field emitter (cold-cathode) electron sources. Whereas some hot-cathode electron sources must be operated at supply potentials of thousands of volts, these cold-cathode sources generate comparable current densities when operated at tens of volts. Consequently, arrays of bundles of carbon nanotubes might prove useful as cold-cathode sources in miniature, lightweight electron-beam devices (e.g., nanoklystrons) soon to be developed. Prior to the experiments, all reported efforts to develop carbon-nanotube-based field-emission sources had yielded low current densities from a few hundred microamperes to a few hundred milliamperes per square centimeter. An electrostatic screening effect, in which taller nanotubes screen the shorter ones from participating in field emission, was conjectured to be what restricts the emission of electrons to such low levels. It was further conjectured that the screening effect could be reduced and thus emission levels increased by increasing the spacing between nanotubes to at least by a factor of one to two times the height of the nanotubes. While this change might increase the emission from individual nanotubes, it would decrease the number of nanotubes per unit area and thereby reduce the total possible emission current. Therefore, to maximize the area-averaged current density, it would be necessary to find an optimum combination of nanotube spacing and nanotube height. The present concept of using an array of bundles of nanotubes arises partly from the concept of optimizing the spacing and height of field emitters. It also arises partly from the idea that single nanotubes may have short lifetimes as field emitters, whereas bundles of nanotubes could afford redundancy so that the loss of a single nanotube would not significantly reduce the overall field emission.

  13. Emittance Measurements for a Thin Liquid Sheet Flow

    NASA Technical Reports Server (NTRS)

    Englehart, Amy N.; McConley, Marc W.; Chubb, Donald L.

    1996-01-01

    The Liquid Sheet Radiator (LSR) is an external flow radiator that uses a triangular-shaped flowing liquid sheet as the radiating surface. It has potentially much lower mass than solid wall radiators such as pumped loop and heat pipe radiators, along with being nearly immune to micrometeoroid penetration. The LSR has an added advantage of simplicity. Surface tension causes a thin (100-300 microns) liquid sheet to coalesce to a point, causing the sheet flow to have a triangular shape. Such a triangular sheet is desirable since it allows for simple collection of the flow at a single point. A major problem for all external flow radiators is the requirement that the working fluid be of very low (approx. 10(sup -8) torr) vapor pressure to keep evaporative losses low. As a result, working fluids are limited to certain oils (such as used in diffusion pumps) for low temperatures (300-400 K) and liquid metals for higher temperatures. Previous research on the LSR has been directed at understanding the fluid mechanics of thin sheet flows and assessing the stability of such flows, especially with regard to the formation of holes in the sheet. Taylor studied extensively the stability of thin liquid sheets both theoretically and experimentally. He showed that thin sheets in a vacuum are stable. The latest research has been directed at determining the emittance of thin sheet flows. The emittance was calculated from spectral transmittance data for the Dow Corning 705 silicone oil. By experimentally setting up a sheet flow, the emittance was also determined as a function of measurable quantities, most importantly, the temperature drop between the top of the sheet and the temperature at the coalescence point of the sheet. Temperature fluctuations upstream of the liquid sheet were a potential problem in the analysis and were investigated.

  14. Oxidation and Emittance Studies of Coated Mo-Re

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    1997-01-01

    A commercially available Fe-Cr-Si coating (R512E) and a silicide coating were evaluated regarding their ability to protect Mo-Re from oxidation. The R512E coating provided very good oxidation protection at 1260 C in atmospheric air. Oxidation tests were also performed at Mach 4 in the HYMETS facility at NASA Langley Research Center where again the R512E provided good oxidation protection but for much shorter times. Emittance measurements as a function of wavelength were also obtained for the R512E coating on Mo-Re after exposure to the Mach 4 environment at 1150 C and 1230 C.

  15. Pepper-pot based emittance measurements of the AWA photoinjector.

    SciTech Connect

    Power, J. G.; Conde, M. E.; Gai, W.; Gao, F.; Konecny, D.; Liu, W.; Yusof, Z.; Rihaoui, M.; Piot, Ph.; High Energy Physics; Northern Illinois Univ.

    2008-01-01

    The Argonne Wakefield Accelerator (AWA) RF photocathode gun is a 1.5 cell, L-band, RF photocathode gun operating at 77 MV/m, with emittance compensating solenoids, a magnesium photocathode, and generates an 8 MeV, 1 nC - 100 nC beam. In this paper, we report on a parametric set of measurements to characterize the transverse trace space of the 1 nC electron beam directly out of the gun. We emphasize details of the experimental setup, image analysis, and end with a comparison of the measurements to PARMELA simulations.

  16. Emitter location independent of systematic errors in direction finders

    NASA Astrophysics Data System (ADS)

    Mahapatra, P. R.

    1980-11-01

    A scheme is suggested for the passive location of radio emitter position by using a mobile direction finder. The vehicle carrying the direction finder is made to maneuver such that the apparent direction of arrival is held constant. The resulting trajectory of the vehicle is a logarithmic spiral. The true direction of arrival can be obtained by monitoring the parameters of the spiral trajectory without using the value of the direction finder reading. Two specific algorithms to eliminate direction finder bias are presented and their sensitivity to random errors in measurement assessed.

  17. Effect of opening helix on flying wire emittance measurements

    SciTech Connect

    Pruss, Stan; /Fermilab

    1996-04-01

    It has been noted for some time that after the protons are injected, when the helix is opened the proton normalized vertical emittance (as measured by the flying wires) increases by about two {pi} mm-mr. The horizontal emittance decreases by about the same amount. This has been recognized as a false result, but there has been uncertainty as to whether it was due to the flying wires not measuring the beam sigma correctly when the beam center moved at the wires or whether the effective beta at the wires changed when the helix was opened and the orbit changed all around the machine. This study attempts to answer that question. The study took place Sunday, Feb. 25, 1996, from 18:30 to 22:30. The study consisted of injecting P1, P2 and P3 as normal, coalesced bunches and P4 and P5 as uncoalesced bunch trains of nominally 11 bunches. The purpose in using more than a single bunch was to increase statistical sampling and to investigate whether there was any significant difference between coalesced and uncoalesced bunches. Because the injection kicker had a long flat-top for 36 bunch studies, P6 could not be injected and when P5 was injected, P1 emittance increased by about two {pi} mm-mr. The flying wires were flown several times, the helix was turned on, the wires flown several times, the helix turned off, and the wires flown several times. The helix cycling was performed by knobbing the power supplies to avoid any possible emittance dilution from a non-adiabatic change. note that during the helix off state during helix cycling, one of the power supplies for the horizontal separators was inadvertently not turned down to zero, leaving the horizontal part of the helix at {approx} 16% of normal. After three cycles of helix on-off, a local horizontal three bump was made to duplicate the horizontal orbit change at the E11 wires and the wires were flown several times. The local bump was removed and the wires flown several times. Finally, the protons were put onto the pbar helix

  18. Emittance characterization of the spallation neutron source H- injector

    NASA Astrophysics Data System (ADS)

    Han, B. X.; Stockli, M. P.; Welton, R. F.; Murray, S. N., Jr.; Pennisi, T. R.; Santana, M.

    2013-02-01

    The H- injector for the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory consists of a RF H- ion source and a compact electrostatic low-energy beam transport (LEBT) section. Up to 5 ion sources and up to 4 LEBT assemblies are alternated for the SNS beam operations. The beam current and emittance of the H- beam exiting the LEBT were characterized on the test-stand for different sources and LEBT assemblies in order to understand and minimize their performance variations.

  19. Bent solenoids for spectrometers and emittance exchange sections.

    SciTech Connect

    Norem, J.

    1999-03-26

    Bent solenoids can be used to transport low energy beams as they provide both confinement and dispersion of particle orbits. Solenoids are being considered both as emittance exchange sections and spectrometers in the muon cooling system as part of the study of the muon collider. They present the results of a study of bent solenoids which considers the design of coupling sections between bent solenoids to straight solenoids, drift compensation fields, aberrations, and factors relating to the construction, such as field ripple, stored energy, coil forces and field errors.

  20. Silicon solar cells with polysilicon emitters and back surface fields

    NASA Astrophysics Data System (ADS)

    Du, Jiang; Berndt, Lyall P.; Tarr, N. Garry

    2010-06-01

    The first solar cells using in-situ doped polysilicon contacts to form both emitter and back surface field (BSF) regions are reported. The use of polysilicon contacts permits extremely low thermal budget processing (maximum 850°C 5 sec for dopant activation), preserving substrate properties. The effectiveness of the BSF is best seen with backside illumination, where the photocurrent under natural sunlight is found to be over 30% of that obtained with frontside illumination, even though the substrate thickness is comparable to the minority carrier diffusion length. The applicability of the structure to bifacial operation is considered.

  1. BEAM EMITTANCE DIAGNOSTIC FOR THE DARHT SECOND AXIS INJECTOR

    SciTech Connect

    Bartsch, R. R.; Ekdahl, C. A.; Rose, E. A.; Custer, D. M.; Ridlon, R. N.

    2001-01-01

    Low beam emittance is key to achieving the required spot size at the output focus of the DARHT Second Axis. The nominal electron beam parameters at the output of the injector are 2 kA, 4.6 MeV, 2-microsecond pulse width and an rms radius less than 1 cm. Emittance is measured by bringing the beam to a focus in which the emittance is a dominant influence in determining the spot size. The spot size is measured from Cerenkov or optical transition radiation (OTR) generated from a target intercepted by the beam. The current density in the focused DARHT beam would melt this target in less than 1/2 microsec. To prevent this we have designed a DC magnetic transport system that defocuses the beam on the emittance target to prevent overheating, and uses a 125-ns half period pulsed solenoid to selectively focus the beam for short times during the beam pulse. During the development of the fast-focusing portion of this diagnostic it has been determined that the focusing pulse must rapidly sweep through the focus at the target to an over-focused condition to avoid target damage due to overheating. The fast focus produces {approx}1 kilogauss field over an effective length of {approx}50 cm to bring the beam to a focus on the target. The fast focus field is generated with a 12-turn coil located inside the beam-transport vacuum chamber with the entire fast coil structure within the bore of a D.C. magnet. The pulsed coil diameter of {approx}15 cm is dictated by the return current path at the nominal vacuum wall. Since the drive system is to use 40 kV to 50 kV technology and much of the inductance is in the drive and feed circuit, the coil design has three 120 degree segments. The coil, driver and feed system design, as well as beam envelope calculations and target heating calculations are presented below. Operation of the OTR imaging system will be discussed in separate publication (Ref. 1).

  2. BEAM EMITTANCE DIAGNOSTIC FOR THE DARHT SECOND AXIS INJECTOR

    SciTech Connect

    R. BARTSCH; C. EKDAHL; ET AL

    2001-06-01

    Low beam emittance is key to achieving the required spot size at the output focus of the DARHT Second Axis. The nominal electron beam parameters at the output of the injector are 2 kA, 4.6 MeV, 2-microsecond pulse width and an rms radius less than 1 cm. Emittance is measured by bringing the beam to a focus in which the emittance is a dominant influence in determining the spot size. The spot size is measured from Cerenkov or optical transition radiation (OTR) generated from a target intercepted by the beam. The current density in the focused DARHT beam would melt this target in less than 1/2 microsec. To prevent this we have designed a DC magnetic transport system that defocuses the beam on the emittance target to prevent overheating, and uses a 125-ns half period pulsed solenoid to selectively focus the beam for short times during the beam pulse. During the development of the fast-focusing portion of this diagnostic it has been determined that the focusing pulse must rapidly sweep through the focus at the target to an over-focused condition to avoid target damage due to overheating. The fast focus produces {approx}1 kilogauss field over an effective length of {approx}50 cm to bring the beam to a focus on the target. The fast focus field is generated with a 12-turn coil located inside the beam-transport vacuum chamber with the entire fast coil structure within the bore of a D.C. magnet. The pulsed coil diameter of {approx}15 cm is dictated by the return current path at the nominal vacuum wall. Since the drive system is to use 40 kV to 50 kV technology and much of the inductance is in the drive and feed circuit, the coil design has three 120 degree segments. The coil, driver and feed system design, as well as beam envelope calculations and target heating calculations are presented below. Operation of the OTR imaging system will be discussed in separate publication (Ref. 1).

  3. Magnet design for an ultralow emittance storage ring

    NASA Astrophysics Data System (ADS)

    Saeidi, F.; Razazian, M.; Rahighi, J.; Pourimani, R.

    2016-03-01

    The Iranian Light Source Facility (ILSF) is a new 3 GeV synchrotron radiation laboratory which is in the design stage. The ILSF storage ring (SR) is based on a Five-Bend Achromat (5BA) lattice providing an ultra-low beam emittance of 0.48 nm rad. The ring is comprised of 100 pure dipole magnets, 320 quadrupoles, and 320 sextupoles with additional coils for dipole and skew quadrupole correctors. In this paper, we present some design features of the SR magnets and discuss the detailed physical design of these electromagnets. The related electrical and cooling calculations and mechanical design issues have been investigated as well.

  4. Feasibility of a ring FEL at low emittance storage rings

    NASA Astrophysics Data System (ADS)

    Agapov, I.

    2015-09-01

    A scheme for generating coherent radiation at latest generation low emittance storage rings such as PETRA III at DESY (Balewski et al., 2004 [1]) is proposed. The scheme is based on focusing and subsequent defocusing of the electron beam in the longitudinal phase space at the undulator location. The expected performance characteristics are estimated for radiation in the wavelength range of 500-1500 eV. It is shown that the average brightness is increased by several orders of magnitude compared to spontaneous undulator radiation, which can open new perspectives for photon-hungry soft X-ray spectroscopy techniques.

  5. Applications using high-Tc superconducting terahertz emitters

    PubMed Central

    Nakade, Kurama; Kashiwagi, Takanari; Saiwai, Yoshihiko; Minami, Hidetoshi; Yamamoto, Takashi; Klemm, Richard A.; Kadowaki, Kazuo

    2016-01-01

    Using recently-developed THz emitters constructed from single crystals of the high-Tc superconductor Bi2Sr2CaCu2O8+δ, we performed three prototype tests of the devices to demonstrate their unique characteristic properties for various practical applications. The first is a compact and simple transmission type of THz imaging system using a Stirling cryocooler. The second is a high-resolution Michelson interferometer used as a phase-sensitive reflection-type imaging system. The third is a system with precise temperature control to measure the liquid absorption coefficient. The detailed characteristics of these systems are discussed. PMID:26983905

  6. Applications using high-Tc superconducting terahertz emitters

    NASA Astrophysics Data System (ADS)

    Nakade, Kurama; Kashiwagi, Takanari; Saiwai, Yoshihiko; Minami, Hidetoshi; Yamamoto, Takashi; Klemm, Richard A.; Kadowaki, Kazuo

    2016-03-01

    Using recently-developed THz emitters constructed from single crystals of the high-Tc superconductor Bi2Sr2CaCu2O8+δ, we performed three prototype tests of the devices to demonstrate their unique characteristic properties for various practical applications. The first is a compact and simple transmission type of THz imaging system using a Stirling cryocooler. The second is a high-resolution Michelson interferometer used as a phase-sensitive reflection-type imaging system. The third is a system with precise temperature control to measure the liquid absorption coefficient. The detailed characteristics of these systems are discussed.

  7. Effects of surface diffusion on high temperature selective emitters.

    PubMed

    Peykov, Daniel; Yeng, Yi Xiang; Celanovic, Ivan; Joannopoulos, John D; Schuh, Christopher A

    2015-04-20

    Using morphological and optical simulations of 1D tantalum photonic crystals at 1200K, surface diffusion was determined to gradually reduce the efficiency of selective emitters. This was attributed to shifting resonance peaks and declining emissivity caused by changes to the cavity dimensions and the aperture width. Decreasing the structure's curvature through larger periods and smaller cavity widths, as well as generating smoother transitions in curvature through the introduction of rounded cavities, was found to alleviate this degradation. An optimized structure, that shows both high efficiency selective emissivity and resistance to surface diffusion, was presented. PMID:25969039

  8. NEW INSTRUMENTS AND METHODS OF MEASUREMENTS: Liquid-metal ion emitters

    NASA Astrophysics Data System (ADS)

    Gabovich, M. D.

    1983-05-01

    This article describes and discusses the fundamental laws of ion emission from liquid-metal tips in a strong electric field. The widespread views of a liquid-metal emitter as being the smoothed tip of a Taylor cone are examined critically. The instability of a liquid metal in an electric field is discussed, and in line with this, an alternative concept is given of a sharp-tipped electrohydrodynamic emitter. The prospects for applying liquid-metal ion emitters are noted.

  9. Ultra-high Temperature Emittance Measurements for Space and Missile Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Crandall, David

    2009-01-01

    Advanced modeling and design efforts for many aerospace components require high temperature emittance data. Applications requiring emittance data include propulsion systems, radiators, aeroshells, heatshields/thermal protection systems, and leading edge surfaces. The objective of this work is to provide emittance data at ultra-high temperatures. MSFC has a new instrument for the measurement of emittance at ultra-high temperatures, the Ultra-High Temperature Emissometer System (Ultra-HITEMS). AZ Technology Inc. developed the instrument, designed to provide emittance measurements over the temperature range 700-3500K. The Ultra-HITEMS instrument measures the emittance of samples, heated by lasers, in vacuum, using a blackbody source and a Fourier Transform Spectrometer. Detectors in a Nicolet 6700 FT-IR spectrometer measure emittance over the spectral range of 0.4-25 microns. Emitted energy from the specimen and output from a Mikron M390S blackbody source at the same temperature with matched collection geometry are measured. Integrating emittance over the spectral range yields the total emittance. The ratio provides a direct measure of total hemispherical emittance. Samples are heated using lasers. Optical pyrometry provides temperature data. Optical filters prevent interference from the heating lasers. Data for Inconel 718 show excellent agreement with results from literature and ASTM 835. Measurements taken from levitated spherical specimens provide total hemispherical emittance data; measurements taken from flat specimens mounted in the chamber provide near-normal emittance data. Data from selected characterization studies will be presented. The Ultra-HITEMS technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials.

  10. Analysis methodology of movable emittance-meter measurements for low energy electron beams.

    PubMed

    Mostacci, A; Bacci, A; Boscolo, M; Chiadroni, E; Cianchi, A; Filippetto, D; Migliorati, M; Musumeci, P; Ronsivalle, C; Rossi, A R

    2008-01-01

    The design of photoinjectors for modern free electron laser linac relies heavily on particular beam behavior in the few meters after the gun. To experimentally characterize it a movable emittance meter was proposed and built [L. Catani et al., Rev. Sci. Instrum. 77, 093301 (2006)] based on the beam slicing technique. This paper addresses all the aspects of analysis of the data acquired with the emittance meter and common to any slit based emittance measurement for low energy beams. PMID:18248027

  11. Tunable graphene micro-emitters with fast temporal response and controllable electron emission

    PubMed Central

    Wu, Gongtao; Wei, Xianlong; Gao, Song; Chen, Qing; Peng, Lianmao

    2016-01-01

    Microfabricated electron emitters have been studied for half a century for their promising applications in vacuum electronics. However, tunable microfabricated electron emitters with fast temporal response and controllable electron emission still proves challenging. Here, we report the scaling down of thermionic emitters to the microscale using microfabrication technologies and a Joule-heated microscale graphene film as the filament. The emission current of the graphene micro-emitters exhibits a tunability of up to six orders by a modest gate voltage. A turn-on/off time of less than 1 μs is demonstrated for the graphene micro-emitters, indicating a switching speed about five orders of magnitude faster than their bulky counterparts. Importantly, emission performances of graphene micro-emitters are controllable and reproducible through engineering graphene dimensions by microfabrication technologies, which enables us to fabricate graphene micro-emitter arrays with uniform emission performances. Graphene micro-emitters offer an opportunity of realizing large-scale addressable micro-emitter arrays for vacuum electronics applications. PMID:27160693

  12. Strategies for minimizing emittance growth in high charge CW FEL injectors

    SciTech Connect

    Liu, H.

    1995-12-31

    This paper is concerned with the best strategies for designing low emittance, high charge CW FEL injectors. This issue has become more and more critical as today`s interest in FELs is toward UV wavelength high average power operation. The challenge of obtaining the smallest possible emittance is discussed from both the practical point of view and the beam physics point of view. Various mechanisms responsible for beam emittance growth are addressed in detail. Finally, the design of a high charge injector test stand at CEBAF is chosen to help illustrate the design strategies and emittance growth mechanisms discussed in this paper.

  13. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOEpatents

    Ruby, D.S.; Schubert, W.K.; Gee, J.M.

    1999-02-16

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas. 5 figs.

  14. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOEpatents

    Ruby, Douglas S.; Schubert, William K.; Gee, James M.

    1999-01-01

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas.

  15. Emittance studies of the Spallation Neutron Source external-antenna H{sup -} ion source

    SciTech Connect

    Han, B. X.; Stockli, M. P.; Welton, R. F.; Pennisi, T. R.; Murray, S. N.; Santana, M.; Long, C. D.

    2010-02-15

    A new Allison-type emittance scanner has been built to characterize the ion sources and low energy beam transport systems at Spallation Neutron Source. In this work, the emittance characteristics of the H{sup -} beam produced with the external-antenna rf-driven ion source and transported through the two-lens electrostatic low energy beam transport are studied. The beam emittance dependence on beam intensity, extraction parameters, and the evolution of the emittance and twiss parameters over beam pulse duration are presented.

  16. Tunable graphene micro-emitters with fast temporal response and controllable electron emission.

    PubMed

    Wu, Gongtao; Wei, Xianlong; Gao, Song; Chen, Qing; Peng, Lianmao

    2016-01-01

    Microfabricated electron emitters have been studied for half a century for their promising applications in vacuum electronics. However, tunable microfabricated electron emitters with fast temporal response and controllable electron emission still proves challenging. Here, we report the scaling down of thermionic emitters to the microscale using microfabrication technologies and a Joule-heated microscale graphene film as the filament. The emission current of the graphene micro-emitters exhibits a tunability of up to six orders by a modest gate voltage. A turn-on/off time of less than 1 μs is demonstrated for the graphene micro-emitters, indicating a switching speed about five orders of magnitude faster than their bulky counterparts. Importantly, emission performances of graphene micro-emitters are controllable and reproducible through engineering graphene dimensions by microfabrication technologies, which enables us to fabricate graphene micro-emitter arrays with uniform emission performances. Graphene micro-emitters offer an opportunity of realizing large-scale addressable micro-emitter arrays for vacuum electronics applications. PMID:27160693

  17. Tunable graphene micro-emitters with fast temporal response and controllable electron emission

    NASA Astrophysics Data System (ADS)

    Wu, Gongtao; Wei, Xianlong; Gao, Song; Chen, Qing; Peng, Lianmao

    2016-05-01

    Microfabricated electron emitters have been studied for half a century for their promising applications in vacuum electronics. However, tunable microfabricated electron emitters with fast temporal response and controllable electron emission still proves challenging. Here, we report the scaling down of thermionic emitters to the microscale using microfabrication technologies and a Joule-heated microscale graphene film as the filament. The emission current of the graphene micro-emitters exhibits a tunability of up to six orders by a modest gate voltage. A turn-on/off time of less than 1 μs is demonstrated for the graphene micro-emitters, indicating a switching speed about five orders of magnitude faster than their bulky counterparts. Importantly, emission performances of graphene micro-emitters are controllable and reproducible through engineering graphene dimensions by microfabrication technologies, which enables us to fabricate graphene micro-emitter arrays with uniform emission performances. Graphene micro-emitters offer an opportunity of realizing large-scale addressable micro-emitter arrays for vacuum electronics applications.

  18. Elementary framework for cold field emission from quantum-confined, non-planar emitters

    NASA Astrophysics Data System (ADS)

    Patterson, A. A.; Akinwande, A. I.

    2015-05-01

    For suitably small field emitters, the effects of quantum confinement at the emitter tip may have a significant impact on the emitter performance and total emitted current density (ECD). Since the geometry of a quantum system uniquely determines the magnitude and distribution of its energy levels, a framework for deriving ECD equations from cold field electron emitters of arbitrary geometry and dimensionality is developed. In the interest of obtaining semi-analytical ECD equations, the framework is recast in terms of plane wave solutions to the Schrödinger equation via the use of the Jeffreys-Wentzel-Kramers-Brillouin approximation. To demonstrate the framework's consistency with our previous work and its capabilities in treating emitters with non-planar geometries, ECD equations were derived for the normally unconfined cylindrical nanowire (CNW) and normally confined (NC) CNW emitter geometries. As a function of the emitter radius, the NC CNW emitter ECD profile displayed a strong dependence on the Fermi energy and had an average ECD that exceeded the Fowler-Nordheim equation for typical values of the Fermi energy due to closely spaced, singly degenerate energy levels (excluding electron spin), comparatively large electron supply values, and the lack of a transverse, zero-point energy. Such characteristics suggest that emitters with non-planar geometries may be ideal for emission from both an electron supply and electrostatics perspective.

  19. Elementary framework for cold field emission from quantum-confined, non-planar emitters

    SciTech Connect

    Patterson, A. A. Akinwande, A. I.

    2015-05-07

    For suitably small field emitters, the effects of quantum confinement at the emitter tip may have a significant impact on the emitter performance and total emitted current density (ECD). Since the geometry of a quantum system uniquely determines the magnitude and distribution of its energy levels, a framework for deriving ECD equations from cold field electron emitters of arbitrary geometry and dimensionality is developed. In the interest of obtaining semi-analytical ECD equations, the framework is recast in terms of plane wave solutions to the Schrödinger equation via the use of the Jeffreys-Wentzel-Kramers-Brillouin approximation. To demonstrate the framework's consistency with our previous work and its capabilities in treating emitters with non-planar geometries, ECD equations were derived for the normally unconfined cylindrical nanowire (CNW) and normally confined (NC) CNW emitter geometries. As a function of the emitter radius, the NC CNW emitter ECD profile displayed a strong dependence on the Fermi energy and had an average ECD that exceeded the Fowler-Nordheim equation for typical values of the Fermi energy due to closely spaced, singly degenerate energy levels (excluding electron spin), comparatively large electron supply values, and the lack of a transverse, zero-point energy. Such characteristics suggest that emitters with non-planar geometries may be ideal for emission from both an electron supply and electrostatics perspective.

  20. Solar absorptance and thermal emittance of some common spacecraft thermal-control coatings

    NASA Technical Reports Server (NTRS)

    Henninger, J. H.

    1984-01-01

    Solar absorptance and thermal emittance of spacecraft materials are critical parameters in determining spacecraft temperature control. Because thickness, surface preparation, coatings formulation, manufacturing techniques, etc. affect these parameters, it is usually necessary to measure the absorptance and emittance of materials before they are used. Absorptance and emittance data for many common types of thermal control coatings, are together with some sample spectral data curves of absorptance. In some cases for which ultraviolet and particle radiation data are available, the degraded absorptance and emittance values are also listed.

  1. Measurements of Intra-Beam Scattering at Low Emittance in the Advanced Light Source

    SciTech Connect

    Byrd, J.; Corlett, J.; Nishimura, H.; Robin, D.; De Santis, S.; Steier, C.; Wolski, A.; Wu, Y.; Bane, K.; Raubenheimer, T.; Ross, M.; Sheppard, J.; Smith, T.; /SLAC

    2006-03-13

    The beam emittance at the interaction point of linear colliders is expected to be strongly influenced by the emittance of the beams extracted from the damping rings. Intra-beam scattering (IBS) potentially limits the minimum emittance of low-energy storage rings, and this effect strongly influences the choice of energy of damping rings [1]. Theoretical analysis suggests that the NLC damping rings will experience modest emittance growth at 1.98 GeV, however there is little experimental data of IBS effects for very low-emittance machines in the energy regime of interest. The Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory is a third-generation synchrotron light source operating with high-intensity, low-emittance beams at energies of approximately 1-2 GeV, and with emittance coupling capability of 1% or less. We present measurements of the beam growth in three dimensions as a function of current, for normalized natural horizontal emittance of approximately 1-10 mm-mrad at energies of 0.7-1.5 GeV, values comparable to the parameters in an NLC damping ring. Using a dedicated diagnostic beamline with an x-ray scintillator imaging system, measurements of the transverse beamsize are made, and bunch length measurements are made using an optical streak camera. Emittance growth as a function of bunch current is determined, and compared with preliminary calculation estimates.

  2. Experimental Studies on Coherent Synchrotron Radiation at an Emittance Exchange Beamline

    SciTech Connect

    Thangaraj, J.C.T.; Thurman-Keup, R.; Ruan, J.; Johnson, A.S.; Lumpkin, A.H.; Santucci, J.; /Fermilab

    2012-04-01

    One of the goals of the Fermilab A0 photoinjector is to experimentally investigate the transverse to longitudinal emittance exchange (EEX) principle. Coherent synchrotron radiation in the emittance exchange line could limit the performance of the emittance exchanger at short bunch lengths. In this paper, we present experimental and simulation studies of the coherent synchrotron radiation (CSR) in the emittance exchange line at the A0 photoinjector. We report on time-resolved CSR studies using a skew-quadrupole technique. We also demonstrate the advantages of running the EEX with an energy chirped beam.

  3. The Effect of Temperature on the Radiative Performance of Ho-Yag Thin Film Selective Emitters

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Good, Brian S.

    1995-01-01

    We present the emitter efficiency results for the thin film 25 percent Ho YAG (Yttrium Aluminum Garnet, Y3Al5O12) selective emitter from 1000 to 1700 K with a platinum substrate. Spectral emittance and emissive power measurements were made (1.2 less than lambda less than 3.2 microns) and used to calculate the radiative efficiency. The radiative efficiency and power density of rare earth doped selective emitters are strongly dependent on temperature and experimental results indicate an optimum temperature (1650 K for Ho YAG) for thermophotovoltaic (TPV) applications.

  4. Improving the Sensitivity of Mass Spectrometry by Using a New Sheath Flow Electrospray Emitter Array at Subambient Pressures

    PubMed Central

    Cox, Jonathan T.; Marginean, Ioan; Kelly, Ryan T.; Smith, Richard D.; Tang, Keqi

    2014-01-01

    Arrays of chemically etched emitters with individualized sheath gas capillaries were developed to enhance electrospray ionization (ESI) efficiency at subambient pressures. By incorporating the new emitter array in a subambient pressure ionization with nanoelectrospray (SPIN) source, both ionization efficiency and ion transmission efficiency were significantly increased, providing enhanced sensitivity in mass spectrometric analyses. The SPIN source eliminates the major ion losses of conventional ESI-mass spectrometry (MS) interfaces by placing the emitter in the first reduced pressure region of the instrument. The new ESI emitter array design developed in this study allows individualized sheath gas around each emitter in the array making it possible to generate an array of uniform and stable electrosprays in the subambient pressure (10 to 30 Torr) environment for the first time. The utility of the new emitter arrays was demonstrated by coupling the emitter array/SPIN source with a time of flight (TOF) mass spectrometer. The instrument sensitivity was compared under different ESI source and interface configurations including a standard atmospheric pressure single ESI emitter/heated capillary, single emitter/SPIN and multi-emitter/SPIN configurations using an equimolar solution of 9 peptides. The highest instrument sensitivity was observed using the multi-emitter/SPIN configuration in which the sensitivity increased with the number of emitters in the array. Over an order of magnitude MS sensitivity improvement was achieved using multi-emitter/SPIN as compared to using the standard atmospheric pressure single ESI emitter/heated capillary interface. PMID:24676894

  5. Single photon emitters in exfoliated WSe2 structures.

    PubMed

    Koperski, M; Nogajewski, K; Arora, A; Cherkez, V; Mallet, P; Veuillen, J-Y; Marcus, J; Kossacki, P; Potemski, M

    2015-06-01

    Crystal structure imperfections in solids often act as efficient carrier trapping centres, which, when suitably isolated, act as sources of single photon emission. The best known examples of such attractive imperfections are well-width or composition fluctuations in semiconductor heterostructures (resulting in the formation of quantum dots) and coloured centres in wide-bandgap materials such as diamond. In the recently investigated thin films of layered compounds, the crystal imperfections may logically be expected to appear at the edges of commonly investigated few-layer flakes of these materials exfoliated on alien substrates. Here, we report comprehensive optical micro-spectroscopy studies of thin layers of tungsten diselenide (WSe2), a representative semiconducting dichalcogenide with a bandgap in the visible spectral range. At the edges of WSe2 flakes (transferred onto Si/SiO2 substrates) we discover centres that, at low temperatures, give rise to sharp emission lines (100 μeV linewidth). These narrow emission lines reveal the effect of photon antibunching, the unambiguous attribute of single photon emitters. The optical response of these emitters is inherently linked to the two-dimensional properties of the WSe2 monolayer, as they both give rise to luminescence in the same energy range, have nearly identical excitation spectra and have very similar, characteristically large Zeeman effects. With advances in the structural control of edge imperfections, thin films of WSe2 may provide added functionalities that are relevant for the domain of quantum optoelectronics. PMID:25938573

  6. Theory and measurement of emittance properties for radiation thermometry applications.

    NASA Technical Reports Server (NTRS)

    Dewitt, D. P.; Hernicz, R. S.

    1972-01-01

    Some basic concepts of radiation physics are briefly reviewed to provide an introduction to the radiative properties - including emittance, reflectance, absorptance, and transmittance - their definitions, interrelations, theory and methods of measurement. Analyzed data showing typical characteristics of temperature and wavelength dependence, surface effects and environmental influences on the radiation properties of selected classes of materials are presented. Emphasis is placed on those emittance properties of particular interest to conventional radiation thermometry applications, but sufficient generality on all properties is presented to be useful for new or unusual techniques where a more detailed understanding of the behavior of materials is desirable. Data sources are identified to assist the reader in locating property information. It is the intention of the paper to give the reader a background to become more fully aware of the pitfalls, limitations, but of course, advantages in the use of data from the literature. The paper is written in the form of an abbreviated review fully documenting the more important topics and concepts which can only be treated briefly.

  7. Single photon emitters in exfoliated WSe2 structures

    NASA Astrophysics Data System (ADS)

    Koperski, M.; Nogajewski, K.; Arora, A.; Cherkez, V.; Mallet, P.; Veuillen, J.-Y.; Marcus, J.; Kossacki, P.; Potemski, M.

    2015-06-01

    Crystal structure imperfections in solids often act as efficient carrier trapping centres, which, when suitably isolated, act as sources of single photon emission. The best known examples of such attractive imperfections are well-width or composition fluctuations in semiconductor heterostructures (resulting in the formation of quantum dots) and coloured centres in wide-bandgap materials such as diamond. In the recently investigated thin films of layered compounds, the crystal imperfections may logically be expected to appear at the edges of commonly investigated few-layer flakes of these materials exfoliated on alien substrates. Here, we report comprehensive optical micro-spectroscopy studies of thin layers of tungsten diselenide (WSe2), a representative semiconducting dichalcogenide with a bandgap in the visible spectral range. At the edges of WSe2 flakes (transferred onto Si/SiO2 substrates) we discover centres that, at low temperatures, give rise to sharp emission lines (100 μeV linewidth). These narrow emission lines reveal the effect of photon antibunching, the unambiguous attribute of single photon emitters. The optical response of these emitters is inherently linked to the two-dimensional properties of the WSe2 monolayer, as they both give rise to luminescence in the same energy range, have nearly identical excitation spectra and have very similar, characteristically large Zeeman effects. With advances in the structural control of edge imperfections, thin films of WSe2 may provide added functionalities that are relevant for the domain of quantum optoelectronics.

  8. Discrete space charge affected field emission: Flat and hemisphere emitters

    SciTech Connect

    Jensen, Kevin L.; Shiffler, Donald A.; Tang, Wilkin; Rittersdorf, Ian M.; Lebowitz, Joel L.; Harris, John R.; Lau, Y. Y.; Petillo, John J.; Luginsland, John W.

    2015-05-21

    Models of space-charge affected thermal-field emission from protrusions, able to incorporate the effects of both surface roughness and elongated field emitter structures in beam optics codes, are desirable but difficult. The models proposed here treat the meso-scale diode region separate from the micro-scale regions characteristic of the emission sites. The consequences of discrete emission events are given for both one-dimensional (sheets of charge) and three dimensional (rings of charge) models: in the former, results converge to steady state conditions found by theory (e.g., Rokhlenko et al. [J. Appl. Phys. 107, 014904 (2010)]) but show oscillatory structure as they do. Surface roughness or geometric features are handled using a ring of charge model, from which the image charges are found and used to modify the apex field and emitted current. The roughness model is shown to have additional constraints related to the discrete nature of electron charge. The ability of a unit cell model to treat field emitter structures and incorporate surface roughness effects inside a beam optics code is assessed.

  9. Scalable emitter array development for infrared scene projector systems

    NASA Astrophysics Data System (ADS)

    Sparkman, Kevin; LaVeigne, Joe; McHugh, Steve; Kulick, Jason; Lannon, John; Goodwin, Scott

    2014-05-01

    Several new technologies have been developed over recent years that make a fundamental change in the scene projection for infrared hardware in the loop test. Namely many of the innovations are in Read In Integrated Circuit (RIIC) architecture, which can lead to an operational and cost effective solution for producing large emitter arrays based on the assembly of smaller sub-arrays. Array sizes of 2048x2048 and larger are required to meet the high fidelity test needs of today's modern infrared sensors. The Test Resource Management Center (TRMC) Test and Evaluation/Science and Technology (T and E/S and T) Program through the U.S. Army Program Executive Office for Simulation, Training and Instrumentations (PEO STRI) has contracted with SBIR and its partners to investigate integrating new technologies in order to achieve array sizes much larger than are available today. SBIR and its partners have undertaken several proof-of-concept experiments that provide the groundwork for producing a tiled emitter array. Herein we will report on the results of these experiments, including the demonstration of edge connections formed between different ICs with a gap of less than 10µm.

  10. Operating single quantum emitters with a compact Stirling cryocooler

    SciTech Connect

    Schlehahn, A.; Krüger, L.; Gschrey, M.; Schulze, J.-H.; Rodt, S.; Strittmatter, A.; Heindel, T. Reitzenstein, S.

    2015-01-15

    The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g{sup (2)}(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g{sup (2)}(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.

  11. Electrically pumped single-defect light emitters in WSe2

    NASA Astrophysics Data System (ADS)

    Schwarz, S.; Kozikov, A.; Withers, F.; Maguire, J. K.; Foster, A. P.; Dufferwiel, S.; Hague, L.; Makhonin, M. N.; Wilson, L. R.; Geim, A. K.; Novoselov, K. S.; Tartakovskii, A. I.

    2016-06-01

    Recent developments in fabrication of van der Waals heterostructures enable new type of devices assembled by stacking atomically thin layers of two-dimensional materials. Using this approach, we fabricate light-emitting devices based on a monolayer WSe2, and also comprising boron nitride tunnelling barriers and graphene electrodes, and observe sharp luminescence spectra from individual defects in WSe2 under both optical and electrical excitation. This paves the way towards the realisation of electrically-pumped quantum emitters in atomically thin semiconductors. In addition we demonstrate tuning by more than 1 meV of the emission energy of the defect luminescence by applying a vertical electric field. This provides an estimate of the permanent electric dipole created by the corresponding electron–hole pair. The light-emitting devices investigated in our work can be assembled on a variety of substrates enabling a route to integration of electrically pumped single quantum emitters with existing technologies in nano-photonics and optoelectronics.

  12. A Laboratory Goniometer System for Measuring Reflectance and Emittance Anisotropy

    PubMed Central

    Roosjen, Peter P. J.; Clevers, Jan G. P. W.; Bartholomeus, Harm M.; Schaepman, Michael E.; Schaepman-Strub, Gabriela; Jalink, Henk; van der Schoor, Rob; de Jong, Arjan

    2012-01-01

    In this paper, a laboratory goniometer system for performing multi-angular measurements under controlled illumination conditions is described. A commercially available robotic arm enables the acquisition of a large number of measurements over the full hemisphere within a short time span making it much faster than other goniometers. In addition, the presented set-up enables assessment of anisotropic reflectance and emittance behaviour of soils, leaves and small canopies. Mounting a spectrometer enables acquisition of either hemispherical measurements or measurements in the horizontal plane. Mounting a thermal camera allows directional observations of the thermal emittance. This paper also presents three showcases of these different measurement set-ups in order to illustrate its possibilities. Finally, suggestions for applying this instrument and for future research directions are given, including linking the measured reflectance anisotropy with physically-based anisotropy models on the one hand and combining them with field goniometry measurements for joint analysis with remote sensing data on the other hand. The speed and flexibility of the system offer a large added value to the existing pool of laboratory goniometers. PMID:23443402

  13. Strong coupling between surface plasmon polaritons and emitters: a review.

    PubMed

    Törmä, P; Barnes, W L

    2015-01-01

    In this review we look at the concepts and state-of-the-art concerning the strong coupling of surface plasmon-polariton modes to states associated with quantum emitters such as excitons in J-aggregates, dye molecules and quantum dots. We explore the phenomenon of strong coupling with reference to a number of examples involving electromagnetic fields and matter. We then provide a concise description of the relevant background physics of surface plasmon polaritons. An extensive overview of the historical background and a detailed discussion of more recent relevant experimental advances concerning strong coupling between surface plasmon polaritons and quantum emitters is then presented. Three conceptual frameworks are then discussed and compared in depth: classical, semi-classical and fully quantum mechanical; these theoretical frameworks will have relevance to strong coupling beyond that involving surface plasmon polaritons. We conclude our review with a perspective on the future of this rapidly emerging field, one we are sure will grow to encompass more intriguing physics and will develop in scope to be of relevance to other areas of science. PMID:25536670

  14. Strong coupling between surface plasmon polaritons and emitters: a review

    NASA Astrophysics Data System (ADS)

    Törmä, P.; Barnes, W. L.

    2015-01-01

    In this review we look at the concepts and state-of-the-art concerning the strong coupling of surface plasmon-polariton modes to states associated with quantum emitters such as excitons in J-aggregates, dye molecules and quantum dots. We explore the phenomenon of strong coupling with reference to a number of examples involving electromagnetic fields and matter. We then provide a concise description of the relevant background physics of surface plasmon polaritons. An extensive overview of the historical background and a detailed discussion of more recent relevant experimental advances concerning strong coupling between surface plasmon polaritons and quantum emitters is then presented. Three conceptual frameworks are then discussed and compared in depth: classical, semi-classical and fully quantum mechanical; these theoretical frameworks will have relevance to strong coupling beyond that involving surface plasmon polaritons. We conclude our review with a perspective on the future of this rapidly emerging field, one we are sure will grow to encompass more intriguing physics and will develop in scope to be of relevance to other areas of science.

  15. Final Muon Emittance Exchange in Vacuum for a Collider

    SciTech Connect

    Summers, Don; Acosta, John; Cremaldi, Lucien; Hart, Terry; Oliveros, Sandra; Perera, Lalith; Wu, Wanwei; Neuffer, David

    2015-05-07

    We outline a plan for final muon ionization cooling with quadrupole doublets focusing onto short absorbers followed by emittance exchange in vacuum to achieve the small transverse beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low β region occupied by a dense, low Z absorber. After final cooling, normalized xyz emittances of (0.071, 0.141, 2.4) mm-rad are exchanged into (0.025, 0.025, 70) mm-rad. Thin electrostatic septa efficiently slice the bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 μs, one quarter of a synchrotron oscillation period. A linear long wavelength RF bucket gives each bunch a different energy causing the bunches to drift until they merge into one bunch and can be captured in a short wavelength RF bucket with a 13% muon decay loss and a packing fraction as high as 87%.

  16. A laboratory goniometer system for measuring reflectance and emittance anisotropy.

    PubMed

    Roosjen, Peter P J; Clevers, Jan G P W; Bartholomeus, Harm M; Schaepman, Michael E; Schaepman-Strub, Gabriela; Jalink, Henk; van der Schoor, Rob; de Jong, Arjan

    2012-01-01

    In this paper, a laboratory goniometer system for performing multi-angular measurements under controlled illumination conditions is described. A commercially available robotic arm enables the acquisition of a large number of measurements over the full hemisphere within a short time span making it much faster than other goniometers. In addition, the presented set-up enables assessment of anisotropic reflectance and emittance behaviour of soils, leaves and small canopies. Mounting a spectrometer enables acquisition of either hemispherical measurements or measurements in the horizontal plane. Mounting a thermal camera allows directional observations of the thermal emittance. This paper also presents three showcases of these different measurement set-ups in order to illustrate its possibilities. Finally, suggestions for applying this instrument and for future research directions are given, including linking the measured reflectance anisotropy with physically-based anisotropy models on the one hand and combining them with field goniometry measurements for joint analysis with remote sensing data on the other hand. The speed and flexibility of the system offer a large added value to the existing pool of laboratory goniometers. PMID:23443402

  17. Operating single quantum emitters with a compact Stirling cryocooler

    NASA Astrophysics Data System (ADS)

    Schlehahn, A.; Krüger, L.; Gschrey, M.; Schulze, J.-H.; Rodt, S.; Strittmatter, A.; Heindel, T.; Reitzenstein, S.

    2015-01-01

    The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g(2)(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g(2)(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.

  18. MIRD Pamphlet No. 22 (Unabridged): Radiobiology and Dosimetry of alpha-Particle Emitters for Targeted Radionuclide Therapy

    SciTech Connect

    Sgouros, George; Roeske, John C.; McDevitt, Michael S.; Palm, Stig; Allen, Barry J.; Fisher, Darrell R.; Brill, Bertrand A.; Song, Hong; Howell, R. W.; Akabani, Gamal

    2010-02-28

    The potential of alpha-particle emitters to treat cancer has been recognized since the early 1900s. Advances in the targeted delivery of radionuclides, in radionuclide conjugation chemistry, and in the increased availability of alpha-emitters appropriate for clinical use have recently led to patient trials of alpha-particle-emitter labeled radiopharmaceuticals. Although alpha-emitters have been studied for many decades, their current use in humans for targeted therapy is an important milestone. The objective of this work is to review those aspects of the field that are pertinent to targeted alpha-particle-emitter therapy and to provide guidance and recommendations for human alpha-particle-emitter dosimetry.

  19. Surface treatment and surface coating of silicon field emitter array

    NASA Astrophysics Data System (ADS)

    Hajra, Mahua Sudhakrishna

    The objectives of this research were to fabricate ungated Si field emitter arrays (FEA's), and then to identify ways to improve the performance of the emitters. In the first and second chapters, the basis of the research, including background, theory, and the goals of the research is presented. The third chapter discusses the fabrication methods used to form the ungated Si FEA's. The fourth chapter gives the details about surface treatment procedures used to improve initial operation. The fifth and the sixth chapter discuss the different surface coating materials used to study the emission properties of the Si field emitters. The seventh chapter summarizes the work and suggests possible follow up research. The four surface treatments discussed in chapter four employ, respectively, residual gas ions, low-energy electron-stimulated desorption, a hydrogen-enhanced residual gas atmosphere, and a plasma of a Ar (96%) and H2 (4%) gas mixture. The method, using the hydrogen-enriched residual gas atmosphere is very unique in that it uses getters to produce the hydrogen rich atmosphere. The method, using a plasma of Ar (96%) and H2 (4%) gas mixture, is an effective in-situ cleaning procedure, which can be performed prior to packaging the devices. In chapters five and six is a comparison of the field-emission properties of the Si FEA coated with various materials, including (1) nanoparticle clusters of diamond and gallium nitride (GaN), (2) a thin film of ultrananocrystalline diamond (UNCD), (3) a lead zirconate titanate (PZT) coating, and (4) carbon nanotubes. Among the above coatings, the conformal coating of UNCD produced electron emission at an extremely low threshold field of between 2 to 5 V/mum. A further study of the behavior of electron emission from UNCD-coated Si FEA during in-situ exposure to H2, N2, and Ar respectively showed that when the emitting surface is exposed to H 2, at 10-5 Torr and 10-4 Torr, the initial emission current (2 muA) increases by a factor

  20. Subsurface drip irrigation emitter spacing effects on soil water redistribution, corn yield, and water productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emitter spacings of 0.3 to 0.6 m are commonly used for subsurface drip irrigation (SDI) of corn on the deep, silt loam soils of the United States Great Plains. Subsurface drip irrigation emitter spacings of 0.3, 0.6, 0.9 and 1.2 m were examined for the resulting differences in soil water redistribut...

  1. New format presentation for infrared spectral emittance data. Infrared spectrometry studies, phase 5

    NASA Technical Reports Server (NTRS)

    Lyon, R. J. P.; Green, A. A.

    1972-01-01

    Methods for infrared radiance measurements from geological materials were studied for airborne use over terrains with minimal vegetation. The tasks of the investigation were: (1) calculation of emittance ratios, (2) comparison of IR spectral emittance data with K-band scatterometer data over Pisgah Crater, and (3) standard infrared spectral file. Published papers reporting the research are included.

  2. Direct Observation of Ultralow Vertical Emittance using a Vertical Undulator - presentation slides

    SciTech Connect

    Wootton, Kent

    2015-09-17

    Direct emittance measurement based on vertical undulator is discussed. Emittance was evaluated from peak ratios, the smallest measured being 𝜀𝑦 =0.9 ±0.3 pm rad. The angular distribution of undulator radiation departs from Gaussian approximations, a fact of which diffraction-limited light sources should be aware.

  3. Influence of parasitic parameters of laser emitter on frequency response of analog fiber-optic link

    NASA Astrophysics Data System (ADS)

    Biryukov, V. V.; Grachev, V. A.; Raevskii, A. S.

    2015-03-01

    The article contains the results of the impedance measurement of the microwave laser emitter. The diagram of the experimental setup is described. The results of the experiment are shown. The RLC- laser diode module parameters are found. Due to the parameters the amplitude-frequency characteristics are received. Impact of the parasitic parameters of the laser emitter on its frequency responses is researched.

  4. TEST PROCEDURE FOR GAMMA EMITTERS IN DRINKING WATER: INTERLABORATORY COLLABORATIVE STUDY

    EPA Science Inventory

    An interlaboratory collaborative study was conducted to test a procedure for the measurement of gamma emitters in drinking water. Thirty-two laboratories participated in the study. Four reference water samples containing three or all four of the gamma emitters, cobalt-60, rutheni...

  5. Thermal emittance enhancement of graphite-copper composites for high temperature space based radiators

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Forkapa, Mark J.; Cooper, Jill M.

    1991-01-01

    Graphite-copper composites are candidate materials for space based radiators. The thermal emittance of this material, however, is a factor of two lower than the desired emittance for these systems of greater than or equal to 0.85. Arc texturing was investigated as a surface modification technique for enhancing the emittance of the composite. Since the outer surface of the composite is copper, and samples of the composite could not be readily obtained for testing, copper was used for optimization testing. Samples were exposed to various frequencies and currents of arcs during texturing. Emittances near the desired goal were achieved at frequencies less than 500 Hz. Arc current did not appear to play a major role under 15 amps. Particulate carbon was observed on the surface, and was easily removed by vibration and handling. In order to determine morphology adherence, ultrasonic cleaning was used to remove the loosely adherent material. This reduced the emittance significantly. Emittance was found to increase with increasing frequency for the cleaned samples up to 500 Hz. The highest emittance achieved on these samples over the temperature range of interest was 0.5 to 0.6, which is approximately a factor of 25 increase over the untextured copper emittance.

  6. Chemically Etched Open Tubular and Monolithic Emitters for Nanoelectrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Page, Jason S.; Luo, Quanzhou; Moore, Ronald J.; Orton, Daniel J.; Tang, Keqi; Smith, Richard D.

    2006-11-15

    We have developed a new procedure for fabricating fused silica emitters for electrospray ionization-mass spectrometry (ESI-MS) in which the end of a bare fused silica capillary is immersed into aqueous hydrofluoric acid, and water is pumped through the capillary to prevent etching of the interior. Surface tension causes the etchant to climb the capillary exterior, and the etch rate in the resulting meniscus decreases as a function of distance from the bulk solution. Etching continues until the silica touching the hydrofluoric acid reservoir is completely removed, essentially stopping the etch process. The resulting emitters have no internal taper, making them much less prone to clogging compared to e.g. pulled emitters. The high aspect ratios and extremely thin walls at the orifice facilitate very low flow rate operation; stable ESI-MS signals were obtained for model analytes from 5-μm-diameter emitters at a flow rate of 5 nL/min with a high degree of inter-emitter reproducibility. In extensive evaluation, the etched emitters were found to enable approximately four times as many LC-MS analyses of proteomic samples before failing compared with conventional pulled emitters. The fabrication procedure was also employed to taper the ends of polymer monolith-containing silica capillaries for use as ESI emitters. In contrast to previous work, the monolithic material protrudes beyond the fused silica capillaries, improving the monolith-assisted electrospray process.

  7. Analytical study on emittance growth caused by roughness of a metallic photocathode

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Tang, Chuanxiang

    2015-05-01

    The roughness of a photocathode could lead to an additional uncorrelated divergence of the emitted electrons and therefore to an increased thermal emittance. To calculate the emittance growth due to the cathode roughness, people usually choose a simple 2D sinusoidal surface model to avoid mathematical complexity. In this paper, we demonstrate an analytical method, which is inspired by the point spread function that has been widely used in radiation imaging field, to accurately evaluate the emittance growth due to the random roughness of a real-life cathode. Both analytical and numerical studies are performed. Our analytical formulas clearly reveal the relationship between the surface roughness and the emittance growth. Both analytical and numerical results surprisingly show that in the typical 3D random surface case, the influence of the surface roughness on the emittance growth is much smaller than the 2D sinusoidal case with typical roughness properties, however with roughness properties which are matched to the 3D case, the emittance growth conditions in these two cases are very similar. Even with applied electric field strength up to 120 MV /m , the total emittance growth is still below 10%. It implies that the large emittance growth (50%-100%) observed on metallic cathodes in some experiments, which is generally believed to be the result of the electric field on the rough surface, might be due to some other reasons.

  8. Relaxation and emittance growth of a thermal charged-particle beam

    SciTech Connect

    Teles, Tarcisio N.; Pakter, Renato; Levin, Yan

    2009-10-26

    We present a theory that allows us to accurately calculate the distribution functions and the emittance growth of a thermal charged-particle beam after it relaxes to equilibrium. The theory can be used to obtain the fraction of particles, which will evaporate from the beam to form a halo. The calculated emittance growth is found to be in excellent agreement with the simulations.

  9. Robust Radar Emitter Recognition Based on the Three-Dimensional Distribution Feature and Transfer Learning

    PubMed Central

    Yang, Zhutian; Qiu, Wei; Sun, Hongjian; Nallanathan, Arumugam

    2016-01-01

    Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for radar emitter signal recognition. To address this challenge, multi-component radar emitter recognition under a complicated noise environment is studied in this paper. A novel radar emitter recognition approach based on the three-dimensional distribution feature and transfer learning is proposed. The cubic feature for the time-frequency-energy distribution is proposed to describe the intra-pulse modulation information of radar emitters. Furthermore, the feature is reconstructed by using transfer learning in order to obtain the robust feature against signal noise rate (SNR) variation. Last, but not the least, the relevance vector machine is used to classify radar emitter signals. Simulations demonstrate that the approach proposed in this paper has better performances in accuracy and robustness than existing approaches. PMID:26927111

  10. Strain-Induced Spatial and Spectral Isolation of Quantum Emitters in Mono- and Bilayer WSe2.

    PubMed

    Kumar, S; Kaczmarczyk, A; Gerardot, B D

    2015-11-11

    Two-dimensional transition metal dichalcogenide semiconductors are intriguing hosts for quantum light sources due to their unique optoelectronic properties. Here, we report that strain gradients, either unintentionally induced or generated by substrate patterning, result in spatially and spectrally isolated quantum emitters in mono- and bilayer WSe2. By correlating localized excitons with localized strain variations, we show that the quantum emitter emission energy can be red-tuned up to a remarkable ∼170 meV. We probe the fine-structure, magneto-optics, and second-order coherence of a strained emitter. These results raise the prospect of strain-engineering quantum emitter properties and deterministically creating arrays of quantum emitters in two-dimensional semiconductors. PMID:26480237

  11. Strain-Induced Spatial and Spectral Isolation of Quantum Emitters in Mono- and Bilayer WSe2

    PubMed Central

    2015-01-01

    Two-dimensional transition metal dichalcogenide semiconductors are intriguing hosts for quantum light sources due to their unique optoelectronic properties. Here, we report that strain gradients, either unintentionally induced or generated by substrate patterning, result in spatially and spectrally isolated quantum emitters in mono- and bilayer WSe2. By correlating localized excitons with localized strain variations, we show that the quantum emitter emission energy can be red-tuned up to a remarkable ∼170 meV. We probe the fine-structure, magneto-optics, and second-order coherence of a strained emitter. These results raise the prospect of strain-engineering quantum emitter properties and deterministically creating arrays of quantum emitters in two-dimensional semiconductors. PMID:26480237

  12. OPERATION OF LOW EMITTANCE LATTICE AT THE NSLS X-RAY RING.

    SciTech Connect

    BLUM,E.B.; HEESE,R.; KLAFFKY,R.; KRINSKY,S.; SAFRANEK,J.

    1999-03-29

    The NSLS X-Ray Ring is now being operated with a low emittance lattice. The horizontal emittance was reduced to 45 nm-rad from 90 nm-rad at 2.584 GeV while maintaining a vertical emittance of 0.1 nm-rad. The electron beam life-time was unaffected by the emittance reduction because the decrease in the dispersion in the dipole magnets compensate for the higher bunch density in the Touschek effect. The lattice will also be implemented at 2.8 GeV after the strength of the focusing sextupoles is increased. The effect of low emittance operation on the synchrotron radiation users will be discussed.

  13. Field emission properties from flexible field emitters using carbon nanotube film

    NASA Astrophysics Data System (ADS)

    Shin, Dong Hoon; Jung, Seung Il; Yun, Ki Nam; Chen, Guohai; Song, Yoon-Ho; Saito, Yahachi; Milne, William I.; Lee, Cheol Jin

    2014-07-01

    Flexible carbon nanotube (CNT) field emitters are fabricated using CNT films on polyethylene terephthalate films. The flexible CNT emitters, which are made using double-walled CNTs, show high emission performance and also indicate stable field emission properties under several bending conditions. The flexible CNT emitters have a low turn-on field of about 0.82 V/μm and a high emission current density of about 2.0 mA/cm2 at an electric field of 1.6 V/μm. During stability tests, the flexible CNT emitters initially degrade over the first 4 h but exhibit no further significant degradation over the next 16 h testing while being continually bent. A flexible lamp made using the flexible CNT emitter displays uniform and bright emission patterns in a convex mode.

  14. Highly tunable-emittance radiator based on semiconductor-metal transition of VO2 thin films

    NASA Astrophysics Data System (ADS)

    Hendaoui, Ali; Émond, Nicolas; Chaker, Mohamed; Haddad, Émile

    2013-02-01

    This paper describes a VO2-based smart structure with an emittance that increases with the temperature. A large tunability of the spectral emittance, which can be as high as 0.90, was achieved. The transition of the total emittance with the temperature was fully reversible according to a hysteresis cycle, with a transition temperature of 66.5 °C. The total emittance of the device was found to be 0.22 and 0.71 at 25 °C and 100 °C, respectively. This emittance performance and the structure simplicity are promising for the next generation of energy-efficient cost-effective passive thermal control systems of spacecrafts.

  15. Emittance growth of an nonequilibrium intense electron beam in a transport channel with discrete focusing

    SciTech Connect

    Carlsten, B.E.

    1997-02-01

    The author analyzes the emittance growth mechanisms for a continuous, intense electron beam in a focusing transport channel, over distances short enough that the beam does not reach equilibrium. The emittance grows from the effect of nonlinear forces arising from (1) current density nonuniformities, (2) energy variations leading to nonlinearities in the space-charge force even if the current density is uniform, (3) axial variations in the radial vector potential, (4) an axial velocity shear along the beam, and (5) an energy redistribution of the beam as the beam compresses or expands. The emittance growth is studied analytically and numerically for the cases of balanced flow, tight focusing, and slight beam scalloping, and is additionally studied numerically for an existing 6-MeV induction linear accelerator. Rules for minimizing the emittance along a beamline are established. Some emittance growth will always occur, both from current density nonuniformities that arise along the transport and from beam radius changes along the transport.

  16. Effects of atmosphere, temperature and emittance on reflected and emitted energy

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1977-01-01

    The effects of temperature and emittance on the relative magnitude of reflected energy and emitter energy from a target including atmospheric effects was studied. From the calculations of energy reflected and emitted from a target including atmospheric effects using LOWTRAN 3 programs for midlatitude summer model, the following conclusions were obtained: (1) At 3.5 micrometers q is considerably less than 1 except at high temperatures and for high emittance; (2) at 4 micrometers q is of the order of magnitude equal to 1 for most targets; and (3) at 4.6 micrometers, q is considerably greater than 1 at high temperatures and high emittance. In addition, incident atmospheric emission reflected from the target was found to be negligible except for targets having low temperature and low emittance.

  17. Emittance Characterization of a Hot-Cavity Laser Ion Source at HRIBF

    SciTech Connect

    Liu, Yuan; Baktash, Cyrus; Beene, James R; Havener, Charles C; Krause, Herbert F; Schultz, David Robert; Stracener, Daniel W; Vane, C Randy; Geppert, C.; Gottwald, T.; Kessler, T.; Wies, K.; Wendt, K.

    2009-01-01

    The first investigation of the transverse emittance of a hot-cavity laser ion source based on all-solid-state Ti:Sapphire lasers is presented. The emittances of 63Cu ion beams generated by three-photon resonant ionization are measured and compared with that of the 69Ga and 39K ion beams resulting from surface ionization in the same ion source. A Self-Consistent, Unbiased Elliptical Exclusion (SCUBEEx) method is adapted for noise reduction and emittance analysis. Typical values of the rms and 90% fractional emittances of the Cu ion beams at 20 keV energy are found to be about 2 -mm-mrad and 8 -mm-mrad, respectively, for the ion currents of 2 to 40 nA investigated. The emittances of the laser-produced Cu ion beams are smaller than those of the surface-ionized Ga and K ion beams.

  18. Robust Radar Emitter Recognition Based on the Three-Dimensional Distribution Feature and Transfer Learning.

    PubMed

    Yang, Zhutian; Qiu, Wei; Sun, Hongjian; Nallanathan, Arumugam

    2016-01-01

    Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for radar emitter signal recognition. To address this challenge, multi-component radar emitter recognition under a complicated noise environment is studied in this paper. A novel radar emitter recognition approach based on the three-dimensional distribution feature and transfer learning is proposed. The cubic feature for the time-frequency-energy distribution is proposed to describe the intra-pulse modulation information of radar emitters. Furthermore, the feature is reconstructed by using transfer learning in order to obtain the robust feature against signal noise rate (SNR) variation. Last, but not the least, the relevance vector machine is used to classify radar emitter signals. Simulations demonstrate that the approach proposed in this paper has better performances in accuracy and robustness than existing approaches. PMID:26927111

  19. Emittance Studies of the BNL/SLAC/UCLA 1.6 Cell Photocathode RF Gun

    SciTech Connect

    Palmer, D.T.; Wang, X.J.; Miller, R.H.; Babzien, M.; Ben-Zvi, I.; Pellegrini, C.; Sheehan, J.; Skaritka, J.; Winick, H.; Woodle, M.; Yakimenko, V.; /Brookhaven

    2011-09-09

    The symmetrized 1.6 cell S-band photocathode gun developed by the BNL/SLAC/UCLA collaboration is in operation at the Brookhaven Accelerator Test Facility (ATF). A novel emittance compensation solenoid magnet has also been designed, built and is in operation at the ATF. These two subsystems form an emittance compensated photoinjector used for beam dynamics, advanced acceleration and free electron laser experiments at the ATF. The highest acceleration field achieved on the copper cathode is 150 MV/m, and the guns normal operating field is 130 MV/m. The maximum rf pulse length is 3 {mu}s. The transverse emittance of the photoelectron beam were measured for various injection parameters. The 1 nC emittance results are presented along with electron bunch length measurements that indicated that at above the 400 pC, space charge bunch lengthening is occurring. The thermal emittance, {epsilon}{sub o}, of the copper cathode has been measured.

  20. Influence of equipartitioning on the emittance of intense charged-particle beams

    SciTech Connect

    Wangler, T.P.; Guy, F.W.; Hofmann, I.

    1986-01-01

    We combine the ideas of kinetic energy equipartitioning and nonlinear field energy to obtain a quantitative description for rms emittance changes induced in intense beams with two degrees of freedom. We derive equations for emittance change in each plane for continuous elliptical beams and axially symmetric bunched beams, with arbitrary initial charge distributions within a constant focusing channel. The complex details of the mechanisms leading to kinetic energy transfer are not necessary to obtain the formulas. The resulting emittance growth equations contain two separate terms: the first describes emittance changes associated with the transfer of energy between the two planes; the second describes emittance growth associated with the transfer of nonlinear field energy into kinetic energy as the charge distribution changes.

  1. Membrane-Based Emitter for Coupling Microfluidics with Ultrasensitive Nanoelectrospray Ionization-Mass Spectrometry

    SciTech Connect

    Sun, Xuefei; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.

    2011-06-09

    An integrated poly(dimethylsiloxane) (PDMS) membrane-based microfluidic emitter for high performance nanoelectrospray ionization-mass spectrometry (nanoESI-MS) has been fabricated and evaluated. The ~100-μm-thick emitter was created by cutting a PDMS membrane that protrudes beyond the bulk substrate. The reduced surface area at the emitter enhances the electric field and reduces wetting of the surface by the electrospray solvent. As such, the emitter provides highly stable electrospray at flow rates as low as 10 nL/min, and is compatible with electrospray solvents containing a large organic component (e.g., 90% methanol). This approach enables facile emitter construction, and provides excellent stability, reproducibility and sensitivity, as well as compatibility with multilayer soft lithography.

  2. Fast two-dimensional super-resolution image reconstruction algorithm for ultra-high emitter density.

    PubMed

    Huang, Jiaqing; Gumpper, Kristyn; Chi, Yuejie; Sun, Mingzhai; Ma, Jianjie

    2015-07-01

    Single-molecule localization microscopy achieves sub-diffraction-limit resolution by localizing a sparse subset of stochastically activated emitters in each frame. Its temporal resolution is limited by the maximal emitter density that can be handled by the image reconstruction algorithms. Multiple algorithms have been developed to accurately locate the emitters even when they have significant overlaps. Currently, compressive-sensing-based algorithm (CSSTORM) achieves the highest emitter density. However, CSSTORM is extremely computationally expensive, which limits its practical application. Here, we develop a new algorithm (MempSTORM) based on two-dimensional spectrum analysis. With the same localization accuracy and recall rate, MempSTORM is 100 times faster than CSSTORM with ℓ(1)-homotopy. In addition, MempSTORM can be implemented on a GPU for parallelism, which can further increase its computational speed and make it possible for online super-resolution reconstruction of high-density emitters. PMID:26125349

  3. Coupling Correction and Beam Dynamics at Ultralow Vertical Emittance in the ALS

    SciTech Connect

    Steier, Christoph; Robin, D.; Wolski, A.; Portmann, G.; Safranek, J.; /LBL, Berkeley /SLAC

    2008-03-17

    For synchrotron light sources and for damping rings of linear colliders it is important to be able to minimize the vertical emittance and to correct the spurious vertical dispersion. This allows one to maximize the brightness and/or the luminosity. A commonly used tool to measure the skew error distribution is the analysis of orbit response matrices using codes like LOCO. Using the new Matlab version of LOCO and 18 newly installed power supplies for individual skew quadrupoles at the ALS the emittance ratio could be reduced below 0.1% at 1.9 GeV yielding a vertical emittance of about 5 pm. At those very low emittances, additional effects like intra beam scattering become more important, potentially limiting the minimum emittance for machine like the damping rings of linear colliders.

  4. Experimental optimization of the 6-dimentional electron beam emittance at the NSLS SDL

    SciTech Connect

    Qian, H.J.; Murphy, J.; Shen,Y.; Tang,C.X.; Wang,X.J.

    2011-05-13

    Experimental optimization of the 6-dimensional electron beam emittance generated by a Magnesium (Mg) photocathode RF gun is presented in this report. A new electron beam optimization algorithm for a low charge (<100 pC) beam was experimentally demonstrated; where the electron beam velocity bunching inside the RF gun plays a critical role, and the transverse emittance as a function of the laser-RF timing jitter was experimentally characterized for the first time. A 20 pC electron beam was optimized to have a normalized slice emittance of 0.15 mm mrad and a longitudinal projected emittance of 3.9 ps keV. Furthermore, the upper limit of the measured thermal emittance - 0.5 mm mrad per mm of the rms laser size, is about 50% lower than the theoretical prediction for a Mg cathode (Qian et al., 2010) [1].

  5. Performance of a thermionic converter module utilizing emitter and collector heat pipes

    NASA Technical Reports Server (NTRS)

    Kroeger, E. W.; Morris, J. F.; Miskolczy, G.; Lieb, D. P.; Goodale, D. B.

    1978-01-01

    A thermionic converter module simulating a configuration for an out-of-core thermionic nuclear reactor was designed, fabricated, and tested. The module consists of three cylindrical thermionic converters. The tungsten emitter of the converter is heated by a tungsten, lithium heat pipe. The emitter heat pipes are immersed in a furnace, insulated by MULTI-FOIL thermal insulation, and heated by tungsten radiation filaments. The performance of each thermionic converter was characterized before assembly into the module. Dynamic voltage, current curves were taken using a 60 Hz sweep and computerized data acquisition over a range of emitter, collector, and cesium-reservoir temperatures. An output power of 215 W was observed at an emitter temperature of 1750 K and a collector temperature of 855 K for a two diode module. With a three diode module, an output power of 270 W was observed at an average emitter temperature of 1800 K and a Collector temperature of 875 K.

  6. Photon pair source via two coupling single quantum emitters

    NASA Astrophysics Data System (ADS)

    Peng, Yong-Gang; Zheng, Yu-Jun

    2015-10-01

    We study the two coupling two-level single molecules driven by an external field as a photon pair source. The probability of emitting two photons, P2, is employed to describe the photon pair source quality in a short time, and the correlation coefficient RAB is employed to describe the photon pair source quality in a long time limit. The results demonstrate that the coupling single quantum emitters can be considered as a stable photon pair source. Project supported by the National Natural Science Foundation of China (Grand Nos. 91021009, 21073110, and 11374191), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013AQ020), the Postdoctoral Science Foundation of China (Grant No. 2013M531584), the Doctoral Program of Higher Education of China (Grant Nos. 20130131110005 and 20130131120006), and the Taishan Scholarship Project of Shandong Province, China.

  7. A new stand-alone beam emittance measurement system

    NASA Astrophysics Data System (ADS)

    Heuer, R.; Saadatmand, K.; Solensten, L.; Debiak, T.; Sredniawski, J.; Kuehne, F.

    1989-05-01

    A unique mechanical arrangement is employed which utilizes a single Allison type emittance scanner pod. This arrangement allows scans to be taken at any rotational angle, thereby eliminating any differences that can occur between gap settings when multiple pods are used. Flexibility is enhanced since the user is not restricted to orthogonal angles. A stand alone control and data acquisition system is utilized. The architecture includes an 80386 TM PC and CAMAC interfaces. Two Trek TM power supplies and a computer controlled signal generator provide maximum flexibility to the sweep voltages on the pod deflector plates. This paper describes the mechanical design of the scanner pod assembly, and the electrical and software design of the control system.

  8. ROLE OF DIAMOND SECONDARY EMITTERS IN HIGH BRIGHTNESS ELECTRON SOURCES.

    SciTech Connect

    RAO, T.; BEN-ZVI, I.; BURRILL, A.; CHANG, X.; GRIMES, J.; RANK, J.; SEGALOV, Z.; SMEDLEY, J.

    2005-09-20

    In this paper we explore the possibility of using diamond secondary emitter in a high average current electron injector to amplify the current from the photocathode and to isolate the cathode and the injector from each other to increase the life time of the cathode and preserve the performance of the injector. Secondary electron yield of 225 and current density of 0.8 a/cm{sup 2} have been measured in the transmission mode from type 2 a natural diamond. Although the diamond will be heated during normal operation in the injector, calculations indicate that by cryogenically cooling the diamond, the temperature gradient along the diamond can be maintained within the acceptable range. The electron energy and temporal distributions are expected to be narrow from this device resulting in high brightness beams. Plans are underway to measure the SEY in emission mode, fabricate photocathode-diamond capsule and test diamond and capsule in superconducting RF injector.

  9. The Brookhaven ATF low-emittance beam line

    SciTech Connect

    Wang, X.J. . Center for Advanced Accelerators Physics); Kirk, H.G. )

    1991-01-01

    One component of the experimental program at the Brookhaven Accelerator Test Facility (ATF) consists of a class of experiments which will study the acceleration of electrons through micron-size structures which are exposed in coincidence to a 100 GW CO{sub 2} laser beam. These experiments require the development and control of an electron beam with geometric emittances on the order of 10{sup {minus}10} m-rad and intensities on the order of 10{sup 6} electrons. In this paper, we describe the strategies for producing such beams and the effects of high-order aberrations. Particle tracking results are presented for the final-focus system. 9 refs., 6 figs., 2 tabs.

  10. High-density Au nanorod optical field-emitter arrays

    NASA Astrophysics Data System (ADS)

    Hobbs, R. G.; Yang, Y.; Keathley, P. D.; Swanwick, M. E.; Velásquez-García, L. F.; Kärtner, F. X.; Graves, W. S.; Berggren, K. K.

    2014-11-01

    We demonstrate the design, fabrication, characterization, and operation of high-density arrays of Au nanorod electron emitters, fabricated by high-resolution electron beam lithography, and excited by ultrafast femtosecond near-infrared radiation. Electron emission characteristic of multiphoton absorption has been observed at low laser fluence, as indicated by the power-law scaling of emission current with applied optical power. The onset of space-charge-limited current and strong optical field emission has been investigated so as to determine the mechanism of electron emission at high incident laser fluence. Laser-induced structural damage has been observed at applied optical fields above 5 GV m-1, and energy spectra of emitted electrons have been measured using an electron time-of-flight spectrometer.

  11. Optical to FIR SED of Lyα Emitters

    NASA Astrophysics Data System (ADS)

    Oteo, I.; Bongiovanni, A.; Pérez García, A. M.; Cepa, J.; Ederoclite, A.; Sánchez-Portal, M.; Pep Team

    2011-10-01

    We present an optical and FIR analysis of a sample of 65 Lyα emitters at 2.0˜

  12. High-density Au nanorod optical field-emitter arrays.

    PubMed

    Hobbs, R G; Yang, Y; Keathley, P D; Swanwick, M E; Velásquez-Garcíia, L F; Kärtner, F X; Graves, W S; Berggren, K K

    2014-11-21

    We demonstrate the design, fabrication, characterization, and operation of high-density arrays of Au nanorod electron emitters, fabricated by high-resolution electron beam lithography, and excited by ultrafast femtosecond near-infrared radiation. Electron emission characteristic of multiphoton absorption has been observed at low laser fluence, as indicated by the power-law scaling of emission current with applied optical power. The onset of space-charge-limited current and strong optical field emission has been investigated so as to determine the mechanism of electron emission at high incident laser fluence. Laser-induced structural damage has been observed at applied optical fields above 5 GV m(-1), and energy spectra of emitted electrons have been measured using an electron time-of-flight spectrometer. PMID:25354583

  13. Characterisation of the PXIE Allison-type emittance scanner

    NASA Astrophysics Data System (ADS)

    D`Arcy, R.; Alvarez, M.; Gaynier, J.; Prost, L.; Scarpine, V.; Shemyakin, A.

    2016-04-01

    An Allison-type emittance scanner has been designed for PXIE at FNAL with the goal of providing fast and accurate phase space reconstruction. The device has been modified from previous LBNL/SNS designs to operate in both pulsed and DC modes with the addition of water-cooled front slits. Extensive calibration techniques and error analysis allowed confinement of uncertainty to the < 5 % level (with known caveats). With a 16-bit, 1 MHz electronics scheme the device is able to analyse a pulse with a resolution of 1 μs, allowing for analysis of neutralisation effects. This paper describes a detailed breakdown of the R&D, as well as post-run analysis techniques.

  14. Multinozzle Emitter Array Chips for Small-Volume Proteomics

    PubMed Central

    Mao, Pan; Gomez-Sjoberg, Rafael; Wang, Daojing

    2013-01-01

    High-throughput multiplexed proteomics of small-volume biospecimens will generate new opportunities in theranostics. Achieving parallel top-down and bottom-up mass spectrometry analyses of target proteins using a unified apparatus will improve proteome characterization. We have developed a novel silicon-based microfluidic device, multinozzle emitter array chip (MEA chip), as a new platform for small-volume proteomics using liquid chromatography-nanoelectrospray ionization mass spectrometry (LC-nanoESI-MS). We demonstrate parallel, on-chip, and on-line LC-MS analysis of hemoglobin and its tryptic digests directly from microliters of blood, achieving a detection limit of less than 5 red blood cells. Our MEA chip will enable clinical proteomics of small-volume samples. PMID:23252432

  15. Characterisation of the PXIE Allison-type emittance scanner

    DOE PAGESBeta

    D'Arcy, R.; Alvarez, M.; Gaynier, J.; Prost, L.; Scarpine, V.; Shemyakin, A.

    2016-01-26

    An Allison-type emittance scanner has been designed for PXIE at FNAL with the goal of providing fast and accurate phase space reconstruction. The device has been modified from previous LBNL/SNS designs to operate in both pulsed and DC modes with the addition of water-cooled front slits. Extensive calibration techniques and error analysis allowed confinement of uncertainty to the <5% level (with known caveats). With a 16-bit, 1 MHz electronics scheme the device is able to analyse a pulse with a resolution of 1 μs, allowing for analysis of neutralisation effects. As a result, this paper describes a detailed breakdown ofmore » the R&D, as well as post-run analysis techniques.« less

  16. Normal conducting superbend in an ultralow emittance storage ring

    NASA Astrophysics Data System (ADS)

    Saeidi, F.; Pourimani, R.; Rahighi, J.; Ghasem, H.; Rachti, M. Lamehi

    2015-08-01

    The Iranian Light Source Facility (ILSF) is a new 3 GeV synchrotron radiation laboratory in the Middle East. As the main radiation source, the ILSF storage ring is based on a five-bend achromat lattice providing an ultralow horizontal beam emittance of 0.48 nm rad. In order to produce very bright high energy radiation from the bending magnet, a superbend electromagnet is designed to replace the central low-field dipole of the bare lattice. In this paper, we present some design features of the ILSF storage ring bending magnet radiation source and discuss the detailed physical and mechanical design of the normal conducting superbend electromagnet. The related beam dynamics issues have been investigated as well.

  17. Electron gun using carbon-nanofiber field emitter

    NASA Astrophysics Data System (ADS)

    Sakai, Y.; Haga, A.; Sugita, S.; Kita, S.; Tanaka, S.-I.; Okuyama, F.; Kobayashi, N.

    2007-01-01

    An electron gun constructed using carbon-nanofiber (CNF) emitters and an electrostatic Einzel lens system has been characterized for the development of a high-resolution x-ray source. The CNFs used were grown on tungsten and palladium tips by plasma-enhanced chemical-vapor deposition. Electron beams with the energies of 10

  18. Electron gun using carbon-nanofiber field emitter

    SciTech Connect

    Sakai, Y.; Haga, A.; Sugita, S.; Kita, S.; Tanaka, S.-I.; Okuyama, F.; Kobayashi, N.

    2007-01-15

    An electron gun constructed using carbon-nanofiber (CNF) emitters and an electrostatic Einzel lens system has been characterized for the development of a high-resolution x-ray source. The CNFs used were grown on tungsten and palladium tips by plasma-enhanced chemical-vapor deposition. Electron beams with the energies of 10

  19. Field Emitter Arrays and Displays Produced by Ion Tracking Lithography

    SciTech Connect

    Felter, T E; Musket, R G; Bernhardt, A F

    2004-12-28

    When ions of sufficient electronic energy loss traverse a dielectric film or foil, they alter the chemical bonding along their nominally straight path within the material. A suitable etchant can quickly dissolve these so-called latent tracks leaving holes of small diameter ({approx}10nm) but long length - several microns. Continuing the etching process gradually increases the diameter reproducibly and uniformly. The trackable medium can be applied as a uniform film onto large substrates. The small, monodisperse holes produced by this track etching can be used in conjunction with additional thin film processing to create functional structures attached to the substrate. For example, Lawrence Livermore National Laboratory and Candescent Technologies Corporation (CTC) co-developed a process to make arrays of gated field emitters ({approx}100nm diameter electron guns) for CTC's ThinCRT{trademark} displays, which have been fabricated to diagonal dimensions > 13. Additional technological applications of ion tracking lithography will be briefly covered.

  20. FIM/IAP/TEM studies of ion implanted nickel emitters

    SciTech Connect

    Walck, S.D.; Hren, J.J.

    1985-01-01

    Accurate depth profiling of implanted hydrogen and its isotopes in metals is extremely important. Field ion microscopy and atom-probe techniques provide the most accurate depth profiling analytical method of any available. In addition, they are extremely sensitive to hydrogen. This paper reports our early work on hydrogen trapping at defects in metals using the Field Ion Microscope/Imaging Atom Probe (FIM/IAP). Our results deal primarily with the control experiments required to overcome instrumental difficulties associated with in situ implantation and the influence of a high electric field. Transmission Electron Microscopy (TEM) has been used extensively to independently examine the influence of high electric fields on emitters. 11 references, 7 figures.

  1. Proposed emittance upgrade for the SLC damping rings

    SciTech Connect

    Early, R.; Limberg, T.; Moshammer, H.; Raubenheimer, T.; Skarpaas, K.; Spencer, J.

    1994-06-01

    One way to improve luminosity is to reduce transverse emittance by changing damping partitions. We consider the options in relation to the constraints. Besides modifications of the basic DR configuration the options include closed-orbit offsets in the quadrupoles, addition of strong multipoles and replacement of existing rectangular nosepieces on the dipoles (shim angles {phi}{equivalent_to}{theta}/2) with rotatable inserts. Measurements indicate the possibility of dynamically tuning {phi}>{ge}45{degrees} with decreases in {tau}{sub x} and {epsilon}{sub x} of {ge}50%. We discuss damping mechanisms to motivate the desirable field characteristics as well as nonlinear contours to cancel dipole harmonic errors (B>2T here) or to provide chromatic corrections. Such inserts could also be used to make cheaper, more compact rings with better impedance by reducing the number of conventional multipoles without impairing the stability. Estimated hardware costs are 250$/dipole end or multipole equivalent.

  2. Quantum emitters dynamically coupled to a quantum field

    SciTech Connect

    Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.

    2013-12-04

    We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the system’s quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.

  3. Highly robust stainless steel tips as microelectrospray emitters.

    PubMed

    Ishihama, Yasushi; Katayama, Hiroyuki; Asakawa, Naoki; Oda, Yoshiya

    2002-01-01

    Tapered stainless steel spray tips for sheathless microelectrospray ionization (microESI) have been developed. The fabrication procedure for the tapered stainless steel tips was optimized using an electropolishing technique followed by removal of the burr. Using the tip as the microESI emitter, a stable ESI spray was obtained at a flow rate of 20 nL/min. The sensitivity of the microESI system was almost two orders greater than that of the conventional ion spray system. The tip was highly stable, and was successfully used for over 1000 h. Moreover, these stainless steel tips were suitable for use with sheathless capillary electrophoresis/mass spectrometry (CE/MS) and capillary liquid chromatography/mass spectrometry (LC/MS) for routine analysis in proteomic and pharmaceutical applications. PMID:11968120

  4. Multiband spectral emitters matched to MBE grown photovoltaic cells

    SciTech Connect

    Wong, E.M.; Hickey, J.P.; Holmquist, G.A.; Uppal, P.N.; Waldman, C.H.

    1996-02-01

    Clearly TPV devices are of considerable interest for power generation. For practical devices it is desirable to have high efficiencies combined with low temperature operation. Photovoltaic cells which can convert the energy at the longer wavelengths of interest are needed to complete such a system. The spectral emission peak of Yb{sub 2}O{sub 3} is well matched to the band gap of Si; however, the longer wavelength, spectral emissions of other rare earth oxides can also be exploited through the use of III{endash}V semiconductor compounds such as GaSb or alloys of GaInAsSb. By doping GaSb with InAs, the band gap of the resulting material can be effectively varied depending upon the concentration of InAs in the quaternary alloy. The ability to tailor the emitter materials and, in conjunction, the photovoltaic materials leads to greater efficiencies through spectral matching. Two binary rare earth oxide combinations, Er{sub 2}O{sub 3}/Ho{sub 2}O{sub 3} and Er{sub 2}O{sub 3}/Yb{sub 2}O{sub 3}, were studied. The mixtures were found to give multiple peak spectral emission in the wavelengths of interest. The intensity of the peaks were compositionally dependent though it did not vary in a linear fashion. Photon efficiencies of the molecular beam epitaxially (MBE) grown GaSb cell and GaInAsSb quaternary cell were measured when used in conjunction with the Er{sub 2}O{sub 3}/Ho{sub 2}O{sub 3} emitters in which the concentration of Er{sub 2}O{sub 3} and Ho{sub 2}O{sub 3} were varied. The results demonstrated promise for further work. {copyright} {ital 1996 American Institute of Physics.}

  5. Measurement of the microwave emitter's inhomogeneity using optical fiber DTS

    NASA Astrophysics Data System (ADS)

    Jaros, Jakub; Papes, Martin; Liner, Andrej; Vašinek, Vladimir; Smira, Pavel; Nasswettrova, Andrea; Cubik, Jakub; Kepak, Stanislav

    2014-06-01

    Researcher's teams were dealing with the microwave emitter's inhomogeneity problem since the microwaves were used. One possible way, how to measure electromagnetic field is the measurement on inhomogeneous temperature distribution on the irradiated sample, which can cause problems as in other material processing, so in the undesirable change of properties and even security. Inhomogeneity of electromagnetic field is specific by creating spots with higher or lower temperature called "hot spots". This inhomogeneity strongly affects the temperature distribution in the cross section of the material and its resultant heating. Given the impossibility of using classical electronic devices with metal temperature sensors were various indirect methods used in the past. This paper deals with experimental measurement of the microwave emitter's inhomogeneity (2.45 GHz) using the optical fiber DTS. The greatest advantage of this sensor system is just in using of the optical fiber (electromagnetic resistance, small size, safety using in inflammable and explosive area, easy installation). Due to these properties of the optical fiber sensor it's possible to measure the temperature of the sample in real time. These sensor are able to measure the temperature along the fiber, in some cases they use nonlinear effect in optical fiber (Raman nonlinear effect). The verification of non-homogeneity consists in experimental measuring of the temperature distribution within the wooden sample. The method is based on heat exchange in an isolated system where wooden sample serves as an absorber of the irradiated energy. To identify locations with different power density was used DTS system, based on nonlinear phenomena in optical fibers.

  6. High-brightness fiber-coupled single emitter arrays

    NASA Astrophysics Data System (ADS)

    Heinemann, Stefan; Regaard, Boris; Schmidt, Torsten; Lewis, Ben

    2009-02-01

    Commercial high power fiber coupled diode lasers reach power levels of 200W from a 0.2mm fiber, NA=0.2. 2D fiber coupled single emitter (SE) arrays are described delivering 500W from a 0.2mm fiber. The beam quality of standard 90μm single emitter (SE) is 6mm*mrad (slow axis) and 0.7mm*mrad (fast axis) including errors from fast axis lensing. 3 SEs (24) can be arranged in slow axis (fast axis) to fill the aperture for coupling into a 0.2mm fiber, NA=0.2. For high efficiency, beam shaping optics are avoided. A lens array for slow axis collimation and a focusing optic complete the fiber coupled module. 44 SEs' are arranged as a 2D array, polarization multiplexed and coupled into a 0.2mm fiber, NA=0.2. 62% optical to optical and 75% coupling efficiency are achieved, close to the modeled coupling efficiency of 80%. Alignment tolerances in the system do account for additional losses. Precise manufacturing processes are essential. The SEs on submounts are soldered in one reflow process to a common heatsink and FAC-lensing station automatically aligns the lens based on image processing ensuring minimum total lensing errors (focusing and pointing) of each SE to <15% of total spot size. Tighter tolerances during SE mounting, improved fast axis collimation and a redesigned coupling optic will increase the coupling efficiency to 80% resulting in 410W linear polarized output from the 0.2mm fiber, NA=0.2. Polarization (800W) and dense wavelength multiplexing (1.4kW) open the door to kilowatt level.

  7. Signatures of reionization on Lyα emitters

    NASA Astrophysics Data System (ADS)

    Dayal, Pratika; Ferrara, Andrea; Gallerani, Simona

    2008-10-01

    We use a semi-analytic model of Lyα emitters (LAEs) to constrain the reionization history. By considering two physically motivated scenarios in which reionization ends either early [early reionization model (ERM), zi ~ 7] or late [late reionization model (LRM), zi ~ 6], we fix the global value of the intergalactic medium neutral fraction (e.g. χHI = 3 × 10-4, 0.15 at z = 6.56 for the ERM and LRM, respectively) leaving only the star formation efficiency and the effective escape fraction of Lyα photons as free parameters. The ERM fits the observed LAE luminosity function (LF) at z = 5.7 and 6.56 requiring no redshift evolution or mass dependence of the star formation efficiency, and LAE star formation rates (SFR) of , contributing ~8 per cent of the cosmic SFR density at z = 5.7. The LRM requires a physically uncomfortable drop of ~4.5 times in the SFR of the emitters from z = 6.5 to 5.7. Thus, the data seem to imply that the Universe was already highly ionized at z = 6.56. The mass-dependent Lyα transmissivity is 0.36 <~ Tα <~ 0.51 (ERM) and Tα <~ 0.26 (LRM) at z = 6.56. The LF data at z = 4.5 imply an extra Lyα line damping factor of ~ 0.25 possibly due to dust; the presence of a (clumpy) dust component with E(B - V) <~ 0.28 is also required to reproduce the observed large Lyα equivalent widths at the same redshift. Additional useful information can be extracted from the line profile (weighted) skewness, found to be SW = 10-17 Å for the two reionization models, which shows an interesting Lα - χHI anti-correlation, holding under the model assumptions. The shortcomings of the model and strategies to overcome them are discussed.

  8. Enhancing selectivity of infrared emitters through quality-factor matching

    NASA Astrophysics Data System (ADS)

    Sakr, Enas; Zhou, Zhiguang; Bermel, Peter

    2015-09-01

    It has recently been proposed that designing selective emitters with photonic crystals (PhCs) or plasmonic metamaterials can suppress low-energy photon emission, while enhancing higher-energy photon emission. Here, we will consider multiple approaches to designing and fabricating nanophotonic structures concentrating infrared thermal radiation at energies above a critical threshold. These are based on quality factor matching, in which one creates resonant cavities that couple light out at the same rate that the underlying materials emit it. When this quality-factor matching is done properly, emissivities can approach those of a blackbody, but only within a selected range of thermal photon energies. One potential application is for improving the conversion of heat to electricity via a thermophotovoltaic (TPV) system, by using thermal radiation to illuminate a photovoltaic (PV) diode. In this study, realistic simulations of system efficiencies are performed using finite-difference time domain (FDTD) and rigorous coupled wave analysis (RCWA) to capture both thermal radiation and PV diode absorption. We first consider a previously studied 2D molybdenum photonic crystal with a commercially-available silicon PV diode, which can yield TPV efficiencies up to 26.2%. Second, a 1D-periodic samarium-doped glass emitter with a gallium antimonide (GaSb) PV diode is presented, which can yield efficiencies up to 38.5%. Finally, a 2D tungsten photonic crystal with a 1D integrated, chirped filter and the GaSb PV diode can yield efficiencies up to 38.2%; however, the fabrication procedure is expected to be more challenging. The advantages and disadvantages of each strategy will be discussed.

  9. A numerical simulation study of gallium-phosphide/silicon heterojunction passivated emitter and rear solar cells

    SciTech Connect

    Wagner, Hannes; Ohrdes, Tobias; Dastgheib-Shirazi, Amir; Puthen-Veettil, Binesh; König, Dirk; Altermatt, Pietro P.

    2014-01-28

    The performance of passivated emitter and rear (PERC) solar cells made of p-type Si wafers is often limited by recombination in the phosphorus-doped emitter. To overcome this limitation, a realistic PERC solar cell is simulated, whereby the conventional phosphorus-doped emitter is replaced by a thin, crystalline gallium phosphide (GaP) layer. The resulting GaP/Si PERC cell is compared to Si PERC cells, which have (i) a standard POCl{sub 3} diffused emitter, (ii) a solid-state diffused emitter, or (iii) a high efficiency ion-implanted emitter. The maximum efficiencies for these realistic PERC cells are between 20.5% and 21.2% for the phosphorus-doped emitters (i)–(iii), and up to 21.6% for the GaP emitter. The major advantage of this GaP hetero-emitter is a significantly reduced recombination loss, resulting in a higher V{sub oc}. This is so because the high valence band offset between GaP and Si acts as a nearly ideal minority carrier blocker. This effect is comparable to amorphous Si. However, the GaP layer can be contacted with metal fingers like crystalline Si, so no conductive oxide is necessary. Compared to the conventional PERC structure, the GaP/Si PERC cell requires a lower Si base doping density, which reduces the impact of the boron-oxygen complexes. Despite the lower base doping, fewer rear local contacts are necessary. This is so because the GaP emitter shows reduced recombination, leading to a higher minority electron density in the base and, in turn, to a higher base conductivity.

  10. Interplay of Touschek scattering, intrabeam scattering, and rf cavities in ultralow-emittance storage rings

    NASA Astrophysics Data System (ADS)

    Leemann, S. C.

    2014-05-01

    The latest generation of storage ring-based light sources employs multibend achromat lattices to achieve ultralow emittance. These lattices make use of a large number of weak bending magnets which considerably reduces the amount of power radiated in the dipoles in comparison to power radiated from insertion devices. Therefore, in such storage rings, parameters such as emittance, energy spread, and radiated power are—unlike 3rd generation storage rings—no longer constant during a typical user shift. Instead, they depend on several varying parameters such as insertion device gap settings, bunch charge, bunch length, etc. Since the charge per bunch is usually high, intrabeam scattering in medium-energy storage rings with ultralow emittance becomes very strong. This creates a dependence of emittance on stored current. Furthermore, since the bunch length is adjusted with rf cavities but is also varied as insertion device gaps change, the emittance blowup from intrabeam scattering is not constant either. Therefore, the emittance, bunch length, and hence the resulting Touschek lifetime have to be calculated in a self-consistent fashion with 6D tracking taking into account not only the bare lattice and rf cavity settings, but also momentary bunch charge and gap settings. Using the MAX IV 3 GeV storage ring as an example, this paper demonstrates the intricate interplay between transverse emittance (insertion devices, emittance coupling), longitudinal emittance (tuning of main cavities as well as harmonic cavities), and choice of stored current in an ultralow-emittance storage ring as well as some implications for brightness optimization.

  11. Prototype of a subsurface drip irrigation emitter: Manufacturing, hydraulic evaluation and experimental analyses

    NASA Astrophysics Data System (ADS)

    Souza, Wanderley De Jesus; Rodrigues Sinobas, Leonor; Sánchez, Raúl; Arriel Botrel, Tarlei; Duarte Coelho, Rubens

    2013-04-01

    Root and soil intrusion into the conventional emitters is one of the major disadvantages to obtain a good uniformity of water application in subsurface drip irrigation (SDI). In the last years, there have been different approaches to reduce these problems such as the impregnation of emitters with herbicide, and the search for an emitter geometry impairing the intrusion of small roots. Within the last this study, has developed and evaluated an emitter model which geometry shows specific physical features to prevent emitter clogging. This work was developed at the Biosystems Engineering Department at ESALQ-USP/Brazil, and it is a part of a research in which an innovated emitteŕs model for SDI has been developed to prevent root and soil particles intrusion. An emitter with a mechanical-hydraulic mechanism (opening and closing the water outlet) for SDI was developed and manufactured using a mechanical lathe process. It was composed by a silicon elastic membrane a polyethylene tube and a Vnyl Polychloride membrane protector system. In this study the performance of the developed prototype was assessed in the laboratory and in the field conditions. In the laboratory, uniformity of water application was calculated by the water emission uniformity coefficient (CUE), and the manufacturer's coefficient of variation (CVm). In addition, variation in the membrane diameter submitted to internal pressures; head losses along the membrane, using the energy equation; and, precision and accuracy of the equation model, analyzed by Pearson's correlation coefficient (r), and by Willmott's concordance index (d) were also calculated with samples of the developed emitters. In the field, the emitters were installed in pots with and without sugar cane culture from October 2010 to January 2012. During this time, flow rate in 20 emitters were measured periodically, and the aspects of them about clogging at the end of the experiment. Emitters flow rates were measured quarterly to calculate

  12. Field emission from optimized structure of carbon nanotube field emitter array

    NASA Astrophysics Data System (ADS)

    Chouhan, V.; Noguchi, T.; Kato, S.

    2016-04-01

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to be 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm2 at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.

  13. Benchmarking of measurement and simulation of transverse rms-emittance growth

    SciTech Connect

    Jeon, Dong-O

    2008-01-01

    Transverse emittance growth along the Alvarez DTL section is a major concern with respect to the preservation of beam quality of high current beams at the GSI UNILAC. In order to define measures to reduce this growth appropriated tools to simulate the beam dynamics are indispensable. This paper is about the benchmarking of three beam dynamics simulation codes, i.e. DYNAMION, PARMILA, and PARTRAN against systematic measurements of beam emittances for different machine settings. Experimental set-ups, data reduction, the preparation of the simulations, and the evaluation of the simulations will be described. It was found that the measured 100%-rmsemittances behind the DTL exceed the simulated values. Comparing measured 90%-rms-emittances to the simulated 95%-rms-emittances gives fair to good agreement instead. The sum of horizontal and vertical emittances is even described well by the codes as long as experimental 90%-rmsemittances are compared to simulated 95%-rms-emittances. Finally, the successful reduction of transverse emittance growth by systematic beam matching is reported.

  14. Analytical Approach to Eigen-Emittance Evolution in Storage Rings

    SciTech Connect

    Nash, Boaz; /SLAC

    2006-05-16

    This dissertation develops the subject of beam evolution in storage rings with nearly uncoupled symplectic linear dynamics. Linear coupling and dissipative/diffusive processes are treated perturbatively. The beam distribution is assumed Gaussian and a function of the invariants. The development requires two pieces: the global invariants and the local stochastic processes which change the emittances, or averages of the invariants. A map based perturbation theory is described, providing explicit expressions for the invariants near each linear resonance, where small perturbations can have a large effect. Emittance evolution is determined by the damping and diffusion coefficients. The discussion is divided into the cases of uniform and non-uniform stochasticity, synchrotron radiation an example of the former and intrabeam scattering the latter. For the uniform case, the beam dynamics is captured by a global diffusion coefficient and damping decrement for each eigen-invariant. Explicit expressions for these quantities near coupling resonances are given. In many cases, they are simply related to the uncoupled values. Near a sum resonance, it is found that one of the damping decrements becomes negative, indicating an anti-damping instability. The formalism is applied to a number of examples, including synchrobetatron coupling caused by a crab cavity, a case of current interest where there is concern about operation near half integer {nu}{sub x}. In the non-uniform case, the moment evolution is computed directly, which is illustrated through the example of intrabeam scattering. Our approach to intrabeam scattering damping and diffusion has the advantage of not requiring a loosely-defined Coulomb Logarithm. It is found that in some situations there is a small difference between our results and the standard approaches such as Bjorken-Mtingwa, which is illustrated by comparison of the two approaches and with a measurement of Au evolution in RHIC. Finally, in combining IBS

  15. Slice emittance measurement for photocathode RF gun with solenoid scanning and RF deflecting cavity

    NASA Astrophysics Data System (ADS)

    Li, Chen; Huang, WenHui; Du, YingChao; Yan, LiXin; Tang, ChuanXiang

    2011-12-01

    The radiation of high-gain short-wavelength free-electron laser depends on the slice transverse emittance of the electron bunch. This essay introduces the method of slice emittance measurement, and shows the brief setup of this experiment using the solenoid scanning and RF deflecting cavity at Tsinghua University. The preliminary experimental results show that the slice rms emittance of the electron bunch generated by photocathode RF gun has considerable variations along the bunch and is typically less than 0.55 mm mrad for the laser rms radius of 0.4 mm.

  16. Measurement of longitudinal emittance growth using a laser-induced neutralization method

    SciTech Connect

    Yuan, V.W.; Garcia, R.; Johnson, K.F.; Saadatmand, K.; Sander, O.R.; Sandoval, D.; Shinas, M.

    1991-01-01

    A laser-induced neutralization technique, LINDA, has been used to study the longitudinal emittance of the 5-MeV H{sup {minus}} beam exiting the drift-tube Linac (DTL) of the Los Alamos Accelerator Test Stand (ATS). By using multiple laser intersection points, longitudinal emittance growths over drift distances of 23.6 and 30.6 cm were measured. Subsequently, a beam transport line, which consisted of one arm of a beam funnel, was substituted for the drift space. Measurements show that the elements of the funnel constrain emittance growth while the H{sup {minus}} beam is contained within these transport elements.

  17. Simulation of Phase Modulation for Longitudinal Emittance Blow-Up in J-PARC MR

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masanobu; Ezura, Eizi; Hara, Keigo; Hasegawa, Katsushi; Nomura, Masahiro; Ohmori, Chihiro; Schnase, Alexander; Shimada, Taihei; Takagi, Akira; Takata, Koji; Tamura, Fumihiko; Toda, Makoto; Yoshii, Masahito

    The J-PARC MR provides a coasting proton beam for nuclear physics experiments by slow extraction. The longitudinal emittance should be enlarged until the MR flat top to mitigate the microwave instability. We have investigated a phase modulation method by using a High Frequency Cavity (HFC) to increase the emittance. We have performed extensive simulation studies to find the appropriate parameters of the phase modulation. We found that the effective HFC frequency has a linear dependence with the modulation frequency where the emittance is smoothly enlarged. Furthermore, we confirmed that the required HFC voltage is inverse proportional to the square root of the duration time of the phase modulation.

  18. Single shot 3 GeV electron transverse emittance with a pepper-pot

    NASA Astrophysics Data System (ADS)

    Thomas, Cyrille; Delerue, Nicolas; Bartolini, Riccardo

    2013-11-01

    We present the first measurement of the transverse emittance of an electron bunch at 3 GeV using the pepper-pot technique. The measurements presented in this paper demonstrate the possibility to use such a method for single shot emittance measurement of high energy particles. This measurement presents also the experimental verification of a previous theoretical study, which was predicting in which condition such a measurement can be done. The method may present some technical limitations which are discussed in view of the application to future very small emittance multi-GeV particle accelerators.

  19. Possible emittance growth induced by nonlinear space charge fields for arbitrary particle distributions

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takashi; Horioka, Kazuhiko

    2016-06-01

    A procedure to obtain a ratio of beam radii at final and initial states in arbitrary particle distributions is proposed, and is applied to the estimation of possible emittance growth for Gaussian and thermal equilibrium distributions. The ratios are estimated for Gaussian and thermal equilibrium distributions as a function of tune depression. The possible emittance growth as a function of tune depression and nonlinear field energy factor is also estimated with and without a constant radius ratio approximation. It is confirmed that the possible emittance growths are almost the same in comparison to the cases with and without the constant radius ratio approximation at each distribution.

  20. Nonclassical light from a large number of independent single-photon emitters

    PubMed Central

    Lachman, Lukáš; Slodička, Lukáš; Filip, Radim

    2016-01-01

    Nonclassical quantum effects gradually reach domains of physics of large systems previously considered as purely classical. We derive a hierarchy of operational criteria suitable for a reliable detection of nonclassicality of light from an arbitrarily large ensemble of independent single-photon emitters. We show, that such large ensemble can always emit nonclassical light without any phase reference and under realistic experimental conditions including incoherent background noise. The nonclassical light from the large ensemble of the emitters can be witnessed much better than light coming from a single or a few emitters. PMID:26813774

  1. Nonclassical light from a large number of independent single-photon emitters.

    PubMed

    Lachman, Lukáš; Slodička, Lukáš; Filip, Radim

    2016-01-01

    Nonclassical quantum effects gradually reach domains of physics of large systems previously considered as purely classical. We derive a hierarchy of operational criteria suitable for a reliable detection of nonclassicality of light from an arbitrarily large ensemble of independent single-photon emitters. We show, that such large ensemble can always emit nonclassical light without any phase reference and under realistic experimental conditions including incoherent background noise. The nonclassical light from the large ensemble of the emitters can be witnessed much better than light coming from a single or a few emitters. PMID:26813774

  2. Influence of emittance on transverse dynamics of accelerated bunches in the plasma-dielectric wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Kniaziev, R. R.; Sotnikov, G. V.

    2016-09-01

    We study theoretically transverse dynamics of the bunch of charged particles with the finite emittance in the plasma-dielectric wakefield accelerator. Parameters of bunches are chosen the same as available from the 15 MeV Argonne Wakefield Accelerator beamline. The goal of the paper is to study the behavior of bunches of charged particles with different emittances while accelerating these bunches by wakefields in plasma-dielectric structures. Obtained results allow us to determine the limits of the emittance of the bunch where dynamics of the accelerated particles remains stable.

  3. Effects of RF noise on the longitudinal emittance growth in Tevatron

    SciTech Connect

    James Steimel et al.

    2003-06-02

    Phase and amplitude noises in the Tevatron RF system and the intrabeam scattering (IBS) produce longitudinal emittance growth with consecutive particle loss from the RF buckets. That causes a decrease of the luminosity and an increase of the background in particle detectors during the store. The report presents experimental measurements of RF system noise and the effect on the longitudinal emittance growth. There is a satisfactory agreement between measured noise spectral densities and observed emittance growth. For high bunch intensities, IBS plays an important role and has been taken into account. The sources of noises and plans for further system improvements are discussed.

  4. Space-charged-induced emittance growth in the transport of high-brightness electron beams

    SciTech Connect

    Jones, M.E.; Carlsten, B.E.

    1987-03-01

    The emittance induced by space charge in a drifting beam of finite length has been investigated, and a scaling law has been obtained from simple considerations of the different rates of expansion of different portions of the beam. The scaling law predicts the initial rate of emittance growth, before the beam shape has distorted significantly, and thus represents an upper bound on the rate of emittance increase. This scaling law has been substantiated by particle-in-cell simulation and the dependence on geometric factors evaluated for specific choices of the beam profile. For long, axially nonuniform beams, the geometric factors have been evaluated explicitly for Gaussian profiles, and other shapes.

  5. Experimental generation of longitudinally-modulated electron beams using an emittance exchange technique

    SciTech Connect

    Sun, Y.-E; Piot, P.; Johnson, A.; Lumpkin, A.; Maxwell, T.; Ruan, J.; Thurman-Keup, R.; /FERMILAB

    2010-08-01

    We report our experimental demonstration of longitudinal phase space modulation using a transverse-to-longitudinal emittance exchange technique. The experiment is carried out at the A0 photoinjector at Fermi National Accelerator Lab. A vertical multi-slit plate is inserted into the beamline prior to the emittance exchange, thus introducing beam horizontal profile modulation. After the emittance exchange, the longitudinal phase space coordinates (energy and time structures) of the beam are modulated accordingly. This is a clear demonstration of the transverse-to-longitudinal phase space exchange. In this paper, we present our experimental results on the measurement of energy profile as well as numerical simulations of the experiment.

  6. Verification of the AWA Photoinjector Beam Parameters Required for a Transverse-to-Longitudinal Emittance Exchange Experiment

    SciTech Connect

    Rihaoui, M.M.; Piot, P.; Power, J.G.; Mihalcea, D.; Gai, W.; /Argonne

    2009-05-01

    A transverse-to-longitudinal emittance exchange experiment is in preparation at the Argonne Wakefield Accelerator (AWA). The experiment aims at exchanging a low ({var_epsilon}{sub z} < 5 {micro}m) longitudinal emittance with a large ({var_epsilon}{sub x} > 15 {micro}m) transverse horizontal emittance for a bunch charge of {approx}100 pC. Achieving such initial emittance partitioning, though demonstrated via numerical simulations, is a challenging task and needs to be experimentally verified. In this paper, we report preliminary emittance measurements of the beam in the transverse and longitudinal planes performed at {approx}12 MeV. The measurements are compared with numerical simulations.

  7. A study of electrospray ionization emitters with differing geometries with respect to flow rate and electrospray voltage.

    PubMed

    Reschke, Brent R; Timperman, Aaron T

    2011-12-01

    The performance of several electrospray ionization emitters with different orifice inside diameters (i.d.s), geometries, and materials are compared. The sample solution is delivered by pressure driven flow, and the electrospray ionization voltage and flow rate are varied systematically for each emitter investigated, while the signal intensity of a standard is measured. The emitters investigated include a series of emitters with a tapered outside diameters (o.d.) and unaltered i.d.s, a series of emitters with tapered o.d.s and i.d.s, an emitter with a monolithic frit and a tapered o.d., and an emitter fabricated from polypropylene. The results show that for the externally etched emitters, signal was nearly independent of i.d. and better ion utilization was achieved at lower flow rates. Furthermore, emitters with a 50 μm i.d. and an etched o.d. produced about 1.5 times more signal than etched emitters with smaller i.d.s and about 3.5 times more signal than emitters with tapered inner and outer dimensions. Additionally, the work presented here has important implications for applications in which maximizing signal intensity and reducing frictional resistance to flow are necessary. Overall, the work provides an initial assessment of the critical parameters that contribute to maximizing the signal for electrospray ionization sources interfaced with pressure driven flows. PMID:21989703

  8. A Study of Electrospray Ionization Emitters with Differing Geometries with Respect to Flow Rate and Electrospray Voltage

    NASA Astrophysics Data System (ADS)

    Reschke, Brent R.; Timperman, Aaron T.

    2011-12-01

    The performance of several electrospray ionization emitters with different orifice inside diameters (i.d.s), geometries, and materials are compared. The sample solution is delivered by pressure driven flow, and the electrospray ionization voltage and flow rate are varied systematically for each emitter investigated, while the signal intensity of a standard is measured. The emitters investigated include a series of emitters with a tapered outside diameters (o.d.) and unaltered i.d.s, a series of emitters with tapered o.d.s and i.d.s, an emitter with a monolithic frit and a tapered o.d., and an emitter fabricated from polypropylene. The results show that for the externally etched emitters, signal was nearly independent of i.d. and better ion utilization was achieved at lower flow rates. Furthermore, emitters with a 50 μm i.d. and an etched o.d. produced about 1.5 times more signal than etched emitters with smaller i.d.s and about 3.5 times more signal than emitters with tapered inner and outer dimensions. Additionally, the work presented here has important implications for applications in which maximizing signal intensity and reducing frictional resistance to flow are necessary. Overall, the work provides an initial assessment of the critical parameters that contribute to maximizing the signal for electrospray ionization sources interfaced with pressure driven flows.

  9. A new shipping container for an intense neutron emitter

    SciTech Connect

    Bigelow, J.E.; Alexander, C.W.; Pace, J.V. III; Simmons, C.M.

    1994-06-01

    Californium-252 is an intense neutron emitter (2.34 {times} 10{sup 12} n/s{center_dot}g) used in medicine, research, and industry. The western world`s sole source of this rare radioisotope is the Californium Facility at Oak Ridge National Laboratory`s Radiochemical Engineering Development Center (REDC). A project has been initiated at the REDC to design a new Type B Californium Shipping Container. This effort is essential for future transportation of californium to meet the needs of users all over the world. The shipping container must meet all requirements for transport by motor freight, air, vessel, and rail, both domestic and foreign. There are unique problems in the design, fabrication, and licensing of a new Type B shipping container that will accommodate up to 60 milligrams of californium-252. One of the first challenges in the design phase of the project is the selection of a material to shield the high neutron flux. The more stringent safety precautions of today`s world impel us to consider more exotic materials for such a purpose. The candidate materials must be examined not just for their neutron shielding properties, but also in conjunction with other properties such as thermal and structural requirements to withstand the hypothetical accident conditions. The design and building of such a container is a formidable task requiring much planning. The licensing process, with the complex, interactive federal codes, is a special challenge and may be the biggest on the project in terms of time and money.

  10. Mesoscopic quantum emitters from deterministic aggregates of conjugated polymers

    PubMed Central

    Stangl, Thomas; Wilhelm, Philipp; Remmerssen, Klaas; Höger, Sigurd; Vogelsang, Jan; Lupton, John M.

    2015-01-01

    An appealing definition of the term “molecule” arises from consideration of the nature of fluorescence, with discrete molecular entities emitting a stream of single photons. We address the question of how large a molecular object may become by growing deterministic aggregates from single conjugated polymer chains. Even particles containing dozens of individual chains still behave as single quantum emitters due to efficient excitation energy transfer, whereas the brightness is raised due to the increased absorption cross-section of the suprastructure. Excitation energy can delocalize between individual polymer chromophores in these aggregates by both coherent and incoherent coupling, which are differentiated by their distinct spectroscopic fingerprints. Coherent coupling is identified by a 10-fold increase in excited-state lifetime and a corresponding spectral red shift. Exciton quenching due to incoherent FRET becomes more significant as aggregate size increases, resulting in single-aggregate emission characterized by strong blinking. This mesoscale approach allows us to identify intermolecular interactions which do not exist in isolated chains and are inaccessible in bulk films where they are present but masked by disorder. PMID:26417079

  11. Iodine-124: a promising positron emitter for organic PET chemistry.

    PubMed

    Koehler, Lena; Gagnon, Katherine; McQuarrie, Steve; Wuest, Frank

    2010-04-01

    The use of radiopharmaceuticals for molecular imaging of biochemical and physiological processes in vivo has evolved into an important diagnostic tool in modern nuclear medicine and medical research. Positron emission tomography (PET) is currently the most sophisticated molecular imaging methodology, mainly due to the unrivalled high sensitivity which allows for the studying of biochemistry in vivo on the molecular level. The most frequently used radionuclides for PET have relatively short half-lives (e.g. 11C: 20.4 min; 18F: 109.8 min) which may limit both the synthesis procedures and the time frame of PET studies. Iodine-124 (124I, t1/2 = 4.2 d) is an alternative long-lived PET radionuclide attracting increasing interest for long term clinical and small animal PET studies. The present review gives a survey on the use of 124I as promising PET radionuclide for molecular imaging. The first part describes the production of 124I. The second part covers basic radiochemistry with 124I focused on the synthesis of 124I-labeled compounds for molecular imaging purposes. The review concludes with a summary and an outlook on the future prospective of using the long-lived positron emitter 124I in the field of organic PET chemistry and molecular imaging. PMID:20428073

  12. Emittance Analysis of the DIII-D Neutral Beam Source

    NASA Astrophysics Data System (ADS)

    Lopez, N. A.; Crowley, B.

    2014-10-01

    In a high powered neutral beam system ions are extracted from a low temperature plasma, through apertures in the arc chamber, by application of a potential to an external electrode. It has been determined that to increase the beam energy of the DIII-D neutral beam system beyond 95 keV the accelerator must be reconfigured to avoid excessive electrical breakdown in the grid gaps. Deciding exactly what modifications are to be made requires modeling and experimental effort. A basic problem is to find a geometry with which the extracted beam is intense, low divergence, free of aberrations, and does not strike the focusing electrodes. We present the results of modeling proposed reconfigurations to the accelerator geometry and source conditions. The quality of the beam produced from the various accelerator configurations is quantified through metrics such as the beam emittance and the average divergence per beamlet. By comparing the beam quality and power delivered for each proposed reconfiguration an optimal design is selected and recommended. Work supported in part by the National Undergraduate Fellowship Program in Plasma Physics and Fusion Energy Sciences and the US DOE under DE-FG02-94ER54235, DE-FC02-04ER54698.

  13. Nanostructured ultrafast silicon-tip optical field-emitter arrays.

    PubMed

    Swanwick, Michael E; Keathley, Phillip D; Fallahi, Arya; Krogen, Peter R; Laurent, Guillaume; Moses, Jeffrey; Kärtner, Franz X; Velásquez-García, Luis F

    2014-09-10

    Femtosecond ultrabright electron sources with spatially structured emission are an enabling technology for free-electron lasers, compact coherent X-ray sources, electron diffractive imaging, and attosecond science. In this work, we report the design, modeling, fabrication, and experimental characterization of a novel ultrafast optical field emission cathode comprised of a large (>100,000 tips), dense (4.6 million tips·cm(-2)), and highly uniform (<1 nm tip radius deviation) array of nanosharp high-aspect-ratio silicon columns. Such field emitters offer an attractive alternative to UV photocathodes while providing a direct means of structuring the emitted electron beam. Detailed measurements and simulations show pC electron bunches can be generated in the multiphoton and tunneling regime within a single optical cycle, enabling significant advances in electron diffractive imaging and coherent X-ray sources on a subfemtosecond time scale, not possible before. At high charge emission yields, a slow rollover in charge is explained as a combination of the onset of tunneling emission and the formation of a virtual cathode. PMID:25075552

  14. Magnetron Driven L Band RF Gun using a Photocathode Emitter

    NASA Astrophysics Data System (ADS)

    Evans, Kirk; Fisher, Amnon; Friedman, Moshe

    1996-11-01

    Magnetron Driven L Band RF Gun using a Photocathode Emitter A tunable 5 megawatt L-Band injection locked magnetron amplifier is used to drive a 1-1/2 cell RF cavity gun, to produce a 2.5 megavolt electron beam. A tunable RF source relaxes the precision of the cavity gun construction, and therefore simplifies the design and reduces the overall cost. The design of the L-Band ( 1.3 GHz) RF cavity linear accelerator is presented, along with Superfish, SOS computer simulations, and calculations of beam energy and temporal qualities. Measurements of a few robust photocathode materials as well as measurements of the beam qualities of the final accelerator are presented. Future work will utilize new semiconductor laser diodes that can be electrically driven in the gigahertz range. This makes possible an electron gun system which can run at the RF frequency used to accelerate the electron beam. Such a system produces a "lock to clock" and synchronized RF and electron beam source which can be run single shot or any rep rate up to the RF frequency.

  15. Magnet design for a low-emittance storage ring.

    PubMed

    Johansson, Martin; Anderberg, Bengt; Lindgren, Lars Johan

    2014-09-01

    The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3-3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated `magnet block' units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk. PMID:25177980

  16. Noninvasive emittance and energy spread monitor using optical synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Fiorito, R.; Shkvarunets, A.; Castronovo, D.; Cornacchia, M.; Di Mitri, S.; Kishek, R.; Tschalaer, C.; Veronese, M.

    2014-12-01

    We propose a design for a minimally perturbing diagnostic minichicane, which utilizes optical synchrotron radiation (OSR) generated from magnetic bends in the chicane, to measure the rms horizontal and vertical beam sizes, divergences, emittances, Twiss parameters and energy spread of a relativistic electron beam. The beam is externally focused to a waist at the first bend and the OSR generated there can be used to measure the rms beam size. Subsequent pairs of bends produce far field OSR interferences (OSRI) whose visibility depends on the beam energy spread and the angular divergence. Under proper conditions, one of these two effects will dominate the OSRI visibility from a particular pair of bends and can be used to diagnose the dominant effect. The properties of different configuration of bends in the chicane have been analyzed to provide an optimum diagnostic design for a given set of beam parameters to: (1) provide a sufficient number of OSR interferences to allow a measurement of the fringe visibility; (2) minimize the effect of coherent synchrotron radiation and space charge forces on the particles motion; and (3) minimize the effect of compression on the bunch length as the beam passes through the chicane. A design for the chicane has been produced for application to the FERMI free electron laser facility and by extension to similar high brightness linear accelerators. Such a diagnostic promises to greatly improve control of the electron beam optics with a noninvasive measurement of beam parameters and allow on-line optics matching and feedback.

  17. A nanofluidic emitter tip obtained by focused ion beam nanofabrication.

    PubMed

    Arscott, Steve; Troadec, David

    2005-10-01

    We report here the design, fabrication and testing of a novel nanofluidic device which we term a 'nano-nib' due to its resemblance to a nano-fountain pen. The nanofluidic device is an emitter tip which incorporates a nanofluidic capillary slot coupled to a microfluidic capillary slot. The microfluidic capillary slot is fabricated using reactive ion etching (RIE) whilst the nanofluidic capillary slot is fabricated using focused ion beam (FIB) etching. The microfluidic capillary slot has a length of 2 mm and capillary slot dimensions (w x h) of 1 microm x 4 microm, i.e. a volume of a few picolitres (pl). The smallest nanofluidic capillary slot has a length of 3 microm and capillary slot dimensions as small as 21 nm x 300 nm, i.e. a volume of a few attolitres (al). Current-voltage characterization in electrospray mode revealed a current of 1 nA at an applied voltage as low as 40 V. The applications for this nanofluidic device lie in high sensitivity electrospray mass spectrometry, direct nanowriting, ultralow volume sample extraction/spotting and printing. PMID:20818010

  18. Ultrahigh-temperature emitter pixel development for scene projectors

    NASA Astrophysics Data System (ADS)

    Sparkman, Kevin; LaVeigne, Joe; McHugh, Steve; Lannon, John; Goodwin, Scott

    2014-05-01

    To meet the needs of high fidelity infrared sensors, under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) has developed new infrared emitter materials capable of achieving extremely high temperatures. The current state of the art arrays based on the MIRAGE-XL generation of scene projectors is capable of producing imagery with mid-wave infrared (MWIR) apparent temperatures up to 700K with response times of 5 ms. The Test Resource Management Center (TRMC) Test and Evaluation/Science and Technology (TandE/SandT) Program through the U.S. Army Program Executive Office for Simulation, Training and Instrumentations (PEO STRI) has contracted with SBIR and its partners to develop a new resistive array based on these new materials, using a high current Read-In Integrated Circuit (RIIC) capable of achieving higher temperatures as well as faster frame rates. The status of that development will be detailed within this paper, including performance data from prototype pixels.

  19. Recent advances in the chemistry of positron emitters

    SciTech Connect

    Wolf, A.P.; Fowler, J.S.

    1985-01-01

    With the increasing active interest in PET as a method for studying biochemistry in normal and pathological states in humans we can expect to see the development of new techniques for precursor preparation and synthesis. We have seen a doubling of the publication rate in the past three to four years over the previous three to four year period. As the need for these compounds, especially in the tumor and receptor areas, in a purely clinical setting, increases the trend towards true automation of production of the most needeed compounds will accelerate. The cyclotron manufacturers all offer ''black boxes'' for synthesis but the optimum approach to user friendly automation yet needs to be defined. I would note that this paper was not intended as a comprehensive review but rather my goal was to highlight just some of the exciting developments of the past several years. We are entering what may well be the most extensive and active period of research in the synthesis of positron emitter labeled compounds. If 1984 to 1985 is any gauge, many new methods and compounds will appear in the next several years. 37 refs.

  20. Silicon based solar cells using a multilayer oxide as emitter

    NASA Astrophysics Data System (ADS)

    Bao, Jie; Wu, Weiliang; Liu, Zongtao; Shen, Hui

    2016-08-01

    In this work, n-type silicon based solar cells with WO3/Ag/WO3 multilayer films as emitter (WAW/n-Si solar cells) were presented via simple physical vapor deposition (PVD). Microstructure and composition of WAW/n-Si solar cells were studied by TEM and XPS, respectively. Furthermore, the dependence of the solar cells performances on each WO3 layer thickness was investigated. The results indicated that the bottom WO3 layer mainly induced band bending and facilitated charge-carriers separation, while the top WO3 layer degraded open-circuit voltage but actually improved optical absorption of the solar cells. The WAW/n-Si solar cells, with optimized bottom and top WO3 layer thicknesses, exhibited 5.21% efficiency on polished wafer with area of 4 cm2 under AM 1.5 condition (25 °C and 100 mW/cm2). Compared with WO3 single-layer film, WAW multilayer films demonstrated better surface passivation quality but more optical loss, while the optical loss could be effectively reduced by implementing light-trapping structures. These results pave a new way for dopant-free solar cells in terms of low-cost and facile process flow.

  1. Controlling Variable Emittance (MEMS) Coatings for Space Applications

    NASA Technical Reports Server (NTRS)

    Farrar, D.; Schneider, W.; Osiander, R.; Champion, J. L.; Darrin, A. G.; Douglas, Donya; Swanson, Ted D.

    2003-01-01

    Small spacecraft, including micro and nanosats, as they are envisioned for future missions, will require an alternative means to achieve thermal control due to their small power and mass budgets. One of the proposed alternatives is Variable Emittance (Vari-E) Coatings for spacecraft radiators. Space Technology-5 (ST-5) is a technology demonstration mission through NASA Goddard Space Flight Center (GSFC) that will utilize Vari-E Coatings. This mission involves a constellation of three (3) satellites in a highly elliptical orbit with a perigee altitude of approximately 200 kilometers and an apogee of approximately 38,000 kilometers. Such an environment will expose the spacecraft to a wide swing in the thermal and radiation environment of the earth's atmosphere. There are three (3) different technologies associated with this mission. The three technologies are electrophoretic, electrochromic, and Micro ElectroMechanical Systems (MEMS). The ultimate goal is to make use of Van-E coatings, in order to achieve various levels of thermal control. The focus of this paper is to highlight the Vari-E Coating MEMS instrument, with an emphasis on the Electronic Control Unit responsible for operating the MEMS device. The Test & Evaluation approach, along with the results, is specific for application on ST-5, yet the information provides a guideline for future experiments and/or thermal applications on the exterior structure of a spacecraft.

  2. Radiation from an emitter in the ghost free scalar theory

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.; Zelnikov, Andrei

    2016-05-01

    We study radiation emitted by a time-dependent source of a scalar massless field in the framework of the ghost-free modifications of the theory. We consider a simple model of the emitter: namely, we assume that it is point-like and monochromatic. We focus on the most common versions of the ghost-free theory, where the propagator □-1 is modified as follows: exp (-(□/μ2)N)□-1, where μ is the characteristic mass scale of such a G FN theory. We demonstrate that far from the source, in the wave zone, the radiation asymptotically converges to its "classical" value for any N ≥1 . However, in the near zone the behavior of the field is quite different from the "classical" case. The difference of the field amplitude for the ghost-free field and for the classical one has an oscillatory behavior in this domain. The number of oscillations increases with N . The amplitude of these oscillations remains finite for even N , while it infinitely grows with frequency for odd N . This behavior indicates that even in the classical domain G FN theories might have pathological behavior.

  3. Magnet design for a low-emittance storage ring

    PubMed Central

    Johansson, Martin; Anderberg, Bengt; Lindgren, Lars-Johan

    2014-01-01

    The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3–3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated ‘magnet block’ units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk. PMID:25177980

  4. Low damage dry etch for III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Nedy, Joseph G.; Young, Nathan G.; Kelchner, Kathryn M.; Hu, Yanling; Farrell, Robert M.; Nakamura, Shuji; DenBaars, Steven P.; Weisbuch, Claude; Speck, James S.

    2015-08-01

    We have developed a dry etch process for the fabrication of lithographically defined features close to light emitting layers in the III-nitride material system. The dry etch was tested for its effect on the internal quantum efficiency of c-plane InGaN quantum wells using the photoluminescence of a test structure with two active regions. No change was observed in the internal quantum efficiency of the test active region when the etched surface was greater than 71 nm away. To demonstrate the application of the developed dry etch process, surface-etched air gaps were fabricated 275 nm away from the active region of an m-plane InGaN/GaN laser diode and served as the waveguide upper cladding. Electrically injected lasing was observed without the need for regrowth or recovery anneals. This dry etch opens up a new design tool that can be utilized in the next generation of GaN light emitters.

  5. Process for producing a high emittance coating and resulting article

    NASA Technical Reports Server (NTRS)

    Le, Huong G. (Inventor); O'Brien, Dudley L. (Inventor)

    1993-01-01

    Process for anodizing aluminum or its alloys to obtain a surface particularly having high infrared emittance by anodizing an aluminum or aluminum alloy substrate surface in an aqueous sulfuric acid solution at elevated temperature and by a step-wise current density procedure, followed by sealing the resulting anodized surface. In a preferred embodiment the aluminum or aluminum alloy substrate is first alkaline cleaned and then chemically brightened in an acid bath The resulting cleaned substrate is anodized in a 15% by weight sulfuric acid bath maintained at a temperature of 30.degree. C. Anodizing is carried out by a step-wise current density procedure at 19 amperes per square ft. (ASF) for 20 minutes, 15 ASF for 20 minutes and 10 ASF for 20 minutes. After anodizing the sample is sealed by immersion in water at 200.degree. F. and then air dried. The resulting coating has a high infrared emissivity of about 0.92 and a solar absorptivity of about 0.2, for a 5657 aluminum alloy, and a relatively thick anodic coating of about 1 mil.

  6. Towards quantum-dot arrays of entangled photon emitters

    NASA Astrophysics Data System (ADS)

    Juska, Gediminas; Dimastrodonato, Valeria; Mereni, Lorenzo O.; Gocalinska, Agnieszka; Pelucchi, Emanuele

    2013-07-01

    To make photonic quantum information a reality, a number of extraordinary challenges need to be overcome. One challenge is to achieve large arrays of reproducible `entangled' photon generators, while maintaining compatibility for integration with optical devices and detectors. Semiconductor quantum dots are potentially ideal for this as they allow photons to be generated on demand without relying on probabilistic processes. Nevertheless, most quantum-dot systems are limited by their intrinsic lack of symmetry, which allows only a small number (typically 1 out of 100, or worse) of good dots to be achieved per chip. The recent retraction of Mohan et al. seemed to question the very possibility of simultaneously achieving site control and high symmetry. Here, we show that with a new family of (111)-grown pyramidal site-controlled InGaAs1-δNδ quantum dots it is possible to overcome previous hurdles and obtain areas with up to 15% of polarization-entangled photon emitters, with fidelities as high as 0.721 +/- 0.043.

  7. Characterization of microstructured fibre emitters: in pursuit of improved nano electrospray ionization performance.

    PubMed

    Wu, Xinyun; Oleschuk, Richard D; Cann, Natalie M

    2012-09-21

    Full-dimensional computational fluid dynamics (CFD) simulations are presented for nano electrospray ionization (ESI) with various emitter designs. Our CFD electrohydrodynamic simulations are based on the Taylor-Melcher leaky-dielectric model, and the volume of fluid technique for tracking the fast-changing liquid-gas interface. The numerical method is first validated for a conventional 20 μm inner diameter capillary emitter. The impact of ESI voltage, flow rate, emitter tapering, surface hydrophobicity, and fluid conductivity on the nano-ESI behavior are thoroughly investigated and compared with experiments. Multi-electrospray is further simulated with 2-hole and 3-hole emitters with the latter having a linear or triangular hole arrangement. The simulations predict multi-electrospray behavior in good agreement with laboratory observations. PMID:22706328

  8. Emittance studies of the 2.45 GHz permanent magnet ECR ion source

    NASA Astrophysics Data System (ADS)

    Zelenak, A.; Bogomolov, S. L.; Yazvitsky, N. Yu.

    2004-05-01

    During the past several years different types of permanent magnet 2.45 GHz (electron cyclotron resonance) ion sources were developed for production of singly charged ions. Ion sources of this type are used in the first stage of DRIBs project, and are planned to be used in the MASHA mass separator. The emittance of the beam provided by the source is one of the important parameters for these applications. An emittance scanner composed from a set of parallel slits and rotary wire beam profile monitor was used for the studying of the beam emittance characteristics. The emittance of helium and argon ion beams was measured with different shapes of the plasma electrode for several ion source parameters: microwave power, source potential, plasma aperture-puller aperture gap distance, gas pressure. The results of measurements are compared with previous simulations of ion optics.

  9. Preliminary Assessment of the Functional Fitness of Alpha Emitter At-211 for Radiotherapy

    NASA Astrophysics Data System (ADS)

    Eremenko, D. O.; Fotina, O. V.; Pankratova, T. V.; Platonov, S. Yu.; Sirotkina, E. B.; Subbotina, E. A.; Yuminov, O. A.; Tultaev, A. V.

    2010-01-01

    The functional fitness of the alpha-emitter At-211 for radiotherapy of the thyroid gland cancer is evaluated. Radiation doses are calculated using the MIRD method and previously obtained pharmacokinetic data for At-211 in isotonic solution.

  10. Chemically doped three-dimensional porous graphene monoliths for high-performance flexible field emitters

    NASA Astrophysics Data System (ADS)

    Kim, Ho Young; Jeong, Sooyeon; Jeong, Seung Yol; Baeg, Kang-Jun; Han, Joong Tark; Jeong, Mun Seok; Lee, Geon-Woong; Jeong, Hee Jin

    2015-03-01

    Despite the recent progress in the fabrication of field emitters based on graphene nanosheets, their morphological and electrical properties, which affect their degree of field enhancement as well as the electron tunnelling barrier height, should be controlled to allow for better field-emission properties. Here we report a method that allows the synthesis of graphene-based emitters with a high field-enhancement factor and a low work function. The method involves forming monolithic three-dimensional (3D) graphene structures by freeze-drying of a highly concentrated graphene paste and subsequent work-function engineering by chemical doping. Graphene structures with vertically aligned edges were successfully fabricated by the freeze-drying process. Furthermore, their number density could be controlled by varying the composition of the graphene paste. Al- and Au-doped 3D graphene emitters were fabricated by introducing the corresponding dopant solutions into the graphene sheets. The resulting field-emission characteristics of the resulting emitters are discussed. The synthesized 3D graphene emitters were highly flexible, maintaining their field-emission properties even when bent at large angles. This is attributed to the high crystallinity and emitter density and good chemical stability of the 3D graphene emitters, as well as to the strong interactions between the 3D graphene emitters and the substrate.Despite the recent progress in the fabrication of field emitters based on graphene nanosheets, their morphological and electrical properties, which affect their degree of field enhancement as well as the electron tunnelling barrier height, should be controlled to allow for better field-emission properties. Here we report a method that allows the synthesis of graphene-based emitters with a high field-enhancement factor and a low work function. The method involves forming monolithic three-dimensional (3D) graphene structures by freeze-drying of a highly concentrated

  11. An Improved Formulation for Calorimetric Emittance Testing of Spacecraft Thermal Control Coatings

    NASA Technical Reports Server (NTRS)

    Kauder, Lonny R.

    2008-01-01

    Spacecraft often really heavily on passive thermal control to maintain operating temperature. An important parameter in the spacecraft heat balance equation is the emittance of thermal control coatings as a function of coating temperature. One method for determining the emittance of spacecraft thermal control from elevated temperature to cryogenic temperatures relies on a calorimetric technique. The fundamental equation governing this test method can be found in numerous places in the literature and although it generally provides reasonable results, its formulation is based on a conceptual flaw that only becomes apparent when the sample temperature approaches the wall temperature during testing. This paper investigates the cause for this error and develops the correct formulation for calorimetric emittance testing. Experimental data will also be presented that illustrates the difference between the two formulations and the resulting difference in the calculated emittance.

  12. A high-current microwave ion source with permanent magnet and its beam emittance measurement

    SciTech Connect

    Yao Zeen; Tan Xinjian; Du Hongxin; Luo Ben; Liu Zhanwen

    2008-07-15

    The progress of a 2.45 GHz high-current microwave ion source with permanent magnet for T(d,n){sup 4}He reaction neutron generator is reported in this paper. At 600 W microwave power and 22 kV extraction voltage, 90 mA peak hydrogen ion beam is extracted from a single aperture of 6 mm diameter. The beam emittance is measured using a simplified pepper-pot method. The (x,x{sup '}) emittance and the (y,y{sup '}) emittance for 14 keV hydrogen ion beam are 55.3{pi} and 58.2{pi} mm mrad, respectively. The normalized emittances are 0.302{pi} and 0.317{pi} mm mrad, respectively.

  13. Low Emittance, High Brilliance Relativistic Electron Beams from a Laser-Plasma Accelerator

    SciTech Connect

    Brunetti, E.; Shanks, R. P.; Manahan, G. G.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Raj, G.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A.

    2010-11-19

    Progress in laser wakefield accelerators indicates their suitability as a driver of compact free-electron lasers (FELs). High brightness is defined by the normalized transverse emittance, which should be less than 1{pi} mm mrad for an x-ray FEL. We report high-resolution measurements of the emittance of 125 MeV, monoenergetic beams from a wakefield accelerator. An emittance as low as 1.1{+-}0.1{pi} mm mrad is measured using a pepper-pot mask. This sets an upper limit on the emittance, which is comparable with conventional linear accelerators. A peak transverse brightness of 5x10{sup 15} A m{sup -1} rad{sup -1} makes it suitable for compact XUV FELs.

  14. Field emitters with nanoscale tips based on Mo oxide fabricated by electrochemical methods

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Takeo; Sato, Takahiro; Kitamura, Shin; Kitao, Akiko; Kubota, Oichi; Ozaki, Eiji; Motoi, Taiko

    2016-04-01

    Field emitters with nanoscale tips and a fabrication technique using a nanoscale gap are described. Each fabrication technique makes it possible to form emitters on a meter-scale glass substrate. The emitter has a configuration with one side gate to reduce the electron scattering losses at the counter electrode to improve the emission efficiency. All thin film layers constituting the emitter are fabricated by plasma-enhanced chemical vapor deposition and sputtering deposition. Nanoscale tips are formed between a shallow gap less than 7 nm deep by the joule heating of a Mo complex oxide, which is produced by the electro chemical etching of a deposited Mo layer. To our knowledge, this is the first work that shows a uniform efficiency of 5% or more achieved at an anode voltage of 10 kV and an operation voltage of 23 V.

  15. Emittance characterization of thermal control paints, coatings and surfaces using a calorimetric technique

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.

    1994-01-01

    Thermal control surfaces are used in every spacecraft thermal management system to dissipate heat through radiant heat transfer. This paper describes the thermal performance of several thermal control paints, coatings, and surfaces, as characterized by a calorimetric vacuum emissometer. The emissometer is designed to measure the functional emittance of a surface based on heat transfer from an underlying substrate to the surface and from the surface or near surface to a surrounding cold wall. Emittance measurements were made between 200 and 350 K. Polished aluminum, used here as a standard, was found to have a total hemispherical emittance of 0.06, as expected. A velvet black paint, also used here as a standard, was found to have an emittance of 0.94 at room temperature. Other surfaces of interest included a polyurethane-based black paint designated Z-306, a highly polished 316L stainless steel, and an atomic oxygen beam-textured carbon-carbon composite.

  16. 8. CLOSEUP OF REAR VIEW OF EMITTER/ANTENNA (TYPICAL DEVICE PHOTOGRAPH). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. CLOSE-UP OF REAR VIEW OF EMITTER/ANTENNA (TYPICAL DEVICE PHOTOGRAPH). - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  17. 7. CLOSEUP FRONT VIEW OF RADAR SYSTEM EMITTER/ANTENNA (TYPICAL DEVICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. CLOSE-UP FRONT VIEW OF RADAR SYSTEM EMITTER/ANTENNA (TYPICAL DEVICE PHOTOGRAPH). - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  18. Reduction of Thermal Emittance by using P-polarized Laser at Oblique Incidence

    SciTech Connect

    Xiang,D.; Park, S.; Park, J.; Parc, Y.; Wang, X.

    2006-01-01

    High charge low emittance electron beam is crucial for the 4th generation light source. Conventionally the beam is generated by photoinjector with laser illuminating the cathode at nearly normal incidence. In this paper attention was called to the use of laser at oblique incidence, which we believe, may be more beneficial. It is found that when the laser illuminates the cathode at oblique incidence, the quantum efficiency (QE) and thermal emittance show strong dependence on incidence angle and polarization state. By using p-polarized laser at oblique incidence, surface photoemission is initiated by the presence of the normal electric field which results in a higher QE and lower thermal emittance. With this technique, the increase in QE by almost 5 times and the reduction of thermal emittance by 40% should be quite expectable for a Copper photo-cathode with atomically smooth surface.

  19. A retractable electron emitter for the creation of unperturbed pure electron plasmas

    NASA Astrophysics Data System (ADS)

    Berkery, John W.; Pedersen, Thomas Sunn; Sampedro, Luis

    2007-01-01

    A retractable electron emitter has been constructed for the creation of unperturbed pure electron plasmas on magnetic surfaces in the Columbia Non-neutral Torus stellarator. The previous method of electron emission using emitters mounted on stationary rods limited the confinement time to 20 ms. A pneumatically driven system that can retract from the magnetic axis to the last closed flux surface in less than 20 ms while filling the surfaces with electrons was designed. The motion of the retractable emitter was modeled with a system of dynamical equations. The measured position versus time of the emitter agrees well with the model and the fastest axis-to-edge retraction was measured to be 20 ms with 40 psig helium gas driving the pneumatic piston.

  20. Resonant tunneling device with two-dimensional quantum well emitter and base layers

    DOEpatents

    Simmons, J.A.; Sherwin, M.E.; Drummond, T.J.; Weckwerth, M.V.

    1998-10-20

    A double electron layer tunneling device is presented. Electrons tunnel from a two dimensional emitter layer to a two dimensional tunneling layer and continue traveling to a collector at a lower voltage. The emitter layer is interrupted by an isolation etch, a depletion gate, or an ion implant to prevent electrons from traveling from the source along the emitter to the drain. The collector is similarly interrupted by a backgate, an isolation etch, or an ion implant. When the device is used as a transistor, a control gate is added to control the allowed energy states of the emitter layer. The tunnel gate may be recessed to change the operating range of the device and allow for integrated complementary devices. Methods of forming the device are also set forth, utilizing epoxy-bond and stop etch (EBASE), pre-growth implantation of the backgate or post-growth implantation. 43 figs.

  1. Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems.

    PubMed

    Ghanekar, Alok; Lin, Laura; Zheng, Yi

    2016-05-16

    We theoretically demonstrate a novel, efficient and cost effective thermal emitter using a Mie-resonance metamaterial for thermophotovoltaic (TPV) applications. We propose for the first time the design of a thermal emitter which is based on nanoparticle-embedded thin film. The emitter consists of a thin film of SiO2 on the top of tungsten layer deposited on a substrate. The thin film is embedded with tungsten nanoparticles which alter the refractive index of the film. This gives rise to desired emissive properties in the wavelength range of 0.4 μm to 2 μm suitable for GaSb and InGaAs based photovoltaics. Effective dielectric properties are calculated using Maxwell-Garnett-Mie theory. Our calculations indicate this would significantly improve the efficiency of TPV cells. We introduce a new parameter to gauge the efficacy of thermal emitters and use it to compare different designs. PMID:27409959

  2. Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center

    SciTech Connect

    S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

    2012-07-01

    A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

  3. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    SciTech Connect

    Bakeman, M.S.; Van Tilborg, J.; Nakamura, K.; Gonsalves, A.; Osterhoff, J.; Sokollik, T.; Lin, C.; Robinson, K.E.; Schroeder, C.B.; Toth, Cs.; Weingartner, R.; Gruner, F.; Esarey, E.; Leemans, W.P.

    2010-06-01

    The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.

  4. Preliminary Assessment of the Functional Fitness of Alpha Emitter At-211 for Radiotherapy

    SciTech Connect

    Eremenko, D. O.; Fotina, O. V.; Platonov, S. Yu.; Subbotina, E. A.; Yuminov, O. A.; Pankratova, T. V.; Sirotkina, E. B.; Tultaev, A. V.

    2010-01-05

    The functional fitness of the alpha-emitter At-211 for radiotherapy of the thyroid gland cancer is evaluated. Radiation doses are calculated using the MIRD method and previously obtained pharmacokinetic data for At-211 in isotonic solution.

  5. On the Importance of Symmetrizing RF Coupler Fields for Low Emittance Beams

    SciTech Connect

    Li, Zenghai; Zhou, Feng; Vlieks, Arnold; Adolphsen, Chris; /SLAC

    2011-06-23

    The input power of accelerator structure is normally fed through a coupling slot(s) on the outer wall of the accelerator structure via magnetic coupling. While providing perfect matching, the coupling slots may produce non-axial-symmetric fields in the coupler cell that can induce emittance growth as the beam is accelerated in such a field. This effect is especially important for low emittance beams at low energies such as in the injector accelerators for light sources. In this paper, we present studies of multipole fields of different rf coupler designs and their effect on beam emittance for an X-band photocathode gun being jointly designed with LLNL, and X-band accelerator structures. We will present symmetrized rf coupler designs for these components to preserve the beam emittance.

  6. Optimization of the Dynamic Aperture for SPEAR3 Low-Emittance Upgrade

    SciTech Connect

    Wang, Lanfa; Huang, Xiaobiao; Nosochkov, Yuri; Safranek, James A.; Borland, Michael; /Argonne

    2012-05-30

    A low emittance upgrade is planned for SPEAR3. As the first phase, the emittance is reduced from 10nm to 7nm without additional magnets. A further upgrade with even lower emittance will require a damping wiggler. There is a smaller dynamic aperture for the lower emittance optics due to a stronger nonlinearity. Elegant based Multi-Objective Genetic Algorithm (MOGA) is used to maximize the dynamic aperture. Both the dynamic aperture and beam lifetime are optimized simultaneously. Various configurations of the sextupole magnets have been studied in order to find the best configuration. The betatron tune also can be optimized to minimize resonance effects. The optimized dynamic aperture increases more than 15% from the nominal case and the lifetime increases from 14 hours to 17 hours. It is important that the increase of the dynamic aperture is mainly in the beam injection direction. Therefore the injection efficiency will benefit from this improvement.

  7. Resonant tunneling device with two-dimensional quantum well emitter and base layers

    DOEpatents

    Simmons, Jerry A.; Sherwin, Marc E.; Drummond, Timothy J.; Weckwerth, Mark V.

    1998-01-01

    A double electron layer tunneling device is presented. Electrons tunnel from a two dimensional emitter layer to a two dimensional tunneling layer and continue traveling to a collector at a lower voltage. The emitter layer is interrupted by an isolation etch, a depletion gate, or an ion implant to prevent electrons from traveling from the source along the emitter to the drain. The collector is similarly interrupted by a backgate, an isolation etch, or an ion implant. When the device is used as a transistor, a control gate is added to control the allowed energy states of the emitter layer. The tunnel gate may be recessed to change the operating range of the device and allow for integrated complementary devices. Methods of forming the device are also set forth, utilizing epoxy-bond and stop etch (EBASE), pre-growth implantation of the backgate or post-growth implantation.

  8. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector

    SciTech Connect

    Gulliford, Colwyn Bartnik, Adam Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca

    2015-03-02

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (≥100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9–9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers.

  9. Characterizing and Optimizing Photocathode Laser Distributions for Ultra-low Emittance Electron Beam Operations

    SciTech Connect

    Zhou, F.; Bohler, D.; Ding, Y.; Gilevich, S.; Huang, Z.; Loos, H.; Ratner, D.; Vetter, S.

    2015-12-07

    Photocathode RF gun has been widely used for generation of high-brightness electron beams for many different applications. We found that the drive laser distributions in such RF guns play important roles in minimizing the electron beam emittance. Characterizing the laser distributions with measurable parameters and optimizing beam emittance versus the laser distribution parameters in both spatial and temporal directions are highly desired for high-brightness electron beam operation. In this paper, we report systematic measurements and simulations of emittance dependence on the measurable parameters represented for spatial and temporal laser distributions at the photocathode RF gun systems of Linac Coherent Light Source. The tolerable parameter ranges for photocathode drive laser distributions in both directions are presented for ultra-low emittance beam operations.

  10. Multiple intrinsically identical single-photon emitters in the solid state.

    PubMed

    Rogers, L J; Jahnke, K D; Teraji, T; Marseglia, L; Müller, C; Naydenov, B; Schauffert, H; Kranz, C; Isoya, J; McGuinness, L P; Jelezko, F

    2014-01-01

    Emitters of indistinguishable single photons are crucial for the growing field of quantum technologies. To realize scalability and increase the complexity of quantum optics technologies, multiple independent yet identical single-photon emitters are required. However, typical solid-state single-photon sources are inherently dissimilar, necessitating the use of electrical feedback or optical cavities to improve spectral overlap between distinct emitters. Here we demonstrate bright silicon vacancy (SiV(-)) centres in low-strain bulk diamond, which show spectral overlap of up to 91% and nearly transform-limited excitation linewidths. This is the first time that distinct single-photon emitters in the solid state have shown intrinsically identical spectral properties. Our results have impact on the application of single-photon sources for quantum optics and cryptography. PMID:25162729

  11. Theoretical studies on performance evaluation of solar thermoelectronic energy converter with graphene emitter

    NASA Astrophysics Data System (ADS)

    Olawole, Olukunle; de, Dilip

    In this paper we consider detailed energy dynamics of solar thermoelectronic energy converter using graphene as the emitter. The emitter is heated by solar energy concentrated by a parabolic mirror concentrator. We study the performance evaluation of the energy conversion using temperature dependent work function of graphene and model the space charge problem by introducing a factor in the emitter and collector current densities. We present computations on power output and efficiency as function of solar insolation, height of emitter from the base of the mirror, reflection coefficient of the mirror, temperature and work function of collector. Effect of molecular doping on the performance of the graphene solar tech is also discussed. Please schedule our papers so that they are well separated in time for presentations.

  12. Relation between field energy and RMS emittance in intense particle beams

    SciTech Connect

    Wangler, T.P.; Crandall, K.R.; Mills, R.S.; Reiser, M.

    1985-10-01

    An equation is presented for continuous beams with azimuthal symmetry and continuous linear focusing, which expresses a relationship between the rate of change for squared rms emittance and the rate of change for a quantity we call the nonlinear field energy. The nonlinear field energy depends on the shape of the charge distribution and corresponds to the residual field energy possessed by beams with nonuniform charge distributions. The equation can be integrated for the case of an rms matched beam to yield a formula for space-charge-induced emittance growth that we have tested numerically for a variety of initial distributions. The results provide a framework for discussing the scaling of rms emittance growth and an explanation for the well-established lower limit on output emittance.

  13. Relation between field energy and RMS emittance in intense particle beams

    SciTech Connect

    Wangler, T.P.; Crandall, K.R.; Mills, R.S.; Reiser, M.

    1985-01-01

    An equation is presented for continuous beams with azimuthal symmetry and continuous linear focusing, which expresses a relationship between the rate of change for squared rms emittance and the rate of change for a quantity we call the nonlinear field energy. The nonlinear field energy depends on the shape of the charge distribution and corresponds to the residual field energy possessed by beams with nonuniform charge distributions. The equation can be integrated for the case of an rms matched beam to yield a formula for space-charge-induced emittance growth that we have tested numerically for a variety of initial distributions. The results provide a framework for discussing the scaling of rms emittance growth and an explanation for the well-established lower limit on output emittance. 15 refs., 4 figs.

  14. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector

    NASA Astrophysics Data System (ADS)

    Gulliford, Colwyn; Bartnik, Adam; Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca

    2015-03-01

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (≥100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9-9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers.

  15. Transverse Emittance and Current of Multi-GeV Trapped Electrons in a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, N.; Blumenfeld, I.; Clayton, C.E.; Decker, F.J.; Hogan, M.J.; Huang, C.; Ischebeck, R.; Iverson, R.H.; Joshi, C.; Katsouleas, T.; Lu, W.; Marsh, K.A.; Martins, S.F.; Mori, W.B.; Muggli, P.; Oz, E.; Siemann, R.H.; Walz, D.R.; Zhou, M.; /UCLA

    2009-10-17

    Multi-GeV trapped electron bunches in a plasma wakefield accelerator (PWFA) are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that emittance scales inversely with the square root of the plasma density in the nonlinear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents.

  16. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    SciTech Connect

    Bakeman, M. S.; Van Tilborg, J.; Nakamura, K.; Gonsalves, A.; Osterhoff, J.; Robinson, K. E.; Schroeder, C. B.; Toth, Cs.; Esarey, E.; Leemans, W. P.; Sokollik, T.; Lin, C.; Weingartner, R.; Gruener, F.

    2010-11-04

    The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.

  17. Theoretical calculation of the p-emitter length for snapback-free reverse-conducting IGBT

    NASA Astrophysics Data System (ADS)

    Liheng, Zhu; Xingbi, Chen

    2014-06-01

    A physically based equation for predicting required p-emitter length of a snapback-free reverse-conducting insulated gate bipolar transistor (RC-IGBT) with field-stop structure is proposed. The n-buffer resistances above the p-emitter region with anode geometries of linear strip, circular and annular type are calculated, and based on this, the minimum p-emitter lengths of those three geometries are given and verified by simulation. It is found that good agreement was achieved between the numerical calculation and simulation results. Moreover, the calculation results show that the annular case needs the shortest p-emitter length for RC-IGBT to be snapback-free.

  18. Evaluation of an Electrochromic Device for Variable Emittance in Simulated Space Conditions

    NASA Astrophysics Data System (ADS)

    Puterbaugh, Rebekah L.; Mychkovsky, Alexander G.; Ponnappan, Rengasamy; Kislov, Nikolai

    2005-02-01

    Unprotected skin and external surfaces of a spacecraft in earth orbit may experience temperature variations from -50°C to +100°C during exposure to cold space or sun. As a result, thermal management of spacecraft becomes extremely important. One latest trend is to provide flexibility and control in the thermal design that involves variable emittance surfaces consisting of electrochromic (EC) coatings. For investigational purposes, a sample electrochromic device is evaluated for variable emittance in simulated space conditions. A vacuum chamber with a liquid nitrogen circulated blackbody shroud is employed to simulate space conditions. The 63.5 × 63.5 mm test sample supplied by a small business research firm is mounted on an aluminum plate heated by an electrical resistance heater. The sample is thermally insulated by a heat shield from all surroundings excluding the active front surface facing the shroud. The heat shield is uniformly maintained at the sample temperature using an independent circuit of resistance heaters and temperature controllers. A steady state energy balance is applied to the test sample to determine the emittance as a function of temperature and DC bias voltage applied across the anode and cathode. Tests were performed to verify the switchability from high to low emittance states and vice versa. The difference between the high and low emittance values (Δɛ) obtained in the present calorimetric measurement is compared with the data obtained from FTIR measurements performed by the supplier of the EC sample. Results obtained in the present experiments compare closely with supplier data and prove the effectiveness of the variable emittance sample in space conditions. The validity of the calorimetric experiment is confirmed by testing materials with known emittances, such as black paint and polished metals. Error analysis of the system predicts an emittance accuracy of ±5% at sample temperatures in the range of -50°C to 100°C.

  19. Development of a pepper pot emittance probe and its application for ECR ion beam studies.

    SciTech Connect

    Kondrashev, S.; Barcikowski, A.; Mustapha, B.; Ostroumov, P.N.; Vinogradov, N.; Northern Illinois Univ.

    2009-07-21

    A pepper pot-scintillator screen system has been developed and used to measure the emittance of DC ion beams extracted from a high-intensity permanent magnet ECR ion source. The system includes a fast beam shutter with a minimum dwell time of 18 ms to reduce the degradation of the CsI(Tl) scintillator by DC ion beam irradiation and a CCD camera with a variable shutter speed in the range of 1 {micro}s-65 s. On-line emittance measurements are performed by an application code developed on a LabVIEW platform. The sensitivity of the device is sufficient to measure the emittance of DC ion beams with current densities down to about 100 nA/cm{sup 2}. The emittance of all ion species extracted from the ECR ion source and post-accelerated to an energy of 75-90 keV/charge have been measured downstream of the LEBT. As the mass-to-charge ratio of ion species increases, the normalized RMS emittances in both transverse phase planes decrease from 0.5-1.0 {pi} mm mrad for light ions to 0.05-0.09 {pi} mm mrad for highly charged {sup 209}Bi ions. The dependence of the emittance on ion's mass-to-charge ratio follows very well the dependence expected from beam rotation induced by decreasing ECR axial magnetic field. The measured emittance values cannot be explained by only ion beam rotation for all ion species and the contribution to emittance of ion temperature in plasma, non-linear electric fields and non-linear space charge is comparable or even higher than the contribution of ion beam rotation.

  20. Static analysis of possible emittance growth of intense charged particle beams with thermal equilibrium distribution

    SciTech Connect

    Kikuchi, Takashi; Horioka, Kazuhiko

    2009-05-15

    Possible emittance growths of intense, nonuniform beams during a transport in a focusing channel are derived as a function of nonlinear field energy and space charge tune depression factors. The nonlinear field energy of the beam with thermal equilibrium distribution is estimated by considering the particle distribution across the cross section of the beam. The results show that the possible emittance growth can be suppressed by keeping the beam particle in thermal equilibrium distribution during the beam transport.